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Лекция 1. Основные положения квантовой механики.

Первое положение квантовой механики.

Поведение системы в квантовой механике может описываться как в терминах
понятий, присущих частицам (масса, скорость, импульс), так и с помощью волновых
представлений (длина волны). Взаимосвязь устанавливает соотношение:

p “
h
λ

(1.1)

где λ – длина волны в вакууме, приписываемая частице с импульсом p; h “ 6.6262 ¨

10´34 Дж*с – Постоянная Планка.

Принцип неопределённости Гейзенберга.

Координату частицы r и её импульс p в любом состоянии одновременно опреде-
лить невозможно:

∆px ∆x ě
h̄
2

(1.2)

где px – проекция импульса на ось x; h̄ “ h
2π

.
Каждое состояние системы n частиц полностью описывается функцией координат

частиц и времени t – волновой функцией (функцией состояния системы):

Ψpx1, x2, x3, ..., xn, tq “ Ψptxu, tq “ Ψpτq (1.3)

Ψ существует во всем интервале измеряемых переменных, где она непрерывна,
конечна, однозначна, имеет непрерывные первую и вторую производную по коорди-
натам и интегрируема.

Пример: определить, удовлетворяют ли функции условиям, налагаемым на волно-
вые функции: на интервале на интервале Ещё примеры: Определить, удовлетворяют
ли функции условиям, налагаемым на волновые функции:

f “ sin
´

πx
l

¯

на интервале x P p0, lq

f “ tg
´

πx
l

¯

на интервале x P p0, lq

Ещё примеры: Определить, удовлетворяют ли функции условиям, налагаемым
на волновые функции:
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f “ e´kx2
, k ą 0

f “ ekx2
, k ą 0

Физический смысл волновой функции.

Ψ
˚
ptxu, tq Ψptxu, tq dx (1.4)

где txu – совокупность всех координат всех частиц. Физический смысл волновой
функции – вероятность того, что в момент времени t i-ая частица находится в интер-
вале координат от xi до xi ` dx.

Комментарий: * – Комплексное сопряжение – операция над комплексным чис-
лом, при которой вещественная часть остаётся постоянной, а мнимая – меняет знак.

Полная вероятность обнаружения частиц во всем пространстве равна их числу:

ż `8

´8

...

ż `8

´8

Ψ
˚
ptxu, tq Ψptxu, tq dx1 dx2 ... dxn “ n (1.5)

ВФ величина размерная:

rΨ
˚
pτqs “ τ

d
2 (1.6)

где d – размерность tτu.
Такой интеграл (1.5) называется нормой функции Ψ˚ptxu, tq, a p3n ` 1q-мерное

пространство – гильбертовым пространством. Гильбертово пространство – это обоб-
щение евклидова пространства: если Ψ˚ и Ψ j – принадлежат Гильбертову простран-
ству и квадратично интегрируемы, то их линейная комбинация: ciΨi ` c jΨ j (ci и c j –
произвольные комплексные числа) также является квадратично интегрируемой.

Напоминание: Скалярное произведение векторов:

x⃗a,⃗by “ axbx ` ayby ` azbz “ |a| ˆ |b| ˆ cos θ

Скалярное произведение ортогональных векторов равно 0. Скалярное произведе-
ние функций в гильбертовом пространстве:

ż `8

´8

...

ż `8

´8

Ψ
˚
i ptxu, tq Ψ jptxu, tq dx1 dx2 ... dxn “ n

Если скалярное произведение Ψi и Ψ j равно 0, то говорят, что функции ортого-
нальны.
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Рис. 1.1. Скалярное произведение векторов.

Нормированные волновые функции.

Введем множитель 1?
n для функции выше

ż `8

´8

...

ż `8

´8

Ψ
˚
ptxu, tq Ψptxu, tq dx1 dx2 ... dxn “ 1

Ортонормированные функции – ортогональные и нормированные:

ż `8

´8

...

ż `8

´8

Ψ
˚
i ptxu, tq Ψiptxu, tq dx1 dx2 ... dxn “ 1

ż `8

´8

...

ż `8

´8

Ψ
˚
i ptxu, tq Ψ jptxu, tq dx1 dx2 ... dxn “ 0

Пример ортонормированных волновых функции: доказать, что у частицы в одно-
мерной потенциальной яме 0 ă x ă a функции состояния ортонормированы:

Ψmpxq “

c

2
a

sin
´

πmx
a

¯

Тогда:

ż

ψ
˚
n ψmdx “

2
a

ż a

0
sin

´

πm
a

x
¯

sin
´

πn
a

x
¯

dx “
1
a

ż a

0

”

cos
´m ´ n

a
πx

¯

´

´ cos
´m ` n

a
πx

¯ı

dx “

"

1
pm ´ nq π

sin
´m ´ n

a
πx

¯

´
1

pm ` nq π
sin

´m ` n
a

πx
¯

*ˇ

ˇ

ˇ

ˇ

a

0
“

“
1
π

"

sin rpm ´ nqπs

m ´ n
´

sin rpm ` nqπs

m ` n

*

Принцип суперпозиции состояний.

Если система может находиться в нескольких состояниях Ψm, m “ 1, 2, ... то она
может находиться в любом состоянии, являющемся их суперпозицией:
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Ψ “
ÿ

i

ciΨi (1.7)

Каждой доступной измерению величине A в любом из возможных состояний со-
ответствует линейный эрмитов оператор Â. Оператор – символ, обозначающий мате-
матическую операцию (правило), с помощью которой из одной функции получается
другая. Каждому оператору отвечает уравнение типа:

Â f “ a f (1.8)

где a – собственное значение, в общем случае комплексное число: f – собственная
функция.

Пример действия операторов на функции:

Â “
d2

dx2

f pxq “ sin paxq

ùñ Â f pxq “ ´a2 sin paxq

Â “
d
dx

f pxq “ ex
ùñ Â f pxq “ ex

Линейный оператор.

Âp f ` gq “ Âp f q ` Âpgq

Âpa f q “ a Âp f q

где f , g – функции; a - любое число.

Линейность оператора обеспечивает выполнение принципа суперпозиции.

Эрмитов оператор – линейный оператор, обладающий свойством самосопря-
женности, т.е. совпадает со своим сопряженным:

ż

f ˚
1 pxq Â f2pxq dx “

ż

f ˚
2 pxq Â f1pxq dx

Собственные значения эрмитовых операторов – действительные числа, а их соб-
ственные функции образуют полный ортонормированный набор:
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ż

f ˚
i pxq f jpxq dx “ δi j “

$

&

%

1, i “ j

0, i ‰ j
(1.9)

Принцип соответствия.

В классическом пределе результаты, полученные квантово-механическими мето-
дами, переходят в результаты классической механики.

Таблица 1.1. Сравнение классической и квантовой механики.

Классическая механика Квантовая механика
Система характеризуется функцией
координат и времени:

Spq1, ..., qn, tq

S определяет состояние системы

Система характеризуется функцией
координат и времени:

Ψpq1, ..., qn, tq

Ψ определяет состояние системы
Функция S находится как решение
дифференциального уравнения:

Hpq1, ..., qn,
BS
Bq1

, ...,
BS
Bqn

, tq `
BS
Bt

“ 0

Функция Ψ находится как решение
дифференциального уравнения:

ih̄
BΨ

Bt
ĤΨ

Зная функцию S, можно определить
траектории частиц и вычислить на-
блюдаемые

Знаю функцию Ψ можно определить
траектории частиц и вычислить на-
блюдаемые

8
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Таблица 1.2. Операторы основных физических величин.

Переменная
Обозначение

переменной

Обозначение

оператора
Производимая операция

Координата r r̂ Умножение на r

Импульс p p̂ ´ih̄
´

B
Bx i ` B

By j ` B
Bz k

¯

“ ih̄∇

Кинетическая

энергия
p p̂ ´ h̄

2m

´

B2

Bx2 ` B2

By2 ` B2

Bz2

¯

Потенциальная

энергия
V prq V prq Умножение на V prq

Полная

энергия
p p̂ ´ h̄

2m

´

B2

Bx2 ` B2

By2 ` B2

Bz2

¯

`V prq

Коммутаторы.

В применении коммутаторов важен порядок действия оператора на функцию

ÂB̂ f “ Â pB̂ f q “ Âg, g “ B̂ f

В общем случае ÂB̂ f ‰ B̂Â f .

Коммутатор:

rÂ, B̂s “ ÂB̂ ´ B̂Â

Если коммутатор равен нулю, то результат действия операторов Â и B̂ на неко-
торую функцию не зависит от последовательности их применения Такие операторы
являются коммутирующими.

* Собственные функции одного оператора являются также собственными функ-
циями другого оператора, с которым он коммутирует.
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* Для физических величин, соответствующих некоммутируемым операторам, су-
ществует теоретический предел точности одновременного измерения (или прин-
цип неопределенности).

Пример: рассчитать коммутатор rx̂, p̂xs:

px̂ p̂x ´ p̂xx̂q f pxq “ x̂ p̂x f pxq ´ p̂xx̂ f pxq “

“ x
ˆ

´ih̄
B

Bx

˙

f pxq ´

ˆ

´ih̄
B

Bx

˙

x f pxq “

“ ´ih̄x
B f
Bx

` ih̄ f pxq ` ih̄x
B f
Bx

“ ih̄ f pxq ùñ

ùñ x̂ p̂x ´ p̂xx̂ “ ih̄

Функция Гамильтона.

В классической системе эволюция во времени определяется функцией Гамильто-
на:

Hptxu, tpu, tq “ T `U (1.10)

В квантовой механике ей соответствует оператор Гамильтона (гамильтониан):

Ĥ “ T̂ `Û (1.11)

Зависящая от времени волновая функция удовлетворяет нестационарному урав-
нению Шрёдингера:

Ĥ Ψ “ ih̄
BΦptxu, tq

Bt
(1.12)

Пример: для молекулярных систем из M ядер и N электронов. Кинетическая
энергия ядер:

TяpRq “ ´
h̄2

2

M
ÿ

a

1
Ma

∇
2
a

где Ma – масса ядра a, m – масса электрона, h̄ – постоянная Планка, ∇2 – оператор
Лапласа. Дифференцирование ведется по координатам ядер. Кинетическая энергия
электронов:

Tэprq “ ´
h̄2

2m

N
ÿ

i

∇
2
i
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где дифференцирование ведется по координатам электронов:

∇
2

“
B2

Bx2 `
B2

By2 `
B2

Bz2

следовательно

∇
2 f prq “

B2 f
Bx2 `

B2 f
By2 `

B2 f
Bz2

Рассчитаем различные операторы:

1) Оператор отталкивания ядер VяяpRq “
řM

a
řM

b
ZaZbe2

4πε0Rab
, a ‰ b;

2) Оператор притяжения электронов к ядрам: VэяpR,rq “
řM

a
řN

i
Zae2

4πε0rai

3) Оператор отталкивания электронов VээpRq “
řN

i
řN

j
e2

4πε0ri j
, i ‰ j

где Za,Zb – атомные номера элементов, rai – расстояния между ядрами и электро-
нами, ri j – расстояние между электронами, ε0 – электрическая постоянная.

Разделение временных и пространственных переменных.

Если оператор Ĥ явно не зависит от времени, можно разделить переменные:

Φptxu, tq “ Ψptxuq Fptq

Fptq Ĥ Ψptxuq “ ih̄ Ψptxuq
BFptq
Bptq

Поделим на обе части уравнения на Ψptxuq Fptq и получим:

1
Ψptxuq

Ĥ Ψptxuq “
ih̄

Fptq
BFptq

Bt

Правая часть зависит только от t, левая – от txu. Это возможно только если обе
части по отдельности равны одной и той же величине:

ĤΨptxuq “ E Ψptxuq

ih̄
BFptq

Bt
“ E Fptq

Fptq “ e´ iE
h̄ t

(1.13)

Тогда полная волновая функция примет вид:
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Φptxu, tq “ Φptxuq e´ iE
h̄ t

Отсюда следует, что плотность вероятности не зависит от времени и определя-
ется только пространственной частью. Уравнение (1.13) – стационарное уравнение
Шредингера (не зависящее от времени).

Значения величины , которые могут быть измерены, являются собственными зна-
чениями ai, уравнения на собственные значения: ÂΨi “ aiΨi. Собственные функции
Ψi есть волновые функции, описывающие возможные состояния системы, в которых
проводятся измерения. Иначе это можно сказать так: решение уравнения Шредин-
гера есть решение задачи на собственные значения для оператора полной энергии
системы Ĥ. Набор (спектр) собственных значений Ei и набор собственных функций
Ψi гамильтониана полностью характеризуют систему:

ĤΨ “ EiΨi, E0 ď E1 ď E2 ď ... ď En

Среднее значение величины для системы, находящейся в состоянии i, определя-
ется выражением:

xaiy “

ż

Ψ
˚
i pxq Â Ψipxq dx

Если же за время измерения система успевает побывать в нескольких состояниях,
то справедлив принцип суперпозиции состояний:

xaiy “
ÿ

i

Wi

ż

Ψ
˚
i pxq Â Ψipxq dx,

ÿ

i

Wi “ 1

Его следует понимать таким образом: многократно повторяя измерения, мы будем
находить систему в состояниях, вероятность каждого из которых пропорциональна
Wi.

Тождественность частиц. Все одинаковые частицы тождественны. Именно по-
этому можно говорить о неразличимости электронов: замена одного из них другим
не может быть обнаружена экспериментально.
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Лекция 2. Атом водорода.

Атом водорода.

Рассмотрим простейшую систему – атом водорода, состоящий из одного ядра
(протон) и одного электрона. Запишем оператор Гамильтона для такой системы:

H “ Tя ` Tэ ` Uэя (2.1)

где

Tя – кинетическая энергия ядра;

Tэ – кинетическая энергия электронов;

Uэя – потенциальная энергия взаимодействия ядра с электронами;

Используя полученные ранее формулы для записи оператора кинетической энер-
гии и закон Кулона, перепишем гамильтониан (2.1):

H “ ´
h̄2

2M
∇

2
я ´

h̄2

2m
∇

2
э ` Vprq

Vprq “ ´
1

4πε0

Ze2

r

(2.2)

где

ε0 “ 8.85 ¨ 10´12 Ф/м – электрическая постоянная;

e “ 1.6 ¨ 10´19 Кл – заряд электрона;

m “ 9.11 ¨ 10´31 кг – масса электрона;

M “ 1.673 ¨ 10´27 кг – масса протона;

Z – зарядовое число атома (для водорода Z=1);

r – расстояние между ядром и электроном;

Чтобы найти волновую функцию атома водорода необходимо сначала отделить
поступательное движение атома как целого от других видов движения. Для этого
поместим центр масс системы в центр системы координат и введем приведённую
массу:

µ “
mM

m ` M
(2.3)
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определяющую положение центра масс системы.
Тогда, гамильтониан для такой системы можно переписать следующим образом:

Hцм “ ´
h̄2

2µ
∇

2
э ` Vprq (2.4)

Теперь подставляем этот гамильтониан в уравнение Шредингера, решение кото-
рого мы и будем искать:

„

´
h̄2

2µ
∇

2
э ` Vprq

ȷ

Ψprq “ E Ψprq (2.5)

где E – энергия, не учитывающая поступательное движение системы.
Формально, задача сводится к описанию движения отрицательно заряженной ча-

стицы с зарядом e и приведенной массой µ относительно центра масс.

Рассмотрим подробнее атом водорода как систему. Поскольку масса протона во
много раз больше массы электрона (M “ 1836m), а размеры ядра („ 10´14 м) во много
раз меньше расстояния до электрона, то можно считать, что:

1) Положение центра масс практически совпадает с положением ядра;

2) Ядро можно считать точечным;

3) Поле, создаваемое ядром – центральное;

4) Движение в атоме водорода рассматривается как движение электрона в поле
ядра.

Переход из декартовой в сферическую систему координат.

Поскольку данная система обладает центральной симметрией, то гораздо проще
с ней будет работать используя сферическую систему координат (Рис. 2.1).

Совмещая начало координат с положением ядра, выразим координаты в декар-
товой СК с координатами в сферической:

x “ r sin θ cos ϕ

x “ r sin θ sin ϕ

x “ r cos θ

r “
a

x2 ` y2 ` z2

(2.6)

где
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0 ď r ď 8

0 ď θ ď π

0 ď ϕ ď 2π

Рис. 2.1. Связь сферической и декартовой систем координат.

Зная как связаны декартова и сферическая системы координат, запишем как бу-
дет выглядеть оператор Лапласа в сферической СК:

∇
2
r,θ ,ϕ “

1
r2

"

B

Br

ˆ

r2 B

Br

˙

`
1

sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

`
1

sin2 θ

B2

Bϕ2

*

(2.7)

Теперь подставим это выражение в уравнение Шредингера (2.5), перегруппировав
слагаемые:

"

1
r2

B

Br

ˆ

r2 B

Br

˙

`
1

r2 sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

`
1

r2 sin2 θ

B2

Bϕ2

*

Ψpr,θ ,ϕq`

`
2µ

h̄2 rE ´V prqs Ψpr,θ ,ϕq “ 0

Домножаем обе части на r2 и группируем по частям, которые зависят только от
r,θ ,ϕ :
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"ˆ

B

Br

„

r2 B

Br

ȷ

` r2 2µ

h̄2 rE ´V prqs

˙

`

`

ˆ

1
sin θ

B

Bθ

„

sin θ
B

Bθ

ȷ

`
1

sin2 θ

B2

Bϕ2

˙*

Ψpr,θ ,ϕq “ 0
(2.8)

где первое слагаемое в фигурных скобках представляет собой оператор, действу-
ющий на r, а второе – оператор, действующий на pθ ,ϕq.

Для простоты разделим это уравнение на радиальную и угловую части, которые
будем решать отдельно. Для этого перепишем волновую функцию в виде:

Ψpr,θ ,ϕq “ Rprq Ypθ ,ϕq (2.9)

Тогда, решение уравнения (2.8) сведется к решению двух уравнений для ради-
альной:

"ˆ

B

Br

„

r2 B

Br

ȷ

` r2 2µ

h̄2 rE ´V prqs

˙*

Rprq “ λ Rprq (2.10)

и угловой:

"

1
sin θ

B

Bθ

„

sin θ
B

Bθ

ȷ

`
1

sin2 θ

B2

Bϕ2 ` λ

*

Ypθ ,ϕq “ 0 (2.11)

частей уравнения.
Здесь λ – постоянная разделения.

Рассмотрим уравнение (2.11) подробнее. Для дальнейшего решения домножим его
на sin2θ . После домножения первое и третье слагаемое в фигурных скобках будут
зависеть только от θ , а второе только от ϕ . Тогда, снова разделим переменные и
представим угловую функцию в виде произведения:

Ypθ ,ϕq “ Θpθ q Φpϕq (2.12)

Тогда решение уравнения (2.11) сведется к решению следующих уравнений:

"

sin θ
B

Bθ

„

sin θ
B

Bθ

ȷ

` pλ ´ m2
q sin2

θ

*

Θpθ q “ 0

B2

Bϕ2 Φpϕq ` m2
Φpϕq “ 0

(2.13)
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Условия нормировки для волновой функции.

Перед тем как решать, нужно выполнить условие нормировки. После разделения
переменных мы имеем функцию:

Ψpr,θ ,ϕq “ Rprq Θpθ q Φpϕq (2.14)

для которой условие нормировки записывается как:

¡

V

|Ψpr,θ ,ϕq|
2 dV “

¡

V

|Ψpr,θ ,ϕq|
2 dx dy dz “

“

ż 8

0
|Rprq|

2 r2dr
ż

π

0
|Θpθ q|

2 sin θ dθ

ż 2π

0
|Φpϕq|

2 dϕ “ 1

(2.15)

где переход происходит к сферическим переменным происходит через единицу
выражение единицы объема, по которой происходит интегрирование:

dV “ dx dy dz “ r2 sin θ dr dθ dϕ (2.16)

Интеграл (2.15) в таком случае разбивается на три независимых интеграла, для
которых условие нормировки записывается как:

ż 8

0
|Rprq|

2 r2dr “ 1
ż

π

0
|Θpθ q|

2 sin θ dθ “ 1
ż 2π

0
|Φpϕq|

2 dϕ “ 1

(2.17)

Начнем с поиска решения для Φpϕq. Изменение угла может рассматриваться как
вращение электрона в плоскости, которое описывается уравнением бегущей волны:

Φmpϕq “ a eimϕ
“ a pcos pmϕq ` i sinpmϕqq (2.18)

Согласно условию однозначности, один полный оборот приводит систему в исход-
ное состояние:

Φpϕq “ Φpϕ ` 2πq

Используя это свойство, находим переменную m:
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a eimϕ
“ a eimpϕ`2πq

“ a eimϕei2mspi

Поскольку

ei2mπ
“ 1

то

cos p2mπq ` i sin p2mπq “ 1

Следовательно

cos p2mπq “ 1

i sin p2mπq “ 0
ùñ m “ 0, ˘1, ˘2... (2.19)

Подставляя выражение для функции Φpϕq (2.18) в условие нормировки для этой
функции (2.17):

ż 2π

0
|Φpϕq|

2 dϕ “ a2
ż 2π

0
eimϕe´imϕ dϕ “ a22π “ 1

находим, что

a2
“

1
2π

Тогда, с учетом полученных значений для m (2.19), записываем решение для Φpϕq:

Φpϕq “
1

?
2π

eimϕ

m “ 0, ˘1, ˘2...
(2.20)

Теперь найдем решения для функции Θpθ q:

"

sin θ
B

Bθ

„

sin θ
B

Bθ

ȷ

` pλ ´ m2
q sin2

θ

*

Θpθ q “ 0

Для решения такого уравнения необходимо поделить обе части уравнения на sin2θ

и использовать условие на λ :

λ “ I pI ` 1q

где I – целое неотрицательное число, и I ě |m|.
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Тогда, решение записывается в виде присоединенных полиномов Лежандра:

Pm
l pcos θ q “ p´1q

l sinmθ

2ll!
dl`m

pd cos θ q
l`m sin2l

θ (2.21)

Нормированные присоединенные полиномы Лежандра.

Здесь нам также нужно нормировать полином Лежандра. Нормированный поли-
ном Лежандра выглядит следующим образом:

Pm
l pθ q “

"

2l ` 1
2

p1 ´ |m|q!
p1 ` |m|q!

*1{2

Pm
l pcos θ q

l “ 0,1,2, ...

m “ ´l, ...,0, ...,`l

(2.22)

Выпишем первые несколько значений нормированных присоединенных полино-
мов Лежандра:

Орбитальное

квантовое число l

Магнитное

квантовое число m
Pm

l pθ q

0 0 1
2

?
2

1
0

˘1

1
2

?
6 cos θ

1
2

?
3 sin θ

2

0

˘1

˘2

1
4

?
10 p3 cos2 θ - 1)

1
2

?
15 sin θ cos θ

1
4

?
15 sin2 θ

Зная выражения для функций Φpϕq (2.20) и Θpθ q (2.22), запишем выражение для
так называемой сферической гармоники Yl,mpθ ,ϕq (2.12):

Yl,mpθ ,ϕq “ p´1q
m`|m|

2

"

2l ` 1
2

p1 ´ |m|q!
p1 ` |m|q!

*1{2

Pm
l pcos θ q eimϕ (2.23)

Свойства сферических гармоник:
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1) Не зависят от вида центрального потенциала:

2) Являются четными при четных l и нечетными при нечетных l (четные функции
не меняют свой знак при изменении направления всех трех осей декартовой
системы координат):

3) При разных значениях l и одном и том же значении m функции ортогональны
друг другу.

Теперь рассмотрим радиальную часть уравнения Шредингера (2.10)

"ˆ

B

Br

„

r2 B

Br

ȷ

` r2 2µ

h̄2 rE ´V prqs

˙*

Rprq “ λ Rprq

Здесь первое слагаемое представляет собой член,характеризующий кинетическую
энергию, а второй – потенциальную энергию взаимодействия электрона с ядром.

Процесс, описываемый этим выражением эквивалентен движению тела приведен-
ной массы µ с импульсом p⃗ по поверхности сферы фиксированного радиуса r – такая
система называется жестким ротатором.

Поскольку центр масс системы практически совпадает с центром ядра (в силу
того что масса ядра много больше массы электрона), то можем совместить нача-
ло сферической системы координат с ядром и заменить приведенную массу массой
электрона.

Проекции оператора и квадрата углового момента.

Вспомним как выглядит вектор углового момента. В классической механике он
записывается как векторное произведение радиус-вектора и импульса тела:

L⃗ “ r⃗ ˆ p⃗

и направлен перпендикулярно векторам r⃗ и p⃗.

В квантовой механике оператор углового момента записывается как:

L̂ “ r̂ ˆ p̂ “ ´ih̄pr̂ ˆ ∇q

p̂ “ ´iih̄ ∇

(2.24)

Проекции оператора углового момента в декартовых координатах:
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Lx “ y pz ´ z py

Ly “ z px ´ x pz

Lz “ x py ´ y px

(2.25)

Компоненты оператора углового момента не коммутируют между собой:

rLx, Lys “ ih̄Lz

rLy, Lzs “ ih̄Lx

rLz, Lxs “ ih̄Ly

(2.26)

Проекции оператора углового момента в сферических координатах:

L̂x “ ih̄
ˆ

sin ϕ
B

Bθ
` ctg θ cos ϕ

B

Bϕ

˙

L̂y “ ´ih̄
ˆ

cos ϕ
B

Bθ
´ ctg θ sin ϕ

B

Bϕ

˙

L̂z “ ´ih̄
B

Bϕ

(2.27)

Соответственно квадрат оператора углового момента в сферических координатах
записывается как:

L̂2
“ L̂2

x ` L̂2
y ` L̂2

z “ ´h̄2
"

1
sin θ

B

Bθ

ˆ

sin ϕ
B

Bθ

˙

`
1

sin2θ

B2

Bϕ2

*

(2.28)

Отметим, что сферические гармоники Yl,mpθ ,ϕq (2.23) – собственные функции
для операторов L̂2 и L̂z с собственными значениями h̄m и h̄2lpl ` 1q:

L̂z Yl,m “ h̄m Yl

L̂2Yl,m “ h̄2lpl ` 1q Yl,m
(2.29)

Отметим важные свойства операторов L̂2 и L̂z:

1) Операторы L̂2 и L̂z имеют одну систему собственных функций, а значит комму-
тируют;

2) Оператор Лапласа есть часть гамильтониана, поэтому операторы L̂2 и L̂z также
коммутируют с оператором Ĥ;

3) L̂x и L̂y не коммутируют с L̂z, поэтому не существует такой угловой волновой
функции, которая была бы их общей собственной функцией, а также собствен-
ной функцией оператора L̂2.
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Орбитальное и магнитное квантовое числа.

Орбитальное квантовое число l – определяет длину вектора углового момен-
та.

Рис. 2.2. Пример для случая l “ 2.

Длина вектора углового момента определяется корнем из квадрата собственного
значения L2: L “ h̄

a

lpl ` 1q.

Магнитное квантовое число m – проекция вектора углового момента на ось
z. Принимает значения от ´l до l через единицу.

Например, при l “ 2 число m может принимать значения: m “ ´2, ´1, 0, `1 ` 2,
а возможные проекции на ось z: ´2h̄, ´h̄, 0, `h̄ ` 2h̄ (Рис. 2.2).

Поскольку операторы Ĥ, L̂2 и L̂z коммутируют, то можно измерить длину вектора
L и его проекции на ось z. Однако, так как оператор L̂z не коммутирует с операторами
L̂x и L̂y, значения проекций на оси x и y одновременно с этими величинами измерить
нельзя. В таком случае состояние с определенными значениями l и m представляет
собой поверхность дна конуса (Рис. 2.3).

Отметим еще некоторые свойства вытекающие из коммутационных соотношений:

1) Одновременно могут быть измерены энергия, вектор углового момента и одна
из проекций, тогда как две других остаются неизвестными:

2) Для каждого квантового числа m вектор равномерно распределен по дну кону-
са, охватывающей ось z.
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Рис. 2.3. Пространство возможных состояний для l “ 2.

Вернемся к полному уравнению Шредингера:

"

1
r2

B

Br

ˆ

r2 B

Br

˙

`
1

r2 sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

`
1

r2 sin2 θ

B2

Bϕ2

*

Ψpr,θ ,ϕq`

`
2µ

h̄2 rE ´V prqs Ψpr,θ ,ϕq “ 0

Сравнивая второе и третье слагаемые в фигурных скобках с выражением для опе-
ратора L̂2 (2.8) и используя то, что этот оператор является собственным для угловой
части волновой функции с собственными значениями (2.29), перепишем:

"

1
r2

B

Br

ˆ

r2 B

Br

˙

`
2m
h̄2

„

E ´V prq ´
h̄2lpl ` 1q

2mr2

ȷ*

Rprq “ 0 (2.30)

Перепишем это уравнение, записав в нем явно энергию кулоновского взаимодей-
ствия:

"

1
r2

B

Br

ˆ

r2 B

Br

˙

`
2m
h̄2

„

E `
1

4πε0

Ze2

r
´

h̄2lpl ` 1q

2mr2

ȷ*

Rprq “ 0 (2.31)

и выделим эффективный потенциал

Vэффprq “ ´
1

4πε0

Ze2

r
`

h̄2lpl ` 1q

2mr2 (2.32)

Здесь первый член обусловлен притяжением электрона к ядру (и если бы был
только он, то электрон бы просто упал на ядро), а второй – орбитальным движением
электрона, приводящим к возникновению центробежных сил.
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Решение уравнения (2.31) записывается в виде:

Rn,l “ ´

#

ˆ

2Z
na0

˙3
pn ´ l ´ 1q!

2nrpn ` lq!s3

+
1
2

ξ
l e´

ξ

2 L2l`1
n`l pξ q (2.33)

где L2l`1
n`l pξ q – обобщенные полиномы Лягерра:

Lk
zpξ q “

dk

dξ k

„

exp ξ

ˆ

dz rξ z expp´ξ qs

dξ z

˙ȷ

k “ 2l ` 1

z “ n ` l

ξ “
2Zr
na0

a0 “
4πε0h̄2

e2m
“ 0.529 ¨ 10´10м – радиус Бора

(2.34)

Обобщенные полиномы Лягерра. Главное квантовое число.

Посмотрим как выглядят первые члены полиномов Лягерра:

Главное

квантовое число n

Орбитальное

квантовое число l
Lk

zpξ q “ L2l`1
n`1 pξ q

1 0 L1
1pξ q “ ´1

2
0

1

L1
2pξ q “ ´2!p2 ´ ξ q

L3
3pξ q “ ´3!

3

0

1

2

L1
3pξ q “ ´3!

`

3 ´ 3ξ ´ 1
2ξ 2

˘

L3
4pξ q “ ´4!p4 ´ ξ q

L5
5pξ q “ ´5!

Выше мы ввели главное квантовое число n, которое определяет собственные
значения радиальной части уравнения Шредингера и принимает натуральные зна-
чения:
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n “ 1, 2, 3, ...

n ě l ` 1

Последнее условие свидетельствует о том, что спектр стационарных состояний
электрона в атоме водорода – дискретный, и не зависит от квантовых чисел l и m.
Энергия n-го уровня определяется следующим выражением:

En “ ´
Z2e2

2a0

1
n2 (2.35)

Радиальные части волновой функции.

Выпишем радиальные части волновой функции для различных состояний атома
водорода:

1s : R10 “ 2
ˆ

Z
a0

˙
3
2

e´ Zr
a0

2p : R21 “
1

?
3

ˆ

Z
2a0

˙
3
2

ˆ

Zr
a0

˙

e´ Zr
2a0

2s : R20 “ 2
ˆ

Z
2a0

˙
3
2

ˆ

1 ´
Zr
2a0

˙

e´ Zr
2a0

3d : R32 “
2
?

2
27

?
5

ˆ

Z
3a0

˙
3
2

ˆ

Zr
a0

˙2

e´ Zr
3a0

3p : R31 “
4
?

2
3

ˆ

Z
3a0

˙
3
2

ˆ

Zr
a0

˙ ˆ

1 ´
Zr
6a0

˙

e´ Zr
3a0

3s : R30 “ 2
ˆ

Z
3a0

˙
3
2

˜

1 ´
2Zr
3a0

`
2pZrq

2

27a2
0

¸

e´ Zr
3a0

(2.36)

Заметим, что функции, описывающих состояния 1s, 2p и 3d не содержат узлов,
по одному узлу содержат функции, описывающие состояния 2s и 3p и два узла для
состояния 3s.

Введем понятие радиальной функции распределения. Радиальная функция рас-
пределения – плотность вероятности нахождения электрона в шаровом слое dr между
значениями r и pr ` drq:

Pn,lprq dr “
ˇ

ˇRn,lprq
ˇ

ˇ

2 r2dr
ż 2π

0

ż

π

0

ˇ

ˇYl,mpθ ,ϕq
ˇ

ˇ

2 sin θ dθ dϕ “
ˇ

ˇRn,lprq
ˇ

ˇ

2 r2 dr (2.37)
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Не стоит путать с полной электронной плотностью |Ψpr,θ ,ϕq|
2, которая характе-

ризует вероятность нахождения электрона в окрестности некоторой точки простран-
ства.

Для того, чтобы найти наиболее вероятное расстояние между электроном и яд-
ром, необходимо продифференцировать радиальную функцию распределения и при-
равнять полученное выражение к нулю:

dP
dr

“ 0

Среднее значение расстояния между ядром и электроном вычисляется следую-
щим образом:

r “

ż 8

0
r Pprq dr

Ниже приведены иллюстрации того, как выглядят радиальные функции распре-
деления и радиальные части волновой функции (2.36) для различных состояний ато-
ма водорода.

Рис. 2.4. Радиальная функции распределения и среднее значение расстояния между
электроном и ядром (слева) и радиальная часть волновой функции (справа) для
состояния 1s атома водорода.
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Рис. 2.5. Радиальная функции распределения и среднее значение расстояния между
электроном и ядром (слева) и радиальная часть волновой функции (справа) для
состояния 2s атома водорода.

Рис. 2.6. Радиальная функции распределения и среднее значение расстояния между
электроном и ядром (слева) и радиальная часть волновой функции (справа) для
состояния 3s атома водорода.
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Рис. 2.7. Радиальная функции распределения и среднее значение расстояния между
электроном и ядром (слева) и радиальная часть волновой функции (справа) для
состояния 2p атома водорода.

Рис. 2.8. Радиальная функции распределения и среднее значение расстояния между
электроном и ядром (слева) и радиальная часть волновой функции (справа) для
состояния 3p атома водорода.
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Рис. 2.9. Радиальная функции распределения и среднее значение расстояния между
электроном и ядром (слева) и радиальная часть волновой функции (справа) для
состояния 3d атома водорода.

Рис. 2.10. Радиальная функции распределения для состояний с n “ 1, 2, 3 атома
водорода.
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Функция состояния. Энергетические состояния атома

водорода.

Запишем решение для волновой функции Ψpr,θ ,ϕq водорода (Z = 1) используя
найденные выражения для угловой (2.23) и радиальной (2.33) частей:

Ψpr,θ ,ϕq “ ´p´1q
m`|m|

2

#

ˆ

2
na0

˙3
pn ´ l ´ 1q!

2nrpn ` lq!s3

+
1
2 ˆ

2r
na0

˙l

ˆ

ˆ e´ r
na0 L2l`1

n`l

ˆ

2r
na0

˙ "

2l ` 1
4π

p1 ´ |m|q!
p1 ` |m|q!

*1{2

P|m|

l pcos θ q eimϕ

(2.38)

где

n “ 1, 2, 3, ...;

l “ 0, 1, 2, 3, ..., pn ´ 1q;

m “ ´l, p´l ` 1q, p´l ` 2q, ..., 0, ..., pl ´ 1q, l

Рассмотри энергетические состояния атома водорода. Мы уже говорили, что энер-
гия электрона на уровне определяется главным квантовым числом n:

En “ ´
Z2e2

2a0

1
n2 (2.39)

Состояния, имеющие одно и то же значение n, но разные l и m, имеют одинако-
вую энергию и называются вырожденными. В случае атома водорода кратность
вырождения также определяется главным квантовым числом:

n´1
ÿ

l“0

p2l ` 1q “ n2

Подставив физические константы в уравнение (2.39):

En “ ´
2.18 ¨ 10´18

n2

посчитаем энергию основного состояния (состояние с самой низкой энергией) ато-
ма водорода. Основному состоянию соответствует n “ 1, а следовательно

E1 “ ´2.18 ¨ 10´18 Дж “ ´13.56 эВ “ ´312.7ккал/моль

Более высоко лежащие состояния (n ą 1) называются возбужденными.
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n Энергия [Дж]

1 ´2.2 ¨ 10´18

2 ´5.5 ¨ 10´19

3 ´2.4 ¨ 10´19

4 ´1.4 ¨ 10´19

5 ´8.7 ¨ 10´20

10 ´2.2 ¨ 10´20

20 ´5.5 ¨ 10´21

Ниже приведем значения энергии для более высоких значений n.
Также приведем выражения для некоторых волновых функций.
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Лекция 3. Многоэлектронные атомы. Вариационный

метод. Базисные наборы.

Многоэлектронный атом.

Многоэлектронный атом – любой атом с числом электронов N ą 2. Тогда, каждый
электрон в таком атому движется в поле ядра и других электронов. Гамильтониан
такой системы записывается в виде:

Ĥ “ T̂эprq `V̂эяprq `V̂ээprq “

“ ´
h̄2

2m

N
ÿ

i

∇
2
i ´

N
ÿ

i

Ze2

4πε0ri
`

N
ÿ

i

N
ÿ

j

e2

4πε0ri j
, при условии i ă j

(3.1)

где

ri – радиус-вектор, соединяющий ядро и i-й электрон;

ri j – радиус-вектор i-й и j-й электроны;

Наличие членов, пропорциональных r´1
i j не позволяет разделить в сферических

координатах переменные в уравнении Шредингера и представить волновую функцию
в виде радиальной и угловой части.

Рассмотрим систему атома гелия: ядро (Z = 2) + 2 электрона в 1s состоянии.
Гамильтониан такой системы:

Ĥ “ T̂э, 1prq ` T̂э, 2prq `V̂эя, 1prq `V̂эя, 2prq `V̂ээprq (3.2)

Здесь первый член отвечает за кинетическую энергию первого электрона; второй
– за кинетическую энергию второго электрона; третий – за энергию взаимодействия
первого электрона с ядром; четвертый – за энергию взаимодействия второго элек-
трона с ядром; пятый – за энергию взаимодействия между электронами.

Расчет энергии основного состояния атома гелия.

Поскольку в данной системе электроны неразличимы между собой, то

T̂э, 1prq “ T̂э, 2prq

V̂эя, 1prq “ V̂эя, 2prq
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Это поможет упростить дальнейшие вычисления.

Выберем волновую функцию атома гелия следующим образом:

Ψ “ ϕ1pr1q ϕ2pr2q (3.3)

где ϕipriq – волновые функции атома водорода с заменой ядра Z на параметр ζ :

ϕ1sprq “

c

Z3

π
e´Zr Ñ ϕ1sprq “

c

ζ 3

π
e´ζ r

Используя такое представление (3.3) запишем среднее значение для некоторых
членов гамильтониана (3.2):

xT̂э, 1prqy “ ´
h̄2

2m

ż

ϕ
˚
1 pr1q ∇

2
1ϕ1pr1q dr1

xV̂ 1
эя, 1prqy “ ´

ż

ϕ
˚
1 pr1q

ζ e2

4πε0r1
ϕ1pr1q dr1

xV̂ 2
эя, 1prqy “ ´

ż

ϕ
˚
1 pr1q pZ ´ ζ q

e2

4πε0r1
ϕ1pr1q dr1

xV̂ээprqy “

ż

ϕ
˚
1

2
pr1q

e2

4πε0 |r1 ´ r2|
ϕ

2
2 pr2q dr1 dr2

(3.4)

Слагаемое отвечающее за энергию потенциального взаимодействия электрон-ядро
было разбито на две части (вторая и третья строчки в (3.4)), используя следующее
тождественное преобразование:

V̂эяprq “ ´
1

4πε0

Ze2

r
“ ´

1
4πε0

pZ ´ ζ qe2

r
´

1
4πε0

ζ e2

r
(3.5)

Такое преобразование позволяет нам упростить задачу. Заметим, что сумма xT̂э, 1prqy`

xV̂ 1
эя, 1prqy есть не что иное как энергия основного состояния атома водорода. Исполь-

зуя результат, полученный на прошлой лекции, запишем:

En “ ´
Z2e2

2a0n2

n“1
ZÑζ

ùñ xT̂э, 1prqy ` xV̂ 1
эя, 1prqy “ ´

ζ 2e2

2a0
(3.6)

Взяв интегралы для третьего и четвертого члена (3.4), получим

xV̂ 2
эя, 1prqy “ ´pZ ´ ζ q ζ

e2

a0

xV̂ээprqy “
5
8

ζ
e2

a0

(3.7)
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Таким образом полная энергия атома гелия:

E “

„

ζ
2

` ζ

ˆ

5
8

´ 2Z
˙ȷ

e2

a0
(3.8)

Теперь определим, при каком значении эффективного заряда ζ энергия системы
будет минимальна. Для этого дифференцируем по ζ :

BE
Bζ

“ 0

решая это уравнение находим, что при

ζ “ Z ´
5
16

“ 1.6875

энергия системы минимальна.
Подставляя это значение в формулу (3.8):

E “ ´

ˆ

Z ´
5

16

˙2 e2

a0
(3.9)

можем посчитать соответствующую энергию для атома гелия:

Z “ 2 ùñ E “ ´77.490эВ

(1 а.е. энергии = 27.21 эВ = 627.51 ккал/моль)

Наиболее точное значение, которое возможно получить = -79.014. То есть, мы
погрешность наших вычислений = 2%, что приемлемо, учитывая грубость модели.

Поясним физический смысл эффективного заряда. Действие одного электрона на
другой приводит к уменьшению действия на электроны положительного заряда ядра
(экранирование заряда ядра электронами или использование эффективного заряда
ядра).
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Рис. 3.1. Волновая функция 1s электрона атома гелия.

Вариационный принцип.

Любая система стремиться занять состояние с минимальной энергией, поэтому
приближенные решения уравнения Шредингера можно найти с помощью вариаци-
онного принципа, минимизируя энергию системы и определяя функции, макси-
мально близкие к собственным функциям гамильтониана Ĥ.

Вариационный принцип: среднее значение энергии Ei любого из возможных со-
стояний системы, вычисленное с приближенной волновой функцией, не может быть
ниже наименьшего значения E0 оператора Ĥ.

Среднее значение оператора Ĥ для некоторой приближенной "пробной"волновой
функции Ψ, нормированной на единицу:

E “

ż 8

´8

Ψ
˚
pxq Ĥ Ψpxq dx “ xΨ|Ĥ|Ψy (3.10)

Представим "пробную"волновую функцию в виде разложения по собственным
функциям оператора Ĥ, составляющим полный ортонормированный базис:

Ψ “

8
ÿ

i

ci Ψi (3.11)
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Общая вероятность найти систему в любом из состояний Ψi равна 1:

8
ÿ

i

|ci|
2

“ 1

Из условия нормировки функции Ψ:

xΨ|Ψy “

8
ÿ

i

c˚
i ci

ż `8

´8

Ψ
˚
i Ψi dx “ 1

находим, что

8
ÿ

i

c˚
i ci “

8
ÿ

i

|ci|
2

“ 1

Подставив (3.11) в (3.10) выразим полную энергию системы через энергии раз-
личных состояний:

E “ xΨ|Ĥ|Ψy “

8
ÿ

i

|ci|
2

ż 8

´8

Ψ
˚
i pxq Ĥ Ψipxq dx “

8
ÿ

i

|ci|
2 Ei (3.12)

где Ei – энергия i-го состояния. С увеличением номера i увеличивается энергия
состояния:

E “

8
ÿ

i

|ci|
2 Ei ě E0

8
ÿ

i

|ci|
2

“ E0

Следовательно:

E ě E0

Вывод: значения энергии, вычисленные с пробными функциями Ψ, обладающими
всеми свойствами волновых функций, являются оценками сверху для точной энергии
самого низкого по энергии состояния системы, называемого основным.

Чтобы решить уравнение Шредингера, нужно минимизировать выражение для
энергии, то есть подобрать такие волновые функции, для которых энергия будет
минимальна.

Принцип суперпозиции позволяет записать искомую волновую функцию в виде
линейной комбинации:

Ψ “

n
ÿ

i

ciϕi (3.13)
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где ϕi – n неортонормированных функций, часто называемых базисными, выбран-
ных из некоторых соображений: ci – переменные комплексные параметры.

Чтобы найти минимум энергии в таком представлении (3.13) нужно, чтобы все
первые производные энергии по параметрам ci равнялись нулю, а вторые производ-
ные были положительными:

BE
Bc0

“
BE
Bc1

“ ... “
BE
Bcn

“ 0

BE
Bc˚

0
“

BE
Bc˚

1
“ ... “

BE
Bc˚

n
“ 0

Мы воспользовались этим приемом при нахождении минимальной энергии систе-
мы атома гелия (мы использовали BE

Bζ
“ 0).

Исследование экстремальных значений функционалов осуществляется методами
вариационного исчисления: условие стационарности (минимум энергии) эквивалент-
но требованию обращения в ноль первой вариации:

δErΨs “ δ

ż 8

´8

Ψ
˚
pxq Ĥ Ψpxq dx “ 0 (3.14)

формально, это эквивалентно вычислению дифференциала.

Используя разложение по базису и условие нормировки волновой функции, запи-
шем

ż 8

´8

Ψ
˚
pxq Ψpxq dx “

n
ÿ

i

n
ÿ

j

c˚
i c j

ż 8

´8

ϕ
˚
i pxq ϕ jpxq dx “

n
ÿ

i

n
ÿ

j

c˚
i c j Si j “ 1

где

Si j “

ż 8

´8

ϕ
˚
i pxq ϕ jpxq dx

– интеграл перекрывания ϕi и ϕ j не равен нулю при i ‰ j, поскольку базис неор-
тогональный.

Метод неопределенных множителей Лагранжа.

Для того, чтобы решить уравнение (3.14) мы воспользуемся методом неопреде-
ленных множителей Лагранжа:
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δ

„
ż 8

´8

Ψ
˚
pxq Ĥ Ψpxq dx ´ E

ż 8

´8

Ψ
˚
pxq Ψpxqdx

ȷ

“

“ δ

n
ÿ

i

n
ÿ

j

c˚
i c j

„
ż 8

´8

ϕ
˚
i pxq Ĥ ϕ jpxq dx ´ ESi j

ȷ

“ 0

В вычислительной химии как правило все задачи решаются в матричной форме.
Гамильтониан в виде матрицы:

Ĥ “

»

—

—

—

—

–

H00 H01 ¨ ¨ ¨ H0n

H10 H11 ¨ ¨ ¨ H1n

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Hn0 Hn1 ¨ ¨ ¨ Hnn

fi

ffi

ffi

ffi

ffi

fl

где каждый матричный элемент Hi j оператора Ĥ в базисе ϕiprq вычисляется сле-
дующим образом:

Ĥi j “

ż 8

´8

ϕ
˚
i pxq Ĥ ϕipxq dx

Матрица интегралов перекрывания

S “

»

—

—

—

—

–

S00 S01 ¨ ¨ ¨ S0n

S10 S11 ¨ ¨ ¨ S1n

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Sn0 Sn1 ¨ ¨ ¨ Snn

fi

ffi

ffi

ffi

ffi

fl

определена тем же набором базисных функций ϕiprq, что и Ĥ.

Решаем:

δ

„
ż 8

´8

Ψ
˚
pxq Ĥ Ψpxq dx ´ E

ż 8

´8

Ψ
˚
pxq Ψpxqdx

ȷ

“

“ δ

n
ÿ

i

n
ÿ

j

c˚
i c j

„
ż 8

´8

ϕ
˚
i pxq Ĥ ϕ jpxq dx ´ ESi j

ȷ

“ 0

Отсюда получаем

n
ÿ

i

δc˚
i

n
ÿ

j

c j
“

Hi j ´ ESi j
‰

“ 0

n
ÿ

i

δc j

n
ÿ

j

c˚
i

“

Hi j ´ ESi j
‰˚

“ 0
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Каждое матричное уравнение получается из другого операцией комплексного со-
пряжения, поэтому достаточно рассматривать одно из них.

Поскольку все вариации δci независимы, матричные уравнения справедливы лишь
тогда, когда коэффициенты при вариациях равны нулю (значение i фиксируется для
каждой вариации, j – изменяется от 0 до n).

n
ÿ

j

c j
“

Hi j ´ ESi j
‰

, i “ 0, 1, 2, 3, ..., n

Приравниваем определитель матрицы Ĥ ´ ES к нулю:∣∣∣∣∣∣∣∣∣∣
H00 ´ ES00 H01 ´ ES01 ¨ ¨ ¨ H0n ´ ES0n

H10 ´ ES10 H11 ´ ES11 ¨ ¨ ¨ H1n ´ ES1n

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Hn0 ´ ESn0 Hn1 ´ ESn1 ¨ ¨ ¨ Hnn ´ ESnn

∣∣∣∣∣∣∣∣∣∣
При разложении определителя получаем многочлен n-й степени по E, то есть

определяем n различных вещественных значений энергии Ei, которые являются энер-
гиями состояний системы E0 ă E1 ă E2 ă ....

Чтобы найти функцию состояния необходимо подставить E0 в уравнение

n
ÿ

j

c j
“

Hi j ´ ESi j
‰

“ 0

и найти коэффициенты ci разложения

Ψ “

n
ÿ

i“0

ciϕi

Поскольку функция состояния линейно зависит от коэффициентов разложения
ci, данный метод называется линейным вариационным методом Ритца.

Важно:

1) Вариация функционала энергии на заданной совокупности базисных функций
(условие стационарности) не всегда приводит к абсолютному минимуму;

2) Качество полученной волновой функции существенно зависит от конкретного
выбора базисных функций, причем простое увеличение числа функций базиса
не обязательно улучшает волновую функцию – только полный (бесконечный)
базис мог бы обеспечить точное решение, что на практике недостижимо;
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3) Важно, чтобы базисные функции были линейно независимы, дабы избежать
плохой обусловленности системы линейных уравнений.

Базисные наборы.

Рассмотрим примеры базисных наборов, использующихся в квантовой химии.

Орбитали слейтеровского типа (STO):

spζ ,⃗rq “ cxnymzle´ζ r (3.15)

Они образованы функциями состояния водородоподобных атомов. Их мы и ис-
пользовали на этой и предыдущей лекциях. Они похожи на атомные орбитали, од-
нако их недостаток заключается в том, что для них достаточно сложно считать ин-
тегралы.

Более удобными могут служить Гауссовы орбитали (GTO):

gpα ,⃗rq “ cxnymzle´αr2
(3.16)

Для них проще считать интегралы, однако электронная плотность описывается
хуже (Рис. 3.2). Эту проблему можно нивелировать использованием линейной ком-
бинации GTO (Рис. 3.3).

Рис. 3.2. Описание орбитали с использованием орбиталей слейтеровского типа (STO)
– красная кривая; Гауссовых орбиталей (GTO) – синяя кривая.
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Рис. 3.3. Слева: использование орбиталей слейтеровского типа (STO) (красная кри-
вая) и комбинации из 2-х Гауссовых орбиталей (GTO) (синяя кривая); Справа: ис-
пользование орбиталей слейтеровского типа (STO) (красная кривая) и комбинации
из 3-х Гауссовых орбиталей (GTO) (синяя кривая).

Сжатые или контрактированные орбитали.

Как правило каждая базисная функция может состоять из одной гауссовой функ-
ции или из линейной комбинации гауссовых функций – контрактированных орбита-
лей. Например, базисная функция

χ “
ÿ

i

digi

есть линейная комбинация гауссовых функций

gi ´
ÿ

j

ai jG j

Основные декартовы Гауссианы.

Тип GTO n l m m+l+n Вид GTO
1s 0 0 0 0 N expp´αr2q

2px 1 0 0 1 N expp´αr2qx

2py 0 1 0 1 N expp´αr2qy

2pz 0 0 1 1 N expp´αr2qz

3dxx 2 0 0 2 N expp´αr2qx2

3dxy 1 1 0 2 N expp´αr2qxy

3dxz 1 0 1 2 N expp´αr2qxz

3dyy 0 2 0 2 N expp´αr2qy2

3dyz 0 1 1 2 N expp´αr2qyz
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3dzz 0 0 2 2 N expp´αr2qz2

Одними из самых популярных являются Попловские базисные наборы (или
валентно-расщепленные). Наборы могут быть двухэкспонентными или трехэкс-
понентными. В двухэкспонентных наборах используются 2 набора GTO, в трехэкс-
понентных – 3 набора.
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Некоторые базисные наборы Попла

Базисный
набор Описание

Число базисных функций
Неводородные Атом

атомы водорода

STO-3G
Минимальный базисный набор
(полуколичественные результаты
в больших системах))

5 1

3-21G
Двухэкспоненциальный базисный
набор (более точное представле-
ние для валентных орбиталей)

9 2

6-31G˚ или
6-31G(d)

Для неводородных атомов добав-
лены 6 поляризационных d-ОГТ
(расчеты систем среднего разме-
ра)

15 2

6-31G˚˚ или
6-31G(d, p)

Для атомов водорода добавле-
ны также 3 поляризационные p-
ОГТ (полуколичественное иссле-
дование химической связи)

15 5

6-31+G˚ или
6-31G+(d)

Для неводородных атомов добав-
лены 4 диффузные ОГТ (молеку-
лярные системы с неподеленны-
ми электронными парами, моле-
кулярные анионы, возбужденные
состояния)

19 2

6-31+G˚˚ или
6-31G+(d, p)

Для атомов водорода добавлены 3
поляризационные p-ОГТ

19 5
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Пример: формальдегид в базисе 3-21G

Атом Количество GTO

Количество

контрактированных

GTO

H1 2ps1q ` 1ps1q “ 3 1 ` 1 “ 2

H2 2ps1q ` 1ps1q “ 3 1 ` 1 “ 2

C 3ps1q ` 2ps2q ` 1ps2q ` 3 ¨ p2pp2q ` 1pp2qq “ 3 ` 2 ` 1 ` 3 ¨ 3 “ 15 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

O 3ps1q ` 2ps2q ` 1ps2q ` 3 ¨ p2pp2q ` 1pp2qq “ 3 ` 2 ` 1 ` 3 ¨ 3 “ 15 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

Всего 3 ` 3 ` 15 ` 15 “ 36 2 ` 2 ` 9 ` 9 “ 22

Пример: формальдегид в базисе 6-31G

Атом Количество GTO

Количество

контрактированных

GTO

H1 3ps1q ` 1ps1q “ 4 1 ` 1 “ 2

H2 3ps1q ` 1ps1q “ 4 1 ` 1 “ 2

C 6ps1q ` 3ps2q ` 1ps2q ` 3 ¨ p3pp2q ` 1pp2qq “ 6 ` 3 ` 1 ` 3 ¨ 4 “ 22 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

O 6ps1q ` 3ps2q ` 1ps2q ` 3 ¨ p3pp2q ` 1pp2qq “ 6 ` 3 ` 1 ` 3 ¨ 4 “ 22 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

Всего 4 ` 4 ` 2 ` 22 “ 52 2 ` 2 ` 9 ` 9 “ 22

Базисный набор можно расширить данными способами:

1) Добавление поляризационных функций позволяет изменить форму орбитали

* Добавление поляризационных функций p-типа для атомов первого пери-
ода (водорода). Для таких атомов исходными являются базисные функ-
ции s-типа, предполагающие сферическую симметрию. Однако в некото-
рых случаях может наблюдаться сильная поляризация атома и в таких
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случаях лучше использовать функции с большим угловым моментом, ко-
торые способны в большей степени отразить анизотропию электронной
плотности.

* Добавление поляризационных функций d-типа для атомов второго перио-
да.

Для базисов Попла добавочные поляризационные функции d- или p-типа обо-
значаются соответствующими буквами в скобках n ´ i jkGpd, pq или знаком "*":
n ´ i jkG˚˚

2) Добавление диффузных базисных функций. Это функции гауссового типа (GTO)
с малыми коэффициентами в показателе экспоненты, и используются чтобы
описать падение электронной плотности при удалении от ядра (например в со-
стоянии анионов).

Для базисов Попла добавочные диффузные функции обозначаются знаком "+":
n ´ i jkG ` ` (первый "+"для водорода, второй – для остальных атомов).

Корреляционно-согласованные базисные наборы

Добавление диффузных функций в эти базисные наборы – приставка "aug".
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Базис Набор гауссовых примитивов GTO Сжатые гауссовые функции

cc-pVDZ p9s4p1dq r3s2p1ds

cc-pVTZ p10s5p2d1 f q r4s3p2d1 f s

cc-pVQZ p12s6p3d2 f 1gq r5s4p3d2 f 1gs

cc-pV5Z p14s9p4d3 f 2g1hq r6s5p4d3 f 2g1hs

cc-pV6Z p16s10p5d4 f 3g2h1iq r7s6p5d4 f 3g2h1is
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Лекция 4. Разделение электронных и ядерных

переменных. МО ЛКАО.

Разделение электронных и ядерных переменных.

Для начала вспомним что такое молекула. Молекула является устойчивой систе-
мой ядер и электронов. Уравнение Шредингера для молекулы записывается следу-
ющим образом:

Ĥ Ψточнptr, Ruq “ E Ψточнptr, Ruq (4.1)

где Ĥ – гамильтониан молекулы, E – полная энергия молекулы (оно же является
собственным значением гамильтониана), Ψточн – точная волновая функция молеку-
лярного состояния системы.

В свою очередь общий вид гамильтониана молекулы, состоящей из K ядер и N

электронов:

Ĥ “ T̂яpRq ` T̂эprq `V̂ээprq `V̂эяpr, Rq `V̂яяpRq “

“ ´
1
2

K
ÿ

a

1
Ma

∇
2
a ´

1
2

N
ÿ

i“1

∇
2
i `

1
2

N
ÿ

i‰ j

N
ÿ

j

1
ri j

´

K
ÿ

a

N
ÿ

i

Za

rai
`

1
2

K
ÿ

a‰b

K
ÿ

b

ZaZb

Rab

(4.2)

где R – соответствует координатам ядер, r – координатам электронов.

Обратим внимание на потенциал электрон-ядерного взаимодействия V̂эяpr, Rq, за-
висящего как от координат ядер R, так и от координат электронов r. Из-за наличия
данного члена в гамильтониане (4.2), его нельзя разделить на электронную и ядер-
ную части.

Введем электронную функцию состояния Ψ̂эptru, Rq, в которой положения ядер
не входят в число аргументов, а являются параметрами.

Теперь попробуем представить молекулярную волновую функцию состояния в
виде следующего произведения (приближение Борна-Оппенгеймера):

Ψptr, Ruq “ Ψэptru, Rq ΨяptRuq (4.3)

где аргументы обозначены внутри фигурных скобок t u, а оставшееся – парамет-
ры.
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Данное приближение основано на том, что движение ядерной подсистемы проис-
ходит много медленнее чем электронной (поскольку ядра гораздо тяжелее электро-
нов), и, поэтому состояния электронов "успевают"подстроиться под изменяющуюся
ядерную конфигурацию. Задача, в таком случае, сводится к изучению движения
электронов в поле фиксированных ядер.

Соответствующий гамильтониан молекулы:

Ĥ Ψptr, Ruq “ E Ψptr, Ruq (4.4)

Теперь посмотрим как он будет преобразовываться в случае такого разделения
(4.3). В рамках данного приближения мы можем разделить гамильтониан на две
части – кинетическую энергию ядер и объединенный гамильтониан для электронов,
включающий в себя все остальные слагаемые:

Ĥ “ Ĥэ ` T̂я (4.5)

Таким образом, электронный гамильтониан будет включать в себя следующие
слагаемые:

Ĥэ “ T̂эprq `V̂ээprq `V̂эяpr, Rq `V̂яяpRq (4.6)

При этом потенциал V̂яяpRq является константой при фиксированных координатах
ядер.

Действуя таким гамильтонианом на электронную волновую функцию, согласно
стационарному уравнению Шредингера, можно найти значения энергии электронов
(то есть, энергию системы за вычетом кинетической энергии ядер):

Ĥэ Ψ̂эptru, Rq “ Eэ Ψ̂эptru, Rq (4.7)

Подставим данное представление (4.3) и (4.5) в уравнение Шредингера (4.4):

pĤэ ` T̂яq pΨэptru, Rq ΨяptRuq “

“ ΨяptRuq Ĥэ Ψэptru, Rq ` Ψэptru, Rq T̂я ΨяptRuq “

“ ΨяEэΨэ ` ΨэTяΨя “ pEэ ` Tяq ΨяΨэ

(4.8)

Таким образом, полная энергии системы:

E “ Eэ ` Tя (4.9)
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Член Eэ также носит название адиабатического электронного терма моле-
кулы, или адиабатического потенциала.

Расчет величин Eэ для разных значений R (ранее мы договорились задавать ко-
ординаты ядер в качестве фиксированных параметров) дает поверхность потенци-
альной энергии (ППЭ).

Каждому значению многомерного вектора R ядерных координат отвечают опре-
деленная энергия и некоторая пространственная молекулярная структура.

Метод молекулярных орбиталей как линейной комбинации атомных
орбиталей (МО ЛКАО).

Метод молекулярных орбиталей как линейной комбинации атомных орбиталей
(МО ЛКАО) – это приближение, в котором молекулярные орбитали представляются
в виде линейной комбинации атомных орбиталей:

ϕiprq “

M
ÿ

µ

ciµ χµprq (4.10)

где ϕiprq – молекулярная орбиталь, M – число атомных орбиталей, ciµ – коэффи-
циенты разложения атомных орбиталей, а χµprq – атомные орбитали.

Обоснование такого подхода состоит в том, что вблизи ядра электрон находит-
ся в поле потенциала, создаваемого в основном этим ядром, а поле, обусловленное
другими ядрами молекулы в этой области сравнительно мало.

В качестве примера рассмотрим молекулу H`
2 . Молекула H`

2 представляет собой
систему двух ядер с зарядовым числом Z “ 1 и одного электрона.

Наименьшему значению энергии в атоме водорода соответствует 1s-орбиталь.
Сконструируем теперь волновую функцию молекулы H`

2 , в которой оба атома во-
дорода находятся в состоянии 1s:

ψ “ ca1sa ` cb1sb (4.11)

где первое слагаемое отвечает 1s орбитали, центрированной на атоме водорода a,
а второе – орбитали, центрированной на атоме водорода b.

В таком случае электронная плотность ψ2 запишется как:

ψ
2

“ pca1saq
2

` 2cacb1sa1sb ` pcb1sbq
2 (4.12)
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Поскольку ядра неразличимы между собой:

c2
a “ c2

b ùñ

$

&

%

ca “ cb

ca “ ´cb

Таким образом, имеем два решения:

ψg “ Ngp1sa ` 1sbq

ψu “ Nup1sa ´ 1sbq
(4.13)

где Ng и Nu – значения коэффициента ca, а знаки ` или ´ соответствуют двум
упомянутым выше решениям.

На (Рис. 4.1) показан графический вид связывающей молекулярной орбитали.
Синие линии соответствуют атомным орбиталям, центрированным на соответствую-
щих ядрах, а их линейная комбинация в результате и задает форму молекулярной
орбитали.

На (Рис. 4.2) показан графический вид несвязывающей (разрыхляющей) молеку-
лярной орбитали. Здесь модно заметить "узел обусловленный знаком "минус".

Рис. 4.1. Графический вид связывающей молекулярной орбитали молекулы H`
2 .
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Рис. 4.2. Графический вид несвязывающей (разрыхляющей) молекулярной орбитали
молекулы H`

2 .

Теперь, определим коэффициенты Ng и Nu молекулярных орбиталей (4.13). Воз-
ведем их в квадрат:

ψ
2
g “ N2

g p1s2
a ` 2 ¨ 1sa1sb ` 1s2

bq

ψ
2
u “ N2

u p1s2
a ´ 2 ¨ 1sa1sb ` 1s2

bq
(4.14)

В данном случае N2
g и N2

u – нормировочные множители.

Вспомним про интеграл перекрывания

S “

ż

1sa 1sb dr (4.15)

Можно заключить, что, поскольку перед слагаемым 2 ¨1sa1sb в первом выражении
(4.14) стоит знак "плюс то в области между ядрами электронная плотность больше.
С другой стороны, поскольку во втором выражении (4.14) стоит знак "минус то в
области между ядрами электронная плотность меньше.

Теперь запишем выражения для условий нормировки:
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ż

ψ
2
g dτ “

ż

N2
g p1s2

a ` 2 ¨ 1sa1sb ` 1s2
bq dτ “ 1

ż

ψ
2
u dτ “

ż

N2
u p1s2

a ´ 2 ¨ 1sa1sb ` 1s2
bq dτ “ 1

(4.16)

Интегрируя слагаемые 1s2
a и 1s2

b в результате интегрирования дадут 1, поскольку
мы их изначально брали из задачи об атоме водорода, и они уже нормированы. а
слагаемые `2 ¨ 1sa1sb и ´2 ¨ 1sa1sb дадут интегралы перекрытия S.

В результате выражения (4.16) перепишутся в виде:

ż

ψ
2
g dτ “ N2

g p2 ` 2Sq “ 1
ż

ψ
2
u dτ “ N2

u p2 ´ 2Sq “ 1
(4.17)

Откуда выражаем искомые коэффициенты:

N2
g “

1
?

2 ` 2S

N2
u “

1
?

2 ´ 2S

(4.18)

Также стоит заметить, что функция состояния определена с точностью до знака.

Теперь, рассмотрим подробнее интегралы перекрывания S (4.15). Вспомним как
выглядят функции 1sa и 1sb:

1sa “
1

?
π

e´ra

1sb “
1

?
π

e´rb

(4.19)

Координаты ra и rb расстояний от электрона до ядер A и B соответственно –
связаны между собой уравнением (Рис. 4.3):

rb “

b

r2
a ` R2 ´ 2raR cos θ (4.20)

где R– расстояние между ядрами.
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Рис. 4.3. Схема связи расстояний от электрона до ядер A и B.

Подставив (4.20) в интеграл S (4.15), получим

S “

ż

1sa1sb dτ “ e´R
ˆ

1 ` R `
R2

3

˙

(4.21)

Асимптотика данной функции

R Ñ 0 ùñ S Ñ 1

R Ñ 8 ùñ S Ñ 0

График электронной плотности связывающей молекулярной орбитали представ-
лен на (Рис. 4.4), что соответствует возведенной в квадрат ψg (Рис. 4.1).

А несвязывающей – на (Рис. 4.5), что соответствует возведенной в квадрат ψu

(Рис. 4.2). То, что электронная плотность опускается до нуля в середине обусловлено,
уже упомянутым, наличием узла (Рис. 4.2).
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Рис. 4.4. График электронной плотности связывающей молекулярной орбитали мо-
лекулы H`

2 .

Рис. 4.5. График электронной плотности несвязывающей (разрыхляющей) молеку-
лярной орбитали молекулы H`

2 .
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Энергии уровней.

Теперь, запишем соответствующие энергетические уровни состояний (4.14):

Eg “
1

2 ` 2S

ż

p1sa ` 1sbq Ĥ p1sa ` 1sbq dτ

Eu “
1

2 ´ 2S

ż

p1sa ´ 1sbq Ĥ p1sa ´ 1sbq dτ

(4.22)

где гамильтониан записывается как

Ĥ “ ´
1
2

∇
2

´
1
ra

´
1
rb

´
1
R

(4.23)

Радиусы в выражении (4.23) соответствуют представленным на (Рис. 4.3).

Попробуем разделить выражение (4.22) на следующие комбинации:

Haa “

ż

1saĤ 1sa dτ

Hab “

ż

1saĤ 1sb dτ

Hbb “

ż

1sbĤ 1sb dτ

(4.24)

В силу инвариантности гамильтониана относительно перестановки A и B:

Haa “ Hbb

В силу эрмитовости Ĥ и действительности функций 1s:

Hab “ Hba

Преобразуя (4.22) согласно (4.24), получим:

Eg “
1

2 ` 2S

ż

p1sa ` 1sbq Ĥ p1sa ` 1sbq dτ “
Haa ` Hab

1 ` S

Eu “
1

2 ´ 2S

ż

p1sa ´ 1sbq Ĥ p1sa ´ 1sbq dτ “
Haa ´ Hab

1 ´ S

(4.25)

Подействуем гамильтонианом Ĥ (4.23) на интересующие нас атомные орбитали и
найдем компоненты (4.24). Начнем со слагаемого Haa:
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Haa “

ż

1sa

ˆ

´
1
2

∇
2

´
1
ra

´
1
rb

`
1
R

˙

1sa dτ “

“

ż

1sa

ˆ

´
1
2

∇
2

´
1
ra

˙

1sa dτ `

ż

1sa

ˆ

´
1
rb

˙

1sa dτ `

ż

1sa

ˆ

1
R

˙

1sa dτ

(4.26)

Первое слагаемое соответствует энергии 1s состояния атома водорода EH , второе
слагаемое

ş

1sa

´

´ 1
rb

¯

1sa dτ “ εaa, а третье можно сразу посчитать (поскольку R –
фиксировано):

ż

1sa

ˆ

1
R

˙

1sa dτ “
1
R

ż

1sa 1sb dτ “
1
R

Перепишем выражение (4.26) в новом виде:

Haa “ EH ` εaa `
1
R

(4.27)

Используя явный вид 1s орбитали, запишем:

εaa “ ´
1
R

´

1 ´ e´2R
p1 ` Rq

¯

Теперь, аналогично вычислим Hab (4.24):

Hab “

ż

1saĤ 1sb dτ “

ż

1sa

ˆ

´
1
2

∇
2

´
1
ra

´
1
rb

`
1
R

˙

1sb dτ “

“

ż

1sa

ˆ

EH 1sb ´
1
ra

1sb `
1
R

1sb

˙

dτ “

“ EH

ż

1sa 1sb dτ ´

ż

1sa
1
ra

1sb dτ `

ż

1sa
1
R

1sbdτ “

“ EHS ` εab `
1
R

S

(4.28)

Если использовать явный вид 1s орбитали

εab “ ´e´R
p1 ` Rq

Используя полученные выражения (4.27-4.28), перепишем (4.25):

Eg “
Haa ` Hab

1 ` S
“

EH ` εaa ` 1
R `

`

EHS ` εab ` 1
RS

˘

1 ` S
“

“ EH `
1
R

`
εaa ` εab

1 ` S

Eu “
Haa ´ Hab

1 ´ S
“ EH `

1
R

`
εaa ´ εab

1 ´ S

(4.29)
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График энергий (4.29) показан на (Рис. 4.6). Как можно видеть из графика, для
связывающей орбитали существует минимум энергии, то есть, такая молекула может
существовать и электрон будет находиться на этой орбитали. Для разрыхляющей
орбитали такого не наблюдается.

Рис. 4.6. График энергий связывающих (фиолетовые кривые) и несвязываею-
щих/разрыхляющих (синие кривые) молекулярных орбиталей.
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Лекция 5. Спин. Определитель Слейтера. Метод

Хартри-Фока.

Спин электрона. Эксперимент Штерна-Герлаха.

Спин-орбиталь.

Спин – это собственный момент количества движения частицы, аналогов которо-
му в классической механике нет, это чисто квантовомеханическое понятие.

Например, для электрона спин может принимать только два значения:

s “ ˘
1
2

h̄

Идея использования понятия спина появилась после проведения экспериментов
Штерна-Герлаха. Суть эксперимента состояла в том, что пучок электронов пропус-
кался через неоднородное магнитное поле, создаваемое магнитами разной формы
(Рис. 5.1). На выходе стояла детектирующая стенка, которая позволяла понять как
изменялась при этом форма пучка.

Рис. 5.1. Система магнитов в эксперименте Штерна-Герлаха.

В результате, после прохождения пучка через магнитное поле, образовывалось
два отдельных пятна (Рис. 5.2). То есть, электроны, в результате взаимодействия
с магнитным полем, каким-то образом разделялись на две отдельные группы. Это
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явление невозможно было описать в рамках классического подхода, что привело к
введению такого квантовомеханического понятия как спин.

Рис. 5.2. Разделение пучка электронов на две группы в эксперименте Штерна-
Герлаха.

Введем понятия спиновой функции σpkq, оператора спина ŝ и оператора проекции
спина ŝz. Запишем важные соотношения для них:

ŝ2
σpkq “ h̄2sps ` 1q σpkq “

h̄2

2

ˆ

1
2

` 1
˙

σpkq, k “ α, β (5.1)

где tα, βu – различные направления спина.

ŝsσpkq “ msh̄ σpkq, k “ α, β , ms “ ˘
1
2

(5.2)

где ms – спиновое магнитное число.

Также введем условие нормировки спиновых функций:

ż

σpkq σplq dτ “ δkl, k, l “ α, β (5.3)

Обратим внимание на выражение (5.1). Собственным значением оператора ŝ2 яв-
ляется h̄2

2

`1
2 ` 1

˘

– квадрат длины вектора спина. Взяв корень от этого выражения,
получим модуль длины вектора спина:
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|s| “

?
3

2
h̄ (5.4)

Введем понятие спин-орбитали:

χip⃗xiq “ χip⃗riq σpsiq (5.5)

где χip⃗riq – пространственная орбиталь, а σpsiq – спиновая функция, которая яв-
ляется собственной функцией операторов ŝ и ŝz.

Принцип Паули. Функция состояния атома гелия.

Принцип Паули: электронная волновая функция системы их нескольких элек-
тронов должна быть антисимметричной (менять знак) относительно обмена положе-
ниями и спинами двух любых электронов i и j:

Ψp⃗x1, ..., x⃗i, ..., x⃗ j, ...q “ ´Ψp⃗x1, ..., x⃗ j, ..., x⃗i, ...q (5.6)

Иначе: никакие два электрона не могут находиться в одном и том же квантовом
состоянии, то есть состоянии, характеризуемом одинаковыми квантовыми числами
n, l, m и ms.

Еще иначе: на одной пространственной орбитали два электрона должны быть с
разными спинами.

На примере атома гелия рассмотрим как построить функцию состояния с учетом
принципа Паули. Первыми функциями, с помощью которых попробовали построить
такие состояния были функции Хартри. Две эквивалентные функции Хартри для
основного состояния;

Ψ1 “ χ1p⃗x1q χ2p⃗x2q

Ψ2 “ χ1p⃗x2q χ2p⃗x1q
(5.7)

Однако, для них условие антисимметричности не выполняется.

Попробуем рассмотреть их линейную комбинацию:

Ψ “
1

?
2

”

χ1p⃗x1q χ2p⃗x2q ´ χ1p⃗x2q χ2p⃗x1q

ı

(5.8)

Для такой функции справедливо:
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1) При перестановке двух электронов меняет знак, то есть обладает свойством
антисимметричности.

2) Удовлетворяет принципу исключения Паули:

Ψ “
1

?
2

”

χ1p⃗x1q χ1p⃗x2q ´ χ1p⃗x2q χ1p⃗x1q

ı

“ 0

То есть, для простейшего случая двух-электронной системы такая линейная ком-
бинация удовлетворяет нашим требованиям.

Функцию (5.8) также можно переписать в виде определителя из спин орбиталей:

Ψ “
1

?
2

∣∣∣∣∣χ1p⃗x1q χ1p⃗x2q

χ2p⃗x1q χ2p⃗x2q

∣∣∣∣∣ (5.9)

Выпишем явно каждый элемент определителя Слейтера для атома гелия с учетом
(5.5):

Ψa “
1

?
2

∣∣∣∣∣χ1p⃗r1q σ1pαq χ1p⃗r2q σ2pαq

χ2p⃗r1q σ1pβ q χ2p⃗r2q σ2pβ q

∣∣∣∣∣ “
1

?
2

χ1sp⃗r1q χ1sp⃗r2q

∣∣∣∣∣σ1pαq σ2pαq

σ1pβ q σ2pβ q

∣∣∣∣∣ “

“
1

?
2

χ1sp⃗r1q χ1sp⃗r2q

”

σ1pαq σ2pβ q ´ σ2pαq σ1pβ q

ı

(5.10)

Заметим, что в получившемся выражении (5.10), часть χ1sp⃗r1q χ1sp⃗r1q представля-
ет собой симметричную пространственную часть, а выражение в квадратных скобках
– антисимметричную спиновую часть.

Квантовое число, мультиплетность. Спиновые состояния.

Вспомним необходимые понятия. На второй лекции мы ввели понятие орбиталь-
ного квантового числа l – определяет длину вектора углового момента (Рис. 2.2).
Длина вектора углового момента:

L “ h̄
a

lpl ` 1q (5.11)

Теперь обсудим спин. Квантовое число S:

|S2
| “ SpS ` 1q h̄2 (5.12)

Квантовое число MS – проекция полного спинового момента на ось Z:
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´S ď MS ď S (5.13)

Мультиплетность – число возможных значений проекции спинового момента:

p2S ` 1q

Таблица 5.1. Собственные значения квадрата полного спинового момента электронов
для разных спиновых состояний молекулы.

Спиновое состояние

p2S ` 1q

Спин

pSq

Собственное значение Ŝ2

pSpS ` 1qq

Синглет 0 0

Дуплет 0.5 0.75

Триплет 1 2.0

Квартет 1.5 3.75

Квинтет 2 6.0

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

N-тет pN ´ 1q{2 SpS ` 1q

Напомним вкратце правила сложения спинов:

|s, my “
ÿ

m1`m2“m
Cs1s2s

m1m2m |s1m1y |s2m2y (5.14)

Набор возможных состояний:

ˇ

ˇ

ˇ

1{2, `1{2

E ˇ

ˇ

ˇ

1{2, `1{2

E

pÒÒq
ˇ

ˇ

ˇ

1{2, `1{2

E
ˇ

ˇ

ˇ

1{2, ´1{2

E

pÒÓq
ˇ

ˇ

ˇ

1{2, ´1{2

E ˇ

ˇ

ˇ

1{2, `1{2

E

pÓÒq
ˇ

ˇ

ˇ

1{2, ´1{2

E
ˇ

ˇ

ˇ

1{2, ´1{2

E

pÓÓq

(5.15)
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Коэффициенты Cs1s2s
m1m2m в выражении (5.14) помогают понять каким будет состо-

яние системы при сложении подсистем, и называются коэффициентами Клебша-
Гордана.

Покажем пару примеров. Для триплета, возможными состояниями спина могут
быть:

|1, 1y “ÒÒ

|1, 0y “
pÒÓ ` ÓÒq

?
2

|1, ´1y “ÓÓ

,

/

/

/

/

.

/

/

/

/

-

s “ 1

Для синглеты возможно лишь одно состояние:

|0, 0y “
pÒÓ ´ ÓÒq

?
2

ùñ s “ 0

Определитель Слейтера. Метод Хартри-Фока.

В общем виде многоэлектронной системы определитель Слейтера записывается
следующим образом:

Ψ “
1

?
N!

∣∣∣∣∣∣∣∣∣∣
χ1p⃗x1q α χ1p⃗x2q α ¨ ¨ ¨ χ1p⃗xNq α

χ1p⃗x1q β χ1p⃗x2q β ¨ ¨ ¨ χ1p⃗xNq β

...
... . . . ...

χN{2p⃗x1q β χN{2p⃗x2q β ¨ ¨ ¨ χN{2p⃗xNq β

∣∣∣∣∣∣∣∣∣∣
(5.16)

где N – число спин-орбиталей, N{2 – число пространственных орбиталей.

Определитель Слейтера является единственной функцией, обеспечивающей ан-
тисимметричность волновой функции, записанной через орбитали (орбитальное по-
ложение волновой функции).

Теперь, вкратце рассмотрим метод Хартри-Фока для замкнутых оболочек:

χip⃗xiq “ χ p⃗riq σpsiq (5.17)

где первый множитель представляет собой пространственную часть, а второй –
спиновую.

Этот метод использует метод одноэлектронного приближения – поведение одного
электрона в поле остальных электронов и ядер описывается с помощью молекуляр-
ных спин-орбиталей.
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Оператор Фока (фокиан) атома записывается следующим образом:

F̂i “ ´
1
2

∇
2
i ´

Z
ri

`

N
ÿ

j

„
ż

χ
˚
j p⃗x jq

1
ri j

χ j p⃗x jq d⃗x j ´

ż

χ
˚
j p⃗x jq

1
ri j

χip⃗x jq d⃗x j

ȷ

(5.18)

Здесь χ j p⃗x jq – спин-орбитали, а x⃗ j – набор пространственных переменных. Сумма
в выражении (5.18) описывает взаимодействие каждого электрона с усредненным
полем от всех остальных электронов.

Уравнение на собственные значения оператора Фока для каждой орбитали:

F̂iχip⃗xiq “ εiχip⃗xiq, i “ 1, 2, ..., N

где εi – собственные значения оператора Фока.

В развернутом виде:

ĥip⃗xiq χip⃗xiq `

N
ÿ

j

„
ż

χ
˚
j p⃗x jq

1
ri j

χ j p⃗x jq d⃗x j ´

ż

χ
˚
j p⃗x jq

1
ri j

χip⃗x jq d⃗x j

ȷ

χip⃗xiq “ εi χip⃗xiq

(5.19)
где ĥip⃗xiq – оператор, включающий в себя кинетическую энергию электрона, а

также потенциальную энергию взаимодействия с ядром.

Умножая выражение (5.20) слева на χip⃗xiq и интегрируя по всему пространству,
получаем значения энергии на орбитали χip⃗xiq:

εi “ hi j `

N
ÿ

j‰i

rJi j ´ Ki js, i “ 1, 2, ...,N (5.20)

где Ji j и Ki j – сумма межэлектронных взаимодействий.

Одноэлектронный интеграл:

hi j “

ż

χ
˚
i p⃗xiq ĥi χip⃗xiq d⃗xi (5.21)

– описывает потенциальную и кинетическую энергии электрона на орбитали χi в
поле ядра без учета остальных электронов.

Теперь рассмотрим двухэлектронные интегралы:
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1) Кулоновский интеграл описывает кулоновское отталкивание электронов неза-
висимо от их спинов:

Ji j “

ż

χ
˚
i p⃗xiq χip⃗xiq

1
ri j

χ
˚
j p⃗x jq χ j p⃗x jq d⃗xi d⃗x j (5.22)

2) Обменный интеграл отражает понижение кулоновской энергии взаимодей-
ствия электронов с параллельными спинами на орбиталях χi и χ j:

Ki j “

ż

χ
˚
i p⃗xiq χ

˚
j p⃗xiq

1
ri j

χip⃗x jq χ j p⃗x jq d⃗xi d⃗x j (5.23)

Запишем полную энергию системы:

E “ 2
N{2
ÿ

i“1

hi j `

N{2
ÿ

j‰i

r2Ji j ´ Ki js “ 2
N{2
ÿ

i“1

εi `

N{2
ÿ

i“1

N{2
ÿ

j“1

r2Ji j ´ Ki js (5.24)

Заметим, что полная энергия системы не является суммой всех орбитальных энер-
гий (!), поскольку нужно исключить учет межэлектронного взаимодействия по два
раза.

Визуализация молекулярных орбиталей. RHF, UHF.

Покажем как устроена структура молекулярных орбиталей согласно методу Хартри-
Фока (Рис. 5.3). Существуют следующие виды метода Хартри-Фока: ограниченный
RHF, неограниченный UHF и ограниченный метод с описанием систем с открытыми
оболочками ROHF.

В ограниченном методе Хартри-Фока определитель Слейтера устроен так же как
мы записали его в начале, когда каждые два электрона с разными спинами будет
находиться на одной пространственной орбитали с общим числом орбиталей N

2 . На
(Рис. 5.3) для случая RHF показано, что соответствующие орбитали являются два-
жды занятыми.

В ограниченном методе Хартри-Фока с описанием систем с открытыми оболочка-
ми ROHF также предполагает, что орбитали могут быть также дважды занятыми,
но в случае радикальной системы, какие-то орбитали могут быть однократно заняты
(Рис. 5.3).

В неограниченном методе Хартри-Фока UHF изначально генерирует отдельный
набор орбиталей для электронов с α спинами, и другой набор пространственных

65



КВАНТОВАЯ ХИМИЯ.

ХРЕНОВА МАРИЯ ГРИГОРЬЕВНА

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Рис. 5.3. Структура молекулярных орбиталей согласно ограниченному (RHF),
неограниченному (UHF) и ограниченному с описанием систем с открытыми оболоч-
ками (ROHF) методам Хартри-Фока.

орбиталей с β спинами. Это позволяет более гибко описывать систему в случае ра-
дикальных структур.

На (Рис. 5.4) показана кривая диссоциации молекулы водорода согласно ограни-
ченному (RHF) и неограниченному (UHF) методам Хартри-Фока.

Рис. 5.4. Кривая диссоциации молекулы водорода согласно ограниченному (RHF) –
красная линия; и неограниченному (UHF) методам Хартри-Фока – синяя линия.

При использовании ограниченного метода Хартри-Фока, то все пространствен-
ные орбитали должны быть дважды заняты, соответственно в районе минимума эта
молекулярная орбиталь похожа на те, что мы обсуждали при рассмотрении иона
H2`.
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Но, по мере того, как два ядра друг от друга удаляются, пространственная ор-
биталь в ходе вариационной процедуры начинает конструироваться таким образом,
что каждая из них оказывается локализована рядом с одним из ядер. В итоге, на
больших расстояниях электрон будет локализован рядом с одним из ядер, в резуль-
тате будет один положительный ион и один отрицательный – красная кривая на
(Рис. 5.4).

С другой стороны, при использовании неограниченного метода Хартри-Фока,
можно изначально разрешить двум электронам находиться на разных простран-
ственных орбиталях, что приведет к изменению вида решения на больших расстояни-
ях – один электрон отправится на орбиталь одного ядра, а другой – другого ядра. В
результате, получим решение в виде гомолитического разрыва связи атома водорода
– синяя кривая на (Рис. 5.4).

Но, в области существования молекулы оба решения дают одинаковый результат.

Рассмотрим пример трех двухэлектронных систем (Рис. 5.5).

Рис. 5.5. Варианты заселения электронов на молекулярных орбиталях и соответству-
ющие энергии.

В первом случае имеем синглетное состояние на котором нижняя орбиталь два-
жды занята, а верхняя – свободна. В таком случае полная энергия определяется
удвоенному значению одноэлектронного интеграла (отвечающему взаимодействию
электрона с ядром) и кулоновским интегралом.

Теперь, если перенести один электрон на вторую молекулярную орбиталь и сде-
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лать так, чтобы оба электрона имели одинаковый спин, то одноэлектронная части
для каждого из них будет различная (за счет разницы в кинетических энергиях элек-
тронах на разных уровнях), кулоновский интеграл будет также присутствовать, но
уже с другим значением, а также появится обменный интеграл, связанный с взаимо-
действием электронов с одинаковыми спинами.

В третьем случае пусть электроны находятся на разных уровнях с разными спи-
нами. В таком случае обменный член пропадает.
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Лекция 6. Электронная корреляция. Теория

функционала электронной плотности. Метод

Кона-Шэма. Базисные наборы.

Напомним, что на прошлой лекции мы говорили о методе Хартри=Фока, постро-
енном на одноэлектронном приближении, в котором поведение одного электрона в
поле остальных электронов и всех ядер системы описывают с помощью молекуляр-
ных спин-орбиталей ϕip⃗xq:

ϕip⃗xiq “ ϕip⃗riq ηpsiq (6.1)

В простейшем случае N-электронную волновую функцию молекулы аппрокси-
мируют единственным детерминантом Слейтера, который составляется из занятых
электронами молекулярных спин-орбиталей ϕip⃗xq:

Ψ “
1

?
N!

∣∣∣∣∣∣∣∣∣∣
ϕ1p⃗x1q ϕ1p⃗x2q ¨ ¨ ¨ ϕ1p⃗xNq

ϕ2p⃗x1q ϕ2p⃗x2q ¨ ¨ ¨ ϕ2p⃗xNq

...
... . . . ...

ϕN p⃗x1q ϕN p⃗x2q ¨ ¨ ¨ ϕN p⃗xNq

∣∣∣∣∣∣∣∣∣∣
(6.2)

Оператор Фока, включающий одноэлектронную (кинетическую энергию электро-
нов и потенциальную энергию взаимодействия электронов с ядрами) и двухэлек-
тронную части (кулоновское взаимодействие и обменный интеграл, появляющийся
вследствие антисимметричности волновой функции):

F̂i “ ´
1
2

∇
2
i ´

ÿ

a

Za

rai
`

N
ÿ

j“1

„
ż

|ϕ j p⃗x jq|
2 1

ri j
d⃗x j ´

ż

ϕ
˚
j p⃗x jq

1
ri j

ϕip⃗x jq d⃗x j

ȷ

(6.3)

Орбитальные энергии – собственные значения оператора Фока:

F̂iϕip⃗xiq “ εiϕip⃗xiq (6.4)

Полная энергия системы:

Eмол “ 2
N{2
ÿ

i

εi ´

N{2
ÿ

i‰ j

N{2
ÿ

j

p2Ji j ´ Ki jq `
ÿ

a‰b

ZaZb

Rab
(6.5)

где первое слагаемое представляет собой сумму орбитальных энергий, а последнее
– энергию межъядерного взаимодействия при фиксированном наборе значений Rab.
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Недостатки метода Хартри-Фока. Энергия корреляции.

Недостатки метода Хартри-Фока:

1) Одноэлектронное приближение: каждый электрон движется в усредненном по-
ле ядер и других электронов.

2) Однодетерминантная волновая функция (представлена одним определителем
Слейтера).

В методе Хартри-Фока межэлектронное взаимодействие учитывается как сумма
взаимодействий каждого электрона со средней электронной плотностью остальных
электронов.

В действительности, между электронами существует мгновенное кулоновское от-
талкивание, то есть их движение коррелировано. Изменение энергии, вызванное эти-
ми мгновенными кулоновскими взаимодействиями называется энергией корреля-
ции.

Eкор “ Eточн ´ EХФ ă 0 (6.6)

где Eточн – точная энергия системы; EХФ – энергия определяемая методом Хартри-
Фока.

Виды электронной корреляции

Статистическая Динамическая

Связана с ограничения-
ми точного описания си-
стемы одним определите-
лем Слейтера.

Связана с электронным
движением. Вносит пре-
обладающий вклад вбли-
зи точек равновесия си-
стемы.

Электронная плотность. Теорема Хоэнберга-Кона. Метод

Кона-Шэма.

Напомним, что электронная плотность является интегралом по спиновым пере-
менным всех электронов и по всем, за исключением одного набора, пространственных
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переменных:

ρ p⃗rq “ N
ż

...

ż

ˇ

ˇ

ˇ
Ψp⃗x1, x⃗2, ..., x⃗Nq

ˇ

ˇ

ˇ

2
ds1d⃗x2 ... d⃗xN (6.7)

где x⃗ ” r⃗,s.

Иначе:

ρ “

N
ÿ

i

|ϕip⃗rq|
2 (6.8)

Электронная плотность показывает вероятность найти любой из N в элементе
объема d⃗r.

1) Электронная плотность – неотрицательная функция только от трех простран-
ственных переменных, обладающая следующими свойствами:

ρ p⃗r Ñ 8q “ 0
ż

ρ p⃗rq d⃗r “ N
(6.9)

Для сравнения Ψ для системы из N электронов зависит от 4N переменных (3
пространственных + 1 спиновая на каждый электрон).

2) Электронная плотность является наблюдаемой величиной, в то время как моле-
кулярные орбитали это абсолютно виртуальная конструкция, которую нельзя
наблюдать в эксперименте.

Зависимость электронной энергии от электронной плотности (энергия-функционал
элеткронной плотности) дается согласно теореме Хоэнберга-Кона (1964г.):

Erρs “

ż

Vяp⃗rq ρ p⃗rq d⃗r `
1
2

ż ż

ρ p⃗rqρ p⃗r1q

|⃗r ´ r⃗1|
d⃗r d⃗r1

` Grρs (6.10)

где второе во втором слагаемом под знаком двойного интеграла стоит член учи-
тывающий кулоновское (классическое) межэлектронное отталкивание; Vяp⃗rq – по-
тенциал ядра, описывающий притяжение электрона к ядрам; Grρs – функционал
электронной энергии: кинетическая энергия электронов + неклассическая энергия
межэлектроного взаимодействия.
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Grρs – одинаковый для всех многоэлектронных систем (универсальный) функци-
онал электронной плотности, причем точная электронная плотность основного со-
стояния обеспечивает минимум этого функционала, то есть минимум энергии.

Вид функционала Grρs неизвестен.

В силу неизвестности вида функционала Grρs, используют приближенные методы
расчета плотности кинетической энергии.

Например, сначала использовали простейшую модель Томаса-Ферми (1920 г.):

1) Квазиклассическая теория

2) Однородный электронный газ – невзаимодействующие электроны, электронная
плотность во всех точках одинакова

T p⃗rq “
3

10
p3π

2
q

2{3
ρ p⃗rq

5{3 (6.11)

Однако, как известно, в молекулярных системах электронная плотность сильно
неоднородна и хорошо было бы ее учесть.

Модель, учитывающая электронную плотность и ее первую и вторую производ-
ные:

T p⃗rq “
3

10
p3π

2
q

2{3
ρ p⃗rq

5{3
`

1
72

r∇ρ p⃗rqs
2

ρ p⃗rq
`

1
6

∇
2
ρ p⃗rq (6.12)

Метод Кона-Шэма (1965 г.) – возвращение:

1) молекулярным орбиталям;

2) одноэлектронным уравнениям;

3) определителю Слейтера.

Этот метод с одной стороны не использует "элегантную"функцию электронной
плотности от трех переменных, с другой, переносит эти подходы на приближение
молекулярных орбиталей.

В рамках метода Кона-Шэма кинетическая энергия невзаимодействующих элек-
тронов запишется в знакомом виде:

TК-Ш “ ´
1
2

8
ÿ

i

∇
2
φip⃗rq (6.13)
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В Grρs остаются только вклады, определяющие неклассические взаимодействия
электронов.

Метод Кона-Шэма – вариационный метод: минимизация функционала энергии
относительно одноэлектронных функций ϕip⃗rq.

Его решением является набор одноэлектронных уравнений:

„

´
1
2

∇
2
i `V p⃗riq ` νxcp⃗riq

ȷ

φip⃗rq “ εiφip⃗rq (6.14)

где

ρ p⃗rq “
ÿ

i

φ
2
i p⃗rq

V p⃗rq “ Vяp⃗rq `

ż

ρ p⃗r1q

|⃗r ´ r⃗1|
d⃗r1

Обменно-корреляционный потенциал. Классификация

потенциалов.

Потенциал νxc называется обменно-корреляционным:

νxc “
δExcrρs

δρ
(6.15)

Поиск аппроксимации обменно-корреляционных потенциалов, обеспечивающих
высокую точность расчета свойств молекулярных систем составляет важный раздел
метода функционала электронной плотности.

Обменно-корреляционная энергия

Excrρs “ Exrρs ` Ecrρs (6.16)

включает в себя обменный член Exrρs, отвечающий за взаимодействие электронов
с одинаковыми спинами, и корреляционный член Ecrρs, характеризующий мгновен-
ные отталкивающие взаимодействия электрона с другими электронами.

Exrρs ąą Ecrρs: в зависимости от системы, величина Ecrρs может составлять 10´

104 ккал/моль, тогда как значение Exrρs, по крайней мере, на порядок выше.

Виды функционалов:
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1) Приближение локальной плотности LDA (Local Density Approximation):

Однородный электронный газ – невзаимодействующие электроны. Плотность
такого газа равна в любой точке системы, а волновые функции представляют
собой бегущие волны.

Считают, что в каждой точке молекулы применимы соотношения, полученные
для однородного электронного газа, но подставляются значения реальной элек-
тронной плотности системы в этой точке.

2) Приближение локальной спиновой плотности LSDA (Local Spin Density
Approximation):

Энергетические члены разбиваются на вклады от отдельных электронов с раз-
личными спинами (дополненный вариант LDA).

3) Обобщенно-градиентное разложение плотности GGA (Generalized gradient
approximation):

ε
GGA
i rρs “ ε

LSDA
i rρs ` ∆εipρ, ∇ρ, ∇

2
ρ, ...q (6.17)

Заметим, что единого и последовательного способа введения поправки ∆εi не
существует.

4) Мета-GGA (MGGA):

разложение энергии LSDA в ряд Тейлора локально в каждой точке молекулы

ε
MGGA
i rρs “ ε

LSDA
i rρs

!

1 ` Fipρ, ∇ρ, ∇
2
ρ, gq

)

(6.18)

Плотность кинетической энергии выражается с точностью до

gp⃗rq “
3

10
p3π

2
q

2{3
ρ p⃗rq

5{3
`

1
72

r∇ρ p⃗rqs
2

ρ p⃗rq
`

1
6

∇
2
ρ p⃗rq

5) Гибридные функционалы:

Помимо энергетических членов обмена и корреляции из методов LSDA и GGA
добавляется обмен из метода Хартри-Фока:
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EB3LY P
xc “ aELSDA

x ` p1 ´ aqEХФ
x ` bEB88

x ` p1 ´ cqELSDA
c ` cELY P

xc (6.19)

Эти функционалы являются наиболее значимыми для химии. Преимущество
такого рода функционалов заключается в том, что в обобщенно-градиентных
функционалах выражение для обменного слагаемого довольно локально, так
как зависит от электронной плотности и ее локальных свойств (ее градиента и
т.д.), этот функционал включает в себя нелокальный обменный член из метода
Хартри-Фока.

До сих пор продолжается развитие метода Кона-Шэма (до сих пор называемым
функционалом плотности в литературе), и на сегодняшний день существует более 200
функционалов. В данной работе представлена классификация данных функционалов
по тому, насколько хорошо они могут быть применены к задачам разного типа:
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Было протестировано огромное количество функционалов:

Используемые аббревиатуры происходят либо от соответствующих авторов функ-
ционалов, либо от географического положения лаборатории, которая их разработала.

При анализе тех или иных функционалов тестировались различные параметры
(чем зеленее тем меньше ошибка):
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Минимальный базисный набор. Попловские базисные наборы.

Рассмотрим базисные наборы, которые реально используются при проведении
расчетов методами вычислительной квантовой химии:

1) Орбитали слейтеровского типа (STO):

spζ , r⃗q “ cxnymzle´ζ r (6.20)

- похоже на атомные орбитали

- сложно рассчитывать интегралы

2) Гауссовы орбитали (GTO):

gpα, r⃗q “ cxnymzle´αr2
(6.21)

- проще рассчитывать интегралы

- плохо описывается электронная плотность

- можно использовать линейную комбинацию GTO

3) Сжатые или контрактированне орбитали:

Одна орбиталь – одна GTO:

gi “
ÿ

j

ai jG j (6.22)

Одна орбиталь – линейная комбинация gi с фиксированными коэффициентами
ai j:

χ “
ÿ

i

digi (6.23)

Минимальный базисный набор:

1) Одна базисная функция для описания каждой атомной орбитали
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2) Наиболее популярный STO-3G

3) Можно использовать линейную комбинацию GTO

4) CH4:

- Hp1sq

a) Cp1s, 2s, 2px, 2pψq

На (Рис. 6.1) показано сравнение вида орбитали STO слейтеровского типа (крас-
ная кривая) с орбиталью описываемой одной гауссовой функцией 1G (верхний гра-
фик – синяя кривая), орбиталью описываемой линейной комбинацией двух гауссовых
функций 2G (нижний левый график – синяя кривая) и орбиталью описываемой ли-
нейной комбинацией трех гауссовых функций 3G (нижний правый график – синяя
кривая). Из графиков видно что увеличение количества гауссовых функций в линей-
ной комбинации ведет к более точному описанию системы.

Рис. 6.1. Сравнение вида орбиталей слейтеровского типа (STO) – красная кривая с
орбиталями описываемыми одной гауссовой функцией (1G) – синяя кривая, верхний
график; линейной комбинацией двух гауссовых функций (2G) – – синяя кривая,
нижний левый график; линейной комбинацией трех гауссовых функций (3G) – –
синяя кривая, нижний правый график.
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Основные декартовы Гауссианы.

Тип GTO n l m m+l+n Вид GTO
1s 0 0 0 0 N expp´αr2q

2px 1 0 0 1 N expp´αr2qx

2py 0 1 0 1 N expp´αr2qy

2pz 0 0 1 1 N expp´αr2qz

3dxx 2 0 0 2 N expp´αr2qx2

3dxy 1 1 0 2 N expp´αr2qxy

3dxz 1 0 1 2 N expp´αr2qxz

3dyy 0 2 0 2 N expp´αr2qy2

3dyz 0 1 1 2 N expp´αr2qyz

3dzz 0 0 2 2 N expp´αr2qz2

Одними из самых популярных являются Попловские базисные наборы (или
валентно-расщепленные). Наборы могут быть двухэкспонентными или трехэкс-
понентными. В двухэкспонентных наборах используются 2 набора GTO, в трехэкс-
понентных – 3 набора.

79



КВАНТОВАЯ ХИМИЯ.

ХРЕНОВА МАРИЯ ГРИГОРЬЕВНА

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Некоторые базисные наборы Попла

Базисный
набор Описание

Число базисных функций
Неводородные Атом

атомы водорода

STO-3G
Минимальный базисный набор
(полуколичественные результаты
в больших системах))

5 1

3-21G
Двухэкспоненциальный базисный
набор (более точное представле-
ние для валентных орбиталей)

9 2

6-31G˚ или
6-31G(d)

Для неводородных атомов добав-
лены 6 поляризационных d-ОГТ
(расчеты систем среднего разме-
ра)

15 2

6-31G˚˚ или
6-31G(d, p)

Для атомов водорода добавле-
ны также 3 поляризационные p-
ОГТ (полуколичественное иссле-
дование химической связи)

15 5

6-31+G˚ или
6-31G+(d)

Для неводородных атомов добав-
лены 4 диффузные ОГТ (молеку-
лярные системы с неподеленны-
ми электронными парами, моле-
кулярные анионы, возбужденные
состояния)

19 2

6-31+G˚˚ или
6-31G+(d, p)

Для атомов водорода добавлены 3
поляризационные p-ОГТ

19 5
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Пример: формальдегид в базисе 3-21G

Атом Количество GTO

Количество

контрактированных

GTO

H1 2ps1q ` 1ps1q “ 3 1 ` 1 “ 2

H2 2ps1q ` 1ps1q “ 3 1 ` 1 “ 2

C 3ps1q ` 2ps2q ` 1ps2q ` 3 ¨ p2pp2q ` 1pp2qq “ 3 ` 2 ` 1 ` 3 ¨ 3 “ 15 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

O 3ps1q ` 2ps2q ` 1ps2q ` 3 ¨ p2pp2q ` 1pp2qq “ 3 ` 2 ` 1 ` 3 ¨ 3 “ 15 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

Всего 3 ` 3 ` 15 ` 15 “ 36 2 ` 2 ` 9 ` 9 “ 22

Пример: формальдегид в базисе 6-31G

Атом Количество GTO

Количество

контрактированных

GTO

H1 3ps1q ` 1ps1q “ 4 1 ` 1 “ 2

H2 3ps1q ` 1ps1q “ 4 1 ` 1 “ 2

C 6ps1q ` 3ps2q ` 1ps2q ` 3 ¨ p3pp2q ` 1pp2qq “ 6 ` 3 ` 1 ` 3 ¨ 4 “ 22 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

O 6ps1q ` 3ps2q ` 1ps2q ` 3 ¨ p3pp2q ` 1pp2qq “ 6 ` 3 ` 1 ` 3 ¨ 4 “ 22 1 ` 1 ` 1 ` 3 ¨ p1 ` 1q “ 9

Всего 4 ` 4 ` 2 ` 22 “ 52 2 ` 2 ` 9 ` 9 “ 22

В последнем примере видно, что несмотря на то, что количество контрактирован-
ных GTO не изменилось, количество GTO заметно выросло, что конечно же, сильно
увеличивает точность. При этом, количество варьируемых параметров не изменилось
– что в методе Хартри-Фока, что в методе функционала плотности, варьируемыми
параметрами являются коэффициентыми разложения молекулярных разложений по
атомным или по базисному набору.
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Расширение базисного набора.

Базисный набор можно расширить данными способами:

1) Добавление поляризационных функций позволяет изменить форму орбитали

* Добавление поляризационных функций p-типа для атомов первого пери-
ода (водорода). Для таких атомов исходными являются базисные функ-
ции s-типа, предполагающие сферическую симметрию. Однако в некото-
рых случаях может наблюдаться сильная поляризация атома и в таких
случаях лучше использовать функции с большим угловым моментом, ко-
торые способны в большей степени отразить анизотропию электронной
плотности.

* Добавление поляризационных функций d-типа для атомов второго перио-
да.

Для базисов Попла добавочные поляризационные функции d- или p-типа обо-
значаются соответствующими буквами в скобках n ´ i jkGpd, pq или знаком "*":
n ´ i jkG˚˚

2) Добавление диффузных базисных функций. Это функции гауссового типа (GTO)
с малыми коэффициентами в показателе экспоненты, и используются чтобы
описать падение электронной плотности при удалении от ядра (например в со-
стоянии анионов).

Для базисов Попла добавочные диффузные функции обозначаются знаком "+":
n ´ i jkG ` ` (первый "+"для водорода, второй – для остальных атомов).
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Корреляционно-согласованные базисные наборы

Базис Набор гауссовых примитивов GTO Сжатые гауссовые функции

cc-pVDZ p9s4p1dq r3s2p1ds

cc-pVTZ p10s5p2d1 f q r4s3p2d1 f s

cc-pVQZ p12s6p3d2 f 1gq r5s4p3d2 f 1gs

cc-pV5Z p14s9p4d3 f 2g1hq r6s5p4d3 f 2g1hs

cc-pV6Z p16s10p5d4 f 3g2h1iq r7s6p5d4 f 3g2h1is

Добавление диффузных функций в эти базисные наборы – приставка "aug".

Заключение

- Метод расчета и базис необходимо выбирать согласованно. Нет смысла брать
очень точный метод расчета энергии небольшой базис, равно как и большое
базис с методом невысокой точности;

- Для расчетов в твердом теле обычно используют GGA функционалы;

- Для расчетов молекулярных систем применяют гибридные функционалы. Для
больших молекулярных систем, имеющих отношение к биологии, обычно ис-
пользуют базисные наборы типа 6 ´ 31G˚˚ или cc ´ pvdz, возможно с добавле-
нием диффузных функций.
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Лекция 7. Заряды атомов.

Электронная плотность, молекулярная орбиталь.

Для начала вспомним об электронной плотности и молекулярной орбитали.

Электронная плотность vs. молекулярные орбитали.

Электронная плотность Молекулярная орбиталь

- Наблюдаемый параметр (по-
лучается методами РСА –
Рентгено-Структурный ана-
лиз)

- Однозначно определена для
соответствующего состоя-
ния и геометрии

- Виртуальная конструкция,
которая появляется в рам-
ках одноэлектронного при-
ближения

- Способов задать молекуляр-
ные орбитали много

Электронная плотность – функция от трех пространственных переменных. Со-
гласно теореме Хоэнберга и Кона (1964) зная электронную плотность основного со-
стояния можно определить его энергию. Несмотря на возникающие проблемы опре-
деления кинетической энергии для электронной плотности и обменным потенциалом,
данная теорема является очень полезной.

На левой части (Рис. 7.1) показана электронная плотность молекулы белкового
кристалла, полученная методами рентгено-структурного анализа. Как можно ви-
деть, точность реконструкции для данной молекулы не очень велика, но если иметь
дело с низкомолекулярными объектами, то качество реконструкции гораздо лучше.

На правой части (Рис. 7.1) как раз показана электронная плотность низкомоле-
кулярного объекта в виде сечения в плоскости молекулы – изолинии. Областям мак-
симумов электронной плотности, как и положено, соответствуют координаты ядер.
В этом и заключается принцип работы метода рентгено-структурного анализа – на-
ходятся максимумы плотности, в которые и помещаются координаты ядер соответ-
ствующих атомов.
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Рис. 7.1. Электронная плотность молекулы белкового кристалла (слева) и электрон-
ная плотность низкомолекулярного объекта в виде сечения в плоскости молекулы
(справа).

Помимо определения геометрии методами РСА, нам также интересны характе-
ристики, которые можно рассчитывать зная электронную плотность.

Вспомним некоторые характеристики электронной плотности:

1) В расчетах электронной плотности можно получить из функции состояния Ψ:

ρpx, y, zq “

ż ż ż

ψ
˚
ψ dxi dyi dzi (7.1)

где Ψ – определитель Слейтера или линейная комбинация определителей Слей-
тера. Элементы определителя Слейтера – молекулярные орбитали. Молекуляр-
ные орбитали – линейные комбинации базисных функций.

Интегрирование проводится по координатам всех электронов кроме одного.

2) В эксперименте, электронная плотность – трехмерная сетка с наблюдаемыми
значениями электронной плотности.

Анализ электронной плотности. Атомные заряды.

Чтобы получить представление о том, насколько многообразна на сегодня область
знаний, связанная с тем, как анализировать электронную плотность, достаточно по-
смотреть на руководство к программе "Multiwfn"(подробное руководство занимает
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1058 страниц), которая посвящена расчету различных характеристик, которые мож-
но получить зная электронную плотность системы. На этой лекции мы познакомимся
с самыми простыми моментами и обсудим несколько других дескрипторов.

Например, даже определение такой простой и понятной характеристики как атом-
ный заряд может оказаться нетривиальным. В этой программе используется несколь-
ко различных способов для определения зарядов атомов (и это лишь часть существу-
ющих способов):

1) "Стандартные"заряды по Малликену (Mulliken) и Левдину (Lowdin)

2) Метод расчета зарядов подбирается в зависимости от системы. Для различных
задач удобнее использовать различные метода расчета зарядов.
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Атомные заряды по Малликену, по Лёвдину.

Атомные заряды по Малликену (исторически первые)

Молекулярная орбиталь ϕi через базис tχiu:

ϕip⃗rq “
ÿ

a
Ca,iχap⃗rq (7.2)

Молекулярные орбитали нормированы:

l “

ż

´

ÿ

a
Ca,iχap⃗rq

¯2
d⃗r “

ÿ

a
C2

a,i `
ÿ

a

ÿ

b‰a

Ca,iCb,iSa,b “

“
ÿ

a
C2

a,i ` 2
ÿ

a

ÿ

bąa

Ca,iCb,iSa,b

(7.3)

где

Sa,b “

ż

χap⃗rq χbp⃗rq d⃗r (7.4)

Заселенность базисной функции a на спин-орбитали I:
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Θi,a “
ÿ

a
C2

a,i `
ÿ

b‰a

Ca,iCb,iSa,b (7.5)

Заселенность атома A складывается из суммы заселенностей базисных функций,
центрированных на соответствующем атоме на всех молекулярных орбиталях.

Атомный заряд по Малликену:

qA “ ZA ´
ÿ

i

ni,A “ ZA ´
ÿ

i

ηi
ÿ

aPA

Θi,a (7.6)

где ZA –заряд ядра; ni,A – вклад i-ой орбитали; ηi – число заполнения орбитали: 0
или 1 (свободная или занятая); Θi,a – заселенность базисной функции a на молеку-
лярной орбитали i.

Недостатки способа вычисления атомного заряда по Малликену:

1) Плохая воспроизводимость наблюдаемых свойств, например, дипольного заря-
да

2) Равномерное распределение интегралов перекрывания по двум базисным функ-
циям не имеет физического обоснования

3) Сильная зависимость от базисного набора, в частности, неадекватные резуль-
таты при использовании диффузных функций

4) Иногда получаются отрицательные заселенности ηa,i

Как способ борьбы – модифицированные заряды по Малликену:

1) Bickelhaupt

2) Stout & Politzer

3) Ros & Schuit (SCPA)

Модификация "Stout & Politzer"– веса при разделении вкладов от интегралов
перекрывания присваиваются на основании вкладов базисных функций в текущую
орбиталь:

Θi,a “
ÿ

a
C2

a,i `
ÿ

b‰a

C2
a,i

C2
a,i `C2

b,i
2Ca,iCb,iSa,b (7.7)
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Модификация "Bickelhaupt"(расширенный вариант) – веса определяются в соот-
ветствии с вкладами базисных функций во все орбитали:

Θi,a “
ÿ

a
C2

a,i `
ÿ

b‰a

wa,bCa,iCb,iSa,b (7.8)

где

wa,b “

ř

k ηkC2
a,b

ř

i ηiC2
a,i `

ř

j η jC2
b, j

(7.9)

Атомные заряды по Лёвдину

В отличие от Малликеновских, проводится предварительная ортогонализация:

X “ U s
1{2UT (7.10)

где U – матрица собственных функций матрицы интегралов перекрытия; s – по-
лучается диагонализацией матрицы собственных значений матрицы интегралов пе-
рекрывания.

После Лёвдинской диагонализации, матрица интегралов перекрывания становит-
ся единичной матрицей, а матрица новых коэффициентов:

X´1C

Заряды по Хиршфельду. Функции Фукуи.

Заряд по Хиршфельду определяется как

qA “ ´

ż

wHirsh
A p⃗rq ρde f p⃗rq d⃗r (7.11)

где ρde f p⃗rq – деформационная электронная плотность:

ρ
de f

p⃗rq “ ρ p⃗rq ´ ρ
pro

p⃗rq (7.12)

а ρ prop⃗rq – промолекулярная электронная плотность (некоторая виртуальная плот-
ность, предполагающая отсутствие взаимодействия между атомами):

ρ
pro

p⃗rq “
ÿ

A

ρ
f ree

A p⃗r ´ R⃗Aq (7.13)
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Соответствующие веса:

wHirsh
A p⃗rq “

ρ
f ree

A p⃗r ´ R⃗Aq

ρ prop⃗rq
(7.14)

Недостатки данного метода: заряды по Хиршуфельду маленькие по абсолютной
величине и не воспроизводят некоторые наблюдаемые свойства.

Функции Фукуи

Функция Фукуи определяется как производная электронной плотности по их чис-
лу:

f p⃗rq “

„

Bρ p⃗rq

BN

ȷ

(7.15)

Физический смысл данной величины состоит в том, что индекс Фукуи отражает
разность плотностей двух одинаковых систем, с на единицу отличающимся числом
электронов. Эти индексы показывают области, предпочтительные для:

(Сайты) Нуклеофильной атаки:

f `
p⃗rq “ ρN`1p⃗rq ´ ρN p⃗rq « ρ

LUMO
p⃗rq (7.16)

(Сайты) Электрофильной атаки:

f ´
p⃗rq “ ρN p⃗rq ´ ρN´1p⃗rq « ρ

HOMO
p⃗rq (7.17)

И (сайты) радикальной атаки:

f 0
p⃗rq “

f `p⃗rq ` f ´p⃗rq

2
“

ρN`1p⃗rq ´ ρN´1p⃗rq

2
«

ρHOMOp⃗rq ` ρLUMOp⃗rq

2
(7.18)

На (Рис. 7.2) представлен пример пространственного распределения функции Фу-
куи. Как известно, в бензоле могут происходить реакции, в которой требуются сайты
электрофильной атаки. К молекуле бензола "подходит"E` электрофил, и, соответ-
ственно, должен быть нуклеофильный сайт, который будет комплиментарен этому
электрофилу. Для того, чтобы определить сайты нуклеофильной атаки (или просто
нуклеофильные сайты) необходимо рассчитать функцию Фукуи и выделить обла-
сти, в которых она будет принимать наибольшее значение (атомы С1, С5, С3 на
(Рис. 7.2)).
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Рис. 7.2. Пример функции Фукуи f ´: сайты электрофильной атаки.

Поясним, почему эта тема возникла в контексте зарядов Хиршвильда. Если об-
ратить внимание на функцию Фукуи f `:

f `
p⃗rq “ ρN`1 ´ ρN p⃗rq

и записать ее для атома:

f `
A “ qA

N ´ qA
N`1

то мы переходим от разности электронных плотностей к разности зарядов на этих
атомах, которые, в свою очередь, определяются через деформационную плотность:

qA “ ´

ż

wHirsh
A p⃗rq ρde f p⃗rq d⃗r (7.19)

Таким образом, индекс Фукуи может быть определен как разность зарядов полу-
ченных в схеме Хиршвильда.

На (Рис. 7.3) показаны атомные характеристики фенола, из которых видно, что
для атомов в пара-положении функция Фукуи принимает наибольшее значение, в
орто-положении – поменьше, и самые низкие – в мета-положении. То есть самые
слабые сайты для электрофильной атаки – сайты в мета-положении.
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Рис. 7.3. Атомные характеристики фенола.

Метод натуральных связевых орбиталей (NBO), вклад

резонансных форм.

Метод натуральных связевых орбиталей был разработан Франком Вейнхольдом
для выделения "химических"элементов электронной структуры путем преобразова-
ния канонических молекулярных орбиталей, получаемых в расчете. Процедура про-
водится таким образом, чтобы полученную в расчете электронную плотность макси-
мально разложить по локализованным элементам электронной (Льюисовской) струк-
туры.

К элементам структуры модно отнести следующие:

1) Остов (например, 1s для элементов 2-го периода)

2) Двухцентровые: химическая связь

3) Одноцентровые: неподеленная пара, вакансия

Идея в том, чтобы найти натуральные атомные орбитали NAO (похожи на те,
которые могли бы быть в атоме), затем найти гибридизованные орбитали NHO, и,
далее, натуральные связевые орбитали NBO.

Рассмотрим данную процедуру на примере молекулы метиламина (Рис. 7.4). На
(Рис. 7.5) показан фрагмент файла выдачи программы в результате анализа NBO.
Для атома углерода имеем остов "Core 1s"с полной заселенностью („ 2 электрона) и
очень низкой энергией – остовные электроны находятся на орбиталях ниже валент-
ной зоны.

Аналогично и для атома азота: остовная орбиталь 1s-типа с заселенностью 2, и
очень низкой энергией -15. То есть, в рамках одного периода, при движении вправо,
энергия должна понижаться.
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Рис. 7.4. Молекула метиламина.

Далее идет валентная зона: 2s и 2p электроны для углерода. Также появляются
тактипированные орбитали (Ryd – Ридберговы), которые, по-сути, являются орби-
талями со следующего энергетического уровня, которые также могут быть немного
заселены. Необходимость добавления таких орбиталей состоит в том, чтобы полно
описать электронную плотность системы.

Обратим внимание на то, что у орбиталей p-типа есть ориентация: px, py и pz, и
каждой из них соответствует своя заселенность. Таким образом, можно разделить
электронную плотность по натуральным атомным орбиталям.

Рис. 7.5. Фрагмент файла выдачи программы в результате анализа NBO.
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Если, далее, сложить заселенности по натуральным атомным орбиталям и вы-
честь заряд ядра, то можно получить натуральные заряды (Рис. 7.6). Натуральные
заряды – разность между зарядом ядра и заселенности всех NAO.

Рис. 7.6. Фрагмент файла выдачи программы со значениями натуральных зарядов.

Заметим, что у атома водорода H3 натуральный заряд ниже, чем у атомов H4 и
H5, что связано с гиперконъюгацией.

Сверхсопряжение (гиперконъюгация) – это эффект π, σ -сопряжения, заключаю-
щийся во взаимодействии заполненных и незаполненных орбиталей σ -типа и π-типа
или, неопределенных пар. В нашем случае орбиталь σ -типа C1´H3 взаимодействует
с неподеленной парой атома азота N2 (Рис. 7.7).

Рис. 7.7. Сверхсопряжение (гиперконъюгация) в молекуле метиламина.

Получающаяся в результате "натуральная электронная конфигурация"(Рис. 7.8)
(полученная методом натуральных связевых орбиталей). Имеем полностью занятый
остов для элементов второго периода, s-подуровень, 2s-подуровень с заселенностью
1.09 для углерода и 1.43 для азота, и 2p- подуровень с большей заселенностью. Для
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атомов водорода заселенности есть только для уровня 1s, и остова, конечно, нет,
поскольку это элементы первого периода.

Рис. 7.8. "Натуральная электронная конфигурация"молекулы метиламина.

Цель NBO – разложить электронную плотность по элементам Льюисовской струк-
туры (остов, связи, неподеленные пары). Как можно видеть из (Рис. 7.9), 99.725%
электронной плотности распределено по элементам Льюисовской структуры. Осталь-
ную часть (0.05 e) не удалось описать – проявляется в заселенности вакантных ор-
биталей (Ry и BD˚).

Рис. 7.9. Доля электронной плотности распределенной по элементам Льюисовской
структуры на примере молекулы метиламина.

Следующий пункт – натуральные связевые орбитали (Рис. 7.10).
Первая связь NBO1 – связь между атомами C1 и N2, образованная перекрыванием

sp3.61 гибридизованной орбитали C и sp2.24 гибридизованной орбитали N:

σCN “ 0.633 psp3.61
qC ` 0.774 psp2.24

qN

Большая электроотрицательность атома N проявляется в большем коэффициенте
поляризации (0.774) гибридной орбитали N.

Вторая связь NBO2 – связь между атомами C1 и H4, образованная перекрыванием
sp2.88 гибридизованной орбитали C и s орбитали H:

Состав гибридной орбитали C:

hC “ 0.840 p2pyq ´ 0.508 p2sq ` 0.193 p2pxq
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Рис. 7.10. Структура натуральных связевых орбиталей на примере молекулы метил-
амина.

Также есть одноцентровые орбитали (Рис. 7.11):

1) Остов (CR). Как правило, имеют стопроцентную заселенность. Например, на
(Рис. 7.11) видно, что N2 имеет в остове два электрона.

2) Неподеленные пары (LP). Как правило, имеют заселенность ниже ста процен-
тов. Например, на (Рис. 7.11) видно, что N2 имеет меньше двух электронов на
неподеленной паре.

Рис. 7.11. Заселенность одноцентровых орбиталей на примере молекулы метиламина.

Разработчиками данного метода недавно была опубликована статья о том, как
развивался метод и какую еще полезную информацию можно получить используя
подход натуральных связевых орбиталей для интересующей молекулярной системы:
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Для этого была проанализирована реакция перехода формамида F в формамид-
ную кислоту FA (Рис. 7.12). Такая реакция, конечно, не идет в газовой фазе, но, тем
не менее, как модельная реакция для демонстрации методов NBO вполне подходит.

Рис. 7.12. Реакция перехода формамида F в формамидную кислоту FA.

Теперь, если рассмотреть не одну резонансную форму, а разложить электрон-
ную плотность таким образом, чтобы определить суперпозицию разных резонанс-
ных форм, то для молекулы формамида получим четыре Льюисовских структуры
(Рис. 7.13). Эти четыре структуры описывают электронную плотность на 99.3%, при
этом, сами структуры имеют достаточно большие веса и основная конфигурация
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занимает менее половины – 43.8%. То есть, наблюдается сильная делокализация,
приводящая к формированию различных резонансных форм.

Рис. 7.13. Разложение электронной плотности молекулы формамида на суперпози-
цию четырех Льюисовских структур.

Тоже самое наблюдается и для формамидной кислоты, за исключением того, что
вес основной резонансной формы гораздо выше – 64.2% (Рис. 7.14).

Рис. 7.14. Разложение электронной плотности молекулы формамидной кислоты на
суперпозицию четырех Льюисовских структур.

На (Рис. 7.15) показано то, как меняются вклады (веса) каждой резонансной фор-
мы при переходе от реагентов к продуктам. Резонансные формы, которые были менее
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заселены на этом рисунке не представлены, но даже судя по двум основным формам
заметны постепенные изменения при преобразовании конфигурации.

Рис. 7.15. Изменение вкладов (весов) каждой резонансной формы при переходе от
реагентов к продуктам.

Квантово-топологическая теория атомов в молекулах

(QTAIM).

Еще один подход изучения электронной плотности основан на изучении ее то-
пологии. Как мы уже говорили, электронная плотность – функция трех простран-
ственных переменных, значит с ней можно работать как с функцией от этих перемен-
ных. В частности, можно рассчитывать производные, вторые производные или более
сложные манипуляции и, с помощью них, изучать топологию электронной плотности
(Рис. ??).

Ключевое понятие QTAIM – критические точки:

∇ρprq “ 0 (7.20)
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Рис. 7.16. График первых производных электронной плотности.

Рассмотрим сечение электронной плотности на примере молекулы формамида.

Первый постулат QTAIM: Локальные максимумы электронной плотности со-
ответствуют координатам ядер (Рис. 7.17).

Рис. 7.17. Максимумы электронной плотности.

Атомные бассейны разделены поверхностями Si, где вектор ∇ρ меняет свой знак.
Таким образом, поток градиента электронной плотности через эти поверхности равен
0:

∇ρpriq ¨ npriq “ 0, @ri P Si (7.21)

Граница атомного бассейна образуется на поверхности пересечения линий гради-
ентов, меняющих свой знак, и идущих от максимумов электронной плотности (обо-
значено фиолетовыми линиями на рисунке).

Далее модно вычислить вторые производные и построить матрицу Гессе (Гессиан)
электронной плотности:
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И далее определить тип найденной критической точки. Поскольку пространство
трехмерное, то критические точки могут быть четырех типов: максимумы, мини-
мумы, а также смешанные (максимум по одному направлению и минимум по двум
другим, и наоборот).

Второй постулат QTAIM: Наличие между двумя атомами связевого пути необ-
ходимо и достаточно для того, чтобы атомы были связаны.

Критическая точка связи (Рис. 7.18) – седловая точка электронной плотности
между атомами, является минимумом электронной плотности по линии связи между
атомами и максимумами по двум другим направлениям.

Рис. 7.18. Схематический вид седловой точки – отмечена как жирная точка.

Также есть еще одна характеристика – Лапласиан электронной плотности (ска-
лярная величина), который характеризует области концентрации и деконцентрации
электронной плотности:

∇
2
ρ p⃗rq “

B2ρ

Bx2 `
B2ρ

By2 `
B2ρ

Bz2 (7.23)

Если ∇2ρ ą 0 – область деконцентрации электронной плотности; если ∇2ρ ă 0 –
область концентрации электронной плотности.
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Одно из применений Лапласиана в химии связано с определением сайтов нук-
леофильного присоединения в молекулах с помощью анализа карт Лапласиана элек-
тронной плотности.

Например, реакция присоединения нуклеофила к карбонильной группе (Рис. 7.19).
В зависимости от заместителя R эта реакция может проходить, либо проходить слож-
но, либо не проходить вовсе. Для того, чтобы реакция прошла, и прошла эффектив-
но, необходима активация – карбонильная связь поляризуется, и на атоме углерода
образуется область деконцентрации электронной плотности.

Рис. 7.19. Реакция присоединения нуклеофила к карбонильной группе и схематиче-
ский вид процесса активации.

Посмотрим как это выглядит при анализе карт Лапласиана электронной плотно-
сти. На (Рис. 7.20) представлена такая карта для двух случаев: карбонильная группа
активирована – на рисунке слева; карбонильная группа не активирована – на рисунке
справа.

Рис. 7.20. Карта Лапласиана электронной плотности: карбонильная группа активи-
рована (слева); карбонильная группа не активирована (справа).
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На правой схеме атом углерода окружен бледно-зеленой полоской – это область
концентрации электронной плотности. На левой же схеме – наблюдается разрыв в
этой оболочке, свидетельствующий о деконцентрации электронной плотности в этой
области. То есть, в ответ на появление нуклеофила возникает электрофильный сайт,
являющийся комплиментарным к нуклеофилу, что и способствует протеканию реак-
ции.

Подытожим

При проведении квантово-химических расчетов химически полезные знания не
ограничиваются механизмом реакции (поиском стационарных точек на ППЭ), а так-
же равновесных геометрических конфигураций.

Много полезной информации можно получить, анализируя электронную плот-
ность.
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