
МЕХАНИКА • СЛЕПКОВ АЛЕКСАНДР ИВАНОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ  
ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ.  
СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

КВАНТОВАЯ 
ХИМИЯ
НОВАКОВСКАЯ 

ЮЛИЯ ВАДИМОВНА

ХИМФАК МГУ

КОНСПЕКТ ПОДГОТОВЛЕН 
СТУДЕНТАМИ, НЕ ПРОХОДИЛ 
ПРОФ. РЕДАКТУРУ И МОЖЕТ 

СОДЕРЖАТЬ ОШИБКИ.  
СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ 

НА VK.COM/TEACHINMSU.

ЕСЛИ ВЫ ОБНАРУЖИЛИ 
ОШИБКИ ИЛИ ОПЕЧАТКИ, 
ТО СООБЩИТЕ ОБ ЭТОМ, 
НАПИСАВ СООБЩЕСТВУ 
VK.COM/TEACHINMSU.

ХИМИЧЕСКИЙ 
ФАКУЛЬТЕТ  
МГУ ИМЕНИ 
М.В. ЛОМОНОСОВА



БЛАГОДАРИМ ЗА ОЦИФРОВКУ КОНСПЕКТА 

С  ТУДЕНТА ХИМФ  АКА МГУ

КАЙДУ АНАТОЛИЯ СЕРГЕЕВИЧА



 

  

 

2

 
 

Оглавление 

Лекция №1. Общие представления о квантовомеханическом описании  молекулярных 

систем. ........................................................................................................................................ 4 

1.1 Волновое уравнение и волновые функции. Постановка основной задачи............................ 4 

1.2 Атомная система единиц. ........................................................................................................... 6 

1.3 Оператор Гамильтона молекулярной системы. Движение поле фиксированных ядер. 

Электронный гамильтониан. ............................................................................................................ 6 

1.4 Адиабатическое приближение. Вывод ядерного уравнения. ................................................. 7 

Лекция №2. Связь ядерной и электронной подсистем молекулы. .......................................... 10 

2.1 Электронное уравнение и электронный гамильтониан. ....................................................... 10 

2.2 Ядерное уравнение. Приближение Борна-Оппенгеймера. ................................................... 11 

2.3 Поверхности потенциальной энергии. Энергетические профили химических реакций. ... 13 

Лекция №3. Симметрия состояний молекул. .......................................................................... 15 

3.1 Важность учета симметрии системы при ее движении по поверхности потенциальной 

энергии в ходе химической реакции. ............................................................................................ 15 

3.2 Элементы теории групп. ........................................................................................................... 16 

Лекция   №4. Многоэлектронная задача. ................................................................................. 19 

4.1 Многоэлектронная задача. Представление многоэлектронной функции. 

Одноэлектронное приближение. Принцип Паули. Определитель Слейтера. ........................... 19 

Лекция №5. Уравнения Хартри-Фока ....................................................................................... 22 

5.1 Уравнения Хартри-Фока. Исходные допущения. Одно-и двухэлектронные  интегралы. ... 22 

5.2 Энергия электронной подсистемы как функционал одночастичных функций. Линейный 

вариационный подход в рамках решения электронной задачи. ................................................ 23 

5.3 Вид уравнений Хартри-Фока. Оператор Фока. Канонический вид уравнения Хартри-Фока. 

Ограничения применимости уравнения. ...................................................................................... 24 

Лекция №6. Метод Хартри-Фока .............................................................................................. 27 

6.1 Уравнения Хартри-Фока. Принцип заполнения. ..................................................................... 27 

6.2 Спиновая функция. Спиновое состояние. Спин-орбитали. .................................................... 28 

6.3 Ограниченный и неограниченный методы Хартри-Фока. ..................................................... 29 

Лекция №7. Метод МО ЛКАО (Молекулярные Орбитали как Линейные Комбинации Атомных 

Орбиталей) ............................................................................................................................... 32 

7.1 Повторение базовых приближений методы Хартри-Фока. ................................................... 32 

7.2 Базисные наборы. Волновая функция атома водорода. ....................................................... 32 

7.3 Экспоненциальный функции Слейтера и Гаусса. Примитивные и сжатые функции и 

базисные наборы. Дополнения базовых наборов: поляризационные и диффузные функции.

 ........................................................................................................................................................... 35 

https://vk.com/teachinmsu


 

  

 

3

 
 

7.4 Начальные приближения для молекулряных орбиталей. ..................................................... 36 

Лекция №8. Распределение электронной плотности. ............................................................. 38 

8.1 Распределение электронной плотности. Электронная плотность однодетерминантной 

волновой функции. .......................................................................................................................... 38 

8.2 Распределение электронной плотности для орбитали в приближении  МО ЛКАО. ........... 39 

8.3 Схемы анализа распределения электронной плотности. Схема Малликена на примере 

двухатомной молекулы. Преимущества и недостатки схемы. .................................................... 40 

Лекция №9. Недостатки однодетерминантного подхода и его альтернативы. ...................... 44 

9.1 Недостатки однодетерминантного подхода. .......................................................................... 44 

9.2 Энергия электронной корреляции. .......................................................................................... 47 

9.3 Метод конфигурационного взаимодействия. ......................................................................... 48 

9.4 Метод многоконфигурационного самосогласованного поля. .............................................. 49 

Лекция №10. Полуэмпирические методы. .............................................................................. 50 

10.1 Полуэмпирические методы .................................................................................................... 50 

10.2 Требование пространственной инвариантности. ................................................................. 52 

10.3 Методы в рамках полуэмпирического подхода. .................................................................. 53 

Лекция №11. Метод функционала плотности. ......................................................................... 55 

11.1 Введение в теорию функционала плотности. Внешний потенциал.................................... 55 

11.2 Теорема Хоэнберга-Кона и ее доказательство. .................................................................... 56 

11.3 Функционал Хоэнберга-Кона. Обменно-корреляционная энергия. ................................... 57 

11.4 Составление названий. Построение функционалов. Основные приближения теории 

функционала плотности. ................................................................................................................. 59 

Лекция №12. Состояния и реакционная способность молекул. .............................................. 61 

12.1 Обзор методов, рассмотренных в курсе. .............................................................................. 61 

12.2 Функции Фукуи. Конечно-разностный подход. .................................................................... 62 

12.3 Сжатые функции Фукуи. Жесткость электронной подсистемы. .......................................... 64 

12.4 Локальная мягкость. Относительные нуклеофильность и электрофильность. .................. 65 

 

 

  

https://vk.com/teachinmsu


 

  

 

4

 
 

Лекция №1. Общие представления о квантовомеханическом описании  

молекулярных систем. 

1.1 Волновое уравнение и волновые функции. Постановка основной 

задачи. 

Из курса квантовой механики известно, что электроны, протоны, α-частицы и некоторые 

другие микроскопические объекты, а также фотоны в зависимости условий экспери-

мента могут проявлять свойства частиц или свойства волн. В связи с этим возникает во-

прос каким образом описывать подобные объекты? 

Попробуем интуитивно прийти к основному уравнению квантовой механики – времен-

ному уравнение Шредингера. Рассмотрим свободно движущуюся в пространстве ча-

стицу, например, электрон. Если мы думаем про электрон как про волну, то для него 

можно записать уравнение волны в экспоненциальном виде:     

𝛷 = 𝑒𝑖(𝑘𝑥−𝜔𝑡) 

Если мы перейдем к трехмерной задаче и произвольному направлению движения преды-

дущее уравнение можно переписать в виде: 

 𝛷 = 𝑒𝑖(𝑘⃗ 𝑟 −𝜔𝑡) 

где 𝑘
→

- волновой вектор, 𝜔-круговая частота. Волновой вектор и частота могут быть свя-

заны с более привычными характеристиками движения материальных частиц – импуль-

сом и энергией:  

𝑝 = ℏ𝑘⃗  
𝐸 = ℏω 

где 𝑝
→

-импульс, E-энергия,  ℏ =
ℎ

2𝜋
 . С учетом вида дифференциальных уравнений, реше-

нием которых является уравнение (1.1) или (1.2), а также того, что для свободного элек-

трона справедливо уравнение: 

𝐸 =
𝑝2

2𝑚
 

мы можем в каком-то смысле «угадать» уравнение Шредингера:   

𝑖ℏ
𝜕𝛷

𝜕𝑡
= −

ℏ2

2𝑚
ΔΦ  

где Δ – оператор Лапласа. Уравнение (1.5), в сущности, позволяет, не вдаваясь во внут-

реннюю структуру частиц, описывать «внешнюю форму» распределения, например, за-

ряда в случае заряженных частиц.  
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Эффективный размер ядра атома порядка фемтометра, а электрона нескольких ангстрем:  

𝑅 (ядро) ∼ 10−15м 

𝑅 (электрон) ∼ 10−10м 

В связи с этим в большинстве рассматриваемых далее задач мы можем считать ядро 

практически точечным объектом и рассматривать его как материальную точку, что, од-

нако, далеко не всегда можно сказать об электроне. По сути, молекула для нас стала по-

добной атому в модели Томсона. Только теперь в этом уже молекулярном «пудинге» 

«изюминки» внутри это ядра, а окружающая их студенистая масса это каким-то образом 

распределенные электроны. 

У нас есть базовые представления классической физики о том, как взаимодействуют ча-

стицы, но мы практически ничего не знаем о структуре этих частиц. В сущности, мы 

пытаемся корректно описать «внешнее» проявление динамической структуры частиц. 

Для этого в рамках принципа соответствия в уравнениях классической физики мы заме-

няем обычные физические величины соответствующими операторами. 

Обобщим уравнение (1.5) записанное для свободного электрона на случай произвольной 

системы: 

𝑖ℏ
𝜕𝛹
∼

𝜕𝑡
= 𝐻̂𝛹

∼

  

где 𝐻̂- оператор Гамильтона. Оператор Гамильтона при описании молекулярных система 

явно не зависит от времени, поэтому уравнение (1.6) можно решать методом разделения 

переменных. Представляя функцию Ψ в виде произведения двух функций получим: 

𝛹
∼

= 𝛹 (𝑟
→
, 𝑅
→

) ∗ 𝑓(𝑡) 

где 𝑟 ≡ (𝑟 1, 𝑟 2, … 𝑟 𝐾) − совокупность радиус-векторов 𝑁 электронов, 𝑅⃗ ≡ (𝑅⃗ 1, 𝑅⃗ 2, … 𝑅⃗ 𝐾) 
совокупность радиус-векторов K ядер, 𝑡 − время. 

С учетом выражения (1.7) уравнение (1.6) можно привести к следующему виду:  

{
𝐻̂𝛹 = 𝐸𝛹                          

𝑖ℏ
𝜕𝑓

𝜕𝑡
= 𝐸𝑓 ⇒ 𝑓 = 𝑒−

𝑖
ℏ
𝐸𝑡  

Первое уравнение системы является стационарным уравнением Шредингера. Фактиче-

ски основной задача курса является решение стационарного уравнения Шредингера для 

молекулярных систем т.е. систем, состоящих из 𝐾 ядер и 𝑁 электронов. 
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1.2 Атомная система единиц.  

В дальнейшем будет целесообразно пользоваться атомной системой единиц: 

e = 1 атомная единица заряда = 1.602∙10-19 Кл 

me = 1 атомная единица массы = 9.109∙10-31 кг 

ℏ = 1 атомная единица действия= 1.055∙10-34 Дж∙с 

1.3 Оператор Гамильтона молекулярной системы. Движение поле 

фиксированных ядер. Электронный гамильтониан.   

 

Постоянная Планка – мера масштаба, в котором мы работаем. В том случае, когда можно 

пренебречь величинами порядка ℏ можно перейти на макроуровень. 

Запишем оператор Гамильтона молекулярной системы для 𝑁 электронов и 𝐾 ядер:  

𝐻
∧

= 𝑇
∧

𝑛 + 𝑇
∧

𝑒 + 𝑉
∧

𝑒𝑒 + 𝑉
∧

𝑒𝑛 + 𝑉
∧

𝑛𝑛 

где  𝑇
∧

𝑛 – оператор кинетической энергии ядер, 𝑇
∧

𝑒 – оператор кинетической энергии 

электронов, 𝑉
∧

𝑒𝑒 – оператор потенциальной энергии взаимодействия электронов между 

собой, 𝑉
∧

𝑒𝑛 – оператор потенциальной энергии взаимодействия между электронами и яд-

рами, 𝑉
∧

𝑛𝑛 –  оператор потенциальной энергии взаимодействия ядер между собой.  

Распишем выражение (1.9) подробнее: 

𝐻
∧

= −∑
1

2𝑀𝛼
𝛻𝛼
2

𝐾

𝛼=1

−∑
1

2

𝑁

𝑖=1

𝛻𝑖
2 + ∑

1

𝑟𝑖𝑗

𝑁

𝑖<𝑗=1

−∑∑
𝑍𝛼
𝑅𝑖𝑎

𝐾

𝛼=1

𝑁

𝑖=1

+ ∑
𝑍𝛼𝑍𝛽

𝑅𝛼<𝛽=1

𝐾

𝛼<𝛽=1

  

где Μα – масса α-го ядра в атомной системе единиц, ∇- оператор набла, 𝑍𝛼- заряд ядра в 

атомной системе единиц,  rij = ❘ri − rj❘ – расстояние между парой электронов, Riα =

❘Rα − ri❘ – расстояние между электроном и ядром, Rαβ = ❘Rα − Rβ❘ – расстояние между 

ядрами. 

Разделить переменные в стационарном уравнении Шредингера с оператором Гамиль-

тона, приведенным выше (см. выражение 1.10), невозможно в силу согласованности со-

стояния ядер и электронов. Масса протона равна примерно 1836 а.е. и, следовательно, 

можно считать 𝛭𝛼 ≈ 104 а.е.. Коэффициенты перед слагаемыми оператора кинетической 

энергии ядер в стационарном уравнении при этом будут малы, и мы можем в «нулевом 

приближении» исключить слагаемые с малыми коэффициентами и решать в начале част-

ную задачу:  

𝐻𝑒
∧

= 𝐻
∧

− 𝑇
∧

𝑛 = 𝑇
∧

𝑒 + 𝑉
∧

𝑒𝑒 + 𝑉
∧

𝑒𝑛 + 𝑉
∧

𝑛𝑛 

где 𝐻
∧

𝑒 – электронный гамильтониан.  

Соответствующую частную задачу можно записать в следующем виде: 

𝐻
∧

𝑒𝛷𝑘 = 𝐸𝑒𝑘𝛷𝑘   
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где 𝐸𝑒𝑘 – энергия электронной подсистемы. Модельной системой при этом является со-

вокупность ядер, которые не изменяют свое положение и электроны, движущиеся в поле 

этих ядер. Электронный гамильтониан – эрмитов оператор. Уравнение на его собствен-

ные функции и собственные значения вообще говоря имеет бесконечное число решений. 

Функции 𝛷𝑘 характеризуют состояние электронной подсистемы (иначе говоря форму 

«молекулярного пудинга») при определенном расположении ядер. Таким образом, 

можно записать:  

𝛷𝑘 = 𝛷𝑘 (r
→
❘R
→

) 

где величины, стоящие левее вертикальной черты, являются явными переменными, а 

правее – параметрами. Поскольку каждый раз задача решается при фиксированном по-

ложении ядер, то и энергия будет функцией положения ядер 𝐸𝑒𝑘 = 𝐸𝑒𝑘 (𝑅
→

). Более того, 

функции 𝛷𝑘   образуют ортогональный базис: 

⟨𝛷𝑘|𝛷𝑙⟩ ≡ ∫  

𝑟
→
1

…∫  

𝑟
→
𝑁

𝛷𝑘
∗𝛷𝑙𝑑𝑟

→
… 𝑟
→

𝑁1
≡ 𝛿𝑘𝑙  

С точки зрения молекулярной системы («молекулярного пудинга») это означает, что 

при одном и тоже расположении ядер существует бесконечное число вариантов того 

как электроны, могут быть распределены в пространстве вокруг ядер.  

При этом одни состояния могут быть энергетически более выгодны чем другие. 

  

1.4 Адиабатическое приближение. Вывод ядерного уравнения.  

Представим волновую функцию исходной задачи в виде бесконечной суммы: 

𝛹 (𝑟
→
, 𝑅
→

) =∑𝛷𝑘 (r
→
❘R
→

) (𝑅
→

)

𝑘

 

где 𝜒𝑘 −функция, зависящая от ядерных переменных. Подставим это разложение в ис-

ходное молекулярное выражение и получим: 

(𝐻
∧

𝑒 + 𝑇
∧

𝑛)∑𝛷𝑘𝜒𝑘
𝑘

= 𝐸∑𝛷𝑘𝜒𝑘
𝑘

 

Если функции 𝛷𝑘  в уравнении (1.16) уже известны, то остается найти функции 𝜒𝑘  ха-

рактеризующие ядерную подсистему. Для этого умножим левую и правую часть урав-

нения (1.16) на некоторую функцию  𝛷𝑚
∗  и проинтегрируем по переменным всех элек-

тронов: 

⟨𝛷𝑚|𝐻
∧

𝑒 + 𝑇
∧

𝑛| ∑ 𝜒𝑘𝛷𝑘𝐾 ⟩
𝑟 
= ⟨𝛷𝑚|𝐸|∑ 𝜒𝑘𝛷𝑘𝑘 ⟩𝑟   

Рисунок 1.1  Схематическое изображение различного распределения электронов.  
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Ясно, что знак суммы в правой части уравнения (1.17) можно поменять местами со зна-

ком интегрирования, 𝐸 в уравнении (1.17) является константой, поэтому ее тоже можно 

вынести за знак интеграла и т.к. интегрирование ведется по электронным переменным, 

то 𝜒𝑘   также можно вынести за знак интеграла:  

< 𝛷𝑚|𝐸|∑𝜒𝑘𝛷𝑘
𝑘

>
𝑟
→= 𝐸∑ < 𝛷 𝑚 |𝛷𝑘 > 𝜒𝑘

𝑘

 

Если принять во внимание, что функции 𝛷𝑘 образуют ортогональный базис, правая 

часть уравнения еще упрощается:  

𝐸∑ < 𝛷𝑚|𝛷𝑘 > 𝜒𝑘
𝑘

= Eχ𝑚 

Левую часть уравнения (1.17) мы можем записать в виде суммы двух интегралов:  

< 𝛷𝑚 |𝐻
∧

𝑒 + 𝑇
∧

𝑛| ∑ 𝜒𝑘𝛷𝑘𝑘 >
𝑟
→=< 𝛷𝑚 |𝐻

∧

𝑒| ∑ 𝜒𝑘𝛷𝑘𝑘 >
𝑟
→ +< 𝛷𝑚 |𝑇

∧

𝑛| ∑ 𝜒𝑘𝛷𝑘𝑘 >
𝑟
→   

В первом интеграле правой части уравнения (1.20) суммирование можно поменять ме-

стами с интегрированием, а функцию 𝜒𝑘 можно вынести за знак интеграла:  

< 𝛷𝑚|𝐻
∧

𝑒|∑𝜒𝑘𝛷𝑘
𝑘

>
𝑟
→=∑ < 𝛷𝑚

𝑘

|𝐻
∧

𝑒|𝛷𝑘 >𝑟
→ 𝜒𝑘 

Поскольку функции 𝛷𝑘 собственные функции оператора 𝐻
∧

𝑒, то выражение (1.21) можно 

еще упростить:  

∑< 𝛷𝑚
𝑘

|𝐻
∧

𝑒| 𝛷𝑘 >𝑟
→ 𝜒𝑘 =∑𝐸𝑒𝑚 < 𝛷𝑚|𝛷𝑘 >𝑟

→ 𝜒𝑘
𝑘

= 𝐸𝑒𝑚𝜒𝑘  

Второй интеграл в уравнении (1.20) можно заменить суммой из трех интегралов если 

учесть вид оператора кинетической энергии и, то что  𝛷𝑘 зависит от координат ядер: 

 < 𝛷𝑚 |𝑇
∧

𝑛|∑𝜒𝑘𝛷𝑘
𝑘

>𝑟 =∑ < 𝛷𝑚| −∑
1

2𝑀𝛼
𝛻𝛼
2|𝜒𝑘𝛷𝑘 >𝑟 =

𝐾

𝛼=1𝑘

 

=∑ < 𝛷𝑚|𝛷𝑘 (−∑
1

2𝑀𝛼
𝛻𝛼
2𝜒𝑘

𝐾 

𝛼=1

) >𝑟 +

𝑘

∑< 𝛷𝑚|𝜒𝑘 (−∑
1

2𝑀𝛼
𝛻𝛼
2𝛷𝑘)

𝐾

𝛼=1

)

𝑘

>𝑟 + 

+∑ < 𝛷𝑚|

𝑘

−∑
1

𝑀𝛼
𝛻𝛼𝜒𝑘𝛻𝛼𝛷𝑘 >𝑟 

𝐾

𝛼=1

   

Первый из трех интегралов представляет собой действие оператора кинетической энер-

гии ядер на функции 𝜒𝑘. Во втором интеграле можно вынести за знак интеграла функ-

цию 𝜒𝑘. В третьем интеграле результат действия оператора набла на функцию 𝜒𝑘 также 

можно вынести за знак интеграла. Итого, мы получим: 
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< 𝛷𝑚 |𝑇
∧

𝑛|∑𝜒𝑘𝛷𝑘
𝑘

>
𝑟
→=

= 𝑇
∧

𝑛𝜒𝑚 +∑ < 𝛷𝑘|𝑇
∧

𝑛 |𝛷𝑘 >r
→ χk

𝑘

+∑∑(−
1

𝑀𝛼
) (< 𝛷𝑚|𝛻𝛼𝛷𝑘 >)𝑟

→𝛻𝛼𝜒𝑘
𝛼𝑘

 

Группируя и подставляя в исходное стационарное уравнение Шредингера выражения 

(1.22) и (1.24) с учетом выражения (1.21) получим:  

(𝑇
∧

𝑛 + 𝐸𝑒𝑚+< 𝛷𝑚 |𝑇
∧

𝑛| 𝛷𝑚 >)𝜒𝑚 + 

+ ∑(< 𝛷𝑚|𝑇
∧

𝑛|𝛷𝑘 > −∑
1

𝑀𝛼
< 𝛷𝑚|𝛻𝛼𝛷𝑘 >𝑟

→ 𝛻𝛼
𝛼𝑘≠𝑚

) = Eχ𝑚 

Уравнение (1.25) было получено после домножения на функцию 𝛷𝑚 с выбранным ин-

дексом 𝑚. Поэтому, вообще говоря, можно получить систему из бесконечного числа та-

ких уравнений. Решая, систему из этих связанных дифференциальных уравнений, можно 

получить функции, определяющие состояние и динамику эволюции ядерной подси-

стемы.  

Систему дифференциальных уравнений (1.25) решить в общем случае практически не-

возможно. Очевидно, что здесь необходимо прибегать к разного рода приближениям. 

Самое простое приближение состоит в том, что волновая функция представляется не в 

виде бесконечного набора произведений электронных и ядерных функций, а аппрокси-

мируется всего лишь одним таким произведением:   

𝛹 = 𝜒𝑚𝛷𝑚  

С точки зрения физики это означает, что мы предполагаем, что характер распределения 

электронов в молекулярной системе (форма «молекулярного пудинга») кардинально не 

изменяется при колебании ядер относительно выбранных положений, т.е. вся динамика 

ядер определяется одним распределением электронов в системе. Если применить дан-

ное приближение к уравнению 27, то сумма в левой части уравнения будет равна нулю, 

и мы получим: 

(𝑇
∧

𝑛 + 𝐸𝑒𝑚+< 𝛷𝑚 |𝑇
∧

| 𝛷𝑚 >)𝜒𝑚 = 𝐸𝜒𝑚 

Уравнение (1.27) называется ядерным уравнением, а соответствующее приближение 

называется адиабатическим. 
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Лекция №2. Связь ядерной и электронной подсистем молекулы. 

2.1 Электронное уравнение и электронный гамильтониан.  

Рассмотрим стационарное уравнение Шредингера для молекулярной системы, включа-

ющей 𝐾 ядер и 𝑁электронов, на которую не действуют внешние поля: 

𝐻̂𝛹 = 𝐸𝛹 
Оператор Гамильтона для данной системы примет следующий вид: 

𝐻
∧

= 𝑇
∧

𝑛 + 𝑇
∧

𝑒 + 𝑉
∧

𝑒𝑒 + 𝑉
∧

𝑒𝑛 + 𝑉
∧

𝑛𝑛 
Для решения уравнения (2.1) на первом этапе можно решать частное дифференциаль-

ное уравнение, которое можно получить из оператора Гамильтона (2.2) если исключить 

оператор кинетической энергии ядер 𝑇
∧

𝑛:  

𝐻
∧

𝑒𝛷𝑘 = 𝐸𝑒𝑘𝛷𝑘 

где 𝐻
∧

𝑒 = 𝑇
∧

𝑒 + 𝑉
∧

𝑒𝑒 + 𝑉
∧

𝑒𝑛 + 𝑉
∧

𝑛𝑛. Решая частную задачу (2.3) при разных положениях ядер, 

мы находим функции 𝛷𝑘(r
→
❘R
→

) и собственные значения электронного Гамильтониана 

𝐸𝑒𝑘(𝑅
→

), которые описывают состояние электронной подсистемы при различных конфи-

гурациях ядер. Для однозначного определения взаимного расположения ядер можно 

использовать Z-матрицу: 

{𝑟𝑖𝑗, 𝛳𝑖𝑗𝑘 , 𝜑𝑖𝑗𝑘} 

где 𝑟𝑖𝑗 – межъядерные расстояния, 𝛳𝑖𝑗𝑘 – плоские углы (часто соответствуют валент-

ным углам молекулы), 𝜑𝑖𝑗𝑘- торсионные углы.  Число элементов в Z-матрице будет 

равно 3𝐾 − 6, т.е. мы рассматриваем только то, как друг относительно друга располага-

ется ядра атомов, «забывая» о том, где расположен центр масс молекулы относительно 

начала координат и как повернута молекула в пространстве. Из этого следует, что 

𝐸𝑒𝑘(𝑞) – функция 3𝐾 − 6 переменных, где q – совокупность всех 3𝐾 − 6 переменных: 

 
𝑞 = 𝑞1, 𝑞2, 𝑞3. . . 𝑞3𝐾−6 

Совокупность (2.5) называют внутренними координатами.  

Электронное уравнение – это, в сущности, физическая задача, которая отвечает гипоте-

тической ситуации, при которой ядра вообще не движутся, а электроны каким-то обра-

зом эволюционируют в этой системе. Попробуем формально обосновать эту задачу с 

точки зрения классической физики(!). В рамках классической механики необходимым 

условием того, чтобы молекула существовала как единое целое, является сопостави-

мость импульсов всех составляющих ее частиц. Но если 𝑝𝑛 ≈ 𝑝𝑒 (где 𝑝𝑛- импульс ядер, 

𝑝𝑒- импульс электронов), то в силу того, что массы ядер электронов могут различаться 

на 3-4 для скоростей ядер и электронов можно записать 𝑣𝑒 ≫ 𝑣𝑛 (где 𝑣𝑒- скорость элек-

трона, 𝑣𝑛- скорость ядра), а для времён, требующихся этим частицам для преодоления 

одного и того же расстояния, 𝜏𝑒 ≪ 𝜏𝑛.  Если понимать под этими величинами некото-

рые характеристические времена можно утверждать, что при временах порядка 𝜏𝑒 элек-

трон успевают значительно изменять свое состояние, а ядра — нет. Таким образом при 

решении электронного уравнения мы переходим к масштабам времени порядка 𝜏𝑒. 
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Частоты колебаний в различных молекулах занимают диапазон приблизительно от 400-

4000 см-1. Периоды колебаний с такими частотами можно оценить, как 10-100 фс. Эти 

времена достаточно большие в сравнении с тем временем, которое требуется электрон-

ной подсистеме, для того чтобы она как-то изменилась, что в целом ожидаемо если 

учесть, что атомная единица времени порядка 
1

40
фс. Таким образом, решая электрон-

ную задачу, мы работаем в масштабах времени приблизительно порядка 10-17с. В даль-

нейшем будет полезно знать следующие соотношения для энергии в различных систе-

мах единиц: 1 а.е. энергии = 219475 см-1, 1 эВ ≈ 8065 см-1 и 1 ккал/моль ≈ 350 см-1 

На рисунке 2.1 изображено схематичное 

распределение электронной плотности в 

некоторой двухатомной молекуле. Основ-

ному состоянию электронное подсистемы  

𝛷𝑘 соответствует некоторая энергия 𝐸1. 
Деформируя распределение электронной 

плотности можно получить новые распре-

деления 𝛷1 , 𝛷2 и т.д.  Одни состояния мо-

гут быть энергетически выгоднее чем дру-

гие, может изменяться оптимальное рас-

стояние между ядрами. Более того в неко-

торых состояниях молекула может не су-

ществовать как единое целое и стремиться 

«развалиться» на отдельные составляющие 

ее части.  

2.2 Ядерное уравнение. Приближение Борна-Оппенгеймера. 

  

Решений электронного уравнения бесконечно много т.е. {𝛷𝑘}(1…∞). Каждое из этих ре-

шений имеет различное распределение электронной плотности, различные зависимости 

от межъядерного расстояния и различные энергии этих электронных состояний.  

Полную функцию общей задачи можно разложить по базису найденных электронных 

состояний (см. уравнение 1.17): 

𝛹 (𝑟
→
, 𝑅
→

) =∑𝛷𝑒(r
→
❘R
→

)𝜒𝑛(𝑅
→

)

𝑘

 

где функции 𝜒𝑛 (𝑅
→

) − будут характеризовать ядерную подсистему. Подставляя функ-

цию (2.6) в исходную молекулярную задачу (см. уравнение 2.1), умножая на одну из 

электронных функций (номер m функции выбирается произвольно), и, интегрируя по 

переменным всех электронов, мы получим бесконечную систему связанных дифферен-

циальных уравнений: 

(𝑇
∧

𝑛 + 𝐸𝑒𝑚+< Φm❘T
∧

n❘Φm >)𝜒𝑚 + 

+ ∑(< Φm❘T
∧

n❘Φk > −

𝑘≠𝑚

∑
1

𝑀𝛼
< 𝛷𝑚|𝛻𝛼|𝛷𝑘 >𝑟

→ 𝛻𝛼)𝜒𝑘
𝛼

= Eχ𝑚 

Рисунок 2.1 Схематическое изображение 

электронной плотности двухатомной 

молекулы в зависимости от энергии.  
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Решить систему (2.7) практически невозможно. Если прибегнуть к адиабатическому 

приближению т.е. представить функцию в виде 𝛹 = 𝜒𝑚𝛷𝑚 , то в (2.7) сумма по 𝑘 от-

личным от 𝑚 будет равна нулю и задача существенно упростится. С точки зрения мате-

матики это означает, что интегралы находящиеся под знаком суммы должны быть пре-

небрежимо малыми величинами: 

< Φm❘T
∧

n❘Φk > ∼ < Φm|∇α
2|Φk >≈ 0  

< 𝛷𝑚|𝛻𝛼|𝛷𝑘 >𝑟
→≈ 0  

 

С точки зрения физики это означает, что при движении ядер характер распределения 

электронов принципиально не изменяется т.е. не происходит перехода между различ-

ными электронными состояниями. Можно показать, что: 

< 𝛷𝑚|𝛻𝛼|𝛷𝑘 >=
< 𝛷𝑚 |𝛻𝛼𝐻

∧

𝑒| 𝛷𝑘 >

𝐸𝑒𝑘 − 𝐸𝑒𝑚
 

где 𝐸𝑒𝑘  и 𝐸𝑒𝑚 – собственные значения электронного гамильтониана для функций 𝛷𝑚 и 

𝛷𝑘. Если знаменатель в выражении (2.9) будет большим, а числитель малым, то все вы-

ражение будет малым. Это означает, что молекула будет оставаться в состоянии 𝛷1 (см. 

рисунок 2) если разность энергий между состояниями 𝛷1 и 𝛷2,  𝛷3 и т.д. будут боль-

шими. Если рассмотреть электронный гамильтониан как классическую функцию Га-

мильтона, то 𝛻𝛼𝐻𝑒 будет являться силой действующая на соответствующую частицу: 

𝛻𝛼𝐻𝑒 = 𝛻𝛼(𝑇𝑛 + 𝑉) = 𝛻𝛼𝑉 = −𝐹
⟶

𝛼 

Таким образом, оператор 𝛻𝛼𝐻
∧

𝑒 можно рассматривать как аналог в операторном смысле 

классической силе действующие на ядро с номер α.  Интегралом в правой части выра-

жения (2.9) при этом можно пренебречь если при действии сил на соответствующие 

ядра опять-таки принципиально не изменится картина распределения электронов. 

В описанном выше адиабатическом приближении ядерное уравнение выглядит как:  

(T
∧

n + Eem+< Φm❘T
∧

n❘Φm >)χm = Eχm 

где сумма Eem+< Φm❘T
∧

n❘Φm > играет роль потенциала, в котором движутся ядра, и 

называется адиабатическим потенциалом. Индекс m при этом указывает номер вы-

бранного электронного состояния. Если в уравнении (2.11) оператор в левой части обо-

значить как 𝐻̂𝑛, то данное уравнение можно переписать как:  

𝐻
∧

𝑛𝜒𝑚𝑗 = E𝑗χ𝑚𝑗 

где 𝐻
∧

𝑛 – ядерный гамильтониан. При этом важно отметить, что индекс m в уравнении 

(2.12) соответствует определённом выбранному электронному состоянию, а индекс j 

который нумерует возможные ядерные состояния молекулы, отвечающие выбранному 

электронному состоянию с номером m. Возможных ядерных состояний наряду с этим 

бесконечно много, так как уравнение (2.12) является уравнением на собственные функ-

ции и собственные значения эрмитова оператора 𝐻
∧

𝑛. Решив данную задачу, можно по-

лучить бесконечный набор функций, характеризующих всю молекулярную систему для 
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выбранного электронного состояния: 

𝛹𝑗 = 𝛷𝑚𝜒mj 

где 𝛹𝑗  – функция, характеризующая молекулярную систему в определенном электрон-

ном состоянии. 

Интеграл < Φm❘T
∧

n❘Φm >  в уравнении (2.12) можно рассматривать как поправку к 

энергии (возмущение) системы в первом порядке теории возмущений. В этом случае 

данный интеграл в некотором смысле есть уточнение электронной задачи при условии, 

что мы учитываем кинетическую энергию ядер как небольшое возмущение при анализе 

электронного состояния системы. Поэтому если считать, что интегралы  < Φm❘T
∧

n❘Φm > 

невелики и ими можно пренебречь, то ядерное уравнение можно еще более упростить: 

 

(𝑇
∧

𝑛 + 𝐸𝑒𝑚)𝜒𝑚𝑗 = E𝑗χ𝑚𝑗 

 

Уравнение (2.14) называют ядерным уравнением в приближении Борна-Оппенгей-

мера. 

2.3 Поверхности потенциальной энергии.  Энергетические профили 

химических реакций.  

Функции Ee(q) зависят от координат ядер. Рассмотри процесс образования метильного 

радикала из молекулы метана: 

При этом изменяется не только расстояние между «отрываемым» атомом водорода (вы-

делен красным), но и валентные углы от 109,5° до 120° и расстояния С-H от 1,087 Å до 

1,079 Å. Электронная энергия в случае молекулы метана функция 9 переменных (т.к. 

K=5). Можно прибегнуть к некоторой эффективной координате ξ, которая является ли-

нейной комбинацией внутренних переменных молекулы с некоторыми коэффициен-

тами:  

𝜉 = ∑𝑐𝑘𝑞𝑘

9

𝑘=1

 

где ck – коэффициенты, характеризующие «вклад» внутренних координат. 

С помощью эффективной координаты для молекулы метана можно схематически изоб-

разить сечение, 9-мерной поверхности зависимости электронной энергии внутренних 

координат.  
Аналогично рассмотрим диссоциацию молекулы воды с отрывом атома водорода: 

При этом процессе расстояние O-H изменяется от 0,958 Å до 0,970 Å (валентный угол в 
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молекуле воды 104,5°). Эффективную координату для молекулы воды можно записать 

в виде: 

𝜉 = ∑𝑎𝑘𝑞𝑘

3

𝑘=1

 

На рисунке 2.2 схематично изображено 

сечение процесса отрыва протона от 

молекулы воды. Графический образ ре-

шения электронного уравнения назы-

вают поверхностью потенциальной 

энергии (ППЭ). На рисунках 3 и 4 

изображены сечения многомерной 

ППЭ вдоль эффективной координаты.  

 

 

 

 

 

Рассмотрим теперь процесс «оттягивания» протона OH-радикалом от молекулы метана: 

Максимум кривой энергии вдоль эффектив-

ной координаты соответствует некоторому 

переходному состоянию. Высота барьера со-

ставляет при этом 9,5 ккал/моль, что гораздо 

меньше энергии диссоциации отдельно в 

молекуле метана или молекуле воды. При 

этом всю систему нужно рассматривать как 

некую совокупность 1 атома C, 1 атома O и 

5 атомов Н. (K=7), где каждому варианту 

расположения атомов соответствует опреде-

ленная точка на ППЭ.  

 

 

 

 

 

 

Рисунок 2.2 Схематическое изображение сечения 

процесса отрыва протона от молекулы воды.  

Рисунок 2.3 Схематичное изображение сечения 
процесса «оттягивания» протона ОН-радикала от 
молекулы СН4 
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Лекция №3. Симметрия состояний молекул. 

3.1 Важность учета симметрии системы при ее движении по по-

верхности потенциальной энергии в ходе химической реакции.  

Рассмотрим моле-

кулу воды с посто-

янным валентным 

углом. Если варьи-

ровать значения 

длин связей можно 

получить сечения 

ППЭ молекулы воды. Данные сечения будут 

похожи на геодезическую карту местности, 

только вместо линий постоянной высоты бу-

дут линии постоянной Ee. Линии постоянной 

энергии при этом должны быть симметричны 

относительно биссектрисы координатного 

угла, т.к. связи O-H в молекуле воды одина-

ковы.  

 

Для молекулы NH3 также можно построить 

похожие картины для расстояний r1-r2, r1-r3   

и r2-r3 или объемную картину, которая, как 

и молекула аммиака будет иметь ось сим-

метрии третьего порядка. При этом для 

ППЭ молекулы аммиака можно отметить 

еще один элемент симметрии. Относи-

тельно угла между любой из связей N-H и 

плоскости проходящей через атом азота па-

раллельно плоскости трех протонов. 

 

Рисунок 3.1 Схематическое изображение 

сечения ППЭ молекулы воды при 

постоянном зачении валентного угла 

Рисунок 3.2. Схематическое изображение зави-

симости  Ee от φ.  

Рисунок 3.3 Схематическая зависи-

мость Ee от угла φ для молекулы BF3 
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Для молекулы BF3 зависимость Ee от угла между плоскостью и связью B-F будет выгля-

деть несколько иначе – минимум энергии будет соответствовать плоской конфигурации 

молекулы. Перестановки эквивалентных ядер не изменяют состояния молекулярной си-

стемы, поэтому симметрия молекулы отражается в характере ППЭ или адиабатиче-

ского потенциала.  

3.2 Элементы теории групп. 

Группа – множество элементов 𝔾 = {𝑔1, …𝑔𝑛}, для которых определена операция 

умножения: ∀ {𝑔𝑖 , 𝑔𝑗} ∈ 𝔾 ∃! 𝑔𝑘 ∈ 𝔾: 𝑔𝑖 ∘ 𝑔𝑗 = 𝑔𝑘 и причем: 

 1) 𝑔𝑖 ∘ (𝑔𝑗 ∘ 𝑔𝑚) = (𝑔𝑖 ∘ 𝑔𝑗) ∘ 𝑔𝑚 ∀ 𝑔𝑖 𝑔𝑗 𝑔𝑚 ∈  𝔾 

 2) ∃ 𝑒𝑔  ∈ 𝔾: 𝑔𝑖 ∘ 𝑒𝑔 = 𝑒𝑔 ∘ 𝑔𝑖 = 𝑔𝑖    ∀𝑔𝑖 ∈ 𝔾 

 3) ∀ 𝑔𝑖 ∈ 𝔾  ∃ 𝑔𝑖
−1 ∈ 𝔾: 𝑔𝑖 ∘ 𝑔𝑖

−1 = 𝑔𝑖
−1 ∘ 𝑔𝑖 = 𝑒𝑔 

если  4) ∀ 𝑔𝑖𝑔𝑗 ∈ 𝔾: 𝑔𝑖 ∘ 𝑔𝑗 = 𝑔𝑗 ∘ 𝑔𝑖  ⟹ группа абелева 

Группа перестановок обозначается как 𝑆𝑛 (n – число эквивалентных элементов).  

Порядок группы 𝓝– число элементов в группе.  

В молекуле H2O есть два эквивалентных протона. Соответствующая группа перестано-

вок будет обозначена как 𝑆2 = {(1,2),(2,1)}, где цифрами обозначены атомы водорода. 

Порядок этой группы равен двум. В молекуле NH3 имеется три эквивалентных протона. 

Группа будет обозначаться как 𝑆3 = {(1,2,3), (2,3,1), (3,1,2), (1,3,2), (2,1,3), (3,2,1)} и  

𝒩 = 6. Понятно, что для любой группы 𝑆𝑛: 𝒩 = 𝑛!.  

Прямое произведение групп - 𝔾 = {𝑔𝑖, 𝑖 = 1…𝑚} и ℍ = {ℎ𝑖 , 𝑗 = 1…𝑛} – это 𝔽 =
𝔾⨂ℍ = {𝑔𝑖ℎ𝑖 , 𝑖 = 1…𝑚, 𝑗 = 1…𝑛} , 𝒩𝔽 = 𝑚 ∙ 𝑛. 

В  молекуле  C2H6 есть  две  группы   эквивалентных   атомов –  2 атома углерода  и  6  

атомов  водорода. При этом группа перестановок данной молекулы образуется путем 

прямого произведения групп перестановок атомов углерода и атомов водорода: 𝑆2⨂𝑆6. 
Порядок этой группы будет равен 𝒩 = 2! 6! = 1440. 

При этом нужно понимать, что группы перестановок эквивалентных ядер не включают 

структурное преобразование молекулярной системы. Например, группа перестановок 

𝑆3молекулы NH3 не описывает симметрию ППЭ относительно плоскости проходящей 

через атом азота параллельно плоскости протонов. Поэтому вводят понятие полной пе-

рестановочной инверсионной группы (ППИ), которая включает все преобразования 

молекулярное системы. ППИ можно построить как: {𝐸, 𝑃, 𝐸∗, 𝑃𝐸∗}, где E- тождествен-

ная перестановка, P- все перестановки отличные от тождественной, E*-  инверсия,  E*P 

-  все    возможные    комбинации   инверсии  с перестановками.  Порядок ППИ, напри-

мер, для системы C2H6, будет равен 𝒩 = 2 ∙ 2! 6! = 2880.  

Гомоморфизмом называют отображение  𝐹:  𝔾 → ℍ:  ∀ 𝑔𝑖 ∃ 𝐹(𝑔𝑖) = ℎ𝑖 ∈

ℍ, причем ∀ (𝑔𝑖𝑔𝑗) ∈ 𝔾:   𝐹(𝑔𝑖 ∘ 𝑔𝑗) = ℎ𝑖 ∘ ℎ𝑔, где 𝐹(𝑔𝑖) = ℎ𝑖; 𝐹(𝑔𝑗) = ℎ𝑗 .   
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Как следствие:  𝐹(𝑒𝑔) = 𝑒ℎ;   𝐹(𝑔𝑖
−1) = ℎ𝑖

−1 .  

Порядки групп при этом 𝔾 и ℍ могут не совпадать т.е.  𝒩𝔾 ≥ 𝒩ℍ . Если по-рядки   

групп   𝔾   и   ℍ  совпадают   т.е.   𝒩𝔾 = 𝒩ℍ, то отображение F из группы называют изо-

морфизмом.  

Элементы симметрии и точеные группы.  
Вспомним некоторые пространственные преобразования симметрии:  

𝐸 − тождественное преобразование 
𝑖 − инверсия 

𝐶𝑛
𝑘 − поворот на угол 

2𝜋𝑘

𝑛
 

𝑆𝑛
𝑘 − поворот на угол 

2𝜋𝑘

𝑛
 и отражение в ортогональной плоскости   

𝜎𝑣 и 𝜎𝑑 − отражение в плоскости включающей ось вышего порядка 
Плоскости 𝝈𝒗 и 𝝈𝒅 не переводятся друг в друга элементами симметрии 
𝜎ℎ − отражение  в   плоскости  ортогональной  оси    высшего   порядка  

Совокупности пространственных преобразований образуют точечные группы сим-

метрии. Выпишем некоторые из них: 

Низшая категория:  

ℂ𝑖 = {𝐸, 𝑖}; ℂ𝑠 = {𝐸, 𝜎ℎ}  
Средняя категория: 

ℂ𝑛 = {𝐸, 𝐶𝑛, … , 𝐶𝑛
𝑛−1}; 𝔻𝑛 = {𝐸, 𝐶𝑛, … 𝐶𝑛

𝑛−1, 𝐶2
(1), … 𝐶2

(𝑛)}; 

ℂ𝑛𝑣 = {𝐸, 𝐶𝑛, …𝐶𝑛
𝑛−1, 𝜎𝑣

(1), … 𝜎𝑣
𝑛}; ℂ𝑛ℎ = {𝐸, 𝐶𝑛, … , 𝐶𝑛

𝑛−1, 𝑆𝑛
1, … 𝑆𝑛

𝑛−1}; 

𝔻𝑛𝑑 = {𝐸, 𝐶𝑛, … , 𝐶𝑛
𝑛−1, 𝐶2

(1), …𝐶2
(𝑛), 𝜎𝑑

(1), … 𝜎𝑑
(𝑛), 𝑆𝑛, 𝑆2𝑛

𝑛 }; 

𝔻𝑛ℎ = {𝐸, 𝐶𝑛, …𝐶𝑛
𝑛−1, 𝐶2

(1), … 𝐶2
(𝑛−1), 𝜎ℎ, 𝑆𝑛, … , 𝑆𝑛

 𝑛−1, 𝜎𝑣
(1), … , 𝜎𝑣

(𝑛)} 

Высшая категория: 

 𝕋;  𝕆; 𝕀 и 𝕋𝑑; 𝕋ℎ; 𝕆ℎ; 𝕀ℎ 

Элементы симметрии молекулы аммиака изображены на рисунках 3.3 и 3.4. Они имеет 

ось третьего порядка и 3 плоскости симметрии, Группа пространственных преобразова-

ний молекулы будет имеет вид: 𝐸~(1,2,3); 𝐶3~(2,3,1); 𝐶3
2~(3,1,2); 

 𝜎(1)~(1,3,2); 𝜎(2)~(3,2,1); 𝜎(3)~(2,3,1),  

 

 

 

Рисунок 3.4 Молекула NH3 «вид сбоку» 

с некоторыми элементами симметрии. 

Рисунок 3.3 Молекула NH3 «вид сверху» 

Цифрами обозначены атомы водорода. 
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При этом между элементами группы перестановок   𝑆3  и элементами группы простран-

ственных преобразований можно установить взаимно-однозначное соответствие.  

Не решая электронную задачу и соответствующую ей ядерную задачу, можно сказать, 

что операторы, соответствующие элементам точечной группы характеризующих дан-

ную структуру, коммутируют с  𝐻𝑒
∧

 т.е. для 𝑔 ∈ 𝔾  выполнено [𝑔
∧
, 𝐻𝑒
∧

] = 0. Поэтому для 

этих операторов можно построить общий набор собственных функций, следовательно, 

𝑔
∧

𝑒𝛷 = g𝛷. 

На рисунке 3.5 изображена проекция Нью-

мена молекулы этана и зависимость Ee от 

величины торсионного угла φ. Активацион-

ный барьер вращения равен примерно 1000 

см-1.  

В экспериментах ЯМР 1Н, вследствие вра-

щения метильных групп и сим-метрии рас-

пределения электронной плотности в них, 

сигнал отвечает эквивалентным протонам в 

пределах одной метильной группы.  

Таким образом, пользуясь знанием о сим-

метрии молекулы или ее части, можно де-

лать предварительные выводы относи-

тельно ядерной динамики молекулы и ре-

акционной способности функциональных 

групп.  

 

 

 

 

 

 

 

 

Рисунок 3.5 Проекция Ньюмена молекулы этана 

и зависимость Ee от торсионного угла φ 
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Лекция №4. Многоэлектронная задача. 

4.1 Многоэлектронная задача. Представление многоэлектронной 

функции. Одноэлектронное приближение.  Принцип Паули. Опреде-

литель Слейтера.  

Рассмотрим электронную функцию для 𝑁 электронов  𝛷 (1,2, . . . , 𝑁), где цифрами обо-

значены совокупность декартовых  координат и спина i-го электрона, т.е.  𝑖 ≡ 𝑟
→

𝑖 , 𝜎𝑖. 
Если допустить, что электронная задача в многоэлектронной системе решена для каж-

дого отдельного электрона, то будет получен бесконечный набор функций состояний 

каждого отдельного электрона   {𝜓𝑖
(𝑘)(𝑘)}1..∞, где верхний индекс (k)-номер электрона, 

k –переменные k-го электрона. Такое приближение, в котором допускается существова-

ние индивидуальных состояний каждого электрона в поле остальных ядер и электро-

нов, при котором эти состояния описываются одноэлектронными функциями   называ-

ется одноэлектронным приближением. 

Если принять во внимание, что электроны тождественные частицы верхний индекс (k) 

можно опустить 𝜓𝑖 ≡ 𝜓𝑖
(𝑘)∀𝑘.   Таким образом мы имеем общий для всех электронов 

набор одноэлектронных состояний.  Следовательно, многоэлектронную функцию 

𝛷 (1,2, . . . , 𝑁) можно разложить  по базисным функциям. Разложим многоэлектронную 

функцию по базисным функциям электрона с индексом 1: 

𝛷 (1,2, . . . , 𝑁) = ∑ 𝑐𝑘1(2,3, . . . , 𝑁)𝜓𝑘1(1)

∞

𝑘1=1

 

где  𝑐𝑘1(2,3, . . . , 𝑁) – коэффициент разложения, являющийся функцией переменных 

электронов с индексами отличными от 1.  В свою очередь индекс 𝑐𝑘1(2,3, . . . , 𝑁) можно  

представить в виде:  

𝑐𝑘1(2,3, . . . , 𝑁) =∑ 𝑐𝑘1𝑘2(3, . . . 𝑁)𝜓𝑘2(2)
∞

𝑘2=1
  

Окончательно в результате такого разложения можно получить: 

𝛷 (1,2, . . . , 𝑁) = ∑ …

∞

𝑘1=1

∑ 𝑐𝑘1𝑘2...𝑘𝑁𝜓𝑘1(1)𝜓𝑘2(2)

∞

𝑘𝑁=1

. . . 𝜓𝑘𝑁(𝑁) 

Далее потребуются следующие понятия: 

Принцип тождественности: в системе из N тождественных частиц могут реализовы-

ваться только такие состояния, которые не изменяются при перестановках этих частиц. 
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Оператор  парной перестановки 𝑷
∧

𝒊𝒋  это оператор, который меняет местами наборы 

пространственных переменных двух электронов с индексами i и j:  

𝑃
∧

𝑖𝑗𝛷 (1, . . . 𝑖. . . 𝑗, 𝑁) = 𝛷 (1, . . . 𝑗. . . 𝑖, 𝑁)  

Из курса линейной алгебры известно, что любую перестановку можно представить, как 

последовательность парных перестановок.  

Согласно принципу тождественности, состояние при любой перестановке не изменя-

ется т.е. 𝑃
∧

𝑖𝑗𝛷 = 𝑝𝑖𝑗𝛷. Если дважды подействовать на функцию состояния оператором 

перестановки получим:  

𝑃
∧

𝑖𝑗

2

𝛷 = 𝑝𝑖𝑗𝑃
∧

𝑖𝑗𝛷 = 𝑝𝑖𝑗
2𝛷  

где 𝑝ij − некоторая константа. При этом при повторном действии оператора переста-

новки должна получиться исходная функция Φ. Из этого следует, что 𝑝ij
2 = 1 , а 𝑝ij =

±1. Согласно Принципу Паули для фермионов (s=1/2,3/2…)  𝑝ij = −1, а для базонов 

(s=0, 1,…) 𝑝ij = 0.  

Из принципа Паули следует, что для электронов: 

𝑃
∧

𝑖𝑗𝛷 = −𝛷  

В общем случае, если перестановку можно получить четным числом парных перестано-

вок, то коэффициент равен 1, а если не четным числом перестановок, то -1:  

𝑃
∧

𝛷 = (−1)[𝑃]𝛷   

где P–четность перестановки. 
Рассмотрим многоэлектронную функцию для двух электронов и представим ее как 

сумму произведений одноэлектронных функций: 

Ф (1,2) =∑ 𝐶𝑘1𝑘2𝜓𝑘1(1)𝜓𝑘2(2)
𝑘1,𝑘2

  

Подействуем на эту функцию оператором перестановки: 

𝑃
∧

12Ф (1,2) = Ф (2,1) =∑ 𝐶𝑘1𝑘2𝜓𝑘1(2)𝜓𝑘2(1)
𝑘1,𝑘2

  

При этом ничего не мешает поменять местами индексы суммирования в правой части 

(4.9): 

∑ 𝐶𝑘1𝑘2𝜓𝑘1(2)𝜓𝑘2(1)
𝑘1,𝑘2

=∑ 𝐶𝑘2𝑘1𝜓𝑘2(2)𝜓𝑘1(1)
𝑘2,𝑘1
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С другой стороны, согласно принципу Паули, имеем:  

𝑃
∧

12Ф(1,2) = −Ф(1,2) = − ∑
𝑘1,𝑘2

𝐶𝑘1𝑘2𝜓𝑘1(1)𝜓𝑘2(2)  

Из (4.10) и (4.11) следует:  

𝐶𝑘1𝑘2 = −𝐶𝑘2𝑘1  

Используя свойство (4.12) и упорядоченные пары индексов k1 и k2 , функцию Ф(1,2)  
можно записать как: 

Ф(1,2) = −∑𝐶𝑘1𝑘2
𝑘1<𝑘2

(𝜓𝑘1(1)𝜓𝑘2(2) − 𝜓𝑘2(1)𝜓𝑘1(2))   

Выражение, находящееся в скобках в правой части (4.13) есть определитель квадратной 

матрицы 2×2:   

𝜓𝑘1(1)𝜓𝑘2(2) − 𝜓𝑘2(1)𝜓𝑘1(2) = |
𝜓𝑘1(1) 𝜓𝑘1(2)

𝜓𝑘2(1) 𝜓𝑘2(2)
| = 𝑑𝑒𝑡{𝜓𝑘1 , 𝜓𝑘2}     

Обобщая выражение (4.14) на случай N электронной системы можно получить: 

𝛷(1,2, . . . , 𝑁) =∑ 𝐶𝑘1...𝑘𝑁  det{𝜓𝑘1 , 𝜓𝑘2 , . . . , 𝜓𝑘𝑁}
𝑘1<𝑘2<...<𝑘𝑁

  

Запишем определитель в правой части (4.15) в явном виде: 

det{𝜓𝑘1 , 𝜓𝑘2 , . . . , 𝜓𝑘𝑁} ≡ |

𝜓1(1)𝜓1(2)⋯ 𝜓1(𝑁)
𝜓2(1)𝜓2(2)⋯    𝜓2(𝑁)
⋮                      ⋱             
𝜓𝑁(1)𝜓𝑁(2)⋯𝜓𝑁(𝑁)

|   

В выражении (4.15) функция 𝛷 (1,2, . . . , 𝑁) представляется как бесконечная сумма. По-

этому прибегают к использованию приближения, в котором функция 𝛷 аппроксимиру-

ется  всего одним определителем, то есть: 

𝛷 (1,2, . . . , 𝑁) ≈ 𝛷0 = 𝑁
∼

det{𝜓1, 𝜓2. . . 𝜓𝑁} 

где 𝑁
∼

- некоторая константа. Функция (4.17) с коэффициентом 𝑁
∼

=
1

√𝑁!
 называется опре-

делителем Слейтора. 
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Лекция №5. Уравнения Хартри-Фока 

5.1 Уравнения Хартри-Фока. Исходные допущения. Одно-и двух-

электронные интегралы. 

В лекции №4 было показано, что многоэлектронная функция 𝛷 (1,2, . . . , 𝑁) многоэлек-

тронной системы может быть представлена разложением по  произведению одноэлек-

тронных функций: 

𝛷 (1,2, . . . , 𝑁) =∑ 𝐶𝑘1...𝑘𝑁𝜓𝑘1(1)𝜓𝑘2(2)
∞

𝑘1...𝑘𝑁

. . . 𝜓𝑘𝑁(𝑁)  

где цифрами в скобках обозначены 3 декартовы и 1 спиновая координаты i-го элек-

трона, а индексы ki обозначают одноэлектронную функцию состояния с номером k из 

бесконечного их набора для i-го электрона.  

Также так как для электронов справедлив принцип тождественности выражение (5.1) 

можно переписать в более компактном виде: 

𝛷 (1,2, . . . , 𝑁) =∑ 𝐶𝑘1...𝑘𝑁det{𝜓𝑘1(1)𝜓𝑘2(2). . . 𝜓𝑘𝑁(𝑁)}
∞

𝑘1<𝑘2<...<𝑘𝑁

  

Можно показать, что для того, чтобы на определителях в выражении (5.2) можно было 

построить нормированную на единицу функцию эти определители должны быть дом-

ножены на коэффициент 
1

√𝑁!
 . Для этого выражение (5 .2) можно представить в виде: 

𝛷 (1,2, . . . , 𝑁) =∑𝐶𝐾𝛷𝐾
𝐾

 

где индекс K – содержит в себе всю информацию о индексах 𝑘1. . . 𝑘𝑁, 

функция 𝛷𝐾 =
1

√𝑁!
det{𝜓𝑘1 , 𝜓𝑘2 , . . . 𝜓𝑘𝑁} и 𝐶𝐾 = √𝑁! ⨯ 𝐶𝑘1...𝑘𝑁. 

Часто прибегают к допущению, что функция в котором функция аппроксимируется  

всего одним определителем: 

𝛷 (1,2, . . . , 𝑁) ≈ 𝛷0 =
1

√𝑁!
det{𝜓1, 𝜓2. . . 𝜓𝑁}  

Рассмотрим выражение для электронной энергии для электронной функции, записан-

ной в виде (5.4): 

𝐸𝑒 =< 𝛷0|𝐻
∧

𝑒|𝛷0 >  

 

Электронный гамильтониан имеет вид: 

𝐻
∧

𝑒 =∑(−
1

2
𝛻𝑘
2 −∑

𝑍𝛼
𝑅𝛼𝑘

𝐾

𝛼=1

)

𝑁

𝑘=1

+
1

2
∑

1

𝑟𝑘𝑙

𝑁

𝑘≠𝑙

+ ∑
𝑍𝛼𝑍𝛽

𝑅𝛼𝛽

𝐾

𝛼≠𝛽

      

Введем обозначение упрощающее запись выражения (5.6): 
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ℎ
∧

(𝑘) = −
1

2
𝛻𝑘
2 −∑

𝑍𝛼
𝑅𝛼𝑘

𝐾

𝛼=1

 

С учетом выражений (5.6) и (5.7) уравнение (5.5) примет вид: 

𝐸𝑒 =∑ < 𝜓𝑖

𝑁

𝑖=1

|ℎ
∧

(1)|𝜓𝑖 > +
1

2
∑
𝑍𝛼𝑍𝛽

𝑅𝛼𝛽

𝑁

𝛼≠𝛽

+ 

+
1

2
∑ (< 𝜓𝑖(1)𝜓𝑗(2)|

1

𝑟12
|𝜓𝑖(1)𝜓𝑗(2) > −< 𝜓𝑖(1)𝜓𝑗(2)|

1

𝑟12
|𝜓𝑗(1)𝜓𝑖(2) >)

𝑁

𝑖,𝑗=1

 

где сумма, включающая оператор   ℎ
∧

(𝑘)  , отвечает среднему значению кинетической 

энергии всех электронов и энергии их взаимодействия со всеми ядрами. 

Интеграл < 𝜓𝑖(1)𝜓𝑗(2)|
1

𝑟12
|𝜓𝑖(1)𝜓𝑗(2) > обозначается как 𝐽ij и называется кулонов-

ским интегралом. Интеграл < 𝜓𝑖(1)𝜓𝑗(2)|
1

𝑟12
|𝜓𝑗(1)𝜓𝑖(2) > обозначается как 𝐾ij и    

называется обменным интегралом. Полезно записать кулоновский и обменный инте-

грал в явном виде: 

𝐽𝑖𝑗 = ∫ ∫
𝜓𝑖(1)

∗𝜓𝑗(2)
∗𝜓𝑖(1)𝜓𝑗(2)

𝑟12
d1d2 = ∫ ∫

|𝜓𝑖(1)|
2|𝜓𝑗(2)|

2

𝑟12
d1d2 

𝐾𝑖𝑗 = ∫ ∫
𝜓𝑖(1)

∗𝜓𝑗(2)
∗𝜓𝑖(1)𝜓𝑗(2)

𝑟12
d1d2 

Важно подчеркнуть, что кулоновское отталкивание между электронами меньше чем 

простое кулоновское отталкивание между статически заряженными частицами т.к. об-

менный интеграл входит в выражение (5.8) со знаком минус. 

5.2 Энергия электронной подсистемы как функционал одночастич-

ных функций. Линейный вариационный подход в рамках решения 

электронной задачи. 

Электронная энергия зависит от того какие одноэлектронные функции составляют 

определитель, описывающий состояние молекулы. Это означает что электронная энер-

гия является функционалом соответствующих одночастичных функций  

𝜓𝑘1(1), 𝜓𝑘2(2), . . . , 𝜓𝑘𝑁(𝑁) т.е. 𝐸𝑒[𝜓1, 𝜓2, . . . 𝜓𝑁] − 

функционал 𝜓1, 𝜓2, . . . 𝜓𝑁. 

Функционал 𝐼— это отображение которое ставит в соответствии функции 𝑓(𝑥)  число I 

и обозначается как 𝐼[𝑓 (𝑥)].  

Чтобы оценить электронную энергию, которая есть функционал на множестве функций 

[𝜓1, 𝜓2, . . . 𝜓𝑁], нужно прибегнуть к вариационному подходу, пытаясь минимизировать 

электронную энергию, варьируя вид функций 𝜓𝑖. На изменения функций 𝜓𝑖 при этом 

логично наложить дополнительное условие — функции должны образовывать набор 
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взаимно ортогональных функций т.е. < 𝜓𝑖|𝜓𝑗 >= 𝛿𝑖𝑗. Так же удобно определить допол-

нительный функционал как: 

I = 𝐸𝑒 −∑ℰ𝑖𝑗(< 𝜓𝑖|𝜓𝑗 > −𝛿𝑖𝑗)

𝑖,𝑗

 

где ℰ𝑖𝑗-неопределенные множители Лагранжа. Таким образом. условие минимума энер-

гии сводится к равенству вариации функционала (5.10) нулю. Важно отметить, что так 

как 𝐸𝑒 −действительная величина, то и I также должен быть величиной действитель-

ной. Для этого должно выполняться условие: ∀{𝑖, 𝑗}ℰ𝑖𝑗 < 𝜓𝑖|𝜓𝑗 > +ℰ𝑗𝑖 < 𝜓𝑗|𝜓𝑖 >=

ℰ𝑖𝑗 < 𝜓𝑖|𝜓𝑗 > +ℰ𝑗𝑖 < 𝜓𝑖|𝜓𝑗 >
∗∈ 𝑅, а так как при сложении двух комплексно-сопряжен-

ных чисел всегда получается действительное, то  ℰ𝑖𝑗 = ℰ𝑗𝑖
∗
. При этом матрица, постро-

енная на неопределенных множителях Лагранжа будет эрмитовой.  

 

5.3 Вид уравнений Хартри-Фока. Оператор Фока. Канонический 

вид уравнения Хартри-Фока. Ограничения применимости уравне-

ния. 

Выпишем выражение для  электронной энергии 𝐸𝑒 (5.8) где к каждой функции 𝜓𝑖 до-

бавлена небольшая вариация 𝛿𝜓𝑖: 

𝐸𝑒[𝜓1 + δψ1, 𝜓2 + δψ2, …𝜓𝑁 + δψ𝑁] = ∑ < 𝜓𝑖 + δψ𝑖
𝑁
𝑖=1 |ℎ

∧

(1)|𝜓𝑖 + δψ𝑖 > 

+
1

2
∑(< 𝜓𝑖 + 𝛿𝜓𝑖, 𝜓𝑗 + 𝛿𝜓𝑗|𝜓𝑖 + 𝛿𝜓𝑖 , 𝜓𝑗 + 𝛿𝜓𝑗 > −

𝑁

𝑖,𝑗=1

 

−< 𝜓𝑖 + δψ𝑖 , 𝜓𝑗 + δψ𝑗|𝜓𝑗 + δψ𝑗 , 𝜓𝑖 + δψ𝑖 >) 

где в вариациях кулоновского и обменного интегралов опущены номера электронов и 

оператор расстояния между электронами.   

По определению вариацию функционала можно записать как 𝛿𝐼 = 𝐼[𝑓 (𝑥) + 𝛿𝑓 (𝑥)] −
𝐼[𝑓 (𝑥)]   линейную по  𝛿𝑓 (𝑥). Используя, это определение можно записать вариацию 

электронной энергии 𝛿𝐸𝑒 в следующем виде: 

𝐸𝑒 =∑ < δψ𝑖
𝑖

|ℎ
∧

| 𝜓𝑖 > +∑(< 𝛿𝜓𝑖 |ℎ
∧

| 𝜓𝑖 >)
∗

𝑖

+ 

+∑(< δψ𝑖𝜓𝑗|𝜓𝑖𝜓𝑗 > −< δψ𝑖𝜓𝑗|𝜓𝑗𝜓𝑖 >) +

𝑖,𝑗

 

+∑(< 𝛿𝜓𝑖𝜓𝑗|𝜓𝑖𝜓𝑗 > −< 𝛿𝜓𝑖𝜓𝑗|𝜓𝑗𝜓𝑖 >)
∗

𝑖,𝑗
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Функционал (5.10) будет записан при этом в виде: 

𝛿𝐼 =∑ < δψ𝑖
𝑖

|ℎ
∧

|𝜓𝑖 > +∑(< 𝛿𝜓𝑖|ℎ
∧

|𝜓𝑖 >)
∗

𝑖

+ 

+∑(< δψ𝑖𝜓𝑗|𝜓𝑖𝜓𝑗 > −< δψ𝑖𝜓𝑗|𝜓𝑗𝜓𝑖 >)

𝑖,𝑗

+ 

+∑(< 𝛿𝜓𝑖𝜓𝑗|𝜓𝑖𝜓𝑗 > −< 𝛿𝜓𝑖𝜓𝑗|𝜓𝑗𝜓𝑖 >)
∗

𝑖,𝑗

− 

−∑ℰ𝑖𝑗 < 𝛿𝜓𝑖|𝜓𝑗 >

𝑖 ,𝑗 

−∑ℰ𝑗𝑖
∗ < 𝛿𝜓𝑗|𝜓𝑖 >

∗

𝑖 ,𝑗 

 

Обозначив первые три слагаемых в выражении (5.13) последовательно за A, B и С по-

лучим более простую его запись: 

𝛿𝐼 = (𝐴 + 𝐵 + 𝐶) + (𝐴 + 𝐵 + 𝐶)∗ 

 Сумму A+B+C для дальнейших преобразований удобно представить в виде: 

𝐴 + 𝐵 + 𝐶 =∑𝛿𝜓𝑖
∗(1) {ℎ

∧

𝜓𝑖(1) +∑(∫
𝜓𝑗
∗(2)𝜓𝑖(1)𝜓𝑖(2)

𝑟12
𝑑2 −

𝑖

 

𝑖

 

−∫
𝜓𝑗
∗(2)𝜓𝑗(1)𝜓𝑖(2)

𝑟12
𝑑2) −∑ℰ𝑖𝑗𝜓𝑗(1)

𝑗

}𝑑1 

Введем общепринятые обозначения для интегралов в выражении (5.15): 

𝐽
∧

𝑗𝜓𝑖(1) =
𝜓𝑗
∗(2)𝜓𝑖(1)𝜓𝑖(2)

𝑟12
𝑑2 

𝐾
∧

𝑗𝜓𝑖(1) =
𝜓𝑗
∗(2)𝜓𝑗(1)𝜓𝑖(2)

𝑟12
𝑑2 

где 𝐽
∧

𝑗 − кулоновский оператор, 𝐾
∧

𝑗 − обменный оператор.  

Обозначив в (5.15) выражение в фигурных скобках как 𝐷𝑖(1), можно переписать выра-

жение (5.14) в виде: 

𝛿𝐼 =∑𝛿𝜓𝑖
∗(1)𝐷𝑖(1)𝑑1

𝑖

+∑𝛿𝜓𝑖(1)𝐷𝑖(1)
∗𝑑1

𝑗

 

Согласно основной лемме вариационного исчисления 𝛿𝐼 = 0 , если  
𝐷𝑖(1) = 0  и 𝐷𝑖(1)

∗ = 0. С учетом (5.16) условие 𝐷𝑖(1) = 0 можно переписать как: 
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(ℎ
∧

+∑{𝐽
∧

𝑗 − 𝐾
∧

𝑗}

𝑁

𝑖=1

)𝜓𝑖(1) =∑ℰ𝑖𝑗𝜓𝑗(1)

𝑗

 

Уравнение (5.18) называется уравнением Хартри-Фока.  

Общепринято вводить оператор Фока, который определяется как: 

𝐹
∧

= ℎ
∧

+∑{𝐽
∧

𝑗 −𝐾
∧

𝑗}

𝑁

𝑖=1

 

Так как коэффициенты  ℰ𝑖𝑗 образуют эрмитову матрицу, то ее можно привести к диаго-

нальному виду путем ортогональных преобразований, т.е. 

∃ 𝕌: 𝜓
~

𝑘 =∑𝑈𝑘𝑖𝜓𝑖
𝑖

   ;  ℰ𝑘𝑙
~

=∑𝑈𝑘𝑖ℰ𝑖𝑗(𝑈
−1)𝑗𝑙 = ℰ𝑘𝑘

∼

𝑖,𝑗

𝛿𝑘𝑙. 

Домножим уравнение (5.18) на 𝑈𝑘𝑖 и просуммируем по всем i : 

∑𝑈𝑘𝑖𝐹
∧

𝜓𝑖
𝑖

=∑𝑈𝑘𝑖ℰ𝑖𝑗𝜓𝑗
𝑖,𝑗

 

Оператор Фока инвариантен относительно ортогональных преобразований функций, 

поэтому в (5.20) его можно вынести за знак суммы: 

𝐹
∧

∑𝑈𝑘𝑖𝜓𝑖
𝑖

=∑𝑈𝑘𝑖ℰ𝑖𝑗𝜓𝑗
𝑖,𝑗

 

Можно выразить функции 𝜓𝑖
∼

 через 𝜓𝑖 и наоборот уравнение (5.21) можно записать в 

более простом виде: 

𝐹
∧

𝜓𝑘
∼

= ℰ𝑘
∼

𝜓𝑘
∼

 

Уравнение (5.22) называет уравнением Хартри-Фока в каноническом виде. 
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Лекция №6. Метод Хартри-Фока 

6.1 Уравнения Хартри-Фока. Принцип заполнения. 

В предыдущей лекции было показано, что электронную функцию в многоэлектронной 

системе можно аппроксимировать как:  

𝛷(1,2, . . . , 𝑁) =∑𝐶𝐾𝛷𝐾
𝐾

 

где 𝐾 = {𝑘1, … , 𝑘𝑁} − совокупный индекс, включающий номера функций 𝜓𝑘, на кото-

рых построены определители 𝛷𝐾. Определители 𝛷𝐾, с учетом принципа Паули, записы-

вались следующим образом: 

𝛷𝐾 =
1

√𝑁!
det{𝜓𝑘1, 𝜓𝑘2. . . 𝜓𝑘𝑁} 

Затем функция (6.1) еще более упрощалась и аппроксимировалась только од-

ним определителем: 

𝛷 (1,2, . . . , 𝑁) ≈ 𝛷0 =
1

√𝑁!
det{𝜓1, 𝜓2. . . 𝜓𝑁} 

В этом приближении электронная энергия может быть записана в виде: 

𝐸𝑒 =∑ < 𝜓𝑖

𝑁

𝑖=1

|ℎ
∧

(1)| 𝜓𝑖 > +
1

2
∑(𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑖,𝑗

+ ∑
𝑍𝛼𝑍𝛽

𝑅𝛼𝛽

𝐾

𝛼<𝛽

 

Выпишем в явном виде разность кулоновского и обменного интегралов: 

𝐽𝑖𝑗 −𝐾𝑖𝑗 =< 𝜓𝑖𝜓𝑗 |
1

𝑟12
| 𝜓𝑖𝜓𝑗 > −< 𝜓𝑖𝜓𝑗 |

1

𝑟12
| 𝜓𝑗𝜓𝑖 > 

Если учесть, что 𝐽ij = 𝐽ji и 𝐾ij = 𝐾ji, то разность можно переписать как: 

𝐽𝑖𝑗 − 𝐾𝑖𝑗 =<
1

√2
|
𝜓𝑖(1) 𝜓𝑖(2)

𝜓𝑗(1) 𝜓𝑗(2)
|  |
1

𝑟12
|   
1

√2
|
𝜓𝑖(1) 𝜓𝑖(2)

𝜓𝑗(1) 𝜓𝑗(2)
| > 

Выражение (6.6) это оценка взаимодействия двух электронов в многоэлектронной си-

стеме. Энергия взаимодействия двух электронов при этом отличается от обычного ку-

лоновского взаимодействия точечных зарядов. 

Электронная энергия — это функционал одноэлектронных функций. Из условия равен-

ства нулю первой вариации этого функционала с учетом ортонормированности функ-

ций 𝜓𝑖 можно получить уравнения Хартри-Фока в каноническом виде: 

𝐹
∧

𝜓𝑖 = ℰ𝑖𝜓𝑖 

где 𝐹
∧

= ℎ
∧

+∑ {𝐽
∧

𝑗 − 𝐾
∧

𝑗}
𝑁

𝑗=1
.  
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Уравнение (6.7) является обычным уравнением на собственные функции и собственный 

значения оператора. Величину ℰ𝑖 =< 𝜓𝑖 |𝐹
∧

| 𝜓𝑖 >  называют орбитальной энергией. 

Орбитальная энергия — это минимальная энергии необходимая для удаления элек-

трона из многоэлектронной системы. 

Уравнение (6.7) имеет бесконечный набор решений. Поэтому для выбора одноэлек-

тронных функций 𝜓𝑖 используют принцип заполнения.  Согласно этому принципу 

энергии упорядочиваются по возрастанию и выбирается N функций 𝜓𝑖 соответствую-

щих этим низшим значениям энергии. Далее на этих функциях строится многоэлек-

тронная функция: 

𝛷0 =
1

√𝑁!
det{𝜓1, 𝜓2. . . 𝜓𝑁} 

где функциям 𝜓𝑖 соответствуют низшие значения энергии. 

Введем функцию 𝛷0
𝑚
𝑛

, которая получается из функции Ф0 (6.8) путем замены функции 

с номером n на функцию с номером m>N: 

𝛷0
𝑚
𝑛
=
1

√𝑁!
det{𝜓1, . . . 𝜓𝑚, . . . 𝜓𝑁} 

Так как m>N, то согласно принципу заполнения, можно записать: 

⟨Ф0|𝐻𝑒
⋀

|Ф0⟩ ⩽   ⟨𝛷0
𝑚
𝑛
|𝐻𝑒
⋀

|𝛷0
𝑚
𝑛
⟩ 

С помощью определителя (6.9) можно описывать возбужденные состояния молекуляр-

ной системы.   

6.2 Спиновая функция. Спиновое состояние. Спин-орбитали. 

Функции 𝜓𝑖 это функции трех пространственных и одной спиновой координат 𝜓𝑖 =

𝜓𝑖(𝑟
→
, 𝜎). Для электрона возможно всего два возможных спиновых состояния, поэтому 

функцию 𝜓𝑖 можно разложить по базису функций, описывающих спиновое состояние: 

𝜓𝑖(𝑟
→
, 𝜎) = 𝜙𝑖

(𝛼)
(𝑟
→
)𝛼 (𝜎) + 𝜙𝑖

(𝛽)
(𝑟
→
)𝛽 (𝜎) 

Так как электрон может находится только в одном спиновом состоянии, то  

выражение (6.11) можно переписать несколько иначе: 

𝜓𝑖(𝑟
→
, 𝜎) = 𝜙𝑖

(𝛼)
(𝑟
→
)𝛾 (𝜎) 

где 𝛾 − 𝛼 или 𝛽. Таким образом каждая одноэлектронная функция может быть пред-

ставлена в виде произведения спиновой функции и пространственной функции (ор-

битали). Саму одноэлектронную функцию часто называют спин-орбиталью. 
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6.3 Ограниченный и неограниченный методы Хартри-Фока. 

В зависимости от того, что в модели молекулярной системы говорится о спине электро-

нов существует два метода Хартри-Фока:  

 

 

 

 

Запишем выражение для энергии взаимодействия двух электронов в предположении, 

что электронные функции электронов 𝑖 и 𝑗 можно записать как 𝜓𝑖 = 𝜙𝑖𝛾𝑖 , 𝜓𝑗 = 𝜙𝑗𝛾𝑗. 
При этом не уточнаяется в каких спиновых состояниях находятся электроны.  

𝐽𝑖𝑗 − 𝐾𝑖𝑗 =

=∬
𝜙𝑖
∗ (𝑟1
→
) 𝛾𝑖

∗(𝜎1)𝜙𝑗 (𝑟2
→
) 𝛾𝑗(𝜎2)𝜙𝑖 (𝑟1

→
) 𝛾𝑖(𝜎1)𝜙𝑗 (𝑟2

→
) 𝛾𝑗(𝜎2)

𝑟12
𝑑𝑟1
→
𝑑𝜎1𝑑𝑟2

→
𝑑𝜎2

−∬
𝜙𝑖
∗ (𝑟1
→
) 𝛾𝑖

∗(𝜎1)𝜙𝑗 (𝑟2
→
) 𝛾𝑗(𝜎2)𝜙𝑗 (𝑟1

→
) 𝛾𝑗(𝜎1)𝜙𝑖 (𝑟2

→
) 𝛾𝑖(𝜎2)

𝑟12
𝑑𝑟1
→
𝑑𝜎1𝑑𝑟2

→
𝑑𝜎2 

С учетом соотношений для базисных спиновых функций электронов: 

∫𝛼(𝜎1) 𝛼(𝜎1) 𝑑𝜎1 = ∫𝛽(𝜎1) 𝛽(𝜎1) 𝑑𝜎1 = 1 

∫𝛼 (𝜎1)𝛽 (𝜎1)𝑑𝜎1 = 0 

для энергии взаимодействия двух электронов можно записать выражение: 

𝐽𝑖𝑗 − 𝐾𝑖𝑗 = ⟨𝜙𝑖𝜙𝑗|
1
𝑟12
| 𝜙𝑖𝜙𝑗⟩ − ⟨𝜙𝑖𝜙𝑗|

1
𝑟12
| 𝜙𝑖𝜙𝑗⟩ 𝛿𝛾𝑖𝛾𝑗  

Таким образом, когда два электрона находятся в разных спиновых состояних их 

взаимодействие является чисто кулоновским. В противном случае взаимодействие 

оказывается ослабленным.  

Запишем уравнение Хартри-Фока с учетом представления спин-орбитали как 

произведения простарнственной и спиновой функции: 

𝐹
∧

𝜙𝑖𝛼 = ℰ𝑖𝜙𝑖𝛼 

Неограниченный 

Каждый электрон описывается своей про-

странственной функцией и энергии двух 

электронов, которые описываются функ-

циями 𝜙𝑖𝛼 и 𝜙𝑗𝛽 всегда будут отли-

чаться: 

Ограниченный 

Предполагается, что существуют пары 

спин-орбиталей в  {𝜙𝑖𝛼, 𝜙𝑖𝛽}, в которых 

пространственая часть одна и таже. Элек-

троны при этом будут иметь одну и ту же 

энергию:  
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Домножим это уравнение на комплексно сопряженную спиновую функцию 𝛼∗ и 

проинтегрируем по спину электрона 𝑑𝜎1: 

∫𝛼∗(𝜎1)𝐹
∧

𝜙𝑖(𝑟1
→
)𝛼 (𝜎1)𝑑𝜎1 = ∫𝛼

∗(𝜎1)ℰ𝑖𝜙𝑖(𝑟1
→
)𝛼 (𝜎1)𝑑𝜎1 

ℰ𝑖 и 𝜙𝑖(𝑟1
→
) в правой части (6.17) можно вынести за знак интеграла, поэтому последнее 

выражение можно переписать как: 

∫𝛼∗(𝜎1)𝐹
∧

𝜙𝑖(𝑟1
→
)𝛼 (𝜎1)𝑑𝜎1 = ℰ𝑖𝜙𝑖(𝑟1

→
) 

Если в определителе (6.8) упорядочить функции следующим образом: 

𝛷0 =
1

√𝑁!
det{𝜙1𝛼, 𝜙2𝛼, . . . 𝜙𝑁𝛼𝛼, 𝜙𝑁𝛼+1𝛽. . . 𝜙𝑁𝛽} 

то оператор Фока, отвечающий спиновой компоненте 𝛼 с учетом (6.15) можно записать 

как: 

𝐹
∧
(𝛼) = ℎ

∧

+∑{𝐽
∧

𝑗 − 𝐾
∧

𝑗}

𝑁𝛼

𝑗=1

+ ∑ 𝐽
∧

𝑗

𝑁

𝑗=𝑁𝛼+1

 

Для 𝛽 оператор Фока можно представить в виде: 

𝐹
∧
(𝛽) = ℎ

∧

+ ∑ {𝐽
∧

𝑗 − 𝐾
∧

𝑗}

𝑁

𝑗=𝑁𝛼+1

+∑𝐽
∧

𝑗

𝑁𝛼

𝑗=1

 

 

Выражения (6.20) и (6.21) базовые выражения для оператора Фока в неограниченном 

методе Хартри-Фока (НХФ).  В общем случае уравнение Хартри-Фока можно 

переписать как: 

𝐹
∧
(𝛾)𝜙𝑖 = ℰ𝑖𝜙𝑖 

где 𝛾 = α или β  

 

В ограниченном методе Хартри-Фока (OXФ) предполагается, что все электроны 

попарно описываются одной и той же пространственной функцией т.е. 𝜙1 =
𝜙𝑁𝛼+1 . . . 𝜙𝑁𝛼 = 𝜙𝑁, то оператор Фока будет записан как:  

𝐹
∧

= ℎ
∧

+∑{2𝐽
∧

𝑗 − 𝐾
∧

𝑗}

𝑁

𝑖=1

 

 

Выберем базис конечного размера {𝜒𝑞}1...𝑀 для аппроксимации пространственных 

орбиталей 𝜙𝑖 в виде линейной комбинации базисных функций: 

𝜙𝑖 =∑𝜒𝑞С𝑞𝑖
𝑞
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В таком случае неизветсным остается набор коэффициентов {С𝑞𝑖}. 

Домножим уравнение Хартри-Фока на функцию 𝜒𝑝
∗ и проинтегрируем по,  с учетом 

(6.24) получим: 

∫𝜒𝑝
∗(𝑟1
→
)𝐹
∧

∑𝜒𝑞(𝑟1
→
)С𝑞𝑖𝑑𝑟1

→
𝑀

𝑞=1

= ∫𝜒𝑝
∗(𝑟1
→
)ℰ𝑖∑𝜒𝑞(𝑟1

→
)С𝑞𝑖𝑑𝑟1

→
𝑀

𝑞=1

 

Если константы вынести за знак интеграла и поменять местами интегрирование и 

суммирование уравнение (6.25) в обозначениях Дирака запишется как: 

∑⟨𝜒𝑝|𝐹
∧

|𝜒𝑞⟩ С𝑞𝑖

𝑀

𝑞=1

=∑⟨𝜒𝑝|𝜒𝑞⟩

𝑀

𝑞=1

С𝑞𝑖ℰ𝑖  

Интегралы ⟨𝜒𝑝|𝜒𝑞⟩ называются интегралами перекрывания и обозначаются как 𝑆𝑝𝑞. 

Совокупность интегрлов перекрываюния образует матрицу 𝑀 ×𝑀. 

Интегралы ⟨𝜒𝑝|𝐹
∧

|𝜒𝑞⟩ обозначаются как 𝐹𝑝𝑞 и являются элементами матрицы 𝑀 ×𝑀. 

При этом коэффициенты 𝐶𝑞𝑖 также являются матричными элементами матрицы 

размерности 𝑀 ×𝑀.  

Уравнение (6.26) можно переписать в матричном виде: 

(𝔽ℂ)𝑝𝑖 = (𝕊ℂ)𝑝𝑖ℰ𝑖  ∀ 𝑝 = 1…𝑀 

Или в общем случае для системы уравнений можно записать: 

𝔽ℂ = 𝕊ℂ𝔼 

В ОХФ будет 𝑀 уравнений определяющих состояние пространственных орбиталей. В 

НХФ будет 2𝑀 уравнений соответсвенно, которые не будут линейно независимыми.  

Таким образом, задача свелась к системе линейных уравнений на определние 

коэффицентов 𝐶𝑞𝑖, которые определяют вид молекулярных орбиталей в выбранном 

базисе атомных орбиталей. Для решения уравнений (6.28) необходимо иметь  

начальное приближение ℂ(0). После чего можно записать в явном виде оператор Фока 

𝔽(0) и составить систему линейных уравнений. Решением этой систему является 

новоый набор коэффициентов ℂ(1). Затем можно снова расчитать матричные элементы 

оператора Фока и снова решать задачу о нахождении коэффициентов. Эта задача 

решается до тех пор пока коэффициенты на 𝑁-ном и (𝑁 − 1)-вом не окажутся 

«одинаковыми». Эта процедура носит название метод самосогласованного поля 

(ССП).  
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Лекция №7. Метод МО ЛКАО (Молекулярные Орбитали как Линейные 

Комбинации Атомных Орбиталей) 

7.1 Повторение базовых приближений методы Хартри-Фока. 

Кратко изложим подход к решению многоэлектронной задачи в методе Хартри-Фока. 

Многоэлектронная функция представляется в виде одного определителя построенного 

на 𝑁 одноэлектронных функциях называемых спин-орбиталями: 

𝛷0 =
1

√𝑁!
det{𝜓1, 𝜓2. . . 𝜓𝑁} 

Для нахождения этих одноэлектронных функций используется уравнение: 

𝐹
∧

𝜓𝑖 = ℰ𝑖𝜓𝑖 

При этом функции 𝜓𝑖 представляются в виде произведения пространственной и 

спиновой функции 𝜓𝑖 = 𝜙𝑖 (𝑟
→
) 𝛾(𝜎). С учетом этого представления можно получить 

уравнения для определения пространственной функций: 

𝐹
∧
(𝛾)𝜙𝑖 = ℰ𝑖𝜙𝑖 

где 𝐹
∧
(𝛾) = ℎ

∧

+∑ {𝐽
∧

𝑗 − 𝐾
∧

𝑗}
𝑁𝛼

𝑖=1
+∑ 𝐽

∧

𝑗

𝑁

𝑖=𝑁𝛼+1

 

Сами пространственные орбитали апроксимируются линейной комбинацией некоторых 

базисных функций {𝜒𝑞}1...𝑀: 

𝜙𝑖 =∑𝜒𝑞𝐶𝑞𝑖

𝑀

𝑞=1

 

В соотвествии с принципом заполнения выбираются функции с наименьшим 

собственным значением оператора Фока. При этом задача сводится к поиску 

коэффициентов С𝑞𝑖: 

(𝔽ℂ)𝑝𝑖 = (𝕊ℂ)𝑝𝑖ℰ𝑖  ∀ 𝑝 = 1…𝑀 

Для решения электроннй задачи в методе Хартри-Фока необходимо выбрать базис 

функций {𝜒𝑞}1…𝑀 и начальные значения коэффициентов 𝐶𝑞𝑖. 

  

7.2 Базисные наборы. Волновая функция атома водорода. 

Точное решение одноэлектронной задачи существует только для задачи о состояниях 

водородоподобного атома: 

Φ𝑛𝑙𝑚 = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑) 

Радиальную функци с точностью до множителя можно записать как:   

𝑅𝑛𝑙~(
2𝑍𝑟

𝑛
)
𝑙

𝒵𝑛+1
2𝑙+1 (

2𝑍𝑟

𝑛
) 𝑒−

𝑍𝑟
𝑛  
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где 𝒵𝑛+1
2𝑙+1 (

2𝑍𝑟

𝑛
) − присоединенный полином Лагерра от аргумента 

2𝑍𝑟

𝑛
.  

Сферические функции с точностью до множителя можно записать как: 

𝑌𝑙𝑚~𝑃𝑙
|𝑚|(cos 𝜃)𝑒𝑖𝑚𝜑 

где 𝑃𝑙
|𝑚|(cos 𝜃) − присоединенный полином Лежандра.  

𝑟 −это расстояние электрона до соответсвующего ядра т.е. 𝑟 = |𝑟 − 𝑅⃗ 𝛼| где 𝛼 −это 

номер ядра.  

Базисные функции должны корректно описывать распределение элетронного заряда 

отдельных атомов и между ними после объединения их в молекулу. Возьмем интеграл 

по угловым переменным в сферической системе координат квадрата модуля функции 

Φ𝑛𝑙𝑚: 

∫∫ |Φ𝑛𝑙𝑚|
2𝑟2sin(𝜃)𝑑𝜑𝑑𝜃𝑑𝑟 = 𝑔𝑛𝑙(𝑟)

2𝜋

0

𝜋

0

 

Этот интеграл фактически является радиальной функцией распределения заряда. В 

общем виде функцию 𝑔𝑛𝑙(𝑟) можно записать следующим образом: 

𝑔𝑛𝑙(𝑟) = 𝑅𝑛𝑙
2 𝑟2 

Вспомним как выглядят функции для 

некоторых чисел 𝑛 и 𝑙:  

𝑅10~𝑒
−𝑍𝑟 

𝑅20~(2 − 𝑍𝑟)𝑒
−
𝑍𝑟
2  

𝑅21~𝑍𝑟 𝑒
−
𝑍𝑟
2  

 

 

На рисунке 7.1 схематически представлены радиальные функции распределения. Из 

этого рисунка видно, что максимумы функций 2s и 2p локализованы примерно в одной 

и той же области пространства. Мы должны выбрать функции, которые наилучшим 

образом описывают распределение заряда в той или иной области. Например, в близи 

от ядра в качестве базисной можно выбрать функцию 1𝑠, а в районе максимумов 

функций 2𝑠 и 2𝑝 функцию 2𝑝.  

Таким образом для описания распределения заряда при данном значении 𝑛 

предпочтительно выбирать функцию с максимальным значение 𝑙.  Функции 𝑅𝑛𝑙𝑚𝑎𝑥  

имеют довольно простой вид: 

𝑅𝑛𝑙𝑚𝑎𝑥~𝑟
𝑙𝑚𝑎𝑥𝑒−𝛼𝑘𝑟 

где 𝛼𝑘 −некоторый параметр различный для разных атомов.  

Рисунок 7.1 
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В молекуле, в отличие от атома водорода, возникают направленные химические связи. 

Поэтому важно понимать, как распределен заряд вокруг ядра в зависимости от углов 

𝜑 и 𝜃. Угловое распределение электронов характеризует функция 𝑌𝑙𝑚(𝜃, 𝜑). Вспомним, 

как выглядят эти функции при некоторых значениях 𝑙:  

𝑙 = 1 {
𝑌10~𝑐𝑜𝑠𝜃

𝑌1,±1~∓ 𝑠𝑖𝑛𝜃𝑒
∓𝑖𝜑 

Базисные функции Φ𝑛𝑙𝑚 будут записаны как: 

𝑅21𝑌10~𝑟 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑒
−𝛼𝑘𝑟 = 𝑧 ∙ 𝑒−𝛼𝑘𝑟  

𝑅21
−𝑌1,1 + 𝑌1,−1

2
~𝑟 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑒−𝛼𝑘𝑟 = 𝑥 ∙ 𝑒−𝛼𝑘𝑟  

𝑅21
−𝑌1,1 − 𝑌1,−1

2
~𝑟 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑒−𝛼𝑘𝑟 = 𝑦 ∙ 𝑒−𝛼𝑘𝑟 

где после знака равенства указан вид этих функций в декартовой системе координат. 

Функции (7.13) обычно обозначают как 2𝑝𝑧 , 2𝑝𝑥, 2𝑝𝑦 соотвественно. Эти 

действительные функции наглядно показывают, как распределяется заряд по 

отношению к ядру.  

Запишем функции 𝑌𝑙𝑚(𝜃, 𝜑) с точностью до коэффициента при 𝑙 = 2: 

𝑙 = 2  {

𝑌10~(3𝑐𝑜𝑠
2𝜃 − 1)

𝑌2,±1~∓ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑒
±𝑖𝜑

𝑌2,±2~𝑠𝑖𝑛
2𝜃𝑒±2𝑖𝜑

 

Домножим функции (7.14) на соответствующую радиальную функцию: 

𝑅3,2𝑌2,0~(2𝑧
2 − 𝑥2 − 𝑦2)𝑒−𝛼𝑟 

𝑅32 {

−𝑌2,1 + 𝑌2,−1
2

~𝑥𝑦𝑒−𝛼𝑟

−𝑌2,1 − 𝑌2,−1
2𝑖

~𝑦𝑧𝑒−𝛼𝑟
 

𝑅32 {

𝑌2,2 + 𝑌2,−2
2

~(𝑥2 − 𝑦2)𝑒−𝛼𝑟

𝑌2,2 − 𝑌2,−2
2𝑖

~𝑥𝑦𝑒−𝛼𝑟
 

Полученные 5 функций можно еще более упростить и получить набор из 6 функций 𝑑 

типа {𝑥𝑦, 𝑥𝑧, 𝑦𝑧, 𝑥2, 𝑦2, 𝑧2}𝑒−𝛼𝑟.  

В общем случае удобно выбрать набор базисных функций следующего вида: 

𝑥𝑙1𝑦𝑙2𝑧𝑙3𝑒−𝛼𝑟  

где 𝑙1, 𝑙2, 𝑙3 ∈ ℤ и𝑙1+𝑙2 + 𝑙3 = 𝑙𝑚𝑎𝑥  

В матричных элементах оператора Фока 𝔽𝑝𝑞 = ⟨𝜒𝑝|𝐹̂|𝜒𝑞⟩, которые необходимо 

расчитывать есть интегралы вида: 

⟨𝜒𝑝|𝐽𝑗|𝜒𝑞⟩ ≡ ∬
𝜒𝑝
∗(𝑟 1)𝜙𝑗

∗(𝑟 2)𝜒𝑞(𝑟 1)𝜙𝑗(𝑟 2)

𝑟12
𝑑𝑟 1𝑑𝑟 2 
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Интегралов вида (7.17) порядка 𝑀4, где 𝑀 −это число базисных функий.  

В экспоненте 𝑒−𝛼𝑟 𝑟 −это расстояние до ядра с номером 𝛼 т.е. 𝑟 = 𝛼|𝑟  − 𝑅⃗ 𝑎|. 

 

7.3 Экспоненциальный функции Слейтера и Гаусса. Примитивные 

и сжатые функции и базисные наборы.  Дополнения базовых 

наборов: поляризационные и диффузные функции.  

При это под интегралом (7.17) могут стоять функции, в показателе которых могут 

стоять расстояния до 4-х разных ядер. Экспоненты вида  𝑒−𝛼𝑟 называют 

экспоненциальной функцией Селейтерова типа.  

Если в показателе экспоненты стоит квадрат расстояния до ядра, то произведение двух 

экспонент с разными показателями степени можно свернуть в виде:  

𝑒−𝛼|𝑟  −𝑅⃗ 𝑎|
2

∙ 𝑒−𝛽|𝑟  −𝑅⃗
 𝛽|
2

= 𝑐𝑜𝑛𝑠𝑡 ∙ 𝑒−(𝛼+𝛽)|𝑟  −𝑅⃗ 𝑐|
2

 

где 𝑅⃗ 𝑐 =
𝛼𝑅⃗ 𝑎+𝛽𝑅⃗ 𝛽

𝛼+𝛽
. Функции (7.18) называются функциями Гуасова типа. 

Интегрирование функций Гуасова типа требует меньше вычислительных затрат. 

Поэтому обычно используют базисные функции вида: 

𝑥𝑙1𝑦𝑙2𝑧𝑙3𝑒−𝛽𝑟
2
 

где 𝑙1, 𝑙2, 𝑙3 ∈ ℤ и  𝑙1+𝑙2 + 𝑙3 = 𝑙𝑚𝑎𝑥 , 𝛽 − параметр.  

На рисунке 7.2 схематически изображен вид 

функций Слейтора и Гауса. У функции Гауса 

другой характер зависимости в окресности нуля и 

она быстрее убывает с увеличением расстояния. 

Однако можно подобрать такие значения 𝛽, при 

которых зависимости будут «похожи» в 

некотором интервале 𝑟. При этом для точного 

описания функция типа Слейтора нужно 

использовать линейные комбинации Гаусовых 

функций: 

СФ ≈∑𝑎𝑘ГФ𝑘
𝑘

 

где СФ −функция Слейторова типа, ГФ −функция Гауссова типа.  

Поскольку уже в элементах второго периода атомные орбитали аппроксимируются 

конечным число функций Слейторова типа. В свою очередь эквивалентная 

аппроксимация функциям Гауссова типа неплохо описывает АО: 

АО =∑𝑏𝑗СФ𝑗

𝑀1

𝑗

=∑𝐶𝑖ГФ𝑖

𝑀2

𝑖

 

Рисунок 7.2 Сравнение вида 

функция типа Гаусса и Слейтора 
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где 𝑀1 < 𝑀2. Важно отметить, что использование функций Гауссова типа упрощает 

вычисления.  

{𝜒𝑞} −это набор функций вида 𝑥𝑙1𝑦𝑙2𝑧𝑙3𝑒−𝛽𝑝𝑟
2
. Из этих функций в свою очередь можно 

построить еще один набор функций {𝒰𝑝} такой что: 

𝒰𝑝 =∑𝑎𝑝𝑞𝜒𝑞

𝑀𝑝

𝑞=1

 

При этом если если функция 𝜑𝑖 линейная комбинация функций 𝜒𝑞 т.е. 𝜑𝑖 = ∑ 𝜒𝑞𝐶𝑞𝑖 𝑞 , 

то 𝜑𝑖 есть также линейная комбаницая функций 𝒰𝑝 т.е.  

𝜑𝑖 = ∑ 𝒰𝑝𝐶𝑝𝑖̃ 𝑝 . Исходный набор базисных функций {𝜒𝑞} называют примитивными, а 

функции {𝒰𝑝} −сжатыми. Путем «сжатия» исходного набора примитивных функций 

можно уменьшить количество варьируемых параметров.  

Атом кислорода имеет электронную конфигурацию 1𝑠2𝑠2𝑝. В базисный набор можно 

включить  1𝑠 и 2𝑝 функции. Однако этого не всегда оказывается достаточно и 

базисный набор дополняется поляризационными и диффузными функциями.   

Поляризационные функции должны помочь описать перераспределение заряда при 

формировании связей. Для этого можно использовать функции с орбитальным 

моментом 𝑙 > 𝑙𝑚𝑎𝑥, т.е. как минимум функцией типа 𝑑. 

Диффузные функции позволяют описать распределение зарядя далеко от ядра и 

используются для описания анионов или различных межмолекулярных комплексов. 

Для диффузных фунций используются функци с орбитальным моментом 𝑙 < 𝑙𝑚𝑎𝑥 и 

значением параметра 𝛽~0,1 в то время как для 𝑠 − функций значение 𝛽~20000 и 𝑝 −
функций 𝛽~100. 

 

7.4 Начальные приближения для молекулряных орбиталей.  

Для решения задачи необходимо построить начальное приближение для молекулряных 

орбиталей {𝜙𝑖
(0)} что эквивалентно начальному приближению матрицы коэффициентов 

ℂ(0) . В приближении голых ядер пренебрегают  межэлектронным взаимодействией. В 

этом случае оператор Фока максимально упростится 𝐹̂ = ℎ̂. При этом задача метода 

Хартри-Фока превращается в обычную вариационную задачу: 

ℍℂ = 𝕊ℂ𝔼 

где 𝐻𝑝𝑞 = ⟨𝜒𝑝|ℎ̂|𝜒𝑞⟩. 

Приближение голых ядер далеко не всегда хорошо работает. Межэлектронное 

взаимодействие, однако, можно учесть введением некоторого эффективного 

потенциала 𝑉̂эфф, который создают все остальные электроны, и в котором движется 

отдельный выделенный электрон:  

ℎ̃
^

= ℎ̂ + 𝑉̂эфф 
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Задача остается также вариационной, но с несколько другой матрицей ℍ̃: 

ℍ̃ℂ = 𝕊ℂ𝔼 

где 𝐻̃𝑝𝑞 = ⟨𝜒𝑝| ℎ ̃ ̂|𝜒𝑞⟩. 

При этом 𝐻̃𝑝𝑞 − это параметры, зависящие от типа атомов и базисных функций. 

Количество базисных функций при этом минимально – для одной базисной функции 

одна атомная орбиталь.  

Параметры 𝐻̃𝑝𝑞 = ⟨𝜒𝑝̃| ℎ ̂̃|𝜒𝑞̃⟩ подбираются решением задачи меньшей размерности, 

которая предполагает, что молекулярная орбиталь разложена по базису функций {𝜒̃𝑝}  

т.е. 𝜙𝑖 = ∑ 𝜒̃𝑝𝐶̃𝑝𝑖𝑝 . Функции {𝜒̃𝑝} являются сжатыми и для них можно записать 

разложение по базису исходных функций 𝜒̃𝑝 = ∑ 𝜒𝑞𝑎𝑞𝑝𝑝 . Далее молекулярную 

орбиталь можно представить как 𝜙𝑖 = ∑ 𝜒𝑞(∑ 𝑎𝑞𝑝𝐶̃𝑝𝑖𝑝 )𝑞 . В то же время ℂ(0) =

∑ 𝑎𝑞𝑝𝐶̃𝑝𝑖𝑝 . Данный метод называется методом Хюккеля. 
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Лекция №8. Распределение электронной плотности.  

8.1 Распределение электронной плотности. Электронная плотность 

однодетерминантной волновой функции. 

Введем функцию распределения электронной плотности 𝝆(𝒓⃗ 𝟏): 

𝜌(𝑟 1) = 𝑁 ∫…

 

(1)

∫|Φ|2𝑑𝜎1𝑑𝑟⃗⃗⃗⃗ 2𝑑𝜎2…𝑑𝑟⃗⃗⃗⃗ 𝑁𝑑𝜎𝑁

 

(𝑁)

 

где |Φ|2 −квадрат модуля электронной функции.  Можно упростить вид функции 𝜌(𝑟 1) 

с учетом, что 𝑑𝑖 = 𝑑𝑟⃗⃗⃗⃗ 𝑖𝑑𝜎𝑖: 

𝜌(𝑟 1) = 𝑁 ∫…

 

(1)

∫|Φ|2𝑑𝜎1𝑑2…𝑑𝑁

 

(𝑁)

 

Результат интегрирования функции 𝜌(𝑟 1) по 𝑑𝑟⃗⃗⃗⃗ 1 − это число электронов в системе: 

∫𝜌(𝑟 1)𝑑𝑟⃗⃗⃗⃗ 1 = 𝑁 

Пусть как и раньше электронная функция апроксимируется одним определителем:  

𝛷 ≈ 𝛷0 =
1

√𝑁!
det{𝜓1, 𝜓2. . . 𝜓𝑁}  

где каждая одноэлектронная функция 𝜓𝑖 представлена в виде: 𝜓𝑖 = 𝜙𝑖𝛾. 

При таком представлении функции 𝛷 функция 𝜌(𝑟 1) примет вид: 

𝜌(𝑟 1)

=
𝑁

𝑁!
∑ ∑ (−1)[𝐿](−1)[𝑀] ∫…

 

(1)

∫𝜓𝑙1
∗ (1). . . 𝜓𝑙𝑁

∗ (𝑁)𝜓𝑚1
 (1). . . 𝜓𝑚𝑁

 (𝑁)𝑑𝜎1𝑑2…𝑑𝑁

 

(𝑁){𝑚1…𝑚𝑁}

∈[1..𝑁]

{𝑙1…𝑙𝑁}

∈[1..𝑁]

 

где 𝐿 и 𝑀 −четности перестановок {𝑙1… 𝑙𝑁} и {𝑚1…𝑚𝑁}. Вид функции 𝜌(𝑟 1) можно 

упростить: 

𝜌(𝑟 1) =
𝑁

𝑁!
∑ ∑ (−1)[𝐿]+[𝑀]⟨𝜓𝑙1|𝜓𝑚1⟩⟨𝜓𝑙2|𝜓𝑚2⟩ … ⟨𝜓𝑙𝑁|𝜓𝑚𝑁⟩

{𝑚1…𝑚𝑁}

∈[1..𝑁]

{𝑙1…𝑙𝑁}

∈[1..𝑁]

 

Так как функции 𝜓𝑖, составляющие определитель, являются нормированными на 

единицу и ортогональными можно записать: 

𝜌(𝑟 1) =
𝑁

𝑁!
∑ ∑ (−1)[𝐿]+[𝑀]⟨𝜓𝑙1|𝜓𝑚1⟩𝛿𝑙2𝑚 2 …𝛿𝑙𝑁𝑚𝑁

{𝑚1…𝑚𝑁}

∈[1..𝑁]

{𝑙1…𝑙𝑁}

∈[1..𝑁]
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Перестановки L и M совпадают. Поэтому выражение упростится: 

𝜌(𝑟 1) =
𝑁

𝑁!
∑ |𝜙𝑙1|

2

{𝑙1…𝑙𝑁}

∈[1..𝑁]

1 ∙ 1…1 

При этом при «зафиксированном» значении 𝑙1 функция 𝜙𝑙1возникает (𝑁 − 1)! раз. 

Следовательно, получится: 

𝜌(𝑟 1) =
(𝑁 − 1)!𝑁

𝑁!
∑|𝜙𝑙1|

2
𝑁

𝑙1

=∑|𝜙𝑙1|
2

𝑁

𝑙1

 

Таким образом, функция  𝜌(𝑟 1) является аддитивной функцией. 

 

8.2 Распределение электронной плотности для орбитали в 

приближении  

МО ЛКАО. 

Каждая функция 𝜙𝑖 в приближении МО ЛКАО есть линейная комбинация базисных 

функций  {𝜒𝑞}1…𝑀 : 𝜙𝑖 = ∑ 𝜒𝑞𝐶𝑞𝑖𝑝 . С учетом этого из функции (8.5) получим: 

𝜌(𝑟 1) =∑|𝜙𝑖|
2

𝑁

𝑖

=∑(∑𝜒𝑝𝐶𝑝𝑖

𝑀

𝑝=1

)

∗

(∑𝜒𝑞𝐶𝑞𝑖

𝑀

𝑞=1

)

𝑁

𝑖=1

 

Переупорядочим суммирование и выделим суммирование по 𝑝 и 𝑞: 

𝜌(𝑟 1) = ∑ (∑𝐶𝑞𝑖𝐶𝑝𝑖
∗

𝑁

𝑖=1

)

𝑀

𝑝,𝑞=1

𝜒𝑝
∗𝜒𝑞 

Если к коэффициентам 𝐶𝑝𝑖
∗
 добавить операцию транспонирования, то получается 

матрица, сопряженная матрице 𝐶𝑞𝑖  : 𝐶𝑝𝑖
∗ = 𝐶𝑖𝑝

+
. Сумму в скобках в уравнении (8.6) 

можно перенумеровать до 𝑀, добавив дополнительный множитель 𝑛𝑖, который 

называют числом заполнения: 

∑𝐶𝑞𝑖𝐶𝑝𝑖
∗

𝑁

𝑖=1

=∑𝐶𝑞𝑖𝑛𝑖𝐶𝑖𝑝
+

𝑀

𝑖=1

 

где 𝑛𝑖 = 1 для 𝑖 = 1…𝑁, 𝑛𝑖 = 0 для 𝑖 = 𝑁 + 1,…𝑀. 

 

Сумму справа в (8.7) теперь можно интерпритировать как произведение трех матриц: 

∑𝐶𝑞𝑖𝑛𝑖𝐶𝑖𝑝
+

𝑀

𝑖=1

= (ℂ𝕟ℂ+)𝑞𝑝 
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где 𝕟 −матрица 𝑀 × 𝑀 вида (
1 ⋯ 0
⋮  1 ⋱ 0 ⋮
0 ⋯ 0

) 

Матрицу ℂ𝕟ℂ+ обычно называют матрицей электронной плотности и обозначается 

как ℝ. Таким образом функция распределения электронной плотности 𝜌(𝑟 1) в 

приближении МО ЛКАО записывается как: 

𝜌(𝑟 1) = ∑ ℝ𝑞𝑝

𝑀

𝑝,𝑞=1

𝜒𝑝
∗𝜒𝑞 

Ниже показано, что 𝑁 = 𝑡𝑟(ℝ𝕊), где 𝕊 матрица из элементов ∫𝜒𝑝
∗𝜒𝑞𝑑𝑟⃗⃗⃗⃗ 1: 

𝑁 = ∫𝜌(𝑟 1)𝑑𝑟⃗⃗⃗⃗ 1 = ∑ ℝ𝑞𝑝∫𝜒𝑝
∗𝜒𝑞𝑑𝑟⃗⃗⃗⃗ 1

𝑀

𝑞,𝑝=1

= 

= ∑ ℝ𝑞𝑝𝕊𝑝𝑞 =

𝑀

𝑞,𝑝=1

∑(∑ℝ𝑞𝑝𝕊𝑝𝑞

𝑀

𝑝=1

)

𝑀

𝑞=1

= 𝑡𝑟(ℝ𝕊) 

Проведем некоторые преобразования для  𝑡𝑟(ℂ+ℂ) и покажем, что  𝑡𝑟(ℂ+ℂ) =

∑ |𝐶𝑞𝑖|
2𝑀

𝑖,𝑞=1 : 

𝑡𝑟(ℂ+ℂ) =∑(ℂ+ℂ)𝑖𝑖

𝑀

𝑖=1

=∑∑𝐶𝑖𝑞
+𝐶𝑞𝑖

𝑀

𝑞=1

𝑀

𝑖=1

= ∑ |𝐶𝑞𝑖|
2

𝑀

𝑖,𝑞=1

 

В качестве критерия сходимости для метода ССП обычно используется сравнение 

элементов матрицы электронной плотности ℝ на двух последовательных интерациях: 

𝑡𝑟(ℝ(𝑛)−ℝ(𝑛−1))(ℝ(𝑛)−ℝ(𝑛−1)) < 𝜆 

где 𝜆~10−5 ÷ 10−7. 

 

8.3 Схемы анализа распределения электронной плотности. Схема 

Малликена на примере двухатомной молекулы. Преимущества и 

недостатки схемы. 

Анализ распределения электронной плотности принципиально может быть основан на 

двух схемах. Рассмотрим последовательно каждую из них. 

В первой схеме анализа распределния электронной плотности используются базисные 

функции {𝜒𝑞}1…𝑀, «центрированные» на различных атомах. Разберем в качестве 

примера схему Малликена. Запишем функцию 𝜌(𝑟 1) как: 

𝜌(𝑟 1) =∑𝑛𝑖|𝜙𝑖|
2

𝑀

𝑖=1

 

где 𝑛𝑖 = 1 для 𝑖 = 1…𝑁, 𝑛𝑖 = 0 для 𝑖 = 𝑁 + 1,…𝑀.  
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Учитывая, что функция  𝜙𝑖 линейная комбинация базисных функций, рассмотрим 

схему Малликена на примере двухатомой молекулы 𝐴𝐵. В двухатомной молекуле все 

базисные функции можно отнести к атому 𝐴 или атому 𝐵. Запишем это следующим 

образом: 

𝜙𝑖 =∑𝜒𝑝𝐶𝑝𝑖
𝑝𝜖𝐴

+∑𝜒𝑟𝐶𝑟𝑖
𝑝𝜖𝐵

 

В дальнейшем будем учитывать, что: 

𝑙 = 1…𝑀 
𝑝, 𝑞 = 1…𝑀𝐴 
𝑟, 𝑠 = 1…𝑀𝐵  
𝑀𝐴+𝑀𝐵 = 𝑀 

С учетом (8.14) выражение (8.13) запишется следующим образом: 

𝜌(𝑟 1) =∑𝑛𝑖 (∑𝜒𝑝𝐶𝑝𝑖
𝑝𝜖𝐴

+∑𝜒𝑟𝐶𝑟𝑖
𝑝𝜖𝐵

)

∗

(∑𝜒𝑞𝐶𝑞𝑖
𝑞𝜖𝐴

+∑𝜒𝑠𝐶𝑠𝑖
𝑠𝜖𝐵

)

𝑀

𝑖=1

 

Последнее выражение можно переписать как: 

𝜌(𝑟 1) =∑∑(∑𝐶𝑙𝑖𝑛𝑖𝐶𝑝𝑖
∗

𝑀

𝑖=1

)𝜒𝑝
∗𝜒𝑞 +∑∑(∑𝐶𝑙𝑖𝑛𝑖𝐶𝑟𝑖

∗

𝑀

𝑖=1

)𝜒𝑟
∗𝜒𝑙

𝑀

𝑙=1𝑟𝜖𝐵

𝑀

𝑙=1𝑝𝜖𝐴

= 

=∑∑ℝ𝑙𝑝𝜒𝑝
∗𝜒𝑞𝜒𝑝

∗
𝜒𝑞 +∑∑ℝ𝑙𝑟𝜒𝑟

∗𝜒𝑙

𝑀

𝑙=1𝑟𝜖𝐵

𝑀

𝑙=1𝑝𝜖𝐴

 

Если вспомнить, что ∫𝜌(𝑟 1)𝑑𝑟⃗⃗⃗⃗ 1 = 𝑁, где 𝑁 −это число электронов в системе, то 

проитегрировав выражение (8.16) по 𝑑𝑟⃗⃗⃗⃗ 1 получим: 

∫𝜌(𝑟 1)𝑑𝑟⃗⃗⃗⃗ 1 = 𝑁 = 𝑁(𝐴) + 𝑁(𝐵) 

где 𝑁(𝐴) и 𝑁(𝐵) − характеризуют «заселенность» некоторых  «эффективных» атомов 

𝐴 и 𝐵 соответсвенно. Из (8.16) и (8.17) видно, что: 

𝑁(𝐴) =∑∑𝑅𝑙𝑝𝑆𝑝𝑙

𝑀

𝑙=1𝑝∈𝐴

=∑(ℝ𝕊)𝑝𝑝
𝑝∈𝐴

 

𝑁(𝐵) = ∑∑𝑅𝑙𝑟𝑆𝑟𝑙

𝑀

𝑙=1𝑝∈𝐵

=∑(ℝ𝕊)𝑟𝑟
𝑝∈𝐴

 

Таким образом, весь след матрицы 𝑡𝑟(ℝ𝕊) разбивается на фрагменты соответсвенно 

тому, какие функции к какому ядру исходно принадлежат или центрированы. 

Вышеописанную схему легко обощить на молекулярную систему любой размерности:  

𝑁(𝐾) = ∑(ℝ𝕊)𝑞𝑞
𝑞∈𝐾
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Однако, используя метод Малликена, можно «переоценить» электронную плотность в 

окрестности одних атомов и «недооценить» в окрестности других, например, в случае 

наличия сильно диффузных функций. 

Этого недостатка лишена схема основанная на численном анализе функции  𝜌(𝑟 1). 
Самый известный ее вариант носит название «метод атомов в молекуле». Для 

реализации этого метода необходимы значения функции 𝜌(𝑟 1) во всех точках 

пространста или другими словами необходима «карта» электронной плотности 

функции 𝜌(𝑟 1). 

На рисунке 8.1 изображена «карта» 

𝐴𝐵. электронной плоскости двухатомной молекулы 

Линии на рисунке соединяют точки с 

одинаковым значением функции 𝜌(𝑟 1). Далее 

необходимо найти поверхности, т.е. области в 

пространстве, где выполнено условие 

ортогональности вектора 𝛻𝜌⃗⃗⃗⃗  ⃗ и нормали 𝑛⃗ 1  к 

поверхности  (𝛻𝜌⃗⃗⃗⃗  ⃗, 𝑛⃗ 1) = 0. 

Такие поверхности ограничивают области 

пространства соотносимые с отдельными 

ядрами. Все пространство в целом 

разбивается на отдельные «атомные 

бассейны».  

На рисунке 8.1 можно выделить два «бассейна» слева и справа относистельно 

поверхности 𝑆. Причем через поверхность 𝑆 не должно быть потока электронной 

плотности. Интегрируя функцию электронной плотности по отдельному атомному 

бассейну: 

∮𝜌(𝑟 1)𝑑𝑟⃗⃗⃗⃗ 1

 

𝑆𝐴

= 𝑁(𝐴) 

можно получить заселенность атома, к которому относится данный бассейн. 

Разница между числом электроном атома 𝑁𝐴 и заселенностью 𝑁(𝐴) называется 

зарядом атома A в молекулярной системе: 

𝑞𝐴 = 𝑁𝐴 − 𝑁(𝐴) 

Если проанализировать в данной схеме 

критические точки функции 𝜌(𝑟 1) и 

рассчитать в этих точках матрицу Гессиан с 

элементами 
𝜕2𝜌(𝑟 1)

𝜕𝛼𝜕𝛽
  𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. 

Пусть в некоторой точке все первые 

производные нулевые, а вторые производные 

отличны от нуля.  Эта точка является или 

максимумом или минимумом. Если все 

собственные значения Гессиана не нулевые, то 

ранг этой матрицы равен 𝔀 = 𝟑.  

Рисунок 8.1 Схематическая 

«карта» распределения электронной 

плотности.  

Рисунок 8.2 Схематическая зависимость 

квадрата волновой функции молекулы H2
+ 
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Далее точку, помимо ранга матрицы Гесса, можно характеризозвать дополнительным 

параметром 𝝈, называемым признаком. Признак есть алгебраическая сумма знаков 

собственных значений матрицы Гесса. Таким образом, все точки можно 

охарактеризовать парой значений — рангом и признаком (𝔀, 𝝈).  Рассмотрим 

возможные типы критических точек: 

Если (3, −3), то по всем напрявлениям точка оказывается в 

максимуме. Следовательно, это положение ядер. 

Если (3, −1), то в двух направлениях максимум, в одном – 

минимум. Такая точка указывает на химическую связь в 

направлении максимумов. 

Если (3, +1)~𝑚𝑎𝑥,𝑚𝑖𝑛,𝑚𝑖𝑛, то точка находится в середине 

химически связанного кольца. Например, в центре молекулы 

безола. 

Если (3, +3)~𝑚𝑖𝑛,𝑚𝑖𝑛,𝑚𝑖𝑛, то точка находится в середине 

объемной химически связанной «клетки». Например, в 

молекулы татраэдрана. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 8.3 Молекулы 

бензола и тетраэдарана 
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Лекция №9. Недостатки однодетерминантного подхода и его альтернативы.  

9.1 Недостатки однодетерминантного подхода.  

Можно выделить два недостатка однодетерминантного подхода в методе Хартри-Фока, 

которые проявляют себя на очень больших и очень малых межэлетронных расстояниях.  

В качестве примера рассмотрим молекулу 𝐻2. В рамках ОХФ эту двух электронную 

систему 𝑁 = 2 будет описывать функция: 

Ф0 =
1

√2
𝑑𝑒𝑡{𝜙1𝛼, 𝜙1𝛽} 

В случае использования минимального базиса т.е. по одной функции типа 1𝑠 
центрированной на каждом ядре {𝜒𝛼, 𝜒𝛽} низшая по энергии пространственная 

орбиталь запишется в виде: 

𝜙1 =
1

√2(1 + 𝑆𝛼𝛽)
(𝜒𝛼 + 𝜒𝛽) 

где 𝑆𝛼𝛽 − интеграл перекрывания функций 𝜒𝛼  и 𝜒𝛽 

Запишем в явном виде определитель (9.1): 

Ф0 =
1

√2
|
𝜙1(1)𝛼(1) 𝜙1(2)𝛼(2)
𝜙1(2)𝛽(2) 𝜙1(2)𝛽(2)

| =
1

√2
𝜙1(1)𝜙1(2){𝛼(1)𝛽(2) − 𝛽(1)𝛼(2)} 

Далее с учетом (9.2) запишем произведение 𝜙1(1)𝜙1(2): 

𝜙1(1)𝜙1(2) =
1

2(1 + 𝑆𝛼𝛽)
(𝜒𝛼(1) + 𝜒𝛽(1)) (𝜒𝛼(2) + 𝜒𝛽(2)) = 

=
1

2(1 + 𝑆𝛼𝛽)
(𝜒𝛼(1)𝜒𝛼(2) + 𝜒𝛽(1)𝜒𝛽(2) + 𝜒𝛼(1)𝜒𝛽(2) + 𝜒𝛽(1)𝜒𝛼(2)) 

Набор функций 𝜒𝛼(1)𝜒𝛼(2) + 𝜒𝛽(1)𝜒𝛽(2) описывает ионную конструкцию 𝐻⊕…𝐻⊝ 

или 𝐻⊖…𝐻⊕  . Напротив, набор функций 𝜒𝛼(1)𝜒𝛽(2) + 𝜒𝛽(1)𝜒𝛼(2) описывают 

нейтральную конструкцию 𝐻…𝐻. Если рассматривается связанная молекулярная 

система в состоянии близком к равновесному, то эти наборы можно рассматрить как 

возможные «резонансные» структуры, суперпозиция которых дает распределение 

электронной плотности.  

Рассмотрим эту же систему при ее диссоциации т.е. при 𝑅𝛼𝛽 → ∞. При этом 

диссоциация может протекать как по ионному механизму с образованием двух ионов, 

так и посредством разрыва ковалентной связи с образованием двух атомов водорода. С 

учетом того, что при 𝑅𝛼𝛽 → ∞ 𝑆𝛼𝛽 → 0 функцию (9.3) можно представить в виде: 

Ф0 =
1

√2
(Ф𝑐𝑜𝑣 +Ф𝑖𝑜𝑛) 

где Ф𝑐𝑜𝑣 =
1

2
(𝜒𝛼(1)𝜒𝛽(2) + 𝜒𝛽(1)𝜒𝛽(2)) {𝛼(1)𝛽(2) − 𝛽(1)𝛼(2)} 
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 Ф𝑖𝑜𝑛 =
1

2
(𝜒𝛼(1)𝜒𝛼(2) + 𝜒𝛼(1)𝜒𝛽(2)) {𝛼(1)𝛽(2) − 𝛽(1)𝛼(2)} 

Энергия диссоциации по ОХФ при этом оказывается «посередине» между энергиями 

ионного и ковалетного диссационных пределов. Таким образом, описание распада 

молекулярной на части системы оказывается неккоректным.  

Введем следующую функцию:  

Ф1 =
1

2√2
(𝜒𝛼(1)𝜒𝛼(2) + 𝜒𝛽(1)𝜒𝛽(2) − 𝜒𝛼(1)𝜒𝛽(2) − 𝜒𝛽(1)𝜒𝛼(2)) {𝛼𝛽 − 𝛽𝛼} 

Перепишем последнее выражение в более компактном виде: 

Ф1 =
1

2√2
(𝜒𝛼(1) − 𝜒𝛽(1)) (𝜒𝛼(2) − 𝜒𝛽(2)) {𝛼𝛽 − 𝛽𝛼} 

В (9.5) 𝜙2(1) = (𝜒𝛼(1) − 𝜒𝛽(1)) ,  𝜙2(2) = (𝜒𝛼(2) − 𝜒𝛽(2)), т.е. выражения в скобках в 

(9.5) это с точностью до коэффициента второе решение уравнения Хартри-Фока в 

базисе двух функций {𝜒𝛼, 𝜒𝛽} в ОХФ (Рисунок 9.1) 

 

Выражение (9.8) можно переписать как:  

Ф1 =
1

√2
𝑑𝑒𝑡{𝜙2𝛼, 𝜙2𝛽} 

 

Запишем выражения для функций Ф𝑐𝑜𝑣 и Ф𝑖𝑜𝑛 через функции Ф0 и Ф1: 

Ф𝑐𝑜𝑣 =
1

√2
(Φ0 −Ф1) 

Ф𝑖𝑜𝑛 =
1

√2
(Φ0 +Ф1) 

Из всего вышеописанного можно сделать вывод, что для корректного описания 

молекулярной системы при произвольных значениях межъядерного расстояния 𝑅𝛼𝛽 

электронную функцию необходимо представить линейной комбинацией минимум двух 

определителей: 

Φ = 𝐶0Φ0 + 𝐶1Φ1 

при этом если 𝑅𝛼𝛽 стремится к равновесному значению, то 𝐶0 ≈ 1, 𝐶1 ≈ 0, если 𝑅𝛼𝛽 →

∞, то 𝐶0 = −𝐶1. 

Рассмотрим далее особенности однодетерминантного подхода при маленьких 

межэлектронных состояниях 𝑟𝑖𝑗 → 0. 

Рисунок 9.1 Два электронных со-
стояния молекулы водорода.   

https://vk.com/teachinmsu


 

  

 

46

 
 

Электронный гамильтониан выглядит как: 

𝐻̂𝑒 = −
1

2
∑𝛻𝑖

2

𝑖

−∑
𝑍𝛼
𝑅𝑖𝛼

𝑖,𝛼

+∑
1

𝑟𝑖𝑗
𝑖<𝑗

 

Если два электрона 𝑖 и 𝑗 сильно сближаются, то слагаемое 
1

𝑟𝑖𝑗
→ ∞ и, казалось бы, 

𝐻̂𝑒Φ− должно неограниченно возрастать. Однако результат действия оператора на 

функцию должен быть ограниченым. Следовательно, в качестве «компенсации» может 

выступать кинетическая энергия электронов.  

Рассмотрим подробнее суммарный результат действия оператора −
1

2
𝛻𝑖
2 −

1

2
𝛻𝑖
2 +

1

𝑟𝑖𝑗
 на 

функцию Ф. Для простоты пренебрежем зависимостью вектора 𝑟𝑖𝑗 от углов 𝜃, 𝜑 в 

сферической системе координат. В этом случае ограниченность (−
1

2
𝛻𝑖
2 −

1

2
𝛻𝑖
2 +

1

𝑟𝑖𝑗
)Ф 

выполнена при условии: 

𝜕Ф

𝜕𝑟𝑖𝑗
|
𝑟𝑖𝑗=0

=
1

2
Ф|𝑟𝑖𝑗=0 

Важно подчеркнуть, что один определитель слейтора не может обеспечить выполнение 

условия (9.8). При этом оценка электронной энергии 𝐸𝑒 оказывается завышенной 

примерно на 1эВ. Для корректного описания системы как в случае больших 

межъядерных расстояний при 𝑟𝑖𝑗 → 0 необходимо использовать линейный комбинации 

определителей.  

В общем случае наблюдается следующая закономерность: чем выше мультиплетность 

𝑆 т.е. чем больше пространственных функций тем, меньше погрешность в оценке 

энергии 𝐸𝑒. 

Просумируем недостатки однодетерминантного подхода: 

При 𝑟𝑖𝑗 → ∞ происходит завышение согласованности состояний электронов и как 

следствие завышаются оценки энергии связи.  

При 𝑟𝑖𝑗 → 0 происходит завышение энергии 

отталкивания электронов и как следствие 

занижается энергия связи.   

На рисунке (9.2) схематически изображено 

сравнение некоторой реальной кривой 

зависимости электронной энергии 𝐸𝑒 от 

межъядерных расстояние 𝑅𝑎𝑏 и   кривой, 

полученной, например, в ОХФ.  

 

 

 
Рисунок 9.2 Схематическое сравнение 
двух кривых зависимости Ее от Rab 
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9.2 Энергия электронной корреляции. 

Для оценки погрешностей энергии введена величина: 

𝐸кор = 𝐸ист − 𝐸ХФ 

где 𝐸кор −энергия электронной корреляции.  

Способом снизить погрешность 𝐸𝑒 является апроксимация многоэлектронной функции 

Ф линейной комбинацией определителей: 

Ф =∑𝐶𝐾Φ𝐾
𝐾

 

При этом определители Φ𝐾 построены из функций являющихся решением уравнения 

Хартри-Фока: 

𝐹̂𝜙𝑖 = ℰ𝑖𝜙𝑖 

Далее для определенности будем рассмотривать НХФ. Пусть набор базисных функций 

{𝜒𝑞}1…𝑀 в НХФ состоит из 𝑀 функций. Из этих 𝑀 функций только 𝑁 функция являются 

занятыми, где  𝑁 −это количество электронов в системе. Остальные функции, начиная 

с 𝑁 + 1 до 𝑀 являются вакантными или виртуальными (см. рисунок 9.3).  

Данной электронной кофигурации согласно принципу заполнения отвечает минимум 

электронной энергии. Однако, возможны конфигурации, где один или несколько 

электронов переходят с одной орбитали на другую (см. рисунок 9.3).  

Далее электронная функция, 

отвечающая основному состоянию 

будет обозначаться как Φ0, а 

возбужденному как Φ0𝑛
𝑚 . Нижний 

индекс в Φ0𝑛
𝑚  указывает номер 

орбитали, которая исключается из 

определителя, а верхний указывает 

номер орбитали, которая напротив 

теперь является занятой и вносится 

в определитель. При этом возможен 

переход на вакантные орбитали 

двух и более электронов. 

Как правило, в расчетах среди орбиталей 

выделяют часть всегда вакантных и часть 

всегда занятых орбиталей, а оставшаяся 

часть орбиталей рассматривается как 

«активные», в пределах которых могут 

происходить все возможные возбуждения. 

(см. Рисуков 9.4)  

 

 

Рисунок 9.3 Некоторые возможные электронные 
конфигурации. 

Рисунок 9.4 «Всегда занятые», «всегда ва-
кантные» и «активные» орбитали 

https://vk.com/teachinmsu


 

  

 

48

 
 

С учетом этого можно записать следующе разложение функции Ф: 

Ф = 𝐶0Φ0 + ∑ 𝐶𝑛
𝑚Ф0𝑛

𝑚

𝑛<𝑚

+ ∑ 𝐶𝑛1,𝑛2
𝑚1,𝑚2Ф0,𝑛1𝑛2

𝑚1𝑚2

𝑛1<𝑛2
𝑚1<𝑚2

+⋯ 

где справа записаны определители характеризующие основное и возбужденные 

состояния и 𝑛𝑖 < 𝑁, 𝑚𝑖 > 𝑁. 

Итак, функция Ф представлена линейной комбинацией определителей отвечающией 

разным электронным конфигурациям.  

 

9.3 Метод конфигурационного взаимодействия.  

В методе конфигурационного взаимодействия (КВ) в разложение функции Ф 

варьируемыми параметрами являются только коэффициенты 𝐶𝐾: 

Φ =∑𝐶𝐾Ф𝐾
𝐾

 

а орбиталями являются ровно те функции, которые были найдены при решении задачи 

Хартри-Фока, т.е. одноэлектронные функции не уточняются. Таким образом, поиск 

минимума электронной энергии 𝐸𝑒 сводится к вариационной задаче: 

𝑚𝑖𝑛𝐸𝑒 = 𝑚𝑖𝑛⟨Ф|𝐻𝑒̂|Ф⟩ 

ℍℂ = 𝐸𝑒𝕊ℂ 

где 𝐻𝐾𝐿 = ⟨Ф𝐾|𝐻𝑒̂|Φ𝐿⟩, 𝑆𝐾𝐿 = ⟨Φ𝐾|Φ𝐿⟩ = 𝛿𝐾𝐿 

 

Обощим правила Слейтора на случай возбужденных состояний: 

⟨Φ𝐾|𝐻̂𝑒|𝛷𝐾⟩ =∑⟨𝜓𝑖|ℎ̂𝑖|𝜓𝑖⟩

𝑖𝜖𝐾

+
1

2
∑(⟨𝜓𝑖𝜓𝑗|

1
𝑟12
|𝜓𝑖𝜓𝑗⟩ − ⟨𝜓𝑖𝜓𝑗|

1
𝑟12
|𝜓𝑗𝜓𝑖⟩)

𝑖,𝑗

 

⟨𝛷𝐾|𝐻̂𝑒|𝛷𝐾𝑛
𝑚 ⟩ = ⟨𝜓𝑛|ℎ̂|𝜓𝑚⟩ +

1

2
∑(⟨𝜓𝑖𝜓𝑛|

1
𝑟12
|𝜓𝑖𝜓𝑚⟩ − ⟨𝜓𝑖𝜓𝑛|

1
𝑟12
|𝜓𝑚𝜓𝑖⟩)

𝑖

 

⟨𝛷𝐾|𝐻̂𝑒|𝛷𝐾𝑛1𝑛2
𝑚1𝑚2⟩ = ⟨𝜓𝑛1𝜓𝑛2|

1
𝑟12
|𝜓𝑚1𝜓𝑚2⟩ − ⟨𝜓𝑛1𝜓𝑛2|

1
𝑟12
|𝜓𝑚2𝜓𝑚1⟩ 

⟨𝛷𝐾|𝐻̂𝑒|𝛷𝐾𝑛1…𝑛𝑝
𝑚1…𝑚𝑝⟩ = 0, ∀ 𝑝 ≥ 3 

Учет основного и первого возбужденного состояния реализуется в методе КВ1 

(конфигурационное взаимодействие с учетом однократно возбужденных 

конфигураций). 

Учет однократно- и двукратно-возбужденных конфигураций реализуется в методе 

КВ1+2 
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Метод, в котором учитываются все возможные возбужденные состояния, носит 

название полное КВ.  

 

9.4 Метод многоконфигурационного самосогласованного поля.  

В методе КВ базисные функции не уточняются и варьируются только коэффициенты в 

разложении многоэлектронной функции. Однако, в рамках метода 

многоконфигурационного самосогласованного поля (МКССП) варьируются не 

только коэффициенты, но и все одноэлектронные функции, из которых построены 

определители: 

Φ =∑𝐶𝐾Ф𝐾
𝐾

, варьируется 𝐶𝐾 и  𝜙𝑖   

При этом функций 𝜙𝑖 варьируются методом поворотов. Проварьированная функция 

определяется как результат действия матрицы поворота на некоторый малый угол на 

исходную функцию: 

(

1 𝐴12
−𝐴12 1

⋯
𝐴1𝐿
𝐴2𝐿

⋮ ⋱ ⋮
−𝐴1𝐿 −𝐴1𝐿 ⋯ 1

)(
𝜙1
⋮
𝜙𝐿

) 

где 𝐿 −число активных орбиталей. В этом случае любая проварьированная орбиталь 𝜙𝑖 
записывается в виде: 

𝜙𝑖 + 𝛿𝜙𝑖 = 𝜙𝑖 +∑𝐴𝑖𝑗𝜙𝑗
𝑗≠𝑖
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Лекция №10. Полуэмпирические методы.  

Для описания состояния многоэлектронной системы можно использовать определитель 

или линейную комбинация из определителей, которые построенны из одноэлектронных 

функций:   

Φ =∑𝐶𝐾Ф𝐾
𝐾

 

Причем в области равновесных состояний для описания электронной структуры можно 

использовать всего один такой определитель. Однако, для описания различных 

состояний с большим или малым значением межэлектронных расстояний или описания 

возбужденных состояний электронной системы приходится использовать линейный 

комбинации определителей. Таким образом: 

Если Ф ≈ Ф0, то можно описать только основное электронной состояние.  

Если Ф ≈ ∑ 𝐶𝐾Φ𝐾
𝑝
𝐾 , то можно описывать низшие и возбужденные электронные 

состояния.  

При решении электронной задачи методом Хартри-Фока необходимо рассчитывать 

матричные элементы ⟨𝜒𝑝𝜒𝑟|𝜒𝑞𝜒𝑠⟩ оператора Фока. При этом, если число базисных 

функций равно 𝑀, то число интегралов ⟨𝜒𝑝𝜒𝑟|𝜒𝑞𝜒𝑠⟩ примерно равно 𝑀4.  

При расчете методом КВ1+2 вычислительная сложность будет возрастать, как 𝑀6 от 

числа базисных функций. А в методе полного КВ как 𝑀!. 

 

10.1 Полуэмпирические методы 

Для уменьшения вычислительных затрат, часто вводят различного рода параметры. 

Параметры подбираются таким образом, чтобы результаты расчета соответсвовали  

результатам эксперимента (различные структурные и энергитические данные). 

Рассмотрим далее различные методы.  

а) Валентное приближение.  

В этом приближении часть электронов рассмотриваются как остовные, а часть как 

валентные. Остовные электроны в отличие от валентных не участвуют в образовании 

химических связей и не изменяют своего состояния при образовании молекулы.  

Вспомним выражение для распределения электронной плотности в однодетерминатном 

приближении: 

𝜌(𝑟 ) =∑|𝜙𝑖|
2

𝑁

𝑖=1

 

где 𝜙𝑖 − занятые орбитали. 

Данное распределние можно разделить на две составляющие:  

𝜌(𝑟 ) = ∑ |𝜙𝑖|
2𝑁с

𝑖=1 + ∑ |𝜙𝑖|
2𝑁

𝑖=𝑁с+1
, 
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где 𝑁с − число остовных электронов, 𝑁𝑉 = 𝑁 − 𝑁с −число валентных электронов. При 

этом полагается, что ∑ |𝜙𝑖|
2𝑁с

𝑖=1 = 𝑐𝑜𝑛𝑠𝑡.  

Рассмотрим данное приближение на примере ОХФ. В ОХФ оператор Фока будет записан 

как: (10.4)  

𝐹
∧

= ℎ
∧

+∑ {2𝐽
∧

𝑗 − 𝐾
∧

𝑗}
𝑁/2

𝑗=1
. 

Оператор ℎ
∧

 можно модифицировать, предполагая, что валентные электроны 

взаимодействуют с ядром окруженным остовными электронами, следующим образом: 

ℎ̂ = −
1

2
𝛻𝑖
2 − ∑

𝑍𝛼

𝑅𝛼𝑖

𝐾
𝛼=1 ≈  ℎ ̂̃ = −

1

2
𝛻𝑖
2 − ∑

𝑍̃𝛼

𝑅𝛼𝑖

𝐾
𝛼=1 , 

где 𝑍̃𝛼 = 𝑍𝛼 − 𝑁𝑐𝛼 , 𝑁𝑐𝛼 − число остовных электронов у ядра с номером 𝛼. 

С учетом (10.5) оператор Фока будет выглядеть как: (10.6)  

𝐹
∧

=  ℎ ̂̃ + ∑ {2𝐽
∧

𝑗 − 𝐾
∧

𝑗}

𝑁/2

𝑗=
𝑁
2
+1

 

Таким образом, в данной модели одним из параметров можно рассматривать величину 

𝑍̃𝛼 = 𝑍𝛼 − 𝑁𝑐𝛼 .   

б) Приближение нулевого дифференциального перекрывания.  

В этом приближении выбираются некоторые пары базисных функций 𝜒𝑝 и 𝜒𝑞, для 

которых выполнено условие 𝜒𝑝(𝑟 )𝜒𝑞(𝑟 ) ≈ 0. При этом данное условие может и не иметь 

под собой реального физического обоснования. Если выполнено условие 𝜒𝑝(𝑟 )𝜒𝑞(𝑟 ) =

0, то тогда интегралы вида ⟨𝜒𝑝𝜒𝑟|𝜒𝑞𝜒𝑠⟩ также будет равны нулю. 

Равенство нулю некоторых интегралов ⟨𝜒𝑝𝜒𝑟|𝜒𝑞𝜒𝑠⟩ может привести к искажению 

физической картины молекулярной системы, т.к они входят в выражение для 

взаимодействия электронов между собой. Поэтому необходимо введение различных 

параметров заменяющих интегралы ⟨𝜒𝑝𝜒𝑟|𝜒𝑞𝜒𝑠⟩. Распишем интеграл  𝐻 ̂̃𝑝𝑞: 

 𝐻 ̂̃𝑝𝑞 = ⟨𝜒𝑝| ℎ ̂̃|𝜒𝑞⟩ =  ⟨𝜒𝑝|−
1
2𝛻𝑖

2|𝜒𝑞⟩ −∑⟨𝜒𝑝|
𝑍̃𝛼
𝑅𝛼𝑖
|𝜒𝑞⟩

𝛼

 

Причем: 

⟨𝜒𝑝|−
1
2𝛻𝑖

2|𝜒𝑞⟩ ≠ 0 

∑⟨𝜒𝑝|
𝑍̃𝛼
𝑅𝛼𝑖
|𝜒𝑞⟩

𝛼

= 𝛿𝑝𝑞∫
𝜒𝑝
2

𝑅1𝛼
𝑑𝑟 1 
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При 𝑝 ≠ 𝑞 интеграл не рассчитывается и полагается параметром причем в самом 

простом варианте : 

 𝐻 ̂̃𝑝𝑞 = 𝑆𝑝𝑞𝛽𝑝𝑞 

где 𝑆𝑝𝑞 −  интеграл перекрывания базисных функций,  𝛽𝑝𝑞 −параметр, зависящий от 

типа атома и от схемы параметризации.  

Когда 𝑝 = 𝑞, то возникает слагаемое ∫
𝜒𝑝
2

𝑅1𝛼
𝑑𝑟 1. Для расчета таких интегралов функцию  

𝜒𝑝 аппрокимируют функциями типа 𝑠. 

 

10.2 Требование пространственной инвариантности.  

Пусть далее ⟨𝜒𝑝|−
𝑍̃𝛼

𝑅𝛼𝑖
|𝜒𝑝⟩ = 𝑈𝑝𝑝

𝛼 . Рассмотрим молекулу 𝐴 − 𝐵, аналогом для которой 

может служить, например, 𝐻𝐶𝑙. (см. Рисунок 10.1). Взаимодействие электронов, 

описываемых функциями 𝑝𝑥 и 𝑝𝑧 локализованных около ядра 𝐴 с атомным остовом 𝐵  в 

новых обозначениях запишутся как 𝑈𝑝𝑥𝑝𝑥
𝐵  и 𝑈𝑝𝑧𝑝𝑧

𝐵  соответсвенно.  

Понятно, что  𝑈𝑝𝑥𝑝𝑥
𝐵 ≠ 𝑈𝑝𝑧𝑝𝑧

𝐵 . Пусть теперь 

существует система, в которой есть молекула 

𝐻𝐶𝑙 (см. Рисунок 10.1) , ориентированная под 

углом 450 к оси 𝑥. Эту молекулу можно 

описать линейно комбинацией функций 𝑝𝑥 и 

𝑝𝑧: 

𝑝𝑥
′ =

1

√2
(𝑝𝑥 + 𝑝𝑧) 

𝑝𝑧
′ =

1

√2
(𝑝𝑥 − 𝑝𝑧) 

Запишем интегралы, 𝑈𝑝𝑝
𝐵  рассчитаные на 

новых функциях 𝑝𝑥
′ и 𝑝𝑧

′: 

𝑈𝑝𝑥′𝑝𝑥′
𝐵 =

1

2
(𝑈𝑝𝑥𝑝𝑥
𝐵 + 𝑈𝑝𝑧𝑝𝑧

𝐵 + 2𝑈𝑝𝑥𝑝𝑧
𝐵 ) 

𝑈𝑝𝑧′𝑝𝑧′
𝐵 =

1

2
(𝑈𝑝𝑥𝑝𝑥
𝐵 + 𝑈𝑝𝑧𝑝𝑧

𝐵 − 2𝑈𝑝𝑥𝑝𝑧
𝐵 ) 

Если считать, что для функций центрированных на одном ядре выполнено условие 

нулевого диффиренциального перекрывания т.е. 𝑝𝑥𝑝𝑧 ≈ 0, то 𝑈𝑝𝑥𝑝𝑧
𝐵 = 0. Следовательно, 

𝑈𝑝𝑥′𝑝𝑥′
𝐵 = 𝑈𝑝𝑧′𝑝𝑧′

𝐵 , что противоречит условию 𝑈𝑝𝑥𝑝𝑥
𝐵 ≠ 𝑈𝑝𝑧𝑝𝑧

𝐵 . Поэтому интеграл 𝑈𝑞𝑞
𝐵  для 

любых функций 𝜒𝑞 = 𝑠, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 рассчитывают одинаковым образом: 

𝑈𝑞𝑞
𝐵 = −𝑍̃𝛼∫

𝑠

𝑅1𝐵
𝑑𝑟 1 

 

Рисунок 10.1 Иллюстрация к тексту.   
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10.3 Методы в рамках полуэмпирического подхода.  

Полное пренебрежение дифференциальным перекрыванием. (Complete neglect of  

differential ovelap, CNDO)  

В данном подходе приближение нулевого дифференциального перекрывания 

применяется ко всем парам функций т.е.  ∀ {𝑝, 𝑞} 𝜒𝑝𝜒𝑞 = 0. Среди двухэлектронных 

интегралов остаются интегралы, отвечающие кулоновским вкладам в энергию 

взаимодействия электронов ⟨𝜒𝑞𝜒𝑞|𝜒𝑞𝜒𝑞⟩ и ⟨𝜒𝑝𝜒𝑞|𝜒𝑝𝜒𝑞⟩, которые рассчитваются 

следующим образом: 

⟨𝜒𝑞𝜒𝑞|𝜒𝑞𝜒𝑞⟩ = ⟨𝑠𝐴𝑠𝐴|𝑠𝐴𝑠𝐴⟩   ∀𝜒𝑞 ∈ 𝐴   

⟨𝜒𝑝𝜒𝑞|𝜒𝑝𝜒𝑞⟩ = ⟨𝑠𝐴𝑠𝐵|𝑠𝐴𝑠𝐵⟩   ∀𝜒𝑝 ∈ 𝐴, 𝜒𝑞 ∈ 𝐵  

Среди этих методов можно отметить следующие: CNDO/1, CNDO/2 

Частично пренебрежение дифференциальным перекрыванием (Intermediate neglect 

of differential overlap, INDO) 

В этом варианте полагается, что 𝜒𝑝𝜒𝑞 = 0 для всех базисных функций центрированных 

на разных ядрах.  Двухэлектронные интегралы ⟨𝑠𝑝𝛼|𝑠𝑝𝛼⟩, где 𝛼 = 𝑥, 𝑦, 𝑧, рассчитываются 

как: 

⟨𝑠𝑝𝛼|𝑠𝑝𝛼⟩ = ⟨𝑠𝑠|𝑠𝑠⟩ = 𝐹
0   ∀𝛼 = 𝑥, 𝑦, 𝑧 

Интегралы кулоновского типа ⟨𝑝𝛼𝑝𝛼|𝑝𝛼𝑝𝛼⟩ и ⟨𝑝𝛼𝑝𝛽|𝑝𝛼𝑝𝛽⟩ оцениваются следующим 

образом: 

⟨𝑝𝛼𝑝𝛼|𝑝𝛼𝑝𝛼⟩ = 𝐹
0 +

4

25
𝐹2 ∀𝛼 = 𝑥, 𝑦, 𝑧  

 ⟨𝑝𝛼𝑝𝛽|𝑝𝛼𝑝𝛽⟩ = 𝐹
0 −

2

25
𝐹2 ∀ 𝛼 ≠ 𝛽𝑥, 𝑦, 𝑧 

где 𝐹2 −некоторый параметр. Также в этом схеме учитываются интегралы обменного 

типа ⟨𝑠𝑠|𝑝𝛼𝑝𝛼⟩, которые оцениваются как: 

⟨𝑠𝑠|𝑝𝛼𝑝𝛼⟩ =
1

3
𝐺1 

где 𝐺′ − параметр. Параметры 𝐹2и 𝐺2 оцениваются из спектров электронного 

возбуждения атомов. Отметим следующие варианты этого метода: INDO, MINDO/1 

Пренебрежение двухатомных диффепренциальным перекрыванием (Neglect of 

diatomic differential overlap, NDDO)  

Данные методы частично объединяют в себе методы CNDO и INDO. Среди этих 

методов можно выделить наиболее популярные MNDO AM1 , PM3.  

Расширенный метод Хюккеля (Extended Hückel theory, EHT) 

Если исключить из расчета все двухэлектронные интегралы, и вместо них ввести 

оператор 𝑉̂эфф − эффективный потенциал взаимодействия электрона с усредненным 

полем всех остальных валентных электронов в системе, то оператор  ℎ ̂̃можно записать: 
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 ℎ ̂̃ = −
1

2
𝛻𝑖
2 −∑

𝑍̃𝛼
𝑅𝛼𝑖

𝐾

𝛼=1

+ 𝑉̂эфф 

Интегралы 𝐻̃𝑝𝑞 = ⟨𝜒𝑝| ℎ ̂̃|𝜒𝑞⟩ принимаются как параметры. Причем 𝐻̃𝑝𝑝 это энергия 

взаимодействия электрона со всеми атомными остовами и электронами и эту энергию 

можно рассматривать как гипотетичекий потенциал ионизации молекулярной системы, 

в которой электрон локализован в окрестности одного ядра.  Недиагональные элементы 

𝐻̃𝑝𝑞 оценивают как:  

𝐻̃𝑝𝑞 =
1

2
(𝐻̃𝑝𝑝 + 𝐻̃𝑞𝑞)𝑆𝑝𝑞𝐾

′ 

где 𝐾′ −параметр зависящий от типа атома, 𝑆𝑝𝑞 − интеграл перекрывания.  

В результате этого вместо итерационной задачи можно получить систему линейных 

уравнений: 

ℍ̃ℂ = ℰ𝕊ℂ 
Данный метод получил название расширенного метода Хюккеля. 

Простой метод Хюккеля.  
Данный метод предложен для описания сопряженных углеводородов. Любая 

сопряженная молекула в области сопряжения является плоской, соответсвенно 

возникает плоскость симметрии. Следовательно, молекула обладает как минимум   

группой симметрии ℂ𝑠, которая имеет два неприводимых одномерных представления 

— полносимметричное и антисимметричное относительно отражения в плоскости: 

ℂ𝒔 E 𝝈𝒉 

𝑨′ 1  1 

𝑨′′ 1 -1 

Рассмотрим молекулу транс-бутадиена. 

Функции типа 𝑠, 𝑝𝑦 , 𝑝𝑥 − не изменятся при 

отражении в плоскости 𝑥𝑦. Функция типа 𝑝𝑧 при 

отражении в плоскости будет изменять знак. 

Иначе говоря, функции 𝑠, 𝑝𝑦, 𝑝𝑥 − имеют 

орбитали симметрии 𝐴′, а функции типа 𝑝𝑧 
симметрию  𝐴′′. Линеные комбинации функций 

𝑠, 𝑝𝑦, 𝑝𝑥 дают молекулярные орбитали 𝜎 типа, а 

линейные комбинации функций 𝑝𝑧 − орбитали 𝜋 типа.  

Если базисные функции являются функциями различной симметрии то по теореме 

Вигнера-Эккарта интегралы ⟨𝜆𝐴
′
| ℎ ̂̃|𝜆𝐴

′′
⟩ = 0. Это означает, что в матрице оператора 𝐻̃ 

можно выделить два ненулевых диагональных блока. Один из блоков отвечает задаче в 

базисе функций 𝑠, 𝑝𝑦 , 𝑝𝑥, и решением этой задачи являются молекулярные 𝜎 орбитали. 

Другой блок будет отвечать задаче в базисе функций типа 𝑝𝑧, которая позволяет 

определять молекулярные орбитали типа 𝜋. Задача описания сопряженной 𝜋 − системы 

была решена Хюккелем.  

Рисунок 10.2 Молекула транс-бутадиена 
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Лекция №11. Метод функционала плотности. 

11.1 Введение в теорию функционала плотности. Внешний потен-

циал. 

Функция Ф(1,2, …𝑁) зависит от 4𝑁 переменных. Любую систему при этом можно оха-

рактеризовать распределением электронной плотности 𝜌(𝑟 1) = 𝑁 ∫|Ф|
2𝑑𝜎1𝑑2…𝑑𝑁. 

𝜌(𝑟 1) зависит от трех пространственных переменных и характеризует форму «молеку-

лярного пудинга».  

Запишем выражение для электронной энергии в общем виде:  

𝐸𝑒 = ⟨Ф|𝐻̂𝑒|Ф⟩ = ⟨Ф|−∑
1
2∇𝑖

2𝑁
𝑖 + ∑

1
𝑟𝑖𝑗

𝑁
𝑖<𝑗 − ∑

𝑍𝛼
𝑅𝑖𝛼

𝑁,𝐾
𝑖,𝛼 |Ф⟩ 

Выражение (11.1) можно переписать следующим образом: 

⟨Ф|𝐻̂𝑒|Ф⟩ = 𝑁 ⟨Ф|−
1
2∇𝑖

2|Ф⟩ +
𝑁(𝑁 − 1)

2
⟨Ф|

1
𝑟12
|Ф⟩ + 𝑁 ⟨Ф|∑

𝑍𝛼
𝑅1𝛼

𝐾
𝛼=1 |Ф⟩ 

Последний интеграл в правой части (11.2) можно выразить через функцию 𝜌(𝑟 1): 

∫𝜌(𝑟 1) (−∑
𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

)𝑑𝑟1⃗⃗⃗   

Для краткости далее введем следующие обозначения: (11.4)    

〈𝑇𝑒〉 = 𝑁 ⟨Ф|−
1
2∇𝑖

2|Ф⟩ 

〈𝑉𝑒𝑒〉 =
𝑁(𝑁 − 1)

2
⟨Ф|

1
𝑟12
|Ф⟩ 

Рассмотрим систему из 𝑁 электронов. Для нее можно записать оператор кинетической 

энергии 𝑇̂𝑒 и оператор взаимодействия между электронами 𝑉̂𝑒𝑒. Далее если для этих 

электронов появляется некоторый внешний потенциал, который в случае молекуляр-

ной системы создаётся ядрами каким-либо образом расположенными в пространстве. 

При этом распределение электронной плотности определяется внешним потенциалом.  

Потенциал взаимодействия электрона с номером 1 со всеми ядрами, очевидно, запи-

шется как: 

 𝑣(𝑟 1) = −∑
𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

 

Задание внешнего потенциала определяет оператор 𝑉̂𝑒𝑛: 

𝑉̂𝑒𝑛 =∑𝑣(𝑟 1)

𝑁

𝑖=1

 

Таким образом, изменение внешнего потенциала влечет за собой изменение электрон-

ной плотности и соответственно изменение значения 𝐸𝑒 
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11.2 Теорема Хоэнберга-Кона и ее доказательство.  

Теорема Хоэнберга-Кона: в основном состоянии молекулярной системы электронная 

энергия 𝐸𝑒 есть функционал электронной плотности.  

Доказательство:   

Пусть существует внешний потенциал 𝑉̂𝑒𝑛,1 = ∑ 𝑣1(𝑟 1)
𝑁
𝑖=1 , который соответствует опре-

деленному расположению ядер в пространстве.  Тогда соответствующий электронный 

гамильтониан будет выглядеть следующим образом:  

𝐻̂𝑒,1 = 𝑇𝑒̂ + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑛,1 

При таком внешнем потенциале и электронном гамильтониане можно решить соответ-

ствующую электронную задачу: 

𝐻̂𝑒,1Ф1 = 𝐸𝑒,1Ф1 

Пусть есть и другой вариант расположения ядер в системе и соответствующий ему внеш-

ний потенциал 𝑉̂𝑒𝑛,2 = ∑ 𝑣2̂(𝑟 1)
𝑁
𝑖=1 . Тогда для этого потенциала также можно записать 

оператор 𝐻̂𝑒,2: 

𝐻̂𝑒,2 = 𝑇𝑒̂ + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑛,2 

и электронную задачу: 

𝐻̂𝑒,2Ф2 = 𝐸𝑒,2Ф2 

Предположим, что функции электронной плотности 𝜌1(𝑟 1) и 𝜌2(𝑟 1), отвечающие функ-

циям  Ф1 и Ф2 соответственно, равны т.е. 𝜌1(𝑟 1) = 𝜌2(𝑟 1) ≡ 𝜌 (𝑟 1) при различных внеш-

них потенциалах 𝑣1 и 𝑣2. Электронная энергия  𝐸𝑒,1 это среднее значение оператора 𝐻̂𝑒,1 
на соответствующие функции  Ф1: 

𝐸𝑒,1 = ⟨Ф1|𝐻̂𝑒,1|Ф1⟩ 
Рассматривается основное состояние системы. Поэтом если заменить в предыдущем ин-

теграле функцию Ф1 на функцию Ф2 получится величина заведомо большая чем инте-

грал сам интеграл ⟨Ф1|𝐻̂𝑒,1|Ф1⟩: 

⟨Ф1|𝐻̂𝑒,1|Ф1⟩ < ⟨Ф2|𝐻̂𝑒,1|Ф2⟩ 

С учетом того, что 𝐻̂𝑒,1 = 𝑇𝑒̂ + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑛,1 и выражения (11.6) последнее неравенство 

можно представить в виде: 

𝐸𝑒,1 = ⟨Ф1|𝐻̂𝑒,1|Ф1⟩ < 𝐸𝑒,2 + ∫𝜌(𝑟 1)(𝑣1̂(𝑟 1) − 𝑣2̂(𝑟 1))𝑑𝑟1⃗⃗⃗    

Аналогично можно показать, что: 

𝐸𝑒,2 = ⟨Ф2|𝐻̂𝑒,2|Ф2⟩ < 𝐸𝑒,1 +∫𝜌(𝑟 1)(𝑣2̂(𝑟 1) − 𝑣1̂(𝑟 1))𝑑𝑟1⃗⃗⃗   

Если сложить два последних неравенства, то нетрудно получить: 

𝐸𝑒,1 + 𝐸𝑒,2 < 𝐸𝑒,1 + 𝐸𝑒,2 
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Последнее неравенство не имеет смысла. Следовательно, исходные предположение не-

верно и 𝜌1(𝑟 1) ≠ 𝜌2(𝑟 1) т.е. изменение электронной энергии определяется изменением 

электронной плотности △ 𝐸𝑒[𝜌(𝑟 )]. Строго говоря, в общем случае мы не доказали, что 

электронная энергия — это функционал электронной плотности. 

Однако, если для системы ядер и электронов известна функция распределения электрон-

ной плотности, то тогда можно определить положения ядер и построить потенциал 𝑉̃𝑒𝑛. 

Далее на основании этого имеется возможность определить оператор 𝐻̂𝑒 и решить элек-

тронную задачу 𝐻̂𝑒Ф = 𝐸𝑒Ф и в конечном итоге получить значения энергии 𝐸𝑒. Таким 

образом, электронная энергия в случае системы ядер и электронов можно рассматривать 

как функционал электронной плотности 𝐸𝑒[𝜌(𝑟 )]  

11.3 Функционал Хоэнберга-Кона. Обменно-корреляционная энер-

гия. 

Запишем выражение для 𝐸𝑒[𝜌(𝑟 )]: (11.8)  

𝐸𝑒[𝜌(𝑟 1)] = 〈𝑇𝑒〉 + 〈𝑉𝑒𝑒〉 + ∫𝜌(𝑟 1) (−∑
𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

)𝑑𝑟1⃗⃗⃗   

Для того чтобы электронная энергия была функционалом электронной плотности необ-

ходимо чтобы 〈𝑇𝑒〉 и 〈𝑉𝑒𝑒〉 тоже являлись функционалом: 

𝐹[𝜌(𝑟 1)] = 〈𝑇𝑒〉 + 〈𝑉𝑒𝑒〉 

Если ввести новое обозначение 𝑉𝑒𝑛[𝜌(𝑟 1)] = ∫𝜌(𝑟 1) (−∑
𝑍𝛼

𝑅1𝛼

𝐾
𝛼=1 )𝑑𝑟1⃗⃗⃗   , то 𝐸𝑒[𝜌(𝑟 1)] запи-

шется как: 

𝐸𝑒[𝜌(𝑟 1)] = 𝐹[𝜌(𝑟 1)] + 𝑉𝑒𝑛[𝜌(𝑟 1)] 

Функционал 𝐹[𝜌(𝑟 1)] носит название функционала Хоэнберга-Кона. Важно подчерк-

нуть, что в данной во всех рассуждениях рассматривается только основное электрон-

ное состояние. 

Рассмотрим функционал 𝐸𝑒[𝜌(𝑟 1)] для однодетерминантного представления электрон-

ной функции. Энергия межэлектронного взаимодействия запишется как: 

〈𝑉𝑒𝑒〉 = ⟨Ф|∑
1
𝑟𝑖𝑗

𝑁
𝑖<𝑗 |Ф⟩ =

1

2
∑(𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑁

𝑖.𝑗

 

Функция 𝜌(𝑟 1) в однодетерминантном приближении, с учетом представления одноэлек-

тронной функции  𝜓𝑖 = 𝜙𝑖𝛾𝑖, выглядит следующим образом:  

𝜌(𝑟 1) = 𝑁∫|Ф0|
2𝑑𝜎1𝑑2…𝑑𝑁 =∑|𝜙𝑖(𝑟 1)|

2

𝑁

𝑖=1

 

где 𝜙𝑖(𝑟 1) −пространственная функия.  
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С учетом (11.10) и вида кулоновского интеграла нетрудно показать, что: 

〈𝑉𝑒𝑒〉 =
1

2
∫
𝜌(𝑟 1)𝜌(𝑟 2)

𝑟12
𝑑𝑟 1𝑑𝑟 2 + 𝐸𝑥

𝐻𝐹  

где 𝐸𝑥
𝐻𝐹 = −

1

2
∑ 𝐾𝑖𝑗
𝑁
𝑖.𝑗 − обменная энергия. Таким образом, в энергии межэлектронного 

взаимодействия можно выделить кулоновский вклад, который является функционалом 

электронной плотности: 

𝑉𝑐[𝜌(𝑟 )] =
1

2
∫
𝜌(𝑟 1)𝜌(𝑟 2)

𝑟12
𝑑𝑟 1𝑑𝑟 2 

Рассмотрим кинетическую энергию электронов в однодетерминантном приближении с 

учетом правил Слейтера для одноэлектронных операторов: 

〈𝑇𝑒〉 = ⟨Ф|−∑
1
2∇𝑖

2𝑁
𝑖 |Ф⟩ =∑⟨𝜙𝑖|

1
2 ∇𝑖

2|𝜙𝑖⟩

𝑁

𝑖=1

= 𝑇𝑆 

Аппроксимируем многоэлектронную функцию линейной комбинацией определителей: 

Ф =∑𝐶𝐾Ф𝐾
𝐾

 

Кон и Шэм предложили в энергии межэлектронного взаимодействия выделить кулонов-

скую составляющую и некоторую величину △ 𝑉𝑒𝑒: 

〈𝑉𝑒𝑒〉 = 𝑉𝑐 +△ 𝑉𝑒𝑒 

В однодетерминантном приближении △𝑉𝑒𝑒 = 𝐸𝑥
𝐻𝐹 , а в многодетерминантном приближе-

нии △𝑉𝑒𝑒 включает обменную энергию и часть энергии электронной корреляции. 

Запишем аналогично выражение для  〈𝑇𝑒〉: 

〈𝑇𝑒〉 = 𝑇𝑆 +△ 𝑇 

где △ 𝑇 = 0 при однодетерминантном приближении и △ 𝑇 ≠ 0 в многодетерминантном.  

Суммируя все предыдущие выкладки для  𝐸𝑒[𝜌] можно записать: 

𝐸𝑒[𝜌] = ∫𝜌(𝑟 1) (−∑
𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

)𝑑𝑟1⃗⃗⃗  + 𝑉𝑐 + 𝑇𝑆 +△ 𝑉𝑒𝑒 +△ 𝑇 

Величину 𝐸𝑋𝐶 =△ 𝑉𝑒𝑒 +△ 𝑇 называют обменно-корреляционной энергией и предпола-

гают, что  𝐸𝑋𝐶 есть функционал электронной плотности. Если ввести дополнительно 

предположение:  

𝜌(𝑟 1) =∑|𝜙𝑖(𝑟 1)|
2

𝑁

𝑖=1
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то электронная энергия окажется функционалом одноэлектронных функций 𝜙𝑖: 

𝐸𝑒 = 𝐸𝑒[𝜙1, …𝜙𝑁] 

Если предположить, что  𝐸𝑋𝐶 можно записать как:  

𝐸𝑋𝐶 = ∫ℰ𝑋𝐶[𝜌(𝑟 1)]𝜌(𝑟 1)𝑑𝑟 1 

где ℰ𝑋𝐶[𝜌(𝑟 1)] −обменно-корреляционная энергия в расчете на один электрон, и учесть, 

что для минимума 𝐸𝑒 необходимым условием является 𝛿𝐸𝑒 = 0, то можно получить си-

стему уравнений: 

(−
1

2
∇𝑖
2 −∑

𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

+∫
𝜌(𝑟 2)

𝑟12
𝑑𝑟 2 + ℰ𝑋𝐶)𝜙𝑖 = ℰ𝑖𝜙𝑖 

Уравнения (11.19) выводятся аналогично уравнениям Хартри-Фока: 

(−
1

2
∇𝑖
2 −∑

𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

+∑𝐽𝑗 −

𝑁

𝑗

∑𝐾̂𝑗

𝑁

𝑗

)𝜓𝑖 = ℰ𝑖𝜓𝑖 

где 𝜓𝑖 −спин-орбитали. (11.21) 

Оператор в левой части (11.19) обозначается как 𝐹̂𝐾𝑆 и называется оператором Кона-

Шэма: 

𝐹̂𝐾𝑆 = −
1

2
∇𝑖
2 −∑

𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

+∫
𝜌(𝑟 2)

𝑟12
𝑑𝑟 2 + ℰ𝑋𝐶  

 

11.4 Составление названий. Построение функционалов. Основные 

приближения теории функционала плотности.  

Таким образом, обобщая, о теории функционала плотности можно сказать: 

 Теория функционала плотности описывает только основное состояние системы. 

 В этом методе решаются уравнения похожие на уравнения Хартри-Фока, в кото-

рых при этом учитываются обменно-корреляционные вклады: 

𝐹̂𝐾𝑆𝜙𝑖 = ℰ𝑖𝜙𝑖 
 Одноэлектронные функции 𝜙𝑖 представляются в виде линейной комбинации ба-

зисных функций: 

𝜙𝑖 =∑𝜒𝑞𝐶𝑞𝑖
𝑞

 

 Общего и теоретически обоснованного аналитического выражения для ℰ𝑋𝐶 не су-

ществует.  

О качестве функционала ℰ𝑋𝐶 судят по соответствию рассчитанной энергии атомизации, 

энергии ионизации, различным геометрическим параметрам и эксперименту  

https://vk.com/teachinmsu


 

  

 

60

 
 

В большинстве случаев обменно-корреляционная энергия представляется в виде двух 

независимых величин: обменной и корреляционной: 

𝐸𝑋𝐶[𝜌] = 𝐸𝑋[𝜌] + 𝐸𝐶[𝜌] 

Называние методов строится следующим образом: сначала указывается обменный функ-

ционал, а потом корреляционный т.е. 𝐸𝑋[𝜌]⏟  𝐸𝐶[𝜌]⏟  . Среди функционалов отметим функ-

ционал 𝐵3⏟ 𝐿𝑌𝑃⏟. 

При построении функционала сначала строит обменный функционал и затем строятся 

возможные корреляционные функционалы. Самое простое приближение для обменного 

функционала заключается в том, что 𝐸𝑋[𝜌] можно записать как: 

𝐸𝑋[𝜌] = ∫ℰ𝑋[𝜌]𝜌(𝑟  )𝑑𝑟   

Т.е. предполагается, что 𝐸𝑋[𝜌] зависит только от функции 𝜌. При этом предполагается, 

что ℰ𝑋[𝜌]~𝜌
1/3 как у однородного электронного газа. Такая модель называется прибли-

жением локальной плотности (LDA). Это приближение практически не используется. 

Модификацией приближения локальной плотности является приближение локальной 

спиновой плотности (LSDA) , в котором энергию  𝐸𝑋  представляют, как сумму двух 

вкладов для электронов в разных спиновых состояниях: 

𝐸𝑋 = 𝑐𝑜𝑛𝑠𝑡 ∑ ∫𝜌𝜎
4/3
𝑑𝑟 

𝜎=𝛼,𝛽

 

Однако данное приближение не всегда работает хорошо и среднее отклонение энергии 

атомизации достигает 30-40 ккал/моль. 

Существенной поправкой к предыдущей конструкции является обобщенно-градиент-

ное приближение  (GGA), в котором функция 𝐸𝑋 представляется как: 

𝐸𝑋 = ∫𝑓(𝜌𝛼 , 𝜌𝛽 , ∇𝜌𝛼 , ∇𝜌𝛽) 𝑑𝑟  

или в альтернативном варианте записи как: 

𝐸𝑋
𝐺𝐺𝐴 = 𝐸𝑋

𝐿𝑆𝐷𝐴 − ∑ ∫𝐹(𝑆𝜎)𝜌𝜎
4/3
𝑑𝑟 

𝜎=𝛼,𝛽

 

где 𝑆𝜎 =
|𝛻𝜌𝜎|

𝜌𝜎
4/3 − приведенный градиент функции 𝜌(𝑟  ). 
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Лекция №12. Состояния и реакционная способность молекул. 

12.1 Обзор методов, рассмотренных в курсе.  

Перечислим и кратко обсудим методы, рассмотренные в данном курсе: 

1. Полуэмпирические методы.  

Во всех полуэмпирических методах описываются валентные оболочки молекулярных 

систем и часть интегралов заменяется некоторыми параметрами. Параметры подбира-

ются на основе структурных и энергетических характеристик молекул. При этом нельзя 

получить хорошие оценки энергии для различных переходных состояний молекулярной 

системы, например, в ходе химической реакции, т.к. зачастую нет надежных данных о 

зависимости параметров от координаты процесса. 

2. Метод Хартри-Фока. 

В методе исходным является приближение, в котором многоэлектронная функция пред-

ставляется в виде единственного определителя, построенного из одноэлектронных функ-

ций. Решение электронной задачи в методе сводится к решению системы уравнений: 

𝐹̂𝜙𝑖 = ℰ𝑖𝜙𝑖 

где оператор 𝐹̂  представляется в виде:  

𝐹̂ = −
1

2
∇𝑖
2 −∑

𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

+∑𝐽𝑗 −

𝑁

𝑗

∑𝐾̂𝑗

𝑁𝛾

𝑗

 

где 𝑁𝛾 − число электронов в спиновом состоянии 𝛾. Если перейти к многодетерминант-

ному приближению, то вид оператора Фока изменится и, следовательно, функции 𝜙𝑖 
лишь приблизительны. Также в этом методе молекулярные орбитали 𝜙𝑖 это линейные 

комбинации базисных функций: 

𝜙𝑖 =∑𝜒𝑞𝐶𝑞𝑖
𝑞

 

При этом даже для простых систем часто оказывается необходимо использование до-

вольно больших базисных наборов. Данный метод часто дает завышенные результаты в 

значениях энергии диссоциации (погрешность, как правило, составляет 78 ккал/моль и 

заниженные значения энергии связи. Поэтому, как и в случае полуэмпирических мето-

дов нельзя корректно описать зависимость энергии от координаты процесса.  

3. Метод функционала плотности  

Уравнения, полученные в этом методе очень похожи на соответствующие уравнения в 

методе Хартри-Фока:  

𝐹̂𝐾𝑆𝜙𝑖 = ℰ𝑖𝜙𝑖 

Оператор Кона-Шэма 𝐹̂𝐾𝑆 выглядит как: 

𝐹̂𝐾𝑆 = −
1

2
∇𝑖
2 −∑

𝑍𝛼
𝑅1𝛼

𝐾

𝛼=1

+∫
𝜌(𝑟 2)

𝑟12
𝑑𝑟 2 + ℰ𝑋𝐶  
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где ℰ𝑋𝐶 − обменно-корреляционный функционал, учитывающий обменные эффекты и 

«скоррелированность» состояния электронов. При этом полагают, что: 

𝜌 =∑|𝜙𝑖|
2

𝑁

𝑖=1

 

Однако, для функционала ℰ𝑋𝐶 не существует общего аналитического выражения и  функ-

ционал оказывает параметризован. Параметризация осуществляется так, чтобы воспро-

изводились различные экспериментальные характеристики (прежде всего энергия ато-

мизации, структурные параметры, данные более точных квантово-химических расчетов). 

При построении обменно-корреляционного функционала предполагается построение от-

дельно обменного и согласованного с ним корреляционного функционала: 

𝐸𝑋𝐶[𝜌] = 𝐸𝑋[𝜌] + 𝐸𝐶[𝜌] 

Среди приближений, используемых при построении функционалов отметим следую-

щие: 

 Приближение локальной спиновой плотности (LSD) (погрешность ~ 36 
ккал

моль
) 

 Обобщенно-градиентное приближение (GGA) (погрешность ~ 5-7 
ккал

моль
) 

 Гибридные функционалы (погрешность ~ 2-3 
ккал

моль
) 

В гибридных функционалах обменный функционал 𝐸𝑋 аппроксимируется как:  

𝐸𝑋 = (1 − с)𝐸𝑋
𝐺𝐺𝐴+с𝐸𝑋

𝐻𝐹  

4. Многоконфигурационные методы. 

В данных методах многоэлектронная функция аппроксимируется как суперпозиция раз-

личных определителей. Результат определяется исходным набором определителей.  

Данные методы как правило требуют больших вычислительных затрат, поэтому их ис-

пользуют для проверки оценок, получаемых более простыми методами в окрестностях 

переходных состояний и рассмотрении процессов возбуждения молекул. 

 

12.2 Функции Фукуи. Конечно-разностный подход. 

 Функции Фукуи это производные электронной плотности по числу электронов при по-

стоянном внешнем потенциале 𝑉, т.е., фактически, реакция изменения электронной 

плотности на изменении числа электронов:   

𝑓(𝑟 ) = (
𝜕𝜌(𝑟 )

𝜕𝑁
)
𝑉

 

Функции Фукуи оцениваются в рамках конечно-разностного подхода. Рассмотрим раз-

личные варианты изменения числа электронов.  

 

 

https://vk.com/teachinmsu


 

  

 

63

 
 

1) Атака электрофила. 

Электрофил — это акцептор электронов. Пусть эта частица «отбирает» один электрон у 

молекулярной системы. Тогда функция 𝑓−, характеризующая поведения системы в рам-

ках этого подхода, запишется как: 

𝑓−(𝑟 ) =
𝜌(𝑁−1)(𝑟 ) − 𝜌(𝑁)(𝑟 )

(𝑁 − 1) − 𝑁
= 𝜌(𝑁)(𝑟 ) − 𝜌(𝑁−1)(𝑟 ) 

Важно подчеркнуть, что изменения ядерной конфигурации при этом не происходит. 

Наиболее подходящее направление атаки электрофила будет соответствовать макси-

муму функции  𝑓−(𝑟 ), т.е. там, где функция 𝑓−(𝑟 ) наиболее лабильна.  С учетом того, 

что в методе Хартри-Фока и в методе функционала плотности функция 𝜌(𝑟 ) аппрокси-

мируется как сумма распределений отдельных электронов: 

𝜌(𝑟 ) =∑|𝜙𝑖|
2

𝑁

𝑖=1

 

то можно выделить орбиталь с номером 𝑁, которая, по сути, является высшей занятой 

орбиталью функцию. Тогда функцию 𝑓−(𝑟 ) возможно представить в виде: 

𝑓−(𝑟 ) ≈ |𝜙ВЗМО|
2 +∑△ |𝜙𝑖|

2

𝑁−1

𝑖=1

 

где △ |𝜙𝑖|
2 = |𝜙𝑖

𝑁|
2
−|𝜙𝑖

(𝑁−1|
2
 

Вид уравнения (12.10) можно уточнить: 

𝑓−(𝑟 ) ≈ |𝜙ВЗМО|
2 +∑

𝜕

𝜕𝑁
|𝜙𝑖|

2

𝑁−1

𝑖=1

 

Производные 
𝜕

𝜕𝑁
|𝜙𝑖|

2 можно найти полуаналитически, дифференцируя уравнения Кона-

Шэма, при одной и той же ядерной конфигурации системы и пренебрегая изменением в 

обменно-корреляционном функционале. Самой грубой оценкой для 𝑓−(𝑟 ) является: 

𝑓−(𝑟 ) ≈ |𝜙ВЗМО|
2 

2) Атака нуклеофила. 

В этом случае происходит передача одного электрона. Тогда соответствующую функ-

цию  𝑓+ можно записать в следующем виде: 

𝑓+(𝑟 ) =
𝜌(𝑁+1)(𝑟 ) − 𝜌(𝑁)(𝑟 )

(𝑁 + 1) − 𝑁
= 𝜌(𝑁+1)(𝑟 ) − 𝜌(𝑁)(𝑟 ) 

Предпочтительное направление атаки нуклеофила будет соответствовать максимуму 

функции 𝑓+. Выражения аналогичные (12.10), (12.11) и (12.12) можно записать и для 

𝑓+(𝑟 ): 
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𝑓−(𝑟 ) ≈ |𝜙НВМО|
2 +∑△ |𝜙𝑖|

2

𝑁

𝑖=1

 

𝑓−(𝑟 ) ≈ |𝜙НВМО|
2 +∑

𝜕

𝜕𝑁
|𝜙𝑖|

2

𝑁

𝑖=1

 

𝑓+ ≈ (𝑟 )|𝜙НВМО|
2 

3) Атака радикала 

Для оценки направления атаки радикала используют следующую функцию: 

𝑓∗(𝑟 ) =
𝑓+(𝑟 ) + 𝑓−(𝑟 )

2
 

 

 12.3 Сжатые функции Фукуи. Жесткость электронной подсистемы. 

Сжатые функции Фукуи — это результат интегрирования функции Фукуи по области 

пространства, относимую к тому или иному ядру: (12.16)  

𝑓𝐴
−(𝑟 ) = ∮𝜌(𝑟 )(𝑁)𝑑𝑟 

 

𝐴

− ∮𝜌(𝑟 )(𝑁−1)𝑑𝑟 

 

𝐴

= 𝑛𝐴
(𝑁) + 𝑛𝐴

(𝑁−1) = 𝑞𝐴
(𝑁) + 𝑞𝐴

(𝑁−1)
 

𝑓𝐴
+(𝑟 ) = 𝑛𝐴

(𝑁+1) + 𝑛𝐴
(𝑁) = 𝑞𝐴

(𝑁+1) + 𝑞𝐴
(𝑁)

 

где  𝑛𝐴
(𝑁) − это заселенность атома 𝐴 (согласно схеме Бейдера), 𝑞𝐴

(𝑁) − эффективный за-

ряд атома 𝐴. 

Жесткость молекулярной системы 𝜼  определяется следующим образом: 

𝜂 =
1

2
(
𝜕2𝐸𝑒
𝜕𝑁2

)
𝑉

 

Мягкость молекулярной системы 𝑺 определяется как: 

𝑆 =
1

𝜂
 

 

 

В рамках конечно-разностного подхода жесткость можно оце-

нить, как (см. рисунок 12.1): 

𝜂 =
𝐸𝑒
(𝑁+1)

+ 𝐸𝑒
(𝑁−1)

−2𝐸𝑒
(𝑁)

2
=
𝐼 − 𝐴

2
 

Если учесть, что: 

𝐼 ≈ −ℰВЗМО 

𝐴 ≈ −ℰНВМО 

 
Рисунок 12.1  

К уравнению (12.19) 
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то (12.19) будет выглядеть как: 

𝜂 ≈
ℰНВМО − ℰВЗМО

2
 

 

12.4 Локальная мягкость. Относительные нуклеофильно сть и 

 электрофильность. 

Определим понятие локальной мягкости: 

𝑠(𝑟 ) = 𝑓(𝑟 ) ∙ 𝑆 

где 𝑓(𝑟 ) −функции Фукуи.  

Для случая локальной мягкости можно ввести аналоги сжатых функций Фукуи:  

𝑠𝐴
−(𝑟 ) = 𝑓𝐴

− ∙ 𝑆 = (𝑞𝐴
(𝑁) + 𝑞𝐴

(𝑁−1)) ∙ 𝑆 

𝑠𝐴
+(𝑟 ) = 𝑓𝐴

+ ∙ 𝑆 = (𝑞𝐴
(𝑁+1) + 𝑞𝐴

(𝑁)) ∙ 𝑆 

Функция 𝑠𝐴
−(𝑟 ) характеризует «собственную нуклеофильность», а функция  𝑠𝐴

+(𝑟 ) − 

«собственную электрофильность» молекулярной системы. Для того, чтобы нивелиро-

вать погрешности используют отношения функций 𝑠𝐴
−(𝑟 ) и 𝑠𝐴

+(𝑟 ): 

𝑠𝐴
−(𝑟 )

𝑠𝐴
+(𝑟 )

− относительная нуклеофильность  

𝑠𝐴
+(𝑟 )

𝑠𝐴
−(𝑟 )

− относительная электрофильность  

Относительная нуклеофильность и электрофильность позволяют, сравнивать между со-

бой различные молекулы и центры внутри них и оценивать их склонность к взаимодей-

ствию с посторонними частицами.   
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