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Лекция 1. Развитие квантовой физики.

История квантовой физики

Классическая физика не описывает многие вещи. Например - в молекулярной физи-
ке - появление понятия газа Ван-дер-Ваальса. При рассмотрении течения жидкости по
трубе появляются некоторые константы, описывающие свойства жидкости, в том числе
вязкость. Однако, классическая физика не даёт информации о том, почему у конкретной
жидкости конкретная вязкость.

Для изучения многих физических явлений необходимо от макрообъектов перейти к
микрообъектам. Однако описание микрообъектов в рамках классической физики невоз-
можно.
Более того, даже в макромире встречаются объекты, рассмотрение которых невозможно
вне квантовых представлений (лазер - принципиально квантовый генератор).

Характерные константы и размеры квантовых величин

Рассмотрим следующие фундаментальные константы:
𝑚𝑒 - масса электрона, 𝑒 - заряд электрона, 𝑐 - скорость света, ℎ -постоянная Планка.

Фундаментальные постоянные жёстко связаны со структурой материи и времени.
Каждая из констант соответствует определенному взаимодействию (масса - сила тяже-
сти, заряд - электростатические силы, скорость света - наличие релятивизма, постоянная
Планка - квантовость).
Выбор констант определяет свойства системы, о которой идет речь. Например, при выбо-
ре констант 𝑒, 𝑚𝑒, ℎ мы определяем систему, в которой есть электроны с зарядом и мас-
сой (есть электростатическое взаимодействие), и данную системы мы рассматриваем как
квантовую.

С помощью теории размерностей можно определить характерные масштабы системы,
в которой мы работаем.
Например, характерный масштаб скорости:

𝑣 =
𝑒2

ℎ
=

𝑐

137
(1.1)

Если характерная скорость системы соответствует указанной величине, то систему мож-
но считать нерелятивистской.

Для характерного масштаба системы можно записать:
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𝑟 =
ℎ2

𝑚𝑒2
≈ 0.5 Å (1.2)

Для энергии:

𝐸 =
𝑚𝑒4

ℎ2
≈ 30 эВ (1.3)

где 1 эВ ≈ 10−19 Дж.

Для определения системы нельзя взять набор сразу из четырёх констант. В этом слу-
чае система будет переопределена (например, расстояние можно будет определить двумя
способами - из двух разных наборов констант).

Попробуем взять другой набор констант: 𝑚𝑒, 𝑐, 𝑒.
При этом скорость останется скоростью света.
Чтобы найти характерное расстояние, приравняем энергию покоя электрона кулоновско-
му взаимодействию двух зарядов:

𝑚𝑒𝑐
2 =

𝑒2

𝑟
(1.4)

Тогда:

𝑟 =
𝑒2

𝑚𝑒𝑐2
(1.5)

Таким образом, мы получили масштабы, соответствующие ядерной физике.

Можно брать различные наборы фундаментальных констант, при этом для этих си-
стем будут разные значения характерной энергии. Можно заметить, что при увеличении
энергии характерный масштаб системы уменьшается (чем больше энергия частицы, тем
в меньших масштабах она локализована).

Рассмотрим следующую релятивистскую систему, в которой есть гравитационное вза-
имодействие и квантовость (то есть мы хотим квантовать гравитационное поле). То есть
данную систему можно описать константами: 𝐺, ℎ, 𝑐

Рассмотрение данной системы дает предел увеличения энергии и увеличения масшта-
бов.
В гравитационной теории есть некий гравитационный параметр, являющийся отношени-
ем гравитационного потенциала к 𝑐2:
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𝜉 =
𝜑

𝑐2
(1.6)

Гравитационный потенциал:

𝜑 =
𝐺𝑚

𝑙
(1.7)

где G - гравитационная постоянная, m - масса, l - характерный масштаб.
Вместо массы запишем:

𝑚 =
𝐸

𝑐2
(1.8)

Запишем энергию для волновой системы:

𝐸 = ℎ
𝑐

𝑙
(1.9)

Тогда, после подстановки:

𝜉 =
𝐺ℎ

𝑙2𝑐3
= 1 (1.10)

Полученная величина 𝜉 безразмерная. Приравняем её к 1 и скажем, что при выполнении
данного равенства наступает квантование электромагнитного поля. (Квантование появля-
ется, когда энергия и масса выражаются через условную частоту и длину волны)

Тогда для характерного масштаба получим:

𝑙 =
1

𝑐

√
𝐺ℎ

𝑐
≈ 5 · 10−33см (1.11)

Полученная величина называется планковской длиной.

Теперь, зная l, можно посчитать энергию. После подстановки получим:

𝐸 = 3 · 1016ТэВ (1.12)

Таким образом, чтобы рассмотреть, что происходит на масштабах l, необходима указан-
ная энергия, которая в настоящее время недостижима.

Мысленный эксперимент о разнице классической и квантовой
физики

Пример 1. Проведем следующий мысленный эксперимент. Пулемёт с большим уг-
лом разброса стреляет. На его пути расположена толстая стена, в которой есть небольшая
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щель. Часть пуль пролетает через данную щель, и попадает в земляной вал, расположен-
ный позади стены. Посчитаем, сколько пуль попало в единицу длины земляного вала -
получим некую зависимость (плотность вероятности нахождения пули по координате x)
(см. Рис. 1.1).

Пулемет

земляной валстенка

x

Рис. 1.1: Иллюстрация к примеру 1

Если учитывать, что пули не распадаются на части при столкновении, то полученный
график будет дискретным (причем образующая этого графика будет аналогична нарисо-
ванному выше).

Пример 2. Рассмотрим другой эксперимент.
Поставим излучатель волн, препятствие с одной щелью и экран с детектором:

x

Рис. 1.2: Иллюстрация к примеру 2

В случае электромагнитных волн детектор будет измерять мощность волны, пришед-
шей в точку экрана. Эта мощность будет пропорциональна квадрату амплитуды испущен-
ной волны. Если считать, что щель достаточно большая, то мы получим зависимость того
же сорта, что и в предыдущем случае, однако зависимость уже будет непрерывной, а не
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дискретной.

Пример 3. Рассмотрим эксперимент, аналогичный предыдущему, но уже с двумя ще-
лями:

x

Рис. 1.3: Иллюстрация к примеру 3

В этом случае будет наблюдаться интерференция двух волн, причём

|𝐴1 + 𝐴2 |2 = 𝐴21 + 𝐴22 + 2𝐴1𝐴2𝑒
𝑖𝜑 (1.13)

где 𝜑 - разность фаз между 𝐴1 и 𝐴2. (𝐴1, 𝐴2 - амплитуды волн).

Если аналогичный опыт провести для пуль, то полученный график будет соответство-
вать не интерференции, а сумме амплитуд.

Пример 4. Поставим источник электронов, стенку с одним отверстием, экран и детек-
тор на нем.
Каждый раз мы будем детектировать ровно один электрон. Как следствие, график распре-
деления электронов получится дискретным.

Пример 5. Аналогичный эксперимент с электронами проведём для двухщелей. В этом
случае каждой щели будет соответствовать максимум, причём графики останутся дис-
кретными (как в предыдущем примере), но при этом в области наложения двух потоков
будет наблюдаться интерференция.

Таким образом, электроны, приходящие из разных отверстий, итерферируют друг с
другом, но при этом в области интерференции мы регистрируем одиночные щелчки.

Можно ослабить яркость электронного источника. В этом случае картина будет про-
являться значительно дольше, но в этом случае картина останется аналогичной предыду-
щей.
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x

Рис. 1.4: Иллюстрация к примеру 4

x

Рис. 1.5: Иллюстрация к примеру 5

Пример 6. Попробуем узнать, через какую именно щель проходит конкретный элек-
трон. Для этого поставим у щелей источник электромагнитного излучения.

x

источник света

детектор

источник электронов

Рис. 1.6: Иллюстрация к примеру 6
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Когда электрон проходит в области источника, часть фотонов рассеивается на элек-
троне. Тогда, если электрона нет, то свет от источника проходит прямо, если электрон
есть, свет от источника отражается (его можно зафиксировать детектором) (см. Рис. 1.6).
Таким образом, можно определить, прошел ли электрон через щель, у которой стоит ис-
точник света, или нет. Однако в таком эксперименте интерференция исчезнет.

Усложним задачу: построим отдельно графики для замеченных (для которых была
вспышка в детекторе) и незамеченных электронов. В этом случае для незамеченных элек-
тронов снова будет интерференция.

Вывод: при процедуре изменения электрона его свойства меняются. Это связано с тем,
что при столкновении с фотонами, электрон теряет часть энергии, вследствие чего изме-
няется и сама система. Попробуем уменьшить влияние фотонов на электрон. Для этого
нужно увеличить длину волны. Тогда энергия квантов будет меньше и потеря электронов
на рассеянии будет меньше. При некотором значении длины волны будут и вспышки, и
интерференционная картина. Однако, если мы оценим длину волны, которая использу-
ется в таком случае, она будет сравнима с расстоянием между отверстиями. А раз длина
волны так велика, уже нельзя определить, где именно произошло рассеяние, то есть мы
не узнаем, через какую щель прошёл электрон.

Таким образом, когда мы теряем информацию о том, что было с электроном, интерфе-
ренция опять появляется.

В связи с описанным выше электрон можно рассматривать как частицу с массой и за-
рядом. Однако при этом необходимо приписывать электрону волновые свойства.

Общая особенность квантовых частиц - наличие корпускулярно-волнового дуализма.
Любая квантовая частица обладает и свойством классической частицы, и свойствами вол-
ны. При этом любое измерение в системе принципиально меняет свойства квантовых ча-
стиц.

Волна, которая описывает электрон, в терминах квантовой физики является волной
вероятности.
То есть можно записать электрон как волну:

𝐴𝑒𝑖𝜑 (1.14)

Измеримой величиной будет |𝐴|2, фаза исчезает при измерении.
А величина |𝐴|2 даёт плотность распределения вероятности электрона в пространстве. В
соответствии с ней мы будем получать с некоторой вероятностью регистрацию электрона
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в точке. При этом всегда будет регистрироваться целый неделимый электрон.

Имеет место принцип дополнительности: если некоторая теория не противоречит уста-
новленным экспериментальным фактам, то любая следующая теория должна старую тео-
рию как следствие.

Взаимодействие квантовой и классической теории состоит в принципе дополнитель-
ности. Классическая физика допустима в определённых пределах.

Развитие квантовой физики

• 1900 год - работа Планка по изучению абсолютно чёрного тела

• 1905 год - законы фотоэффекта

• 1913 год - сформулированная Бором теория атома

В случае каждого события была введена новая константа - постоянная Планка.

• 1923 год - введение понятия волны де Бройля

• 1927 год - эксперимент по дифракции электрона

• 1926 год - получены уравненияШрёдингера и Гейзенберга, которые дали первыйма-
тематический аппарат описания квантовых частиц; сформулировано вероятностное
описание частиц (волна вероятности)

• 1927 год - соотношение неопределённости Гейзенберга

• 1926 год - Дирак предложил квантование электромагнитного поля

• 1928 год - уравнение Дирака (релятивистское уравнение для квантовой частицы)

• 1932 год - наблюдение позитронов

• 1934 год - квантовая теория бета-распада
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Лекция 2. Абсолютно чёрное тело.

Абсолютно чёрное тело

Любое нагретое тело излучает. Абсолютно чёрное тело - модель излучающего тела.
Одно из представлений следующее. Полость в термодинамическом равновесии с термо-
статом температуры Т. То, что происходит в полости, находится в термодинамическом
равновесии с окружающим пространством, то есть стенки этой полости излучают и они
же поглощают.

Экспериментально излучение абсолютно чёрного тела можно получить следующим
образом. Представим двойную сферическую оболочку. Внешняя оболочка достаточно
толстая и находится при постоянной температуре. Можно просверлить маленькое отвер-
стие, такое, что потери через это отверстие пренебрежимо малы по сравнению с тем, что
происходит внутри полости. Тогда то, что будет светить из отверстия, будет близко к из-
лучению абсолютно твёрдого тела.

T

Рис. 2.1: Модель абсолютно чёрного тела

Спектр излучения абсолютно твёрдого тела - зависимость яркости излучения F от ча-
стоты 𝜈 или длины волны.
Экспериментальная зависимость выглядит следующим образом:

F

𝜈

Рис. 2.2: Спектр абсолютно твёрдого тела

Однако классическая теория утверждает, что при увеличении частоты (и увеличении
числа степеней свободы) энергия излучения должна расти, так как на одну степень сво-
боды приходится энергия kT. Однако, если это так, то излучение абсолютно чёрного тела
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содержит бесконечно много энергии.

Учитывая закон Больцмана считая его распределением плотности вероятности для
энергии, получим:

∞∫
0

𝐴𝑒−
𝐸
𝑘𝑇 𝑑𝐸 = 1 (2.1)

где A - нормировочная константа.
Тогда

𝐴 =
1

𝑘𝑇
(2.2)

Далее, если распределение Больцмана соответствует термодинамически равновесному
состоянию, то средняя энергия будет равна kT в классическом случае (получено после
расчёта следующего интеграла):

< 𝐸 >= 𝐴

∞∫
0

𝐸𝑒−
𝐸
𝑘𝑇 𝑑𝐸 = 𝑘𝑇 (2.3)

Найдём плотность распределения степеней свободы по частоте. Для этого рассмотрим
чёрное тело как ящик с зеркальными стенками. Для такой системы всё излучение будет
содержаться внутри этого ящика.

Рис. 2.3: Иллюстрация для расчёта

Для такого ящика можно посчитать число степеней свободы. Если есть некая часто-
ты 𝜈, то число степеней свободы для этой системы с энергией, меньшей энергии моды
на данной частоте - это полное число возможных конфигураций электромагнитного поля
внутри системы, у которых частота меньше 𝜈.
Ящик зеркальный, значит, по определению, на любой его поверхности должен быть ноль
электромагнитного поля (узел электромагнитного поля). Соответственно, моды такой си-
стемы - стоячие электромагнитные волны с узлами на всех поверхностях.

Возьмём одну координату и посчитаем число стоячих волн:

𝑙

𝜆/2
= 𝑁 (2.4)
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Соответственно, полное число стоячих волн вдоль одной координаты:

𝑁 =
2𝑙𝜈

𝑐
(2.5)

Однако, система является трёхмерной. Значит, нужно взять волновой вектор какой-то мо-
ды:

®𝑘 = ®𝑘𝑥 + ®𝑘𝑦 + ®𝑘𝑧 (2.6)

Причём по каждой из координат должна быть стоячая волна. То есть (в случае, если ящик
является кубом)

𝑘𝑥,𝑦,𝑧 =
𝜋𝑛𝑥,𝑦,𝑧

𝑙
(2.7)

Получаем три числа, которые и описывают моду.
При этом

𝑘2 = 𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 (2.8)

Введём число m:
𝑚2 = 𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧 (2.9)

Таким образом, мы перешли их координатного пространства в другое трхмерноре про-
странство, где координатами являются 𝑘𝑥 , 𝑘𝑦, 𝑘𝑧 (или 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧).

В этом пространстве каждая возможная мода, которая соответствует стоячей волне в
ящике, соответствует некоторой точке в новом пространстве с некоторыми координатами.
При этом число m (m соответствует максимальной частоте 𝜈) в новом пространстве даёт
сферу.
Внутри данной сферы будет множество узлов с целочисленными координатами. Это бу-
дут те моды, для которых 𝜈 6 𝜈0. (то есть берем все узлы системы, которые находятся
внутри сферы радиуса m).

𝑘𝑥

𝑘𝑦

𝑘𝑧

Рис. 2.4: Сфера в пространстве волновых векторов

Рассмотрим случай большого радиуса сферы: 𝑚 � 1.
Тогда число узлов, которые попадут на поверхность сферы, будет гораздо меньше числа
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узлов в объеме сферы.

Тогда число узлов, у которых частоты моды меньше 𝜈, равна объёму сферы (после
второго знака равенства m расписано через частоту):

𝑁(𝜈) =
4𝜋

3
𝑚3 =

4𝜋

3

𝜈3𝑉

𝑐3
(2.10)

где V - объем куба.

Необходимо учесть, что для любой стоячей волны могут быть два типа волн, так как у
электромагнитных волн существует поляризация (и два состояния поляризации. То есть
в предыдущую формулу нужно добавить множитель 2.

𝑁(𝜈) = 2
4𝜋

3
𝑚3 = 2

4𝜋

3

𝜈3𝑉

𝑐3
(2.11)

Устремим объем к бесконечности и посчитаем число мод на единицу объема:

𝑑𝑁 =
8𝜋𝜈2

𝑐3
𝑑𝜈 (2.12)

При переходе к классическим представлениям для энергии на единичный интервал полу-
чим

𝑑𝐸 = 𝑑𝑁 · 𝑘𝑇 =
8𝜋𝜈2

𝑐3
𝑘𝑇𝑑𝜈 (2.13)

Данная формула хорошо описывает указанный выше спектра излучения при малых часто-
тах. Однако при больших частотах получаем ”ультрафиолетовую катастрофу”: при стрем-
лении частоты излучения 𝜈 энергия в единичный спектральный интервал тоже стремится
к бесконечности. (то есть классическая теория не может описывать излучение абсолютно
чёрного тела).
Позже Планком была получена формула:

𝑢(𝜔) =
𝜔2

𝜋2𝑐3
ℏ𝜔

𝑒
ℎ𝜔
𝑘𝑇 − 1

(2.14)

Данная формула хорошо аппроксимирует экспериментальные данные.

Эйнштейн предположил, что энергия не может меняться непрерывно, что есть неко-
торый минимальный квант энергии:

𝜀0 = ℏ𝜔0 (2.15)
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При этом любая другая частота:
𝜔𝑛 = 𝑛𝜔0 (2.16)

Вместо непрерывной шкалы энергий возникает дискретная.

Тогда распределение Больцмана можно записать как дискретное распределение:

𝑃(𝑛) = 𝐶𝑒−𝑛
𝜀0
𝑘𝑇 = 𝐶𝑒−𝑛𝜘 (2.17)

где 𝜘 = 𝜀0
𝑘𝑇 .

Посчитаем среднюю энергию:

< 𝐸 >=

∑
𝑃(𝑛) · 𝐸𝑛∑
𝑃(𝑛)

(2.18)

Для случая нормировки: ∑
𝑃(𝑛) = 1 (2.19)

Учитывая, что под суммой будет стоять геометрическая прогрессия, из нормировки по-
лучим:

𝐶−1 =
1

1 − 𝑒−𝜘 (2.20)

Тогда средняя энергия

< 𝐸 >= 𝑘𝑇
∞∑
0

𝑐 · 𝑛𝜘𝑒−𝑛𝜘 (2.21)

Учтём, что − 𝜕
∑
𝑒−𝑛𝜘

𝜕𝜘 = 𝑛
∑
𝑒−𝑛𝜘.

В итоге получим
< 𝐸 >=

𝜀0

𝑒
𝜀0
𝑘𝑇 − 1

(2.22)

При обратном переходе к непрерывной шкале 𝜀0 → 0. Тогда полученная формула сво-
дится к классической: < 𝐸 >= 𝑘𝑇 .

Стенки полости излучают не любую частоту, а некие дискретные параметры. То есть
можно говорить, что стенки состоят из осцилляторов, которые излучают определенными
порциями - квантами. При этом минимальная порция равна 𝜀0 = ℏ𝜔0. Таким образом, мы
ввели систему энергетических уровней (см. Рис fig:2.5).

Представим, что излучатель помещён в термостат температуры Т. Тогда в системе
уровней будет уровень kT (обозначен на Рис. 2.5). С точки зрения распределения Больц-
мана это означает, что заселённость уровней ниже kT будет велика, а населённость уров-
ней выше kT начинает падать. Например, если система попала на какой-то уровень выше
kT, то для того, чтобы перейти на следующий уровень, системе нужен некий скачок. Если
бы спектр был бы непрерывным, система могла бы диффундировать по уровням вверх (в
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классике средняя энергия на каждую моду равна kT). Вероятность населённости уровня
тем меньше, чем больше энергия уровня превышает kT.

𝑘𝑇

Рис. 2.5: Система энергетических уровней

Например, если 𝜀0 � 𝑘𝑇 , то < 𝐸 >= 𝜀0𝑒
− 𝜀0

𝑘𝑇 . То есть средняя энергия уменьшается с
ростом 𝜀0.

Формула Планка

Формула Планка содержит две фундаментальные константы - константу Больцмана
k и постоянную Планка ℏ. Изменяя эти константы и исследуя набор зависимостей спек-
тральной плотности мощности от длины волны, можно тем самым измерить данные кон-
станты.
Возьмем число Авогадро:

𝑁𝑎 =
𝑅

𝑘
(2.23)

R можно взять непосредственно из термодинамических измерений, а k - из аппроксима-
ции по формуле Планка.
Возьмём постоянную Фарадея (е - заряд электрона):

𝐹 = 𝑁𝑎 · 𝑒 (2.24)

Постоянную Фарадея можно получить из законов электролиза, 𝑁𝑎 - из аппроксимации
формулы Планка (по предыдущей формуле).
Таким образом, можно оценить заряд электрона (оценка, полученная Планком, была до-
вольно точна).

Фотоэффект

Рассмотрим запаянную колбу, внутри которой вакуум. Внутри неё находятся катод и
анод, к которым приложено напряжение V. Будем освещать катод излучением с различ-
ными длинами волн и различной интенсивностью и измерять ток в цепи.
В этом случае будет наблюдаться выполнение законов фотоэффекта:

1. Число электронов (ток) пропорционально интенсивности света
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2. Энергия электронов не зависит от интенсивности света, а зависит от длины волны
и материала катода

3. Существует красная граница фотоэффекта (если длина волны больше некоторой
определённой величины, а частота - меньше определённого порога, то фотоэффект
не наблюдается

4. Электроны появляются мгновенно (с точки зрения допустимого временного разре-
шения)

Рассмотрим простейшую модель, описывающую данный эффект (классическая мо-
дель). пусть есть электрон в поле плоской электромагнитной волны напряжённостью 𝐸0.
Для него можно записать уравнение движения:

𝑚𝑥 = 𝑒𝐸0𝑒
𝑖𝜔0𝑡 (2.25)

Решение:
𝑥̇ =

𝑒𝐸0

𝑚𝜔0
𝑒𝑖(𝜔0𝑡+𝜋/2) (2.26)

Посчитаем среднюю энергию такого уравнения:

< 𝜀 >=
𝑚 < ˙|𝑥 |2 >

2
=
𝑒2𝐸2

0

𝑚𝜔2
0

(2.27)

Квадрат напряжённости пропорционален интенсивности излучения: 𝐸2
0 ∝ 𝐼.

Тогда энергия выбиваемых электронов пропорциональна интенсивности. Но тогда чем
больше интенсивность, тем больше средняя энергия электронов (противоречие со втором
законом фотоэффекта).
Также энергия электронов обратно пропорциональна𝜔2

0, соответственно, чем более длин-
новолновое излучение используется, тем больше энергия электронов (в эксперименте на-
блюдается обратное).

Эйнштейн вывел формулу:
ℏ𝜔 = 𝐴 + 𝐾 (2.28)

где ℏ𝜔 - энергия фотона, A - работа выхода (энергия, которую электрон должен потерять,
чтобы вылететь из металла), K - кинетическая энергия свободного электрона, который ре-
гистрируется.
Данная формула объясняет законы фотоэффекта. Число электронов будет пропорцио-
нально интенсивности, так как отношение интенсивности к энергии фотона будет рав-
но числу квантов света, которые падают на систему. Кинетическая энергия не зависит от
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интенсивности света. При этом, если положить 𝐾 = 0, то формула

ℏ𝜔 = 𝐴 (2.29)

определит красную границу фотоэфффекта (если ℏ𝜔 < 𝐴, то кинетическая энергия отри-
цательна, значит, электроны вылететь не могут.)
При данном рассмотрении предполагается, что в определённых условиях свет следует
рассматривать как поток корпускул.

Характеристики фотона

Если рассматривать фотон как частицу, то можно говорить о его импульсе.
Если есть некая поверхность, то давление света равно плотности электромагнитной энер-
гии около этой поверхности: 𝑃 = 𝑊 (W - плотность электромагнитной энергии).

С точки зрения корпускулярной теории давление света можно записать:

𝑃 =
𝑊

ℏ𝜔
𝑐 · 𝑝 = 𝑊 (2.30)

где 𝑊
ℏ𝜔 - число фотонов, которые падают на поверхность, c - скорость света, 𝑊ℏ𝜔 · 𝑐 - поток

фотонов в единицу времени. Каждый фотон передаёт импульс p. Тогда поток фотонов
передаёт импульс P.
Тогда имупульс фотона связан с волновым вектором как

𝑝 = ℏ𝑘 (2.31)

Энергия фотона: 𝐸 = ℏ𝜔.
Фотон является релятивистской частицей, значит, квадрат её полной энергии

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 (2.32)

где m - масса покоя.
Подставим в эту формулу выражения для энергии и импульса:

ℏ2𝜔2 = ℏ2𝑘2𝑐2 + 𝑚2𝑐4 (2.33)

Тогда 𝑚2𝑐4 = 0. То есть масса фотона равна нулю.

Скорость фотона можно измерить. Массу фотона можно оценить сверху. Для этого
проводят следующее. На Земле устанавливают два излучателя (с длинами волн 𝜆1 и 𝜆2).
Один из них - оптический излучатель (𝜆2 = 0, 5мкм), а второй - СВЧ (𝜆1 = 20𝑐𝑚). Эти два
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сигнала посылаются одновременно на луну, они отражаются от луны и регистрируются
на земле. Измерятся задержка распространения излучения до луны и обратно.

З

л
𝜆1
𝜆2

Рис. 2.6: Иллюстрация к эксперименту

По сути данный эксперимент является рассмотрением формулы

ℏ2𝜔2 = ℏ2𝑘2𝑐2 + 𝑚2𝑐4 (2.34)

в случае, если скорость распространения электромагнитного излучения немного отлична
от константы с. Пусть это так. Тогда возникает дисперсия - зависимость k от 𝜔:

𝑘2 =
𝜔2

𝑐2
− 𝑚2𝑐2

ℏ2
(2.35)

В случае, если масса фотона равна нулю, то фазовая скорость 𝑣𝜑 = 𝜔
𝑘 = 𝑐.

В случае, если масса фотона не равна нулю, фазовая скорость будет представлять слож-
ную зависимость от частоты.
То есть, измеряя задержку распространения сигнала, можно оценить, если дисперсия, или
нет.
В результате проведения такого эксперимента было получено, что масса фотона меньше,
чем 10−44 кг.

У фотона есть спин. Два состояния поляризации соответствуют двум возможным со-
стояниям проекции спина фотона.

Некоторые эксперименты позволяют говорить о неделимости фотона.
Опыт Боте. С помощью излучателя через узкий коллиматор излучаем металлическую
фольгу (при этом поток является слабым). Когда квант рентгеновского излучения попа-
дает в фольгу, он производит ионизацию внутренней оболочки атома. При заполнении
этой оболочки обратно излучается квант рентгеновского излучения. Устанавливается два
детектора рентгеновских квантов. В таком опыте срабатывает только один детектор, что
позволяет говорить о неделимости фотона.

Другой эксперимент: на пути лазерного электромагнитного излучения поставим дели-
тель, который половину пучка пропускает, половину - отражает. На путях отражённого и
прошедшего пучков ставятся детекторы. После чего ослабляем пучок (одиночные фото-
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ны).

1/2

1/2

Рис. 2.7: Иллюстрация к эксперименту

Всегда будет срабатывать только один детектор.

Оценим размер фотона. Рассмотрим зеркало, на которое падает поток фотонов.
Пусть зеркало движется со скоростью 𝑣 � 𝑐. Каков будет спектр отражённых фотонов?

v

Рис. 2.8: Иллюстрация к эксперименту

В рамках волновой теории будет происходить эффект Доплера:

𝜔 =
𝜔0

1 + 𝑣/𝑐
(2.36)

То есть частота отражённых от зеркала фотонов будет много меньше частоты падающих.
С точки зрения корпускулярной теории запишем законы сохранения:

𝑝 + 𝑀𝑣 = −𝑝′ + 𝑀𝑣′ (2.37)

𝐸 +
𝑀𝑣2

2
= 𝐸′ +

𝑀𝑣′2

2
(2.38)

Данную систему можно разрешить относительно частоты. Далее, устремляя массу зерка-
ла к нулю, получим формулу эффекта Доплера. Значит, электромагнитная и корпускуляр-
ная теория дают одинаковый результат.
Рассмотрим случай колеблющегося зеркала:

𝑣 = 𝑣0𝑆𝑖𝑛Ω𝑡 (2.39)

Причём 𝑣0 � 𝑐, Ω � 𝜔.
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С точки зрения корпускулярной теории, момент соударения фотона с зеркалом очень мал.
Тогда возьмём мгновенную скорость зеркала и перейдем к предыдущей задаче. Тогда про-
изойдёт эффект Доплера, но при этом частота отражённого фотона начнет зависеть от
времени:

𝜔0

1 + 𝑣0𝑠𝑖𝑛Ω𝑡
𝑐

.
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Лекция 3. Строение атома. Постулаты Бора.

Эксперимент с осциллирующим зеркалом

Рассмотрим эксперимент с колеблющимся зеркалом (конец прошлой лекции) с точки
зрения волновой теории. Введём комплексный коэффициент отражения r:

𝑟 = 𝑟0𝑒
𝑖𝜑 (3.1)

где 𝜑 - изменениефазы при отражении. Тогда можно показать, что при осцилляции зеркала

𝑟 = 𝑟0𝑒
𝑖𝜑 = 𝑟0𝑒

𝑖
𝑣0
𝑐 𝑠𝑖𝑛Ω𝑡 (3.2)

Тогда отраженное поле

𝐸′ = 𝐸 · 𝑟 = 𝐸0𝑟0𝑒
𝑖(𝜔0𝑡+

𝑣0
𝑐 𝑠𝑖𝑛Ω𝑡) (3.3)

∆𝜈

𝜈
' 10−15 (3.4)

Воспользуемся тем, что

𝑒𝑖𝑎𝑠𝑖𝑛Ω𝑡 =
+∞∑

𝑚=−∞
𝐽𝑚(𝑎)𝑒

𝑖Ω𝑡 (3.5)

где 𝐽𝑚 - функции Бесселя.
Тогда

𝐸′ = 𝐸0𝑟0
∑

𝐽𝑚(𝑎)𝑒
𝑖(𝜔0+𝑚Ω)𝑡 (3.6)

Таким образом, волновая и корпускулярная теории дают разные результаты, причем
правильный ответ дает электромагнитная теория (в сравнении с экспериментом).
Это связано с тем, что в классическом рассмотрении мы предположили, что фотон не име-
ет размера и отражается от зеркала мгновенно. Если фотон отражается долго, то скорость
меняется в процессе отражения.
У фотона есть размер. Он характеризует скорее время взаимодействия с объектом, чем
геометрический размер. Это связано с тем, что спектр сигнала и временная форма сигна-
ла связаны преобразованием Фурье. Соответственно, если спектр излучения достаточно
узкий, то область определения сигнала - это ±∞ (как только мы пытаемся ввести ограни-
чение по времени измерения электромагнитной волны, получаем расплывание спектра).
Фотон имеет некоторую длину, соответствующую времени взаимодействия.
Рассмотрим условие когерентности - разность хода двух плеч одного излучения должна
быть меньше длины когерентности (когда излучение осциллирует в одной и той же фа-
зе). Для лампочки или Солнца время когерентности очень мало. Для лазерного излучения
длина когерентности возрастает.
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Здесь речь шла о продольном размере фотона (вдоль оси распространения излучения).
Для случая поперечного размера также как

∆𝜏 ·∆𝜈 ≈ 1 (3.7)

где ∆𝜏 - длина фотона (продольная когерентность), ∆𝜈 - спектральная ширина
точно так же

∆𝑟 ·∆𝑘 ≈ 2𝜋 (3.8)

где ∆𝑘 - ширина углового спектра излучения, ∆𝑟 - размер условного фотона (радиус
когерентности).
Соответственно, ели мы хотим плоскую волну (один волновой вектор). Тогда ∆𝑘 = 0,
а ∆𝑟 = ∞. То есть плоская монохроматическая электромагнитная волна заполняет всё
пространство.

Эффект Комптона

Установлены источник рентгеновского излучения и тонкая металлическая фольга, в
которой есть свободные электроны. Рассмотрим рассеяние рентгеновского излучения на
электронах.
Классическая электромагнитная теория утверждает, что под действием электромагнит-
ного поля начнёт осциллировать, причём частота осцилляций будет совпадать с частой
осцилляций поля. Заряд движущийся, значит, он будет излучать (на той же частоте, с
которой воздействует поле). При этом в спектре излучения ничего нового не появится -
длина волны будет той же.

𝜆

𝐷1 𝐷2

KC

𝜃

𝜆”, 𝜆

O 𝜆

Рис. 3.1: Эффект Комптона

К - кристалл, который позволяет за счёт дифракции рентгеновских лучей измерять
спектр излучения, коллиматор выделяет угол 𝜃 из рассеянного излучения, С - детектор,
измеряющий спектр.
Комптон получил результаты, не согласующиеся с классической теорией - появилась сдви-
нутая по длине волны компонента, причём сдвиг всегда происходил с сторону больших
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длин волн. Этот сдвиг зависел от угла наблюдения.
Рассмотрим рассеяние фотона на электроне как рассеяние двух соударяющихся частиц:

𝑝 = ℏ𝑘
𝜀 = ℏ𝜔 e,m

Рис. 3.2: Эффект Комптона

Запишем законы сохранения импульса и энергии:

ℏ𝑘 − ℏ𝑘′ = 𝑝 (3.9)

При этом учтём, что закон сохранения энергии нужно писать в релятивистской форме:

ℏ𝜔 + 𝑚𝑐2 − ℏ𝜔′ = 𝐸 (3.10)

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 (3.11)

Возведём уравнения (3.9) и (3.10) в квадрат:(
ℏ𝑘 − ℏ𝑘′

)
= 𝑝2 (3.12)

1

𝑐2

(
ℏ𝜔 + 𝑚𝑐2 − ℏ𝜔′

)
=
𝐸2

𝑐2
(3.13)

Теперь вычтем из (3.13) (3.12) и учтём, что 𝑘 = 𝜔
𝑐 .

Тогда получится
ℏ𝜔
𝑚𝑐2

(1 − 𝑐𝑜𝑠𝜃)𝜔′ + 𝜔′ = 𝜔 (3.14)

где 𝜃 - угол между направлениями k и k’.
Тогда частота рассеянной компоненты

𝜔′ =
𝜔

1 + ℏ𝜔
𝑚𝑐2

(1 − 𝑐𝑜𝑠𝜃)
(3.15)

Перейдём к длинам волн: 𝜆 = 2𝜋𝑐
𝜔 , 𝜆′ = 2𝜋𝑐

𝜔′

𝜆′ = 𝜆 +
ℎ

𝑚𝑐
(1 − 𝑐𝑜𝑠𝜃) (3.16)
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где Λ𝑐 - комптоновская длина волны электрона:

Λ𝑐 =
ℎ

𝑚𝑐
(3.17)

𝜆′ = 𝜆 + Λ𝑐(1 − 𝑐𝑜𝑠𝜃) (3.18)

Таким образом, длина волны рассеянного излучения всегда больше 𝜆.
Данный эксперимент доказывает существование фотона.

Строение атома

Модель Томсона - есть электронейтральное образование, которое представляет собой
электроны, расположенные в положительной субстанции.
Однако такая модель противоречит даже электромагнитной теории, так такая система (ес-
ли электроны не движутся) будет нестабильно.
Модель можно улучшить, если предположить, что каждый электрон осциллирует. Тогда
система будет стабильна. Однако, гармонический осциллятор в виде заряженной частицы
должен излучать. Расчёт показывает, что тогда атом за очень короткое время излучит всю
свою энергию.
Более того, если учесть, что осциллятор не гармонический, а ангармонический, анализ
уравнения показывает, что электрон начнет излучать гармоники спектра: 𝜔0, 𝑛𝜔0, то есть
спектр излучения атома - эквидистантный спектр частот, что не подтверждается экспери-
ментами.

Бальмер в видимой части спектра атома водорода выделил видимую часть спектра -
серию Бальмера:

𝜔𝑛2 = 𝑅
( 1
22

− 1

𝑛2

)
(3.19)

То есть частоты расположены не эквидистантно.
В ультрафиолетовом диапазоне обнаружена серия Лаймана:

𝜔𝑛1 = 𝑅
( 1
12

− 1

𝑛2

)
(3.20)

Серия Пашена:
𝜔𝑛3 = 𝑅

( 1
32

− 1

𝑛2

)
(3.21)

Позже Ритц ввёл понятие терма:

𝑇𝑛 =
𝑅

𝑛2
(3.22)

Правило Ритца: любая частота, излучаемая атомом водорода, есть комбинация двух тер-
мов:
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𝜔𝑛,𝑚 = 𝑅
���( 1
𝑛2

− 1

𝑚2

)��� (3.23)

Для щелочных атомов будет похожее правило, но появится поправка:

𝑇𝑛 =
𝑅

(𝑛 + 𝛼)2
(3.24)

Модель Резерфорда основана на следующем эксперименте.
Пучок альфа-частиц облучает мишень из лёгкого материала и исследуется спектр рассе-
явшихся электронов (число электронов на единицу телесного угла в зависимости от угла
рассеяния 𝜑).
Альфа-частицы 𝑚1, 𝑍1𝑒 рассеиваются на тяжелом силовом центре 𝑚2, 𝑍2𝑒. Рассмотрим
задачу рассеяния частицы на кулоновском потенциале рассеивающего центра:

x
𝜑

𝜃

𝑚1, 𝑍1𝑒

𝑚2, 𝑍2𝑒

br

Рис. 3.3: Рассеяние альфа-частиц

где b - прицельный параметр (минимальное расстояние между направлением исход-
ного движения частицы и центром), 𝜃 - угол рассеяния.
Запишем закон сохранения энергии:

𝑚1

2
(𝑟2 + 𝑟2𝜑̇2) +

𝑧1𝑧2
4𝜋𝜀0𝑟

𝑒2 = 𝑊 (3.25)

где W - некоторая константа, которая возникает из-за того, что рассеяние упругое, то есть
энергия частицы не меняется.
Запишем закон сохранения момента импульса:

−𝑚𝑟2𝜑̇ = 𝑀 (3.26)

Ведем параметр:
𝜌 =

1

𝑟
(3.27)

Тогда
𝑑𝑟

𝑑𝑡
=
𝑑𝑟

𝑑𝜑

𝑑𝜑

𝑑𝑡
=

𝑑

𝑑𝜑
(
1

𝜌
)𝜑̇ =

𝑀

𝑚

𝑑𝜌

𝑑𝜑
(3.28)
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( 𝑑𝜌
𝑑𝜑

)2
= −2𝑚1𝑊

𝑀
− 2

𝑧1𝑧2𝑒
2

4𝜋𝜀0

𝑚1

𝑀2
𝜌 − 𝜌2 (3.29)

Продифференцируем левую и правую часть еще раз по 𝜑:

𝑑2𝜌

𝑑𝜑2
+ 𝜌 = − 𝑧1𝑧2𝑒

2

4𝜋𝜀0

𝑚1

𝑀2
= 𝐶 (3.30)

Решение:
𝜌 = 𝐶 + 𝐴𝑐𝑜𝑠𝜑 + 𝐵𝑠𝑖𝑛𝜑 (3.31)

Таким образом, задача сводится к нахождению коэффициентов A и B. Они определяются
из граничных условий.
Пусть

𝜑 → 𝜋 (3.32)

Тогда
0 = 𝐶 − 𝐴⇒ 𝐴 = 𝐶 (3.33)

и
𝑟𝑠𝑖𝑛𝜑 → 𝑏 ⇒ 𝐵 = 1/𝑏 (3.34)

Соответственно
1

𝑟𝑠𝑖𝑛𝜑
= 𝐶 · 𝑐𝑡𝑔 𝜑

2
+

1

𝑏
(3.35)

Пусть
𝜑 → 𝜃 (3.36)

Тогда при подстановке получим формулу для угла рассеяния:

𝑐𝑡𝑔
𝜃

2
= − 1

𝑏𝑐
(3.37)

Таким образом, угол рассеяния зависит от прицельного параметра.
Введём понятие дифференциального сечения рассеяния:

𝑑𝜎 = 2𝜋𝑏𝑑𝑏 (3.38)

Выражая прицельный параметр из (3.37) и учитывая соотношение между полным телес-
ным углом и углом рассеяния, можно получить выражение для полного числа частиц,
попавших в телесный угол:

𝑑𝜎 =
1

4

( 𝑧1𝑧2𝑒
2

4𝜋𝜀0𝑚1𝑣2

)2 𝑑Ω

𝑠𝑖𝑛4 𝜃2
(3.39)

Анализируя 𝑑𝜎, Резерфорд установил, что элементы в таблице Менделеева расположены
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в соответствии с возрастанием заряда ядра.
Также было установлено, угол рассеяния сильно зависит от прицельного параметра. При
этом, измеряя максимальный угол рассеяния, можно оценить максимальное b, которое
ему соответствует, и тем самым оценить радиус атома. В результате эксперимента наблю-
дались частицы, летящие назад от мишени. Это возможно только если заряд сосредоточен
в очень маленькой области, что противоречило модели Томсона. Таким образом была по-
строена планетарная модель атома: в атоме расположено маленькое ядро, вокруг которого
по окружностям движутся электроны. Противоречия с опытами такая модель не вызыва-
ет, но при этом остаются все остальные противоречия, присущие модели Томсона. Если
электроны движутся по круговым орбитам. они излучают гармоники обратного периода
обращения вокруг ядра, то есть теряют энергию.
Оценим время жизни электрона.
Запишем уравнение движения:

𝑚𝑣2

𝑟
=
𝑒2

𝑟2
(3.40)

Полная энергия электрона:

𝐸 = 𝐾 +𝑉 =
𝑒2

2𝑟
(3.41)

Запишем:
𝑑𝐸

𝑑𝑡
= − 𝑒2

2𝑟2
𝑑𝑟

𝑑𝑡
(3.42)

Электромагнитная теорияМаксвелла даёт теориюо том, как излучает электрон (мощность
излучаемая движущимся электроном):

𝑑𝐸

𝑑𝑡
=

2𝑒2

3𝑐3
𝑎2 (3.43)

где а - ускорение.
Из (3.40) и (3.43) получим

−𝑟2𝑑𝑟 = 4

3

𝑒4

𝑚2𝑐3
𝑑𝑡 (3.44)

Интегрируя, можно посчитать время жизни - время, за которое в два раза уменьшится
энергия электрона:

𝜏 =
𝑚2𝑐3𝑟30
4𝑒4

' 10−11𝑐 (3.45)

Постулаты Бора

Никольсон ввёл идею квантования момента импульса для высоколежащих орбитах:

𝑀 = 𝑛ℏ (3.46)

Позже были сформулированы постулаты Бора:
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1. Атом может находиться в стационарном состоянии - существуют стационарные ор-
биты

2. Стационарные орбиты описываются правилом

𝑀 = 𝑛ℏ (3.47)

3. На стационарных орбитах электроны могут находиться достаточно долго и не из-
лучают. Излучение происходит при переходе с одной стационарной орбиты на дру-
гую.

Запишем
𝑍𝑒2

𝑟2
=
𝑚0𝑣

2

𝑟
(3.48)

Чтобы получить стационарные орбиты, запишем

𝑚𝑣𝑟 = 𝑛ℏ (3.49)

Эта система уравнений даёт полную информацию о стационарных орбитах:

𝑟𝑛 =
ℏ2

𝑚𝑒2
𝑛2

𝑍
(3.50)

Энергия электрона на n-й орбите:

𝐸𝑛 = −𝑚𝑍
2𝑒4

2ℏ2
1

𝑛2
= − 𝑅

𝑛2
(3.51)

где 𝑅 = 𝑚𝑍2𝑒4

2ℏ2
- постоянная Ридберга

По сути это и будут термы Ритца.

Таким образом, введение стационарных орбит даёт термы. А третий постулат Бора
(электрон излучает при переходе с одной орбиты на другую) подразумевает, что энергия
излучаемого кванта равна разности энергий двух состояний:

ℏ𝜔𝑛,𝑚 = 𝑅
���( 1
𝑛2

− 1

𝑚2

)��� (3.52)

где n -состояние, в которое переходит электрона, m - состояние, из которого переходит
электрон.
Полученная модель описывает спектры атома водорода.
Однако даже для атома водорода модель неидеальна, так как она не учитывает движе-
ние ядра (то есть система электрон - ядро вращается относительно центра тяжести всей
системы). При более детальном рассмотрении получаем, что в уравнения для энергии и
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расстояния нужно вместо массы m ставить приведённую массу:

𝜇 =
𝑚1𝑚2

𝑚1 + 𝑚2
(3.53)

где 𝑚1 - масса электрона, 𝑚2 - масса протона.

𝐸𝑛 = −𝜇𝑍
2𝑒4

2ℏ2
1

𝑛2
= − 𝑅

𝑛2
(3.54)

Тогда радиус r будет расстоянием между центром тяжести и электроном (а не расстоянием
между электроном и ядро)

𝑟𝑛 =
ℏ2

𝜇𝑒2
𝑛2

𝑍
(3.55)

Однако, если учесть, что масса электрона значительно меньше массы протона, получим,
что 𝜇 ≈ 𝑚1. То есть учёт описанного выше явления даёт малую поправку.

Данная модель описывает систему - ядро и один электрон. То есть такая модель может
также описать ион атома гелия (Z=2) (для атома гелия уже не верно).

Опыт Франка и Герца

v

K Ac

G

Рис. 3.4: Опыт Франка и Герца

Внутри запаянной колбы - пары ртути. У колбы есть три электрода - катод, анод и сет-
ка. Между катодом и анадом приложено напряжение, которое мы можем менять. Сетка
находится под некоторым потенциалом. Измеряется напряжение между катодом и сеткой
и ток через анод.
Электроны выскакивают из катода. В результате регистрируется ток в зависимости от на-
пряжения. Зависимость имеет существенно немонотонную зависимость:
Если разность потенциалов между катодом и анодом положительна, то электроны начи-
нают ускоряться. Электроны достигают анода и регистрируется ток. При этом при уве-
личении напряжения ток растёт. Однако при некотором напряжении электрон набирает
вблизи сетки энергию порядка пяти эВ. При таком напряжении он испытывает неупругое
столкновение с атомом ртути. Столкновение неупругое, так как у ртути есть связанный
электрон с энергией 4.9 эВ. Если энергия внешнего электрона больше 4.9 эВ, то электрон
может выбить связанный электрон из атома ртути. При этом энергия внешнего электрона
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Рис. 3.5: Иллюстрация к эксперименту

уходит на ионизацию. Это приводит к тому, что электроны не долетают до анода и ток
падает.
Таким образом, существуют стационарные состояния для электронов в атоме ртути.
После первого минимума ток снова растёт. Это происходит потому, что электрон, пройдя
половину расстояния до сетки, испытывает столкновение и теряет часть энергии. Однако
за оставшуюся половину расстояния до сетки он снова может набрать энергию, достаточ-
ную для того, чтобы достичь анода.
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Лекция 4. Волновая природа материи.
Рассмотрим дифракцию электрона на двух щелях.

x

𝑃1 =
���𝜑1���2

𝑃2 =
���𝜑2���2

x
𝑃1

𝑃2

𝑃12

𝑃12 =
���𝜑1 + 𝜑2

���2
Рис. 4.1: Опыт с электронами

Для описания электрона ранее была введена волна вероятности 𝑎𝑒𝑖𝜑. Обозначим то, что
прошло через одно отверстие индексом 1, для другого отверстия - индекс 2. Тогда веро-
ятность регистрации электрона в какой-либо точке равна���𝑎1𝑒𝑖𝜑1 + 𝑎2𝑒

𝑖𝜑2
���2 = 𝑎21 + 𝑎22 + 2𝑎1𝑎2𝑠𝑖𝑛(𝜑1 − 𝜑2) (4.1)

Опыт Рамзауэра и Таунсенда

Некоторый объем заполнен атомами аргона. Этот объем облучается электронами с
энергией в единицы эВ. Измеряется сечение рассеяния - вероятность для электрона от-
клонится от первоначального направления.
𝑑𝜎
𝑑Ω - число частиц, которые отклонились на единицу телесного угла.

Если электрон имеет большую энергию, сечение рассеяния стремится к нулю, то есть
электроны не замечают наличие атомов аргона. При уменьшении энергии наблюдается
рост сечения, что тоже соответствует классических формулам и теории рассеяния. Одна-
ко, по классической теории сечение рассеяния должно монотонно возрастать.
Рассмотрим электрон с волновой точки зрения. Проведём следующую оптическую анало-
гию. На пути источника фотонов расположен непрозрачный экран. Меняем энергию из-
лучения и наблюдаем изменения. В рамках геометрической оптики в точку рассмотрения
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𝜎

W
∼ 1эВ ≈ 16эВ

Рис. 4.2: Опыт Рамзауэра и Таунсенда

Рис. 4.3: Оптическая аналогия

ничего не попадёт. Однако при учете дифракции в рассматриваемой точке будут чередо-
ваться максимумы и минимумы в зависимости от энергии. Если размер экрана меняется,
то энергия фотонов, при которой будет наблюдаться максимум, также будет меняться.

Рассмотрим атом аргона как непрозрачный экран. Тогда рассматриваемый опыт мо-
жет свести к описанной выше задаче. Тем самым можно объяснить наличие минимума и
максимума на полученном графике.

Волны де Бройля

Луи де Бройль предположил, что любой частице можно поставить в соответствие вол-
ну.

𝐸 = ℏ𝜔 (4.2)

𝑝 = ℏ𝑘 (4.3)

Возьмём четырёхвектор импульса для релятивистской частицы (Е - полная энергия ча-
стицы, в неё включена энергия покоя и энергия связи)

𝑝𝑥 , 𝑝𝑦, 𝑝𝑧,
𝐸

𝑐
(4.4)

и поставим в соответствие четырёхвектор:

𝑘𝑥 , 𝑘𝑦, 𝑘𝑧,
𝜔

𝑐
(4.5)

Учитывая, что 𝐸 = ℏ𝜔 можно получить связь импульсов 𝑝𝑖 с 𝑘𝑖 (такую же, как у фотона).
Но, в отличие от фотона, масса других частиц нулю не равна.
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После того, как ввели k и 𝜔, можно записать

𝐴𝑒𝑖(𝜔𝑡−𝑘𝑟) (4.6)

k можно посчитать через импульс, а 𝜔 нужно считать через полную энергию (в отличие
от фотона): 𝜔 = 𝐸

ℏ .
Таким образом, мы ставим в соответствие частице плоскую монохроматическую волну с
длиной волны де Бройля:

𝜆𝑏 =
ℎ

𝑝
(4.7)

Тогда можно записать волну де Бройля:

𝐴𝑒𝑖(𝜔𝑡−𝑘𝑟) = 𝐴𝑒
𝑖
ℏ (𝐸𝑡−𝑝𝑟) (4.8)

Для свободной частицы (нет потенциальной энергии и энергии связи):

𝐸 =
√
𝑚2𝑐4 + 𝑝2𝑐2 (4.9)

В нерелятивистском случае для свободной частиц

𝐸 =
√
𝑚2𝑐4 + 𝑝2𝑐2 ≈ 𝑚𝑐2 + 𝑝2

2𝑚
(4.10)

Таким образом, волна де Бройля для свободной нерелятивистской частиц

𝑒
𝑖
ℏ (𝑚𝑐

2𝑡+𝑘𝑡) (4.11)

Для нерелятивистской частицы 𝑚𝑐2 � 𝑘 . Тогда частота 𝑚𝑐2/ℏ очень большая. То есть у
волны будет две частоты, одна из которых очень большая. Высокую частоту в опыте не
наблюдают в результате усреднения.
Поэтому в нерелятивистском случае из аргумента экспоненты выкидывают 𝑚𝑐2 (так как
она даёт только константу). В результате дл ясвободной нерелятивистской частицы полу-
чаем волну

𝑒
𝑖
ℏ (𝑘𝑡−𝑝𝑟) (4.12)

Пример. Рассмотрим пылинку массой 𝑚 = 1 мкг и скоростью 𝑣 = 0.1 м/с.
Можно посчитать импульс и длину волны (∼ 10−20 м).
Если длина волны де Бройля частицы меньше характерного размера данной частицы:

𝜆𝐵 � 𝑟𝑝 (4.13)

то квантовые свойства рассматриваемого объекта спрятаны внутри.
Таким образом, классические объекты имеют настолько маленькую длину волны де Брой-
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ля, что квантовые эффекты не наблюдаются.
Пример. Рассмотрим электрон с энергией 1эВ. Для него длина волны де Бройля будет
порядка 1мкм (будут наблюдаться квантовые эффекты).
Для энергии в 1 ГэВ (ультрарелятивистский электрон) 𝑝2𝑐4 � 𝑚2𝑐4. Тогда получим, что
𝐸 ≈ 𝑝𝑐. В результате

𝜆𝐵 =
ℎ

𝑝
=
ℎ𝑐

𝐸
(4.14)

Разделим длину волны де Бройля на комптоновскую длину волны:

𝜆𝐵
𝜆𝑐

=
ℎ𝑐
𝐸
ℎ
𝑚𝑐

=
𝑚𝑐2

𝐸
� 1 (4.15)

То есть получаем, что такой электрон является классическим объектом (для его описания
квантовая теория не требуется).

Опыты Девиссона и Джермера

Дифракция рентгеновского излучения на периодической структуре - известный эф-
фект. Для рентгеновского излучения , длина волны которого порядка периода кристалли-
ческой решётки кристалл является дифракционной решеткой.
Каждый атом рассеивает небольшую часть излучения во все стороны. Но под определён-
ным углом рассеянные волны окажутся в фазе и дадут максимум.
Длины волн де Бройля для электронов тоже будут порядка периода кристаллической ре-
шётки.

Опыты Девиссона и Джермера - дифракция электронов на кристаллической решёт-
ке.
Пучок электронов направлен на кристалл под определённым углом. Можно менять на-
пряжение на источнике, тем самым меняя скорость электронов. Детектируется ток элек-
тронов, дифрагировавших на кристалле.
Известны законы дифракции на кристалле для рентгеновского излучения - закон Вульфа-
Брэгга:

𝑛𝜆𝑛 = 2𝑑𝑠𝑖𝑛𝜃𝑛 (4.16)

где d - период кристаллической структуры, 𝜆𝑛 - данная длина волны, 𝜃𝑛 - угол наблюдения
дифракции.
В эксперименте детектор был зафиксирован, изменялось напряжение (то есть изменялась
энергия электронов).

Запишем длину волны для нерелятивистского электрона:

𝜆 =
ℎ

𝑚𝑣
(4.17)
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𝜃

источник

кристалл

детектор

Рис. 4.4: Установка в опытах Девиссона и Джермера

Из закона (U - напряжение)
𝑚𝑣2

2
= 𝑒𝑈 (4.18)

выразим скорость и подставим её в (4.17).
Тогда

𝜆𝑛 =
ℎ

√
2𝑒𝑚𝑈𝑛

=
𝐴

√
𝑈𝑛

(4.19)

где А - некоторая константа.
В опытах наблюдалось:

ин
те
нс
ив
но
ст
ь

√
𝑈

𝑛 = 3 4 5 6 7

Рис. 4.5: Опыты Девиссона и Джермера

В зависимости интенсивности рассеяния от корня напряжения наблюдается череда мак-
симумов, расположенных эквидистантно, причём расположение этих максимумов удо-
влетворяет закону Брэгга - Вульфа.
Таким образом, можно утверждать, что в данном опыте наблюдалась дифракция электро-
нов на кристалле.
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Опыты Томпсона и Тартаковского

Опыты по дифракции на поликристаллических образцах.
Если есть пучок на фиксированной длине волны, то, так как поликристалл состоит из
большого числа кристалликов, развернутых друг относительно друга, для любой длины
волны всегда найдётся кристаллик, расположенный под правильным углом. Задача яв-
ляется двумерной, поэтому дифракция для данной длины волны и для данного d будет
давать кольцо, что и наблюдалось в экспериментах.
Точно такие же кольца наблюдаются для рентгеновского излучения при дифракции на тех
же поликристаллических образцах.

Рассмотрим дифракцию ослабленного пучка электронов (например, один электрон в
секунду). В этом случае дифракционная картина также будет наблюдаться, так как волна
де Бройля по сути волна вероятности.

Дифракция холодных нейтронов

В термоядерном котле рождаются нейтроны с разными энергиями. Возьмём длинный
графитовый стержень (графит - кристаллический материал). При рассмотрении спектра
нейтронов, вышедших из дальнего конца стержня обнаружена коротковолновая граница.
Оказывается, что коротковолновые нейтроны уходят в сторону, а длинноволновые идут
по стержню.

графит длинноволновые нейтроны

коротковолновые нейтроны

котел

коротковолновые нейтроны

Рис. 4.6: Дифракция холодных нейтронов

ин
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ст
ь

𝜆

Рис. 4.7: Результат эксперимента

Рассмотрим предельный случай: 𝑠𝑖𝑛𝜃 = 1 ⇒ 𝜆𝑚𝑎𝑥 = 2𝑑. Если 𝜆 > 2𝑑, то формула

𝑛𝜆𝑛 = 2𝑑𝑠𝑖𝑛𝜃𝑛 (4.20)
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не будет удовлетворена. То есть такие нейтроны не смогут дифрагировать на графите.
Поэтому нейтроны с большой длиной волны и маленькой энергией будут свободно про-
ходить вдоль графита, а нейтроны с большими энергиями будут дифрагировать и уходить
в сторону. Этот эффект позволяет получить пучок холодных нейтронов.

Наличие стационарных орбит в атоме водорода

Рассмотрим правило квантования:

𝑚𝑣𝑎 = 𝑛ℏ (4.21)

Перепишем это уравнение следующим образом:

2𝜋𝑎 = 𝑛
ℏ · 2𝜋
𝑚𝑣

= 𝑛𝜆𝐵 (4.22)

При этом 2𝜋𝑎 есть длина окружности, по которой движется электрон. Из уравнения сле-
дует, что на этой окружности должно укладываться целое число длин волн де Бройля.
Это соответствует формированию стоячей волны: при при одном обороте электрона во-
круг атома фаза будет сохраняться. Это и будет условием стационарности.
Однако, нельзя утверждать, что волна де Бройля и электромагнитная волна это одно и
то же. Волна де Бройля - это волна вероятности, приписываемая одной частице. Элек-
тромагнитная волна описывает свойства большого числа одинаковых фотонов (поэтому
электромагнитная волна неквантовый объект).

Локализация квантовой частицы

Запишем волну де Бройля для частицы:

𝐴𝑒
𝑖
ℏ (𝐸0𝑡−𝑝0𝑟) (4.23)

Эта функция определена во всем 3D пространстве. Более того, во всех точках нахожде-
ние частицы равновероятно. Таким образом, нельзя определеить конкретное положение
частицы по волне де Бройля. То есть, можно утверждать, что частица не имеет траектории
в классическом смысле.
Однако, можно локализовать частицу в пространстве, используя волновой пакет.
Предположим, что частицы обладает импульсами в промежутке [𝑝0 − ∆𝑝

2 , 𝑝0 +
∆𝑝
2 ] (ана-

логично для k).
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Тогда для непрерывного спектра волновых векторов можно записать:

𝑈(𝑟) =

𝑘0+
∆𝑘
2∫

𝑘0−∆𝑘
2

𝑎(𝑘)𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝑑𝑘 (4.24)

Для дискретного случая будет сумма. В обоих случаях мы суммируем плоские волны -
создаём волновой пакет.
Сделаем упрощение - будем считать, что 𝑎(𝑘) = 𝑎0 = 𝑐𝑜𝑛𝑠𝑡.
Считая, что ∆𝑘 � 𝑘0, разложим 𝜔(𝑘) в ряд Тейлора вблизи 𝑘0:

𝜔(𝑘) = 𝜔(𝑘0) + (𝑘 − 𝑘0)
𝑑𝜔

𝑑𝑘

���
𝑘=𝑘0

+ ... (4.25)

Подставим в (4.24):

𝑈(𝑟) = 𝑎0

∫
𝑐𝑜𝑠(𝜔0𝑡 + (𝑘 − 𝑘0)𝑣𝑔 · 𝑡 − 𝑘𝑧)𝑑𝑘 (4.26)

где 𝑣𝑔 = 𝑑𝜔
𝑑𝑘

���
𝑘=𝑘0

.
После взятия интеграла получим

𝑈(𝑟) = 2𝑎0∆𝑘
𝑠𝑖𝑛(∆𝑘 · 𝑑𝜔𝑑𝑘

���
𝑘0

· 𝑡 − 𝑘𝑧)

∆𝑘 · 𝑑𝜔𝑑𝑘
���
𝑘0

− 𝑘𝑧
· 𝑐𝑜𝑠(𝜔0𝑡 − 𝑘𝑧) (4.27)

В результате получили функцию, которая является произведением волны на несущей ча-
стоте (косинус) и модуляции (медленно меняющаяся функция).
Для такой системы можно ввести фазовую скорость:

𝑣𝜙 =
𝜔0

𝑘
(4.28)

При этом групповая скорость (скорость смещения энергии):

𝑣𝑔 =
𝑑𝜔

𝑑𝑘

���
𝑘=𝑘0

(4.29)

При этом мы получили локализацию частицы:

Стоит учитывать, что дисперсия приводит к расплыванию волнового пакета при его
перемещении.
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Рис. 4.8: Пространственная локализация частицы

Для фотона в вакууме можно доказать, что:

𝑣𝜙 = 𝑣𝑔 = 𝑐 (4.30)

так как
𝑣𝜙 =

𝐸

𝑝
𝑣𝑔 =

𝑑𝐸

𝑑𝑝
(4.31)

Также стоит отметить, что частота, как свойство (поля, частицы и т.д.) не меняется, но
меняется волновой вектор. Поэтому групповую скорость часто записывают следующим
образом:

𝑣𝑔 =
( 𝑑𝑘
𝑑𝜔

)−1
(4.32)

Пример. Рассмотрим нерелятивистскую частицу (ее энергия равна 𝑝2/(2𝑚)), движущу-
юся со скоростью v. Для неё оказывается, что

𝑣𝜙 =
𝑣

2
𝑣𝑔 = 𝑣 (4.33)

Для свободной релятивистской частицы можно получить, что

𝑣𝜙 · 𝑣𝑔 = 𝑐2 (4.34)

причём 𝑣𝑔 < 𝑐. Поэтому получаем, что фазовая скорость будет больше групповой.

Соотношение неопределённости Гейзенберга

Рассмотрим дифракцию волны де Бройля на щели с характерным размером ∆𝑥. Из
электромагнитной теории известно, что угол дифракции равен

∆𝜃 =
𝜆𝐵
∆𝑥

(4.35)

Тогда можно получить изменение импульса в поперечном направлении:

∆𝑝𝑥 = 𝑝0∆𝜃 = 𝑝0
𝜆𝐵
∆𝑥

(4.36)
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Откуда получаем соотношение Гейзенберга:

∆𝑝𝑥 ·∆𝑥 = ℎ (4.37)

произведение неопределённостей импульса и координаты равно постоянной Планка. То
есть, увеличивая точность измерения координаты (уменьшая размер щели), получим бо-
лее широкий разброс по импульсам (более широкую дифракционную картину).
Пространство импульсов и пространство координат связаны преобразованием Фурье:

𝜓(𝑥) =
1

√
2𝜋

∫
𝑓 (𝑘)𝑒𝑖𝑘𝑥𝑑𝑘 (4.38)

Если есть некоторая неопределённость по x:

𝜓(𝑥) =

{
𝜓0 𝑥1 < 𝑥 < 𝑥2

0 в остальных случаях

то тут же появляется неопределённость по k такую, что:

∆𝑘 ·∆𝑥 ≈ 2𝜋 (4.39)

Отсюда следует, что из данных двух величин (координаты и импульса) нельзя обе изме-
рить точно одновременно (если одна неопределённость стремится к нулю, то другая - к
бесконечности)

Существует ещё одно соотношение неопределённости:

∆𝐸 ·∆𝑡 ≈ ℏ (4.40)

где∆𝐸 - неопределённость измерения энергии,∆𝑡 - неопределённость во времени (время
измерения).
Из него следует, что существует ограничение на точность измерения энергии, так как вре-
мя измерения величины конечно.
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Лекция 5. Основы квантовой механики.

Волновая функция и её нормировка

Плотность вероятности найти частицу в определённый момент времени в определён-
ной точке пространства определяется как

𝜌(𝑟, 𝑡) =
���𝜓(𝑟, 𝑡)���2 (5.1)

Условие нормировки (частица точно где-то существует):∫
𝑉

𝜌(𝑟, 𝑡)𝑑𝑣 = 1 (5.2)

Запишем волну де Бройля свободной частицы (она определена во всем пространстве):

𝜓(𝑟, 𝑡) = 𝐴𝑒−
𝑖
ℏ (𝐸𝑡−𝑝𝑟) (5.3)

При подстановке этой функции в (5.1) получим, что вероятность обнаружить частицу оди-
накова во всех точках пространства. при этом интеграл (5.2) будет расходящимся.
Введём функцию:

𝜓𝑝(𝑥) = 𝐴𝑒
𝑖
ℏ 𝑝𝑥 (5.4)

и ограничим её область определения: − 𝐿
2 < 𝑥 <

𝐿
2 .

Тогда условие нормировки будет выполнено, откуда получим нормировочный множитель:
𝐴 = 1√

𝐿
.

Ведём интеграл вида:

𝐼 =

𝐿
2∫

− 𝐿
2

𝜓∗
𝑝′(𝑥)𝜓𝑝(𝑥)𝑑𝑥 (5.5)

Подставим выражения для функции и нормировочного множителя:

𝐼 =
1

𝐿

𝐿
2∫

− 𝐿
2

𝑒−
𝑖
ℏ (𝑝−𝑝′)𝑥𝑑𝑥 ∝ 𝑠𝑖𝑛∆𝑝 · 𝑥

∆𝑝 · 𝑥 (5.6)

Теперь посчитаем предел от данного интеграла. По определению дельта-функции полу-
чим:

lim
𝐿→∞

𝐼 = 𝛿(𝑝 − 𝑝′) (5.7)
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Тогда окончательно
𝜓𝑝(𝑥) =

1(
2𝜋ℏ

)1/2 𝑒 𝑖
ℏ 𝑝𝑥 (5.8)

Полученная функция называется волновой функцией свободной частицы, нормированная
на дельта-функцию в смысле (5.7). Вся процедура, описанная выше, называется процеду-
рой нормировки на дельта-функцию.
В силу нормированности этой функции соответствующие интегралы уже не будут расхо-
диться.
Аналогично для трёхмерного случая можно получить:

𝜓𝑝(𝑟) =
1(

2𝜋ℏ
)3/2 𝑒 𝑖

ℏ 𝑝𝑟 (5.9)

Плотность вероятности - вероятность найти частицу в момент времени t в объёме dV:

𝑤(𝑡) =
���𝜓(𝑟, 𝑡)���2𝑑𝑉 (5.10)

Средние значения физических величин

Волновую функцию измерить нельзя, однако, для физической величины можно изме-
рить её среднее значение.
Например, для r в соответствии с правилами теории вероятности, получаем:

< ®𝑟(𝑡) >=
∫
𝑉

𝑟 ·
���𝜓(𝑟, 𝑡)���2𝑑𝑉 =

∫
𝑉

𝜓∗ · 𝑟 · 𝜓𝑑𝑉 (5.11)

Заметим, что данная величина зависит от времени, так как усреднение идёт по плотности
вероятности (не по времени, и не по ансамблю) (среднее значение r по всем возможным
квантовым состояниям системы).

Посчитаем средний импульс частицы. Для этого возьмём волновые функции свобод-
ной частицы и составим волновой пакет:

𝜓(𝑥) =
∑
𝑖

𝐶𝑝𝑖𝜓𝑝𝑖(𝑥) (5.12)

Где коэффициенты имеют следующий физический смысл:
���𝐶𝑝𝑖 ���2 - вероятность найти ча-

стицу в состоянии с волновой функцией 𝜓𝑝𝑖 . Это следует из условия нормировки а также
из того, что 𝜓𝑝𝑖 нормированы на дельта-функцию, то есть они ортогональны друг другу.
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Аналогично для непрерывного спектра волновых функций:

𝜓(𝑥) =

∫
𝐶𝑝𝜓𝑝(𝑥)𝑑𝑝 (5.13)

Причём
���𝐶𝑝 ���2 вероятность того, что частица имеет импульс p с возможным разбросом в

интервале шириной dp.
Воспользовавшись свойствами Фурье-преобразования, возьмём обратный интеграл и тем
самым найдём коэффициенты:

𝐶𝑝 =

∫
𝜓(𝑥)𝑒−

𝑖
ℏ 𝑝𝑥

1
√
2𝜋ℏ

𝑑𝑥 =

∫
𝜓(𝑥)𝜓∗

𝑝𝑑𝑥 (5.14)

Найдём среднее значение импульса. По определению (а также учитывая, что
���𝐶𝑝 ���2𝑑𝑝 ⇔

𝑑𝑝𝑑𝑝′ · 𝐶′∗
𝑝 · 𝐶𝑝 · 𝛿(𝑝 − 𝑝′):

< 𝑝 >=

∫
𝑝
���𝐶𝑝 ���2𝑑𝑝 =

∫
𝑑𝑝𝑑𝑝′𝑝 · 𝐶′∗

𝑝 · 𝐶𝑝 · 𝛿(𝑝 − 𝑝′) = (5.15)

Подставим (5.14):

=

∫
𝑑𝑥

∫
𝐶∗
𝑝′𝑒

− 𝑖
ℏ 𝑝

′𝑥 𝑑𝑝′

(2𝜋ℏ)1/2
·
∫
𝐶𝑝𝑝𝑒

𝑖
ℏ 𝑝𝑥

𝑑𝑝

(2𝜋ℏ)1/2
(5.16)

Заметим, что ∫
𝐶∗
𝑝′𝑒

− 𝑖
ℏ 𝑝

′𝑥 𝑑𝑝′

(2𝜋ℏ)1/2
= 𝜓∗(𝑥) (5.17)

и ∫
𝐶𝑝𝑝𝑒

𝑖
ℏ 𝑝𝑥

𝑑𝑝

(2𝜋ℏ)1/2
= −𝑖ℏ𝑑𝜓

𝑑𝑥
(5.18)

Тогда
< 𝑝 > =

∫
𝜓∗(𝑥)𝑝𝜓(𝑥)𝑑𝑥 (5.19)

где 𝑝 - оператор импульса:
𝑝𝑥 = −𝑖ℏ 𝑑

𝑑𝑥
(5.20)

Аналогично
< 𝑝2 > =

∫
𝜓∗(𝑥)𝑝2𝜓(𝑥)𝑑𝑥 (5.21)

Среднее значение координаты:

< 𝑟 > =

∫
𝜓∗(𝑥)𝑟𝜓(𝑥)𝑑𝑟 (5.22)
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Таким образом, в квантовой физике всем физическим величинам ставится в соответствие
операторы. В квантовой физике существует среднее значение импульса, дисперсия им-
пульса, оператор импульса и т.д (однако не существует просто импульса, как в классиче-
ской физике).

Рассмотрим свободную частицу с импульсом 𝑝0:

𝜓(𝑥) =
1

(2𝜋ℏ)1/2
𝑒

𝑖
ℏ 𝑝0𝑥 (5.23)

Посчитаем среднее:

< 𝑝 > =
1

(2𝜋ℏ)

∫
𝑒−

𝑖
ℏ 𝑝0𝑥 ·

(
− 𝑖ℏ 𝑑

𝑑𝑥

)
· 𝑒 𝑖

ℏ 𝑝0𝑥𝑑𝑥 = 𝑝0 (5.24)

Среднее значение импульса равно 𝑝0, так как мы рассматриваем частицу с точным (из-
вестным) значением импульса.
В самом общем случае для некоторой физической (и измеримой) величины f среднее зна-
чение считается по правилу:

< 𝑓 > =

∫
𝑉

𝜓∗ 𝑓 𝜓𝑑𝑉 (5.25)

где 𝑓 - оператор физической величины, а система находится в состоянии с волновой функ-
цией 𝜓.

Операторы физических величин

Рассмотрим оператор импульса. Он имеет три проекции:

𝑝 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) (5.26)

Для каждой из проекций можно записать формулу аналогично (5.20).
Если есть функция 𝜉(𝑟), зависящая только от координаты, то оператором для этой вели-
чины будет сама эта функция (действие оператора равносильно умножению на данную
величину). Так, любой потенциал, являясь функцией только координаты, соответствует
оператору, действие которого сводится к умножению функции на величину потенциала в
точке.

Существует правило: для измеримых физических величин в декартовой системе ко-
ординат классические формулы, связывающие числовые значения величины с другими
величинами переносятся в квантовую физику с заменой всех величин на их операторы.
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То есть, если a,b,c,d, e - физические величины, связанные формулой:

𝑎 =
𝑏 · 𝑐 · 𝑑
𝑒

(5.27)

то в квантовой физике их связь выражена

𝑎 =
𝑏 · 𝑐 · 𝑑
𝑒

(5.28)

Пример. Кинетическая энергия 𝐾 = 𝑝2

2𝑚 . Тогда её оператор

𝐾 =
𝑝2

2𝑚
=

1

2𝑚
· (𝑝𝑥2 + 𝑝𝑦

2 + 𝑝𝑧
2) = − ℏ2

2𝑚

( 𝑑2
𝑑𝑥2

+
𝑑2

𝑑𝑦2
+
𝑑2

𝑑𝑧2

)
(5.29)

Проверим справедливость того, что полученный оператор является оператором, описы-
вающим кинетическую энергию. Возьмём среднее значение для дебройлевской частицы
со кинетической энергией 𝐾0. По определению запишем интеграл и посчитаем его:

< 𝐾 >=

∫
𝜓∗
𝑝𝐾𝜓𝑝𝑑𝑥 = 𝐾0 (5.30)

Отсюда следует, что форма оператора является верной.
Посчитаем дисперсию для импульса для свободной частицы:

𝐷 =< 𝑝2 > − < 𝑝 >2= 0 (5.31)

Дисперсия оказывается равной нулю, так как для свободной частицы импульс определён
точно. Вообще говоря, дисперсия нулю не равна.

Собственные значения операторов

Запишем операторное уравнение вида:

𝑓 𝜓 = 𝑓0𝜓 (5.32)

По сути это есть уравнение на собственные функции и собственные значения оператора
𝑓 .
Решения могут быть дискретными, тогда будет дискретный набор функций и собствен-
ных значений 𝜓𝑚, 𝑓0𝑚. Решения также могут быть непрерывными - непрерывный спектр
волновых функций и собственных значений.
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Получим среднее значение величины f, для которой был построен оператор 𝑓

< 𝑓 > =

∫
𝑉

𝜓∗ 𝑓 𝜓𝑑𝑉 =< 𝑓 > =

∫
𝑉

𝜓∗ · 𝑓0 · 𝜓𝑑𝑉 = 𝑓0

∫
𝜓∗𝜓𝑑𝑉 = 𝑓0𝑚 (5.33)

так как по определению
∫
𝜓∗𝜓𝑑𝑉 = 1.

Таким образом, решением задачи на собственные функции и собственные значения будет
набор волновых функций состояния системы и набор измеряемых величин (собственные
значения). Измерить некоторую величину можно только когда система находится в одном
из своих возможных состояний. Если такое состояние одно (как у де бройлевской части-
цы), то, взяв оператор импульса, получим уравнение:

−𝑖ℏ 𝑑
𝑑𝑥
𝜓 = 𝑝𝜓 (5.34)

преобразуем:
𝑑𝜓

𝜓
= 𝑖

𝑝0
ℏ
𝑑𝑥 (5.35)

решение:
𝜓 = 𝜓0𝑒

𝑖 𝑝ℏ 𝑥 (5.36)

Получили волновую функцию (де бройлевскую волну). Собственное значение одно и рав-
но 𝑝0.
Посчитаем:

< 𝑓 2 >=

∫
𝜓∗ 𝑓 𝑓 𝜓𝑑𝑉 = 𝑓 20 (5.37)

То есть, если система находится в состояниях с собственной волновой функцией (в со-
стоянии, удовлетворяющем уравнению (5.32)), то дисперсия для такой системы 𝐷 = 0.
Значит, соответствующую физическую величину можно измерить точно.
Если система находится в более сложном состоянии, например (система в суперпозиции
собственных состояний):

𝜓(𝑥) =
∑

𝐶𝑝𝜓𝑝 (5.38)

то дисперсия собственных значений уже не будет равна нулю, так как

(𝑎 + 𝑏 + 𝑥)2 ≠ 𝑎2 + 𝑏2 + 𝑐2 (5.39)

Таким образом, чтобы однозначно измерить физическую величину, система должна на-
ходится в состоянии, соответствующем собственной функции данной системы.
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Оператор момента импульса

Рассмотрим момент импульса:

𝑀 = [𝑟, 𝑝] =

�������
𝑖 𝑗 𝑘

𝑥 𝑦 𝑧

𝑝𝑥 𝑝𝑦 𝑝𝑥

�������
Тогда, чтобы посчитать оператор момента импульса, нужно записать:

𝑀̂ = [𝑟, 𝑝] =

�������
𝑖 𝑗 𝑘

𝑥 𝑦 𝑧̂

𝑝𝑥 𝑝𝑦 𝑝𝑥

�������
Рассмотрим оператор проекции момента импульса на ось z (учтём, что оператор коорди-
наты есть сама координата):

𝑀̂𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥 = 𝑥
(
− 𝑖ℏ 𝑑

𝑑𝑦

)
− 𝑦

(
− 𝑖ℏ 𝑑

𝑑𝑥

)
= −𝑖ℏ

(
𝑥
𝑑

𝑑𝑦
− 𝑦 𝑑

𝑑𝑥

)
(5.40)

Перейдём к сферическим координатам:

𝑧 = 𝑟𝑐𝑜𝑠𝜃 (5.41)

𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 (5.42)

Посчитаем, чему равен оператор 𝑑
𝑑𝜑 :

𝑑

𝑑𝜑
=
𝑑𝑥

𝑑𝜑

𝑑

𝑑𝑥
+
𝑑𝑦

𝑑𝜑

𝑑

𝑑𝑦
+
𝑑𝑧

𝑑𝜑

𝑑

𝑑𝑧
(5.43)

Подставим выражения для сферических координат:

𝑑

𝑑𝜑
= 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑

𝑑

𝑑𝑥
− 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 𝑑

𝑑𝑦
= 𝑦

𝑑

𝑑𝑥
− 𝑥 𝑑

𝑑𝑦
(5.44)

Таким образом, получаем
𝑀̂𝑧 = −𝑖ℏ 𝑑

𝑑𝜑
(5.45)

Заметим, что данный оператор имеет сходство с оператором проекции импульса.
Найдём собственные функции и собственные значение оператора проекции момента им-
пульса:

𝑀̂𝑧𝜓 = 𝑀𝑧𝜓 (5.46)
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После подстановки выражения для оператора:

𝑑𝜓

𝑑𝜑
=
𝑖

ℏ
𝑀𝑧𝑑𝜑 (5.47)

Решение:
𝜓 = 𝜓0𝑒

𝑖
ℏ𝑀𝑧𝜑 (5.48)

Операторное уравнение должно давать однозначное решение. То есть должно выполнять-
ся:

𝜓(𝜑) = 𝜓(𝜑 + 2𝜋) (5.49)

что равносильно выражению
𝑒

𝑖
ℏ𝑀𝑧 ·2𝜋 = 1 (5.50)

Решая уравнение, получаем:
𝑀𝑧

ℏ
2𝜋 = 2𝜋𝑚 (5.51)

отсюда получаем собственные значения проекции момента импульса на ось z:

𝑀𝑧 = 𝑚ℏ (5.52)

В процессе вывода данной формулы мы не делали никаких предположений о системе. Та-
ким образом, можно сделать вывод, что любая система, обладающая моментом импульса,
обязана иметь квантованные значения оператора момента импульса.
По сути уравнение (5.52) есть правило квантования Бора, так как

𝑚0𝑣𝑟 = 𝑛ℏ (5.53)

Однако, отсюда следует, что и волчок должен обладать квантованными значениями мо-
мента импульса. То есть, измеряямомент импульса волчка, мы должныполучить не непре-
рывный спектр, а дискретный спектр значений. Однако, следует учесть, что шаг между
возможными значениями проекций равен ℏ. С таким шагом померить нельзя (при изме-
рении не будет видна разница между двумя соседними значениями). Также нужно учиты-
вать, что оси z нет до тех пор, пока не начнётся процедура измерения (вообще говоря, мы
можем направить ось куда угодно, однако, когда начинается процедура измерения, авто-
матически вводится ось z). Таким образом, в момент измерения возникает ось z и возни-
кает квантование. Есть квантовые системы, для которых ось z присутствует по определе-
нию. Для таких систем есть некоторые дополнительные взаимодействия. Например, для
атома водорода в однородном магнитном поле направление магнитного поля и является
осью z и будет происходить квантование независимо от измерения. Процедура кванто-
вания может обнаружить проекции (если измерять проекции на другие оси, их значения
будут другими).
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Общая формулировка соотношения неопределённости

Соотношение неопределённости Гейзенберга утверждает, что невозможно одновре-
менно точно измерить значение координаты и импульса:

𝛿𝑥 · 𝛿𝑝 > ℎ (5.54)

Для де бройлевской частицы импульс определён точно (погрешность измерения равна ну-
лю). Тогда x должен быть равен бесконечности (частица размазана по пространству).
Рассмотрим две физические величины А и В. Построим их операторы. Чтобы понять, яв-
ляются ли данные две физические величины одновременно измеримы, нужно построить
коммутатор операторов этих величин:[

𝐴, 𝐵
]
= 𝐴𝐵 − 𝐵𝐴 (5.55)

Рассмотрим частный случай коммутатора операторов координаты и импульса (подейству-
ем коммутатором на некоторую функцию):[

𝑥, 𝑝𝑥

]
𝜓 =

(
𝑥(−𝑖ℏ 𝑑

𝑑𝑥
) − (−𝑖ℏ 𝑑

𝑑𝑥
)𝑥
)
𝜓(𝑥) = −𝑖ℏ · 𝑥 𝑑𝜓

𝑑𝑥
+ 𝑖ℏ · 𝑥 𝑑𝜓

𝑑𝑥
+ 𝑖ℏ𝜓 (5.56)

Тогда коммутатор равен [
𝑥, 𝑝𝑥

]
= 𝑖ℏ (5.57)

Аналогично для x и 𝑝𝑦 [
𝑥, 𝑝𝑦

]
= 0 (5.58)

Получаем, что тождество (5.57) эквивалентно соотношению неопределённости Гейзен-
берга.
Для оператора проекции импульса и кинетической энергии можно получить[

𝑝𝑥 , 𝐾
]
= 0 (5.59)

Соотношение неопределённости Гейзенберга можно переформулировать: если коммута-
тор операторов двух физических величин не равен нулю

[
𝐴, 𝐵

]
≠ 0, то физические ве-

личины нельзя измерить одновременно (для них можно записать аналог соотношения
неопределённости).
Если коммутатор двух физических величин равен нулю

[
𝐴, 𝐵

]
= 0, то эти две величины

одновременно и точно измеримы.
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Оператор Гамильтона

Введём оператор Гамильтона - оператор полной энергии системы:

𝐻 = 𝐾 +𝑈 (5.60)

Для потенциальной энергии оператор действует по правилу, описанному выше.
Среднее значение оператора Гамильтона равно

< 𝐻 >=< 𝐾 > + < 𝑈 > (5.61)

Тогда получается, что для некоторой физической системы закон сохранения энергии вы-
полняться не должен, так как закон сохранения энергии должен выполняться для средних
величин. Однако выражение 𝐻 = 𝐾 +𝑈 вообще говоря константой не является.
Запишем операторное уравнение

𝐻𝜓 = 𝐸𝜓 (5.62)

где E - собственная энергия системы (собственные значения оператора Гамильтона), 𝜓 -
волновые функции системы. Данное уравнение является стационарным уравнениемШрё-
дингера. Оно применимо для системы, в которой сохраняется (в среднем) энергия систе-
мы.
Рассмотрим свободную частицу, то есть частицу, для которой:

𝑉 = 0 (5.63)

Тогда
𝐻 = 𝐾 (5.64)

Тогда уравнение Шрёдингера становится уравнением

𝐾𝜓 = 𝐾0𝜓 (5.65)
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Лекция 6. Потенциальная яма.

Стационарное уравнение Шредингера

Каждой физической величине ставится в соответствие оператор, который действует
на волновую функцию, описывающую состояние системы.
Для каждого оператора 𝐿̂ можно записать операторное уравнение на собственные функ-
ции и собственные значения:

𝐿̂𝜓 = 𝐿0𝜓 (6.1)

Если система находится в одном из собственных состояний, соответствующих собствен-
ным функциям уравнения (6.1), то

< 𝐿 >= 𝐿0 (6.2)

где 𝐿0 - фиксированная величина, соответствующая функции, в которой находится систе-
ма. Именно эти величины 𝐿0 и могут быть измерены в опыте.
В опыте можно измерить только вещественные величины, то есть операторы физических
величин должны быть эрмитовыми (так как собственные значения эрмитова оператора -
действительные числа).
Ранее были введены операторы ˆ𝑓 (𝑥), 𝑝𝑥 , 𝑝, 𝑀̂ , 𝑀̂𝑧, 𝐾 .
Для нерелятивистского случая был введён оператор полной энергии:

𝐻 = 𝐾 +𝑈 (6.3)

где U - потенциальная энергия системы, зависящая только от координат.
Стационарное уравнение Шрёдингера - уравнение на собственные функции оператора
Гамильтона:

𝐻𝜓 = 𝐸0𝜓 (6.4)

Для свободной частицы решением будут волны де Бройля.
В общем случае решение можно записать в виде совокупности двух волн де Бройля, дви-
жущихся в противоположных направлениях:

𝜓 = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 (6.5)

Уравнение (6.2) является дифференциальным. Для нахождения решения необходимо гра-
ничное условие.
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Нестационарное уравнение Шредингера

В случае стационарного уравнения Шрёдингера полная энергия сохраняется. Когда
полная энергия не сохраняется, говорят о нестационарном уравнении Шрёдингера.
Оператор эволюции системы описывает эволюцию системы во времени.
Нестационарное уравнение Шредингера записывается следующим образом:

𝑖ℏ
𝜕

𝜕𝑡
𝜓 = 𝐻𝜓 (6.6)

где в левой части стоит оператор эволюции, действующий на функцию 𝜓(𝑟, 𝑡). Оператор
𝐻(𝑡) может зависеть от времени.
Рассмотрим случай 𝐻(𝑡) = 𝑐𝑜𝑛𝑠𝑡. Предположим, что решение в этом случае можно пред-
ставить как произведение координатной и временной частей:

𝜓(𝑟, 𝑡) = 𝜑(𝑟)𝜉(𝑡) (6.7)

Распишем производную некоторой функции(считаем, что x и y могут зависеть от t):

𝜕

𝜕𝑡
𝑓 (𝑥, 𝑦) =

𝜕 𝑓

𝜕𝑡
=
𝜕 𝑓

𝜕𝑥
· 𝜕𝑥
𝜕𝑡

+
𝜕 𝑓

𝜕𝑦
· 𝜕𝑦
𝜕𝑡

(6.8)

То есть, после подстановки в нестационарное уравнение Шредингера, получим:

𝜑(𝑟)𝑖ℏ
𝜕𝜉

𝜕𝑡
= 𝜉(𝑡)𝐻𝜑 (6.9)

Разделим переменные:
𝑖ℏ
𝜉

𝜕𝜉

𝜕𝑡
=

1

𝜑
𝐻𝜑 (6.10)

В левой части уравнения стоит выражение, зависящее только от координат, в правой -
только от времени. Тогда, чтобы равенство выполнялось, нужно, чтобы и правая, и левая
часть равнялись некоторой константе

𝑖ℏ
𝜉

𝜕𝜉

𝜕𝑡
=

1

𝜑
𝐻𝜑 = 𝐸0 (6.11)

Тогда получаем два уравнения

𝑖ℏ
𝜉

𝜕𝜉

𝜕𝑡
= 𝐸0 ⇒ 𝜉 = 𝜉0𝑒

𝑖
ℏ𝐸0𝑡 (6.12)

𝐻𝜑 = 𝐸0𝜑 (6.13)

Причём второе уравнение - стационарное уравнениеШредингера для координатной части
волной функции.
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Тогда получаем, что
𝜓(𝑟, 𝑡) = 𝜉0𝑒

𝑖
ℏ𝐸0𝑡 · 𝜑(𝑟) (6.14)

где 𝜑(𝑟) удовлетворяет стационарному уравнению Шредингера.
Заметим, что стационарное состояние - это состояние, в котором сохраняется полная энер-
гия. Однако это не означает, что волновая функция не зависит от времени. От времени не
зависит плотность вероятности (так как при взятии модуля экспонента равна единице).

Таким образом, стационарное уравнение Шредингера может быть получено из неста-
ционарного, если положить 𝐻(𝑡) = 𝑐𝑜𝑛𝑠𝑡.

Уравнение непрерывности

Рассмотрим уравнение непрерывности (изменение объёмной плотности заряда 𝜌 в
данном объёме определяется потоком заряженных частиц через этот объём j):

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝑗 = 0 (6.15)

Уравнение непрерывности также встречается также в гидродинамике и в других разделах
физики.
Получим уравнение непрерывности и в случае квантовой физики. Запишем нестационар-
ное уравнение Шрёдингера в виде:

𝑖ℏ
𝜕𝜓

𝜕𝑡
=

ℏ2

2𝑚
∇2𝜓 + 𝑢𝜓

��� · 𝜓∗ (6.16)

Напишем комплексно-сопряжённое к данному уравнению:

−𝑖ℏ𝜕𝜓
∗

𝜕𝑡
= − ℏ2

2𝑚
∇2𝜓∗ + 𝑢𝜓∗

��� · 𝜓 (6.17)

Домножим уравнение (6.16) на 𝜓∗ (6.17) на 𝜓 и вычтем из одного другое. Получим:

𝑖ℏ
(
𝜓∗ 𝜕𝜓

𝜕𝑡
+ 𝜓

𝜕𝜓∗

𝜕𝑡

)
= − ℏ2

2𝑚

(
𝜓∗∇2𝜓 − 𝜓∇2𝜓∗

)
(6.18)

Запишем это уравнение в виде:

𝜕 |𝜓 |2
𝜕𝑡

= − ℏ2

2𝑚𝑖
∇
(
𝜓∗∇𝜓 − 𝜓∇𝜓∗

)
(6.19)

Тогда плотность вероятности:
𝜌 = |𝜓 |2 (6.20)
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Введём поток вероятности:

𝑗 =
ℏ2

2𝑚𝑖
∇
(
𝜓∗∇𝜓 − 𝜓∇𝜓∗

)
(6.21)

Тогда получаем из (6.16) уравнение непрерывности:

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝑗 = 0 (6.22)

Изменение плотности вероятности нахождения частицы в элементарном объёме опреде-
ляется потоком вероятности в этот объём.

Теорема Эренфеста

Пусть есть некоторый оператор:

𝐿̂ = 𝑓 (𝐴, 𝐵, 𝐶) (6.23)

Из классической теории известен закон Ньютона: 𝑚 ®𝑎 = ®𝐹.
Возникает вопрос, возможен ли переход от этого уравнения к средним величинам: 𝑚 <

𝑎 >=< 𝐹 >.
Запишем среднее значение величина:

< 𝐿 >=

∫
𝜓∗ 𝐿̂𝜓𝑑𝑉 (6.24)

Формально возьмём производную:

𝑑

𝑑𝑡
< 𝐿 >=

∫
𝜓∗ 𝜕𝐿̂

𝜕𝑡
𝜓𝑑𝑉 +

∫
𝜕𝜓∗

𝜕𝑡
𝐿̂𝜓𝑑𝑉 +

∫
𝜓∗ 𝐿̂

𝜕𝜓

𝜕𝑡
𝑑𝑉 (6.25)

Причём 𝜓 удовлетворяет нестационарному уравнению Шредингера:

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻𝜓 (6.26)

Тогда можно продолжить равенство (6.25) следующим образом:

=

∫
𝜓∗ 𝜕𝐿̂

𝜕𝑡
𝜓𝑑𝑉 +

𝑖

ℏ

∫ (
𝐻𝜓∗

) (
𝐿𝜓

)
𝑑𝑉 − 𝑖

ℏ

∫
𝜓∗ 𝐿̂𝐻𝜓𝑑𝑉 (6.27)
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В силу эрмитовости операторов одно подынтегральное выражение можно переписать:(
𝐻𝜓∗

) (
𝐿̂𝜓

)
= 𝜓∗𝐻𝐿̂𝜓. Тогда получим:

𝑑 < 𝐿 >

𝑑𝑡
=

∫
𝜓∗

(𝜕𝐿̂
𝜕𝑡

+ 𝐻𝐿̂ − 𝐿̂𝐻
)
𝜓𝑑𝑉 (6.28)

Таким образом
𝑑𝐿̂

𝑑𝑡
=
𝜕𝐿̂

𝜕𝑡
+

[
𝐻, 𝐿̂

]
(6.29)

Где
[
𝐻, 𝐿̂

]
- скобка Пуассона от 𝐻 и 𝐿̂.

Предположим, что L не зависит явно от времени: 𝜕𝐿̂𝜕𝑡 = 0. Тогда

𝑑𝐿̂

𝑑𝑡
=

[
𝐻, 𝐿̂

]
(6.30)

Рассмотрим оператор координаты:

𝐿̂ = 𝑥
𝑑𝑥

𝑑𝑡
=

[
𝐻, 𝑥

]
(6.31)

и оператор проекции импульса:

𝐿̂ = 𝑝𝑥
𝑑𝑝𝑥
𝑑𝑡

=
[
𝐻, 𝑝𝑥

]
(6.32)

Распишем скобки Пуассона:[
𝐻, 𝑥

]
= 𝐻𝑥 − 𝑥𝐻 =

1

2𝑚

(
𝑝𝑥

2𝑥 − 𝑥𝑝𝑥2
)

(6.33)

Запишем
𝑝2𝑥 · 𝑥 = 𝑝𝑥(𝑝𝑥𝑥) (6.34)

Известно, что коммутатор [
𝑝𝑥𝑥

]
= 𝑝𝑥𝑥 − 𝑥𝑝𝑥 = 𝑖ℏ (6.35)

Тогда, выразив 𝑝𝑥𝑥, получим:

𝑝2𝑥 · 𝑥 = 𝑝𝑥(𝑥𝑝𝑥 + 𝑖ℏ) = 𝑝𝑥(𝑥𝑝𝑥) + 𝑖ℏ𝑝𝑥 = 𝑥𝑝2𝑥 +
2𝑝𝑥ℏ
𝑖

(6.36)

Вернёмся к уравнению (6.31)
𝑑𝑥

𝑑𝑡
=

[
𝐻, 𝑥

]
=
𝑝𝑥
𝑚

(6.37)

Отсюда следует, что
𝑑 < 𝑥 >

𝑑𝑡
=
< 𝑝𝑥 >

𝑚
(6.38)
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Аналогично можно поступить для оператора 𝐻 = 𝐾 +𝑈.
Учтём, что оператор кинетической энергии и оператор проекции импульса имеют совпа-
дающие собственные значения и собственные функции. Значит,

[
𝐾, 𝑝𝑥

]
= 0. Тогда[

𝐻, 𝑝𝑥

]
=

[
𝑈, 𝑝𝑥

]
= 𝑈𝑝𝑥 − 𝑝𝑥𝑈 =

𝜕𝑈

𝜕𝑥
= 𝐹(𝑥) (6.39)

Тогда получаем
𝑑𝑝𝑥
𝑑𝑡

=
[
𝐻, 𝑝𝑥

]
= 𝐹(𝑥) (6.40)

а для среднего значения:
𝑑 < 𝑝𝑥 >

𝑑𝑡
=< 𝐹(𝑥) > (6.41)

То есть, между средним значением импульса и средним значением силы, действующим
на систему сохраняется второй закон Ньютона (речь идёт о квантовомеханическом усред-
нении).
Теорема Эренфеста: в квантовой механике соотношения между классическими величи-
нами в классической физике сохраняются для средних значений:

𝑑 < 𝑝𝑥 >

𝑑𝑡
=< 𝐹(𝑥) > (6.42)

и
𝑑 < 𝑥 >

𝑑𝑡
=< 𝑝𝑥 > (6.43)

Заметим, что формула
< 𝐻 >=< 𝐾 > + < 𝑉 > (6.44)

не утверждает, что полная энергия сохраняется в каждый момент времени и в любой точ-
ке пространства. Можно утверждать лишь что при усреднении в квантовомеханическом
смысле полная энергия будет сохраняться.

Бесконечная потенциальная яма

Рассмотрим некоторую потенциальную яму:

U

x

0

Рис. 6.1: Потенциальная яма

Соотношение неопределённости Гейзенберга создаёт различие в поведении частицы в яме
в сравнении с классической физикой.
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Рассмотрим бесконечную потенциальную яму.
Разобьём всю область распределения на три области (рис. 6.2). Тогда

U

x0 a

∞ ∞

I II III

Рис. 6.2: Бесконечная потенциальная яма

𝑈I = 𝑈III = ∞ (6.45)

𝑈II = 0 (6.46)

Запишем стационарное уравнение Шрёдингера:

− ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓 +𝑈(𝑥) · 𝜓 = 𝐸𝜓 (6.47)

В первой и третьей областях это уравнение примет вид:

− ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓I,III +∞ · 𝜓I,III = 𝐸𝜓I,III (6.48)

Единственное решение этого уравнения:

𝜓I,III = 0 (6.49)

Для второй области:

− ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓II = 𝐸𝜓II (6.50)

Перепишем это уравнение в виде:

𝜓II +
2𝑚𝐸

ℏ2
𝜓II = 0 (6.51)

Обозначим:
𝑘2 =

2𝑚𝐸

ℏ2
> 0 (6.52)

Данная величина больше нуля, так как энергия частицы не может быть отрицательной.
Получаем уравнение осциллятора:

𝜓II + 𝑘2𝜓II = 0 (6.53)
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его решение:
𝜓II = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 (6.54)

или (другая запись решения):

𝜓II = 𝐴𝑠𝑖𝑛𝑘𝑥 + 𝐵𝑐𝑜𝑠𝑘𝑥 (6.55)

Волновая функция должна быть непрерывной, гладкой и однозначной. Поэтому должны
выполняться следующие граничные условия (обеспечение непрерывности):

𝜓I(0) = 𝜓II(0) (6.56)

𝜓III(𝑎) = 𝜓II(𝑎) (6.57)

Тогда
0 + 𝐵 = 0 ⇒ 𝐵 = 0 (6.58)

𝐴𝑠𝑖𝑛𝑘𝑎 + 𝐵𝑐𝑜𝑠𝑘𝑎 = 0 ⇒ 𝐴𝑠𝑖𝑛𝑘𝑎 = 0 (6.59)

⇒ 𝑘𝑎 = 𝜋𝑛, 𝑛 > 0 (6.60)

При 𝑛 = 0 получаем тривиальное решение.
В результате получаем

𝑘2𝑛 =
2𝑚𝐸𝑛
ℏ2

= 𝜋2𝑛2 (6.61)

𝐸𝑛 =
𝜋2ℏ2

2𝑚𝑎2
𝑛2, 𝑛 > 0 (6.62)

Таким образом, спектр частицы оказывается дискретным. (Для любой системы если ча-
стица ограничена в пространстве, спектр состояния частицы дискретен.) Заметим, что чем
шире яма, тем меньше расстояния между уровнями.
Волновая функция имеет вид:

𝜓 = 𝐴𝑠𝑖𝑛𝑘𝑛𝑥 (6.63)

Чтобы узнать А, посчитаем интеграл:

𝑎∫
0

|𝜓 |2𝑑𝑥 = 1 (6.64)

После вычисления получим 𝐴 =
√

2
𝑎 .

Построим полученную волновую функцию:

Заметим, что данная функция не является гладкой. Это требование не использовалось,
так как в этом случае система уравнений оказалась бы избыточной и не было бы однознач-
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x

𝜓

a

𝑛 = 1

𝑛 = 2

Рис. 6.3: Волновые функции

ного решения. Дело в том, что рассматриваемый объект является физически нереализуе-
мым.
Отметим также, что для разных ситуаций (разные волновые функции) вероятность найти
частицу в определенной точке ямы будет разная.
Рассмотрим предельный переход к классической теории: n должно быть очень велико. То-
гда волновая функция будет сильно осциллировать и при усреднении даст константу, что
согласуется с классическим подходом.
Рассмотрим следующее состояние:

𝑛 = 1 :
𝜋2ℏ2

2𝑚𝑎2
= 𝐸𝑛 (6.65)

Импульс можно представить в виде

𝑝 = 𝑝 + 𝛿𝑝 (6.66)

где 𝛿𝑝 - флуктуация импульса.
Посчитанная энергия есть средняя энергия, она соответствует флуктуациям частицы на
дне ямы. То есть можно получить:

∆𝑝2

2𝑚
=
𝜋2ℏ2

2𝑚𝑎2
⇒ ∆𝑝 =

𝜋ℏ
𝑎

(6.67)

Неопределённость координаты равна a. Поэтому

∆𝑝∆𝑥 = 𝜋ℏ (6.68)

То есть мы получили соотношение неопределённости Гейзенберга.

Потенциальная яма конечной глубины

Рассмотрим потенциальную яму конечной глубины:
Принцип решения аналогичен предыдущей задаче.
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∞

I II III

𝑈0

Рис. 6.4: Конечная яма конечной глубины

Получаем 𝜓I = 0, вводим для каждой области

𝑘21 =
2𝑚𝐸

ℏ2
> 0 (6.69)

𝑘22 =
2𝑚(𝑈0 − 𝐸)

ℏ2
> 0 (6.70)

Запишем уравнения для каждой области:

𝜓II + 𝑘21𝜓II = 0 (6.71)

𝜓III − 𝑘22𝜓III = 0 (6.72)

Получим общее решение равнения (6.72):

𝜓III = 𝐶𝑒𝑖𝑘2𝑥 + 𝐷𝑒−𝑖𝑘2𝑥 (6.73)

А решение уравнения (6.71) запишем в виде:

𝜓II = 𝐴𝑠𝑖𝑛(𝑘1𝑥 + 𝜑) (6.74)

Запишем граничные условия:
𝜓I(0) = 𝜓II(0) = 0 (6.75)

𝜓II(𝑎) = 𝜓III(𝑎) (6.76)

и потребуем гладкости функции в точке a:

𝜓′
II(𝑎) = 𝜓′

III(𝑎) (6.77)

Совокупность решений (6.72) - (6.74) и условий (6.75) - (6.77) даёт возможность полно-
стью решить задачу. Дополнительное условие нормировки позволяет посчитать коэффи-
циенты:

∞∫
0

|𝜓 |2𝑑𝑥 = 1 (6.78)
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Лекция 7. Потенциальный барьер.

Потенциальная яма конечной глубины

U

x0 a

∞

I II III

𝑈0

Рис. 7.1: Конечная яма конечной глубины

Введём три области и запишем для каждой области уравнениеШрёдингера и добавим
граничные условия.
Для первой области решение известно:

𝜓I = 0 (7.1)

Для второй области:

− ℏ2

2𝑚

𝑑2𝜓II
𝑑𝑥2

− 𝐸𝜓II = 0 (7.2)

Введём величину:
𝑘22 =

2𝑚𝐸

ℏ2
(7.3)

Решение уравнения можно записать в виде:

𝜓II = 𝐴𝑠𝑖𝑛(𝑘2𝑥 + 𝜑) (7.4)

Для третьей области:

− ℏ2

2𝑚

𝑑2𝜓III
𝑑𝑥2

+ (𝑈0 − 𝐸)𝜓III = 0 (7.5)

Решение этого уравнения будет зависеть от знака величины (𝑈0 − 𝐸). Рассмотрим оба
случая.
Связанному состоянию частицы соответствует ситуация расположения энергии внутри
ямы.
1. 𝐸 > 𝑈0 Тогда вводим

𝑘23 = −2𝑚(𝑈0 − 𝐸)
ℏ2

(7.6)

После чего уравнение (7.5) сводится к уравнению вида (7.2). Его решение:

𝜓II = 𝐶𝑒𝑖𝑘3𝑥 + 𝐷𝑒−𝑖𝑘3𝑥 (7.7)
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Распишем граничные условия:

𝜓I(0) = 𝜓II(0) = 0 ⇒ 𝜑 = 0 (7.8)

𝜓II(𝑎) = 𝜓III(𝑎) (7.9)

Условие гладкости (только одно, потому что одна стенка бесконечная):

𝜓′
II(𝑎) = 𝜓′

III(𝑎) (7.10)

Учтём также граничное условие на бесконечности. Решение представляет собой две вол-
ны, бегущих вправо и влево каждая. На бесконечности нет никаких источников волн. По-
этому на бесконечности должна быть только волна, распространяющаяся слева направо:

𝜓III(∞) = 𝐵𝑒−𝑖𝑘3∞ ⇒ 𝐶 = 0 (7.11)

Перейдём к граничным условиям:

𝐴𝑠𝑖𝑛(𝑘2𝑎) = 𝐷𝑒−𝑖𝑘3𝑎 (7.12)

𝐴𝑘2𝑐𝑜𝑠(𝑘2𝑎) = −𝑖𝐷𝑘3𝑒−𝑖𝑘3𝑎 (7.13)

Отсюда получаем коэффициенты A и D и тем самым само решение.
Один из результатов решения заключается в том, что даже если частица пролетает над
ямой (её энергия больше порога ямы), она всё равно яму чувствует (волновая функция
меняется - она уже не является свободной частицей).

Аналогичным образом можно рассмотреть задачу с ямой конечной глубины, обе стен-
ки которой высоты𝑈0:

U

x0 aI II III

𝑈0

Рис. 7.2: Конечная яма конечной глубины

В этом случае появятся дополнительные уравнения на границе (условие гладкости). В
такой ситуации частица почувствует яму, даже если пролетит над ней (в отличие от клас-
сического случая). Более того, появится отражённая волна.
Данной ситуации можно привести следующий аналог. Плоскопараллельная прозрачная
пластинка поставлена на пути светового пучка. В этом случае падающая волна частично
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отразится, частично пройдёт (электромагнитная волна почувствует наличие слоя с дру-
гим показателем преломления).
2. 𝐸 < 𝑈0 - частица находится в яме.

𝑛1 = 1

𝑛2 > 1

𝑛3 = 1

Рис. 7.3: Аналог движения частицы в яме конечной глубины

Тогда
𝑘23 =

2𝑚(𝑈0 − 𝐸)
ℏ2

(7.14)

Уравнение в третьей области примет вид:

𝑑2𝜓III
𝑑𝑥2

− 𝑘23𝜓III = 0 (7.15)

Решение данного уравнения в общем виде можно записать (исчезла мнимая единица):

𝜓III = 𝐵𝑒𝑘3𝑥 + 𝐶𝑒−𝑘3𝑥 (7.16)

На левой границе ничего не меняется: 𝜑 = 0.
На правой границе (на бесконечности) первое слагаемое решения (7.16) стремится к бес-
конечности, а второе - к нулю. Это противоречит физическим представлениям задачи,
поэтому соответствующий коэффициент должен быть равен нулю:

𝑥 = ∞ ⇒ 𝐵 = 0 (7.17)

Граничные условия в точке a:
𝐴𝑠𝑖𝑛(𝑘2𝑎) = 𝐶𝑒−𝑘3𝑎 (7.18)

𝐴𝑘2𝑐𝑜𝑠(𝑘2𝑎) = −𝐶𝑘3𝑒−𝑘3𝑎 (7.19)

Поделим уравнение (7.19) на (7.18):

𝑘2 · 𝑎 · 𝑐𝑡𝑔(𝑘2𝑎) = −𝑘3𝑎 (7.20)

Таким образом, мы получили уравнение относительно E. Решим уравнение графически:

Получаем дискретный набор решений данного уравнения (точки пересечения двух
графиков и есть решения). Причём число этих состояний конечно и зависит от парамет-
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−𝑘𝑎𝑐𝑡𝑔(𝑘𝑎/2)

𝑘𝑎
𝜋 3𝜋 5𝜋 7𝜋 9𝜋

Рис. 7.4: Графический способ решения уравнения

ров задачи ширины и глубины ямы).
Проанализируем решения. Из свойств котангенса следует

𝜋

2
< 𝑘2𝑎 < 𝜋 (7.21)

Следующее решение лежит уже в другой четверти:

3𝜋

2
< 𝑘2𝑎 < 2𝜋 (7.22)

и т.д.
Отсюда можно сделать вывод, что условие существования хотя бы одного решения можно
записать в виде:

𝑘2𝑎 >
𝜋

2
(7.23)

перейдём к энергии:
2𝑚𝐸

ℏ2
𝑎 >

ℏ2

4
(7.24)

Тогда:

𝑈0 > 𝐸 >
ℏ2𝜋2

8𝑚𝑎2
(7.25)

𝑈0 >
ℏ2𝜋2

8𝑚𝑎2
(7.26)

Отсюда получаем условие наличия хотя бы одного связанного состояния частицы в яме:

𝑈0𝑎
2 >

ℏ2𝜋2

8𝑚
(7.27)

Как известно, протон и нейтрон могут образовать ядро дейтерия. Попробуем заме-
нить протон на нейтрон. Сила взаимодействия для нейтрона практически не отличается
от силы взаимодействия протона. Однако ядра с двумя протонами не существует. Это свя-
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зано с тем, что протон и нейтрон обладают разным потенциалом взаимодействия. Разница
небольшая, однако оказывается, что для системы протон-нейтрон условие (7.27) выполня-
ется (в соответствующей потенциальной яме может существовать только один уровень),
а для системы нейтрон-нейтрон - нет (нет связанного состояния двух нейтронов).

Нарисуем вид волновой функции:

U

x0 a

𝑈0

Рис. 7.5: Волновая функция в случае ямы конечной глубины

Заметим, что так как 𝜓III ≠ 0, то и вероятность нахождения частицы в запрещённой (с
классической точки зрения) области (𝑎,∞) не равна нулю.

Потенциальный барьер и туннельный эффект

Рассмотрим потенциальный барьер:

U

x0 a

b

𝑈0𝑈0

𝑎 + 𝑏

𝑈0 > 𝐸

Рис. 7.6: Потенциальный барьер

Рассмотрим ситуацию𝑈0 > 𝐸 .
Предельный случай 𝑏 → ∞ сводит задачу к предыдущей.
Заметим, что из-за появления новой границы в решении появится отражённая волна (отра-
жение от правой границы барьера). Соответствующая часть решения, которая в прошлой
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задаче являлась нефизичной (и потому была из решения удалена) уже будет присутство-
вать. То есть

𝜓III = 𝐵𝑒𝑘3𝑥 + 𝐶𝑒−𝑘3𝑥 (7.28)

Решение в четвёртой области будет таким же, как и внутри ямы, но с другими коэффици-
ентами. Учитывая, что параметры 𝑘2 = 𝑘4, получим

𝜓IV = 𝐷1𝑒
𝑖𝑘2𝑥 + 𝐷2𝑒

−𝑖𝑘2𝑥 (7.29)

На бесконечности нет отражающей стенки. Поэтому слагаемое 𝐷1𝑒
𝑖𝑘2𝑥 = 0.

Далее можно записать условия на непрерывность и гладкость функции на двух границах.
В результате получим систему уравнений, из которых можно определить коэффициенты.
Анализ полученного решения показывает, что для частицы появляется вероятность ока-
заться за барьером. То есть, частица может туннелировать сквозь барьер с некоторой нену-
левой вероятностью, которая определяется коэффициентом 𝐷2.

Проницаемость барьера равна отношению вероятности найти частицу вне ямы к ве-
роятности найти частицу в яме:

𝐷 =
|𝐷2 |2
|𝐴|2 (7.30)

Получим формулу для проницаемости барьера в случае, если барьер плохо проницаемый
(вероятность прохождения мала).
Будем считать, что b - большое (широкий барьер). В этом случае отражённой волной мож-
но пренебречь.
Тогда ослабление волновой функции будет

𝑒−𝑘3𝑥

Рис. 7.7: Потенциальный барьер

���𝑒−𝑘3𝑏���2 = 𝑒−2𝑘3𝑏 = 𝑒
−2

√
2𝑚(𝑈0−𝐸)

ℏ2
·𝑏

(7.31)

Таким образом, мы получили грубую оценку проницаемости барьера (даёт ответ с хоро-
шей точностью в случае малого числа).
Заметим, что √

2𝑚(𝑈0 − 𝐸)
ℏ2

= 𝜆−1𝐵 (7.32)
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Рассмотрим случай 𝑈0 ≠ 𝑐𝑜𝑛𝑠𝑡. Тогда можно разбить барьер на множество слоёв и пред-
положить, что внутри каждого слоя потенциал постоянен. Тогда получим формулу вида:

𝐷 ≈ 𝑒
−2

𝑏∫
𝑎

√
2𝑚(𝑈0(𝑥)−𝐸)

ℏ 𝑑𝑥
(7.33)

При этом потенциал должен быть медленной функцией x по сравнению с длиной волны
де Бройля.

Примеры туннельного эффекта

Туннельному эффекту аналогичен эффект полного внутреннего отражения. При паде-
нии света из среды с показателем преломления 𝑛1 в среду с меньшим показателем пре-
ломления, то при определённом угле возникает полное внутренне отражение (элкектро-
магнитное излучение полностью отражается от границы).
Однако, следует учитывать, что при полном внутреннем отражении волна во второй сре-
де также присутствует (это будет затухающая волна с характерным масштабом, равным
длине волны). Чтобы обнаружить затухающую волну, пронаблюдаем явление нарушен-
ного полного внутреннего отражения.

𝑛1 > 𝑛2

𝑒𝑖𝑘𝑥 𝑒−𝑘𝑥

𝑛1

Рис. 7.8: Нарушенное полное внутреннее отражение

Для этого поместим ещё одну среду с показателем преломления 𝑛1 (причём ширина
зазора между средами должна быть порядка длины волны). Тогда затухающее решение
продлится до новой границы, а на самой границе возникнет бегущая волна (её можно за-
регистрировать). Данное явление и будет аналогом туннелирования через барьер (однако
следует учитывать, что в одном случае речь идёт о электромагнитной волне, а в другом -
о волне вероятности).
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Рассмотрим несколько примеров проявления туннельного эффекта.
Пример 1. Альфа-распад ядер.
Решение задачи предполагает решение уравненияШрёдингера. Для этого рассмотрим по-
тенциал взаимодействия альфа-частицы и ядра.

𝑈(𝑟)

r

𝐸0

𝑅𝑁 𝑟∗

Рис. 7.9: Потенциал взаимодействия

На Рис. 7.9 𝑅𝑁 - радиус ядра. При 𝑟 < 𝑅𝑁 взаимодействие альфа-частицы с ядром-
остатком носит характер ядерного взаимодействия и образуется глубокая яма. Если альфа-
частица начинает удаляться от ядра, то между ней и остаточным ядром возникает кулонов-
ское взаимодействие (так как и частицы, и остаточное ядро заряжены). При этом частица
считается свободной в области 𝑟 > 𝑟∗, если энергия частицы 𝐸0 больше, чем потенциал
взаимодействия (см Рис. 7.9).
Таким образом, в рамках описанного формализма задача свелась к задаче о туннельном
эффекте (частица, находящаяся в связанном состоянии с ядром, туннелирует через ба-
рьер).
Запишем потенциал

𝑈(𝑟 > 𝑅𝑁) =
2𝑒2(𝑍 − 2)

𝑟
(7.34)

где Z - заряд ядра в целом.Множители 2 и (𝑍−2) появляются, так как заряд альфа-частицы
равен двум.
Посчитаем, сколько даёт кулоновское взаимодействие на расстоянии порядка ядерного.
Это даст высоту барьера.
Подставим в (7.34) 𝑟 = 𝑅𝑁 (порядка 1Фм) и зарад Z. Для ядра 210

84 𝑃0 получим𝑈(𝑟 = 𝑅𝑁) =

23МэВ. Это больше энергии наблюдаемых альфа-частиц, поэтому можно сделать вывод,
что приближение является корректным (явление распада можно описывать как туннель-
ный эффект).
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Запишем формулу для проницаемости барьера:

𝑙𝑛𝐷 = −2
𝑅∗∫

𝑅𝑁

𝑑𝑟

√
2𝑚𝛼(𝑈0(𝑟) − 𝐸)

ℏ2
(7.35)

где 𝑅∗ - условная граница потенциала (возникает уз условия 𝐸0 = 𝑈).
Взяв интеграл, получим:

𝑙𝑛𝐷 =
−2𝜋𝑒2𝑍′

ℏ

√
2𝑚𝛼
𝐸

+
8

ℏ

√
𝑒2𝑍′𝑅𝑁𝑚𝛼 (7.36)

где 𝑍′ = 𝑍 − 2.
Проницаемость D - это вероятность того, что частица появится. Можно показать, что
𝐷 � 1.Однако, альфа-распад - явление наблюдаемое, вероятность должна быть близка
к единице. Для обоснования данного факта считают, что вероятность обнаружения ча-
стицы p определяется как

1 = 𝑝 = 𝐷 · 𝑛 (7.37)

где n - число столкновений (можно представить, что частица - это некий шарик, находя-
щийся в яме).
Считаем, что период (время, через которое альфа-частица сталкивается со стенкой):

𝜏 =
𝑅𝑁
𝑐

(7.38)

Число столкновений должно быть 𝑛 = 1
𝐷 . Тогда полное время альфа-распада:

𝜏𝛼 = 𝜏 · 𝑛 = 𝜏

𝐷
(7.39)

Отсюда можно получить универсальную формулу для времени альфа распада:

𝑙𝑜𝑔10𝜏𝛼 =
148√
𝐸/МэВ

53, 5 (7.40)

Пример 2. Туннельный эффект используется в устройствах записи и хранения инфор-
мации.
Устройство записи и хранения информации можно представить следующим образом. По-
ток данных распространяется по металлическому проводнику. за ним расположены окис-
ный слой, непроницаемый для электронов и некая ячейка (яма конечной глубины в полу-
проводнике), в которую может попасть электрон. Если слой окисла широкий, то в ячейке
накапливается заряд, который даёт единицу информации.
Если в ячейке уже есть заряд, то подав напряжение на всю конструкцию, можно умень-

73



Введение в квантовую физику
Савельев-Трофимов Андрей Борисович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

шить ширину запирающего слоя, так, чтобы вероятность туннельного тока через окисный
слой была не нулевой (вероятность должна быть небольшой, чтобы не весь ток не перешёл
в ячейку). Тогда возникает ток, который можно зарегистрировать. Обратно, если нужно
записать информацию, аналогичным способом создают ток в обратную сторону.

Пример 3. Туннельный микроскоп.
На некоторой поверхности расположен заряд. Подведём острие к поверхности. Если рас-
стояние между остриём и поверхностью будет достаточно маленьким (вероятность проте-
кания тока через промежуток будет ненулевой), то возникает туннельный эффект (возник-
ший ток можно измерить). Оказывается, для проявления туннельного эффекта расстояние
между острием и поверхностью должно быть порядка одного ангстрема.
Таким образом, туннельный микроскоп позволяет с разрешением порядка ангстрема ис-
следовать структуру проводящих поверхностей.
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Лекция 8. Движение в центральном поле.

Движение в центральном поле

Рассмотрим движение заряженной частицы в центральном поле (𝑈(𝑟) зависит толь-
ко от радиус-вектора r и является центрально-симметричным). Частный случай данной
задачи - движение электрона в кулоновском поле протона. Причём в таких задачах мы
считаем, что центр с зарядом Z является неподвижным (то есть имеет большую массу).

Запишем уравнение Шрёдингера (потенциал является кулоновским):

− ℏ2

2𝑚
∆𝜓 − 𝑍𝑒2

𝑟
𝜓 = 𝐸𝜓 (8.1)

При этом волновая функция является функцией координат 𝜓(𝑟, 𝜃, 𝜑) или 𝜓(𝑥, 𝑦, 𝑧). Задача
является центрально-симметричной, поэтому будет решать задачу в координатах (𝑟, 𝜃, 𝜑).
Распишем оператор ∆ в сферических координатах.
Для этого запишем

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 (8.2)

𝑟𝑑𝑟 = 𝑥𝑑𝑥 ⇒ 𝜕𝑟

𝜕𝑥
=
𝑥

𝑟
(8.3)

Вычислим частные производные:

𝜕

𝜕𝑥
=
𝜕𝑟

𝜕𝑥

𝜕

𝜕𝑟
=
𝑥

𝑟

𝜕

𝜕𝑟
(8.4)

𝜕2

𝜕𝑥2
=

𝜕

𝜕𝑥

(𝑥
𝑟

𝜕

𝜕𝑥

)
=

1

𝑟

𝜕

𝜕𝑟
− 𝑥

2

𝑟3
𝜕

𝜕𝑟
+
𝑥2

𝑟2
𝜕2

𝜕𝑟2
(8.5)

Аналогично можно получить 𝜕2

𝜕𝑦2
𝜕2

𝜕𝑧2
.

Тогда можно записать выражение для координатной части оператора Лапласа:

∆ =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
=

2

𝑟

𝜕

𝜕𝑟
+
𝜕2

𝜕𝑟2
(8.6)

В данной задаче будет искать решение, не зависящее от 𝜃 и 𝜑 (решение, имеющее центр
симметрии). Тогда вместо оператора Лапласа можно использовать только его координат-
ную часть (8.6).
Подставим (8.6) в (8.1):

− ℏ2

2𝑚

(𝑑2𝜓
𝑑𝑟2

+
2

𝑟

𝑑𝜓

𝑑𝑟

)
− 𝑍𝑒2

𝑟
𝜓 = 𝐸𝜓 (8.7)
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Получаем дифференциальное уравнение для волновой функции в случае центральной
симметрии.
Введём параметры:

𝛽 =
2𝑚𝑍𝑒2

ℏ2
(8.8)

и
𝑘2 = −2𝑚𝐸

ℏ2
(8.9)

Тогда уравнение запишем в виде:

𝜓′′ +
2

𝑟
𝜓′ +

𝛽

𝑟
𝜓 = 𝑘2𝜓 (8.10)

Так как потенциал кулоновский (𝑈 ∼ 1
𝑟 ), будем искать решение в виде функции, которую

можно представить в виде произведения некоторой функции и 1
𝑟 :

𝜓(𝑟)
𝑢(𝑟)

𝑟
(8.11)

Тогда
𝜓′ =

𝑢′

𝑟
− 𝑢

𝑟2
(8.12)

и
𝜓′′ =

𝑢′′

𝑟
− 2

𝑟2
𝑢′ +

2

𝑟3
𝑢 (8.13)

Подставим полученные выражения для производных в (8.10). Тогда получим уравнение
для функции u:

𝑢′′ + 𝛽
𝑢

𝑟
= 𝑘2𝑢 (8.14)

Исследуем асимптотику решения. Рассмотрим случай 𝑟 → ∞. Тогда уравнение сведётся
к уравнению вида

𝑢′′ = 𝑘2𝑢 (8.15)

его решение
𝑢∞ = 𝐴𝑒𝑘𝑥 + 𝐵𝑒−𝑘𝑥 (8.16)

Заметим, что на бесконечности 𝐴𝑒𝑘𝑥 −→
𝑟→∞

∞. Поэтому стоит положить 𝐴 = 0.
Таким образом, функцию u можно искать в виде:

𝑢 = 𝑒−𝑘𝑟 · 𝑓 (𝑟) (8.17)

где f(r) - некая медленная функция.
Посчитаем производные:

𝑢′ = −𝑘𝑒−𝑘𝑟 · 𝑓 (𝑟) + 𝑓 ′𝑒−𝑘𝑟 (8.18)

𝑢′′ = 𝑘2𝑒𝑘𝑟 − 2𝑘𝑒−𝑘𝑟 𝑓 ′ + 𝑓 ′′𝑒−𝑘𝑟 (8.19)
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Подставим полученные производные в (8.14):

𝑓 ′′ − 2𝑘 𝑓 ′ +
𝛽

𝑟
𝑓 = 0 (8.20)

Решением этого уравнения является полином:

𝑓 (𝑟) =
∞∑
𝑚=1

𝑎𝑚𝑟
𝑚 (8.21)

Подставим данное решение в (8.20):

∞∑
𝑗=1

𝑏 𝑗𝑟
𝑗 = 0 (8.22)

Полученное уравнение должно выполняться для любого 𝑟 𝑗 . Это так, если выполнено сле-
дующее уравнение на коэффициенты:

𝑎𝑛+1(𝑛 + 1)𝑛 − 2𝑘𝑎𝑛 · 𝑛 + 𝛽𝑎𝑛 = 0 (8.23)

отсюда получим рекуррентную формулу для коэффициентов:

𝑎𝑛+1 = 𝑎𝑛
2𝑘𝑛 − 𝛽
𝑛(𝑛 + 1)

(8.24)

Рассмотрим два случая:

1. Существует такое n, что 2𝑘𝑛 − 𝛽 = 0. Тогда ряд оборвётся, все следующие коэффи-
циенты равны нулю.

2. Не существует такое n, для которого 2𝑘𝑛 − 𝛽 = 0.

Так как ряд не обрывается, можно записать 𝑎𝑛+1 = 𝑎𝑛
2𝑘−𝛽/𝑛
𝑛+1 ≈ 𝑎𝑛 2𝑘

𝑛+1 при 𝑛 → ∞. Разло-
жение в ряд экспоненты:

𝑒𝛼 =
∑
𝑛

1

𝑛!
𝛼𝑛 (8.25)

Обозначим 𝛼 = 2𝑘𝑟 . Тогда отношение членов ряда равно

𝑏𝑛+1

𝑏𝑛
=

2𝑘

𝑛 + 1
(8.26)

При этом 𝑎𝑛+1

𝑎𝑛
= 2𝑘

𝑛+1 . То есть, можно записать

𝑓 (𝑟) ∝ 𝑒2𝑘𝑟 (8.27)
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Тогда для исходной волновой функции получим

𝜓(𝑟) =
𝑒2𝑘𝑟𝑒−𝑘𝑟

𝑟
=
𝑒𝑘𝑟

𝑟
−→
𝑘→∞

∞ (8.28)

То есть, если ряд не обрывается, то уравнение не имеет решения (частица улетит).
Значит, рассмотрим ситуацию 1) - ряд обрывается. Тогда

𝑘𝑛 =
𝛽

2𝑛
(8.29)

Значит, условие обрыва ряда даёт дискретный уровень энергии:

𝐸𝑛 = −𝑍
2

𝑛2
𝑚𝑒4

2ℏ2
= −𝑅𝑍

2

𝑛2
(8.30)

Запишем полученное частное решение, не зависящее от углов:

𝜓𝑛(𝑟) =
1

𝑟
𝑒−𝑘𝑟

𝑛∑
𝑚=1

𝑎𝑚𝑟
𝑚 (8.31)

Тогда волновая функция первого волнового состояния:

𝜓1 = 𝑎1𝑒
−𝑘𝑟 (8.32)

Посчитаем радиус атома. Определим радиус атома как расстояние, для которого вероят-
ность P обнаружить на этом радиусе электрон максимальна. Тогда

𝑃𝑑𝑟 = |𝜓 |24𝜋𝑟2𝑑𝑟 (8.33)

Найдём максимум из уравнения 𝑑𝑃
𝑑𝑟 = 0. В результате получим, радиус первой орбиты

(координата, в которой электрон находится с большей вероятностью) равен радиусу Бора
𝑟 = 𝑟𝑎.

В общем виде лапласиан в сферических координатах имеет вид:

∆ = ∆𝑟 +
∇2
𝜃,𝜑

𝑟2
(8.34)

где ∆𝑟 - координатная часть, а

∇𝜃,𝜑 =
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃

(
𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃

)
+

1

𝑠𝑖𝑛𝜃

𝜕2

𝜕𝜑2
(8.35)

Решим стационарное уравнениеШрёдингера с учётом зависимости от углов. Будем искать
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решение в виде:
𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑) (8.36)

Подставим такой вид решения в уравнене Шрёдингера:

1

𝑅

𝑑

𝑑𝑟

(
𝑟2
𝑑𝑅

𝑑𝑟

)
+

2𝑚0

ℏ2
𝑟2(𝐸 −𝑈) = 1

𝑌
∇2
𝜃,𝜑𝑌 = 𝜆 (8.37)

обе части уравнения (8.37) можно приравнять некоторой постоянной 𝜆, так как левая часть
уравнения зависит только от r, правая - только от углов (при этом само равенство должно
выполняться в любой точке).
В итоге получаем два отдельных уравнения. Запишем угловое уравнение:

∇2
𝜃,𝜑𝑌 = 𝜆𝑌 (8.38)

Будем искать решение в виде:
𝑌 = 𝑃(𝜃)Φ(𝜑) (8.39)

Подставим вид решения в уравнение (8.38). Аналогично (8.37) произведём разделение
переменных (введём новую константу 𝜇) и получим два уравнения:

𝑑2Φ

𝑑𝜑2
+ 𝜇2Φ = 0 (8.40)

и
1

𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃

(
𝑠𝑖𝑛𝜃

𝑑𝑃

𝑑𝜃

)
+

(
𝜆 − 𝜇2

𝑠𝑖𝑛2𝜃

)
𝑃 = 0 (8.41)

Уравнение (8.40) имеет решение:

Φ(𝜑) = 𝐴𝑒𝑖𝜇𝜑 + 𝐵𝑒−𝑖𝜇𝜑 (8.42)

Заметим, что 𝜑 - периодическая переменная. Значит, при изменении 𝜑 на 2𝜋 решение
должно переходить само в себя. Отсюда следует, что

1. 𝜇 - целое

Тогда решение (с учётом нормировки):

Φ(𝜑) =
1

√
2𝜋
𝑒𝑖𝑚𝜑, 𝑚 = 0,±1, .. (8.43)

Решим уравнение (8.41) путём введения новой переменной 𝜉 = 𝑐𝑜𝑠𝜃. Записав (8.41) от-
носительно новой переменной, получим:

𝑑

𝑑𝜉

(
(1 − 𝜉2)𝑑𝑃

𝑑𝜉

)
+

(
𝜆 − 𝑚

1 − 𝜉2
)
𝑃 = 0 (8.44)

79



Введение в квантовую физику
Савельев-Трофимов Андрей Борисович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Данное уравнение имеет решение в виде присоединённых функций Лежандра:

𝑃
(𝑚)
𝑙 (𝜉) =

1

2𝑙 𝑙!

(
1 − 𝜉2

) 𝑚
2 𝑑𝑙+𝑚

𝑑𝜉 𝑙+𝑚

(
𝜉 𝑙 − 1

) 𝑙
(8.45)

Причём
𝜆 = 𝑙(𝑙 + 1), 𝑙 > 0, 𝑙 − целое (8.46)

и
𝑚 = −𝑙...0...𝑙 (8.47)

Таким образом, получены выражения для угловой части решения. Получим радиальную
часть решения следующим образом.
Зададим 𝑙 = 1 тогда 𝑚 = ±1, 0. Отсюда появляется уравнение для радиальной части, со-
держащее l (но не содержащее m).
Уравнение для радиальной части будет аналогично уравнению, полученному без учёта
угловой части, но с другим потенциалом. Отличие будет в том, что решение будет содер-
жать n (индекс, определяющий номер уровня), который представлен в виде:

𝑛 = 𝑛𝑟 + 𝑙 + 1, 𝑛𝑟 > 0, 𝑙 < 𝑛𝑟 (8.48)

Таким образом, из решения основного уравнения для радиальной части появится дис-
кретный набор уровней. Причём энергия n-го уровня будет иметь тот же вид, что и для
сферически-симметричного решения:

𝐸𝑛 = −𝑅𝑍
2

𝑛2
(8.49)

где n удовлетворяет (8.48).
Если 𝑛 = 2, то 𝑛𝑟 = 1, 2. Тогда возможны ситуации 𝑛 = 2, 𝑛𝑟 = 1, 𝑙 = 1, 𝑚 = 0,±1 и
𝑛 = 2, 𝑛𝑟 = 2, 𝑙 = 0, 𝑚 = 0. То есть, 𝑛 = 2 соответствует четыре волновых функции,
которые описывают различные состояние с одной и той же энергией.

Запишем оператор углового момента:

𝑀̂ = [𝑟, 𝑝] =

�������
𝑖 𝑗 𝑘

𝑥 𝑦 𝑧̂

𝑝𝑥 𝑝𝑦 𝑝𝑥

�������
Отсюда можно получить оператор проекции углового момента на оси 𝑀̂𝑧, 𝑀𝑥 , 𝑀𝑥:

𝑀̂𝑧 = −𝑖ℏ 𝑑
𝑑𝜑

(8.50)
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𝑀𝑥 =
ℏ
𝑖

(
𝑠𝑖𝑛𝜑

𝜕

𝜕𝜃
+ 𝑐𝑡𝑔𝜃𝑐𝑜𝑠𝜑

𝜕

𝜕𝜑

)
(8.51)

𝑀𝑥 =
ℏ
𝑖

(
𝑐𝑜𝑠𝜑

𝜕

𝜕𝜃
− 𝑐𝑡𝑔𝜃𝑠𝑖𝑛𝜑 𝜕

𝜕𝜑

)
(8.52)

Построим оператор:
𝑀̂2 = 𝑀𝑥

2
+ 𝑀𝑦

2
+ 𝑀̂𝑧

2
= −ℏ2∇2

𝜃,𝜑 (8.53)

Заметим, что этот самый оператор стоит в уравнении Шрёдингера.
Таким образом, для электрона в поле заряженного центра волновая функция представле-
на радиальной частью и угловой частью, причём угловая часть связана с моментом им-
пульса движения электрона. Если момент импульса равен нулю, то получаем сферически-
симметричное решение. Можно доказать, что величины 𝑀𝑥 , 𝑀𝑦, 𝑀̂𝑧 не коммутируют друг
с другом. То есть, нельзя одновременно измерить две проекции момента импульса. При
этом 𝑀𝑥 , 𝑀𝑦, 𝑀̂𝑧 коммутируют с 𝐾𝑟 ,𝑈, поэтому в уравнении Шрёдингера производится
разделение переменных на угловые и радиальную части (операторы коммутируют⇒ фи-
зические величины, которые они определяют, могут измеряться одновременно и друг от
друга не зависят).

Определим физический смысл введенных выше чисел 𝑛, 𝑛𝑟 , 𝑙, 𝑚. m появилось в урав-
нении для оператора проекции 𝑀̂𝑧. Выше было доказано, что проекции углового момента
на ось z могут принимать значения, кратные ℏ (m - есть кратность).
𝑙 определяет полный угловой момент электрона, то есть 𝑙 соответствует оператору 𝑀̂2,
причём собственные значения этого оператора равны ℏ2𝑙(𝑙 + 1). То есть, проекция угло-
вого момента на ось z квантуется:

4ℏ
3ℏ

ℏ

0

−ℏ
−2ℏ
−3ℏ
−4ℏ

2ℏ

Рис. 8.1: Квантование проекции углового момента на ось z

Полный угловой момент даёт проекции на ось z. Длина этой проекции определяется чис-
лом m и эти проекции могут меняться 𝑚 = −𝑙, ...𝑙.
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Заметим, что максимальная величина проекции углового момента:

𝑀2
𝑧

���
𝑚𝑎𝑥

= 𝑚2ℏ2 = 𝑙2ℏ2 (8.54)

При этом
𝑀2 = ℏ2𝑙(𝑙 + 1) (8.55)

то есть квадрат углового момента всегда больше, чем его проекция на ось z. В противном
случае, если бы 𝑀2 = 𝑀2

𝑧 , выполнялось бы 𝑀2
𝑥 = 𝑀2

𝑦 = 0, то есть все три проекции были
бы известны точно, что невозможно вследствие описанного выше.
В качестве аналогии можно привести волчок с длиной

√
𝑀2. Волчок приведён в движение.

Если угловой момент направлен строго вертикально, то 𝑥 = 𝑦 = 0, вращения не будет.
При вращении проекции на плоскость xy не определены (нельзя определить, чему равны
в каждый момент времени 𝑀𝑥 и 𝑀𝑦.

Призма Николя

Рассмотрим принцип действия призмы Николя как аналог влияния выбора системы
координат на результат измерения в квантовой физике.
Призма Николя составлена из двух призм с разными показателями преломления. Показа-
тель преломления для обыкновенной волны на границе обеспечивает полное внутреннее
отражение, а для волны с определённым направлением поляризации Показатели прелом-
ления выбраны так, чтобы обеспечить поляризационное деление (пускаем на призму пу-
чок с определённой поляризацией. При этом часть пучка, который имеет поляризацию
одного типа, идёт в одну сторону, другая часть идёт в другую сторону).
Аналогично процедура измерения (ввод системы координат) влияет на результат измере-
ния момента импульса в квантовой физике.

Рис. 8.2: Призма Николя

Можно сказать, что в данном процессе вводится базис. Мы раскладываем произвольную
поляризацию по двум её составляющим. Однако, если мы начнём вращать призму, базис
изменится (процедура измерения будет производится в другой системе координат). Таким
образом, в оптике процедура измерения может влиять на результат. При этот состояние
пучка на входе остаётся одним и тем же, а состояния поляризации пучков на выходе за-
висит от поворота призмы.
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Квантовые числа

Рассмотрим
𝑀𝑧 = 𝑚 · ℏ, 𝑚 = 0,±1, ..,±𝑙 (8.56)

то есть возможно 2𝑙 + 1 значений для 𝑀𝑧. Посчитаем среднее:

< 𝑀̂𝑧
2
>= ℏ2

𝑙2 + (𝑙 − 1)2 + .... + (−𝑙)2
2𝑙 + 1

=
ℏ2

3
𝑙(𝑙 + 1) (8.57)

Так как нет никакого выделенного направления (нет системы координат), должно выпол-
няться тождество:

< 𝑀𝑥
2
>=< 𝑀𝑦

2
>=< 𝑀̂𝑧

2
> (8.58)

Тогда среднее от квадрата углового момента

< 𝑀̂2 >=< 𝑀𝑥
2
> + < 𝑀𝑦

2
> + < 𝑀̂𝑧

2
>= ℏ2𝑙(𝑙 + 1) (8.59)

Рассмотрим электрон в центральном или кулоновском поле. Чтобы точно посчитать вол-
новую функцию, нужны индексы 𝑛, 𝑛𝑟 , 𝑙, 𝑚. Поэтому эти индексы называются квантовы-
ми числами.
n - главное квантовое число определяет энергию состояния
𝑛𝑟 - радиальное квантовое число (связано с радиальной компонентой)
𝑙 - угловое квантовое число связано с угловым моментом системы
m - проекция углового момента.
Задав три числа 𝑛, 𝑙, 𝑚, мы однозначно зададим состояние системы (то есть определим
волновую функцию системы).

Рассмотрим примеры.
Основное состояние атома водорода можно задать числами 𝑛 = 1𝑙 = 0(𝑠)𝑚 = 0. Оно
сферически симметрично, так как угловой момент равен нулю.
Состояния с 𝑙 = 0 называют s-состояниями, состояния с 𝑙 = 1 - p-состояниями, 𝑙 = 2 → 𝑑

состояния, 𝑙 = 3 → 𝑓 состояния.
𝑛 = 2 𝑙 = 0(𝑠), 𝑚 = 0

𝑛 = 2 𝑙 = 1(𝑝), 𝑚 = 0,±1

Введём понятие вырожденных уровней. Уровни вырождены, если их волновые функ-
ции различны, а энергии одинаковы.
Для каждого 𝑙 есть 2𝑙+1 проекций, поэтому для каждого 𝑙 есть 2𝑙+1 волновых функций.
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При этом 𝑙 лежит в диапазоне [0, 𝑛−1]. Посчитав сумму, получим кратность вырождения:

𝑛−1∑
𝑙=0

(2𝑙 + 1) = 𝑛2 (8.60)

Можно доказать, что при учёте дополнительных взаимодействий внутри атома вырожде-
ние может сниматься.
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Лекция 9. Магнитный момент. Спин.

Магнитный момент атома

У атома есть механический момент (масса, движущаяся по окружности). Однако, су-
ществует ещё и заряд, который движется по окружности. Это равносильно протеканию
тока. Ток генерирует магнитное поле, поэтому у атома (как следствие существования ор-
битального момента) существует и магнитный момент.
Запишем угловой момент:

®𝐿 = 𝑚[®𝑟 × ®𝑣] (9.1)

Магнитный момент по определению:

®𝑃𝑚 =
1

𝑐
𝑖 ®𝑆 =

1

𝑐

𝑞𝑣

2𝜋𝑟
𝜋𝑟2®𝑛 (9.2)

где ®𝑆 - ток.

M

n
r

v

𝜇

Рис. 9.1: Иллюстрация к расчёту магнитного момента

Учтём, что q - заряд электрона. Тогда получим

®𝑃𝑚 = − 𝑒

2𝑐
𝑟𝑣®𝑛 = − 𝑒

2𝑚𝑐
𝑚[®𝑟 × ®𝑣] (9.3)

Таким образом, связь магнитного и углового моментов электрона

®𝑃𝑚 = − 𝑒

2𝑚𝑐
®𝐿 (9.4)

Рассмотрим проекцию на ось z:
𝑃𝑚𝑧 = − 𝑒

2𝑚𝑐
®𝐿𝑧 (9.5)
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Перейдём к операторным величинам:

𝑃𝑚 = − 𝑒

2𝑚𝑐
𝐿̂ (9.6)

𝑃𝑚𝑧 = − 𝑒

2𝑚𝑐
𝐿̂𝑧 (9.7)

Собственные значения оператора 𝐿𝑧 известны, поэтому угловой момент

𝜇𝑙𝑧 = − ℏ𝑒
2𝑚𝑐

𝑚𝑙 (9.8)

Причём величина
𝜇𝐵 =

ℏ𝑒
2𝑚𝑐

≈ 0.9 · 10−20эрг/Гс (9.9)

называется магнетоном Бора.
Таким образом,

𝜇𝑙𝑧 = −𝜇𝐵𝑚𝑙 (9.10)

где𝑚𝑙 - так называемое магнитное квантовое число, а 𝜇𝑙𝑧 - величина проекции магнитного
момента на ось z.
Заметим, что собственные функции операторов 𝑃𝑚 и 𝐿̂ а также операторов 𝑃𝑚𝑧 и 𝐿̂𝑧 сов-
падают.
Из (9.10) можно получить модуль углового момента:

|𝜇𝑙 | = 𝜇𝑏

√
𝑙(𝑙 + 1) (9.11)

Таким образом, мы получили простейшую модель магнетизма. Элементарным объектом,
определяющим наличие элементарного магнитного поля, является атом. Суммируя маг-
нитный момент по большому числу атомов, получим макроскопические магнитные явле-
ния.

Для измерения магнитного поля его нужно поместить в однородное магнитное поле
H. Помещая атом в магнитное поле, мы тем самым производим процедуру измерения -
появляется ось z. Магнитный момент атом а начинает взаимодействовать с магнитным
полем. Вследствие этого электрон получает дополнительную энергию, равной (согласно
классической теории):

∆𝑢 = − ®𝜇 ®𝐵 (9.12)

Перейдя к квантовому представлению, получим:

∆𝑢 = −𝜇𝑧𝐵 = 𝜇𝐵𝐵 · 𝑚𝑙 (9.13)

Таким образом, сдвиг зависит от проекции магнитного момента на направление магнит-
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ного поля. Например, если проекция магнитного момента перпендикулярна магнитному
полю, то энергия системы не увеличится, так как взаимодействие отсутствует.
Рассмотрим энергию n-го уровня атома водорода

𝐸𝑛 = −𝑅𝑧
2

𝑛2
(9.14)

где n - главное квантовое число 𝑛 = 𝑛𝑟 + 𝑙 + 1. В эту формулу не входит магнитное кван-
товое число, значит, уровни вырождены (все электроны с одним и тем же n, имеют одну
и ту же энергию). Однако, в случае помещения атома в магнитное поле появляется до-
бавка к энергии, которая определяется проекцией магнитного момента на ось z. Таким
образом, происходит снятие вырождения. Вырожденный уровень расщепляется на набор
эквидистантных уровней. Отсюда можно получать некоторые результаты. Например, в
результате проведения эксперимента получили пять уровней. При этом должно выпол-
няться 5 = 2𝑙 + 1, значит 𝑙 = 2.
На основе того же опыта с магнитным полем можно измерить величину поля B (напри-
мер, спектроскопически рассчитав расстояние между уровнями).

U
𝐵 = 0 𝐵 ≠ 0

𝑚𝑙
2
1
0
-1
-2

𝑙 = 2𝑈0

Рис. 9.2: Расщепление уровней в магнитном поле

Опыт Штерна-Герлаха

Отметим, что только по проекции магнитного момента атомов, помещённых в одно-
родное магнитное поле, нельзя определить состояния атомов. Так как в этом случае по-
тенциал равен произведению констант:

𝑈 = −𝜇𝐵(𝑧) (9.15)

Тогда сила, действующая на атом:

𝐹 = −∇𝑈 = 0 (9.16)
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То есть внутренняя энергия электрона в такой системе изменяется, но сила на него не дей-
ствует и движение (в классическом смысле) не изменяется в магнитном поле.
Однако, можно разделить в пространстве атомы с разными значениями проекции магнит-
ного момента. Эта идея осуществилась в опытах Штерна и Герлаха. В опытах использо-
валось неоднородное магнитное поле. Тогда градиент потенциала (и сила) уже не равен
нулю.
Для создания неоднородного магнитного поля использовались два магнита - плоский и
клиновидный. Поле в зазоре между магнитами будет неоднородным.
Тогда сила, действующая на пролетающий между магнитами атом

®𝐹 = −𝜇𝑥
𝜕𝐵

𝜕𝑥
− 𝜇𝑦

𝜕𝐵

𝜕𝑦
− 𝜇𝑧

𝜕𝐵

𝜕𝑧
(9.17)

В контексте геометрии установки поле было однородно по координатам x и y. То есть
®𝐹 = −𝜇𝑧 𝜕𝐵𝜕𝑧 . Формально можно записать

𝐹𝑧 = 𝐴𝜇𝑧 (9.18)

где А - коэффициент.
Таким образом, в зависимости от 𝑚𝑙 сила будет разной. Далее можно записать классиче-
ское уравнение движения атома с учётом действующей на него силы. Получим некоторую
зависимость от 𝑚𝑙 . Если 𝑚𝑙 = 0, то атом полетит прямо без отклонений. Если 𝑚𝑙 = ±1,
атом отклонится и на экране появится точка. Таким образом, число точек на экране равно
числу проекций магнитного момента.
Рассмотрим данный эксперимент с атомом водорода. Если атом водорода в основном со-
стоянии, то 𝑛 = 1 𝑙 = 0 𝑚𝑙 = 0 и расщепления быть не должно. Если 𝑛 = 2 𝑙 =

0, 1 𝑚𝑙 = 0,±1 - должно быть три точки.
Однако, в проведённом опыте для основного состояния атома водорода на экране было
две точки.

Спин электрона

Чтобы объяснить полученный экспериментальный результат, ввели понятие спина элек-
трона. Для атома водорода произошло расщепление в магнитном поле. Значит, у этого
атома есть какой-то момент (обозначим его квантовое число s). Тогда, так как произошло
расщепление на две компоненты, можно записать: 2𝑠+1 = 2 ⇒ 𝑠 = 1/2 ⇒ 𝑚𝑠 = ±1/2.
То есть, дополнительный угловой момент электрона равен 1/2.
Будем считать, что речь идёт об угловом моменте. Значит, для него сохраняются правила
работы с моментами. Тогда для квантового числа можно записать:

𝑠2 = ℏ2(𝑠 + 1)𝑠 =
3

4
ℏ2 (9.19)
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и проекция спинового момента на ось z:

𝑠𝑧 = ±ℏ
2

(9.20)

В качестве классической аналогии существования спина электрона можно привести мо-
дель шарика, вращающегося вокруг своей оси. Однако данное представление противоре-
чит физическим представлениям об электроне (чтобы получить такой угловой момент,
шарик должен вращаться со скоростью, большей скорости света).
Таким образом, спин - релятивистская сущность (возникающая вследствие релятивист-
ской теории). Для спина нет классического аналога.

Рассмотрим систему в основном состоянии (𝑙 = 0) и поместим её в однородное маг-
нитное поле. Тогда получим расщепление по проекции спинового числа, причём это рас-
щепление будет точно таким же, как и расщепление при 𝑙 ≠ 0. Это означает, что 𝜇𝑠 = 𝜇𝐵
(так как расстояние между уровнями равно произведению магнитного поля на проекцию
углового момента). Однако, проекция магнитного спинового момента на ось z:

𝜇𝑠𝑧 = − 𝑒

2𝑚𝑐
𝑠𝑧 = ±1

2
𝜇𝐵 (9.21)

так как 𝑠𝑧 = 1/2. Получаем противоречие. Значит:

|𝜇𝑠𝑧 |
|𝑠𝑧 |

= −2 𝑒

2𝑚𝑐
(9.22)

Значит, длина вектора магнитного момента, связанного со спином, в два раза больше (в
относительных единицах), чем для углового, так как для углового момента можно запи-
сать:

|𝜇𝑙𝑧 |
𝐿𝑧

= − 𝑒

2𝑚𝑐
(9.23)

В релятивистской квантовой теории Дирака этот факт (как и спин) появляется появляется
сам собой. С точки зрения нерелятивистской квантовой физики множитель 2 - некоторый
постулат.

Опыт Эйнштейна - де Хааза

Намагниченный стержень подвешивается на невесомой нити. Устанавливается катуш-
ка, с помощью которой можно создавать магнитное поле. В эксперименте измеряется от-
клонение нити.

Каждый атом имеет магнитный момент. Намагниченность вещества будет в том слу-
чае, если все магнитные моменты атомов сонаправлены. Если все моменты направлены
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Рис. 9.3: Опыт Эйнштейна - де Хааза

хаотично, то в среднем намагниченность системы будет равна нулю. Если магнитные мо-
менты атомов сонаправлены, то и угловых моменты атомов сонаправлены. Тогда полный
магнитный момент стержня P равен

𝑃 = 𝛾𝐿 (9.24)

где L - полный угловой момент стержня.
При появлении внешнего магнитного поля меняется магнитный момент стержня. В силу
того, что данную систему можно считать замкнутой, должно выполняться правило сохра-
нения полного углового момента. Значит, должен измениться и угловой момент стержня.
Изменение углового момента соответствует повороту.
В результате проведения эксперимента было получено:

𝑃𝑚 = − 𝑒

2𝑚𝑐
2𝐿 (9.25)

То есть коэффициент пропорциональности между угловым и магнитным моментом сов-
падает с коэффициентом, полученного при рассмотрении спинового углового момента.
Таким образом, магнитные свойства вещества определяются спином. Более того, экспе-
римент показывает проявление квантовых свойств вещества на макроскопических мас-
штабах.

Полный угловой момент

У атома есть два угловых момента - l и s. Значит, должен существовать полный угловой
момент

®𝑗 = ®𝑙 + ®𝑠 (9.26)

В данном случае речь идёт о квантовых векторах.
Рассмотрим сумму двух квантовых векторов:

®𝐿 = ®𝑙1 + ®𝑙2 (9.27)
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Для квантового вектора известна его длина, а его проекция может быть квантована. При
этом точное расположение вектора неизвестно. Поэтому при сложении квантовых векто-
ров нужно определить длину суммарного вектора и его возможные проекции.

z

L

𝑙1

𝑙2
ℏ𝑚𝑙2

ℏ𝑚𝑙1

ℏ𝑚𝐿

Рис. 9.4: Сложение моментов

Проекцию на ось z можно посчитать следующим образом:

ℏ𝑚𝐿 = ℏ(𝑚𝑙1 + 𝑚𝑙2) (9.28)

Для квантового числа L нужно перебрать все возможные варианты. Для максимального
квантового числа получим:

𝐿𝑚𝑎𝑥 = 𝑚𝑙1𝑚𝑎𝑥 + 𝑚𝑙2𝑚𝑎𝑥 = 𝑙1 + 𝑙2 (9.29)

Для минимального:
𝐿𝑚𝑖𝑛 =

���𝑙1 − 𝑙2��� (9.30)

Тогда квантовое число меняется в диапазоне:���𝑙1 − 𝑙2��� 6 𝐿 6 𝑙1 + 𝑙2 (9.31)

Значит, для 𝑚𝐿 будет 2𝐿 + 1 проекций.
Отметим, что если 𝑙1 > 𝑙2, то

𝑙1 − 𝑙2 6 𝐿 6 𝑙1 + 𝑙2 (9.32)

Тогда полное число значений L равно 2𝑙2 + 1.
Если же 𝑙1 < 𝑙2, то

𝑙2 − 𝑙1 6 𝐿 6 𝑙2 + 𝑙1 (9.33)

и число значений будет равно 2𝑙1+1. То есть число значений квантового числа суммарного
вектора будет определяться наименьшим из двух слагаемых векторов.
Длина вектора

|𝐿 | =
√
𝐿(𝐿 + 1) (9.34)
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Таким образом, длина суммарного вектора может быть различной (так как L меняется).

Рассмотрим сумму трёх векторов. Тогда нужно сначала сложить первые два вектора и
к получившемуся вектору добавить третий вектор по описанной схеме:

®𝐿 = ( ®𝑙1 + ®𝑙2) + ®𝑙3 (9.35)

Однако, если суммировать так:
®𝐿 = ®𝑙1 + ( ®𝑙2 + ®𝑙3) (9.36)

можно получить другой ответ.
Таким образом, полный угловой момент электрона в атоме равен:

®𝑗 = ®𝑙 + ®𝑠 (9.37)

то есть (так как 𝑠 = 1/2)
|𝑙 − 1/2| 6 𝑗 6 |𝑙 + 1/2| (9.38)

Например, если 𝑙 = 1, то j изменяется в диапазоне

1/2 6 𝑗 6 3/2 (9.39)

При этом шаг всегда равен единице.
Квадрат полного углового момента:

𝑗2 = ℏ2 𝑗( 𝑗 + 1) (9.40)

Введём проекцию (𝑚 𝑗 - проекция полного углового момента на ось z)

𝑗𝑧 = ℏ𝑚 𝑗 (9.41)

Рассмотрим опыт Штерна-Герлаха в новых терминах. Возьмём квантовые числа 𝑛, 𝑙, 𝑠, 𝑗 .
Отсюда получим спектр 𝑚 𝑗 (2 𝑗 + 1 значений). Например, для атома водорода в основном
состоянии 𝑗 = 1/2. Значит число проекций равно 2. Если же 𝑙 ≠ 0, то нужно из 𝑙 и 𝑠
посчитать число возможных j, а для каждого j посчитать число возможных 𝑚 𝑗 .

Гиромагнитное отношение

Вектору l соответствует вектор 𝜇𝑙 , вектору s - вектор 𝜇𝑠. Суммируя s и 𝑙, получаем j.
Полный магнитный момент равен сумме 𝜇𝑙 и 𝜇𝑠. Однако, отношения векторов магнитных
моментов к соответствующим угловыммоментам не равны друг другу (см. (9.22) и (9.23)).
Поэтому суммарный магнитный момент не лежит на одной оси с вектором j.
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j

s 𝑙

𝜇𝑙

𝜇𝑠

𝜇𝑠𝑢𝑚

𝜇 𝑗

Рис. 9.5: Полный магнитный момент системы

Таким образом, полный магнитный момент системы

𝜇 𝑗 = 𝜇𝐵(®𝑙 + 2®𝑠) (9.42)

Ось z в системе появляется естественным образом (ось, вдоль которой направлен угловой
момент). Тогда проекция суммарного магнитного моменты на ось z:

𝜇 𝑗𝑧 = −𝜇𝐵 𝑗 · 𝑔 (9.43)

где g - некоторое число, называемая гиромагнитным соотношением (фактор Ланде). Он
показывает, насколько магнитный момент отклонился от оси j.
Запишем

𝜇 𝑗 = 𝜇𝐵(𝑙 + 2𝑠) 𝑗 (9.44)

Запишем проекцию следующим образом:

𝜇 𝑗𝑧 = 𝜇
𝑗

| 𝑗 | = 𝜇𝐵
(𝑙 + 2𝑠)(𝑙 + 𝑠)2

| 𝑗 | (9.45)

Тогда получаем:

−𝜇 𝑗𝑧 =
(𝑙 + 2𝑠)(𝑙 + 𝑠)

𝑗2
𝜇𝐵 𝑗 (9.46)

Соответственно
𝜇 𝑗𝑧 = −𝜇𝐵 𝑗𝑔 (9.47)

где
𝑔 =

(𝑙 + 2𝑠)(𝑙 + 𝑠)

| 𝑗 |2 (9.48)
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Преобразуем полученную формулу:

| 𝑗 |2𝑔 = (𝑙 + 2𝑠)(𝑙 + 𝑠) = 𝑙2 + 3𝑙𝑠 + 𝑠2 (9.49)

Усредним
< | 𝑗 |2 > 𝑔 = (𝑙 + 2𝑠)(𝑙 + 𝑠) =< 𝑙2 > + < 3𝑙𝑠 > + < 𝑠2 > (9.50)

и учтём, что
< 𝑙2 >= 𝑙(𝑙 + 1) < 𝑠2 >= 𝑠(𝑠 + 1) (9.51)

< 𝑗2 >=< (𝑙 + 𝑠)2 >=< 𝑙2 > + < 𝑠2 > +2 < 𝑙𝑠 > (9.52)

Выразим < 𝑙𝑠 >:
< 𝑙𝑠 >=

1

2

(
𝑗( 𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)

)
(9.53)

Окончательно получаем

𝑔 = 1 +
𝑗( 𝑗 + 1) + 𝑠(𝑠 + 1) − 𝑙(𝑙 + 1)

2 𝑗( 𝑗 + 1)
(9.54)

Таким образом, зная состояние системы 𝑛, 𝑙, 𝑠, 𝑗 , можем посчитать фактор Ланде и
тем самым для каждого j посчитать величину проекции магнитного момента на ось j:
𝜇 𝑗𝑧 = −𝜇𝐵 · 𝑔 𝑗 . При этом g может быть положительным, отрицательным и нулевым (маг-
нитный момент перпендикулярен угловому моменту).
Для основного состояния атома водорода 𝑛 = 1, 𝑙 = 0, 𝑠 = 1/2, 𝑗 = 1/2, поэтому
фактор Ланде равен 2.

Для описания состояния электрона в атоме используют следующие обозначения. Каж-
дому 𝑙 ставят в соответствие некоторую латинскую букву. Состояние можно записать так:
2𝑝3/2 → 𝑛 = 2 𝑙 = 2 𝑗 = 3/2

Принцип Паули

Принцип Паули гласит, что в одной квантовой системе два электрона не могут на-
ходиться в состоянии с одинаковыми волновыми функциями. Это означает, что у двух
электронов не могут полностью совпадать наборы квантовых чисел 𝑛, 𝑙, 𝑗 , 𝑠, 𝑚𝑙 , 𝑚𝑠.
Например, для атома гелия в основном состоянии 𝑛 = 1, 𝑙 = 0, 𝑗 = 1/2, 𝑠 = ±1/2. Поэто-
му электроны в атоме гелия должны находиться в состояниях с противоположно направ-
ленными спинами.
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Лекция 10. Молекулы.

Принцип Паули

Рассмотрим систему из двух частиц. Введём оператор перестановки частиц местами
в квантовой системе. Если система находилась в состоянии 𝜓(𝜉1, 𝜉2) (где 𝜉1 - переменная,
описывающая одну частицу, 𝜉2 - переменная, описывая другую (идентичную частицу)),
то по определению оператор перестановки меняет частицы местами:

𝑃𝜓(𝜉1, 𝜉2) = 𝜓(𝜉2, 𝜉1) (10.1)

При этом частицы являются неразличимыми. То есть

𝜓(𝜉1, 𝜉2) = 𝜆𝜓(𝜉2, 𝜉1) (10.2)

Используем оператор двойной перестановки:

𝑃2𝜓(𝜉1, 𝜉2) = 𝜓(𝜉1, 𝜉2) (10.3)

Распишем это уравнения, пользуясь определением:

𝑃
(
𝑃𝜓(𝜉1, 𝜉2)

)
= 𝑃

(
𝜆𝑃𝜓(𝜉2, 𝜉1)

)
= 𝜆2𝜓(𝜉1, 𝜉2) (10.4)

Значит,
𝜆2 = 1 ⇒ 𝜆 = ±1 (10.5)

Таким образом, есть два сорта квантовых объектов. Для одних при перемене частиц ме-
стами волновая функция переходит сама в себя (𝜆 = 1). Для других - волновая функция
меняет знак (𝜆 = −1). При этом плотность вероятности в обоих случаях не изменяется.
Для частиц с 𝜆 = 1 волновая функция является симметричной, с 𝜆 = −1 - асимметричной.

Предположим, что частицы независимы. Тогда волновая функция двух невзаимодей-
ствующих частиц (так как вероятности независимых случайных событий перемножают-
ся)

𝜓(𝜉1, 𝜉2) = 𝜓I(𝜉1) · 𝜓II(𝜉2) (10.6)

где 𝜓I, 𝜓II- волновые функции частиц.
Однако, если переставить частицы местами, получим

𝜓(𝜉1, 𝜉2) = 𝜓I(𝜉2) · 𝜓II(𝜉1) (10.7)

и если 𝜓I и 𝜓II не совпадают, то принцип тождественности частиц не будет выполнен (так
как в обоих случаях можно будет пометить каждую частицу - их можно будет различить).
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Составим волновую функцию следующим образом ( 1√
2
следует из нормировки)

𝜓𝑆(𝜉1, 𝜉2) =
1
√
2

(
𝜓I(𝜉1) · 𝜓II(𝜉2) + 𝜓I(𝜉2) · 𝜓II(𝜉1)

)
(10.8)

Эта функция удовлетворяет идее о перемножении вероятностей и принципу тождествен-
ности частиц (нельзя сказать, какая частица в каком состоянии). Однако, точно такими же
свойствами будет обладать и такая функция:

𝜓𝐴(𝜉1, 𝜉2) =
1
√
2

(
𝜓I(𝜉1) · 𝜓II(𝜉2) − 𝜓I(𝜉2) · 𝜓II(𝜉1)

)
(10.9)

Таким образом, две частицы можно сгруппировать двумя способами. Заметим, что функ-
цию 𝜓𝑆(𝜉1, 𝜉2) оператор перестановки переводит саму в себя, а 𝜓𝐴(𝜉1, 𝜉2) меняет знак
(𝜓𝑆(𝜉1, 𝜉2) - симметричная волновая функция, 𝜓𝐴(𝜉1, 𝜉2) - асимметричная).
Рассмотрим случай одинаковых волновых функций частиц:

𝜓I = 𝜓II (10.10)

Тогда получим, что 𝜓𝑆 = 2𝜓I, а 𝜓𝐴 = 0. Это означает, что для частиц, описываемых анти-
симметричной волновой функцией, ситуация [𝜓I = 𝜓II запрещена, так как частицы есть,
а вероятность равна нулю. Значит, для антисимметричных частиц должно выполняться
𝜓I ≠ 𝜓II. Это и есть принцип Паули (два электрона не могут находиться в одной системе в
одном и том же квантовом состоянии). Это означает, что электроны всегда описываются
антисимметричной волновой функцией.

Сущность квантовых частиц жестко связана со спином. Оказывается, что для частиц с
полуцелым спином волновая функция всегда асимметрична и выполняется принцип Па-
ули. Для частиц с целым спином волновая функция симметрична и принцип Паули не
выполняется (частицы могут находиться в одном квантовом состоянии).
Принцип Паули работает для любых частиц с полуцелым спином.
Примеры частиц с полуцелым спином: e, p, n.
Частицы с целым спином и симметричной волновой функцией 𝜓𝑆 называют бозонами.
Частицы с полуцелым спином и асимметричной волновой функцией 𝜓𝐴 - фермионами.
Рассмотрим ядро атома дейтерия - 𝑝+𝑛. Суммарный спин системы равен 𝑠 = 0, 1. Значит,
ядро атома дейтерия является бозоном. Аналогично ядро атома гелия является бозоном.
Если в ядре нечётное число протонов и нейтронов, то такое ядро останется фермионом.
Таким образом, спин определяет свойства симметрии и антисимметрии системы.

Фотон тоже является бозоном. Формально спин фотона равен 1. Такой спин должен
иметь три проекции углового момента: 0,±1. С точки зрения электромагнитных волн спин

96



Введение в квантовую физику
Савельев-Трофимов Андрей Борисович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

соответствует поляризации излучения (±1). При этом нулевой проекции в природе нет,
так как в противном случае нулевая проекция соответствовала бы продольным электро-
магнитным волнам, что противоречит уравнениям Максвелла.

Ещё один пример бозона - фонон. Описать фонон можно следующим образом. Пусть
имеется кристаллическая решётка (регулярно расположенные атомы, связанные упруги-
ми силами). Если возмутить один атом, то возмущение будет передаваться другим ато-
мам. В такой системе могут возникать колебания. Описание таких колебаний можно све-
сти к описанию акустических волн. При этом любой гармонический осциллятор можно
проквантовать. Тогда от описания волн в кристаллах можно перейти к описанию частиц,
называемых фононами. То есть фонон - квант колебаний акустического поля кристалла
(точно так же, как фотон – квант колебаний электромагнитного поля).
Спин фонона равен 1, у спина также три проекции - 0,±1. Однако в этом случае нулевая
проекция спина не запрещена (в твёрдом теле возможны как поперечные, так и продоль-
ные звуковые волны).

Отметим, что волновые функции 𝜓I и 𝜓II перекрываются во времени и пространстве.
Если частицы не будут принадлежать одной квантовой системе (например, они будут на-
ходиться в разных углах комнаты), частицы становятся различимыми и описанный выше
подход неуместен.

Периодическая система элементов

Уравнение Шредингера для электрона в центрально поле может быть точно решено
только для атома водорода (при использовании упрощений). В случае добавления хотя бы
одного электрона задача уже становится неразрешимой аналитически (задача трёх тел).

Выше было указано, что полное число возможных состояний с различающимися кван-
товыми числами равно 2𝑛2. В частности, 𝑛 = 1 ⇒ 2 (состояния, где все квантовые числа,
кроме проекций спина одинаковы). При 𝑛 = 2 получаем 8 состояний. Из них два состо-
яния с нулевым угловым моментом и шесть состояний с 𝑙 = 1. Для 𝑛 = 3 получаем
восемнадцать состояний. Из них два состояния с 𝑙 = 0 и шесть состояний с 𝑙 = 1 и десять
состояний с 𝑙 = 2. Для 𝑛 = 4 32 состояния.
Каждый период таблицы Менделеева заканчивается элементом, у которого все возмож-
ные состояния электронов заняты (благородные газы).
В основном состояния заполняются последовательно (так как пока что считаем, что энер-
гия состояния не зависит от углового момента). Сначала заполняются состояния с наи-
меньшим 𝑙. Первый период таблицы Менделеева состоит из водорода и гелия. Во втором
периоде находятся атомы, у которых заполнено состояние и постепенно заполняется вто-
рое (заканчивается неоном).
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При расчёте угловых или спиновых моментов атомов следует учитывать, что если лю-
бая оболочка полностью заполняется, то она заполняется таким образом, что её полный
угловой момент равен нулю. Так, для атома криптона полный угловой момент всегда ра-
вен нулю.
Отметим, что расположение атомов в таблице Менделеева не всегда соответствует прави-
лу, описанному выше. В многоэлектронных атомах возникает эффект кулоновской экра-
нировки (в случае 2s и 2p состояний часть волной функции 2s экранируется остальными
электронами и основной вклад будет давать другая часть функции (та, что ближе к яд-
ру)). В результате возникает перекрытие уровней (например, уровень 4s имеет большую
энергию взаимодействия, чем 3d. Поэтому уровень 4s будет заполнен раньше, чем 3d.).
Данный эффект наблюдается, например, для переходных металлов, в том числе для же-
леза.

n
4

3

2

1 1𝑠

2𝑠

3𝑠

4𝑠

2𝑝

3𝑝

3𝑑

Рис. 10.1: Заполнение уровней

Подобные эффекты приводят к существованию двух видов гелия. Гелий - система из двух
электронов. Для гелия в основном состоянии (парагелий) оба электрона находятся на
уровне 1s, причём их спины антипараллельны. Если возбудить такую систему, то один
из электронов перейдёт на уровень 2s. Тогда электрон на втором уровне может иметь как
сонаправленный, так и противонаправленный спин (по отношению к электрону на уровне
1s). При этом оказывается, что переход электрона из состояния 2s в 1s (при условии, что
его спин сонаправлен со спином на нижней оболочке) требует смены ориентации спина.
Однако, такой процесс не может протекать произвольно (переход запрещён). Атом с такой
конфигурацией называется ортогелием.
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Молекулы

Рассмотрим следующие молекулы: 𝐻2, 𝑁𝑎𝐶𝑙, 𝐾𝑟2. В случае 𝑁𝑎𝐶𝑙 атом натрия име-
ет один валентный электрон (так как это щелочной металл) и полностью заполненную
атомную оболочку. Взаимодействие данного электрона с ядром ослаблено, так как между
ним и ядром расположена полностью заполненная электронная оболочка. В атоме хло-
ра не хватает одного электрона до состояния полностью заполненной оболочки. Поэтому
между атомами возникает гетерополярная связь. Электрон натрия оттягивается хлором,
вследствие чего атом натрия притягивается к хлору.
В случае атома 𝐻2 возникает гомополярная связь (оба атома равноправны).
В случае 𝐾𝑟2 возникает ван-дер-ваальсова связь. У атома криптона оболочки полностью
заполнены, поэтому взаимодействие маловероятно. Однако, при сближении двух атомов
произойдёт поляризация, вследствие чего возникнет притяжение. Для образования дан-
ной связи нужнынизкие температуры, так как любые тепловые эффекты разрушают связь.
Энергия этой связи очень мала.

Гетерополярная связь

Рассмотрим гетерополярную связь. Имеем две потенциальные ямы, соответствующие
атому натрия (яма с электроном) и атому хлора (пустая яма). Ямы начинают сближаться.

Na Cl

Рис. 10.2: Иллюстрация к примеру образования гетерополярной связи

В результате получим систему, состоящую из ямы шириной a, барьера шириной b и ещё
одной ямы шириной a (см. Рис. 10.3).

Рассмотрим, какие возможны состояния электрона в такой яме. Разделим простран-
ство на три области (см. Рис. 10.3). Будем считать, что энергия электрона 𝐸 < 𝑈0.
Введём:

𝑘2 =
2𝑚

ℏ2
𝐸 (10.11)

𝜘2 =
2𝑚

ℏ2
(𝑈0 − 𝐸) (10.12)

Тогда решение в первой области будет иметь вид:

𝜓I = 𝐴1𝑠𝑖𝑛𝑘𝑥 (10.13)

99



Введение в квантовую физику
Савельев-Трофимов Андрей Борисович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

(здесь было учтено, что в нуле волновая функция обращается в ноль, вследствие чего фаза
равна нулю).
В третьей области (учтём, что в точке 2𝑎 + 𝑏 функция должна обращаться в ноль).

U

∞

xa 𝑎 + 𝑏

∞

I II III

𝑈0

E

Рис. 10.3: Модель ямы при образовании гетерополярной связи

𝜓III = 𝐴3𝑠𝑖𝑛
(
𝑘(2𝑎 + 𝑏 − 𝑥)) (10.14)

для второй области формально запишем:

𝜓II = 𝐶2𝑒
−𝜘𝑏 + 𝐷2𝑒

𝜘𝑏 (10.15)

Рассмотрим граничные условия в точках a и 𝑎+ 𝑏 (непрерывность и гладкость функции):

𝜓I(𝑎) = 𝜓II(𝑎) (10.16)

𝜓′
I(𝑎) = 𝜓′

II(𝑎) (10.17)

𝜓II(𝑎 + 𝑏) = 𝜓III(𝑎 + 𝑏) (10.18)

𝜓′
II(𝑎 + 𝑏) = 𝜓′

III(𝑎 + 𝑏) (10.19)

Из полученной системы четырёх уравнений можно исключить коэффициенты 𝐶2 и 𝐷2 и
получить уравнения, в которых будут только коэффициенты 𝐴1 и 𝐴3 (решение во второй
области нас не интересует). Полученные уравнения имеют вид:(

𝜘𝑐𝑡𝑔𝜘𝑎 + 𝑘
)
𝐴1𝑒

𝑘𝑏 = −
(
− 𝜘𝑐𝑡𝑔𝜘𝑎 − 𝑘

)
𝐴3 (10.20)(

− 𝜘𝑐𝑡𝑔𝜘𝑎 − 𝑘
)
𝐴1𝑒

−𝑘𝑏 =
(
𝜘𝑐𝑡𝑔𝜘𝑎 + 𝑘

)
𝐴3 (10.21)

Получили систему из двух уравнений (10.20) и (10.21) относительно 𝐴1 и 𝐴3. Чтобы дан-
ная система имела нетривиальное решение, необходимо, чтобы её детерминант был равен
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нулю. Отсюда можно получить

𝜘𝑐𝑡𝑔𝜘𝑎 + 𝑘 = ±𝑒−𝑘𝑏
(
𝜘𝑐𝑡𝑔𝜘𝑎 − 𝑘

)
(10.22)

b - расстояние между двумя ямами. Рассмотрим случай 𝑏 −→ ∞ (устремляя расстояние
между ямами, получаем яму конечной глубины). Тогда 𝑒−𝑘𝑏 → 0 и тем самым получаем
уравнение для ямы конечно глубины.
В случае 𝑏 ≠ 0 имеем два решения (так как в правой части уравнения стоит ±). Это озна-
чает, что существует два значения энергии, которые может иметь электрон (так как k и 𝜘
есть функции энергии). При этом невозмущённая энергия получается, когда 𝑏 → ∞ (од-
на яма). Тогда правую часть уравнения (10.22) можно рассматривать как поправку. Тогда
данное уравнение можно решить методом последовательных приближений. При этом по-
лучится две ветви решения, то есть при сближении двух ям уровень расщепляется.
Пусть решение уравнения (10.22) получено (получим энергию,при которой выполняется
уравнение). Тогда можно решить систему (10.20)-(10.21) и получить коэффициенты 𝐴1
и 𝐴3. Тогда можно получить (решения, соответствующие определённому знаку в (10.22)
обозначаются верхним индексом + или −), что

𝐴−3 = 𝐴−1 (10.23)

𝐴+3 = −𝐴+1 (10.24)

Таким образом, в случае знака минус в (10.20) получаем симметричное решение (если
решение в левой яме выглядит определённым образом, то решение в правой яме будет
симметрично относительно середины барьера (см. пример на Рис. 10.4)).

U

xa 𝑎 + 𝑏

Рис. 10.4: Пример симметричного решения

В случае же знака минус в (10.20) решение будет антисимметрично (см. пример на
Рис. 10.5)).
Более того, поправки к энергии будут таковы, что один уровень сдвинется вверх от ис-
ходного состояния, а другой - вниз. При этом для симметричной функции (10.23) зависи-
мость энергии уровня от расстояния между ямами будет таковой, что при сближении двух
систем абсолютное значение энергии увеличивается. Для антисимметричного решения
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U

xa 𝑎 + 𝑏

Рис. 10.5: Пример антисимметричного решения

(10.24) в зависимости возникнет небольшая яма (локальный минимум). Причём расстоя-
ние, на котором возникнет этот минимум, будет равно размеру молекулы. Если глубина
этой ямы больше энергии столкновения с другими молекулами, то система, попав в такое
состояние, в нём и остаётся. Таким образом, указанная яма соответствует связанному со-
стоянию (то есть образованию молекулы).

E

b

симметричное решение

анттисимметричное решение

Рис. 10.6: Зависимость уровня энергии от расстояния между ямами

Гомополярная связь

Рассмотрим образование гомополярной связи для молекулы водорода. Запишем по-
тенциал

𝑈 = 𝑈𝑎 +𝑈𝑏 +𝑈
(𝑒𝑐)
𝑎𝑏 +𝑈

(𝑒𝑎)
𝑎𝑏 +𝑈

(𝑒𝑎)
𝑏𝑎 (10.25)

где 𝑈𝑖, 𝑖 = 𝑎, 𝑏 - кулоновская энергия для одного атома водорода, 𝑈(𝑒𝑒)
𝑎𝑏 - потенциальная

(кулоновская) энергия взаимодействия электронов между собой, 𝑈(𝑒𝑎)
𝑎𝑏 - потенциальная

энергия взаимодействия электрона атома a с протоном атома b, 𝑈(𝑒𝑎)
𝑏𝑎 - энергия взаимо-

действия электрона атома b с протоном атома a.
Для уравненияШрёдингера с таким потенциалом нет точного решения. Когда две кванто-
вые системы (два электрона) начинают сближаться, между нами начинается взаимодей-
ствие и принцип Паули работает для двух атомов в целом. В частности это означает, что
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электроны не могут находиться в одном и том же квантовом состоянии молекулы. Спины
электронов могут быть сонаправлены или противоположно направлены, что будет соот-
вествовать двум разным энергиям взаимодействия атомов. Если посчитать энергии взаи-
модействия, получим, что в случае противоположно направленных спинов система будет
обладать локальным минимумом, который будет соответствовать образованию молекулы
водорода. В случае сонаправленных спинов существует только разлетное состояние мо-
лекулы (минимума нет, атомам энергетически выгодно разлететься на бесконечное рас-
стояние).
Можно показать, что энергию уровня можно представить в виде

𝐸 = 𝐸0 +∆𝐸± +∆𝐸0 (10.26)

где 𝐸0 - энергия, которая присутствовала исходно в атоме, ∆𝐸± - поправка, связанная с
симметричным и антисимметричным взаимодействием ∆𝐸0 - поправка, связанная с об-
менным взаимодействием.
В поправку, связанную с обменным взаимодействием входит интеграл от совместной
плотности вероятности двух электронов. Если электроны не взаимодействуют, то их вол-
новые функции не пересекаются в пространстве и интеграл, указанный выше, равен нулю.
Если же волновые функции пересекаются, то интеграл отличен от нуля. Таким образом,
возникает некоторое квантово-механическое взаимодействие систем.

Энергетическая структура молекул

Пусть существует некоторая молекула из двух атомов. Значит, потенциал взаимодей-
ствия имеет локальный минимум:

Рис. 10.7: Потенциал взаимодействия

При увеличении расстояния между атомами возникнет возвращающая сила, равная
градиенту потенциала.
Часть ямы вблизи дна можно аппроксимировать параболой 𝑈 = 𝑘𝑥2

2 . Тогда уравнение
Шрёдингера в точке минимума потенциала станет колебательным уравнением (так как
возвращающая сила есть сила Гука 𝐹 = −𝑘𝑥).
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Таким образом, молекулу можно рассматривать как два атома, соединённых пружинкой.
В квантовой физике уравнение вида (10.27), дающее гармонические решения, называется
уравнением квантового гармонического осциллятора.

𝜓′′ + 𝑘2𝜓 = 0 (10.27)

Это уравнение имеет точное решение (в специальных функциях). При этом спектр соб-
ственных значений оператора Гамильтона имеет вид

𝐸𝑛 = ℏ

√
𝑘

𝑚
(𝑛 + 1/2) 𝑛 > 0 (10.28)

Всё, описанное выше можно переопределить для молекул из большого числа атомов.
Рассмотрим другую связь между атомами. Если представить, что атомы в молекуле связа-
ныжёстким стержнем, а не пружинкой, то для рассматриваемой двухатомной системы по-
явятся две степени свободы (вращательные) - появляются две оси, вокруг которых может
происходить вращение. Для таких вращений можно записать оператор квадрата момента
импульса (где j -новое квантовое число):

𝑀2 = ℏ2 𝑗( 𝑗 + 1) (10.29)

Заметим, что электронная энергия пропорциональна корню из 𝑚𝑒:

𝐸𝑒 ∝ (
√
𝑚𝑒)

−1 (10.30)

Энергия колебаний
𝐸𝑜𝑠𝑐 ∝ (

√
𝑚𝑝)

−1 (10.31)

Вращательная энергия:
𝐸𝑒 ∝ 𝑚𝑒−1 (10.32)

Тогда можно получить соотношение между энергиями. Энергия (10.32) меньше (10.31)
примерно в

√
𝑚𝑝

𝑚𝑒
раз. Вращательная энергия ещё меньше. Это приводит к тому, что для

двухатомной молекулы спектр состояний электрона имеет следующий вид. Есть систе-
ма атомных уровней. Для каждого атомного уровня есть система колебательных уровней
(они эквидистантны). Каждый колебательный уровень имеет свою вращательную струк-
туру.
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Лекция 11. Бозоны и фермионы.

Молекулы

Рассмотрение новых степеней свободы (в сравнении с атомом) позволяет упростить
решение задачи. В новой системе (в случае двухатомной молекулы) сохраняются три по-
ступательные степени свободы и основная структура электронов в атоме, появляются две
степени свободы, связанные с вращением и одна степень свободы, связанная с колебания-
ми. Новые степени свободыможно рассматривать как ротатор и осциллятор соответствен-
но. В предыдущей лекции были указаны формулы для квантовых ротатора и осциллятора.
При этом колебательный спектр является эквидистантным, вращательный спектр эквиди-
стантным не является, однако любое его расстояние между уровнями меньше, чем для ко-
лебательного спектра. Таким образом, структуру уровней можно представить следующим
образом: некоторый электронный уровень, который характеризует состояние электрона в
атоме имеет структуру эквидистантно расположенных колебательных уровней, каждый
из колебательных уровней имеет вращательную структуру:

Рис. 11.1: Структура уровней двухатомной молекулы

Выясним, чему равна теплоёмкость двухатомного газа. Согласно классической моле-
кулярной физике, чтобы посчитать теплоёмкость, нужно посчитать число степеней сво-
боды. Тогда (по теореме о равнораспределении энергии по степеням свободы) получаем,
что у двухатомной молекулы есть 6 степеней свободы, соответственно, теплоёмкость бу-
дет 6𝑘

2 = 3𝑘 .
Однако, экспериментально было доказано, что теплоёмкость водорода при комнатной
температуре равна 5

2 𝑘 , а при низких температурах -
3
2 𝑘 .

Рассмотрим случай комнатной температуры: 𝑇 ' 300𝐾 , что в электронвольтах ∼ 0.03

эВ. Данная величина много меньше расстояния между колебательными уровнями. Со-
ответственно, если система находится в некотором состоянии, то температура слишком
мала, чтобы возбудилось следующее колебательное состояние. С точки зрения квантовой
физики данный эффект называется вымораживанием степени свободы. При этом вра-
щательные степени свободы остаются. Однако при понижении температуры, то величина
температуры в эВ много меньше вращательного расщепления уровней (вымораживаются
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ещё две степени свободы).

Ансамбль квантовых частиц

Рассмотрим ансамбль квантовых частиц - большое число квантовых частиц, которые
между собой не взаимодействуют (с точки зрения классической физики), но при этом
находятся достаточно близко, чтобы между ними возникли квантовые корреляции. Это
означает, что характерный размер волновой функции частиц должен быть сравним с рас-
стоянием между частицами (интеграл перекрытия не равен нулю).
Для описания ансамблей используются различные распределения.
Для кинетической энергии существует распределение Максвелла. Тогда число частиц на
единичный интервал по импульсу:

𝑑𝑁𝑚 = 𝐴𝑒−
𝐸
𝑘𝑇 𝑑 ®𝑝 (11.1)

Больцмановское распределение для потенциальной энергии:

𝑑𝑁𝐵 = 𝐴𝑒
𝐸
𝑘𝑇 𝑑®𝑟 (11.2)

Максвелловское распределение - наиболее вероятное распределение. Одним из ключе-
вых предположений, позволяющих получить распределение, является различимость ча-
стиц. В квантовой физике данное предположение использовать нельзя. Вывод квантовых
распределений отличается от классических и зависит от того, какие квантовые частицы
рассматриваются. Рассмотрим вывод распределения для безмассовых бозонов (фотоны).
Посчитаем, сколько состояний приходится на единичный интервал импульсов или энер-
гий. Для этого рассмотрим ящик с зеркальными стенками (с размерами A,B и C):

z

x

y

A

B

C

Рис. 11.2: Иллюстрация к расчёту

Волновой функций фотона является стоячая электромагнитная волна с узлами на всех
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поверхностях:
𝜓(𝑥, 𝑦, 𝑧) =

∑
𝐴𝑛𝑚𝑙𝑠𝑖𝑛(𝑘𝑥𝑛𝑥)𝑠𝑖𝑛(𝑘𝑦𝑚𝑦)𝑠𝑖𝑛(𝑘𝑧𝑙𝑧) (11.3)

При этом
𝜔𝑐 = 𝑘𝑛𝑚𝑙 =

√
𝑘2𝑥𝑛 + 𝑘2𝑦𝑚 + 𝑘2𝑧𝑙 (11.4)

На левой плоскости ящика (плоскость Oyz) узлы образуются автоматически. Чтобы узел
образовался и на правой плоскости, необходимо выполнение условия:

𝑘𝑥𝑛𝐴 = 𝜋𝑛 (11.5)

Отсюда получаем условия формирования стоячей волны:

𝑘𝑥𝑛 =
𝜋

𝐴
𝑛 𝑘𝑦𝑚 =

𝜋

𝐵
𝑚 𝑘𝑧𝑙 =

𝜋

𝐶
𝑙 (11.6)

Энергия фотона равна
𝐸 = 𝑝𝑐 = ℏ𝑘𝑐 (11.7)

Из формул (11.4), (11.6) и (11.7) можно получить формулу для энергии.
Таким образом, мы перешли в пространство волновых векторов. Рассмотрим полное чис-
ло собственных состояний для энергий 𝐸 < 𝐸0. 𝐸0 соответствует k, поэтому в простран-
стве волновых векторов 𝐸0 соответствует сфере:

𝑘𝑥

𝑘𝑦

𝑘𝑧

Рис. 11.3: Сфера в пространстве волновых векторов

Рассмотрим одну восьмую сферы (см. Рис. 11.4).

Число узлов (см. Рис. 11.4) будет равно числу состояний фотона с энергией 𝐸 < 𝐸0.
Тогда число состояний равно отношению объёма одной восьмой сферы к объёму, занима-
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емому одним состоянием. Так как сетка прямоугольная, объём одного состояния равен:

𝑉 (1) =
𝜋

𝐴
· 𝜋
𝐵
· 𝜋
𝐶

=
𝜋3

𝑉
(11.8)

где V - полный объём зеркального ящика.

𝜋
𝐴

2𝜋
𝐴

3𝜋
𝐴 𝑘𝑥

𝑘𝑦

2𝜋
𝐵

𝜋
𝐵

Рис. 11.4: Иллюстрация к расчёту

Таким образом, число состояний фотона с энергией 𝐸 < 𝐸0

𝑁(𝐸0) =
𝑉1/8

𝜋3/𝑉
=

1
8
4
3𝜋ℏ

3𝑘30
𝜋3

𝑉 =
1

6𝜋2
ℏ3𝑘30𝑉 (11.9)

Введём величину, являющуюся объёмом в полном (6-мерном) пространстве. Она равна
произведению в координатном пространстве на объём в пространстве импульсов:

Γ0 = 𝑉 · 4
3
𝜋ℏ3𝑘30 (11.10)

Тогда получим
𝑁(𝐸0) =

Γ0

(2𝜋ℏ)3
(11.11)

Таким образом, число состояний с энергией 𝐸 < 𝐸0 равно фазовому объёму системы
в шестимерном пространстве, разделённому на объём (в :-мерном пространстве) одного
состояния ((2𝜋ℏ)3).
Нужно учесть, что каждое состояние может быть вырожденным. Тогда, в случае фотонов
к полученной формуле нужно добавить множитель 2 (две проекции спина). Для некоторой
системы вообще говоря:

𝑁(𝐸0) =
Γ0

(2𝜋ℏ)3
(2𝐽 + 1) (11.12)

Посчитаем число состояний на единичный интервал энергии. Для данной энергии число
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состояний на единичный интервал энергии есть функци:

𝑔(𝐸)𝑑𝐸 =
(
𝑁(𝐸 + 𝑑𝐸) − 𝑁(𝐸)

)
=
𝑑𝑁(𝐸)

𝑑𝐸
𝑑𝐸 (11.13)

Преобразуем:
𝑑𝑁

𝑑𝐸
𝑑𝐸 =

𝑑𝑝

𝑑𝐸

𝑑𝑁

𝑑𝑝
𝑑𝐸 = (2𝐽 + 1)

4𝜋𝑝2𝑉

(2𝜋ℏ)3
𝑑𝑝

𝑑𝐸
𝑑𝐸 (11.14)

Заметим, что 4𝜋𝑝2𝑉𝑑𝑝 есть площадь шарового слоя (толщиной dp) в 6-мерном простран-
стве.
Таким образом,

𝑔(𝐸)𝑑𝐸 = (2𝐽 + 1)
1

(2𝜋ℏ)3
𝑑Γ

𝑑𝐸
𝑑𝐸 (11.15)

Величина g(E) называется статистическим весом состояния.
Данную величину можно посчитать как для фотона, так и для любой нерелятивистской
частицы массы m, для которой 𝑝 =

√
2𝑚𝐸 (подставив в 𝑑𝑝

𝑑𝐸 ).
Данная формула (11.15) справедлива для любой системы квантовых частиц, хотя выводи-
лась для фотона.

Распределения частиц по состояниям

Посчитаем, сколько частиц приходится на каждое состояние. Тогда получим распре-
деление частиц по энергиям (квантовый аналог распределения Максвелла).
Пусть есть 𝑛𝑖 частиц и 𝑔𝑖 возможных состояний. Найдём максимально вероятное распре-
деление этих частиц по данным состояниям, учитывая, что частицы неразличимы.
𝑛𝑖 частиц можно распределить по 𝑔𝑖 состояниям 𝐶𝑛𝑖𝑔𝑖 способами. Все состояния независи-
мы, поэтому полная вероятность равна произведению:

𝑝 = Π𝐶𝑛𝑖𝑔𝑖 (11.16)

Наиболее вероятное распределение соответствует максимальному значению p.

Дальнейшее рассмотрение зависит от типа частиц. Рассмотрим фотоны. Фотон - без-
массовая частица, поэтому нужно наложить дополнительное условие: сумма энергий всех
частиц есть некоторая константа: ∑

𝑛𝑖𝜀𝑖 = 𝑐𝑜𝑛𝑠𝑡 (11.17)

где 𝜀𝑖 - энергия фотонов в i-м состоянии.
Таким образом, нужно взять производную от (11.16) от вероятности и, учитывая (11.17),
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получить:
𝑛𝑖 = 𝑔𝑖

1

𝑒𝐸𝑖/𝜃 − 1
(11.18)

где 𝜃 - некоторая константа.
Рассмотрим переход к классической теории - случай больших энергий. Тогда экспонента
𝑒𝐸𝑖/𝜃 много больше единицы и можно получить стандартное распределение:

𝑛𝑖
𝑔𝑖

= 𝑒−𝐸𝑖/𝜃 (11.19)

При переходе к классическому случаю формула должна стать классической. Это возмож-
но, если 𝜃 = 𝑘𝑇 .
Таким образом, распределение для фотонов имеет вид:

𝑛(𝐸) = 𝑔(𝐸)
1

𝑒𝐸/𝑘𝑇 − 1
(11.20)

Из полученной формулы можно получить объёмную спектральную плотность мощности
излучения абсолютно чёрного тела (формулу Планка):

𝑢𝜔𝑉𝑑𝜔 = 𝑛(𝐸)𝐸𝑑𝐸 =
ℏ𝜔3

𝜋2𝑐3
𝑑𝜔

𝑒
ℏ𝜔
𝑘𝑇 − 1

(11.21)

Если (11.21) проинтегрировать, то можно получить закон Стефана-Больцмана.

Рассмотрим бозоны в общем случае. Для всех бозонов (кроме фотона) 𝑚 ≠ 0, поэтому
помимо условия (11.17) (сохранение энергии) можно наложить условие сохранения числа
частиц.
С учётом данного условия можно получить (без доказательства):

𝑛(𝐸)

𝑔(𝐸)
=

1

𝑒
𝐸−𝜇
𝑘𝑇 − 1

(11.22)

где 𝜇 - химический потенциал.
Определим химический потенциал. Полное число частиц фиксировано, поэтому полный
интеграл от полученного распределение (11.22) по всем энергиям есть полное число ча-
стиц. При взятии интеграла по энергии от (11.22) получим уравнение, в котором един-
ственный параметр - 𝜇. То есть химический потенциал полностью определяется полным
числом частиц в системе. В случае фотонов 𝜇 = 0.

Рассмотрим фермионы. Фермионы - частицы с полуцелым спином; для фермионов
выполняется принцип Паули. Таким образом, к условиям неизменности числа частиц и
энергии добавляется условие того, что в каждом состоянии может находится не более
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одной частицы. Учёт нового условия изменяет формулу:

𝑛(𝐸)

𝑔(𝐸)
=

1

𝑒
𝐸−𝜇
𝑘𝑇 + 1

(11.23)

Заметим, что для бозонов 𝑒
𝐸−𝜇
𝑘𝑇 − 1 > 0 (так как число частиц не может быть отрицатель-

ным), то есть 𝑒
𝐸−𝜇
𝑘𝑇 > 1. Таким образом, для бозонов 𝜇 < 0.

Аналогично можно показать, что химический потенциал для фермионов 𝜇 > 0.

Распределение числа частиц по энергии для бозонов (11.22) называется распределе-
нием Бозе-Эйнштейна.
Распределение для фермионов (11.23) называется распределением Ферми-Дирака.
Для фермионов 𝜇 называют энергией Ферми и обозначают 𝜀𝐹 .

Рассмотрим переход к классической теории. Тогда, считая, что энергии большие, в
обеих формулах (11.22) и (11.23) можно пренебречь единицей. Значит, оба распределения
стремятся к одному и тому же распределению вида

𝐴𝑒
−(𝐸−𝜇)

𝑘𝑇 = 𝐴𝑒
𝜇
𝑘𝑇 𝑒

−𝐸
𝑘𝑇 (11.24)

Данное распределение является распределениемМаксвелла с константой вида 𝐴𝑒
𝜇
𝑘𝑇 . Что-

бы определить данную константу, необходимо взять интеграл по всем энергиям и прирав-
нять его числу частиц в системе.

Распределение Ферми-Дирака и Бозе-Эйнштейна

Рассмотрим распределение Ферми-Дирака:

E𝜇

1

1/2
∼ 𝑘𝑇

Рис. 11.5: Распределение Ферми-Дирака

Вероятность попадания частицы в состояние с 𝐸 = 𝜇 равна 1/2.
Можно показать, что величина перехода (см. Рис. 11.5) равна kT. В частности, при 𝑇 = 0
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распределение вырождается в ступеньку. Это означает, что все состояния с энергией 𝐸 <
𝜇 заняты, а все состояния с энергией 𝐸 > 𝜇 пустые.

В случае распределения Бозе-Эйнштейна химический потенциал отрицателен, а отри-
цательные энергии отсутствуют, поэтому распределение выглядит следующим образом:

E𝜇

Рис. 11.6: Распределение Бозе-Эйнштейна

При уменьшении температуры распределение приближается к нулевой энергии.

Конденсат Бозе — Эйнштейна

Для бозонов полное число частиц равно

𝑁 =
∑

𝑔𝑖
1

𝑒
𝐸−𝜇
𝑘𝑇 − 1

(11.25)

Исследуем поведение полного числа частиц при температуре, стремящейся к нулю.Перейдём
от суммы к интегралам по энергиям. Тогда получим:

𝑁 = (2𝐽 + 1)
𝑚3/2

√
2𝜋2ℏ3

𝑉

∞∫
0

√
𝐸𝑑𝐸

𝑒
𝐸−𝜇
𝑘𝑇 − 1

(11.26)

Учтём, что 𝜇 < 0. Тогда интеграл в формуле (11.26) можно оценить сверху:

𝐼 =

∞∫
0

√
𝐸𝑑𝐸

𝑒
𝐸−𝜇
𝑘𝑇 − 1

6

∞∫
0

√
𝐸𝑑𝐸

𝑒
𝐸
𝑘𝑇 − 1

(11.27)

Введём параметр 𝑥 = 𝐸
𝑘𝑇 . Тогда (11.27) можно переписать в виде:

𝐼 6 (𝑘𝑇)3/2
∞∫

0

√
𝑥𝑑𝑥

𝑒𝑥 − 1
(11.28)
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Известно, что интеграл
∞∫
0

√
𝑥𝑑𝑥

𝑒𝑥−1 ≈ 2.3.

Таким образом, интеграл I стремится к нулю при стремлении к нулю температуры. От-
сюда получаем, что полное число частиц системы стремится к нулю при 𝑇 → 0 (так как
интеграл I входит в формулу (11.26)). Однако это противоречит введённому ранее усло-
вию.
Эйнштейн объяснил данное явление как формирование нового квантового состояния -
состояния, в котором энергия частицы 𝐸 ≈ 0 и много меньше, чем энергия отдельной
частицы в ансамбле. Таким образом, квантовое взаимодействие между отдельными ча-
стицами ансамбля при 𝑇 → 0 становится настолько сильным, что уже нельзя говорить
об отдельных элементах данного ансамбля. Все частицы собираются в области энергии
вблизи нуля и образуют единую квантовую систему (Бозе-Эйнштейновский конденсат).
При этом наблюдается высокая локализация системы в пространстве.
Бозе — Эйнштейновский конденсат следует рассматривать как одну частицу (в данном
случае одна волновая функция описывает все частицы).

Эффекты сверхпроводимости и сверхтекучести

Рассмотрим атом гелия в основном состоянии. Два электрона в атоме гелия будут
иметь спины 𝑠 = 1/2 и 𝑠 = −1/2. То есть полный спин равен нулю. Таким образом,
система из двух электронов является бозоном. Данный факт позволяет объяснить эффект
сверхпроводимости.

Явление сверхпроводимости заключается в скачкообразном падании сопротивления
металла (электроны перестают взаимодействовать с решеткой) при его охлаждении до
очень низкой температуры.
Данный эффект объясняется следующим образом. Пусть есть два электрона, движущи-
еся в кристаллической решётке металла. Они находятся на небольшом расстоянии друг
от друга (несколько десятков ангстрем). За счёт наличия решётки электроны начинают
взаимодействовать. При высоких температурах тепловые колебания решётки разрушают
взаимодействие электронов и их можно рассматривать как независимые квантовые части-
цы (то есть их спины могут быть любыми). При низкой температуре образуется куперов-
ская пара - два коррелированных между собой электрона. Тогда можно ввести общий для
электронов спин, равный нулю или единице. Таким образом, куперовские пары являются
бозонами, которые при низких температурах могут испытывать конденсацию. В состоя-
нии Бозе-Эйнштейновского конденсата система из электронов протекает через металл, не
взаимодействуя с ним.

Аналогично объясняется явление сверхтекучести.
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Лекция 12. Теория возмущений.

Теория возмущений

Для стационарных и нестационарных уравнений Шрёдингера в большинстве случаев
нет точного решения (даже для простейших систем). Однако, существуют подходы при-
ближённого решения уравнений. Один из таких методов - теория возмущений.
Рассмотрим гамильтониан невозмущённой системы. Для него можно найти некоторое ре-
шение (некоторый набор ортонормированных волновых функций). Для стационарного
случая можно записать:

𝐻0𝜓
(0)
𝑛 = 𝐸

(0)
𝑛 𝜓

(0)
𝑛 (12.1)

Пусть на систему, которая описывается гамильтонианом 𝐻0 оказывается воздействие,
причём полный гамильтониан можно представить в виде суммы:

𝐻 = 𝐻0 +𝑉 (12.2)

где 𝑉 - возмущение.
Пусть система невырождена, то есть уровни энергии невырождены и каждой энергии 𝐸(0)

𝑛

соответствует функция 𝜓(0)
𝑛 .

Предположим, что возмущение 𝑉 мало (в противном случае волновые функции систе-
мы не могут быть похожи на волновые функции невозмущённой системы). Тогда можно
утверждать, что при

𝑉 → 0 ⇒ 𝜓𝑛 → 𝜓
(0)
𝑛 (12.3)

где 𝜓𝑛 - решение полной задачи:
𝐻𝜓𝑛 = 𝐸𝑛𝜓𝑛 (12.4)

Представим решение в виде линейной комбинации исходных волновых функций:

𝜓𝑚 =
∑

𝐶𝑛𝜓
(0)
𝑛 (12.5)

Подставим данное разложение в (12.4) и учтём, что для каждой из функций 𝜓(0)
𝑛 выпол-

няется уравнение Шрёдингер (12.1):∑
𝑛

(
𝐸𝑚 − 𝐻0

)
𝐶𝑛𝜓

(0)
𝑛 =

∑
𝑛

𝑉𝐶𝑛𝜓
(0)
𝑛

���𝜓(0)∗
𝑘 (12.6)

Домножим полученное уравнение на 𝜓(0)
𝑘 ∗ и проинтегрируем по области определения за-

дачи левую и правую часть.
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Учтём, что 𝜓(0)
𝑛 - набор ортонормированных функций. Тогда получим

𝐶𝑘

(
𝐸𝑚 − 𝐸(0)

𝑘

)
=

∑
𝑛

𝑉𝑘𝑛𝐶𝑛 (12.7)

где 𝑉𝑘𝑛 - матричный элемент оператора 𝑉 :

𝑉𝑘𝑛 =

∫
𝜓
(0)∗

𝑘 𝑉𝜓
(0)
𝑛 𝑑𝑉 (12.8)

Таким образом, мы получили уравнение (12.7) относительно𝐶𝑛 и𝐶𝑘 . Задача о нахождении
волновой функции свелась к задаче о нахождении коэффициентов.
Распишем энергию уровня в виде:

𝐸𝑚 = 𝐸
(0)
𝑚 + 𝐸

(1)
𝑚 + 𝐸

(2)
𝑚 + ... (12.9)

где 𝐸(𝑖)
𝑚 - поправка i-го порядка малости.

Возмущение слабое, поэтому отличие энергии конечного состояния от энергии невозму-
щённого состояния (без возмущения) мало и описывается рядом.
Аналогично, для коэффициентов можно написать

𝐶𝑚 = 𝐶
(0)
𝑚 + 𝐶

(1)
𝑚 + .... (12.10)

Подставим данные разложения в уравнение (12.7), сгруппируем величины одного поряд-
ка малости и составим для каждого порядка малости своё уравнение. Так, для нулевого
порядка малости (здесь учтено, что величина𝑉𝑘𝑛 всегда хотя бы первого порядка малости)

𝐶
(0)
𝑘

(
𝐸
(0)
𝑚 − 𝐸(0)

𝑘

)
= 0 (12.11)

Отсюда следует:
𝐶
(0)
𝑘 = 𝛿𝑘𝑚 (12.12)

Уравнение для первого порядка малости:

𝐶
(0)
𝑘 𝐸

(1)
𝑚 + 𝐶

(1)
𝑘 𝐸

(0)
𝑚 − 𝐶(1)

𝑘 𝐸
(0)
𝑚 =

∑
𝑛

𝑉𝑘𝑛𝐶
(0)
𝑛 (12.13)

Подставим (12.12) в (12.13). Тогда получаем:

𝛿𝑘𝑚𝐸
(1)
𝑚 + 𝐶

(1)
𝑘

(
𝐸
(0)
𝑚 − 𝐸(0)

𝑘

)
= 𝑉𝑘𝑚 (12.14)

Рассмотрим два случая:
𝑘 = 𝑚 ⇒ 𝐸

(1)
𝑚 = 𝑉𝑘𝑚 (12.15)
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Таким образом, получили поправку к энергии системы в первом порядке теории возму-
щений.

𝑘 ≠ 𝑚 ⇒ 𝐶
(1)
𝑘 =

𝑉𝑘𝑚

𝐸
(0)
𝑚 − 𝐸(0)

𝑘

(12.16)

Запишем условие нормировки волновой функции:∫
|𝜓𝑚 |2𝑑𝑉 = 1 (12.17)

При этом нам известно разложение

𝜓𝑚 = 𝜓
(0)
𝑛 + 𝜓

(1)
𝑛 (12.18)

Подставим (12.18) в (12.17) и получим∫
|𝜓𝑚 |2𝑑𝑉 = 1 ' 1 + 𝐶

(1)
𝑚 + 𝐶

(1)∗

𝑚 (12.19)

Отсюда получим
𝐶
(1)
𝑚 = −𝐶(1)∗

𝑚 (12.20)

тогда коэффициенты должны быть чисто мнимыми:

𝑅𝑒𝐶
(1)
𝑚 = 0 (12.21)

Тогда у данной величины должна быть некоторая фаза, которая с точки зрения вероятно-
сти неважно, поэтому можно положить 0 = 𝐶

(1)
𝑚 = −𝐶(1)∗

𝑚 .
Таким образом, в первом приближении теории возмущений решение найдено (нашли ко-
эффициенты, значит, знаем и разложения функций и энергий). Полный вид волновой
функции в первом порядке теории возмущений:

𝜓
(1)
𝑚 =

∑
𝑛≠𝑚

𝑉𝑛𝑚

𝐸
(0)
𝑚 − 𝐸(0)

𝑛

𝜓
(0)
𝑛 (12.22)

Отсюда получаем, что такое разложение справедливо, если выполнено 𝑉𝑛𝑚

𝐸
(0)
𝑚 −𝐸(0)

𝑛

� 1 (так

как основная часть волной функции - первый член - равна 𝜓(0)
𝑛 ).

Таким образом, условие применимости разложения для теории возмущений:���𝑉𝑛𝑚 ��� � ���𝐸(0)
𝑚 − 𝐸(0)

𝑛

��� (12.23)

Однако, для широкого класса волновых функций первого приближения недостаточно (со-
ответствующие матричные элементы могут быть равны нулю).
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Аналогично можно получить поправки к энергии во втором порядке теории возмущений:

𝐸
(2)
𝑚 =

∑
𝑛≠𝑚

𝑉𝑚𝑛𝑉𝑛𝑚

𝐸
(0)
𝑚 − 𝐸(0)

𝑛

(12.24)

Атом водорода

Рассмотрим решение задачи для атома водорода с точки зрения теории возмущений.

1. Ранее мы считали, что электрон движется в центральном поле точечного кулонов-
ского центра. Однако на самом деле ядро не точечное, его размер конечен. Тогда
зависимость потенциала будет отличаться от кулоновского потенциала. На боль-
ших расстояниях потенциал будет совпадать с кулоновским, а в области порядка
размера ядра будет потенциал, создаваемый заряженным шариком. Например, если
представить ядро за заряженный металлический шарики, то потенциал будет иметь
вид:

𝑈 ∝ 1
𝑟

U

r

Рис. 12.1: Потенциал заряженного ядра

Таким образом, можно говорить о возмущении потенциала в области ядра. Тогда
реальный потенциал можно представить в виде разницы кулоновского потенциала
𝑈𝑘 и потенциала у ядра𝑈∗:

𝑈 = 𝑈𝑘 −𝑈∗

2. При предыдущем рассмотрениимыпренебрегали релятивистскими эффектами. Учтём
этот факт. Запишем энергию в виде:

𝐸 =
√
𝑝2𝑐2 + 𝑚2𝑐4 = 𝑚2𝑐4

√
1 +

𝑝2

𝑚2𝑐2
(12.25)

Полученное выражение можно разложить в ряд Тейлора, так как 𝑝2

𝑚2𝑐2
� 1.
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Вычтем из полной энергии энергию покоя, получим кинетическую энергию:

𝐸 − 𝑚𝑐2 = 𝐾 =
𝑝2

2𝑚
− 𝑝2/2𝑚

𝑚𝑐2
(12.26)

Из первого разложения в ряд получаем первую поправку к кинетической энергии -
𝑝2/2𝑚

𝑚𝑐2
.

Таким образом, можно записать:

𝐾 = 𝐾0 −
𝐾2
0

𝑚𝑐2

3. В атоме существует два угловых и два магнитных момента. Магнитные моменты
между собой взаимодействуют, при этом любое магнитное взаимодействие есть ре-
лятивистское взаимодействие. Поэтому появляется ещё одна поправка, связанная с
учётом 𝑙𝑠 взаимодействия (взаимодействие спинового момента атома с наведённым
магнитным полем, которое наведено угловым моментом).

Последние два эффекта ведут к возникновению тонкой структуры атома водорода.
Рассмотрим второй и третий пункты подробнее. Запишем полный гамильтониан системы:

𝐻 = 𝐾 +𝑈 = 𝐻0 −𝑉 (12.27)

где 𝑉 =
𝐾2
0

𝑚𝑐2
.

Значит, изменение энергии в первом порядке теории возмущений

∆𝐸 = 𝑉𝑚𝑛 =

∫
𝜓
(0)∗

𝑛 𝑉𝜓
(0)
𝑚 𝑑®𝑟 (12.28)

После вычисления интеграла получим:

∆𝐸𝑙 =
𝛼2𝑍2

𝑛
𝐸
(0)
𝑛𝑙

( 1

𝑙 + 1/2
− 3

4𝑛

)
(12.29)

Таким образом, учёт релятивистской поправки снимает вырождение по квантовому числу
𝑙.

Можно доказать, что магнитное поле, которое даст ядро (в системе отсчёта, связанной
с электроном) имеет вид:

𝐻 =
1

𝜀

[
®𝜀, ®𝑣

]
(12.30)

где 𝜀 - кулоновское поле, создаваемое атомом.
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Тогда матричный элемент будет определяться как

𝑉𝑛𝑚 = −
(
𝜇𝑠𝐻

)
(12.31)

где 𝜇𝑠 - магнитный момент, связанный со спином.
Таким образом, мы посчитали энергию взаимодействия спинового магнитного момента с
магнитным полем, наведённым кулоновским полем ядра, вращающимся вокруг электро-
на.
Тогда, посчитав два полученных вклада в энергию, получим:

∆𝐸 = −𝛼
2𝑍4𝑅

𝑛3

( 1

𝑗 + 1/2
− 3

4𝑛

)
(12.32)

Эта формула определят тонкую структуру атома.

Атом гелия

Воспользуемся теорией возмущений для решения задачи об атоме гелия. Однако сле-
дует отметить, что несмотря на фундаментальные результаты, которые будут получены,
вообще говоря теория возмущений не способна дать корректный ответ. Запишем гамиль-
тониан системы в виде:

𝐻 =
𝑝21
2𝑚0

+
𝑝22
2𝑚0

+𝑈(𝑟1) +𝑈(𝑟2) +𝑈(𝑟1 − 𝑟2) (12.33)

где 𝑝2𝑖
2𝑚0

- кинетическая энергия каждого из двух электронов,𝑈(𝑟𝑖) - потенциальная энергия
взаимодействия каждого из электронов с ядром,𝑈(𝑟1 − 𝑟2) - кулоновское взаимодействие
электронов между собой.
Сперва пренебрежем поправкой𝑈(𝑟1 − 𝑟2) и запишем уравнение

𝐻𝜓 = 𝐸𝜓 (12.34)

и подставим в уравнение Шрёдингера гамильтониан (без 𝑈(𝑟1 − 𝑟2)). Тогда можно полу-
чить разделение переменных (относительно 𝑟1 и 𝑟2). Это соответствует ситуации, в кото-
рой электроны движутся в кулоновском поле независимо друг от друга. Так как можно
произвести разделение переменных, то можно получить два независимых уравнения (так
как обе части полученного уравнения можно приравнять некоторой константе):

𝜆 =
(
.....

)
(𝑟1) =

(
.....

)
(𝑟2) (12.35)
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Таким образом, волновую функцию (в описанной ситуации) можно представить в виде (a
и b - электроны):

𝜓 = 𝜓𝑎(𝑟1)𝜓𝑏(𝑟2) (12.36)

Учтём, что волновая функция электрона имеет координатную и спиновую части (знак за-
висит от направления спина):

𝜓𝑎 = 𝜓𝑎(1)𝑆
±(1) (12.37)

𝜓𝑏 = 𝜓𝑏(2)𝑆
±(2) (12.38)

Для атома гелия есть несколько вариантов совместной волновой функции (возможные
комбинации спинов):

𝑆+(1) 𝑆+(2) (12.39)

𝑆+(1) 𝑆−(2) (12.40)

𝑆−(1) 𝑆+(2) (12.41)

𝑆−(1) 𝑆−(2) (12.42)

Однако, стоит учесть, что случаи (12.40) и (12.41) не соответствуют принципу неразли-
чимости частиц (при замене электронов местами мы будем знать, какой электрон каким
номером называется). Вместо них нужно построить функции типа:

𝑆+(1)𝑆−(2) ± 𝑆+(2)𝑆−(1) (12.43)

Для случаев (12.39) и (12.42) полный спин 𝑆 = 1, в (12.43) если стоит знак минус, то спин
равен нулю (− → 𝑆 = 0), если знак плюс, то спин равен единице (+ → 𝑆 = 1).
Таким образом, имеем четыре возможных варианта спиновой функции, из которых три -
триплетных состояния (𝑆 = 1) и один синглетный (𝑆 = 0). Триплетные состояния явля-
ются симметричными, синглетное - антисимметричным.
Построим полную антисимметричную волновую функцию:

𝜓(1, 2) =
(
𝜓𝑎(1)𝜓𝑏(2) + 𝜓𝑎(2)𝜓𝑏(1)

) (
𝑠𝑠 − 𝑠𝑠

)
(12.44)

𝜓(1, 2) =
(
𝜓𝑎(1)𝜓𝑏(2) − 𝜓𝑎(2)𝜓𝑏(1)

)
· (𝑆 = 1) (12.45)

(в (12.46) симметричная координатная функция умножается на антисимметричное состо-
яние, в (12.47) антисимметричная координатная функция умножается на одно из триплет-
ных состояний. Если умножать симметричные функции на симметричные (и наоборот),
то полученная функция не будет удовлетворять принципу Паули.)
Запишем возмущение:

𝑈(𝑟1 − 𝑟2) =
𝑒2

𝑟12
(12.46)

120



Введение в квантовую физику
Савельев-Трофимов Андрей Борисович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Тогда поправка в первом порядке теории возмущений:

𝐸
(1)
𝑚 =

∫
𝜓∗(1, 2) 𝑒

2

𝑟12
𝜓(1, 2)𝑑 ®𝑟1 ®𝑟2∫

𝜓∗(1, 2)𝜓(1, 2) ®𝑟1 ®𝑟2
(12.47)

Для любой волновой функции спиновая часть не зависит от r, поэтому она выносится из-
под знака интеграла (в числителе и знаменателе) и сокращается.
Распишем произведение:

𝜓∗(1, 2)𝜓(1, 2) = 𝜓𝑎(1)𝜓
∗
𝑏(2)𝜓𝑎(1)𝜓𝑏(2) + 𝜓𝑎(2)𝜓

∗
𝑏(1)𝜓𝑎(1)𝜓𝑏(2)±

±
(
𝜓∗
𝑎(1)𝜓

∗
𝑏(2)𝜓𝑎(2)𝜓𝑏(1) + 𝜓𝑎(1)𝜓𝑏(2)𝜓

∗
𝑎(2)𝜓

∗
𝑏(1)

)
(12.48)

Отметим, что 𝜓𝑎 и 𝜓𝑏 составляют ортонормированный базис, поэтому при интегрирова-
нии по пространству первые два члена дадут единицу, а последнее слагаемое (в больших
скобках) в силу ортонормированности даст символ Кронекера. Таким образом, интеграл
в знаменателе равен ∫

𝜓∗(1, 2)𝜓(1, 2) ®𝑟1 ®𝑟2 = 2 + 2𝛿𝑎𝑏 (12.49)

При вычислении интеграла в числителе тоже получим четыре интеграла, причём инте-
гралы будут попарно равны. Обозначим:∫

II =
∫

I = 𝐶 (12.50)∫
III =

∫
IV = 𝐴 (12.51)

где
∫
II - второй интеграл (и т.д).

Можно показать, что первые два интеграла
∫
I и

∫
II, где∫

I =
∫

𝜓𝑎(1)𝜓
∗
𝑏(2)

𝑒2

𝑟12
𝜓𝑎(1)𝜓𝑏(2) ®𝑟1 ®𝑟2

есть средняя кулоновская энергия взаимодействия двух облаков электронов.
Однако для интегралов

∫
III и

∫
IV нет классического аналога. Они представляют собой

некоторую дополнительную энергию, возникающая вследствие того, что нам неизвестно,
какой электрон где находится. В процессе взаимодействия конкретный электрон снача-
ла находится в состоянии a, потом перескакивает в состояние b. Появляется некоторая
дополнительная энергия, связанная с этим обменным взаимодействием. Описанная вели-
чина называется обменной энергией. Этот эффект квантово-механический (нет классиче-
ского аналога), он связан с тем, что электроны неразличимы и перескакивают из одного
состояния в другое.
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Таким образом, если
𝑎 ≠ 𝑏 ⇒ 𝐸(1) = 𝐶 ± 𝐴 (12.52)

𝑎 = 𝑏 ⇒ 𝐸(1) = 𝐶 = 𝐴 (12.53)

Энергия в первом порядке теории возмущений зависит от того, находятся ли электроны
одном и том же состоянии.
Если электроны находятся в разных состояниях, выполняется (12.52). Знаки ± в (12.52)
соответствуют разным величинам полного спинового момента двух электронов. Плюсу
соответствует три симметричных волновых функции (𝑆 = 1), а знаку минус - одна анти-
симметричная волновая функция (𝑆 = 0).
Если электроны находятся в одном и том же состоянии, то в силу принципа Паули, их
спины должны быть разными, то есть может быть только синглетное состояние.

Однако применение теории возмущений в данном случае приводит к противоречию.
Собственная кулоновская энергия в атоме водорода выражается формулой, аналогичной
формуле для А (вместо 𝑟12 в формуле присутствует r). Так как расстояние между элек-
троном и ядром и расстояние между электронами примерно одинаковы, интегралы C и A
оказываются порядка кулоновской энергии электрона в атоме водорода. Поэтому полу-
чаем, что сдвиг уровня порядка энергии самого уровня. Значит, в данной задаче теорию
возмущений применять нельзя.

Задачи теории возмущений

Рассмотрим некоторые задачи, которые можно решать с помощью теории возмуще-
ний.
Одна из них - задача о ангармоническом осцилляторе. Пусть потенциал взаимодействия
вблизи точки равновесия можно представить как

𝑈(𝑥) = 𝑈0 + 𝛼𝑥 + 𝛽𝑥2 + 𝛾𝑥3 + ... (12.54)

Первое слагаемое можно подложить𝑈0 = 0, так как ноль отсчёта потенциала можно вы-
брать произвольно.
Так как разложение происходит в точке равновесия, второе слагаемое 𝛼𝑥 = 0, так как
первая производная в точке равновесия должна быть равна нулю.
Слагаемое 𝛽𝑥2 даёт силу, пропорциональную смещению (сила Гука). Таким образом, пер-
вые три слагаемых разложения лают обычный гармонический потенциал. Слагаемые 𝛾𝑥3

и следующие называются ангармонизмом.
Считаем, что в нулевом приближении есть гармонический осциллятор. Зная решения для
гармонического осциллятора, можно посчитать поправки к энергии гармонического ос-
циллятора, связанные с его ангармонизмом.
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Решение с помощью теории возмущений используется и для рассмотрения молекул.
Если считать, что энергия электронов в атоме - это базовая волновая функция, то измене-
ние энергии электронов в молекуле можно учесть в рамках теории возмущений, считая,
что вращательные и колебательные степени свободы являются малыми поправками.
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Лекция 13. Релятивистская квантовая теория.

Уравнение Клейна — Гордона — Фока

Запишем уравнение Шрёдингера:

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻𝜓 (13.1)

Можно доказать, что для преобразования Галилея

𝑥′ = 𝑥 − 𝑣𝑡 (13.2)

𝑦′ = 𝑦 𝑧′ = 𝑧 𝑡′ = 𝑡 (13.3)

уравнение Шрёдингера инвариантно. Посмотрим, инвариантно ли уравнение Шрёдинге-
ра при преобразованиях Галилея:

𝑥′ =
𝑥 − 𝑣𝑡√
1 − 𝑣2

𝑐2

(13.4)

Оказывается, что в штрихованной системе координат уравнение примет другой вид (так
как уравнение Шрёдингера справедливо в нерелятивистском случае. Нельзя описывать
релятивистские эффекты в рамках уравнения Шрёдингера). Значит, необходимо другое
уравнение, описывающее релятивистский случай.
Введём оператор перемещения во времени (он имеет смысл изменения энергии системы):

𝐸 = 𝑖ℏ
𝜕

𝜕𝑡
(13.5)

Тогда уравнение Шрёдингера - закон изменения энергии.
В нерелятивистском случае энергия

𝐸 =
𝑝2

2𝑚
(13.6)

В релятивистском случае -
𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 (13.7)

Заменим E и p в указанном уравнении на соответствующие операторы. И воспользуемся
описанным выше подходом построения уравнения.
В результате получим уравнение для свободной частицы:

−ℏ2 𝜕
2𝜓

𝜕𝑡2
=

(
− 𝑐2ℏ2∇2 + 𝑚2

0𝑐
4
)
𝜓 (13.8)
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Можно доказать, что данное уравнение оказывается инвариантным относительно преоб-
разования Лоренца.
Полученное уравнение (13.8) носит название уравнения Клейна— Гордона—Фока. Оно
описывает волновую функцию релятивистской частицы.
Введём

𝑘2 =
𝑚0𝑐

4

ℏ2
(13.9)

Тогда (13.8) сводится к уравнению

∇2𝜓 − 1

𝑐2
𝜕2𝜓

𝜕𝑡2
− 𝑘20𝜓 = 0 (13.10)

Первые два слагаемых данного уравнения представляют собой уравнение Даламбера, тре-
тье слагаемое - инвариантный скаляр. Отсюда видно, почему уравнение является инвари-
антным относительно преобразований Лоренца.

Уравнение непрерывности и плотность вероятности для уравнения
Клейна — Гордона — Фока

Получим уравнение непрерывности для плотности вероятности. Для этого возьмём
комплексное сопряжение от обеих частей уравнения (13.10) и возьмём разность получен-
ного уравнения и уравнения (13.10), домноженного на 𝜓∗ слева. В результате получим

𝜓∗∇2𝜓 − 𝜓∇2𝜓∗ − 1

𝑐2

(
𝜓∗ 𝜕

2𝜓

𝜕𝑡2
− 𝜓𝜕

2𝜓∗

𝜕𝑡2

)
= 0 (13.11)

Обозначим
𝜌 =

𝑖𝑒ℏ
2𝑚0𝑐2

(
𝜓∗ 𝜕𝜓

𝜕𝑡
− 𝜓𝜕𝜓

∗

𝜕𝑡

)
(13.12)

Тогда
2𝑚0

𝑖𝑒ℏ
𝑑

𝑑𝑡
𝜌 =

1

𝑐2

(
𝜓∗ 𝜕

2𝜓

𝜕𝑡2
− 𝜓𝜕

2𝜓∗

𝜕𝑡2

)
(13.13)

Обозначим
𝑗 =

𝑖𝑒ℏ
2𝑚0

(
𝜓∇𝜓∗ − 𝜓∗∇𝜓

)
(13.14)

Тогда получаем уравнение непрерывности

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝑗 = 0 (13.15)

Заметим, что по определению 𝜌 - плотность вероятности. Поэтому эта величина должна
быть положительной. Однако уравнение Клейна - Гордона - Фока— уравнение в частных
производных второго порядка, поэтому выбором граничных условий разность в опреде-
лении (13.12) можно сделать любой (в начальный момент времени). То есть плотность
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вероятности может быть отрицательной.

Убедимся, что (13.12) сводится к нерелятивистскому выражению, вытекающему из
уравнения Шрёдингера. Для этого разложим энергию в ряд Тейлора:

𝐸 =
𝑚0𝑐

2√
1 − 𝑣2

𝑐2

= 𝑚0𝑐
2
(
1 +

𝑣2

𝑚𝑐2

)
(13.16)

и посчитаем величину 𝜕𝜓
𝜕𝑡 , учитывая, что волновая функция 𝜕𝑡𝜓(𝑟)𝑒

𝑖
ℏ𝐸𝑡 .

Подставляя полученное выражение в (13.12), получим нерелятивистскуюформу для плот-
ности вероятности:

𝜌 = 𝑒𝜓∗𝜓 (13.17)

Уравнение Клейна — Гордона — Фока описывает фотоны . Однако, для частиц данное
уравнение неприменимо.

Уравнение Дирака

Запишем формулу для релятивистской энергией:

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 (13.18)

Проблема, появляющаяся в уравненииКлейна—Гордона—Фока обоснована тем, что это
уравнение в частных производных второго порядка. Чтобы избавиться от второго порядка,
запишем уравнение, в которое E и p будут входить в первой степени. Для этого запишем

𝐸 =
√
𝑝2𝑐2 + 𝑚2𝑐4 (13.19)

В релятивистской механике частицы описываются 4-векторами. Компоненты импульса -
𝑝0 = 𝑚0𝑐, 𝑝1, 𝑝2, 𝑝3. Формально запишем энергию в виде

𝐸 = 𝑐
3∑
𝜇=0

𝛼𝜇𝑝𝜇 (13.20)

где с - нормировочная константа.
Тогда

𝐸2 = 𝐴2
∑
𝜇

∑
𝜇′
𝛼𝜇𝛼𝜇′𝑝𝜇𝑝𝜇′ =

𝐴2

2

∑
𝜇

∑
𝜇′

(
𝛼𝜇𝛼𝜇′ + 𝛼𝜇′𝛼𝜇

)
𝑝𝜇𝑝𝜇′ = 𝑐2

(
𝑝20 + 𝑝21 + 𝑝22 + 𝑝23

)
(13.21)

При этом 𝛼𝜇 представляет собой матрицу (так как энергия и импульс - 4-вектор).
Сравним правую и левую часть (относительно последнего знака равенства) уравнения
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(13.21). Отсюда
𝛼2𝜇 = 1 при 𝐴 = 𝑐 (13.22)

𝛼𝜇𝛼𝜇′ = −𝛼𝜇′𝛼𝜇 (13.23)

(последнее равенство должно выполняться, так как 𝛼𝜇𝛼𝜇′ + 𝛼𝜇′𝛼𝜇 = 2𝛿𝜇′𝜇, чтобы изба-
виться от перекрёстных членов) В результате получим матрицы:

𝛼0 =

©­­­­«
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

ª®®®®¬
𝛼1 =

©­­­­«
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

ª®®®®¬

𝛼2 =

©­­­­«
0 0 0 −𝑖
0 0 𝑖 0

0 −𝑖 0 0

𝑖 0 0 0

ª®®®®¬
𝛼3 =

©­­­­«
0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

ª®®®®¬
При этом полученные матрицы являются эрмитовыми:

𝛼+𝜇 = 𝛼𝜇 (13.24)

Матрицы 𝛼𝑖, 𝑖 = 0, 1, 2, 3 называются матрицами Дирака. Они дают возможность выпи-
сать уравнения в явном виде.
Перейдём к операторной форме в уравнении (13.20). (это и будет уравнение Дирака)

𝐸 = 𝑐
∑

𝛼𝜇𝑃𝜇 (13.25)

Перепишем в виде: (
𝐸 − 𝑐

∑
𝛼𝜇𝑃𝜇

)
𝜓 = 0 (13.26)

где 𝜓 - 4-вектор (строка) (так 𝛼𝜇 - матрица 4 × 4):

𝜓 =

©­­­­«
𝜓1

𝜓2

𝜓3

𝜓4

ª®®®®¬
Тогда

𝜓+ =
(
𝜓1 𝜓2 𝜓3 𝜓4

)
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Формы уравнения Дирака и уравнение непрерывности

Получим другой вид уравнения Дирака. Запишем уравнение (13.26) как систему из
четырёх уравнений первого порядка:(

𝐸 − 𝑚𝑐2
)
𝜓1 − 𝑐

(
𝑝𝑥 − 𝑖𝑝𝑦

)
𝜓4 − 𝑐𝑝𝑧𝜓3 = 0 (13.27)(

𝐸 − 𝑚𝑐2
)
𝜓2 − 𝑐

(
𝑝𝑥 + 𝑖𝑝𝑦

)
𝜓3 + 𝑐𝑝𝑧𝜓4 = 0 (13.28)(

𝐸 − 𝑚𝑐2
)
𝜓3 − 𝑐

(
𝑝𝑥 − 𝑖𝑝𝑦

)
𝜓2 − 𝑐𝑝𝑧𝜓1 = 0 (13.29)(

𝐸 − 𝑚𝑐2
)
𝜓4 − 𝑐

(
𝑝𝑥 + 𝑖𝑝𝑦

)
𝜓1 + 𝑐𝑝𝑧𝜓2 = 0 (13.30)

Введём вектор из трёх матриц:

𝛼 =
(
𝛼1 𝛼2 𝛼3

)
Тогда уравнение Дирака преобразуется в

𝐸 −
(
𝑐(𝛼𝑝) − 𝑚0𝑐

2𝜌0

)
𝜓 = 0 (13.31)

где 𝜌0 = 𝛼0.
Перепишем уравнение (13.31) в виде:

−ℏ
𝑖

𝜕𝜓

𝜕𝑡
− 𝑒ℏ
𝑖
(𝛼∇)𝜓 − 𝑚0𝑐

2𝜌0𝜓 = 0 (13.32)

Далее проведём те же действия, что и ранее при выводе уравнения непрерывности, учи-
тывая, что в данном случае необходимо проводить операцию эрмитова сопряжения, а не
комплексного сопряжения.
Домножим (13.32) на 𝑖𝑒

ℏ 𝜓
+:( 𝑖𝑒

ℏ
𝜓+

)
·
(
− ℏ
𝑖

𝜕𝜓

𝜕𝑡
− 𝑒ℏ
𝑖
(𝛼∇)𝜓 − 𝑚0𝑐

2𝜌0𝜓
)
= 0 (13.33)

Произведём операцию эрмитова сопряжения над (13.32) и умножим на 𝑖𝑒
ℏ 𝜓.(

− ℏ
𝑖

𝜕𝜓

𝜕𝑡
− 𝑒ℏ
𝑖
(𝛼∇)𝜓 − 𝑚0𝑐

2𝜌0𝜓
)+

= 0 ·
���𝑖𝑒
ℏ
𝜓 (13.34)

Вычтем из (13.33) уравнение (13.34). В результате получим

𝜕

𝜕𝑡
(𝑒𝜓∗𝜓) + 𝑑𝑖𝑣(𝑒𝑐𝜓+𝛼𝜓) = 0 (13.35)
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Полученное уравнение и будет уравнением непрерывности, если положить 𝜌 = 𝑒𝜓∗𝜓 и
𝑒𝑐𝜓+𝛼𝜓 = 𝑗 .
Заметим, что

𝜓+𝜓 = 𝜓∗
1𝜓1 + 𝜓∗

2𝜓2 + 𝜓∗
3𝜓3 + 𝜓∗

4𝜓4 > 0 (13.36)

Поэтому 𝜌 - положительно определенная.

Решение уравнения Дирака для электрона в центральном поле

Рассмотрим движение релятивистского заряда в центральном поле. Запишем уравне-
ние Дирака с учётом потенциальной энергии:(

𝐸 − 𝑐(𝛼𝑝) − 𝑚0𝑐
2𝜌0 −𝑈

)
𝜓 = 0 (13.37)

Запишем оператор момента импульса

𝑀̂ = [𝑟 𝑝] (13.38)

и посчитает коммутатор:

[𝑀̂𝑧𝐻] =
𝑐ℏ
𝑖

(
𝛼1𝑝𝑦 − 𝛼2𝑝𝑥

)
≠ 0 (13.39)

Операторы 𝑀̂𝑧 и 𝐻 не коммутируют. Это означает, что момент импульса не является ин-
тегралом движения.
Однако, существует оператор, коммутирующий с оператором Гамильтона. Этим операто-
ром будет оператор

𝑀̂ 𝑗 = 𝑀̂ + 𝑆 (13.40)

где оператор 𝑆 - матричный оператор вида

𝑆 =
1

2
ℏ𝜎̂ (13.41)

где

𝜎 =
(
𝜎𝑥 𝜎𝑦 𝜎𝑧

)

𝜎𝑥 =

©­­­­«
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

ª®®®®¬
𝜎𝑦 =

©­­­­«
0 −𝑖 0 0

𝑖 0 0 0

0 0 0 −𝑖
0 0 𝑖 0

ª®®®®¬
𝜎𝑧 =

©­­­­«
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

ª®®®®¬
129



Введение в квантовую физику
Савельев-Трофимов Андрей Борисович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Таким образом, мы получили оператор спина в явном виде.
При этом проекция данного оператора на ось z равна 1/2. Длина оператора:

𝑆2 =
3

4
ℏ2 (13.42)

Оказывается, что спин и оператор спина (и все его свойства) полностью вытекают из урав-
нения Дирака математически.
Оказывается, что 𝜓1, 𝜓3 соответствуют одной ориентации спина, а 𝜓2, 𝜓4 - другой ориен-
тации.

Решение уравнения Дирака для свободной частицы

Пусть частица движется вдоль оси z: 𝑝𝑧 ≠ 0, 𝑝𝑥 = 𝑝𝑦 = 0.
Будем искать решение в виде:

𝜓𝑖(𝑟, 𝑡) = 𝐴𝑏𝑖𝑒
− 𝑖

ℏ (𝐸𝑡−𝑝𝑧 𝑧) (13.43)

По сути написанное выражение есть аналог функции де Бройля с учётом того, что волно-
вая функция - 4-вектор. Подставим данное выражение в уравнение Дирака (в систему из
четырёх уравнений):

(𝐸 − 𝑚𝑐2)𝑏1 − 𝑐𝑝𝑧𝑏3 = 0 (13.44)

(𝐸 − 𝑚𝑐2)𝑏2 + 𝑐𝑝𝑧𝑏4 = 0 (13.45)

(𝐸 − 𝑚𝑐2)𝑏3 − 𝑐𝑝𝑧𝑏1 = 0 (13.46)

(𝐸 − 𝑚𝑐2)𝑏4 − 𝑐𝑝𝑧𝑏2 = 0 (13.47)

Заметим, что 𝑏1 и 𝑏3 входят в (13.44) и (13.46), а 𝑏2 и 𝑏4 - в оставшиеся два уравнения.
Таким образом, система распадается на две независимых системы линейных алгебраи-
ческих уравнений. Условие нетривиального решения - определитель равен нулю. Взяв
определитель любой из двух полученных систем, получим:

𝐸2 − 𝑚2𝑐4 − 𝑝2𝑧 𝑐2 = 0 (13.48)

Это означает
𝐸2 = 𝑚2𝑐4 + 𝑝2𝑧 𝑐

2 (13.49)

Отсюда следует два возможных значения энергии:

𝐸 = ±
√
𝑚2𝑐4 + 𝑝2𝑧 𝑐2 (13.50)

Рассмотрим два случая:
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1. 𝐸 > 0 Тогда получаем:

(a) 𝑏1 = 1√
2

√
1 + 𝑚𝑐2

𝐸 , 𝑏3 = 1√
2

√
1 − 𝑚𝑐2

𝐸

𝑏2 = 𝑏4 = 0

(b) 𝑏1 = 𝑏3 = 0

𝑏2 =
1√
2

√
1 + 𝑚𝑐2

𝐸 , 𝑏4 = − 1√
2

√
1 − 𝑚𝑐2

𝐸

2. 𝐸 < 0

(a) 𝑏1 = 1√
2

√
1 + 𝑚𝑐2

|𝐸 | 𝑏3 = − 1√
2

√
1 − 𝑚𝑐2

|𝐸 |
𝑏2 = 𝑏4 = 0

(b) 𝑏1 = 𝑏3 = 0

𝑏2 =
1√
2

√
1 + 𝑚𝑐2

|𝐸 | 𝑏4 =
1√
2

√
1 − 𝑚𝑐2

|𝐸 |

Рассмотрим случай 𝐸 > 0. Тогда случаи (а) и (b) соответствуют двум разным проек-
циям спина.
Посчитаем

𝑚0𝑐
2

𝐸
=

√
1 − 𝑣2

𝑐2
≈ 1 − 𝑣2

2𝑐2
(13.51)

и рассмотрим асимптотику коэффициентов при переходе к нерелятивистскому случаю.
Тогда

1. 𝑏1 = 1, 𝑏2 = 𝑏4 = 0, 𝑏3 = 𝑣
2𝑐

Соответственно, в нерелятивистском пределе 𝑏3 → 0. От 4-вектора остаётся только
одна функция, которая и будет уравнением Шрёдингера.

2. 𝑏1 = 𝑏3 = 0 𝑏2 = 1, 𝑏4 = − 𝑣
2𝑐 .

В нерелятивистском пределе 𝑏4 → 0. Получаем, что для другой проекции спина
соответствует ункция 𝜓2.

Таким образом, получаем, что спин, как релятивистская сущность сохраняется в нереля-
тивистском пределе (волновая функция зависит от проекции спина). То есть в нереляти-
вистском пределе релятивистские свойства сохраняются.

Античастицы

Рассмотрим случай 𝐸 < 0. Частица, для которой решение соответствует 𝐸 < 0 (а в
остальном имеет свойства такие же, как у электрона), была названа позитроном.
Позже позитрон был обнаружен в опытах Андерсона. Позитрон - нестабильная частица.
В некоторых случаях позитрон можно рассматривать как дырку в области отрицательных
энергий - отсутствие электрона - которая ведёт себя как положительная частица.
Для любой элементарной частицы со спином 1/2 существует античастица.
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Опыт Лэмба - Резерфорда

Рассмотрим атом водорода; электрон находится в состоянии 2𝑠1/2 или в состоянии
2𝑝1/2. Тогда с точки зрения уравнения Шрёдингера и с точки зрения уравнения Дирака
энергия этих состояний одинакова. Есть тонкая структура, снимается вырождение по j,
но не снимается вырождение по 𝑙.

2𝑠1/2

1𝑠1/2

2𝑝1/2

Рис. 13.1: Структура энергетических уровней

При этом переход 2𝑠1/2 → 1𝑠1/2 запрещён. Если каким-то образом электрон попадает в
состояние 2𝑠1/2, то время жизни на восемь порядков больше времени жизни в состоянии
2𝑝1/2. То есть, если облучить водород ультрафиолетовым излучением и возбуждаем на
какой-то из двух указанных уровней, то те атомы, что попадут в 2𝑝1/2, очень быстро вер-
нутся в основное состояние, а атомы в состоянии 2𝑠1/2 будут жить там в 108 раз дольше.

Опыт Лэмба - Ризерфорда был поставлен следующим образом. Пучок атомов водо-
рода облучался резонансным ультрафиолетовым излучением для возбуждения в одно из
указанных состояний. После чего поток излучённых атомов попадает в мишень и измеря-
ется ток. Если атом попал в 2𝑝1/2, то за время пролёта до мишени он успевает вернуться
обратно в основное состояние, и в итоге к мишени прилетит нейтральный невозбуждён-
ный атом и фотон (тока не будет). Если атом оказался в состоянии 2𝑠1/2, то он не успевает
перейти в основное состояние, прилетает на мишень в возбуждённом состоянии. Тогда
существует большая вероятность, что при столкновении энергия перехода будет переда-
на какому-то свободному электрону в металле (в мишени). Как следствие, появится ток.

H

рентгеновское
излучение

СВЧ

мишень

Рис. 13.2: Опыт Лэмба - Ризерфорда

Установим на пути излучённых атомов источник радиочастотного излучения. Тогда, ес-
ли энергия уровней 2𝑠1/2 и 2𝑝1/2 действительно совпадает, то излучение не будет менять
состояния атомов. Однако, если между указанными состояниями есть разница в энергии:���𝐸2𝑠1/2 − 𝐸2𝑝1/2

��� = ∆, то при совпадении частоты радиочастотного излучения 𝜔СВЧ = ∆
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излучение начнёт вызывать переходы между уровнями (согласно квантовым уравнени-
ям). При этом будет снято возбуждение (все атомы будут переходить в 2𝑝1/2 и успевать
вернуться в основное состояние).

Таким образом, меняя частоту СВЧ генератора, будем наблюдать ток. При условии
𝜔СВЧ = ∆ ток должен прекратиться (что и наблюдалось в эксперименте).
Таким образом была обнаружена сверхтонкая структура атома водорода - энергии уровней
2𝑠1/2 и 2𝑝1/2 разные. Существует дополнительное расщепление по квантовому числу 𝑙,
которое не описывается теорией Дирака. Данное расщепление можно писать путём ввода
дополнительных факторов (например, при учёте электромагнитного вакуума).
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