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ЛЕКЦИЯ 1. ВВЕДЕНИЕ В КЛАССИЧЕСКУЮ КОСМОЛОГИЮ. 

Космология. 

 Наша вселенная является четырёхмерным многообразием: в каждый момент 
времени мы существует трёхмерное пространство. Мы наблюдаем экспериментально  
кусочек этой Вселенной размером ~	14	млрд	св. лет (см. рис. 1. 1). Это похоже в первом 
приближении на кусочек плоского трёхмерного пространства, Вселенная достаточно 
плоская, однородная и изотропная.  

 
Рис. 1.  1. Схематическое изображение видимой Вселенной. 

 

Известно, что Вселенная расширяется, если наблюдать за ней в течение какого-то 
времени. Метрика пространства-времени выглядит так: 

𝑑𝑠! = 𝑑𝑡! + 𝑎!(𝑡)𝑑𝑥⃗!, (1.1) 

где фактор 𝑎(𝑡) – масштабный фактор (scale factor). Его график представлен на рис. 1. 2.  

Как видно, на графике есть два экспоненциальных участка и область, где степень 
экспоненты < 1. Пространство, в котором 𝑎(𝑡)~𝑒" – это пространство де Ситтера, в 
нём пространство ведёт себя симметрично. Именно этому случаю и будет посвящён курс 
лекций. Пространство де Ситтера ещё не понято и до конца не объяснено с научной точки 
зрения, и есть данного курса – заложить базу для дальнейшего анализа пространства де 
Ситтера. Часть графика, соответствующая пространству де Ситтера, — это область 
инфляции. Всё, что лежит на графике за этой областью уже проверено экспериментально.  

Важно помнить, что на Вселенную помимо времени, влияет и температура, 
Вселенная остывает, поэтому масштабный фактор не отражает всех особенностей 
теории. Кроме того расположение нуля на шкале времени (даже сам факт его наличия) 
пока что под вопросом.  

Инфляция – это гипотеза. Достаточно популярная, но всё-таки пока что в неё 
много вопросов. 
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Рис. 1.  2. Масштабный фактор во Вселенной. 

 

Классическая теория поля. 

Теория поля – универсальный математический аппарат. Квантовая теория поля 
(КТП) сумела объединить квантовую механику и специальную теорию относительности 
на примере квантовой электродинамики. При наличии бесконечного большого числа 
степеней свободы возникает некоторая универсальность, которая позволяет применить 
КТП 

Вспомним, что такое классическая теория поля на примере скалярного поля. 
Пусть φ – скалярное поле. Теория скалярного поля описывается некоторым действием: 

𝑆 = <𝐿𝑑𝑡 , (1.2) 

здесь 𝐿 – лагранжиан. Пусть ℒ(𝑥) – лагранжева плотность. 

𝐿 = <ℒ(𝑥)𝑑#𝑥 , (1.3) 

ℒ(𝑥) = ∂$φ∂$φ −𝑚!φ! + ℒ%&" , (1.4) 

ℒ%&" = 𝑔#φ# + 𝑔'φ' + 𝑔(E∂$φ∂$φF +⋯ (1.5) 

т. е. ℒ%&" содержит в себе все нелинейные по полям члены. 

В классической теории поля мы решаем уравнения Эйлера-Лагранжа. Например, если 
отсутствуют взаимодействия, то получатся уравнения Кляйна-Гордона (здесь ⊡ – 
оператор Д’Аламбера): 

⊡φ−𝑚!φ! = 0. (1.6)	 
 

Квантовая теория поля (КТП). 

КТП описывает набор гармонических осцилляторов. Чтобы это понять перейдём 
к импульсному представлению. Перейдём φ(𝑥⃗, 𝑡) → φME𝑘O⃗ , 𝑡F. Тогда  



 

КВАНТОВАЯ ТЕОРИЯ ПОЛЯ В КОСМОЛОГИИ   
ГОРБЕНКО ВИКТОР ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

6 
 

 

𝐿 = <𝑑#𝑘O⃗ (−𝑘!φ)φ*) + φ̇)φ̇*) +𝑚!φ*)φ)). (1.7) 

Т. е. при переходе к импульсному представлению почти что получилось 
разделить переменные. В этой форме видно, что хоть количество степеней свободы 
бесконечно, но при этом система представляет собой сумму независимых частей. 

 Лагранжиан гармонического осциллятора: 

𝐿+.-. = 𝑥̇! −ω!𝑥!, (1.8) 

ω ∼ U𝑚! + 𝑘!. (1.9) 

 Если переместить КТП из пространства Минковского в пространство с метрикой 
(1.1), то происходит следующее: осцилляторы, которые обладают нулевыми 
колебаниями, заполняют пространство в момент начала инфляции; эффект 
экспоненциального расширения возмущения растут, колебания становятся 
классическими; после перехода в расширение со степенной части классические 
возмущения растут; из этих возмущений появляется вся структура, наблюдаемая во 
вселенной. Т. е. вся структура рождается из начальных квантовых возмущений. Это 
подтверждается на практике. 

  
Пространства FRW и де Ситтера. Уравнения Эйнштейна. Уравнения 

Фридмана. 

 Пространство FRW (Friedmann–Robertson–Walker): однородная, изотропная 
Вселенная.  

 Пусть есть расширяющееся пространство (см. рис. 1. 2). В нём есть метрика 
𝑔$.(𝑥$), при этом: 

𝑔$. = 𝑔.$, 

𝑑𝑒𝑡𝑔$. ≠ 0. 

Пусть сигнатура метрики (-1,1,1,1). Уравнения Эйнштейна тогда выглядят так: 

𝑅$. −
1
2𝑅𝑔/0 =

𝑇$.
𝑀1
! . (1.10) 

𝑅𝑔/0 – скалярная кривизна, 𝑅/0 – тензор Риччи, 𝑀1 – планковская масса. 

 Тензор энергии-импульса имеет следующую форму: 

𝑇0
/ 	= [

−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

^ , (1.11) 

здесь ρ – плотность энергии. 

 Метрика берётся в следующей форме: 
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𝑔$. = [

−1 0 0 0
0 ⋱ ⋮ ⋮
0 … ⋱ ⋮
0 … … 𝑔%2

^ , (1.12) 

𝑔%2 = 𝑎!(𝑡) × c
𝑑𝑥⃗!,
𝑑!𝑆3! ,
𝑑!𝑆4! .

(1.13) 

Первая опция – плоское пространство (k = 0), вторая – трёхмерная сфера, (k  = 1)  
третья – гиперболическое пространство (k = -1). 

 При подстановке такой метрики в 1.10 получим уравнения Фридмана: 

2
𝑎̈
𝑎 + e

𝑎̇
𝑎f

!

+
𝑘
𝑎! = −𝑝, (1.14) 

e
𝑎̇
𝑎f

!

+
𝑘
𝑎! =

ρ
3 .

(1.15) 

 Два уравнения описывают три неизвестных. Чтобы разрешить их необходимо 
добавить уравнение материи. Мы добавим следующее: 

𝑝 = ωρ. (1.16) 
 Решим уравнения для случая k = 0: 

∇$T$. = 0 

ρ + 3𝐻(ρ + 𝑝) = 0 
ρ̇

3ρ(ω + 1) = −𝐻 

𝐻! =
ρ
3 

𝜌̇
3𝜌(𝜔 + 1) =

m
𝜌
3 

<
𝑑ρ
ρ#/! = <3(ω + 1)𝑑𝑡 

ρ~E(ω + 1)𝑡F
*!
. (1.17) 

Уравнение 1.17 даёт решение всей системе. Можно также использовать метод 
представления  

𝑎 = 𝑐𝑡
!

#(789), 
который в конечном счёте приведёт к тому же решению. 

 Снова обратимся к рис. 1. 2. Если тензор энергии-импульса имеет вид 1.11, то ω =
7
#
 для электромагнитных полей (радиация), для тёмной материи p = 0, тогда ω = 	0. Тогда 

решение на среднем участке имеет следующий вид: 
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c
𝑎~𝑡!/#			при		ω = 0,

𝑎~𝑡7/!			при		ω =
1
3
.

(1.18) 

 Если ω =	−1, то тензор энергии-импульса выглядит так: 

𝑇.
$ = [

𝜌 0 0 0
0 −𝜌 0 0
0 0 −𝜌 0
0 0 0 −𝜌

^ . (1.19) 

 Этот случай соответствует тёмной энергии. Такой тензор можно получить из 
космологической постоянной и действия Эйнштейна-Гильберта: 

𝑆;.4. = <U−𝑔(𝑅 + Λ) + 𝑐𝑜𝑛𝑠𝑡. (1.20) 

 Затем через вариационный принцип: 

𝑇$. =
𝛿ℒ
δ𝑔$.

→ Λ𝑔$.. (1.21) 

 Отсюда получаем: 

𝑇0
/ = Λ[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

^ . (1.22) 

 Отсюда осуществляется переход к 1.19. 

 Если решать уравнения 1.14, 1.15 для 𝜔 =	−1, то получим решение в виде: 

𝑎 = 𝑒<" , (1.23) 
 Это соответствует экспоненциальному расширению. 

𝐶 = 𝐻, 𝐻! =
Λ
3 .

(1.24) 

 Вывод следующий: если Вселенная представлена космологической постоянной Λ, 
то Вселенная экспоненциально расширяется. Если Λ – положительна, то это 
пространство де Ситтера. 

 В данный момент времени (см. рис. 1.2) доминирует экспоненциальное 
расширение, связанное с космологической постоянной. В момент инфляции 
космологическая постоянная неизвестна, однако известно, что она была значительно 
большая, чем сейчас. Соответственно: 

𝐻%&= ≫ 𝐻>. (1.25) 

 Очевидно: 
Λ%&= ≫ Λ>. (1.26) 

 При параметрах ω =	−1, 𝑘	 = 	±1 решение 1.14, 1.15 выглядит так: 

y 𝑘 = 1 → 𝑎 = 𝑐𝑜𝑠ℎ(𝐻𝑡),
𝑘 = −1 → 	решить	дома. (1.27) 
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 Расширение с данными  масштабными факторами изображено на рис. 1. 3. 

 
Рис. 1.  3. Расширение Вселенной с двумя различными метриками. 

 

Диаграммы Пенроуза. 

 Диаграммы Пенроуза помогают понять причинную структуру.  
Вспомним уравнение Кляйна-Гордона. При положении m = 0: 

⊡φ = (−∂"! + ∂%!)φ = 0. (1.28) 

 Т. к. φ = φ(𝑥, 𝑡), то 1.28 преобразуется в  

⊡𝜑 = (−𝜕"! + 𝜕?!)𝜑 = 0. (1.29) 
 Общий вид решения: 

φ = φ8(𝑥 − 𝑡) + φ*(𝑥 + 𝑡). (1.30) 
 Графически оно выглядит так, как показано на рис. 1. 4. Если есть какое-то 
возмущение поля, то оно распространяется со скоростью света по светоподобным 
линиям (null lines). Массивные частицы распространяются внутри светового конуса. 

 
Рис. 1.  4. Световой конус. 

  

Эти выводы следуют из преобразований Лоренца.  Дело в том, что любую точку 
за пределами светового конуса можно перенести на  рис. 1. 4 в прошлое. Если какие-то 
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частицы распространялись за пределы светового конуса, то в другой системе отсчёта они 
бы распространялись в прошлое. Тогда нарушается причинность. Всё вышесказанное 
относится к пространству Минковского!  

Однако нас интересует пространство де Ситтера. Для него точно также можно 
изобразить световой конус. Однако он будет уже в искривлённом пространстве.  

Пусть есть две метрики: 
𝑔$., 𝑔�$. = Ω𝑔$.. (1.31) 

Ω – скалярный фактор. Световые конуса для таких метрик будут одинаковые. 

Мы хотим придумать такую метрику, чтобы после умножения на скалярный 
фактор многообразие стало компактным. В этом и состоит идея диаграмм Пенроуза. 
(Всякий раз, когда лектор упоминает метрику или интервал, он имеет в виду, что с 
интервала можно считать метрику, поэтому он позволяет себе взаимозаменять эти 
термины.) 

Пусть есть интервал: 

𝑑𝑠! = −𝑑𝑡! + 𝑐𝑜𝑠ℎ!𝑡𝑑!𝑆#. (1.32) 

 Мы хотим так выбрать конформный фактор Ω, чтобы метрика стала компактной 
по времени. 

𝑑𝑠! = 𝑐𝑜𝑠ℎ!𝑡 �−
𝑑𝑡!

𝑐𝑜𝑠ℎ!𝑡
+ 𝑑!𝑆#� , (1.33) 

обозначим		
𝑑𝑡

𝑐𝑜𝑠ℎ𝑡
= 𝑑η, (1.34) 

Δη = <
𝑑𝑡

𝑐𝑜𝑠ℎ𝑡

@

*@
= π. (1.35) 

 Интеграл сходится, тогда 

𝑑𝑠! = 𝑐𝑜𝑠ℎ!E𝑡(η)F(−𝑑η + 𝑑!𝑆#). (1.36) 

 Выберем метрику на 𝑆#, получим: 

𝑑𝑠! = 𝑐𝑜𝑠ℎ!E𝑡(η)F(−𝑑η + 𝑑θ! + 𝑐𝑜𝑠!θ𝑑!𝑆!). (1.37) 

 Для диаграммы Пенроуза выбираются две координаты, при этом всё остальное 
пространство должно быть записано как компактное многообразие. Сравним 1.37 и 1.31. 
По аналогии с 1.31 фактор Ω – это 𝑐𝑜𝑠ℎ!E𝑡(η)F, мы можем не обращать на него внимания. 
Остальные координаты рисуем (см. рис. 1. 5). Для пространства де Ситтера диаграмма 
Пенроуза – квадрат. 

Для пространства FRW (случай k = 1) интеграл Δη будет расходиться, т. к. в 
знаменателе будет положительная степень t. И диаграмма Пенроуза будет выглядеть 
как на рис. 1. 6 a. Для пространства Минковского диаграмма Пенроуза изображена на 
рис. 1. 6 б. 

 Вернемся к рис. 1. 5. Пространство 𝑒" – вложено в эту диаграмму пространства 
де Ситтера, оно по сути будетя предсталять собой часть выше диаганольной линии.  
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 Каждая точка на этой диаграмме – двумерная сфера, кроме точек на полюсах 
(левом и правом), где косинус уходит в 0, и там одномерное пространство. 

 

 
Рис. 1.  5. Диаграмма Пенроуза пространства де Ситтера. 

 
Важно, что в пространстве де Ситтера есть горизонт событий. 

Световой конус идёт по горизональной линии. Точка, находящаяся по одно 
сторону линии не может попасть в часть диаграммы за линию. Похожий горизонт 
событий имеется у чёрной дыры. Если мы приближаемся к временному полюсу 
(верхний), то там будет бесконечно много наблюдателей – несвязанных дуг с другом 
точек пространства. 

 
Рис. 1.  6. Диаграммы Пенроуза а) пространства FRW; б) пространства Минковского.  
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ЛЕКЦИЯ 2. ГЕОМЕТРИЯ И СТРУКТУРА ПРОСТРАНСТВА ДЕ 
СИТТЕРА. 

Диаграмма Пенроуза в пространстве Минковского. 

Вспомним с прошлой лекции пространство де Ситтера (рис. 1. 2) и диаграмму 
Пенроуза (рис. 1. 5) для него. Также вспомним диаграмму Пенроуза для пространства 
Минковского (рис. 1. 6 б). 

Метрика пространства Минковского выглядит следующим образом: 

−𝑑𝑡! + 𝑑!𝑥⃗. (2.1) 
Перейдём в радиальные координаты: 

−𝑑𝑡! + 𝑑𝑟! + 𝑟!𝑑!Ω!. (2.2) 
 Перейдём теперь к координатам вида 

𝑥± = 𝑡 ± 𝑟. (2.3) 
 Получим: 

−𝑑𝑥8𝑑𝑥* + 𝑟!𝑑!Ω!. (2.4) 

 𝑥8, 𝑥* - изменяются не компактно, поэтому разумно совершить переход: 

𝑥8 = 𝑡𝑎𝑛𝑢, 𝑥* = 𝑡𝑎𝑛𝑣, (2.5) 

 𝑢, 𝑣: �− B
!
, B
!
� , 𝑥8 − 𝑥* > 0 ⇒ 𝑢 > 𝑣. Таким образом, на рис. 1. 6 б остаётся 

половина ромба. Напомним, что каждая точка диаграммы – двумерная сфера. 

Метрика преобразовалась: 

𝑓(𝑢, 𝑣) �−𝑑𝑢𝑑𝑣 +
𝑟!

𝑓(𝑢, 𝑣)
𝑑!Ω!� . (2.6) 

Затем необходимо сделать конформное преобразование, чтобы избавиться от 
𝑓(𝑢, 𝑣). Метрика вида 2.1 называется Пуанкаре патч де Ситтера. Преобразуем её: 

𝑒!"4 �−
𝑑𝑡!

𝑒!"4
+ 𝑑𝑥⃗!� (2.7) 

𝑑η =
𝑑𝑡
𝑒"
, η ∈ (−∞, 0]. (2.8) 

Имеем: 

−𝑒!"(C)4(−𝑑η! + 𝑑𝑥⃗!). (2.9) 

Фактор перед скобками не будет влиять на световой конус. 

Однако т. к. 		η ∈ (−∞, 0], то и временная шкала будет только половинной, 
соответственно, для патча Пуанкаре диаграмма Пенроуза выглядит как половина от 
диаграммы плоского пространства (см. рис. 2. 1).  

Обычно в пространстве FRW (радиация, тёмная материя) фактор a расходится на 
бесконечности во времени, а сходится во времени в прошлом. Тогда диаграмма Пенроуза 
имеет вид, показанный на рис. 2. 2. 
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Рис. 2.  1. Диаграмма Пенроуза для патча Пуанкаре. 

  

 Если случай FRW и сферы (2.2), то диаграмма Пенроуза выглядит как на рис. 1. 6 
б. 

 
Рис. 2.  2. Диаграмма Пенроуза для FRW+сфера. 

 
Вложение в пятимерное пространство Минковского 

Определения пространства де Ситтера, которое не зависит от системы координат 
– это вложение в пятимерное пространство Минковского. 

Рассмотрим гиперболоид единичного радиуса (положили 𝐻 = 1): 

−𝑋>! + 𝑋7! + 𝑋!! + 𝑋#! + 𝑋(! = 1 = 𝐻*!. (2.10) 

Попробуем его нарисовать. При каждом фиксированном времени 𝑋> имеется 
сфера с радиусом 𝑅! = 1 + 𝑋>!. Получится картинка, изображённая на рис. 2. 3. – 
пространство, расширяющееся во времени. 

 
Рис. 2.  3. Гиперболоид расширяющейся Вселенной. 

Выберем глобальную параметризацию: 

𝑋> = 𝑠𝑖𝑛ℎτ, 𝑋% = 𝑐𝑜𝑠ℎτ𝑧% 	, 𝑧%! = 1, 𝑖 = 1. . 𝐷. (2.11) 
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Индуцированная метрика в пространстве с такой параметризации выглядит 
следующим образом: 

𝑑𝑠! = 𝑑𝑋>𝑑𝑋> + 𝑑𝑋%𝑑𝑋% . (2.12) 

Выведем коэффициент при 𝑑𝑡!: 

−𝑑τ!𝑐𝑜𝑠ℎ!(… ) + 𝑑τ!𝑠𝑖𝑛ℎ!(… ) = −𝑑τ!. (2.13) 

𝑑τ𝑑(𝑧%!) = 0, (2.14) 

поэтому не будет смешанного компонента метрики. 

 Дальше идёт часть, действующая только на 𝑧%, что даёт нам метрику на 
трёхмерной сфере. В итоге, с учётом всех положений получим метрику 

−𝑑𝑡! + 𝑐𝑜𝑠ℎ!𝑡𝐻𝑑!Ω#, (2.15) 
такая метрика называется глобальной – она покрывает весь гиперболоид. 

  
Параметризация метрики пространства де Ситтера 

Попытаемся получить параметризацию метрики пространства де Ситтера: 

−𝑑𝑡! + 𝑒!"4𝑑𝑥!. (2.16) 
Рассмотрим параметризацию: 

𝑋> = 𝑠𝑖𝑛ℎ𝑡 +
𝑟!

2
𝑒" , 𝑋7 = 𝑐𝑜𝑠ℎ𝑡 −

𝑟!

2
𝑒" , 𝑋2 = 𝑒"𝑦2 , 𝑟! = 𝑦2!, 𝑗 = 2. . 𝐷. (2.17) 

Параметризация верна только в случае если 

𝑋> + 𝑋7 = 𝑒" > 0. (2.18) 

Т. е. она не прокрывает весь гиперболоид, а только верхнюю его половину. 
Подставляя эту параметризацию в формулу для метрики 

−𝑑𝑋>! + 𝑑𝑋7! +⋯+ 𝑑𝑋(! = 𝑑𝑠!, (2.19) 

получим формулу, аналогичную 2.15. 
Свойства пространства де Ситтера объяснены хорошо в лекциях профессора 

Корнелла по фамилии Hartman. Их можно найти в открытом доступе. 
Рассмотренный подход позволяет увидеть связь двух метрик 2.15 и 2.16. Метрика 

2.16 описывает верхний треугольник диаграммы Пенроуза пространства де Ситтера (см. 
рис. 1 .5). На рис. 2. 4 красные линии описывают 𝑡 = 𝑐𝑜𝑛𝑠𝑡, на больших временах τ,
𝑋>~𝑒D. 

𝑋>~𝑒" �
1 + 𝑟!

2 �~
𝑒
2
"8E-FG78H"I

. (2.20) 

Т. е. на больших временах эти метрики описывают одно и то же. Выбор кривизны 
эквивалентен выбору системы отсчёта. 𝑘 = 	0, 𝑘 = 1 – случаи движения по 
гиперболоиду в разных направлениях по времени (см. рис. 2. 5). 
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Рис. 2.  4. Линии постоянного t на диаграмме Пенроуза. 

 

 
Рис. 2.  5. Гиперболоид как универсальный способ описания метрик. Чёрная стрелка 

соответствует k=0, оранжевая k=1. Красная диагональ 𝑡	 = 	−∞. 

 

При других 𝑟! будут получаться более сложные срезы гиперболоида. 

Параметризация ещё одного вида: 

𝑋> = U1 − 𝑟!𝑠𝑖𝑛ℎ𝑡J, 𝑋7 = U1 − 𝑟!𝑐𝑜𝑠ℎ𝑡J, 𝑋2 = 𝑟𝑧2 , 𝑧2! = 1. (2.21) 

Метрика получается тогда следующего вида: 

𝑑𝑠J"K"%L! = −(1 − 𝑟!)𝑑𝑡! +
𝑑𝑟!

1 − 𝑟!
+ 𝑟!𝑑Ω!!. (2.22) 

Получили метрику, которая не зависит от времени! Такая параметризация 
порывает маленький кусочек, как на рис. 2. 6. На диаграмме Пенроуза это будет 
закрашенный треугольник (рис. 2. 7). 

Наблюдатель в пространстве де Ситтера, который живёт вдоль крайней правой 
линии рис. 2. 7 видит статическую Вселенную, потому что от отгорожен горизонтом 
событий от части пространства, а в доступной его зрению части пространства метрика 
приводится к виду 2.22. Он не видит расширения пространства. 

С другой стороны в теории инфляции рассматривается значительная часть 
верхней линии – бесконечности, которую мы, как статические наблюдатели не видим. 
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Теория  инфляции как раз пытается понять, как скомпоновать расширение пространства 
де Ситтера и тот факт, что мы наблюдаем статическую Вселенную. 

 
Рис. 2.  6. Штрихами выделена статическая метрика. 

 

 
Рис. 2.  7. Статический патч на диаграмме Пенроуза. 

 
У пространства де Ситтера нет глобальной времениподобной изометрии, т. е. 

пространство не статическое. Если есть времениподобная изометрия, то метрику можно 
выбрать статической. В пространстве де Ситтера для этого используются ковариантное 
утверждение, но об этом будет дальше. 

 

Наблюдение параметров на диаграмме Пенроуза 

Перейдём к конформному времени в метрике пространства де Ситтера: 

𝑑η =
𝑑𝑡
𝑎(𝑡) ,

(2.23) 

где  

𝑎(𝑡) =  
𝑒4" ,
𝑡…,
𝑒4#" .

(2.24) 
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Т. к. период инфляции не бесконечный, за ним следует период FRW, а затем снова 
экспоненциальное расширение, диаграмма Пенроуза выглядит как на рис. 2. 8. Мы 
находим в части диаграммы Пенроуза, соответствующей статической Вселенной, но по 
остаточным явлениям во Вселенной, по свету звёзд можно понять, что раньше он 
расширялась. Мы видим значительную часть пространства де Ситтера времени 
инфляции. То, что обведено – это то, что мы можем наблюдать от инфляции. Каждый 
отдельный наблюдатель – статичен, однако мы видимо очень много наблюдателей, и  
собрав информацию от них всех можем получить представление об экспоненциальном 
расширении Вселенной. Т. е. мы наблюдаем большое число статических патчей 
прошлого, и отсюда знаем об инфляции. 

 
Рис. 2.  8. Схематичное развитие Вселенной во времени, показанное с помощью 

диаграмм Пенроуза. 

 

Понятие открытой/закрытой Вселенной в пространстве де Ситтера – 
относительное.  

 Если рассмотреть какую-то волну, которая существует в пространстве де Ситтера, 
наблюдатель никак не может её померить в силу того, что какая-то часть её будет 
приходиться на область за горизонтом событий. Можно построить две отдельные теории 
для двух треугольников пространства де Ситтера, однако при построении глобальной 
теории так рассуждать не получится, поэтому построение глобальной теории – открытый 
вопрос. 
 Для того, чтобы измерить постоянную Хаббла для области инфляции необходимо 
измерить гравитационные волны от инфляции. Пока что этого не сделано.  

 

Диаграмма Пенроуза для чёрной дыры 

 Диаграмма Пенроуза для чёрной дыры изображена на рис. 2. 9. 
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Рис. 2.  9. Диаграмма Пенроуза для чёрной дыры. 

  

Такая диаграмма получается, если все операции провести для метрики 
Шварцшильда: 

−¡1 −
𝑟J
𝑟¢ 𝑑𝑡

! +
𝑑𝑟!

¡1 − 𝑟J𝑟¢
+ 𝑟!𝑑Ω!!. (2.25) 

 Т. е. произошла замена: 

1 − 𝑟!𝐻! → 1 −
𝑟J
𝑟 .

(2.26) 

 Горизонт событий – это зануление этого параметра, при 𝑟 → 𝑟J.  
В полном пространстве Шварцшильда нельзя выбрать метрику статическим 

образом.  

Вопрос о получении информации из чёрной дыры аналогичен вопросу о том, 
можем ли мы увидеть, что было в пространстве де Ситтера в области инфляции. 
Существует гипотеза, что внутренность чёрной дыры идентична за горизонтом событий 
области пространства де Ситтера. 

 

Группа изометрий SO(1,4) в пространствах Минковского и де Ситтера 

Пространство Минковского обладает изометрией SO(1,4) → 10 изометрий 
(ISO(1,4) → 4	𝑃$,  3 вращ., 3 лоренцовских буста), столько же, сколько у группы 
Пуанкаре. Т. к. мы рассматривали вложение в пятимерное пространство Минковского, 
следовательно, пространство де Ситтера обладает теми же изометриями, что и 
пространство Минковского. Важная разница, что в пространстве Минковского есть 
сохраняющаяся энергия, т. е. есть глобальная времениподобная симметрия. В 
пространстве де Ситтера её нет. 

Вращение в плоскости [𝑋>, 𝑋7], или лоренцовский поворот (буст) в направлении 
𝑋7 генерирует сдвиг 𝑡J, что очевидно из параметризации 2.21.  

𝑀>7 = сдвиг	𝑡J. (2.27) 
При переходе в глобальное пространство де Ситтера буст относительно 

центральной точки выглядит как на рис. 2. 10. Т. е. времениподобная изометрии в 
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статической части за горизонтом событий становится пространственноподобной. Т. е. 
они просто растягивают световой конус, растягивая его во времени. 

 
Рис. 2.  10. Сдвиг по лоренцовскому бусту диаграммы Пенроуза пространства де 

Ситтера. 

 

Сдвиг Пуанкаре Патча 

Нас интересует параметризация 2.17. Какие бусты будут сдвигать 𝑦2 в формуле 

−𝑑𝑡! + 𝑒!"4𝑑𝑦NOOO⃗
! ?  Задание: проанализировать какие бусты будут сдвигать 𝑦2. 

 

Квантование полей де Ситтера 

Обычно выбирается параметризация Пуанкаре и записывается Лагранжиан или 
действие: 

−<𝑑𝑡𝑑𝑔U−𝑔E𝑔$. ∂$φ∂.φ +𝑚!φ!F . (2.28) 

Помощью преобразования Фурье переходим к интегралу 

<𝑑𝑡	𝑒#4"E𝑒*!4"φ̇)φ̇*) − 𝑘O⃗ !φ)φ*) +𝑚!φ)φ*)F . (2.29) 

Получился набор гармонических осцилляторов, у которых частота зависит от 
времени. Задача квантования свободного поля сводится к задаче квантования 
гармонического осциллятора с зависимой от времени частотой.  
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ЛЕКЦИЯ 3. КВАНТОВАЯ ТЕОРИЯ ПОЛЯ В ПРОСТРАНСТВЕ ДЕ 
СИТТЕРА. 

Повторение. 

 Вспомним диаграмму Пенроуза пространства де Ситтера (см. рис. 1. 5). 
Статический патч – максимальная часть пространства де Ситтера, где есть 
времениподобная изометрия. 

 

Квантовая теория поля. Интеграл по путям. 

 Классическая теория поля начинается с действия 

𝑆 = <𝐿𝑑𝑡 = <𝑑𝑡	𝑑#𝑥	ℒ . (3.1) 

 Мы будем работать в искривлённом пространстве, и нам такие интегралы 
неудобны. В нашем случае интеграл действия будет выглядеть так: 

𝑆 = <U−𝑔	𝑑'𝑥	ℒ . (3.2) 

Будем рассматривать скалярное поле, поэтому: 

𝑆 = <U−𝑔	𝑑'𝑥	E𝑔$. ∂$φ∂.φ +𝑚!φ! + ℒ%&"F . (3.3) 

Считаем, что ℒ%&" – непертурбативные действия. 

Переход от классической к квантовой теории поля осуществляется так: 

<𝐷φ𝑒%O[Q] . (3.4) 

Здесь 𝑆[φ] – действие взвешенное по полям φ. Этот интеграл позволяет считать 
некоторые корреляционные функции поля φ. 

Корреляционная функция: 

φE𝑥7
$F,   φE𝑥!

$F	. . .  φE𝑥#
$F  =< φ,φ. . . φ >. (3.5) 

Обратимся к рис. 2. 8. Рассмотрим границу инфляции Мы вставляем описанные 
выше поля при очень маленьком времени ηL. На эту самую границу. Все возможные 
истории развития полей уже в эту границу вложились, т. е. поля на границе несут 
информацию обо всех предыдущих полях в пространстве и несут вклад в 
корреляционные функции. 

Разобьём действие на две части: 
𝑆[φ] = 𝑆=HSS + 𝑆%&" . (3.6) 

Пусть 

ℒ%&" = λφ#. (3.7) 

Получим: 



 

КВАНТОВАЯ ТЕОРИЯ ПОЛЯ В КОСМОЛОГИИ   
ГОРБЕНКО ВИКТОР ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

21 
 

 

<𝐷φ𝑒%O[Q] =©λ& 	<𝐷φ	𝑒%O$%&& 		
(∫ 𝑑𝑥7λφ#)&

𝑛!
T

	× 	φ	. . .× 	φ. (3.8) 

Т. е. у нас есть гауссова часть – интеграл вида 

<𝑑φ%𝑒*Q'
"
φ2 . . . φ2 . (3.9) 

Т. е. мы его дискретизировали. Решается это так: нарисуем эти поля в 
пространстве (см. рис. 3. 1). Когда гауссов интеграл не пересекается с какой-то из точек 
взаимодействия или с какой-то из внешних точек, то в силу локальности мы опускаем 
все остальные члены в интеграле, кроме свободного интеграла т. е. части с 𝑆=HSS. 
Свободный интеграл – это решение свободной теории поля. Визуализируется оно по 
фейнмановскому принципу.  

 

Диаграмма Фейнмана 

Дальше надо думать, какие способы свободного распространения полей 
существуют между фиксированными точками. 

 
Рис. 3.  1. Диаграмма Фейнмана, показывающая связь между точками пространства 

де Ситтера в КТП. 

 

Интеграл после всех преобразований выглядит так: 

<𝑑𝑦©λ& 	<𝐷φ	𝑒%O$%&& 		(λφ(𝑦%)#)&
T

× φ(x)…× φ(𝑥). (3.10) 

Важно, что взаимодействие локально.  

Можем рассуждать про 𝑦% как про источники поля. Можем тогда рассмотреть 
гауссов интеграл с источниками, для чего разработана своя теория с использованием 
комбинаторики и уравнения Кляйна-Гордона для свободного поля. 

Всё вышеописанное верно и для евклидовых теорий. Это не так привязано ко 
времени, как можно было бы ожидать от КТП. 
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 Интеграл, тем не менее, не очень хорошо определён, неясно как считать его на 
практике. Нам нужно знать начальные условия для поля. Для этого надо указать, что 
происходит в далёком прошлом, т. е. обозначить нижний предел у интеграла. 
  

in-in формализм 

 Если мы хотим посчитать функцию 3.5, то надо проэволюционировать поля. 
Пусть есть некоторая волновая функция, усредняя по которой мы хотим посчитать поля. 
Тогда для каждой волновой функции мы должны записать свой интеграл. 

< ψ|φφ. . . φ|ψ >, 

для	 < ψ| 	→ <𝐷φбра 	𝑒%O, 

для	|ψ >→ <𝐷φкет 	𝑒%O. 

 И тогда будет два типа вершин на картинке 3.1, одни будут приходить из бра-
интеграла, другие – из кет-интеграла. При изучении S-матрицы такого не происходит, 
так как там матрица in-out. Приготовленное состояние там эволюционирует во времени, 
и смотрят на результат. В космологии же нас интересуют именно корреляционные 
функции, в которых эволюционируют как бра-, так и кет-состояния. 

Важно помнит, что в свободных теориях, подобных этой, могут быть разные 
условия по времени на бесконечности. 

 

Свободная теория в пространстве де Ситтера 

Попробуем решить уравнения Кляйна-Гордона. 

⊡φ−𝑚!φ = 0. (3.11) 

Д’Аламбертиан можно переписать следующим образом: 

⊡=
1

U|𝑔|
∂%𝑔%2U|𝑔| ∂% . (3.12) 

Мы хотим найти функцию Грина – решение следующей задачи: 

⊡? 𝐺(𝑥, 𝑦) = δ(𝑥, 𝑦). (3.13) 

Поле скалярное, а значит функция 𝐺(𝑥, 𝑦) будет зависеть от некоторого 
инварианта длины в пространстве де Ситтера. Выберем его как 

ξ = (𝑥 − 𝑦)!. (3.14) 
Благодаря уравнению вложения нет потребности доказывать, что это инвариант, 

так как группа SO(1,4) унаследована от преобразований Лоренца, где величина ξ – 
инвариант. Соответственно он же и инвариант всех преобразований в пространстве де 
Ситтера. 

⊡? 𝐺(ξ) = 𝐷[𝐺(ξ). (3.15) 
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𝐷[ – дифференциальный оператор. Можно выбрать конкретные точки x, y, провести 
параметризацию, там найти, что это за оператор. 

 Выберем глобальную систему координат и в ней две точки. Разнесённые только 
по времени (см. рис. 3. 2). 

−𝑑𝑡! + 𝑐𝑜𝑠ℎ!𝑡𝑑!Ω# (3.16) 
Тогда 

ξ = −4𝑠𝑖𝑛ℎ!
𝜏?𝜏\
2

. (3.17) 

 Получим: 

⊡=
∂!

∂τ!
+ 𝑑𝑐𝑜𝑠ℎτ

∂
∂τ
. (3.18) 

где d – число пространственных координат. 

 

 
Рис. 3.  2. Две точки в глобальной системе координат. 

   

(⊡?	− 𝑚!)		G(ξ) 	= 	ξ(4	 − 	ξ)
∂!

∂ξ! 	+ (𝑑 + 1)(2 − 	ξ)
∂
∂ξ −	𝑚

!𝐺(	ξ).				 (3.19) 

Это дифференциальное уравнение с одной переменной второго порядка с 
полиномиальными коэффициентами. У этого уравнения есть три регулярные особые 
точки: ξ = 	 {4, 0,∞}. Такое уравнение называется гипергеометрическое уравнение. 
Решением его является гипергеометрическая функция. 

Одно из определений гипергеометрической функции – это решение следующего 
уравнения: 

¶𝑧(1 − 𝑧)
∂!

∂z! +
(𝑐 − (𝑎 + 𝑏 + 1)𝑧) − 𝑎𝑏¹ 𝐹 = 0. (3.20) 

𝐹7(𝑎, 𝑏, 𝑐; 𝑧) – решение этого уравнения. 

Иначе: 



 

КВАНТОВАЯ ТЕОРИЯ ПОЛЯ В КОСМОЛОГИИ   
ГОРБЕНКО ВИКТОР ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

24 
 

 

𝐷[𝑊(ξ) = 0. (3.21) 

𝐹7 ½
𝑑
2 + 𝑖ν,

𝑑
2 − 𝑖ν,

𝑑 + 1
2 ; e

−3
4 f¿ .

(3.22) 

𝑚! =
𝑑
4
+ ν!. (3.23) 

Рассмотрим подробнее точки ξ = 	 {4, 0,∞}. Интересная точка 4. При одинаковом 
времени в обеих точках эта точка будет антиподальной точкой де Ситтера. Т. е. точка 
находится на противоположном конце Вселенной.  При подсчёте коммутаторов полей 
мы столкнёмся с мнимыми частями пропагаторов полей. Если мнимая часть развивается 
у антиподальной точки, то это как будто бы операторы в антиподальных точках не 
коммутируют, а это приводит к нарушению причинности. Поэтому надо выбирать 
функцию таким образом, чтобы у неё не было сингулярности на другом конце 
Вселенной. 

Посмотрим на плоскость ξ, изображённую на рис. 3. 3. У неё будет разрез (красная 
линия). Там появляется мнимая часть у функции, а в остальной области ξ действительная. 
Т. е. действительная она в области (𝑥 − 𝑦) > 0. Тогда инвариант ξ времениподобный.  

Формализм вложения в пространство Минковского позволяет нам такие факты 
быстрее и правильнее подмечать. 

 
Рис. 3.  3. Плоскость 𝜉, имеющая разрез. 

 

Различные пропагаторы должны знать, в какую сторону идёт при лоренцевой 
картине мира. Это свойство на языке функционального интеграла зашито в 𝑖𝜀-
предписание. Для этого делают следующее: 

τбра → τ(1 + 𝑖ε),
τкет → τ(1 − 𝑖ε).

(3.24) 

Это показывает, что на уровне КТП все идеи о временном упорядочении могут 
быть получены небольшой евклидинизацией пространства-времени. 

Чтобы закончить построения правил для вычислений корреляционных функций 
осталось добавить маленькие мнимые времена 3.24. Это добавит мнимую часть к ξ, и 
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тогда это доопределит пропагаторы, и когда мы начнём интегрировать вершины 
диаграммы Фейнмана по пространству-времени, интервал ξ	будет стремить к 0, и в 
зависимости от 𝑖𝜀 скажет нам идти над или под разрезом. Т. е. это доопределяет все 
интегралы по x и y. 

Функция ведёт себя следующим образом: 

𝐹7 ½
𝑑
2 + 𝑖ν,

𝑑
2 − 𝑖ν,

𝑑 + 1
2 ; e

−3
4 f¿~ξ

*]! . (3.25) 

 Т. е. у неё есть сингулярность, и при решении уравнений нужно выбрать 
правильное 𝑖𝜀-предписание.  

Функциональный интеграл по сути – набор фейнмановских диаграмм, точки 
которых соединяются пропагаторами вида гипергеометрических функций (каждая линия 
диаграммы соответствует гипергеометрической функции), каждая линия должна быть 
доопределена на разрезе с помощью 𝑖𝜀-предписания. На данный момент это самый 
простой способ для расчётов корреляционных функций в пространстве де Ситтера 
Математика тем не менее, в этом методе построена так, что позволяет считать и 
наблюдаемые внутри статического патча и многие другие вещи. 

 

Связь де Ситтера и сферы 

Нарисуем комплексную τ – плоскость. Интегрируем вдоль оси абсцисс. А затем 
перейдём к контуру, изображённому на рис. 3. 4. Это контур Хартла-Хокинга. На этом 
контуре 

τS = 𝑖τ. (3.26) 
Метрика: 

𝑑τS! + 𝑐𝑜𝑠!τS𝑑#Ω#. (3.27) 

Этот кусочек – трёхмерная полусфера.  
Про пространство де Ситтера с точки зрения КТП можно думать так: 

пространство де Ситтера – расширяющийся гиперболоид, берущий начало от 
евклидовой полусферы. Такой взгляд на картину мира перспективен для теории 
квантовой гравитации. 

Подход Хартла-Хокинга позволяет вместо сингулярности в момент рождения 
Вселенной обойтись гладкой евклидовой сферой. Кривизна при этом ~𝐻' ≪ 𝑀^

!. 
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Рис. 3.  4. Плоскость 𝜏, и контур Харлта-Хокинга. 

 
Статический патч и сфера 

Вспомним метрику статического  патча: 

−(1 − 𝑟!)𝑑𝑡! +
𝑑𝑟!

1 − 𝑟!
+ 𝑟!𝑑Ω!!. (3.28) 

 Если 𝑡J → 𝑖	φ, то также получится метрика на четырёхсфере: 

(1 − 𝑟!)𝑑φ! +
𝑑𝑟!

1 − 𝑟!
+ 𝑟!𝑑Ω!!. (3.29) 

 Т. е. это ещё одна связь де Ситтера со сферой. Такое продолжение на сферу тесно 
связано со Шварцшильдским евклидовым продолжением, где тоже появляется 
компактное временное направление, соответствующее термальной физике. Это идея 
Гиббонса-Хокинга. 
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ЛЕКЦИЯ 4. ГОРИЗОНТ СОБЫТИЙ, КОНЕЧНАЯ ТЕМПЕРАТУРА, 
ЭНТРОПИЯ. 

Повторение. 

 Мы обсудили торию возмущения на КТП в пространстве де Ситтера. Для 
подсчёта корреляторов полей есть следующий метод: просуммировать по различным 
вершинам диаграммы Фейнмана вблизи бесконечности (см. рис. 3. 1). Каждой линии 
соответствует пропагатор – гипергеометрическая функция. Доопределяются интегралы 
с помощью 𝑖ε – предписания. 

 Кроме того можно связать пространство де Ситтера с евклидовой сферой, заменив 
на неё нижнюю часть гиперболоида (см. рис. 4. 1). 

 
Рис. 4.  1. Пространство де Ситтера + сфера. 

 

Для статического патча также рассмотрела связь с евклидовой сферой. 
Концептуально отличается от предыдущего случая тем, что будет присутствовать 
периодичность в выражении: 

𝑡J → 𝑖φ, φ = 0…2π. (4.1) 
 Картинка в данном случае тоже изменится – рис. 4. 2. 

 
Рис. 4.  2. Статический патч пространства де Ситтера. 

  
 Наличие такого продолжения соответствует наличию термальности в 
статическом патче. Дуги φ = 0	и	φ = 	2π отождествлены, поэтому и есть 
периодичность, однако отождествлять их не обязательно, но правильно.  

  



 

КВАНТОВАЯ ТЕОРИЯ ПОЛЯ В КОСМОЛОГИИ   
ГОРБЕНКО ВИКТОР ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

28 
 

 

Конечная температура. 

Конечная температура  — это периодичность по евклидову времени. 

Вспомним статистическую функцию при конечной температуре. 

𝑍(β) = Tr𝑒*_4 , β =
1
𝑇 .

(4.2) 

Перепишем через волновые функции: 

ψ(φ′) = 𝑒*_4ψ(φ). (4.3) 

Положим φ′ = 	φ и проинтегрируем по φ для получения Tr. У нас есть 
функциональный интеграл, который нам даёт эволюцию волновой функции в некоторой 
области (рис. 4. 3): 

ψ(φ′) = < 𝑒%O
Q`

Q

(. . . ). (4.4) 

 
Рис. 4.  3. Область интегрирования функционального интеграла. 

 

Эволюция тождественна следующей операции в квантовом формализме: 

𝑒%4("(*"")4ψ(φ). (4.5) 

(Про это можно прочитать в книге Фейнмана про функциональный интеграл). 

Вкратце необходимо записать лагранжиан (rкоторый входит в действие S) в виде 
ℒ = 𝐻 + 𝑝𝑞̇, (4.6) 

Если аккуратно дискретизовать шрёдингеровскую эволюцию 4.5 и вставить 
разложение единицы в импульсном и координатном представлении, то часть 𝑝𝑞̇ там 
появится. 

Вернёмся к нахождению 𝑍(β). Проделаем эволюцию в евклидовом времени β, 
склеиваем φ,φ′ и интегрируем. Получим теорию поля на цилиндре радиусом β (рис. 4. 
4). 

𝑍(β) = < 	𝑒*O(… )
цилиндр

. (4.7) 
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Рис. 4.  4. Цилиндр евклидова пространства. 

 

Каждая линия на цилиндре на рис. 4. 4 соответствует трёхмерному пространству, 
и поворачиваясь вокруг оси цилиндра мы смещаемся на евклидово время. Если мы хотим 
взять Tr по евклидовому пространству, то φ = φ′ – соответствует гладкой склейке. После 
этого интегрируем. 

 

Термальное среднее. 

Термальное среднее – это усреднение по ансамблю: 

Tr𝑒*_4𝑂7𝑂! ≡< 𝑂7𝑂! >_. (4.8) 

Пусть  

𝑂7 ≡ 𝜑(𝑥⃗7, 𝑡), 𝑂! ≡ 𝜑(𝑥⃗!, 𝑡). (4.9) 
Эволюционировать можно и по лоренцовскому, и по евклидовому времени. 

Конечная температура – это периодичность корреляторов по евклидову времени. 
Пример: 2D конформная теория поля. Коррелятор в такой теории: 

< 𝑂f𝑂f >=
1
𝑍!f .

(4.10) 

Затем имеется конформное отображение плоскости на цилиндр: 

𝑍 = 𝑒%g_. (4.11) 

Тогда корреляционные функции преобразуются по следующему закону: 

< 𝑂f(𝑍7)𝑂f(𝑍!) >= e
∂𝑍7
∂ω

∂𝑍!
∂ωf

f

< 𝑂E𝑍7(ω), 𝑍!(ω)F >	= (4.12) 

и eсли проделать все вычисления, получим 

= (𝑠𝑖𝑛ωβ)f. (4.13) 
  

Примеры геометрий с термальными свойствами. Пространство Риндлера. 

Таких геометрий 3: де Ситтер, Риндлер, Шврацшильд. 

(Из литературы подойдут лекции Hartman; “Introduction to black holes…” – 
Susskind) 
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Риндлер – самый простой и фундаментальный пример. Пространство Риндлера – 
это по сути пространство Минковского, но с другими координатами, соответствующими 
ускоренному наблюдателю. 

𝑡 = 𝑠𝑖𝑛ℎ𝑢 ∗ ρ, 𝑋7 = 𝑐𝑜𝑠ℎ𝑢 ∗ ρ, 𝑋!… ,𝑋#… (4.14) 

На световом конусе координаты будут выглядеть так, как красные линии на рис. 
4. 5. 

 
Рис. 4.  5. Световой конус пространства Риндлера. 

 

 Нарисуем ещё диаграмму Пенроуза для пространства Риндлера – рис. 4. 6. 

 
Рис. 4.  6. Диаграмма Пенроуза пространства Риндлера. 

 

 Метрика имеет следующий вид: 

𝑑𝑠! = −𝑑𝑢!ρ! + 𝑑ρ! + 𝑑𝑋!! + 𝑑𝑋#!. (4.15) 

 Пространство Риндлера – пространство с конечной температурой. Переходим в 
метрике 4.15: 

𝑢 → 𝑖φ, φ = [0. . .2π], φ(0) ≡ φ(2π). (4.15) 
Имеем: 

𝑑𝑠! = 𝑑ρ! + ρ!𝑑φ! + 𝑑𝑋!! + 𝑑𝑋#!. (4.16) 

Т. е. просто евклидово 4D-пространство. 
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Ускоряющийся наблюдатель в правой части графика 4. 5 не имеет связи с левой 
частью конуса. Т. е. эта область в своём роде является термостатом для правой части 
(heat bath). 

 

Примеры геометрий с термальными свойствами. Пространство 
Шварцшильда. 

Вспомним метрику: 

−e1 −
𝑀
𝑟 f

𝑑𝑡! +
𝑑𝑟!

¡1 −𝑀𝑟 ¢
+ 𝑟!𝑑𝛺!!. (4.17) 

Приближаемся к горизонту 𝑟	 → 𝑀	 + 	δ𝑟. Диаграмма Пенроуза на рис. 2. 9. 

Получим: 

−
δ
𝑀
𝑑𝑡! +

𝑀
δ𝑟
𝑑𝑟! +𝑀!𝑑𝛺!!. (4.18) 

Переходим в евклидово: 𝑡	 → 𝑖	φ: 

δ𝑟𝑑φ!

𝑀
+
𝑀
δ𝑟
𝑑𝑟! +⋯ (4.19) 

и пытаемся привести эту метрику к регулярному виду, чтобы в точке δ𝑟	 = 	0 не было 
сингулярности. 

δ𝑟 = 𝑥!, (4.20) 
𝑥
𝑀
𝑑φ! +

𝑀
𝑥!
4𝑥!𝑑𝑥!. (4.21) 

  

 Сократим и перенормируем, чтобы избавиться от 4. Заменим для этого: 

𝑥 → 2√𝑀𝑥�. (4.22) 

 Тогда получим: 

𝑑𝑥�! +
𝑥�!

4𝑀! 𝑑φ
!. (4.26) 

 Нет сингулярности – значит φ = [0 … 2	π × 2𝑀]. 

 Локально пространство Риндлера и Шварцшильда очень похожи, однако 
температура, как видно из  φ = [0 … 2	π × 2𝑀]	отличается. Возможность поворота в 
евклидово – это следствие 𝑖ε-преписания, которое доопределяет нашу теорию.  

 Всё вышеописанное говорит о том, что поля «видят температуру» чёрной дыры 
как 

𝑇~
1
𝑀 . (4.27) 

  
Примеры геометрий с термальными свойствами. Пространство де Ситтера. 
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Рассматриваем статическую область. Формулы 3.28 и 3.29 применимы в данном 
вопросе. Температура будет: 

𝑇 = 2π𝐻. (4.28) 
Если взять гипергеометрическую функцию: 

𝐹7 e… ,1 −
ξ
4f =< φ(𝑥, 𝑡J7) ∗ φ(𝑥, 𝑡J!) > (4.29) 

и дальше взять и повернуть 𝑡J → 𝑡J + 2π𝑖. 
 Дальше на диаграмме Пенроуза статического патча (см. рис. 2. 7) для двух точек 
внутри патча с продолжением (𝑡J → 𝑡J + 2π𝑖 ) периодичность работает. Если точки вне 
патча – периодичность не работает. Это говорит о том, что мы правильно мыслим, когда 
склеиваем φ(0) ≡ φ(2π). 
 Поля на всех многообразиях – Риндлера, Шварцшильда, де Ситтера – ведут себя 
термально. 

 
Термальные свойства чёрной дыры. 

 Квантовые поля в присутствии чёрной дыры ведут себя как поля при конечной 
температуре. Если мы разрешим полям распространяться (где-то на бесконечности есть 
вакуум), то чёрная дыра будет вести себя как абсолютно чёрное тело. Это и есть 
излучение Хокинга. 
 Температура чёрной дыры: 

𝑇 =
𝑀^E
!

𝑀
. (4.30) 

 Используем первый закон термодинамики: 

𝑑𝐸 = 𝑇𝑑𝑆, (4.31) 

𝐸~𝑀. (4.32) 
 Попробуем найти температуру чёрной дыры: 

𝑑𝑀 =
𝑑𝑆	𝑀^E

!

𝑀
, (4.33) 

𝑀 = 0 ⇒ 𝑆 = 0. (4.34) 

𝑆 =
𝑀!

𝑀^E
! =

𝐴𝑟𝑒𝑎
4π𝐺 , (4.35) 

где Area – площадь поверхности чёрной дыры – также задана её массой M. Формула 4.35 
– формула Бекенштейна-Хокинга, описывает энтропию чёрной дыры. 

 Как думать про энтропию чёрной дыры 𝑆h4? 

𝑆~𝑙𝑜𝑔𝑁. (4.36) 

𝑁h4 = 𝑒
iHSK
'Bj . (4.37) 
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𝑁h4 – число состояний чёрной дыры. Т. е. про чёрную дыру можно думать как 
про объект, в котором число микросостояний задаётся формулой 4.37. 

Важно, что мы рассматривали чёрную дыру в присутствии пробных полей. Если 
рассматривать её в вакууме, то начнут производиться поля таким образом, как если бы 
объект был конечной температуры. Если поля заполняют пространство вокруг – чёрная 
дыра будет находиться с ними в равновесии. 

В теории струн Вафа и Строминджер посчитала в очень симметричных ситуациях 
посчитали количество микросостояний чёрной дыры, но эти выводы очень 
специфические в силу строгих условий. 

 

Евклидов гравитационный интеграл и энтропия пространства-времени. 
Здесь полезно почитать работы Гиббонса, Хокинга, лекции Хартмана. Формула 

4.7 – работает для полей, и её можно включить следующее: 

𝑆 = 𝑆;
klm + 𝑆;4 . (4.38) 

Т. е. добавили гравитационное действие. Можно проинтерпретировать этот вклад 
как статистическую сумму гравитационных степеней свободы. Это пока что только 
гипотеза (вывода нет!). Это всего лишь экстраполяция метода на гравитацию. 

Евклидова геометрия изображена на рис. 4. 7. 

 
Рис. 4.  7. Евклидова геометрия. 

 

Лоренцова геометрия (диаграмма Пенроуза) – на рис. 4. 8. Чёрная дыра 
существует за горизонтом событий. В евклидовой части пространства нет части, который 
был чёрной дырой. Т. е. поля, которые никогда не были в чёрной дыре, могут 
«посчитать» её температуру. Плюс действие, посчитанное от чёрной дыры, даёт вклад в 
статистическую сумму, посчитанную для полей. 
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Рис. 4.  8. Диаграмма Пенроуза для лоренцевой геометрии. 

 

Тем не менее, считается, что тут нет никаких противоречий, и почти для любой 
чёрной дыры работает функциональный интеграл. 

𝑍(β) → E1 − β∂_F𝑙𝑜𝑔𝑍(β) = 𝑆SnLE(β). (4.39) 

𝑆SnLE = 𝐴𝑟𝑒𝑎. (4.40) 
Удивительно, но Area – это правильный ответ для энтропии чёрных дыр.  

Интеграл ∫𝐷 𝑔$.𝑒𝑥𝑝E−𝑆;4Ò𝑔$.ÓF всегда берётся «седлом», т. е. находится 
классическое решение δ𝑆	/	δ𝑔	 = 	0, добавляем 𝑆j4 и т. д.   

Получается, что расширили все методы курса на непосредственно расчёт 
энтропии чёрной дыры с учётом вклада массы чёрной дыры. Эти же методы применимы 
и к пространству де Ситтера: 

<𝐷𝑔$.𝑒*GO)*8ol+I, (4.41) 

откуда классическое решение де Ситтера (статический патч), затем после евклидова 
поворота – сфера. С точки зрения такой логики у пространства де Ситтера есть своя 
энтропия 𝑆j4. 

𝑆j4 =
𝐴𝑟𝑒𝑎горизонт

4π𝐺s
. (4.42) 

 Интерпретация этой энтропии пока что намного менее ясна, чем энтропия чёрной 
дыры. 

 Без ответа пока что и вопрос, почему всё сводится к площади поверхности чёрной 
дыры. 
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