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Лекция 1. Молекулярная задача

Адиабатическое приближение

При решении молекулярной задачи предполагается, что молекула представляет
собой совокупность ядер и электронов, т.е. частиц, обладающих массами и заряда-
ми, и положение которых в пространстве характеризуется их радиус-векторами.

Поэтому рассмотрим стационарное уравнение Шрёдингера. В качестве объекта
рассматривается молекула, на которую не действуют внешние силы и нет никаких
операторов, зависящих от времени1: ĤΨ = EΨ

Ĥ = T̂+V̂ = −
K∑
α=1

1

2Mα

∇2
α︸ ︷︷ ︸

кинетическая
энергия ядер T̂n

−
N∑
i=1

1

2
∇2
i︸ ︷︷ ︸

кинетическая
энергия

электронов T̂e

+
∑
i<j

1

rij︸ ︷︷ ︸
потенциальная

энергия
взаимодействия
электронов V̂ee

+
∑
α<β

ZαZβ
Rαβ︸ ︷︷ ︸

потенциальная
энергия

взаимодействия ядер
V̂nn

+
∑
i,α

Zα
Riα︸ ︷︷ ︸

потенциальная
энергия

взаимодействия ядер
и электронов V̂en

(1)
В этом сложном уравнении можно заметить вторые производные с разными ко-

эффициентами. Так как при одних производных коэффициенты на 4-5 порядков
меньше (кинетическая энергия ядер), чем при других, то мы можем пренебречь
слагаемыми с очень маленькими коэффициентами при вторых производных и ре-
шить оставшуюся частную дифференциальную задачу. При этом, если отбросить
кинетическую энергию ядер, то останется энергия движения электронов, которые
взаимодействуют между собой, взаимодействуют с ядрами, а также присутствует
некоторый общий фон V̂nn. Но частная дифференциальная задача уже будет со-
держать другие собственные значения Ee и собственные функции Φ, отличные от
исходных E и Ψ.

ĤeΦ = {T̂e + V̂ee + V̂en + V̂nn}Φ = EeΦ (2)

Решение этого уравнение - бесконечно большое количество электронных состо-
яний при заданном положении ядер общего вида Φe = Φe(r̄|R̄). Поскольку элек-
тронный оператор Гамильтона - эрмитовый оператор, то его собственные функ-
ции образуют полный набор или базис в пространстве электронных переменных,
т.е, используя эти функции, можно описать любое электронное состояние системы.
Учитывая свойства базиса, такие функции также ортогональны и нормированы на
единицу 〈Φe|Φe〉r = 1.

Решив частную задачу об электронных состояниях при фиксированных ядер-
ных положениях, необходимо вернуться к исходной задаче, которую по логике ре-
шения дифференциальных уравнений следует искать в виде линейной комбина-
ции найденных частных решений, но коэффициенты при частных решениях (элек-
тронных функциях), очевидно, должны зависеть от ядерных переменных Ψ =∑∞

k=1 Φk(r̄|R̄)χk(R̄). Хотя верхний предел был выбран как бесконечность, в реаль-
ных физических задачах можно ограничиться конечным и, как правило, небольшим

1Мы работаем в атомной системе единиц, т.е. масса электрона me = 1 атомная единица массы
(а.е.м.), заряд электрона e = 1 атомная единица заряда (а.е.з.) и постоянная планка ~ = 1
атомная единица действия (а.е.д.).

5

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


СТРОЕНИЕ МОЛЕКУЛ
НОВАКОВСКАЯ ЮЛИЯ ВАДИМОВНА

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

числом слагаемых. Ψ =
∑P

k=1 Φk(r̄|R̄)χk(R̄). Самый простой вариант - ограничиться
одним слагаемым. Ψ = Φk(r̄|R̄)χk(R̄) Физический смысл такой записи - в данных
условиях реализуется всего 1 электронное состояние или в результате изменения
ядерных координат электронные состояния не меняются.

Адиабатическое (от слова "неизменяющееся") приближение - предполо-
жение, что молекулярная система в рассматриваемый промежуток времени нахо-
дится в одном электронном состоянии. Это состояние в дальнейшем будем считать
основным, а любые возбужденные состояния в рамках приближения рассматри-
ваться не будут.

ĤΨ = EΨ (3)

(Ĥe + T̂n)χkΦk = EχkΦk (4)

Приближение Борна-Оппенгеймера

Домножим на комплексно-сопряженную функцию 〈Φk| уравнение 4 и проинте-
грируем по переменным электронов:

〈Φk|Ĥe|χkΦk〉r + 〈Φk|T̂n|χkΦk〉r = 〈Φk|EχkΦk〉r (5)

Заметим, что χk зависит только от переменных ядер, а E - просто число, следо-
вательно, χk и E можно вынести из под знака интеграла в правой части равенства
выражения 5:

〈Φk|EχkΦk〉r = Eχk〈Φk|Φk〉r = Eχk

〈Φk|Ĥe|χkΦk〉r = χk〈Φk|Ĥe|Φk〉r = Eekχk

Хотя в Ĥe есть операторы, зависящие от координат ядер (кулоновские взаимо-
действия ядро-ядро и ядро-электрон) само действие оператора Ĥe на χk никак χk
не модифицирует (домножается как множитель).

Второе слагаемое в выражении 5 слева от знака равенства упростить будет по-
сложнее. Оператор кинетической энергии ядер - это вторая производная по коор-
динатам ядер. Нужно вспомнить формулу второй производной произведения двух
функций:

∂2

∂x2
fg = f

∂2g

∂x2
+ g

∂2f

∂x2
+ 2

∂f

∂x

∂g

∂x
Запишем вспомогательные утверждения.

∇2
αΦkχk = (∇2

αΦk)χk + (∇2
αχk)Φk + 2(∇αΦk)(∇αχk)

0 = ∇α〈Φk|Φk〉 = 〈∇αΦk|Φk〉+ 〈Φk|∇αΦk〉 = 2〈Φk|∇αΦk〉 = 0

При этом последнее верно, если функция Φk действительная. Используя эти со-
отношения, находим

〈Φk|T̂n|χkΦk〉r = −
k∑

α=1

1

2Mα

〈Φk|∇2
α|χkΦk〉 =

k∑
α=1

1

2Mα

(〈Φk|∇2
αΦk〉χk + 〈Φk|Φk〉∇2

αχk+

+ 2〈Φk|∇αΦk〉∇αχk) = 〈Φk|T̂n|Φk〉χk + T̂nχk
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Итог: ( T̂n︸︷︷︸
кинетическая

энергия

+Eek + 〈Φk|T̂n|Φk〉)χk︸ ︷︷ ︸
потенциал

= Eχk

Ядерный оператор: Ĥn = T̂n + Eek + 〈Φk|T̂n|Φk〉

Ядерный оператор эрмитов, а это значит, что он имеет бесконечно много соб-
ственных функций и собственных значений Ĥnχkj = Ejχkj, где для k - выбранного
электронного состояния существует бесконечный набор {χkj} ядерных состояний.
Ej - возможные значения полной энергии электронов и ядер при данном распре-
делении электронной плотности. Eek - решение электронной задачи. 〈Φk|T̂n|Φk〉 на-
поминает поправку к энергии состояния в первом порядке теории возмущения для
модельной задачи ĤeΦk = EekΦk c возмущением T̂n. Эта поправка, как правило,
невелика и ей пренебрегают. Окончательное уравнение ядерной задачи в прибли-
жении Борна-Оппенгеймера (T̂n + Eek)χkj = Ejχkj

Приближение Борна-Оппенгеймера - приближение, в котором электронная
система рассматривается отдельно от ядерной вследствие сильных различий в ки-
нетических энергиях электронной и ядерной подсистем.

Принцип соответствия

Принцип соответствия из квантовой механики: каждой измеряемой физи-
ческой величине ставится в соответствие некоторый оператор. Мы будем решать
ядерную задачу обратным способом:
1) Искать аналоги операторам в классической физике
2) Переходить от квантовой задачи к классической
3) Упрощать полученную задачу, используя методы классической физики (разде-
ление движения на поступательное, вращательное и колебательное)
4) Далее следует вернуться обратно к квантовой задаче
Наибольшее внимание будет уделено оператору кинетической энергии, у которого
в классической физике есть вполне определенный аналог - собственно сама кине-
тическая энергия:

T̂n =
k∑

α=1

MαV̄
2
α

2
(6)

Молекулярная система координат

Так как далее предстоит первую производную радиус-вектора (скорость переме-
щения) разбивать на составляющие - поступательное, вращательное, колебательное
движения - необходимо определиться с системой координат, в которой мы будем
рассматривать нашу систему Рис.1. Изначально наша система помещена в некото-
рую систему координат (x,y,z) с началом координат в случайной точке простран-
ства - внешняя система координат (ВСК). Видится целесообразным поместить
начало координат в центр масс молекулы с целью исключения из рассмотрения
поступательного движения молекулы как целого. Новая система с началом ко-
ординат в центре масс молекулы называется лабораторной системой коорди-
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нат (ЛСК). Следующее упрощение заключается в привязке вращения молекулы
как целого к системе координат: пусть ЛСК вращается вместе с молекулой. По-
лученная система координат называется молекулярной системой координат
(МСК). Эта система учитывает поступательное движение и вращение молекулы.

R0

y

z

x

y'

z'

ВНЕШНЯЯ

СИСТЕМА 

КООРДИНАТ

(ВСК)

ЛАБОРАТОРНАЯ

СИСТЕМА

КООРДИНАТ

(ЛСК)
x''

y''

z

МОЛЕКУЛЯРНАЯ

СИСТЕМА

КООРДИНАТ

(МСК)

Рис. 1. Молекулярная система координат

Чтобы математически перейти от ЛСК
к МСК, заметим, что смещение радиус-
вектора в ЛСК складывается из соб-
ственного смещения в МСК δrMSC

α и
вектором поворота МСК относительно
ЛСК [δφ× rMSC

α ]

δrLSCα = δrMSC
α + [δφ× rMSC

α ] (7)

А смещение радиус-вектора в ВСК
относительно МСК отличается от вы-
ражения 7 только добавкой δR̄0. Тогда
скорость перемещения:

∂r̄α
∂t

=
∂R̄0

∂t
+

[
∂φ̄

∂t
× r̄MSC

α

]
+
∂r̄MSC

α

∂t

˙̄rα = ˙̄R0 + [ω̄ × r̄MSC
α ] + ˙̄rMSC

α (8)

Таким образом, удалось разбить движение системы на три составляющие
1) ˙̄R0 - поступательное движение (перемещение центра масс)
2) [ω̄ × r̄MSC

α ] - вращательное движение (вращение системы как целого)
3) ˙̄rMSC

α - колебательное движение

Теперь нужно подставить полученное выражение в формулу для кинетической
энергии (6).

8

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


СТРОЕНИЕ МОЛЕКУЛ
НОВАКОВСКАЯ ЮЛИЯ ВАДИМОВНА

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Лекция 2. Анализ ядерной динамики

Составляющие движения молекулярной системы

Перепишем выражение (8) через скорости:

V̄α = V̄0 + [ω̄ × r̄MSC
α ] + V̄ MSC

α (9)

И подставим в выражение (6) для кинетической энергии из предыдущей лекции.
Так как в выражении для скорости три слагаемых, то в выражении для кинетиче-
ской энергии (пропорционально квадрату скорости) следует ожидать три квадрата
и три удвоенных произведения слагаемых (чтобы не загромождать запись, опустим
индекс МСК, указывающий на то, что наша система рассматривается в молекуляр-
ной системе координат):

T̂n =
k∑

α=1

Mα

2
V̄ 2
α =

k∑
α=1

Mα

2
V̄ 2

0 +
1

2

k∑
α=1

Mα[ω̄ × r̄α]2 +
k∑

α=1

Mα

2
(V̄α)2+

+
k∑

α=1

Mα(V̄0, [ω̄ × r̄α]) +
k∑

α=1

Mα(V̄0, V̄α) +
k∑

α=1

Mα([ω̄ × r̄α], V̄α)

Теперь необходимо разобраться с каждым из этих 6 слагаемых.
1-ое слагаемое. Представляет собой кинетическую энергию движения молекуляр-

ной системы как целого.
k∑

α=1

Mα

2
V̄ 2

0 =
MV̄0

2

Вращательное движение системы

2-ое слагаемое. Перечислим свойства скалярного и векторного произведений, ко-
торые понадобятся в дальнейших преобразованиях:

([ā× b̄ ], c̄ ) = (ā, [b̄× c̄ ] )

[ā× [b̄× c̄ ] ] = b̄(āc̄ )− c̄(āb̄ )

(ā, b̄) = ā+b̄

(ω̄r̄)2 = (r̄ω̄)2 = (r̄ω̄)+(r̄ω̄) = ω̄+r̄ r̄+ω̄

1

2

k∑
α=1

Mα[ω̄ × r̄α]2 =
1

2

k∑
α=1

Mα[ ω̄︸︷︷︸
ā

× r̄α︸︷︷︸
b̄

] [ω̄ × r̄α]︸ ︷︷ ︸
c̄

=
1

2

k∑
α=1

Mαω̄ [r̄α × [ω̄ × r̄α]] =

=
1

2

k∑
α=1

Mα(ω̄2r̄α
2 − (ω̄, r̄α)2) =

1

2

k∑
α=1

Mα(ω̄+(r̄2
α ∗ 1)ω̄ − ω̄+r̄α r̄

+
α ω̄) =

=
1

2

k∑
α=1

Mαω̄
+(|r̄α|2 ∗ 1− r̄αr̄+

α )ω̄
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Здесь 1 - единичная матрица. Перепишем полученное выражение в матричном
виде

Mα

r2
k 0 0
0 r2

k 0
0 0 r2

k

−Mα

xkyk
zk

(xk yk zk
)

= Mα

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz y2 + z2

 = Iα

То есть, мы получили вклад ядра в тензор инерции. Заметим, что полученная
матрица - симметричная. Из линейной алгебры известно, что симметричные мат-
рицы можно привести к диагональному виду. Таким образом, мы получаем:

1

2

k∑
α=1

Mα[ω̄ × r̄α]2 =
1

2
ω̄+I ω̄ (10)

Это слагаемое описывает вращательное движение системы как целого.

Колебательное движение системы

3-ье слагаемое. Для упрощения этого выражения следует перейти к новым ко-
ординатам. В первом слагаемом мы отделили поступательное движение, которое
связано с движением центра масс и на описание которого требуется 3 координаты
центра масс. Во втором слагаемом мы отделили вращательное движение системы
как целого. На описание этого движения требуется тоже 3 координаты (3 угла Эйле-
ра). Таким образом, из общего количества координат (общее количество координат
равно 3N , где N - число атомов) 6 уже задействовано и для оставшихся типов
движения целесообразно выбрать оставшиеся 3N − 6 независимых. Перейдем от
декартовых координат к новым, так называемым внутренним координатам qi. Для
этого можно радиус-вектор случайной точки молекулярной системы разложить в
ряд Тейлора по новым координатам.

zz'

x

y

φ

φ

x'

y'

z

x

y

Рис. 2. Углы Эйлера

rMSC
α = r0

α +
∑
i

(
∂rα
∂qi

)
0

qi +
1

2

∑
i,j

(
∂rα

2

∂qi∂qj

)
0

qiqj + . . .
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Нолик означает, что производная взята в некоторой точке, принятой за 0. В при-
ближении малых колебаний, можно пренебречь производными второго и более вы-
соких порядков. Тогда:

r̄MSC
α = r̄0

α +
∑
i

(
∂r̄α
∂qi

)
0

qi

∂r̄MSC
α

∂t
=
∑
i

(
∂r̄α
∂qi

)
0

∂qi
∂t∑

α

Mα

2
V 2
α =

∑
α

Mα

2

(∑
i

(
∂r̄α
∂qi

)
0

q̇i

)(∑
j

(
∂r̄α
∂qj

)
0

q̇j

)
=

=
1

2

∑
i,j

(∑
α

Mα

(
∂r̄α
∂qi

)
0

(
∂r̄α
∂qj

)
0

)
q̇iq̇j =

1

2

∑
i,j

Tij q̇iq̇j

где, Tij - элементы матрицы:

Tij =
∑
α

Mα

(
∂r̄α
∂qi

)
0

(
∂r̄α
∂qj

)
0

Заметим, что матрица симметричная (Tij = Tji), а, значит, диагонализуемая. Итог:∑
α

Mα

2
V 2
α =

1

2

∑
i,j

Tij q̇iq̇j (11)

4-ое слагаемое. Представляет собой энергию взаимодействия поступательного и
вращательного движений молекулярной системы. Перепишем его в виде:

k∑
α=1

Mα(V̄0, [ω̄ × r̄α]) =

(
k∑

α=1

Mαr̄α, [V̄0 × ω̄]

)
=
(
MR̄, [V̄0 × ω̄]

)
Где R̄ - радиус-вектор центра масс. Достаточно выбрать там начало координат и
это слагаемое будет равно 0.

5-ое слагаемое. Представляет собой энергию взаимодействия поступательного и
колебательного движений. Перепишем в виде:

k∑
α=1

Mα(V̄0, V̄α) =

(
k∑

α=1

MαV̄α, V̄0

)
= (P̄ , V̄0)

Где P̄ - суммарный импульс поступательного движения системы. Опять же введя
системы отсчета с неподвижным центром масс это слагаемое будет равно нулю.

Условия Эккарта

6-ое слагаемое. Представляет собой энергию взаимодействия колебательного и
вращательного движений. Перепишем в виде:

k∑
α=1

Mα([ω̄ × r̄α], V̄α) =

(∑
α

Mα[r̄α × V̄α], ω

)
= (L̄, ω̄)
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Где L̄ - суммарный угловой момент внутримолекулярных колебаний. А само выра-
жение определяют энергию Кориолиса (энергия колебательно-вращательного дви-
жения). В общем случае эта величина не равна 0. Поэтому приходится вводить
дополнительные упрощения. Распишем угловой момент:∑

α

(
y ∂z
∂t
− z ∂y

∂t

)
= 0∑

α

(
z ∂x
∂t
− x∂z

∂t

)
= 0∑

α

(
x∂y
∂t
− y ∂y

∂t

)
= 0

В общем случае это неинтегрируемая система. Проинтегрировать ее можно было
бы в случае малых колебаний rα ≈ r0

α. Тогда, проинтегрировав эти уравнения,
несложно получить, что L = 0. И в этом случае 6-ое слагаемое также обращается в
ноль.

Условия равенства нулю углового момента внутримолекулярных колебаний вме-
сте с равенствами нулю импульса и радиус-вектора центра масс называются Усло-
виями Эккарта. Если эти условия выполнены, то возможно полное разделения
поступательного, колебательного и вращательного типов движений.

Tn + Ee =
MV̄ 2

0

2
+

1

2
ω̄+Iω̄ +

1

2

∑
ij

Tij q̇iq̇j (12)

Решение ядерной задачи: поступательное движение системы

Начнем решать задачу методом разделения переменных, то есть будем искать
волновую функцию в виде:

χ = χtrχvibχrot (13)

− p2

2m
∇2

0χtr = Etrχtr (14)

χtr = Aoe
ikr (15)

Таким образом, мы получили решение для поступательного движения молекулы
как целого. Вид волновой функции - обыкновенная волна. Собственные значения -
непрерывный спектр значений энергии. В следующих лекциях будут рассмотрены
более сложные типы движения.
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Лекция 3. Вращение молекул

Решение задачи о вращении молекулы как целого

Кинетическая энергия вращения молекулярной системы при выполненных усло-
виях Эккарта описывается уравнением:

T =
1

2
ω̄+Iω̄ (16)

В квантовой механике отсутствует понятие угловой скорости ω и вместо него
следует использовать угловой момент, который выражается следующим соотноше-
нием:

J̄ = Iω̄ + L̄ (17)

где J̄ - полный угловой момент системы, Iω̄ - угловой момент вращения системы как
целого, L̄ - угловой момент внутримолекулярный колебаний, I - момент инерции.
При выполненный условиях Эккарта L = 0 и ω = J

I
и подставим в 16:

T =
1

2
J̄+I−1J̄ (18)

Окончательный вид уравнения для вращательного движения принимает вид:

1

2
Ĵ+I−1Ĵχrot = Erotχrot (19)

Из удобства рассмотрения в молекулярной системе координат координатные оси
(a, b, c) выбираются таким образом, чтобы матрица тензора инерции была диаго-
нальной.

Ĥrot =
Ĵ2
a

2Iaa
+

Ĵ2
b

2Ibb
+

Ĵ2
c

2Icc
(20)

Такое выражение вращательного оператора обычно приводят к такому виду:

Ĥrot = hc(AĴ2
a +BĴ2

b + CĴ2
c ) A =

~
4πIaac

, B, C (21)

где A, B и C - вращательные постоянные. Добавились постоянные Планка, которые
ранее были отброшены в атомной безразмерной системе координат.

Утверждение 1. Операторы Ĵ2, Ĵz, Ĵc коммутируют между собой, то есть имеют
общую систему собственных функций и собственных значений.

Первый коммутатор [Ĵ2, Ĵz] = 0 известен из курса квантовой механики. Выпи-
сать строгое математическое обоснование равенству нулю для коммутаторов [Ĵz, Ĵc]
и [Ĵ2, Ĵc] будет трудновато. Поэтому применим следующую цепочку рассуждений.
Поскольку в молекулярной системе координат вращение системы как целого от-
сутствует, то действие оператора Ĵc на волновую функцию не изменяет ее и может
быть представлено в виде домножения на некоторую константу. Так как оператор,
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описывающий домножение на константу коммутирует и c Ĵz и с Ĵ2, то и заявленные
коммутаторы равны 0.

Утверждение 2. Если хотя бы две вращательные постоянные равны между со-
бой, то операторы Ĥrot, Ĵ

2, Ĵz, Ĵc перестановочны. В противном случае коммутируют
только Ĥrot, Ĵ

2, Ĵz. Коммутатор [AĴ2
a +BĴ2

b +CĴ2
c , Ĵ

2] = 0, что можно показать, при-
менив цепочку рассуждений как в утверждении 1. В самом деле, первый оператор
представляет собой домножение волновой функции на какие-то константы в моле-
кулярной системе координат, что нельзя сказать про второй оператор. По аналогич-
ной причине [AĴ2

a+BĴ2
b +CĴ2

c , Ĵz] = 0. Рассмотрим коммутатор [AĴ2
a+BĴ2

b +CĴ2
c , Ĵc]:

[AĴ2
a +BĴ2

b + CĴ2
c , Ĵc] = [BĴ2 + (A−B)Ĵ2

a + (C −B)Ĵ2
c , Ĵc] = (A−B)[Ĵ2

a , Ĵc] (22)

то есть коммутатор равен нулю, если A = B (или B = C или A = C).

Ĵ2χrot = J(J + 1)χrot (23)

Ĵzχrot = Mχrot (24)

Ĵcχrot = Kχrot (25)

Если A 6= B 6= C, то оператор Ĥrot коммутирует только с Ĵ2 и с Ĵz. И тогда реше-
ниями уравнения 19 будут собственные функции этих операторов. Записывают это
так χrot = |JM〉. Если A = B (или B = C или A = C), то оператор Ĥrot коммутирует
с Ĵ2, Ĵz и Ĵ. И решениями уравнения 19 будут собственные функции χrot = |JMK〉.

Классификация молекулярных волчков

Сферический волчок. Примерами симметричных волчков служат молекулы
высших групп симметрии типа тетраэдра, октаэдра (CH4, SF6, C60) Iaa = Ibb = Icc
или A = B = C. В этом случае оператор Гамильтона можно упростить, выделив
всего одну константу

Ĥrot = BĴ2 (26)

Erot = BJ(J + 1) (27)

В данном случае функции, отвечающие вращательным состояниям, будут опре-
деляться всеми тремя квантовыми числами: χrot = |JMK〉
Симметричный волчок. Пусть Iaa = Ibb 6= Icc или A = B 6= C. Тогда

Ĥrot = B(Ĵ2
a + Ĵ2

b ) + CĴ2
c = BĴ2 + (C −B)Ĵ2

c (28)

Тогда собственные значения определены:

Erot = BJ(J + 1) + (C −B)K2 (29)

Функции также определены χrot = |JMK〉.
Acимметричный волчок.

Ĥrot = AĴ2
a +BĴ2

b + CĴ2
c (30)

В данном случае выражение для энергии определить тяжеловато, а функция опре-
делена только двумя квантовыми числами χrot = |JM〉.
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Лекция 4. Колебания молекул

Решение задачи о колебаниях молекул

Энергия колебательных движений равна сумме кинетической и потенциальной
энергий: E = Tk +Ee. Кинетическую энергии мы определили в Лекции 2 через так
называемые внутренние (естественные) координаты согласно уравнению 11.

E =
1

2

∑
i,j

Tij q̇iq̇j + Ee (31)

Tij =
∑
α

Mα

(
∂r̄α
∂qi

)
0

(
∂r̄α
∂qj

)
0

(32)

Сразу заметим, что Tij = Tji, то есть матрица симметричная. В квантовой меха-
нике вместо скорости принято использовать импульс, который связан со скоростью
простым соотношением: p = mdq

dt
.

1

2

∑
i,j

Tij q̇iq̇j =
1

2

∑
i,j

Tij
mimj

pipj =
1

2

∑
i,j

gijpipj (33)

Аналогично можно представить выражение для потенциальной энергии, а имен-
но:

Ee = E0
e +

∑
i

(
∂E

∂qi

)
0

qi +
1

2

∑
ij

(
∂2E

∂qi∂qj

)
0

qiqj + . . . (34)

Первое слагаемое - это некоторая постоянная. Поскольку мы рассматриваем си-
стемы вблизи положения равновесия, вторым слагаемым (производная минимума)
также можно пренебречь. Остаются слагаемые со вторыми и с производными более
высоких порядков. Ограничимся только вторыми производными.

Ee =
1

2

∑
ij

uijqiqj (35)

Здесь uij - силовые постоянные. Сделаем следующее утверждение, опустив сложные
математические преобразования.

Утверждение 1. Существует такое линейное преобразование q = LQ, что мат-
рицы коэффициентов и для кинетической и для потенциальной энергий приводятся
одновременно к диагональному виду так, что:

Ĥvib =
1

2

3K−6∑
i

(P 2
i + λiQ

2
i ) =

3K−6∑
i

(
−~2

2

∂2

∂Q2
i

+
1

2
λiQ

2
i

)
=

3K−6∑
i

ĥvib (36)

Из этого выражения следует, что гамильтониан колебаний молекулярной системы
можно представить в виде суммы независимых гармонических осцилляторов. Qi

- нормальные координаты, представляющие собой некоторую "удачную"линейную
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комбинацию естественных координат qi. Матрица L определяет форму нормальных
колебаний.

При этом уравнениеШрёдингера для колебательной задачи допускает разделение
переменных. Другими словами решение уравнения

3K−6∑
i

ĥ(Qi)χ(Q1, Q2, . . . ) = E(Qi)χ(Q1, Q2, . . . )

можно искать в виде χ(Q1, Q2, . . . ) = χ(Q1)χ(Q2) . . . . Тогда волновые функции
χ(Qi) будут решениями простых задач о гармоническом осцилляторе ĥ(Qi)χ(Qi) =
E(Qi)χ(Qi). Волновая функция колебаний молекул будет произведением этих про-
стых решений χvib =

∏3k−6
i χ(Qi), а энергия колебательной системы определяет-

ся суммой энергий независимых гармонических осцилляторов: Evib =
∑
εi, где

εi = ~ω(vi + 1/2). Напомним, что у гармонического осциллятора энергия нулевого
уровня не равна нулю.

Колебательные уровни молекулярной системы

Колебательные уровни молекулярной системы классифицируют следующим об-
разом:
1) Основной колебательный уровень. Все v = 0. Записывается, например, для трех
нормальных координат (три атома) как (0, 0, 0).
2) Фундаментальный колебательный уровень. Все v равны 0, кроме одного vi = 1.
Записывается так (1, 0, 0), (0, 1, 0), (0, 0, 1).
3) Обертоны. Все v равны 0, кроме одного vi > 1. Записывается так, например, (0,
2, 0).
4) Составные. Более сложные ситуации.
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Лекция 5. Ангармонизм

Уточнение модели колебаний: теория возмущений

Для уточнения модели в потенциале, определяющем движение ядер, следует
учесть при разложении в ряд Тейлора члены более высокого порядка (третьего
и четвертого).

Ee = Ee|min +
1

2

∑
i

Q2
i +

1

3!

∑
ijk

gijkQiQjQk +
1

4!

∑
ijkl

hijklQiQjQkQl + . . . (37)

где gijk и hijkl соответствующие производные третьего и четвертого порядков в
точке минимума. Рассмотрим задачу с точки зрения теории возмущений, для этого
будем считать, что в разложении ряда Тейлора члены третьего и более высоких
порядков являются некоторой возмущающей добавкой к оператору Гамильтона,
отвечающему потенциальной энергии и определенному в предыдущей лекции в виде
суммы независимых гармонических осцилляторов:

V̂ ′ =
1

3!

∑
ijk

gijkQiQjQk +
1

4!

∑
ijkl

hijklQiQjQkQl + . . . (38)

Ĥ
(0)
vib =

3K−6∑
i

(
−~2

2

∂2

∂Q2
i

+
1

2
λiQ

2
i

)
(39)

Ĥvib = Ĥ
(0)
vib + V̂ ′ (40)

(0,0,0)

(0,1,0)

(0,2,0)

(1,0,0)

(0,0,1)

1
5
9
5
 ��

-1

3
1
9
0
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-1

3
7
5
6
 ��

-1

3
6
5
7
 ��

-1

Рис. 3. Колебательные уровни
молекулы воды

Сразу оговорим некоторые ограничения в
применимости теории возмущений. Возмущаю-
щая добавка должна быть небольшой, коле-
бательные уровни должны между собой слабо
взаимодействовать, что означает, что их энер-
гии сильно различаются. Рассмотрим в качестве
примера молекулу воды. У молекулы воды 3 ато-
ма, следовательно, ее можно представить в виде
3K − 6 = 3 независимых гармонических осцил-
ляторов. Эти колебания в случае молекулы воды
являются симметричными νs = 3657 cm−1 и ан-
тисимметричными νas = 3756 cm−1 валентными,
отвечающие синхронному и асинхронному изме-
нению длин связей, и деформационное δ = 1595 cm−1, отвечающее изменению ва-
лентного угла. Из диаграммы видно, что колебательные уровни слабо между собой
взаимодействуют в виду существенных различий по энергии (больше 100 см−1).
Поэтому можно применять теорию возмущений.

Прежде чем приступить к анализу возбуждающей добавки, необходимо вспом-
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нить решение задачи о гармоническом осцилляторе.

χ(v,Qi) = const
1√

2v · v!
Hv(γQi)e

−γ2Q2
i

2 = NvHv(γQi)e
−γ2Q2

i
2 (41)

χvib =
3k−6∏
i

χ(Qi) (42)

Evib =
∑

εi =
3k−6∑
i=1

~ω(vi + 1/2) (43)

Также нужно дополнительно вспомнить, что волновые функции в решении зада-
чи о гармоническом осцилляторе ортогональны и ортонормированы, а для полино-
мов Эрмита выполняется рекуррентное соотношение:

xHv(x) = vHv−1(x) +
1

2
Hv+1(x) (44)

Тогда, подставив в выражение 41, получим рекуррентное соотношение для вол-
новых функций:

Qχv(Q) =
1

γ

(√
v

2
χv−1(Q) +

√
v + 1

2
χv+1(Q)

)
= a1χv−1 + a2χv+1 (45)

Для дальнейшего анализа необходимо также выражение для Q2χv(Q), которое
можно получить домножением выражения 45. Тогда в правой части получится сум-
ма Qχv−1(Q) и Qχv+1(Q) с какими-то коэффициентами. Повторное применение ре-
куррентного соотношение даст в итоге сумму χv−2(Q), χv(Q), χv+2(Q) c некоторыми
коэффициентами:

Q2χv(Q) = b1χv−2(Q) + b2χv(Q) + b3χv+2(Q) (46)

Поправка к энергии в первом порядке теории возмущений определяется соотно-
шением:

E
(1)
vib = 〈χ(0)

vib|V̂
′|χ(0)

vib〉 (47)

Волновые функции, отвечающие решению задачи о гармоническом осцилляторе,
зависят от внутренней координаты и от колебательного волнового числа. Подставив
выражение 38 в выражение 47, получим сумму разнообразных интегралов вида:

〈χv1(Q1)χv2(Q2)χv3(Q3)|Qk1
1 Q

k2
2 Q

k3
3 |χv1(Q1)χv2(Q2)χv3(Q3)〉 (48)

〈χv1(Q1)χv2(Q2)χv3(Q3)χv4(Q4)|Qk1
1 Q

k2
2 Q

k3
3 Q

k4
4 |χv1(Q1)χv2(Q2)χv3(Q3)χv4(Q4)〉 (49)

Путем разделения переменных можно перейти от таких элементов к произведениям
интегралов вида: ∏

i=1

〈χvj(Qj)|Qp
j |χvj(Qj)〉 (50)

Теперь проанализируем эти интегралы при различных p от 0 до 4. Очевидно, что
при p = 0 интеграл равен 1. При p = 1 данное интеграл принимает вид 〈χv|Qχv〉,
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который, учитывая выражение 45 будет равен 0, поскольку под интегралом будет
сумма произведений разных ортогональных функций. При p = 2 интеграл прини-
мает вид 〈χv|Q2χv〉 = 〈Qχv|Qχv〉 = 〈a1χv−1 + a2χv+1|a1χv−1 + a2χv+1〉 = 1

γ2

(
v + 1

2

)
.

При p = 3 аналогично p = 1 получим под интегралом 0, вследствие интегрирова-
ния произведений разных функций. И, наконец, при p = 4 получим 〈χv|Q4χv〉 =
〈Q2χv|Q2χv〉, руководствуясь точным аналитическим выражением 46, получим (без
доказательства) 〈χv|Q4χv〉 = 3

4γ4

((
v + 1

2

)2
+ 1

4

)
.

Мы проанализировали отдельные интегралы для разных ситуаций, но необходи-
мо проанализировать и их произведения 50. В случае учета поправки кубических
членов выражения 38 можно третью степень представить как произведение или
нулевой степени на третью или первой степени на вторую. В обоих случаях про-
изведение будет равно 0, так как один из сомножителей имеет p = 1 или p = 3
равное 0. Таким образом, в теории возмущений первого порядка кубический член
не вносит вклада в поправку по энергии.

В случае учета поправки членов четвертой степени поправка E(1)
vib уже не будет

равна 0, поскольку четвертую степень можно представить в виде произведения
неравных нулю интегралов с p = 2, p = 4 и p = 0. Результатом будет:

E
(1)
vib =

∑
i<j

hiijj
1

γ2
i

1

γ2
j

(
vi +

1

2

)(
vj +

1

2

)
+
∑
i

3

2γ4

((
v +

1

2

)2

+
1

4

)
(51)

Выпишем результирующее выражение для энергии:

Evib = E
(0)
vib + E

(1)
vib = X0 +

∑
Xi

(
vi +

1

2

)
+
∑

Xij

(
vi +

1

2

)(
vj +

1

2

)
(52)

Резонанс Ферми

Теперь рассмотрим ситуацию, когда в молекуле имеются колебательные уровни
близкие по энергии. В этом случае взаимодействие между уровнями будет велико.
В данном случае будет очень велика вторая поправка в теории возмущений, у кото-
рой в знаменателе стоит разница энергий. Для анализа также можно использовать
вариационный метод. Допустим, два уровня χ1(0, 2, 0) и χ2(1, 0, 0) близки по энер-
гии. Тогда можно попробовать искать решение в виде χ = c1χ1 + c2χ2. Учитывая,
что Ĥvib = Ĥ

(0)
vib + V̂ ′ и Ĥvibχvib = Evibχvib, то полученная система HC = ESC будет

решаться через вековое уравнение det(H− ES) = 0. В данном случае решениями
системы будут следующими c1 ≈ c2 и c1 ≈ −c2. Физический смысл данного реше-
ния прост: при возбуждении какой-то одной колебательной моды энергия может
быть почти полностью передана на другую колебательную моду. Это явление но-
сит название резонанс Ферми. В данном случае экспериментально в колебательных
спектрах будет наблюдаться снижение интенсивности фундаментального уровня (1
0 0) и существенное повышение интенсивности обертона (0 2 0), который обычно
в спектрах имеет очень низкую интенсивность, другими словами, относительные
веса вкладов разных колебаний сильно изменяются.
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Потенциал Морзе

Представление колебаний двухатомной молекулы в виде гармонического осцил-
лятора (и многоатомной молекулы как суммы гармонических осцилляторов) да-
ет верный результат только вблизи положения равновесия. Для случаев вдали от
положения равновесия используют модель ангармонического осциллятора в виде
потенциала Морзе.

Vm = D(1− e−β(r−r0)2) = D(1− e−βq)2 (53)

Уравнение Шрёдингера:

− ~2

2µ

∂2ψ

∂Q2
+D(1− e−β(Q−Q0))2ψ = Eψ (54)

Решение уравнения Шрёдингера:

E(v) = hc(ωe(v +
1

2
)− ωexe(v +

1

2
)2) = hcG(v) (55)

где ωe = β~
√

2D
µ

- гармоническая частота, ωexe = β2~2
2µ

- ангармоническая поправка.
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Лекция 6. Движения большой амплитуды

Условия Сейвица

Ранее мы ограничились рассмотрением внутримолекулярных движений неболь-
шой амплитуды - колебаний отдельных частей молекулы друг относительно друга.
На практике помимо колебаний в молекулах могут быть совсем иные типы внут-
римолекулярных движений, никак не попадающих под модель колебаний гармо-
нического осциллятора. Примерами могут служить внутримолекулярная инверсия
в молекуле аммиака и вращение одной метильной группы относительно другой в
молекуле этана. В более сложных молекулах также следует ожидать движений,
отвечающих этим простым примерам: инверсия и поворот одной функциональной
группы относительно другой вокруг связи. В этой лекции мы рассмотрим внутри-
молекулярное вращение.

H

H
H

N
φ

инверсия

E

Рис. 4. Инверсия аммиака и внутреннее вращение молекулы этана

Для начала определимся с оператором Гамильтона молекулярной системы. Хоте-
лось бы, чтобы этот оператор не очень сильно отличался от оператора Гамильтона
без движения с большой амплитудой.

Ĥ = Ĥrot + Ĥvib + Ĥla = AĴ2
a +BĴ2

b + CĴ2
c +

3K−7∑
i

(
−~2

2

∂2

∂Q2
i

+
1

2
λiQ

2
i

)
+ Ĥla (56)

Здесь появился новый оператор Ĥla, отвечающий энергии движения с большой
амплитудой, для этого движения зарезервирована 1 координата (из суммы опера-
торов гармонических осцилляторов убрали 1 координату, стало 3k− 7). Здесь необ-
ходимо помимо условий Эккарта, которые были сформулированы ранее, добавить
еще дополнительные условия независимости внутреннего вращения от колебаний
или вращений молекулы как целого. Чтобы сделать это движение независимым
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от вращения молекулы как целого, необходимо потребовать, чтобы момент, обу-
словленный этим движением, был нулевым (Jla = 0). Чтобы сделать это движение
независимым от колебаний, необходимо потребовать выполнение условий Сейвица∑

αMα

((
r̄α − r̄(0)

α (φ)
)
, ∂r̄

(0)
α

∂φ

)
= 0. Первый множитель скалярного произведения -

это изменение радиус-вектора ядра по отношению к его значению в опорной кон-
фигурации (Эти конфигурации выбираются в качества начала отсчета движения
с большой амплитудой таким образом, чтобы аналитические выражения для по-
тенциалов были максимально простыми с учетом возможной симметрии задач. В
случае инверсии и внутреннего вращения такие конфигурации отмечены "0" на рис
4). Второй вектор - это изменение радиус-вектора ядра с номером α при измене-
нии угла. Словами эти условия можно описать как: изменения радиус-векторов
ядер при всех колебаниях и изменения радиус-векторов ядер при изменении углов,
определяющих движение большой амплитуды, должны быть ортогональны, либо
скомпенсированны и в сумме с учетом их масс давать 0.

Задача о внутреннем вращении

Разобравшись с условиями выделения гамильтониана, отвечающего движению
большой амплитуды, рассмотрим какие же операторы кинетической и потенциаль-
ной энергий входят в этот гамильтониан. Для внутреннего вращения в молекуле
этана известен вид кривой потенциальной энергии (рис. 4). Это некоторая перио-
дическая функция (синус или косинус) с периодом 3π/2. Потенциальную энергию
в общем случае можно искать в виде суммы косинусов:

V =
∑
n

V0

2
(1− cosnϕ) (57)

Рис. 5. Модель молекулы этана

Теперь рассмотрим кинетическую энергию.
Очевидно, что для системы из двух тел она
складывается из:

T =
I1ω

2
1

2
+
I2ω

2
2

2
(58)

Учитывая условие J = I1ω1 + I2ω2 = 0, выпол-
ним замену ω = ω1−ω2 - скорость относительно-
го поворота одной группы относительно другой. Выполнив некоторые математиче-
ские преобразования, окончательно получим выражение для кинетической энергии:

T =
1

2

I1I2

I1 + I2

ω2 = Iω2 (59)

где I - приведенный момент инерции по аналогии с приведенной массой в задаче о
гармоническом осцилляторе. Теперь вспомним, что в квантовой механике угловая
скорость не используется, вместо нее принято использовать угловой момент, кото-
рый связан с угловой скоростью простым соотношением: J = ∂T

∂ω
или J = Iω. Тогда
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кинетическая энергия в классической и квантовой механике соответственно будет
выглядеть, учитывая Ĵ = −i~ ∂

∂φ
:

T =
J2

2I
⇒ T̂ =

~2

2I
Ĵ2 = hc

~
4πIc

Ĵ2 = RĴ2 (60)

где R - постоянная внутреннего вращения по аналогии с вращательными постоян-
ными. Окончательный вид задачи о внутреннем вращении:

Ĥla = RĴ2 +
∑
n

V0

2
(1− cosnϕ) (61)

Ĥlaχla = Elaχla (62)

Частные случаи задачи о внутреннем вращении

Для анализа поставленной задачи рассмотрим некоторые частные ситуации.

E

k=0

k=+1,-1

k=+2,-2

0

R

4R

Рис. 6. Энергетические уровни
при свободном вращении

1) Свободное вращение. Система почти не чув-
ствует потенциального барьера и им можно пре-
небречь в операторе Гамильтона. Тогда решение
уравнения тривиально:

Ĥla = RĴ2 Ela,k = kR2 χla,k =
1√
2π
eikϕ

(63)

Энергетическая диаграмма уровней энергии
представлена на Рис.6. Величина R(Me) =
9.5 см−1 - это как раз энергия перехода с нуле-
вого на первый энергетический уровень при сво-
бодном вращении. Следовательно, если величи-
на энергетического барьера превосходит эту ве-
личину, то свободное вращение оказывается за-
трудненным.

2) Крутильные колебания. Этот случай - пол-
ная противоположность предыдущей ситуации.
Здесь энергетический барьер настолько велик,
что система может совершать лишь небольшие колебания относительно некоторой
равновесной конформации. Если изменение угла очень незначительно, то перио-
дические функции (косинус потенциала) можно разложить в ряд Тейлора около
положения равновесия (в случае для этана).

V0

2
(1− cos 3ϕ) =

V0

2

(
1−

(
1− (3ϕ)2

2
+ . . .

))
≈ 9V0

4
ϕ2 (64)

Тогда оператор Гамильтона принимает вид:

Ĥla = RĴ2 +
1

2

9V0

2
ϕ2 = −R ∂2

∂φ2
+

1

2

9V0

2
ϕ2 (65)
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Этот оператор с точностью до констант напоминает оператор Гамильтона в задаче
о гармоническом осцилляторе. Используя решение задачи о гармоническом осцил-
ляторе, выпишем решение:

Em = 3
√
V0R

(
m+

1

2

)
(66)

3) Заторможенное вращение. Это промежуточная ситуация между крутильны-
ми колебаниями и свободным вращением, когда приходится выписывать оператор
Гамильтона в полном виде (уравнение 61) без упрощений. В этом случае использу-
ют вариационный подход, выбрав в качестве модельной задачи - задачу о свободном
вращении. Функции 63 используются в качестве базиса χla =

∑
ckχ

(0)
k . Уравнение

Гамильтона сводится к решению системы уравнений HC = ESC.
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Лекция 7
Электронно-колебательное взаимодействие

Основные положения теории представлений

Определение 1. Представление группы G - группа матрица Г(g1),Г(g2), . . . ,Г(gn),
при этом каждому элементу gi группы G ставится в соответствие матрица Г(gi), и
из равенства gigj = gk следует равенство Г(gi)Г(gj) = Г(gk).

В качестве матриц для представления группы подходят именно унитарные мат-
рицы, удовлетворяющие соотношению A+A = 1.
Заметим, что матрицы представлений могут меняться при переходе от одного

базисного набора векторов к другому. В таком случае, целесообразно использовать
не группу матриц, а характер - вектор-столбец, составленный из следов матриц
представления.

Определение 2. След матрицы - сумма диагональных элементов матрицы.

trA =
n∑
i=1

Aii (67)

Определение 3. Характер представления – совокупность следов матриц представ-
ления (обозначается как χГ). Его проще всего представить как вектор (обычно стол-
бец). Тогда след матрицы представления, отвечающей какому-то элементу, будем
обозначать как χГ(g) (можно также называть характером представления для опе-
рации g).
Эквивалентные представления (представления в разных базисах) имеют один и

тот же след. След также инвариантен для сопряженных элементов группы G.
Определение 4. Сопряженные элементы - элементы группы, связанные соотноше-

нием gk = g−1
i gjgi, где gi, gj, gk - элементы группы G.

Рассмотрим ситуацию, когда часть векторов базиса не преобразуется матрицами
представления. На языке линейной алгебры, это утверждение означает, что матрица
представления имеет блочно-диагональный вид:

ĝ(e1, e2, . . . , en) = (e1, e2, . . . , en)Г(g) (68)

Г(g) =
ГI(g) 0
0 ГII(g)

(69)

Здесь ĝ - некоторая операция симметрии, а Г(g) - ее матрица представления. Пи-
шут: Г(g) = ГI(g)

⊕
ГII(g) - объединение представлений, действующих на разных

подпространствах.
Определение 5. Подпространство Rk ⊂ Rn инвариантно относительно представ-

ления Г(g), если для каждой матрицы представления Г(gi) выполнено ∀r ∈ Rk

rГ(gi) ∈ Rk

Определение 6. Приводимое представление – представление Г на пространстве
Rn, содержащем инвариантное подпространство относительно матриц представле-
ния. Другими словами, это такое представление, для которого можно подобрать
эквивалентное преобразование, что его матрицы станут блочно-диагональными.
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Операции симметрии в выбранном матричном представлении могут никак не из-
менять часть векторов базиса. Эта часть векторов базиса, которая преобразуется
сама в себя, и будет инвариантной относительно матриц представления. Простой
пример - точечная группа C3v. В нее входит тождественное преобразование E, по-
воротная ось третьего порядка C3 и три вертикальные плоскости симметрии σv.
Очевидно, что любой вектор в плоскости xOy так в этой плоскости и останется
при любом преобразовании симметрии. Также любой вектор на оси Oz при лю-
бом преобразовании останется на оси Oz. Плоскость xOy и ось Oz инвариантны
относительно представлений точечной группы симметрии C3v.

Определение 7. Неприводимое представление – это представление, которое не мо-
жет быть представлено в виде прямой суммы.

Неприводимые представления классифицируют следующим образом:
A и B - одномерное, симметричное и антисимметричное относительно поворотной
оси Cn
E - двумерное
F - трехмерное
1 или 2 - симметричное или антисимметричное относительно плоскости σv
g или u - симметричное или антисимметричное относительно инверсии
штрих или два штриха - симметричное или антисимметричное относительно плос-
кости σh

Для того, чтобы определить какие неприводимые представления и в каком коли-
честве входят в данную точечную группу, достаточно воспользоваться таблицами
характеров точечных групп. Выпишем два вспомогательных утверждения, которые
помогают при построении таблиц характеров точечных группы.

Теорема 1 (Бернсайда). Для группыG конечного порядкаN сумма квадратов раз-
мерностей ni неэквивалентных неприводимых представлений равна порядку груп-
пы: ∑

n2
i = N (70)

Теорема 2 (ортогональность характеров представлений).

1

N
(χГ1 , χГ2) =

1

N

N∑
i=1

χГ1(gi)χГ2(gi) = δГ1Г2 (71)

Из соотношения ортогональности можно легко получить соответствующий коэф-
фициент в разложении приводимого представления по неприводимым:

mj =
1

N
(χГj , χГ) (72)

Формы нормальных колебаний

Колебательный гамильтониан инвариантен относительно любой операции сим-
метрии, следовательно, операции симметрии в своем операторном виде коммутиру-
ют с колебательным гамильтонианом и имеют общую систему собственных функ-
ций. Следствием этого колебательные движения в виде изменения нормальных ко-

26

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


СТРОЕНИЕ МОЛЕКУЛ
НОВАКОВСКАЯ ЮЛИЯ ВАДИМОВНА

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

ординат (которые представляют собой линейную комбинацию естественных коор-
динат - изменение углов, длин связей) преобразуются согласно неприводимым пред-
ставлениям точечной группы равновесной конфигурации молекулы (поскольку ко-
лебательную задачу решали вблизи положения равновесия).

Теперь временно вернемся к описанию движения радиус векторов в молекулярной
системе координат. Как мы помним из лекции 2, движение может быть разложено
в виде суммы поступательного, вращательного и колебательного движений:

δ~rα = δ ~R0 + [δ~ϕ× ~rα] + δ~rα (73)

δ


~r1

~r2

. . .
~rn

 =


δ ~R0

δ ~R0

. . .

δ ~R0

+


δ~ϕ× ~r1

δ~ϕ× ~r2

. . .
δ~ϕ× ~rn

+
3k−6∑
i=1


δ~r1

δ~r2

. . .
δ~rn

 (74)

Базисные векторы, отвечающие разным типам движений, совершенно независи-
мы. Следовательно, по определению приводимого представления:

Г = Гtr + Гrot + Гvib (75)

Необходимо выяснить представление, осуществляемое сразу всеми колебатель-
ными координатами (полное колебательное представление). При рассмотрении ха-
рактеров можно ограничиться только теми ядрами, которые остаются на месте
при преобразовании симметрии, поскольку только в случае если они преобразуют-
ся в сами себя и у них будут диагональные элементы в матрице представлений и
ненулевой итоговый след. При этом все представления будем искать сразу в виде
характеров, поэтому можно выбрать абсолютно любую систему координат, пусть
это будут декартовы координаты XY Z.

Очевидно, что при тождественном преобразовании все координаты, во-первых,
остаются неизменными, во-вторых, остаются на месте. Отсюда в полном колеба-
тельном представлении характер у такого преобразования будет 3K − 6. При ин-
версии все ядра меняют знак на противоположный. Если в молекуле имеется ядро,
которое находится в центре инверсии, то характер такого представления будет -3,
в противном случае - 0.

При повороте вокруг оси симметрии (обычно это ось Z) координаты преобразу-
ются матрицей поворота:  cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1


След этой матрицы составляет 2 cosϕ+ 1. Для NC ядер, лежащих на оси, это число
составит NC(2 cosϕ + 1). Два ядра из NC следует исключить, по причине того,
что туда входят все 3K ядер, а вращательное и поступательное движение следует
отбросить. Итого: (NC − 2)(2 cosϕ+ 1)

При зеркальном повороте вокруг оси симметрии (обычно это ось Z) координаты
преобразуются аналогичной матрицей поворота, разве что отражение вдоль плос-
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кости XOY приводит к изменению знака координаты Z на противоположный: cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 −1


След этой матрицы составляет 2 cosϕ− 1. Для NS ядер, лежащих на оси, это число
составит NS(2 cosϕ−1). Подобно инверсии NS равно либо 0, либо 1. Частный случай
- плоскость симметрии ϕ = 0 и число представлений составит Nσ.
Подведем итог:

E i σ Cn Sn
Г 3K − 6 −3Ni Nσ (NC − 2)(2 cosϕ+ 1) NS(2 cosϕ− 1)

Гvib E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

E 2C3 3σv
Гvib 6 0 2

Пример. Молекула аммиака, группа симметрии C3v.
Приведем таблицу характеров группы C3v. Также вы-

пишем, руководствуясь алгоритмом, приведенным выше,
полное колебательное представление. Далее раскладывая
это приводимое представление по неприводимым, используя
формулу 72, получим

Г = 2A1 + 2E

Гvib E C2 σIv σIIv
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1
Гvib E C2 σIv σIIv
Гvib 4 1 3 1

Пример. Молекула воды, группа симметрии C2v.
Приведем таблицу характеров группы C2v. Также вы-

пишем, руководствуясь алгоритмом, приведенным выше,
полное колебательное представление. Заметим, что в од-
ной плоскости симметрии сохраняются три атома, а в
другой - только один. Далее раскладывая это приводимое
представление по неприводимым, используя формулу 72,
получим

Г = 2A1 +B1

A1
A1 B1

Рис. 7. Колебания молекулы воды

Прямое произведение представлений

Определение 8. Прямое произведение представлений. Пусть есть два представле-
ния в двух разных базисах: Гa с матрицами Гa(g), ϕi - его базис размерности m, Гb
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с матрицами Гb(g), ψi - его базис размерности n. Найдем, по какому представлению
будет преобразовываться (т.е. с помощью каких матриц будет преобразовываться),
базис из функций ϕiψi размерности mn. Это представление и называется прямым
произведением представлений Гc = Гa

⊗
Гb.

Результатом будет представление, матрицы которого имеют размерность mn. На-
пример, если два представления заданы в двумерных базисах и соответствующая
матрица представления 2 на 2, то матрицей произведения будет уже матрица 4
на 4. Отметим также, что след матрицы представления построенной на произведе-
нии двух базисов вычисляется как произведение соответствующих следов матриц
исходных представлений, что очень удобно:

χГc = χГaχГb (76)

Для дальнейшего анализа симметрии волновых функций сформулируем следую-
щие утверждения:

Теорема 3. Интеграл по всему конфигурационному пространству (т.е. от −∞ до
+∞) любого неприводимого представления равен 0, кроме полносимметричного.
В самом деле, если мы посмотрим на определения таких неприводимых одномер-

ных представлений как A2, B1, B2, то они заданы как нечетные функции. Следова-
тельно, интеграл по всему конфигурационному пространству функций их базисов
будет равен 0. Без доказательства примем, что это верно и для всех других пред-
ставлений.

Теорема 4. Прямое произведение двух различных неприводимых представлений
не содержит полносимметричного.

Предположим, что прямое произведение двух различных неприводимых пред-
ставлений i и j таки содержит полносимметричное и найдем коэффициент перед
ним по формуле 72

mk =
1

N
(χГk , χГ)

где mk - коэффициент перед полносимметричных представлением в сумме. Учи-
тывая, что характер полносимметричного представления равен единице, а следы
прямого произведения равны произведению следов множителей, получим:

mk =
1

N

N∑
i=1

χГkχГiχГj =
1

N

N∑
i=1

χГiχГj = δij = 0

что и требовалось доказать.
Теперь рассмотрим матричный элемент полносимметричного оператора Â :
〈ψi|Â|ψj〉. Согласно теореме 3 этот интеграл не равен нулю, когда в представлении
этого произведения функций содержится полносимметричное представление. А со-
гласно теореме 4 это возможно только в том случае, если функции ψi и ψj относятся
к одному неприводимому представлению.
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Электронно-колебательное взаимодействие. Эффект
Яна-Теллера

Для анализа электронно-колебательного взаимодействия рассмотрим электрон-
ный гамильтониан вблизи некоторого минимума на поверхности потенциальной
энергии. В рамках теории возмущений будем считать, что гамильтониан слабо зави-
сит от колебаний. В таком случае его или электронную энергию можно разложить
в ряд Тейлора вблизи некоторой равновесной точки:

Ĥe(Q) = Ĥ(0)
e (Q) +

∑
V̂iQi + . . . V̂i =

∂He

∂Q

∣∣∣∣
(0)

(77)

Поскольку оператор Гамильтона должен быть полносимметричным, то по полно-
симметричному представлению должно приводиться и каждое слагаемое в этом
разложении. Тогда, согласно теореме 4, V̂i и Qi должны приводится по одному и
тому же неприводимому представлению.

Поправка в теории возмущений первого порядка составляет:

E(1) = Qi〈ψ0

∣∣∣∣∂He

∂Q

∣∣∣∣ψ0〉+ . . . (78)

где Qi - зависящее от ядерных координат, вынесли за пределы интегрирования по
координатам электронов.

1. Невырожденный. Функции ψ0 преобразуются по одномерному неприводимому
представлению, поэтому их квадрат преобразуется по полносимметричному пред-
ставлению. Следовательно, ∂He

∂Q
a, значит, иQi преобразуется по одномерному непри-

водимому представлению. В этом случае энергия системы изменяется, но полносим-
метричное колебание не может изменить конфигурацию молекулы.

2. Вырожденный. Представление квадрата функций ψ0 хотя и содержит полно-
симметричное представление также может содержать и другие, в том числе много-
мерные неприводимые представления. Поэтому ∂He

∂Q
а, значит, и Qi могут описывать

не только полносимметричные колебания, но и другие, нарушающие симметрию
молекулы. Мы выяснили, что в этом случае существуют колебания нарушающие
симметрию системы.

Эффект Яна-Теллера 1-ого порядка: В вырожденном электронном состоянии лю-
бая высокосимметричная конфигурация молекулы неустойчива. Всегда найдется
такое колебание, которое, искажая молекулу, понизит её энергию.
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Лекция 8
Колебательно-вращательное взаимодействие

Самый простой способ учесть влияние колебаний на вращение - это восполь-
зоваться теорией возмущений в первом порядке приближения. Для этого найдем
среднее значение вращательной постоянной в выбранном колебательном состоя-
нии. Будем рассматривать двухатомную молекулу с моментом инерции I = µr2, где
r = re +Q, re - равновесное значение межъядерного расстояния, Q - его изменение
(нормальная координата).

〈χv|B|χv〉 = 〈χv|
h

8π2Ic
|χv〉 = 〈χv|

h

8π2µ(re +Q)2c
|χv〉 =

h

8π2cr2
eµ
〈χv|

1

1 + Q2

r2e

|χv〉 (79)

Вспомним разложение в ряд Тейлора выражения под интегралом:
1

(1 + x)2
= 1− 2x+ 3x2 + . . .

h

8π2cr2
eµ
〈χv|

1

1 + Q2

r2e

|χv〉 =
h

8π2cr2
eµ

(
〈χv|1|χv〉 − 〈χv|2

Q

re
|χv〉+ 〈χv|3

Q2

r2
e

|χv〉
)

(80)

Рис. 8. Колебательные уровни
молекулы

Если обратиться к модели гармонического ос-
циллятора, то первый интеграл равен едини-
це, второй - нулю, а третий (из лекции 5)
3
r2e

1
γ2

(
v + 1

2

)
. Тогда, введя обозначение Be =

h
8π2cr2eµ

- вращательная постоянная при равновес-
ном межъядерном расстоянии, получим.

Bv = Be +
3Be

r2
e

1

γ2

(
v +

1

2

)
(81)

Физический смысл следующий: при увеличении
колебательного квантового числа, стенки потен-
циала оказываются дальше, амплитуда колеба-
тельных движений увеличивается (Рис. 8), при
этом увеличивается и момент инерции. А вра-
щательная постоянная обратно пропорциональ-
на моменту инерции и должна уменьшаться. Та-
ким образом, получен неверный с физической точки зрения результат: вращатель-
ная постоянная увеличивается с ростом момента инерции, а не наоборот. Объясне-
ние этого парадокса очень простое: выбранная модель гармонического осциллятора
оказалась неудачной и следует выбрать модель ангармонического осциллятора (на-
пример, потенциал Морзе, лекция 5). В практических расчетах используют форму-
лу, похожую на 81, но меняют знак на противоположный.

Bv = Be − α
(
v +

1

2

)
(82)

где α - постоянная колебательно-вращательного взаимодействия.
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Лекция 9
Молекулы во внешнем электромагнитном поле

Временное уравнение Шрёдингера для состояний системы
во внешнем электромагнитном поле

Пусть Ĥ0 - гамильтониан свободной частицы. При обсуждении гамильтониана мо-
лекулы во внешнем электромагнитном поле необходимо добавить к гамильтониану
свободной частицы гамильтониан внешнего поля Ĥf и гамильтониан взаимодей-
ствия поля с молекулами Ĥmf .

Ĥ = Ĥ0 + Ĥf + Ĥmf = Ĥ(0) + Ĥ ′ (83)

Рис. 9. Модель поведения систе-
мы во внешнем поле

Заметим, что электромагнитное поле в общем
случае может меняться со временем, а, значит,
для решения задачи с таким гамильтонианом
нужно воспользоваться временным уравнением
Шрёдингера.

i~
∂Ψ̃

∂t
= ĤΨ̃ (84)

Для свободной частицы временное уравнение
Шрёдингера

i~
∂Ψ̃

(0)
k

∂t
= Ĥ0Ψ̃

(0)
k (85)

Учитывая что оператор Гамильтона не зависит в явном виде от времени, то ре-
шение уравнения можно попробовать искать в виде произведения двух волновых
функций, одна из которых зависит только от частиц молекулярной системы, а вто-
рая зависит только от времени:

Ψ̃
(0)
k = Ψ

(0)
k (r̄, R̄)fk(t) (86)

Тогда методом разделения переменных временное уравнение Шрёдингера можно
свести к системе двух уравнений:{

Ĥ(0)Ψ
(0)
k = EkΨ

(0)
k

i~ ∂f
∂fk

= Ekfk
(87)

Решение второго уравнения - это экспоненциальная функция от времени. Тогда
решение временного уравнения Шрёдингера можно записать как:

Ψ̃
(0)
k = Ψ

(0)
k e−

i
~Ekt (88)
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Для упрощения задачи предположим, что в начальный момент времени, систе-
ма представлена одним состоянием Ψ̃

(0)
n . После выключения внешнего воздействия

(рис. 9) молекула может оказаться в любом каком-то состоянии, но его можно запи-
сать как линейную комбинацию возможных исходных состояний молекулы

∑
k cnkΨ̃

(0)
k .

Тогда вероятность перехода системы из состояния Ψ̃
(0)
n в состояние Ψ̃

(0)
k определя-

ется именно коэффициентом в линейном разложении функции cnk в квадрате:

Wnk = |cnk|2 (89)

Подставим линейную комбинацию
∑

k cnkΨ̃
(0)
k , в виде которой мы будем искать

решение, в уравнение 85 и получим:

i~
∂

∂t

(∑
k

cnkΨ̃
(0)
k

)
= Ĥ

(∑
k

cnkΨ̃
(0)
k

)
(90)

Далее в левой части выполним дифференцирование произведения двух функций,
а в правой части перепишем Гамильтониан из уравнения 83:

∑
k

cnki~
∂Ψ̃

(0)
k

∂t
+
∑
k

i~
∂cnk
∂t

Ψ̃
(0)
k =

∑
k

cnkĤ0Ψ̃
(0)
k +

∑
k

cnkĤ
′Ψ̃

(0)
k (91)

Заметим, что первые слагаемые в левой и правой частях согласно уравнению 85
равны. Тогда получаем равенство двух сумм.∑

k

i~
∂cnk
∂t

Ψ̃
(0)
k =

∑
k

cnkĤ
′Ψ̃

(0)
k (92)

Домножим на какую-нибудь функцию Ψ̃
(0)
m , собственную для оператора Ĥ(0), и

проинтегрируем по всему конфигурационному пространству:∑
k

i~
∂cnk
∂t
〈Ψ̃(0)

m |Ψ
(0)
k 〉 =

∑
k

cnk〈Ψ̃(0)
m |Ĥ ′|Ψ̃

(0)
k 〉 (93)

Учитывая ортогональность и ортонормированность базиса получим:

i~
∂cnm
∂t

=
∑
k

cnk〈Ψ̃(0)
m |Ĥ ′|Ψ̃

(0)
k 〉 (94)

Перепишем это дифференциальное уравнение в интегральном виде:

cnm(τ) = − i
~

τ∫
0

∑
k

cnk〈Ψ̃(0)
m |Ĥ ′|Ψ̃

(0)
k 〉dt (95)

Полученное уравнение (вернее: система уравнений) достаточно сложное. Поэто-
му вводят следующее приближение. В момент отключения внешнего поля система
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выбирает одно состояние. Это состояние либо исходное, либо какое-то другое с ве-
роятностью в соответствии с его весом, равным поправке в теории возмущений.
Другими словами будем искать решение в виде:

Ψ̃n = Ψ̃(0)
n + ∆; ∆ =

∑
k 6=n

cnk(t)Ψ̃
(0)
k (96)

Тогда уравнение 94 можно переписать в виде:

i~
∂

∂t
(c(1)
nm + c(2)

nm + . . . ) =
∑
k

(δnk + c
(1)
nk + c

(2)
nk + . . . )〈Ψ̃(0)

m |Ĥ ′|Ψ̃
(0)
k 〉 (97)

В теории возмущений первого порядка в суммах внутри скобок откидываются
все слагаемые кроме первого.

i~
∂

∂t
c(1)
nm = 〈Ψ̃(0)

m |Ĥ ′|Ψ̃(0)
n 〉 (98)

c(1)
nm(τ) = − i

~

τ∫
0

〈Ψ̃(0)
m |Ĥ ′|Ψ̃(0)

n 〉dt (99)

В теории возмущений второго порядка в суммах внутри скобок откидываются
все слагаемые кроме второго.

i~
∂

∂t
c(2)
nm =

∑
k

c
(1)
nk 〈Ψ̃

(0)
m |Ĥ ′|Ψ̃

(0)
k 〉 (100)

c(2)
nm(τ) = − i

~

τ∫
0

∑
k

c
(1)
nk 〈Ψ̃

(0)
m |Ĥ ′|Ψ̃

(0)
k 〉dt (101)

Обсудим физический смысл выражения 99. Если оператор Ĥ ′ переводит функцию
из состояния Ψ̃

(0)
n в состояние Ψ̃

(0)
m , то в этом случае интеграл не будет равен нулю

и будет получен отличный от нуля коэффициент вероятности появления состояния
Ψ̃

(0)
m . Такие переходы из одного состояния в другое в физике хорошо известны как

однофотонные переходы и называются поглощение и испускание.

En

Em

поглощение

En

Em
испускание

однофотонные процессы

En

Em

Ek

En

Em

Ek

EnEm

Ek

двухфотонные процессы

стоксово

рассеяние

антистоксово

рассеяние

релеевское

рассеяние

Рис. 10. Одно- и двухфотонные процессы
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Теперь обсудим более сложную ситуацию - выражение 101. Здесь также рас-
сматриваются интегралы 〈Ψ̃(0)

m |Ĥ ′|Ψ̃(0)
k 〉, но помимо них в выражении присутствуют

c
(1)
nk , которые согласно 99 тоже являются интегралами. Получается, что физический
смысл этого выражения - это вероятность двух переходов: сначала из состояния Ψ̃

(0)
n

в состояние Ψ̃
(0)
k , которое не определено ни одним из уравнений и носит название

виртуального состояния. Затем система из состояния Ψ̃
(0)
k переходит в состояние

Ψ̃
(0)
m . Такие процессы известны в физике как двухфотонные переходы. Среди них

стоксово, антистоксово, рэлеево рассеяние, а также двухфотонные поглощение и
испускание.

Полуклассическая теория взаимодействия излучения с
веществом

Для выражения оператора Ĥ ′ будем руководствоваться полуклассической теори-
ей взаимодействия излучения с веществом. Для этого нужно вспомнить некоторые
сведения из общей и квантовой физики, а также математического анализа.

Векторы ~E и ~H - напряженности электрического и магнитного полей. Векторы
~D и ~B - соответствующие индукции электрического и магнитного полей, кото-
рые могут учитывать эффекты среды (насколько хорошо или плохо среда передает
магнитное и электрическое поля) и связаны с соответствующими напряженностями
следующим образом ~D = ε0ε ~E и ~B = ε0ε ~H. В вакууме индукции и напряженности
равны. Все эти величины - векторные, то есть каждой точке пространства ставит-
ся в соответствие некоторый вектор. Есть и скалярные характеристики простран-
ства, например, потенциал (иными словами, каждой точке пространства ставится
в соответствие некоторое число). У этих характеристик, есть некоторые свойства и
соотношения, которые связывают эти величины. Рассмотрим их.

1) Градиент. Это вектор от скалярной величины, указывающий направление воз-
растания этой величины.

gradφ ≡ ∇φ =
∂φ

∂x
~i+

∂φ

∂y
~j +

∂φ

∂z
~k (102)

Напряженность электрического поля связана с градиентом потенциала простым
соотношением.

~E = −∇φ (103)

2) Поток вектора через поверхность. Это поверхностный интеграл по выбранной
поверхности вектора. Поток зависит как от самого вектора, так и от выбранной
поверхности. an - проекция вектора на нормаль к площади S.

Φ =

∮
∑ andS (104)

Поток очень удобен в прикладных задачах, однако он не характеризует вектор,
поскольку зависит от выбранной площади.
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3) Дивергенция. Скалярный оператор дифференцирования над вектором. Нетруд-
но понять, что в данном случае вектору ставится в соответствие скаляр, определя-
емый соотношением.

div~a = ∇ · ~a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

(105)

Физическая интерпретация дивергенции очень простая. Предположим, мы рас-
сматриваем поток через некоторый замкнутый объем и будем его уменьшать вплоть
до окрестности некоторой точки. Полученное число и будет называться диверген-
цией. Это утверждение является прообразом известной теоремы Остроградского-
Гаусса: ∮

∑ andS =

∫
V

div~adV (106)

4) Циркуляция вектора по замкнутому контуру. Это криволинейный интеграл
вектора по выбранному замкнутому контуру. Циркуляция зависит как от самого
вектора, так и от выбранного замкнутого контура. Как и любой интеграл, это ска-
лярная величина.

C =

∮
l

aldl (107)

5) Ротор. Векторный оператор дифференцирования над вектором. В отличие
от дивергенции здесь уже используется векторное произведение оператора ∇ на
заданный вектор, что определяется соотношением:

rot~a ≡ ∇× ~a =

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

ax ay az

(108)

Физическая интерпретация в чем-то напоминает дивергенцию. Если рассмотреть
циркуляцию вектора через некоторую замкнутую площадь, а затем уменьшать эту
площадь до окрестности некоторой точки, то получим проекцию ротора вектора ~a
на нормаль к поверхности в этой точке. Это утверждение тесно связано с теоремой
Стокса: ∮

l

aldl =

∫
∑ (rot~a)ndS (109)

Завершая математический ликбез, выпишем ряд полезных соотношений:

rot rot~a = [∇, [∇~a]] = ∇(∇~a)− (∇∇)~a = grad div~a−4~a (110)
div rot~a = ∇[∇~a] = 0 (111)
rot gradϕ = [∇,∇ϕ] = [∇∇]ϕ = 0 (112)
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Из курса физики нам понадобятся уравнения Максвелла:
1) Закон электромагнитной индукции Фарадея. Изменение во времени магнитно-

го поля порождает ортогональное ему электрическое поле.

rot ~E +
1

c

∂ ~B

∂t
= 0 (113)

2) Изменение в системе электрического поля и имеющиеся в системе токи порож-
дают магнитное поле, ~j - плотность тока.

rot ~H − 1

c

∂ ~D

∂t
=

4π

c
~j (114)

3) Закон кулона. Поток электрического поля из замкнутой сферы пропорциона-
лен электрическому заряду в ней.

div ~D = 4πρ (115)

4) Магнитные линии замкнуты.

div ~B = 0 (116)

Если для любого вектора ~B выполняется div ~B = 0, тогда можно ввести некото-
рый вектор ~A, назовем его векторным потенциалом, для которого всегда справед-
ливо: div rot ~A = 0 из соотношения 111, тогда

~B = rot ~A (117)

Подставим это уравнение в уравнение Максвелла 113 и получим: rot ~E+ 1
c
∂rot ~A
∂t

= 0.
Поскольку ротор - дифференциальный оператор по простраственным переменным -
стоит под производной по временной переменной, тогда rot

(
~E + 1

c
∂ ~A
∂t

)
= 0. Тогда

можно ввести некоторый скалярный потенциал ϕ для которого всегда справедливо:
rot gradϕ = 0 из соотношения 112, тогда:

~E = −1

c

∂ ~A

∂t
− gradϕ (118)

Векторный потенциал определяется с точностью до некоторого градиента: A′ =
A + gradf , поскольку, как не сложно заметить, если подставить это выражение в
117, то с учетом 112 выражение никак не изменится. А вот скалярный потенциал,
согласно уравнению 118 изменится. Функцию f называют калибровочной. Она по-
могает получить удобные выражения для скалярного и векторного потенциалов, не
меняя уравнения Максвелла: {

A′ = A+ gradf
ϕ′ = ϕ− 1

c
∂f
∂t

(119)

Зачем нужны эти векторные и скалярные потенциалы? На самом деле, это очень
удобно - можно задать не 6 переменных по 3 проекции на координатные оси век-
торов напряженностей электрического и магнитного полей (Ex, Ey, Ez, Hx, Hy, Hz), а
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только 4: 3 проекции векторного потенциала и 1 скалярный потенциал (Ax, Ay, Az, ϕ).
Более того при помощи калибровочной функции, не меняющей уравнения Максвел-
ла, можно ввести дополнительные упрощения. Например, использовать лоренцеву
калибровку:

div ~A+
1

c

∂ϕ

∂t
= 0 (120)

Используя калибровочные функции, которые определены выше, запишем:

div ~A′ +
1

c

∂ϕ′

∂t
= div ~A+ div gradf +

1

c

∂ϕ

∂t
− 1

c2

∂2

∂t2
f = {1ое и 3ье слагаемое дают 0} =

= div gradf − 1

c2

∂2

∂t2
f = ∆f −− 1

c2

∂2

∂t2
f = 0 (это уравнение волны)

И действительно, если вспомнить саму суть уравнений Максвелла, то магнит-
ная и электрическая напряженности изменяются по волновому закону. Значит, и
выбранный нами векторный потенциал изменяется по волновому закону:

~A = ~A0e
−i(~k~r−ωt) (121)

значит, и калибровочная функция должна преобразовываться по волновому зако-
ну, что мы и получили. В уравнении ~k - волновой вектор, направление волнового
вектора совпадает с направлением волнового фронта, а модуль равен отношению
циклической частоты к скорости распространения волны |k| = ω

c
.
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Лекция 10. Вероятности излучательных переходов

Оператор Гамильтона системы заряженных частиц в поле
внешней электромагнитной волны

Выпишем из курса квантовой механики гамильтониан для одной частицы в элек-
тромагнитном поле и для молекулярной системы:

H =
1

2m

(
~p− q

c
~A
)2

+ qϕ (122)

H =
∑
j

(
~pj − qj

c
~A(~rj)

)2

2mj

+
∑
j

qjϕ(~rj) +
∑
i<j

qiqj
rij

(123)

Будем считать в соответствии с калибровкой кулона, что ϕ = 0, и раскроем скобки
в выражении 123.

H =
∑
j

~pj
2

2mj

+
∑
i<j

qiqj
rij︸ ︷︷ ︸

H0

−
∑
j

qj
mjc

~A(~rj)~pj +
∑
j

q2
j

2mjc2

∣∣∣ ~A(~rj)
∣∣∣2︸ ︷︷ ︸

H ′

(124)

В первых двух слагаемых этого гамильтониана отсутствует возмущающее поле
~A(~r). Следовательно, эта часть гамильтониана входит в гамильтониан невозмущен-
ной задачи H0. Вторая часть явно содержит возмущающее поле, поэтому в даль-
нейшем при анализе уравнения 99 мы будем работать именно с ней. Вторым слагае-
мым в H ′ можно пренебречь в виду того, что амплитуда возмущающего излучения
невелика и, как следствие, квадрат отношения |A|

c
- пренебрежимо малая величина.

Таким образом, гамильтониан возмущающей добавки, равен:

H ′ =
∑
j

qj
mjc

~A(~rj)~pj (125)

Вектор ~A(~r) будем записывать в виде суперпозиции обыкновенной волны и волны
сопряженной с ней:

~A = ~A0e
i(~k~r−ωt) + ~A∗0e

−i(~k~r−ωt) (126)

Можно считать, что скалярное произведение векторов (~k, ~r) существенно меньше
единицы. В самом деле, ~r не превышает размеры молекулы и уж маловероятно, что
превышает 100 Å. С другой стороны ~k = 2π

λ
. Длина волны излучения, например

для ИK - 8000 Å - 100 мкм. Отсюда понятно, что скалярное произведение сильно
меньше единицы, следовательно, e−i(~k~r) ' 1. Перепишем уравнение 126 с учетом
этого приближения:

~A = ~A0e
−iωt + ~A∗0e

iωt (127)
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Дипольное приближение

Подставим уравнение 125 в уравнение 99:

c(1)
nm(τ) = − i

~

τ∫
0

〈Ψm|H ′|Ψn〉e−
i
~Ent+

i
~Emtdt = − i

~

τ∫
0

〈Ψm|H ′|Ψn〉ei
Em−En

~ tdt (128)

Сделаем замену Em−En
~ = ωmn - частота перехода между состояниями m и n.

c(1)
nm(τ) = − i

~

τ∫
0

〈Ψm|H ′|Ψn〉eiωmntdt (129)

Теперь перепишем это выражение, учитывая уравнения 127 и 88

i

~
∑
j

qj
mjc

τ∫
0

(
〈Ψm| ~A0p̂j|Ψn〉e−iωteiωmnt + 〈Ψm| ~A∗0p̂j|Ψn〉eiωteiωmnt

)
dt = (130)

=
∑
j

qji

mjc~

(
〈Ψm| ~A0p̂j|Ψn〉

ei(ωmn−ω)τ − 1

i(ωmn − ω)
+ 〈Ψm| ~A∗0p̂j|Ψn〉

ei(ωmn+ω)τ − 1

i(ωmn + ω)

)
dt (131)

π
τ

π
τ

π
τ

f( , )

Рис. 11. График функции f(α, τ)

Заметим, что функция сильно возрастает
вблизи ω = ωmn либо ω = −ωmn, т.е. ко-
гда частота излучения приблизительно рав-
на частоте поглощения или испускания. По-
скольку два слагаемых в сумме под скобка-
ми описывают два по своей сути одинако-
вых процесса (первый - поглощение, второй
- испускание), то можно для дальнейшего
анализа ограничиться рассмотрением толь-
ко одного из них. Пусть это будет поглоще-
ние.

Проанализируем квадрат экспоненты∣∣∣ ei(ωmn−ω)τ−1
(ωmn−ω)

∣∣∣2, который будет входить в веро-

ятность перехода. Сделаем замену (ωmn−ω)
2

=
α∣∣∣∣ei2ατ − 1

2α

∣∣∣∣2 =

∣∣∣∣ei2ατ − 1

2α

∣∣∣∣2 =
| cos 2ατ + i sin 2ατ − 1|2

4α2
=

(cos 2ατ − 1)2 + (sin 2ατ)2

4α2
=

=
(cos 2ατ)2 − 2 cos 2ατ + 1 + (sin 2ατ)2

4α2
=

1− cos 2ατ

2α
=

sin2 ατ

α2

На практике интересует вероятность процесса в единицу времени, т.е.

ω̄(1)
nm ∼

W
(1)
nm

τ
(132)
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Функция f(α, τ) = sin2 ατ
πτα2 имеет график, представленный на Рис. 11. Из него

следует, что если отклонение частоты излучения от частоты перехода отличается не
более чем π

τ
, то вероятность перехода - наибольшая. Этот диапазон обуславливает

так называемое спектральное окно - переход осуществляется не при какой-то строго
выбранной одной частоте, а в некотором диапазоне в соответствии с принципом
неопределенности Гейзенберга. Отметим, что при больших временах облучения эта
функция вырождается в функцию Дирака.

Теперь проанализируем другую часть выражения 131, вынесем амплитуду волны
за знак интеграла: ∑

j

qj
mjc~

(
〈Ψm|p̂j|Ψn〉, ~A0

)
(133)

Воспользуемся тем, что p̂j =
mj
i~

[
~rj, Ĥ0

]
, перепишем интеграл 〈Ψm|p̂j|Ψn〉, учиты-

вая эрмитовость оператора Ĥ0:

〈Ψm|p̂j|Ψn〉 =
mj

i~
〈Ψm|~rjĤ0 − Ĥ0~rj|Ψn〉 =

mj

i~
(〈Ψm|~rj|Ψn〉En − 〈Ψm|~rj|Ψn〉Em) =

=
mji

~
(Em − En) 〈Ψm|~rj|Ψn〉 = mjiωmn〈Ψm|~rj|Ψn〉

Подставим этот результат обратно в сумму 131:

∑
j

iqjωmn
c~

(
〈Ψm|~rj|Ψn〉, ~A0

)
=
iωmn
c~

(
〈Ψm|

∑
j

qj~rj|Ψn〉, ~A0

)
=
iωmn
c~

(
〈Ψm|d̂ |Ψn〉, ~A0

)
(134)

Это выражение умноженное на функцию f(α, τ) и возведенное в квадрат и будет
характеризовать полную вероятность перехода в единицу времени. Понятно, что
векторы 〈Ψm|~d|Ψn〉 (вектор дипольного момента перехода из состояния n в состоя-
ние m) и векторы ~A0 могут располагаться в пространстве случайным образом, по-
этому нужно найти квадрат среднего скалярного произведения согласно формуле:
|〈Ψm|d̂ |Ψn〉, ~A0|2 = 1

3
( ~A0)2|〈Ψm|d̂ |Ψn〉|2. Еще вместо амплитуды лучше использовать

соответствующую плотность излучения, связанную с амплитудой соотношением:

ρ =
ω2

2πc2
| ~A0|2 (135)

Выполнив необходимые подстановки, получим окончательное выражение для ве-
роятности поглощения излучения в дипольном приближении при частоте перехода
ωmn:

ω(1)
mn =

4π2

3~
|〈Ψm|d̂ |Ψn〉|2ρ(ωmn) (136)
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Лекция 11
Правила отбора в спектрах поглощения

Волновые функции в интеграле, определяющем правила
отбора

В рассматриваемом нами приближении вероятности поглощения излучения в еди-
ницу времени и перехода молекулярной системы из состояния n в состояние m
определяются уравнением 136. Вероятность отлична от нуля и переход является
разрешенным, если квадрат интеграла 〈Ψm|~d|Ψn〉 отличен от нуля.

В общем виде волновую функцию при соблюдении условий Эккарта можно пред-
ставить в виде

Ψk = Φek(r|R)Φsk(σ)χrot,k(φ, θ, ψ)χvib,k(Q3k−6) (137)

то есть в виде произведения 4-ех волновых функций: электронной волновой функ-
ции, зависящей от координат электронов при фиксированных положениях ядер в
пространстве, спиновой волновой функции, ядерным функциям, отвечающим коле-
бательным и вращательным состояниям. Поскольку все эти функции собственные
для оператора Гамильтона, то все они являются ортогональными. Поскольку опера-
тор дипольного момента никак не действует на спиновую составляющую волновой
функции, то получаем первое правило отбора для изменения спинового состояния
〈Φsm(σ)|Φsn(σ)〉. Другими словами ∆S = 0.

Далее удобно проинтегрировать вначале только по электронным координатам, а
затем - по ядерным. Тогда рассматриваемый интеграл принимает следующий вид:

〈Ψm|d̂ |Ψn〉 = 〈χrot,mχvib,m|〈Φem|d̂ |Φen〉r|χvib,nχrot,n〉R (138)

Интеграл d̃ = 〈Φem|d̂ |Φen〉r - функция ядерных координат, которая будет опреде-
лять возможность электронного перехода. Это матричный элемент оператора ди-
польного элемента, рассчитанный на электронных функциях начального и конеч-
ного состояний.
Оператор дипольного момента задан, вообще говоря, не в молекулярной систе-

ме координат, а в системе XY Z. Следовательно, необходимо выполнить линейное
преобразование оператора d̂ , переводящее из лабораторной системы координат в
молекулярную, зависящую от углов Эйлера (так называемая матрица поворота).
Очевидно, что выразить координаты в ЛСК через МСК можно через обратную мат-
рицу, для простоты будем ее называть тоже R (тем более, что она ортогональная,
т.е. R−1 = R+). Тогда компоненты оператора дипольного момента в МСК представ-
ляют собой:

~dxyz = R−1~dabc (139)

dα =
∑
ξ

R−1
αξ dξ =

∑
ξ

Rξαdξ (140)
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где - α - координаты оператора d̂ в ЛСК (x, y, z), а ξ - в МСК (a, b, c). Тогда интеграл
138 можно дополнительно упростить, выделив интегрирование по углам Эйлера,
зависимость от которых в операторе дипольного момента выражена в обратной
матрице косинусов R. Тогда итоговое выражение:∑

ξ=a,b,c

〈χrot,m|Rξα|χrot,n〉〈χvib,m|〈Φem|d̂ξ |Φen〉|χvib,n〉 = (141)

=
∑
ξ=a,b,c

〈χrot,m|Rξα|χrot,n〉φ,θ,ψ〈χvib,m|d̃ξ |χvib,n〉Q (142)

Для дальнейшего анализа делают еще одно небольшое упрощение. Считают, что
возможные переходы слабо меняют дипольный момент и его компоненты, тогда эти
компоненты можно разложить в ряд Тейлора:

d̃ξ = d̃ξ

∣∣∣
eq

+
3k−6∑
i=1

(
∂d̃ξ
∂Qi

)∣∣∣∣∣
eq

Qi +
1

2

∑
i,j

(
∂2d̃ξ

∂Qi∂Qj

)∣∣∣∣∣
eq

QiQj + . . . (143)

Ограничимся первыми двумя слагаемыми в разложении и перепишем выражение
142.

∑
ξ=a,b,c

〈χrot,m|Rξα|χrot,n〉φ,θ,ψ

 d̃ξ∣∣∣
eq
〈χvib,m|χvib,n〉Q +

∑
i

(
∂d̃ξ
∂Qi

)∣∣∣∣∣
eq

〈χvib,m|Qi|χvib,n〉Q


(144)

Правила отбора для электронных переходов

R

E(R)

Рис. 12. Принцип Франка-Кондона

Здесь можно ограничиться только пер-
вым слагаемым в ряду Тейлора в разложе-
нии дипольного момента и рассмотреть вы-
ражение:∑
ξ=a,b,c

〈χrot,m|Rξα|χrot,n〉φ,θ,ψ d̃ξ
∣∣∣
eq
〈χvib,m|χvib,n〉Q

(145)

В этом произведении три сомножителя.
При переходе с одного электронного уров-
ня на другой меняется электронная энер-
гия уровней, а поскольку разным энергети-
ческим уровням отвечают разные собствен-
ные функции (в том числе отвечающие раз-
ным колебательным и вращательным состо-
яниям), то интеграл типа 〈χvib,m|χvib,n〉Q в
общем случае отличен от нуля, поскольку
волновые функции в нем не ортогональны.
Также интеграл 〈χrot,m|Rξα|χrot,n〉φ,θ,ψ тоже в общем случае не ноль. В самом деле,
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энергия электронного перехода в тысячи раз превышает энергию вращательного пе-
рехода, так что можно с достаточной уверенностью сказать, что на 1 электронный
переход найдется и вращательный переход с ненулевым интегралом. Следователь-
но, переход разрешен, если интеграл d̃ξ = 〈Φem|d̂ξ |Φen〉r отличен от нуля.
На практике при обсуждении возможности электронных переходов применяют

принцип вертикальных переходов Франка-Кондона: переход из одного электронно-
го состояния в другое осуществляется настолько быстро, что положение ядер не
успевает измениться. Этот принцип схематично представлен на рисунке 12. Инте-
грал перекрывания 〈χvib,m|χvib,n〉Q нулевого колебательного основного электронного
состояния и нулевого колебательного возбужденного электронного состояния при
вертикальном переходе равен 0, и лишь для второго колебательного состояния по-
являются ненулевые значения.
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Лекция 12. Колебательные спектры поглощения

Правила отбора для колебательных переходов

Рассмотрим правила отбора колебательных переходов в рамках одного электрон-
ного уровня. Поскольку электронная энергия не меняется, то функции, отвечающие
ядерным состояниям, в рамках одного электронного уровня ортогональны. Следо-
вательно: 〈χvib,m|χvib,n〉Q = 0. Тогда выражение 142 упрощается и

∑
ξ=a,b,c

〈χrot,m|Rξα|χrot,n〉φ,θ,ψ
∑
i

(
∂d̃ξ
∂Qi

)∣∣∣∣∣
eq

〈χvib,m|Qi|χvib,n〉Q 6= 0 (146)

Все сомножители должны быть не равны 0. Поскольку изменения электронного
состояния не произошло, то d̃ξ = 〈Φen|d̂ξ |Φen〉r - это средний дипольный момент
системы в данном электронном состоянии. Тогда условие ∂d̃ξ

∂Qi
6= 0 означает, что в

ходе разрешенного колебательного перехода дипольный момент системы должен
меняться. Еще два условия 〈χvib,m|Qi|χvib,n〉Q 6= 0 и 〈χrot,m|Rξα|χrot,n〉φ,θ,ψ 6= 0.

Поскольку энергия вращательных переходов существенно ниже энергии колеба-
тельных переходов, то найдется большое число интегралов 〈χrot,m|Rξα|χrot,n〉φ,θ,ψ,
отличных от 0. Следовательно, на 1 колебательный переход приходится большое
число разрешенных вращательных переходов. Но значения интегралов будут все-
гда разными, что приведет к возникновению вращательного контура колебатель-
ной полосы. Остается детально проанализировать условие 〈χvib,m|Qi|χvib,n〉Q 6= 0.
Используя рекуррентное соотношение QHv = 1

2
Hv+1 + vHv−1, получим соответству-

ющее правило отбора для колебательных переходов ∆v = ±1. Это правило отбора
соответствует переходам с основного колебательного уровня на фундаментальный,
где все колебательные квантовые числа равны 0, кроме одного, которое изменяется
с 0 на 1. Но помимо фундаментальных уровней существуют и другие (обертоны,
например). Вывод правил отбора для этих ситуаций аналогичен, но требует рас-
смотрения в разложении дипольного момента в ряд Тейлора 143 большего числа
слагаемых.

Правила отбора для вращательных переходов

Рассмотрим теперь правила отбора для вращательных переходов в рамках одного
электронного и одного колебательного уровня. Здесь в выражении 144 второе сла-
гаемое равно 0, следовательно, чтобы вращательный переход был разрешен нужно
потребовать, чтобы 0 не равнялось произведение.∑

ξ=a,b,c

〈χrot,m|Rξα|χrot,n〉φ,θ,ψ d̃ξ
∣∣∣
eq
〈χvib,n|χvib,n〉Q =

∑
ξ=a,b,c

〈χrot,m|Rξα|χrot,n〉φ,θ,ψ d̃ξ
∣∣∣
eq

(147)

Из этого выражения следует, что у молекулы должен быть ненулевой дипольный
момент. Поэтому у сферических волчков вращательных спектров поглощения нет.
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R�ветвь

ΔJ � �

Рис. 13. Колебательно-вращательный
спектр двухатомной молекулы

Анализ интегралов 〈χrot,m|Rξα|χrot,n〉φ,θ,ψ сло-
жен. Тем не менее проведем полуколиче-
ственный вывод необходимых выражений
для двухатомных молекул. Отметим, что
двухатомная молекула должна быть гетеро-
ядерной (условие неравенства нулю диполь-
ного момента). Вид волновой функции, опи-
сывающей вращательные состояния:

χnrot(ϕ, θ) = N
|Mn|
Jn

P
|Mn|
Jn

(cosθ)e
i
~Mnϕ (148)

где P |Mn|
Jn

- присоединенные полиномы Ле-
жандра, для которых как и для функций,
описывающих состояния гармонического ос-
циллятора, справедливо следующее рекур-
рентное соотношение:

cosθP
|M |
J (cosθ) = a1P

|M |
J+1(cosθ) + a2P

|M |
J−1(cosθ) (149)

где a1 и a2 - некоторые коэффициенты, зависящие от полного момента молекулы и
его проекции на ось Z. Поскольку молекула линейная, то расположим ее вдоль оси
OC и, поскольку dz = cosθdc, Rzc = cosθ (можно рассмотреть и Rxc, и Ryc).

〈P |Mm|
Jm

e
i
~Mmϕ|cosθ|P |Mn|

Jn
e
i
~Mnϕ〉 = 〈P |Mm|

Jm
|cosθ|P |Mn|

Jn
〉〈e

i
~Mmϕ|e

i
~Mnϕ〉 (150)

Произведение этих интегралов не равно 0, если каждый интеграл не равен 0. Учи-
тывая ортогональность функций и рекуррентное соотношение 149, получим прави-
ла отбора ∆M = 0, ∆J = ±1. Модельный спектр при частоте, характеризующей
изменение колебательного состояния, изображен на Рис. 13. Колебательный пере-
ход в спектре представлен не линией, а двумя ветвями R и P с минимумом при
∆J = 0, которые отвечают вращательным переходам в пределах одного колеба-
тельного уровня.
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Лекция 13
Взаимодействие молекул с электромагнитным
излучением: рассеяние

Молекула в постоянном электрическом поле

Гамильтониан молекулы в электромагнитном поле определяется соотношением
(Лекция 10, формула 124):

H =
∑
j

~pj
2

2mj

+
∑
i<j

qiqj
rij
−
∑
j

qj
mjc

~A(~rj)~pj +
∑
j

q2
j

2mjc2

∣∣∣ ~A(~rj)
∣∣∣2 +

∑
j

qjϕ(~rj) (151)

В случае постоянного электрического поля ( ~A = 0) гамильтониан принимает вид:

H =
∑
j

~pj
2

2mj

+
∑
i<j

qiqj
rij

+
∑
j

qjϕ(~rj) (152)

Для постоянного электрического поля (в отсутствии магнитного поля) справед-
ливы также следующие соотношения: ~B = 0; ~H = 0; ∂

~E
∂t

= 0. Тогда, используя
уравнение Максвелла, запишем:

rot ~E = −∂
~B

∂t
= 0 (153)

Поскольку всегда выполняется −rot gradϕ = 0, то ~E = −gradϕ. Отсюда следует,
что ϕ = − ~E~r. Подставим в выражение для гамильтониана и получим:

H =
∑
j

~pj
2

2mj

+
∑
i<j

qiqj
rij
−
∑
j

qj~rj ~E (154)

Согласно определению дипольного момента молекулы: ~d =
∑

j qj~rj, тогда полу-
чим

H =
∑
j

~pj
2

2mj

+
∑
i<j

qiqj
rij
− ~d ~E (155)

Заметим, что первые два слагаемых в сумме - это гамильтониан молекулы в отсут-
ствии внешнего электрического поля. Следовательно, добавку −~d ~E вполне можно
рассмотреть как слабый возмущающий потенциал. В самом деле, если разложить
энергию молекулы в ряд Тейлора (будем считать, что поле слабое), то получим
(здесь ε - энергия, E - напряженность поля).

ε = ε|E=0 +
∑

β=x,y,z

∂ε

∂Eβ

∣∣∣∣∣
E=0

Eβ +
1

2

∑
β,γ=x,y,z

∂2ε

∂Eβ∂Eγ

∣∣∣∣∣
E=0

EβEγ + . . . (156)
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Из выражения 155 следует, что ∂ε

∂ ~E
= ∂H

∂ ~E
= −~d. Из этого получим:

ε = ε|E=0 − (~d, ~E) +
1

2

∑
β,γ=x,y,z

∂2ε

∂Eβ∂Eγ

∣∣∣∣∣
E=0

EβEγ + . . . (157)

Также можно показать, что ∂2ε
∂Eβ∂Eγ

= −αβγ - компонента поляризуемости, которой
отвечает тензор поляризуемости, и окончательное выражение для энергии:

ε = ε|E=0 − (~d, ~E)− 1

2
~E+α ~E + . . . (158)

Но мы это сделаем более аккуратно с использованием теории возмущений. Опе-
ратор Гамильтона возмущенной задачи можно записать, как Ĥ = Ĥ0 + V̂ ′, где
V̂ ′ = −(d̂, ~E). Тогда поправка в первом порядке теории возмущений:

E(1)
n = 〈Ψ(0)

n |V̂ ′|Ψ(0)
n 〉 = −( ~E, 〈Ψ(0)

n |d̂|Ψ(0)
n 〉) = −( ~E, ~dn) (159)

здесь 〈Ψn|d̂|Ψn〉 - среднее значение дипольного момента молекулы в состоянии n.
Поправка во втором порядке теории возмущений как раз должна характеризо-

вать поляризуемость.

E(2)
n =

∑
k 6=n

|〈Ψ(0)
n |V̂ ′|Ψ(0)

k 〉|2

En − Ek
= ~E+

∑
k 6=n

〈Ψ(0)
n |d̂|Ψ(0)

k 〉〈Ψ
(0)
k |d̂|Ψ

(0)
n 〉

En − Ek
~E = (160)

= ~E+〈Ψ(0)
n |
∑
k 6=n

d̂|Ψ(0)
k 〉〈Ψ

(0)
k |d̂

En − Ek
|Ψ(0)

n 〉 ~E = −1

2
~E+〈Ψn|α̂|Ψn〉 ~E = −1

2
~E+α ~E (161)

В последнем выражении фигурирует среднее значение поляризуемости. Отсюда
получаем оператор статической поляризуемости:

α̂ = −2
d̂|Ψ(0)

k 〉〈Ψ
(0)
k |d̂

En − Ek
(162)

Заканчивая обсуждение поляризуемости, хотелось бы сопоставить полученный
результат с классическим определением. Поляризуемость - это способность моле-
кулы приобретать дипольный момент. На математическом языке - это ~α = ∂ ~d

∂ ~E
. Из

полученного выражения для оператора, отвечающего поляризуемости, видно, что
дипольный момент в электрическом поле может возникнуть за счет временного пе-
рехода из одного состояния (например, исходного n) в некоторое промежуточное
k. Стоит отметить, что выражения для энергии молекулы в электрическом поле,
полученные из классической физики и с использованием теории возмущений, похо-
жи.
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Молекула в поле электромагнитной волны.
Вероятность процессов рассеяния

Ранее (уравнение 101) нами было показано, что:

c(2)
nm(τ) = − i

~

τ∫
0

∑
k

c
(1)
nk 〈Ψ̃

(0)
m |Ĥ ′|Ψ̃

(0)
k 〉dt (163)

Тогда

W 2
nm = |c(2)

nm(τ)|2 =

∣∣∣∣∣∣− i~
τ∫

0

∑
k

c
(1)
nk 〈Ψ̃

(0)
m |Ĥ ′|Ψ̃

(0)
k 〉dt

∣∣∣∣∣∣
2

(164)

при этом коэффициенты c
(1)
nk под интегралами определяются также соотношениями

99:

c
(1)
nk (τ) = − i

~

τ∫
0

〈Ψ̃(0)
k |Ĥ

′|Ψ̃(0)
n 〉dt (165)

Также из лекции 10 нам понадобятся соотношения 125 и 127:

H ′ =
∑
j

qj
mjc

~A(~rj)~pj (166)

~A = ~A0e
−iωt + ~A∗0e

iωt (167)

Для простоты рассмотрения будем считать, что ~A∗0 = ~A0 и ~A = ~A0(e−iωt + eiωt).
Из той же лекциями воспользуемся уравнениями 131 и 134

c(2)
nm(τ) =

1

~2c2

∑
ωknωmk

(
〈Ψk|d̂ |Ψn〉, ~A0

)(
〈Ψm|d̂ |Ψk〉, ~A0

)
(168)

τ∫
0

(
ei(ωkn−ω)t − 1

i(ωkn − ω)
+
ei(ωkn+ω)t − 1

i(ωkn + ω)

)
(ei(ωmk−ω)t + ei(ωmk+ω)t)dt (169)

Заметим, что под интегралом произведение двух сумм. Это произведение даст
4 слагаемых, которые проанализируем отдельно. Перемножим первое слагаемое в
первой сумме под интегралом на первую экспоненту во второй сумме и проинте-
грируем, учитывая, что ωkn + ωmk = ωmn.

τ∫
0

ei(ωkn−ω)t − 1

i(ωkn − ω)
ei(ωmk−ω)tdt =

τ∫
0

ei(ωmn−2ω)t − ei(ωmk−ω)t

i(ωkn − ω)
dt (170)

Не будем строго вычислять данный интеграл, а лишь ограничимся рассмотрением
коэффициентов перед экспонентами:

1

(ωmn − 2ω)(ωkn − ω)

1

(ωmk − ω)(ωkn − ω)
(171)
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Эти слагаемые велики, когда ωmn = 2ω, ωmk = ω, ωkn = ω. Этот процесс означа-
ет двухфотонное поглощение из состояния n в состояние m через промежуточное
состояние k. Аналогично можно рассмотреть остальные три слагаемых, которые
будут отвечать процессам рассеяния и двухфотонного испускания (Были рассмот-
рены в лекции 9). Мы ограничимся окончательным выражение для вероятности
двухфотонных процессов с точностью до коэффициентов:

Wnm ∼ | 〈Ψm|α̂|Ψn〉 |2A4
0 (172)
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Лекция 14. Спектры рассеяния

При обсуждении правил отбора в спектрах рассеяния используют те же рассуж-
дения, что и в правилах отбора для спектров поглощения. Принципиальных разли-
чий всего два:
1) Чтобы переход был разрешен, интеграл 〈Ψm|α̂|Ψn〉 должен быть отличен от нуля.
В обсуждении правил отбора для спектров поглощения был аналогичный интеграл
с оператором дипольного момента

〈
Ψm|d̂|Ψn

〉
.

2) Поскольку поляризуемость в отличие от дипольного момента является тензором,
а не вектором, то переход из МСК в ЛСК осуществляется преобразованием подобия
(R - матрица поворота).

αxyz = RαabcR
−1 (173)

αβγ =
∑
ξη

Rβξαξη(R
−1)ηγ =

∑
ξη

RβξαξηRγη, β, γ = x, y, z; ξ, η = a, b, c (174)

Сразу выпишем окончательное выражение для матричного элемента оператора по-
ляризуемости (оно аналогично таковому для оператора дипольного момента из лек-
ции 11, уравнение 144).

〈Ψm|α̂ξη |Ψn〉 = 〈Φsm(σ)|Φsn(σ)〉
∑

ξ,η=a,b,c

〈χrot,m|RβξRγη|χrot,n〉φ,θ,ψ·

·

(
α̃ξη|eq 〈χvib,m|χvib,n〉Q +

∑
i

(
∂α̃ξη
∂Qi

)∣∣∣∣
eq

〈χvib,m|Qi|χvib,n〉Q

)
где α̃ξη = 〈Φm|αξη|Φn〉r - функция ядерных координат. Это матричный элемент
компоненты тензора поляризуемости, рассчитанный на электронных функциях на-
чального и конечного состояний.

Первое и самое очевидное правило отбора ∆S = 0, следует из 〈Φsm(σ)|Φsn(σ)〉 6= 0.
Правила отбора для электронных переходов в спектрах рассеяния определяются
условием α̃ξη = 〈Φm|αξη|Φn〉r 6= 0. Такие переходы редко исследуют в спектрах
рассеяния. В случае с электронными переходами в спектрах поглощения мы обра-
тились к качественному принципу Франка-Кондона. Здесь также интеграл строго
не вычисляют.

Правила отбора для колебательных переходов определяются следующими двумя
условиями: 1) ∆α 6= 0 2) 〈χvib,m|Qi|χvib,n〉Q 6= 0. Первое условие означает, что
поляризуемость молекулы при колебании должна изменяться. Второе условие (как
и в Лекции 11) означает, что ∆ν = ±1, т.е. в первом приближении возможен переход
на соседний колебательный уровень.

Молекула водорода H2. Гомоядерная молекула. У нее нет дипольного момента и
дипольный момент не появляется при колебаниях молекулы. Следовательно, сигна-
ла в колебательном спектре поглощения не будет. Что касается поляризуемости, то
оказывается, что изменение поляризуемости при колебаниях в этом случае будет
отлично от нуля (поскольку поляризуемость - это не вектор, а тензор, то всегда
найдется хотя бы одно направление с ненулевой поляризуемостью) и можно заре-
гистрировать колебательный спектр рассеяния гомоядерной молекулы!
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Молекула хлороводорода HCl. Гетероядерная молекула. У нее есть дипольный
момент и он изменяется при колебаниях молекулы. Естественно есть и поляризуе-
мость. Можно зарегистрировать колебательный спектр рассеяния и поглощения.

Молекула метана CH4. У неё всего 9 колебаний (3N − 6 = 9) Это полносиммет-
ричное колебание A1, двухкратно вырожденное колебание E, трехкратно вырож-
денные колебания F2. Они все рассмотрены на Рис. 14. Видно, что только часть
колебаний будет видна в спектрах ИК, тогда как все колебания можно зарегистри-
ровать в спектрах рассеяния.

колебание  1
cимметрия �d

Δ� � �

Δα ≠ �

колебание E

cимметрия D2d

Δd = 0

Δα ≠ 0

колебание F2

cимметрия C3v

Δd ≠ 0

Δα ≠ 0

колебание F2

cимметрия C2v

Δd ≠ 0

Δα ≠ 0

Рис. 14. Колебания молекулы метана

Правила отбора для вращательных переходов определяются следующими двумя
условиями: 1) α̃ξη 6= 0; 2) 〈χrot,m|RβξRγη|χrot,n〉φ,θ,ψ 6= 0. И здесь есть одно исклю-
чение из общего правила, которое относится к сферическим волчкам. В случае сфе-
рических волчков все компоненты тензора поляризуемости одинаковы, а сам тензор
поляризуемости пропорционален единичной матрице. Из чего следует RβξRγη рав-
но 0 или 1. Тогда 〈χrot,m|RβξRγη|χrot,n〉φ,θ,ψ = 0 и сигнала в спектрах рассеяния не
будет. Заметим, что сигнала не будет и в спектрах поглощения.
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Лекция 15. Состояния молекул в магнитных полях

Молекула в постоянном магнитном поле

Снова обратимся к уравнению 151 и перепишем его для случая отсутствия элек-
трического поля:

H =
∑
j

~pj
2

2mj

+
∑
i<j

qiqj
rij
−
∑
j

qj
mjc

~A(~rj)~pj +
∑
j

q2
j

2mjc2

∣∣∣ ~A(~rj)
∣∣∣2 = (175)

= H0 −
∑
j

qj
mjc

~A(~rj)~pj +
∑
j

q2
j

2mjc2

∣∣∣ ~A(~rj)
∣∣∣2 (176)

Воспользуемся уравнением Максвелла div ~H = 0. Так как всегда divrot ~A = 0, то
~H = rot ~A. Тогда будем искать ~A в виде ~A = 1

2
[ ~H,~r]. Тогда гамильтониан, отвечаю-

щий воздействию магнитного поля на молекулу (безH0), определяется выражением:

H ′ = −
∑
j

qj
2mjc

[ ~H,~r ]~pj +
∑
j

q2
j

8mjc2
[ ~H,~r ]2 (177)

Воспользуемся свойством смешанного произведения векторов, чтобы упростить
первое и второе слагаемые:

[ ~H,~r ]~pj = [~r, ~pj] ~H = ~L ~H (178)
q2
j

8mjc2
[ ~H,~r ]2 =

q2
j

8mjc2
[~r, [ ~H,~r ] ] ~H =

q2
j

8mjc2

(
~H2~r 2 − ( ~H ~r )2

)
(179)

Окончательное выражение принимает вид:

H ′ = −
∑
j

qj
2mjc

~L ~H +
∑
j

q2
j

8mjc2

(
~H2~r 2 − ( ~H ~r )2

)
(180)

Теперь снова обратимся к тому же приему, который мы использовали при анализе
молекулы в постоянном электрическом поле, разложим энергию в ряд Тейлора по
компонентам вектора напряженности магнитного поля:

ε = ε|H=0 +
∑

β=x,y,z

∂ε

∂Hβ

∣∣∣∣∣
H=0

Hβ +
1

2

∑
β,γ=x,y,z

∂2ε

∂Hβ∂Hγ

∣∣∣∣∣
H=0

HβHγ + . . . (181)

Сопоставим выражения 180 и 181. Аналогично первая производная ∂ε

∂ ~H
= ~µ -

вектор магнитного момента, которому соответствует в гамильтониане

~µ = −
∑
j

qj
2mjc

~L (182)

Вводят также магнетон Бора:

µB =
~e

2mec
(183)
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В случае одного электрона магнитный момент принимает вид:

~µe = −µB
~

(~L+ ge~S) (184)

Здесь ~L - орбитальная составляющая момента импульса, ~S - спиновая составляю-
щая момента импульса. ge - g-фактор электрона, определяющий вклад спиновой
составляющей момента импульса.
А вторая производная ∂2ε

∂Hβ∂Hγ
= χβγ - компонента магнитной восприимчивости,

которой в гамильтониане соответствует тензор магнитной восприимчивости:

− 1

2
~H+χ ~H =

∑
j

q2
j

8mjc2

(
~H2~r 2 − ( ~H ~r )2

)
·

· ~H+
∑
j

q2
j

8mjc2

 −y2
j − z2

j xjyj xjzj
yjxj −x2

j − z2
j yjzj

zjxj zjyj −x2
j − y2

j

 ~H

Выпишем общее уравнение для гамильтониана, отвечающего энергии взаимодей-
ствию молекулы с постоянным магнитным полем:

H ′ = −(~µ, ~H)− 1

2
~H+χ ~H (185)

Магнитно-резонансные методы

Рассмотрим модельную задачу: атом водорода в магнитном поле. Атом водорода
состоит из 1 электрона и 1 протона. Выпишем магнитный момент электрона:

~µe = −µB
~

(~L+ ge~S) (186)

а также его энергию взаимодействия с этим полем:

ε = −(~µ, ~H) (187)

Для простоты рассмотрения будем считать, что поле направлено вдоль оси OZ.
Тогда выражение для энергии принимает вид:

ε =
µB
~
Hz(Lz + geSz) = H ′ (188)

Волновая функция в общем виде это:

Ψ = ΦenΦσnχnχσn (189)

Здесь Φen - пространственная часть электронной волновой функции, Φσn - спино-
вая часть электронной волновой функции, χn - колебательно-вращательная ядерная
функция, χσn - спиновая ядерная волновая функция. Очевидно, что оператор Га-
мильтона, полученный из выражения 188 будет действовать только на первые два
сомножителя (так как оператор отвечает энергии взаимодействия с электроном, а
не с ядром).
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Выпишем первую поправку в теории возмущений:

ε(1)
e = 〈n|µB

~
Hz(L̂z + geŜz)|n〉 =

µB
~
Hz(〈Φen|L̂z|Φen〉+ ge〈Φσn|Ŝz|Φσn〉) (190)

〈Φen|L̂z|Φen〉 = ~ML 〈Φσn|Ŝz|Φσn〉 = ~MS (191)

Здесь ML - проекция углового момента электрона, MS - проекция собственного
момента электрона

ε(1)
e = µBHz(ML + geMS) (192)

g-фактор для электрона приблизительно равен 2. Для L = 1 диаграмма электрон-
ных уровней принимает вид на рис 15.

-1

0

1

1/2

-1/2
�BHz

�BgeHz

H'=0

Рис. 15. Электронный эффект Зеемана

Эффект расщепления уровней в магнитном поле носит название электронного
эффекта Зеемана и является основой метода ЭПР.

Для ядерной системы спиновое слагаемое играет более существенную роль:

~µn =
µ0

~
gn~I (193)

Здесь ~µn - магнитный момент ядра, µ0 - ядерный магнетон Бора (в тысячи раз
меньше электронного, так как в знаменателе стоит масса ядра), ~I - суммарный
ядерный спин, для атома водорода, просто спин ядра. gn - ядерный g-фактор.
Аналогичным способом по методу теории возмущений находим первую поправку

к энергии:

ε(1)
e = 〈n| − µ0

~
gnÎznHz|n〉 = −µ0

~
gnHz〈χσn|Îzn|χσn〉 = −µ0gnHzMi (194)

Здесь Mi - проекция ядерного спина. Диаграмма ядерных уровней принимает вид
на рис 17.

Если рассматривать только спиновые состояния, то общий гамильтониан для ато-
ма водорода принимает вид:

H ′ =
µB
~
geHzŜz −

µ0

~
gnHz Îzn (195)
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μ0gnHz

-1/2

1/2

Рис. 16. Ядерный эффект Зеемана

S = 1/2

S = -1/2

I = -1/2

I = -1/2

I =1/2

I =1/2

Рис. 17. Общая схема уровней

Далее задачу обобщают на более сложную, чем водород, электронно-ядерную си-
стему. В полученный гамильтониан вносят также некоторые поправки, отвечающие
спин-спиновому взаимодействию.

Ĥ ′ =
∑
i

µB
~
geHzŜi −

∑
j

µ0j

~
gjHz Îj +

∑
i<j

Jij
~2
ÎiÎj +

∑
i<j

Dij

~2
ŜiŜj +

∑
i<j

cij
~2
ŜiÎj (196)

Dij и Jij - константы спин-спинового взаимодействия, cij - константа сверхтонкого
взаимодействия. Можно также добавить орбитальные и спин-орбитальные состав-
ляющие, но для простоты будем считать, что они лишь немного смещают исходные
уровни.

Электроны вблизи ядра экранируют внешние электроны от магнитного поля яд-
ра, что выражается соответствующей поправкой:∑

j

µ0j

~
gjHz(1− σj)Îj (197)

σj - константа экранирования.
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Лекция 16. ЭПР и ЯМР

ЭПР

ЭПР - поглощение, отвечающее переходам между зеемановскими уровнями, воз-
никающими в связи с наличием у молекул не равного нулю электронного момента
количества движения. Обычно изучают молекулы с 1 неспаренным электроном.
Для этого случая учитывают взаимодействие этого электрона с внешним полем
(задача про электрон у водорода) и взаимодействие этого электрона с ядерной под-
системой.

ĤЭПР =
µB
~
geHzŜz +

∑
j

aj
~2
ŜÎj (198)

ε(1)
e = µBgeMSHz +

∑
j

ajMSMj (199)

Для осуществления переходов между зеемановскими уровнями применяют вто-
рое поле ~H1 cosωt, которое ортогонально первому (пусть оно будет направлено по
оси OX). Его энергия взаимодействия с электроном определяется соотношением:

ε =
µB
~
geSxHx1 cosωt (200)

Переход из состояния k в состояние n возможен в случае, если интеграл

〈Φσnχσn|
µB
~
geŜxHx1 cosωt|χσnΦσn〉 (201)

отличен от нуля, что равносильно отличию от нуля следующего интеграла

〈Φσnχσn|Ŝx|χσnΦσn〉 6= 0

Сразу заметим, что если бы было выбрано направление вдоль оси OZ, то есть
совпадающее с исходным, то, поскольку Φσn собственная для Ŝz, интеграл всегда
был бы ноль для разных состояний.
Оператор Ŝx никак не действует на функции χσn, следовательно, переход возможен
если ∆MI = 0. Поскольку

Ŝx =
Ŝ+ + Ŝ−

2
(202)

то правила отбора ∆MS = ±1 Предположим, что произошло поглощение и энергия
увеличилась ∆MS = 1, тогда

ε(1)
e = µBgeHz +

∑
j

ajMj (203)

где µBgeHz характеризует базовую частоту ν0. Заметим, что базовая частота не за-
висит от прикладываемого поля Hx.

∑
j ajMj характеризует мультиплетность сиг-

нала - число линий и расстояние между ними.
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ЯМР

ЯМР - поглощение, отвечающее переходам между зеемановскими уровнями, воз-
никающими в связи с наличием у ядер не равного нулю суммарного ядерного спина.
Обычно применяют для исследования ядер с полуцелым спином (1H, 13C, 19F , 31P ).

Ĥ =
∑
j

νj
~
Îzj νj = µ0gjHz(1− σj) (204)

В данном выражении знак изменен на противоположный, будем считать, что поле
выбрано против оси OZ. Будем считать, что спиновые состояния отдельных ядер
независимы, тогда можно представить ядерную спиновую функцию молекулы как

χσn = χ1χ2...χn (205)

Соответствующая поправка в первом порядке теории возмущений равна:

ε(1)
e = 〈χ1χ2...χn|

∑
j

νj
~
Îzj|χ1χ2...χn〉 =

∑
j

〈χj|
νj
~
Îzj|χj〉 =

∑
j

νjMj (206)

Аналогично задаче про ЭПР подействуем внешним полем, ортогональным исход-
ному, пусть оно будет вдоль оси OX H1x cosωt. Энергия взаимодействия этого поля
с молекулой будет определяться формулой:

ε = −µ
~
H1x

∑
j

gjIxj (207)

Сделав переход к соответствующему оператору Гамильтона:

Ĥ ′ = −µ
~
H1x

∑
j

gj Îxj (208)

Переход из одного состояния в другое (обозначим его штрихом) возможен, если
интеграл

〈χ′1χ′2...χ′n|
∑
j

gj Îxj|χ1χ2...χn〉 (209)

Нетрудно догадаться, что этот интеграл не равен нулю тогда и только тогда,
когда для одного из ядер ∆Mj = ±1, а для всех остальных ∆Mi = 0. Отсюда
получаем: изменение энергии при переходе с одного уровня на другой определяется
собственной частотой δε = νj. Получается, что в случае поглощения происходит
изменение только 1 спинового состояния с энергией равной собственной частоте
νj. Заметим также, что νj пропорциональны 1 − σj, что означает, что для разного
пространственного окружения мы получим разные собственный частоты.
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