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Лекция 1

Введение
Три вопроса, которыми занималась математическая логика:
1) Что и как можно доказать?
2) Как можно вычислить?
3) Что считать истинным?
Из этих вопросов выросли теория доказательств, теория алгоритмов и теория

моделей.
Логика произошла из философии. Её родоначальником считается Аристотель.

В старом смысле логику можно определить как науку о рассуждениях. Тогда она
аналогична грамматике – науке о правильном употреблении языка. Аристотель при-
думал правила, по которым можно рассуждать так, чтобы не допускать ошибки, –
силлогистику.

Приведём пример. Если любое A есть B, а любое B есть C, то любое A есть C.
Через много столетий логика стала приобретать очертания более точной науки.

Вклад в это сделал Лейбниц (XVII век), у него была идея об универсальном фор-
мальном языке и формальном исчислении для решения математических задач. Он
определил две основные задачи (сейчас это две основные проблемы теории алго-
ритмов):

1) нахождение всех истинных утверждений (проблема порождения);
2) ответ на вопрос об истинности данного утверждения (проблема разрешения).
Дальше развитие логике дал Джордж Буль (1815-1864). Он предложил рассмат-

ривать высказывания как формальные элементы некоторой алгебры – алгебры вы-
сказываний (1847).

В XIX веке логика стала постепенно превращаться в математическую дисципли-
ну. Де Морган придумал алгебру отношений (1860). Фреге придумал кванторы и
логику предикатов (1879).

Одновременно с этим происходил другой процесс, не имеющий непосредственного
отношения к логике. В самой математике появились аксиоматические теории.

История построения аксиоматической теории геометрии:
1) Евклид, III век до н. э. (неформальная);
2) Гильберт, 1899 (почти формальная);
3) Тарский, 1957 (формальная).
Кроме этого, из анализа проблемы независимости 5-го постулата Евклида удалось

построить неевклидовы геометрии.
Построение аксиоматической теории арифметики: Пеано, 1889 (почти формаль-

ная).
Построение аксиоматической теории анализа (с действительными числами): Де-

декинд, 1876 (почти формальная).
С построением аксиоматической теории множеств возникла серьёзная проблема.

В XIX веке была предложена неудачная формализация, которая приводила к па-
радоксам. Наиболее знаменитый из них – это парадокс Рассела, приведём его. Рас-
смотрим множество всех множеств, которые не являются элементами самих себя:
R = {x | x 6∈ x}. Является ли это множество собственным элементом, то есть R ∈ R?
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Несложно показать, что утверждение R ∈ R и утверждение R 6∈ R приводят к про-
тиворечиям. Значит, такое множество R нельзя строить. Тогда возникает вопрос:
какие правильные принципы построения множеств? В итоге пришли к современным
аксиоматикам теории множеств, одна из них – аксиоматика Цермело-Френкеля с
аксиомой выбора (ZFC, 1925).
Тогда возник естественный вопрос: как надо действовать, чтобы формальные тео-

рии не приводили к противоречию? И вообще, как обосновывать математику, если
выдвигаемые принципы неверны в смысле логики? Гильберт предложил следую-
щую программу:
1) построение формальных теорий для различных разделов математики;
2) доказательство непротиворечивости формальных теорий «финитными» мето-

дами, то есть с использованием только конечных множеств и натуральных чисел;
3) по возможности построение полных теорий.

Определение 1.1. Теория T непротиворечива, если ни для какого утверждения
A (записанного в её языке) в T нельзя доказать одновременно A и не-A.

Определение 1.2. Теория T полна, если для всякого утверждения A (в её языке)
в T можно доказать A или доказать не-A.

Исследование формальных теорий финитными методами Гильберт назвал мета-
математикой. В современной науке используется название теория доказательств.
Эти же задачи решаются (но не всегда финитными методами) в теории моделей.
В первом приближении финитные рассуждения можно отождествить с доказа-

тельствами в формальной теории натуральных чисел – арифметики Пеано. Но воз-
никает вопрос о непротиворечивости самой арифметики Пеано (2-я проблема Гиль-
берта, 1900).
Программа Гильберта не была реализована. Этому помешали появившиеся ре-

зультаты Гёделя (приводим из ниже).
1) Теорема о неполноте утверждает, что арифметика Пеано (PA) неполна.
2) Вторая теорема Гёделя утверждает, что нельзя доказать непротиворечивость

арифметики в самой арифметики: PA 0 непротиворечивость PA.
Следующий результат Гёделя касался проблемы 1 Гильберта: доказать или опро-

вергнуть континуум-гипотезу (CH). Эта гипотеза утверждает, что всякое бесконеч-
ное подмножество множества действительных чисел либо счётно, либо континуаль-
но. Кантор много лет посвятил решению этой проблемы, но у него ничего не вышло.
Гёдель доказал (1940), что в теории Цермело-Френкеля с аксиомой выбора нельзя
опровергнуть континуум гипотезу: ZFC 0 ¬CH. Позже Коэн доказал (1963), что в
теории Цермело-Френкеля с аксиомой выбора нельзя и доказать континуум гипо-
тезу: ZFC 0 CH.
В заключение скажем о нерешённой проблеме. Это проблема из списка 7 проблем

тысячелетия, поставленных в начале XXI века. Она называется проблема перебора:
совпадают ли два класса сложности P = NP ?
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Логика высказываний. Пропозициональные формулы

Высказывания – это предложения естественного языка. Естественные языки –
предмет изучения других наук: лингвистики и филологии. В математической логи-
ке рассматриваются формальные языки. Простейший из них – язык классической
логики высказываний, который задаётся так.

Определение 1.3. Фиксируем счётное множество символов – так называемых про-
позициональных переменных V ar = {P1, P2, . . .}. Множество пропозициональных
формул, обозначаемое Fm, строится из этих переменных, логических связок ∧, ∨,
→, ¬ и скобок по индукции, как наименьшее множество, удовлетворяющее услови-
ям:

1) если A ∈ V ar, то A ∈ Fm;
2) если A,B ∈ Fm, то (A ∧B) ∈ Fm;
3) если A,B ∈ Fm, то (A ∨B) ∈ Fm;
4) если A,B ∈ Fm, то (A→ B) ∈ Fm;
5) A ∈ Fm ⇒ ¬A ∈ Fm.

Таким образом, формулы представляют собой конечные последовательности зна-
ков, то есть некоторые слова в алфавите, состоящем из переменных, связок и скобок.

Лемма 1.1 (Лемма об однозначном анализе формул). Для любой формулы C вы-
полнено ровно одно из условий:
1) C ∈ V ar;
2) ∃!A : C = ¬A;
3) ∃!A,B : C = (A ∧B);
4) ∃!A,B : C = (A ∨B);
5) ∃!A,B : C = (A→ B).

Упражнение 1.1. Доказать однозначность анализа для бесскобочной записи фор-
мул, то есть когда вместо записей (A ∨ B), (A ∧ B), (A→ B) используются записи
∨AB, ∧ AB, → AB.
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Лекция 2

Логика высказываний. Пропозициональные формулы
(продолжение)

Приведём упрощающие соглашения, позволяющие записывать формулы короче.
1) Можно опускать внешние скобки: вместо записи формулы (A∨B) пишем A∨B.
2) Устанавливаем приоритет связок: самая сильная связка – отрицание ¬, затем

идёт конъюнкция ∧, потом – дизъюнкция ∨, а последняя связка – это импликация
→. То есть можно, например, вместо записи формулы P1 → (P2 ∨P3) использовать
запись P1 → P2 ∨ P3.
Введём ещё полезную для сокращения связку: ↔ – эквиваленция: (A ↔ B) :=

:= ((A→ B) ∧ (B → A)).

Подформулы

Говоря не совсем точно, подформула – это часть формулы, которая тоже является
формулой. Точное определение можно дать двумя способами.

Определение 2.1. Определим отношение A 4 B (A – подформула B) индукцией
по длине B.
1) Если B ∈ V ar, то A 4 B ⇔ A = B.
2) Если B = (C ∨ D) для формул C,D, то A 4 B ⇔ (A = B, или A 4 C, или

A 4 D).
3) Если B = (C ∧ D) для формул C,D, то A 4 B ⇔ (A = B, или A 4 C, или

A 4 D).
4) Если B = (C → D) для формул C,D, то A 4 B ⇔ (A = B, или A 4 C, или

A 4 D).
5) Если B = ¬C, то A 4 B ⇔ (A = B или A 4 C).

Замечание 2.1. Можно ещё определить отношение A ≺ B (A – собственная под-
формула B): A – подформула B и A 6= B.

Определение 2.2. Подсловом слова a1 . . . an (где a1, . . . , an – буквы) называется
его часть, расположенная между какими-то двумя позициями, то есть слово вида
ai . . . aj, где i < j. Подформулой формулы A называется любое её подслово, которое
является формулой.

Упражнение 2.1. Доказать эквивалентность определений (2.1) и (2.2).

Оценки и значения формул

Определение 2.3. Оценкой (пропозициональных переменных) называется любое
отображение f : V ar → B, где B := {0, 1}.

Значение 0 соответствует понятию «ложь», а значение 1 – понятию «истина».
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Лемма 2.1 (Лемма о продолжении оценки на формулы).
∀ оценки f : V ar → B ∃! отображение f : Fm→ B такое, что ∀A,B ∈ Fm:
1) f(A) = f(A), если A ∈ V ar;
2) f(A ∧B) = 1 ⇔ f(A) = f(B) = 1;
3) f(A ∨B) = 1 ⇔ (f(A) = 1 или f(B) = 1);
4) f(¬A) = 1 ⇔ f(A) = 0;
5) f(A→ B) = 1 ⇔ (f(A) = 0 или f(B) = 1).

Замечание 2.2. Условия (2)-(5) можно записать иначе:
2) f(A ∧B) = min(f(A), f(B));
3) f(A ∨B) = max(f(A), f(B));
4) f(¬A) = 1− f(A);
5) f(A→ B) = f(¬A ∨B) = max(1− f(A), f(B)).

Доказательство:
Для формулы A длины 1 лемма верна, так как тогда A ∈ V ar и f(A) = f(A).
Надо доказать шаг индукции: если f однозначно определена на формулах длины

< n, то f однозначно определяется на формулах длины n.
По лемме (1.1) об однозначном анализе формул каждая формула C записывается

одним из следующих способов:
1) C ∈ V ar, тогда f(C) = f(C));
2) C = ¬A, тогда f(C) = 1− f(A);
3) C = (A ∨B), тогда f(C) = max(f(A), f(B));
4) C = (A ∧B), тогда f(C) = min(f(A), f(B));
5) C = (A→ B), тогда f(C) = max(1− f(A), f(B)).
Таким образом, по индукции лемма доказана.

Договоримся далее для краткости вместо записи продолжения оценки f исполь-
зовать запись f , подразумевая продолжение оценки на используемых формулах.

Лемма 2.2. Значение формулы A при некоторой оценке зависит только от значе-
ния этой оценки на переменных из A: если f(Pi) = g(Pi) ∀Pi из A, то f(A) = g(A).

Доказательство этой леммы выполняется тривиально с помощью индукции по
длине формулы.

Определение 2.4. A ∈ Fm – тавтология (тождественно истинная формула),
если f(A) = 1 при всех оценках f .

Определение 2.5. A ∈ Fm выполнима, если ∃ оценка f : f(A) = 1.

A – тавтология ⇔ ¬A не выполнима.
A выполнима ⇔ ¬A – не тавтология.
Тавтологии выражают законы логики.
Введём обозначения: > := (P1 → P1) – тождественно истинная формула, ⊥ := ¬>

– тождественно ложная формула.
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Булевы функции

Определение 2.6. Мы говорим, что формула A построена из переменных
P1, . . . , Pn, если в ней нет других переменных (но не обязательно все P1, . . . , Pn в
ней встречаются).

Если A построена из P1, . . . , Pn, то используем запись A(P1, . . . , Pn).
Каждой формуле A(P1, . . . , Pn) отвечает n-местная булева функция ϕnA : Bn → B

(или короче, ϕA), которая задаёт значения A при всевозможных оценках. Таблица
значений этой функции называется таблицей истинности формулы A.
Дадим точное определение ϕnA.

Определение 2.7. Для каждого двоичного вектора ~x = (x1, . . . , xn) ∈ Bn построим
оценку f~x : V ar → B такую, что

f~x(Pi) =

{
xi, если i ≤ n

0, если i > n
.

Тогда ϕnA : Bn → B – n-местная булева функция для A(P1, . . . , Pn) определяется
следующим образом:

ϕnA(~x) := f~x(A).

Приведём пример. Чтобы полностью задать булеву функцию для формулы
P1 ↔ P2, построим для неё таблицу истинности.

P1 ↔ P2 P1 P2

1 1 1
0 0 1
0 1 0
1 0 0

Можем переформулировать определение тавтологии с использованием булевой
функции: A(P1, . . . , Pn) – тавтология ⇔ ϕnA ≡ 1.

Равносильность формул

Определение 2.8. A ∼ B (A и B равносильны), если ∀f f(A) = f(B).

Из леммы (2.2) сразу получаем, что формулы от одних и тех же переменных
равносильны тогда и только тогда, когда их булевы функции тождественно равны:
A(P1, . . . , Pn) ∼ B(P1, . . . , Pn) ⇔ ϕnA ≡ ϕnB.

Лемма 2.3.
1) (A ∼ B) ⇔ (A↔ B) – тавтология.
2) A – тавтология ⇔ A ∼ >.

Доказательство:
Докажем пункт (1) этой леммы.
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A↔ B A B
1 1 1
0 0 1
0 1 0
1 0 0

Из выписанной таблицы истинности видно, что f(A) = f(B) ⇔ f(A ↔ B) = 1,
значит, (A ∼ B) ⇔ (A↔ B) – тавтология.

Докажем пункт (2) этой леммы.
> – тавтология, значит, A – тавтология ⇔ A ∼ >.

Выпишем основные равносильные формулы, из которых можно получить все
остальные равносильные формулы.

Лемма 2.4.
1) A ∧B ∼ B ∧ A; A ∨B ∼ B ∨ A (коммутативность).
2) (A ∧B) ∧ C ∼ A ∧ (B ∧ C); (A ∨B) ∨ C ∼ A ∨ (B ∨ C) (ассоциативность).
3) A ∧ A ∼ A; A ∨ A ∼ A (идемпотентность).
4) (A∨B)∧C ∼ (A∧C)∨ (B ∧C); (A∧B)∨C ∼ (A∨C)∧ (B ∨C) (дистрибу-

тивность).
5) A ∨ (A ∧B) ∼ A; A ∧ (A ∨B) ∼ A (поглощение).
6) A ∧ ¬A ∼ ⊥; A ∨ ⊥ ∼ A;
A ∨ ¬A ∼ >; A ∧ > ∼ A.

7) ¬(A ∨B) ∼ (¬A ∧ ¬B); ¬(A ∧B) ∼ (¬A ∨ ¬B) (законы де Моргана).
8) ¬¬A ∼ A (закон двойного отрицания).
9) (A→ B) ∼ (¬A ∨B).

Упражнение 2.2. Доказать лемму (2.4).

Функциональная полнота

Пусть дана некоторая функция ϕ : Bn → B. Всегда ли можно утверждать, что она
отвечает некоторой формуле, то есть ϕnA ≡ ϕ? Другими словами, всегда ли можно
построить формулу по заданной таблице истинности? Покажем, что это действи-
тельно так.

Лемма 2.5 (Лемма о сигнальной формуле). Пусть ~x ∈ Bn. Тогда ∃ формула
A~x(P1, . . . , Pn) такая, что

ϕnA~x
(~y) =

{
1, если ~y = ~x

0, если ~y 6= ~x
.

Доказательство:
Введём обозначения: P 1

i := Pi, P 0
i := ¬Pi. Тогда пусть A~x := P x1

1 ∧ P x2
2 ∧ . . . ∧ P xn

n

(из-за ассоциативности неважно, как расставить скобки). Покажем, что эта форму-
ла является искомой.
По определению ϕnA~x

(~y) = f~y(A~x).
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f~y(A~x) = 1 ⇔ f~y(P
x1
1 ) = f~y(P

x2
2 ) = . . . = f~y(P

xn
n ) = 1.

f~y(P
xi
i ) =

{
f~y(Pi), если xi = 1

1− f~y(Pi), если xi = 0
=

{
yi, если xi = 1

1− yi, если xi = 0
.

Таким образом, f~y(P xi
i ) = 1 ⇔ yi = xi, значит, ϕnA~x

(~y) = 1 ⇔ ~y = ~x.

Теорема 2.1 (Теорема о функциональной полноте). ∀ булевой функции
α : Bn → B ∃ формула A(P1, . . . , Pn) такая, что ϕnA ≡ α.

Доказательство:
Рассмотрим сначала тривиальный случай: пусть α ≡ 0. Тогда A := ⊥.
Теперь рассмотрим случай α 6≡ 0, то есть формула должна быть выполнима.

Тогда A :=
∨
{A~x | α(~x) = 1}. Покажем, что ϕnA ≡ α.

ϕnA(~y) = 1 ⇔ ∃~x : (α(~x) = 1 и ϕnA~x
(~y) = 1) ⇔ ∃~x : (α(~x) = 1 и ~x = ~y) ⇔ α(~y) =

= 1.

Таким образом, количество неэквивалентных формул от n переменных равно ко-
личеству булевых функций от n переменных.
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Лекция 3

Совершенная дизъюнктивная нормальная форма (СДНФ)

Определение 3.1. Литерал – это пропозициональная переменная Pi или её отри-
цание ¬Pi.

Определение 3.2. Элементарная конъюнкция от переменных P1, . . . , Pn – это
конъюнкция литералов от этих переменных, в которой каждая переменная встре-
чается ровно 1 раз.

С точностью до эквивалентности всякую элементарную конъюнкцию можно за-

писать в виде
n∧
i=1

P xi
i .

A~x =
n∧
i=1

P xi
i – сигнальная формула для двоичного вектора ~x = (x1, . . . , xn).

Определение 3.3. Совершенная дизъюнктивная нормальная форма (СДНФ) от
P1, . . . , Pn – это дизъюнкция

∨
~x∈I

A~x элементарных конъюнкций A~x от P1, . . . , Pn, в

которой элементарные конъюнкции не повторяются.
Если I состоит из 1 элемента, то СДНФ – это одна элементарная конъюнкция.
Если I = ∅, то СДНФ := ⊥.

С точностью до перестановок и применения скобок СДНФ однозначна для задан-
ного множества I.

Количество различных СДНФ для векторов x длины n равно количеству под-
множеств множества двоичных векторов длины n, то есть 22n .

Теорема 3.1.
1) Любая формула от P1, . . . , Pn равносильна некоторой СДНФ от P1, . . . , Pn.
2) Такая СДНФ единственна с точностью до порядка членов дизъюнкции и ско-

бок.

Доказательство:
Докажем пункт (1) этой теоремы. Из доказательства теоремы (2.1) о функци-

ональной полноте понятно, что для любой формулы A можно построить СДНФ∨
~x∈I

A~x, причём A ∼
∨
~x∈I

A~x.

Докажем пункт (2) этой теоремы. Введём обозначение AI :=
∨
~x∈I

A~x. Надо пока-

зать, что если AI ∼ AJ , то I = J .
ϕnAI

(~y) = 1 ⇔ f~y(AI) = 1 ⇔ ∃~x ∈ I : f~y(A~x) = 1 ⇔ ∃~x ∈ I : ~x = ~y ⇔ ~y ∈ I.
Таким образом, из AI ∼ AJ следует, что ~y ∈ I ⇔ ~y ∈ J , значит, I = J .
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Совершенная конъюнктивная нормальная форма (СКНФ)

Можно вместо совершенной дизъюнктивной нормальной формы рассматривать
совершенную конъюнктивную нормальную форму.

Определение 3.4. Элементарная дизъюнкция от переменных P1, . . . , Pn – это
дизъюнкция литералов от этих переменных, в которой каждая переменная встре-
чается ровно 1 раз.

С точностью до эквивалентности всякую элементарную дизъюнкцию можно за-

писать в виде
n∨
i=1

P xi
i . Введём обозначение: B~x =

n∨
i=1

P xi
i .

Определение 3.5. Совершенная конъюнктивная нормальная форма (СКНФ) от
P1, . . . , Pn – это конъюнкция

∧
~x∈I

B~x элементарных дизъюнкций B~x от P1, . . . , Pn, в

которой элементарные дизъюнкции не повторяются.
Если I состоит из 1 элемента, то СКНФ – это одна элементарная дизъюнкция.
Если I = ∅, то СКНФ := >.

Теорема 3.2.
1) Любая формула от P1, . . . , Pn равносильна некоторой СКНФ от P1, . . . , Pn.
2) Такая СКНФ единственна с точностью до порядка членов конъюнкции и ско-

бок.

Упражнение 3.1. Доказать теорему (3.2).

Принцип двойственности

Определение 3.6. Определим операцию построения двойственной формулы
A 7→ A∗ следующим образом:

1) избавиться от всех импликаций: B → C ∼ ¬B ∨ C;
2) заменить в полученной записи дизъюнкции на конъюнкции, а конъюнкции –

на дизъюнкции.

Утверждение 3.1 (Принцип двойственности). A ∼ B ⇒ A∗ ∼ B∗.

Упражнение 3.2. Доказать утверждение (3.1) о принципе двойственности.

Сформулируем следствие из утверждения (3.1) о принципе двойственности.

Утверждение 3.2. A – тавтология ⇒ ¬A∗ – тавтология.

Доказательство:
A – тавтология, значит, A ∼ >, то есть A ∼ P1 ∨ ¬P1.
Тогда A∗ ∼ P1 ∧ ¬P1, то есть A∗ ∼ ⊥, значит ¬A∗ – тавтология.
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Булевы алгебры

Определение булевой алгебры

По аналогии с двузначными оценками и таблицами истинности, для логических
связок ¬, ∨, ∧ можно построить таблицы с несколькими значениями истинности.
Если желательно, чтобы сохранились основные свойства этих связок, мы приходим
к понятию булевой алгебры.

Определение 3.7. Булева алгебра – это непустое множество с заданными на нём
операциями и выделенными элементами: (B,t,u,−, 0, 1), где

B 6= ∅;

t : B2 → B – сумма (объединение);
u : B2 → B – произведение (пересечение);
− : B → B – дополнение;
0, 1 ∈ B.

Причём ∀x, y, z ∈ B должны выполняться следующие аксиомы:
1) x u y = y u x, x t y = y t x (коммутативность);
2) (x u y) u z = x u (y u z); (x t y) t z = x t (y t z) (ассоциативность);
3) x u x = x; x t x = x (идемпотентность);
4) (xt y)u z = (xu z)t (y u z); (xu y)t z = (xt z)u (y t z) (дистрибутивность);
5) (x t y) u x = x, (x u y) t x = x (поглощение);
6) x u −x = 0, x t 0 = x,
x t −x = 1, x u 1 = x (свойства 0 и 1);

7) −(x t y) = (−x u −y); −(x u y) = (−x t −y) (законы де Моргана);
8) −− x = x (закон двойного дополнения)

Определение 3.8. Носитель булевой алгебры – множество её элементов.

Упражнение 3.3. Доказать, что в определении булевой алгебры можно постули-
ровать только равенства (1), (2), (4), (5), (6), а остальные равенства (3), (7), (8)
выводятся из них.

В качестве примера покажем, как выводится равенство x = x u x из пункта (3),
используя равенства (5) и (6):
x = (x u 0) u x = x u x.
Приведём примеры булевых алгебр.
1) Тривиальный пример булевой алгебры – одноэлементная алгебра (она обо-

значается 1 ). В ней 0 = 1 и все операции дают 1, тогда выполнение аксиом из
определения (3.7) очевидно.
2) Двухэлементная булева алгебра 2 . Её носителем является множество B =

= {0, 1}. Операции в ней устроены следующим образом: x u y := min(x, y), x t y :=
:= max(x, y), −x := 1 − x. Выделенные элементы: 0 := 0, 1 := 1. По лемме (2.4)
аксиомы из определения (3.7) выполняются.
3) Алгебра множеств. Пусть E 6= ∅, рассмотрим P(E) = {X | X ⊆ E} – мно-

жество всех подмножеств множества E. Определим операции следующим образом:
XtY := X∪Y , XuY := X∩Y , −X := E\X. Выделенные элементы: 0 := ∅, 1 := E.
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Утверждение 3.3. P(E) – булева алгебра.

Доказательство:
Нужно проверить 8 свойств булевой алгебры. Но на самом деле можно использо-

вать аналогию с формулами логики высказываний. Приведём пример для дистри-
бутивности.

(X t Y ) u Z = (X u Z) t (Y u Z) – хотим проверить.
a ∈ (X ∪ Y ) ∩ Z ⇔ a ∈ (X ∩ Z) ∪ (Y ∩ Z) – хотим проверить.
Пусть P обозначает, что a ∈ X, Q обозначает, что a ∈ Y , R обозначает, что a ∈ Z.

Тогда a ∈ X ⇔ f(P ) = 1, a ∈ Y ⇔ f(Q) = 1, a ∈ Z ⇔ f(R) = 1. Значит,
a ∈ (X∪Y )∩Z ⇔ f((P∨Q)∧R) = 1, a ∈ (X∩Z)∪(Y ∩Z) ⇔ f((P∧R)∨(Q∧R)) = 1.

(P∨Q)∧R ∼ (P∧R)∨(Q∧R), значит, f((P∨Q)∧R) = 1 ⇔ f((P∧R)∨(Q∧R)) = 1,
значит, (X t Y ) u Z = (X u Z) t (Y u Z).
Аналогичным образом, любое равенство множеств, требующее проверки, сводит-

ся к равносильности некоторых формул логики высказываний.

Изоморфизм булевых алгебр

Определение 3.9. Изоморфизм булевых алгебр – это биекция, сохраняющая все
операции.

Точнее, пусть A, B – булевы алгебры. Биекция ϕ : A → B называется изоморфиз-
мом A на B, если:

ϕ(0A) = 0B;

ϕ(1A) = 1B;

ϕ(−Ax) = −Bϕ(x);

ϕ(x tA y) = ϕ(x) tB ϕ(y);

ϕ(x uA y) = ϕ(x) uB ϕ(y).

Определение 3.10. Алгебры A и B изоморфны (A ∼= B), если существует изомор-
физм A на B.

Изоморфность A ∼= B является отношением эквивалентности между алгебрами.
Приведём примеры изоморфных булевых алгебр.
1) P(∅) ∼= 1.
2) P({a}) ∼= 2.

Отношение частичного порядка в булевой алгебре

Лемма 3.1. В булевой алгебре можно определить частичный порядок, положив

a ≤ b ⇔ a = a u b.

Относительно этого порядка 0 является наименьшим элементом, 1 – наиболь-
шим элементом.
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Доказательство:
Проверим свойства частичного порядка.
1) Рефлексивность: a ≤ a – верно в силу идемпотентности.
2) Транзитивность: a ≤ b, b ≤ c ⇒ a ≤ c. Действительно, если a ≤ b, b ≤ c, то

a = a u b = a u (b u c) = (a u b) u c = a u c, то есть a ≤ c.
3) Антисимметричность: a ≤ b, b ≤ a ⇒ a = b. Действительно, если a ≤ b, b ≤ a,

то a = a u b и b = b u a, тогда в силу коммутативности a = b.
Таким образом, ≤ – частичный порядок на B.
a = a u 1 ∀a, то есть a ≤ 1 ∀a, поэтому 1 – наибольший элемент.
0 u a = (a u−a) u a = a u (−a u a) = a u (a u−a) = (a u a) u−a = a u−a = 0 ∀a,

то есть 0 ≤ a ∀a, поэтому 0 – наименьший элемент.

Отношение частичного порядка ≤ в булевой алгебре, содержащей более 2 элемен-
тов, не является отношением линейного порядка.

Лемма 3.2. a ≤ b ⇔ −a t b = 1.

Замечание 3.1. Выражение −a t b является аналогом импликации.

Доказательство:
Докажем ⇒. Пусть a ≤ b, то есть a = a u b. Тогда −a t b = −(a u b) t b =

= (−a t −b) t b = −at(−btb) = −at1 = −at(−ata) = (−at−a)ta = −ata = 1.
Докажем⇐. Пусть −at b = 1. Тогда a = au 1 = au (−at b) = (au−a)t (au b) =

= 0 t (a u b) = a u b, значит, a ≤ b.

Бесконечные булевы алгебры

Приведём примеры бесконечных булевых алгебр.
1) Рассмотрим такое множество подмножеств натурального ряда: B = {V ⊂
⊂ N | V конечно или N\V конечно}. На нём можно построить булеву алгебру
(B,∪,∩, \,∅,N). Конечных подмножеств натурального ряда и дополнений к ним
счётное количество, поэтому алгебра B является счётной подалгеброй алгебры
P(N). Однако никакая алгебра P(E) не может быть счётной: такие алгебры ко-
нечны при конечном E и несчётны при бесконечном E. Таким образом, алгебра B
отличается от любой из алгебр P(E).
2) Алгебра Линденбаума-Тарского. Рассмотрим множество классов всех пропо-

зициональных формул по отношению равносильности L = Fm/ ∼. Пусть [A] обо-
значает класс формулы A. Тогда определим 0 := [⊥], 1 := [>], [A] t [B] := [A ∨ B],
[A]u [B] := [A∧B], −[A] = [¬A]. В силу леммы (2.4) L – булева алгебра. Это алгебра
тоже счётная. Она по сути и есть алгебра высказываний.

Определение 3.11. Атом – минимальный ненулевой элемент.

Упражнение 3.4. Доказать, что в алгебре Линденбаума-Тарского нет атомов.

Теорема 3.3 (Теорема Стоуна).
1) Всякая булева алгебра изоморфна подалгебре алгебры вида P(E).
2) Всякая конечная булева алгебра A изоморфна алгебре P(E), где E – множе-

ство всех атомов A.
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Следовательно, всякая конечная булева алгебра состоит из 2n элементов для неко-
торого n.

Оценки в булевой алгебре

Определение 3.12. Оценка в булевой алгебре B – это отображение f : V ar → B.

Лемма 3.3. ∀ оценки f : V ar → B ∃! отображение f : Fm → B такое, что
∀A,B ∈ Fm:
1) f(A) = f(A), если A ∈ V ar;
2) f(A ∧B) = f(A) u f(B);
3) f(A ∨B) = f(A) t f(B);
4) f(¬A) = −f(A);
5) f(A→ B) = f(¬A ∨B) = −f(A) t f(B).

Доказательство аналогично доказательству леммы (2.1) о продолжении оценки
на формулы.

Дальше для краткости будем писать f(A) вместо f(A).

Определение 3.13. A ∼B B (формулы A и B равносильны в булевой алгебре B),
если ∀f f(A) = f(B).

Определение 3.14. B � A (формула A общезначима в булевой алгебре B), если
∀f f(A) = 1.

Лемма 3.4.
1) A∼B B ⇔ B � A↔ B.
2) B � A ⇔ A∼B >.

Доказательство:
1) Надо показать, что ∀ оценки f выполняется: f(A) = f(B) ⇔ f(A ↔ B) = 1.

Введём обозначения a := f(A) и b := f(B).
Так как (A↔ B) означает (A→ B)∧ (B → A), то f(A↔ B) = (−at b)u (−bta).
Таким образом, надо показать, что a = b ⇔ (−a t b) u (−b t a) = 1.
Докажем ⇒. Если a = b, то (−a t b) u (−b t a) = (−a t a) u (−a t a) = 1 u 1 = 1.
Докажем ⇐. Заметим, что x u y = 1 ⇒ x = y = 1. Действительно, x u y ≤ x,

x u y ≤ y, а 1 – наибольший элемент (относительно ≤).
Поэтому если (−a t b) u (−b t a) = 1, то −a t b = −b t a = 1.
По лемме (3.2) имеем: −a t b = 1 ⇔ a ≤ b; −b t a = 1 ⇔ b ≤ a. Значит, a = b.
2) Это частный случай пункта (1) этой леммы при B = >.
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Лекция 4

Булевы алгебры (продолжение)

Оценки в булевой алгебре (продолжение)

Теорема 4.1. Для любой нетривиальной булевой алгебры B (то есть B 6= 1) и
формулы A верно:

B � A ⇒ 2 � A.

Доказательство:
Пусть B � A. Возьмём оценку f : V ar → 2, и рассмотрим «такую же» оценку в
B, то есть F : V ar → B, где F (Pi) = 1 ⇔ f(Pi) = 1 ∀i.

Из свойств булевых алгебр получаем:

0 t 1 = 1 t 0 = 1, 0 t 0 = 0, 1 t 1 = 1,

0 u 1 = 1 u 0 = 0, 0 u 0 = 0, 1 u 1 = 1,

−0 = 1, так как 1 = 0 t −0 = −0,

−1 = 0, так как 0 = 1 u −1 = −1.

Таким образом, 0, 1 образуют подалгебру в B, изоморфную 2 . Обозначим этот
изоморфизм через ≈, то есть 1 ≈ 1 и 0 ≈ 0. Тогда F (Pi) ≈ f(Pi) ∀i, откуда по
индукции можно показать, что F (B) ≈ f(B) ∀B ∈ Fm.
Теперь для исходной формулы A получаем f(A) = 1, поскольку F (A) = 1. Таким

образом, 2 � A.

Исчисление высказываний

Различные тавтологии можно получать как теоремы в некоторой аксиоматиче-
ской системе – исчислении высказываний. Имеются разные варианты таких исчис-
лений. Мы будем рассматривать исчисление гильбертовского типа. Оно задаётся
множеством аксиом и правил вывода; теоремы выводятся из аксиом с помощью пра-
вил. В процессе вывода возникает доказательство – некоторая последовательность
формул.

Приведём одну из формулировок исчисления высказываний (CL).
Схемы аксиом:
1) A→ (B → A);
2) (A→ (B → C))→ ((A→ B)→ (A→ C));
3) A ∧B → A;
4) A ∧B → B;
5) A→ (B → A ∧B);
6) A→ A ∨B;
7) B → A ∨B;
8) (A→ C)→ ((B → C)→ (A ∨B → C));
9) (A→ ¬B)→ ((A→ B)→ ¬A);
10) ¬¬A→ A.
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Здесь A,B,C – произвольные формулы. Поэтому каждая из схем (1)-(10) порож-
дает бесконечную серию аксиом.

Правило вывода только одно, и называется ModusPonens (MP ) и записывается

так:
A, A→ B

B
. Эта запись означает, что если доказаны формулы A и A → B, то

можно доказать B.

Определение 4.1. Доказательство (или вывод) формулы A в CL – это конечная
последовательность формул, каждая из которых является аксиомой или получается
из предыдущих по правилу MP , причём эта последовательность формул заканчи-
вается формулой A.

Точнее: доказательство – это такая последовательность формул A1, . . . , An = A,
что для всех k (1 ≤ k ≤ n) Ak – аксиома или существуют i, j < k, для которых
Aj = Ai → Ak.

Определение 4.2. Формула A, для которой существует доказательство в CL, на-
зывается теоремой CL, или выводимой в CL; это записывается так: `CL A. Индекс
CL не пишем, если ясно, что речь идёт об этой системе.

Приведём примеры.
1) ` A ∨B → B ∨ A.
Приведём доказательство. Для удобства обозначим формулу B ∨ A через C.
1. A→ C (аксиома 7)
2. B → C (аксиома 6)
3. (A→ C)→ ((B → C)→ (A ∨B → C)) (аксиома 8)
4. (B → C)→ (A ∨B → C) (1, 3, MP )
5. A ∨B → C (2, 4, MP )
2) ` A→ A.
Приведём доказательство. Для удобства обозначим формулу A→ A через B.
1. A→ B (аксиома 1)
2. A→ (B → A) (аксиома 1)
3. (A→ (B → A))→ ((A→ B)→ (A→ A)) (аксиома 2)
4. (A→ B)→ (A→ A) (2, 3, MP )
5. A→ A (1, 4, MP )

Определение 4.3. Пусть Γ – какое-то множество пропозициональных формул (ги-
потез). Вывод из гипотез Γ формулы A в CL – это конечная последовательность
формул, каждая из которых является аксиомой, или принадлежит Γ, или полу-
чается из предыдущих по правилу MP , причём эта последовательность формул
заканчивается формулой A.
То есть это последовательность формул A1, . . . , An, где для всех k (1 ≤ k ≤ n) Ak

– аксиома, или Ak ∈ Γ, или существуют i, j < k, для которых Aj = Ai → Ak.

Определение 4.4. Формула A выводима из гипотез Γ, если существует вывод из
Γ, содержащий A; обозначение: Γ `CL A. Индекс CL не пишем, если ясно, что речь
идёт об этой системе.

Очевидно, что если Γ = ∅, то вывод из Γ – это обычный вывод из заданных
аксиом (в CL).
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Лемма 4.1.
1) Если Γ ⊆ ∆ и Γ ` A, то ∆ ` A.
2) Если Γ ` A, то существует конечное ∆ ⊆ Γ, для которого ∆ ` A.
3) Если Γ ` A, и ∆ ` B ∀B ∈ Γ, то ∆ ` A.

Доказательство:
1) Очевидно из определения.
2) Также очевидно: можно составить ∆ из тех гипотез, которые встречаются в

выводе A; их конечное число.
3) Предположим, что ∆ ` Γ и Γ ` A. Из пункта (2) этой леммы следует, что

можно заменить Γ на его конечное подмножество Γ1, то есть мы имеем: ∆ ` Γ1,
Γ1 ` A.
Пусть Γ1 = {B1, . . . , Bn}. Пусть Πi – вывод Bi из ∆. Возьмём вывод A из Γ1; в нём

встречаются какие-то гипотезы Bi: . . . , Bi1 , . . . , Bi2 , . . . , A. Заменим в этом выводе
каждую Bi на её вывод Πi: . . . ,Πi1 , . . . ,Πi2 , . . . , A.
Получится вывод A из ∆. Действительно, все формулы из исходного вывода,

кроме гипотез Bi, являются аксиомами CL или получаются из предыдущих поMP .
А в каждом вставном выводе Πi все формулы являются аксиомами CL, или входят
в ∆, или получаются по MP из предыдущих (внутри того же вывода).

Замечание 4.1. Утверждения пункта (3) леммы (4.1) называют «транзитивность
выводимости» или «сечение». Если условие ∆ ` B ∀B ∈ Γ обозначить как ∆ ` Γ,
то утверждение этого пункта запишется так: если ∆ ` Γ и Γ ` A, то ∆ ` A. Отсюда
название «транзитивность».

Транзитивность выводимости означает, что уже доказанные теоремы можно ис-
пользовать в новых выводах, не повторяя из доказательств. Полученные допусти-
мые правила также можно применять для сокращения доказательств.

Определение 4.5. Если Γ ` A, то говорят, что
Γ

A
– производное правило CL.

Определение 4.6. Если из выводимости формул из Γ следует выводимость A, то

говорят, что
Γ

A
– допустимое правило CL.

Лемма 4.2. Всякое производное правило CL допустимо.

Доказательство:
Пусть Γ ` A. Тогда по транзитивности выводимости (пункт (3) леммы (4.1))

получаем: если ∅ ` Γ, то ∅ ` B.

Приведём пример.

Допустимо правило введения конъюнкции:
A,B

A ∧B
.

Действительно, A,B ` A ∧B:
1. A (гипотеза)
2. B (гипотеза)
3. A→ (B → A ∧B) (аксиома 5)
4. B → A ∧B (1, 3, MP )
5. A ∧B (2, 4, MP )
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Теорема дедукции для CL

Теорема 4.2 (Теорема дедукции для CL).
Γ, A ` B ⇔ Γ ` A→ B.
Здесь Γ, A обозначает множество Γ ∪ {A}.

Доказательство:
Докажем ⇐. пусть Γ ` A → B. Тогда имеем: Γ, A ` A, A → B и A,A → B ` B

(MP ). Отсюда по транзитивности (пункт (3) леммы (4.1)) Γ, A ` B.
Докажем ⇒. Доказывать будем индукцией по длине вывода B из Γ, A.
Если этот вывод длины 1, то B – аксиома или гипотеза.
1) Если B – аксиома, то имеем вывод A→ B (из ∅):
1. B (аксиома)
2. B → (A→ B) (аксиома 1)
3. A→ B (1, 2, MP )
2) Если B ∈ Γ, то имеем такой же вывод A→ B из Γ:
1. B (гипотеза)
2. B → (A→ B) (аксиома 1)
3. A→ B (1, 2, MP )
3) Если B = A, то A→ B = A→ A. Но ` A→ A (пример (2) выше).
4) Предположим теперь, что Γ, A ` B и утверждение (⇒) верно для всех более

коротких выводов, то есть для всех C, если Γ, A ` C и вывод C из Γ, A короче, чем
вывод B, то Γ ` A→ C.
Докажем, что Γ ` A→ B.
Рассмотрим вывод из Γ, A, который заканчивается формулой B. При этом B

может оказаться аксиомой или гипотезой (тогда все предыдущие формулы для до-
казательства B не нужны). Но в этом случае Γ ` A → B по пунктам (1)-(3) этого
доказательства.
Остаётся случай, когда B получается по MP из формул C,C → B, причём

Γ, A ` C и Γ, A ` C → B с более короткими доказательствами. По предположе-
нию индукции имеем Γ ` A→ C, A→ (C → B).
С другой стороны, A→ C, A→ (C → B) ` A→ B:
1. A→ C (гипотеза)
2. A→ (C → B) (гипотеза)
3. (A→ (C → B))→ ((A→ C)→ (A→ B)) (аксиома 2)
4. (A→ C)→ (A→ B) (2, 3, MP )
5. A→ B (1, 4, MP )
Из Γ ` A→ C, A→ (C → B) и A→ C, A→ (C → B) ` A→ B по транзитивности

получаем: Γ ` A→ B.

Приведём пример.

Допустимо правило силлогизма
A→ B, B → C

A→ C
. Покажем, что это – производное

правило, то есть A→ B, B → C ` A→ C.
По теореме дедукции это равносильно A → B, B → C, A ` C. Последнее утвер-

ждение очевидно: надо два раза применить MP .
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Корректность CL для булевых алгебр

Теорема 4.3. Если `CL A, то B � A для любой булевой алгебры B.

Доказательство:
Доказываем теорему индукцией по длине вывода A. Имеется 2 случая:
1) A – аксиома.
2) A получается по MP из формул B, B → A с более короткими выводами.
Начнём с более простого случая (2). По предположению индукции, B � B, B → A.

Рассмотрим произвольную оценку f в B; пусть f(A) = a. Докажем, что a = 1.
Поскольку B � B, B → A, имеем: f(B) = f(B → A) = 1. Тогда 1 = f(B → A) =

= −f(B) t f(A) = −1 t a = 0 t a = a.
В случае (1) надо доказывать общезначимость всех 10 аксиом. Это мы рассмот-

рим на следующей лекции.
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Лекция 5

Корректность CL для булевых алгебр (продолжение)

Для продолжения доказательства теоремы (4.3) нам понадобится следующая лем-
ма о булевых алгебрах.

Лемма 5.1. В любой булевой алгебре:
1) x ≤ x t y, y ≤ x t y;
2) если x ≤ z и y ≤ z, то x t y ≤ z;
3) если x ≤ x′ и y ≤ y′, то x t y ≤ x′ t y′.

Доказательство:
1) xu (xt y) = x – поглощение и коммутативность; аналогично получаем yu (xt
t y) = y.

2) Если xuz = x, yuz = y, то по дистрибутивности (xty)uz = (xuz)t (yuz) =
= x t y.

3) Пусть x ≤ x′ и y ≤ y′. Тогда из пункта (1) этого доказательства получаем:
x ≤ x′ ≤ x′ t y′, y ≤ y′ ≤ x′ t y′. Теперь, применяя (2) этого доказательства, имеем:
x t y ≤ x′ t y′.

Теперь продолжим доказательство теоремы (4.3).

Доказательство:
Нам надо доказать общезначимость аксиом CL в произвольной булевой алгебре
B.

Докажем общезначимость аксиомы 1: A→ (B → A).
Пусть дана оценка f в B; пусть f(A) = a, f(B) = b. Нам надо доказать, что

a → (b → a) = 1. По лемме (3.2) это равносильно a ≤ b → a, то есть a ≤ −b t a.
Тогда по пункту (1) леммы (5.1) получаем, что аксиома 1 общезначима.
Докажем общезначимость аксиомы 2: (A→ (B → C))→ ((A→ B)→ (A→ C)).
Пусть дана оценка f в B, f(A) = a, f(B) = b, f(C) = c. Надо доказать, что

(a→ (b→ c))→ ((a→ b)→ (a→ c)) = 1. По лемме (3.2) это равносильно a→ (b→
→ c) ≤ (a→ b)→ (a→ c), то есть −a t (−b t c) ≤ −(−a t b) t (−a t c). Применяя
закон де Моргана и ассоциативность, получаем: −a t −b t c ≤ (a u −b) t −a t c.
По пункту (3) леммы (5.1), достаточно проверить, что −b ≤ (a u −b) t −a. A это
получается так: −b = 1u(−b) = (at−a)u(−b) = (au−b)t(−au−b) ≤ (au−b)t−a.
Докажем общезначимость аксиомы 8: (A→ C)→ ((B → C)→ (A ∨B → C)).
Пусть дана оценка f в B, f(A) = a, f(B) = b, f(C) = c. Надо доказать, что

(a → c) → ((b → c) → ((a t b) → c)) = 1. По лемме (3.2) это равносильно a → c ≤
≤ (b → c) → ((a t b) → c), то есть −a t c ≤ −(−b t c) t −(a t b) t c. Применяя
закон де Моргана, получаем: −at c ≤ (bu−c)t (−au−b)t c. По пункту (3) леммы
(5.1), достаточно проверить, что −a ≤ (bu−c)t (−au−b)t c. При доказательстве
общезначимости аксиомы аксиомы 2 было доказано неравенство −b ≤ (au−b)t−a.
Другими формами этого же неравества являются −a ≤ (−au−b)tb и b ≤ (bu−c)tc.
Тогда по лемме (5.1) получаем: −a ≤ (−a u −b) t b ≤ (−a u −b) t (b u −c) t c.
Докажем общезначимость аксиомы 9: (A→ ¬B)→ ((A→ B)→ ¬A).
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Пусть дана оценка f в B, f(A) = a, f(B) = b, f(C) = c. Надо доказать, что
(a → −b) → ((a → b) → −a) = 1. Заметим, что a → 0 = −a t 0 = −a. Значит, надо
проверить, что (a → (b → 0)) → ((a → b) → (a → 0)) = 1. Но это мы установили
при проверке аксиомы 2: надо взять c = 0.

Упражнение 5.1. Проверить общезначимость аксиом 3, 4, 5, 6, 7, 10.

Запишем следствие теоремы (4.3).

Утверждение 5.1. CL непротиворечиво, то есть нет такой формулы A, что
`CL A, ¬A.

Доказательство:
Иначе обе формулы A, ¬A окажутся тавтологиями.

Полнота исчисления высказываний

Теорема 5.1 (Теорема о полноте CL). Все тавтологии выводимы в CL: 2 � A ⇒
⇒ `CL A.

Доказательство:
Пусть 0CL A. Докажем, что 2 2 A.

Определение 5.1. Множество формул Γ ⊆ Fm называется противоречивым (в
CL), если Γ ` B, ¬B для некоторой формулы B.

Лемма 5.2.
1) Γ ∪ {B} противоречиво ⇔ Γ ` ¬B.
2) Если Γ противоречиво, то Γ ` B для всех формул B.

Доказательство:
1) Докажем ⇐. Это очевидно, так как Γ ∪ {B} ` B, ¬B.
Докажем ⇒. Пусть Γ ∪ {B} ` C, ¬C. Тогда по теореме дедукции Γ ` B →
→ C, B → ¬C. С другой стороны, B → C, B → ¬C ` ¬B. Это получается из
аксиомы 9 ((B → ¬C) → ((B → C) → ¬B)), если 2 раза применить MP . Тогда по
транзитивности Γ ` ¬B.
2) Если Γ противоречиво, то и подавно Γ∪{¬B} противоречиво. Тогда по пункту

(1) доказываемой леммы Γ ` ¬¬B. Добавив к этому выводу аксиому 10 (¬¬B → B)
и применив MP , получаем Γ ` B.

Пусть Φ – множество всех подформул A и их отрицаний. Будем рассматривать
различные Γ ⊆ Φ.

Определение 5.2. Множество Γ ⊆ Φ назовём максимально непротиворечивым
(или просто – максимальным), если оно непротиворечиво, а всякое его собственное
расширение внутри Φ (то есть Γ′, такое что Γ ⊂ Γ′ ⊆ Φ) противоречиво.

Очевидно, что Φ противоречиво: например, потому, что A, ¬A ∈ Φ.
Множество {¬A} непротиворечиво: иначе бы ` ¬¬A (по пункту (1) леммы (5.2)),

и тогда ` A – по аксиоме 10 и MP .
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Лемма 5.3. Любое непротиворечивое подмножество Φ содержится в каком-то
максимальном.

Доказательство:
Если Γ ⊆ Φ непротиворечиво и не максимально, то оно останется непротиворе-

чивым при добавлении какой-то формулы из Φ\Γ. Расширим его, добавив эту фор-
мулу. Продолжаем процесс до тех пор, пока это возможно. Так как Φ\Γ конечно,
через конечное число шагов получится максимальное множество.

Вообще говоря, это рассуждение (его можно провести точнее, в рамках фор-
мальной теории множеств) показывает, что всякое конечное частично упорядочен-
ное множество имеет максимальный элемент. В нашем случае это множество всех
непротиворечивых подмножеств Φ, содержащих Γ, упорядоченное по включению.

Лемма 5.4 (Свойства максимальных множеств). Пусть Γ – максимальное мно-
жество. Тогда:
0) Γ ` B ⇒ B ∈ Γ (для B ∈ Φ);
1) ¬B ∈ Γ ⇔ B 6∈ Γ (для ¬B ∈ Φ);
2) (B ∧ C) ∈ Γ ⇔ (B ∈ Γ и C ∈ Γ) (для (B ∧ C) ∈ Φ);
3) (B ∨ C) ∈ Γ ⇔ (B ∈ Γ или C ∈ Γ) (для (B ∨ C) ∈ Φ);
4) (B → C) ∈ Γ ⇔ (B 6∈ Γ или C ∈ Γ) (для (B → C) ∈ Φ).

Доказательство:
0) Доказываем от противного. Предположим, что B ∈ Φ, B 6∈ Γ. Тогда Γ ⊂
⊂ Γ∪ {B} ⊆ Φ, поэтому Γ∪ {B} противоречиво (так как Γ максимально). Тогда по
пункту (1) леммы (5.2) Γ ` ¬B, и следовательно, Γ 0 B, так как иначе бы Γ было
противоречиво.
1) Докажем ⇒. Это очевидно, так как Γ непротиворечиво.
Докажем ⇐. Сначала заметим, что если ¬B ∈ Φ, то и B ∈ Φ как подформула A.

Действительно, если ¬B – отрицание подформулы A, то B – подформула; если же
¬B – подформула A, то B – тоже подформула. Тогда из B 6∈ Γ следует Γ ` ¬B (как
в доказательстве пункта (0)). Отсюда по пункту (0) доказываемой леммы получаем,
что ¬B ∈ Γ.
(2) Нам дано, что (B ∧ C) ∈ Φ. Тогда (B ∧ C) – подформула A, поэтому и B,C

являются подформулами A и лежат в Φ.
Докажем ⇒. Пусть (B ∧ C) ∈ Γ. Тогда Γ ` B,C (по аксиомам 3 (B ∧ C → B),

4 (B ∧ C → C) и MP ). Значит, по пункту (0) доказываемой леммы получаем, что
B,C ∈ Γ.
Докажем⇐. Пусть B,C ∈ Γ. Тогда Γ ` B∧C (так как B,C ` B∧C – см. пример

о допустимости правила введения конъюнкции
A,B

A ∧B
из лекции 4). Отсюда по

пункту (0) доказываемой леммы получаем, что (B ∧ C) ∈ Γ.
3) Как и в случае доказательства пункта (2), сначала заметим, что B,C ∈ Φ.
Докажем ⇐. Если B ∈ Γ, то Γ ` B ∨ C (по аксиоме 6 (B → B ∨ C) и MP ), и

тогда по пункту (0) доказываемой леммы получаем, что (B ∨ C) ∈ Γ. Если C ∈ Γ,
рассуждаем аналогично (с аксиомой 7 (C → B ∨ C)).
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Докажем ⇒. Доказываем от противного. Допустим (B ∨ C) ∈ Γ, но B,C 6∈ Γ.
Тогда ¬B, ¬C ∈ Γ – по пункту (1) доказываемой леммы.
Вспомним теперь, что из противоречивого множества выводится любая формула

(пункт (2) леммы (5.2)), в частности, ⊥ (= P1 ∧ ¬P1 – см. лекцию 2). Поэтому
¬B, B ` ⊥, откуда ¬B ` B → ⊥ – по теореме дедукции. Аналогично ¬C ` C → ⊥.
В результате имеем: Γ ` B ∨C, B → ⊥, C → ⊥. Однако B ∨C, B → ⊥, C → ⊥ ` ⊥
– это получится, если применить аксиому 8 ((B → ⊥) → ((C → ⊥) → (B ∨ C →
→ ⊥))) и MP (трижды). По транзитивности, Γ ` ⊥, и тогда Γ противоречиво: из
⊥ выводятся P1, ¬P1.
4) Как и в остальных случаях, заметим, что B,C ∈ Φ.
Докажем ⇒. Если (B → C), B ∈ Γ, то Γ ` C по MP , и тогда по пункту (0)

доказываемой леммы получаем, что C ∈ Γ.
Докажем ⇐. Разбираем 2 случая.
Если B 6∈ Γ, то ¬B ∈ Γ по пункту (1) доказываемой леммы. Но ¬B, B ` C (пункт

(2) леммы (5.2)), откуда по теореме дедукции ¬B ` B → C. Значит, по пункту (0)
доказываемой леммы получаем, что Γ ` B → C, и (B → C) ∈ Γ.
Если C ∈ Γ, то Γ ` B → C по аксиоме 1 (C → (B → C)) иMP , и опять по пункту

(0) доказываемой леммы получаем, что (B → C) ∈ Γ.

Закончим теперь доказательство теоремы. Исходное непротиворечивое множе-
ство ¬A расширим до максимального Γ (лемма (5.3)). Возьмём оценку f :
V ar → {0, 1} такую, что для всех переменных Pi из Φ выполнено f(Pi) =

=

{
1, если Pi ∈ Γ

0, если Pi 6∈ Γ
.

Утверждение 5.2. f(B) = 1 ⇔ B ∈ Γ для всех B ∈ Φ.

Доказательство:
Это утверждение доказывается индукцией по длине B.
Если B ∈ V ar, то утверждение верно по определению.
Если B = (B1 ∧ B2), то B1, B2 ∈ Φ, и по предположению индукции f(B1) = 1 ⇔
⇔ B1 ∈ Γ, f(B2) = 1 ⇔ B2 ∈ Γ. Тогда f(B) = 1 ⇔ f(B1) = f(B2) = 1 ⇔ (B1 ∈
∈ Γ и B2 ∈ Γ) ⇔ B = (B1 ∧ B2) ∈ Γ по лемме (5.4) о свойствах максимальных
множеств.
Если B = (B1 ∨ B2), то B1, B2 ∈ Φ, и по предположению индукции f(B1) = 1 ⇔
⇔ B1 ∈ Γ, f(B2) = 1 ⇔ B2 ∈ Γ. Тогда f(B) = 1 ⇔ f(B1) = 1 или f(B2) =
= 1 ⇔ (B1 ∈ Γ или B2 ∈ Γ) ⇔ B = (B1 ∨ B2) ∈ Γ по лемме (5.4) о свойствах
максимальных множеств.
Если B = ¬B1, то B1 ∈ Φ, и по предположению индукции f(B1) = 1 ⇔ B1 ∈ Γ.

Тогда f(B) = 1 ⇔ f(B1) = 0 ⇔ B1 6∈ Γ ⇔ B = ¬B1 ∈ Γ по лемме (5.4) о
свойствах максимальных множеств.
Если B = (B1 → B2), то B1, B2 ∈ Φ, и по предположению индукции f(B1) = 1 ⇔
⇔ B1 ∈ Γ, f(B2) = 1 ⇔ B2 ∈ Γ. Тогда f(B) = 1 ⇔ f(B1) = 0 или f(B2) =
= 1 ⇔ (B1 6∈ Γ или B2 ∈ Γ) ⇔ B = (B1 → B2) ∈ Γ по лемме (5.4) о свойствах
максимальных множеств.
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Применив доказанное утверждение к B = ¬A, получаем f(¬A) = 1, и следова-
тельно, f(A) = 0. Итак, 2 2 A.

Сформулируем следствие из теоремы (5.1) о полноте CL.

Теорема 5.2. Для любой пропозициональной формулы A и нетривиальной булевой
алгебры B следующие утверждения эквивалентны.
1) `CL A;
2) B � A;
3) 2 � A.

Доказательство:
(1) ⇒ (2) – это теорема (4.3) о корректности CL для булевых алгебр.
(2) ⇒ (3) – теорема (4.1).
(3) ⇒ (1) – теорема (5.1) о полноте CL.
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Лекция 6

Логика предикатов

Языки первого порядка: синтаксис

Отличия языка 1-го порядка от языка логики высказываний:
1) вместо пропозициональных переменных используются атомарные формулы;
2) для индуктивного построения формул, кроме логических связок, применяются

кванторы.

Определение 6.1. Сигнатурой (первого порядка) называется четвёрка вида Ω =
= (PredΩ, FunΩ, ConstΩ, ν), в которой:

• PredΩ, FunΩ, ConstΩ – попарно не пересекающиеся множества;

• PredΩ 6= ∅;

• ν : PredΩ ∪ FunΩ → N+ = {1, 2, . . .}.

Множества PredΩ, FunΩ, ConstΩ называются соответственно множеством пре-
дикатных символов, множеством функциональных символов и множеством (пред-
метных) констант сигнатуры Ω. ν называется функцией валентности.
Предикатный или функциональный символ G называется n-местным (n-арным),

если ν(G) = n. Чтобы это подчеркнуть, его обозначают Gn.

Определение 6.2. Алфавит языка первого порядка сигнатуры Ω состоит из:

• всех предикатных символов, функциональных символов и констант Ω;

• счётного множества свободных (предметных) переменных FV ar =
= {a0, a1, . . .};

• счётного множества связанных (предметных) переменныхBV ar = {v0, v1, . . .};

• логических связок: ∨, ∧, →, ¬;

• кванторов: ∀, ∃;

• технических символов: «(» , «)» (скобки), «,» (запятая).

Предполагаем, что все эти множества попарно не пересекаются.

Как правило, для обозначения свободных переменных мы будем использовать
a, b, c, . . . вместо символов ai, a для связанных – x, y, z, . . . вместо символов vi.
Язык первого порядка данной сигнатуры состоит из двух видов слов в этом ал-

фавите: термов и формул.

Определение 6.3. Термы сигнатуры Ω (обозначение: TmΩ) строятся индуктивно:

• все константы – термы;

29

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

• все свободные переменные – термы;

• если fn ∈ FunΩ и t1, . . . , tn – термы, то f(t1, . . . , tn) – терм.

Таким образом, мы индукцией по длине слова, определяем, какие слова счита-
ются термами.

Это определение можно сформулировать иначе.
Множество термов сигнатуры Ω (обозначение: TmΩ) – это наименьшее множе-

ство слов X, такое что:

• ConstΩ ⊆ X;

• FV ar ⊆ X;

• если fn ∈ FunΩ и t1, . . . , tn ∈ X, то f(t1, . . . , tn) ∈ X.

Определение 6.4. Атомарные формулы сигнатуры Ω (обозначение: AFmΩ) – это
слова вида P (t1, . . . , tn), где P n ∈ PredΩ, а t1, . . . , tn – термы сигнатуры Ω.

Определение 6.5. Формулы сигнатуры Ω (обозначение: FmΩ) строятся индук-
тивно:

• все атомарные формулы являются формулами;

• если A,B – формулы, то (A ∧B) – формула;

• если A,B – формулы, то (A ∨B) – формула;

• если A,B – формулы, то (A→ B) – формула;

• если A – формула, то ¬A – формула;

• если A – формула, a ∈ FV ar, x ∈ BV ar и x не входит в A, то ∃x[x/a]A –
формула;

• если A – формула, a ∈ FV ar, x ∈ BV ar и x не входит в A, то ∀x[x/a]A –
формула.

В этом определении запись [x/a]A означает результат замены всех вхождений
переменной a в A на переменную x (в частности, [x/a]A = A, если a не входит в A).

Замечание 6.1. В любой формуле кванторы по одной и той же переменной могут
встречаться только в непересекающихся подформулах. Например, если P 1 ∈ PredΩ

и x ∈ BV ar, то ∃xP (x) ∧ ∃x¬P (x) – формула, а ∃x(P (x) ∧ ∃x¬P (x)) – не формула.
Существуют и другие варианты определения формулы. Самый распространён-

ный вариант: свободные и связанные переменные не различаются, а кванторы при-
меняются без ограничений. Такое определение формулы проще, но при этом вари-
анте усложняется формулировка исчисления предикатов.

При более экзотическом варианте определения связанные переменные исчезают,
а вместо них появляются пустые окошки, которые соединяются связями со своими
кванторами. Похожее определение используется в «Теории множеств» Бурбаки.
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Приведём пример.
Рассмотрим сигнатуру колец (или сигнатуру арифметики). В ней имеются кон-

станты 0, 1, предикатный символ = 2, и функциональные символы +2, ·2.
Атомарные формулы имеют вид = (t1, t2), что мы будем записывать более при-

вычным образом: (t1 = t2). Аналогично, термы +(t1, t2), ·(t1, t2) записываются как
(t1 + t2), (t1 · t2).
В этой сигнатуре можно написать формулу ∃x((x + x) = a), которая означает,

что a – чётное число (если речь идёт о натуральных или целых числах).
Для коммутативных колец формула ¬(a = 0)∧∃x((x ·a) = 0)∧¬(x = 0)) означает,

что a – делитель нуля, а формула ∃x((x · a) = 1) – что a обратим.
Приведём ещё примеры формул: ∀x∀y(x · y = 0 → (x = 0 ∨ y = 0)); ∀x(x = 0 →
→ x = 0); 1 + 1 = 0.

Лемма 6.1 (Лемма об однозначном анализе термов и формул). Для данной сигна-
туры Ω:
1) Каждый терм есть либо константа, либо свободная переменная, либо име-

ет вид f(t1, . . . , tn) для единственного функционального символа fn и термов
t1, . . . , tn.
2) Каждая атомарная формула имеет вид P (t1, . . . , tn) для единственного пре-

дикатного символа P n и термов t1, . . . , tn.
3) Для любой формулы A выполнено ровно одно из условий:

• A – атомарная;

• существует единственная пара формул B,C, такая что A = (B ∧ C);

• существует единственная пара формул B,C, такая что A = (B ∨ C);

• существует единственная пара формул B,C, такая что A = (B → C);

• существует единственная формула B, такая что A = ¬B;

• A = ∃x[x/a]B для некоторой формулы B и a ∈ FV ar, x ∈ BV ar;

• A = ∀x[x/a]B для некоторой формулы B и a ∈ FV ar, x ∈ BV ar.

Доказательство пропускаем. Отметим, что в последних двух случаях формула B
уже не единственна: например, ∃xP (x) = ∃x[x/a]P (a) = ∃x[x/b]P (b).

Языки первого порядка: семантика

Определение 6.6. Модель сигнатуры Ω, или Ω-структура, – это пара вида M =
= (M, I), где:
M – непустое множество (носитель модели);
I – функция, определённая на множестве ConstΩ ∪ FunΩ ∪ PredΩ (интерпрети-

рующая функция), причём:

• если c ∈ ConstΩ, то I(c) ∈M ;
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• если fn ∈ FunΩ, то I(f) : Mn → M (то есть I(f) – n-местная операция на
M);

• если P n ∈ PredΩ, то I(P ) : Mn → {0, 1} (то есть I(P ) – n-местный предикат
на M).

В дальнейшем для заданной моделиM = (M, I) пишем cM , FM , PM соответствен-
но вместо I(c), I(f), I(P ) и m ∈M вместо m ∈M .

Определение 6.7. Терм, не содержащий переменных (то есть построенный из кон-
стант и функциональных символов), называется замкнутым. Для сигнатуры Ω
множество всех замкнутых термов обозначается CTmΩ.
Для замкнутого терма t сигнатуры Ω индукцией по длине определяется его зна-

чение в модели M сигнатуры Ω; оно обозначается |t|M .

• |c|M := cM для c ∈ ConstΩ;

• |f(t1, . . . , tn)|M := fM(|t1|M , . . . , |tn|M) для fn ∈ FunΩ, t1, . . . , tn ∈ CTmΩ.

Лемма 6.2. Пусть M – модель сигнатуры Ω. Значения замкнутых термов в M
определены корректно. Это означает, что существует единственное отображе-
ние t→ |t|M из CTmΩ в M , удовлетворяющее условиям из определения (6.7):

• |c|M = cM для c ∈ ConstΩ;

• |f(t1, . . . , tn)|M = fM(|t1|M , . . . , |tn|M) для fn ∈ FunΩ, t1, . . . , tn ∈ CTmΩ.

Доказательство:
Аналогично доказательству леммы (2.1). Индукцией по длине t доказываем, что
|t|M определяется однозначно.
Базис индукции: если t – константа, то всё очевидно.
Шаг индукции. По лемме (6.1), t = f(t1, . . . , tn) для единственного функцио-

нального символа f и термов t1, . . . , tn. По предположению индукции, значения
|t1|M , . . . , |tn|M определены однозначно, и тогда |t|M = fM(|t1|M , . . . , |tn|M) тоже за-
даётся однозначно.

Определение 6.8. Замкнутая атомарная формула имеет вид P n(t1, . . . , tn), где
t1, . . . , tn – замкнутые термы.
Для замкнутой атомарной формулы сигнатуры Ω её значение в модели M той

же сигнатуры определяется так:

|P (t1, . . . , tn)|M := PM(|t1|M , . . . , |tn|M).

Лемма 6.3. Значения замкнутых атомарных формул в модели определены кор-
ректно.

Определение 6.9. Очевидное следствие лемм (6.1) и (6.2).
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Определение 6.10. Модель M сигнатуры, содержащей 2-местный предикатный
символ равенства =, называется нормальной, если для всех m1, m2 из M

= M(m1,m2) =

{
1, если m1,m2 совпадают
0, иначе

.

Приведём пример.
Модель сигнатуры колец – это произвольное непустое множество M с выбран-

ными как угодно элементами 0M , 1M , предикатом = M (как в определении 26) и
операциями +M , ·M . Она не обязана быть кольцом.
Если M = N с обычным пониманием символов 0, 1, +, ·, то |(1 + 1) · 1|M равно 2

(но символа 2 в нашей сигнатуре нет, это – элемент модели).
Если же M = Z2 (кольцо вычетов mod 2), то |(1 + 1) · 1|M равно 0M .
Замкнутая атомарная формула 1 + 1 = 0 принимает значение 1 в модели Z2 и 0

в модели N.

Определение 6.11. Формула, не содержащая свободных переменных, называет-
ся замкнутой, или предложением. Для сигнатуры Ω множество всех замкнутых
формул обозначается CFmΩ.

Значение произвольной замкнутой формулы в модели определяется по индукции;
оно отражает интуитивное понимание связок и кванторов. Точное определение мы
дадим в лекции 7, а пока отметим лишь, что для связок ∨,∧,¬ определение анало-
гично логике высказываний. То есть |A∨B| = max(|A|, |B|), |A∧B| = min(|A|, |B|),
|¬A| = 1− |A|.

Определение 6.12. Пусть M – модель сигнатуры Ω, A – замкнутая формула сиг-
натуры Ω. Говорят, что A истинна (или выполнима) в M , если |A|M = 1. В этом
случае также говорят, что M – модель A и пишут M � A.

Замкнутая формула называется выполнимой, если она имеет модель; общезначи-
мой – если она истинна во всех моделях данной сигнатуры.

Общезначимые формулы выражают законы логики.
Приведём пример общезначимой формулы: ∀x∀y[x/a][y/b]A→ ∀y∀x[x/a][y/b]A.
Приведём пример выполнимой формулы: ∃xP (x) ∧ ∃x¬P (x).

Определение 6.13. Теорией первого порядка в сигнатуре Ω называется любое мно-
жество замкнутых формул этой сигнатуры; элементы теории называются также её
аксиомами.

Определение 6.14. Говорят, что теория T выполнима в модели M , или что M –
модель T , и пишут M � T , если все формулы из T истинны в M .
Теория называется выполнимой (или совместной), если она имеет модель.

Приведём пример.
Рассмотрим сигнатуру равенства. В ней единственный 2-местный предикатный

символ «=» (равенство) и нет ни констант, ни функциональных символов. Чистая
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теория равенства (которую мы обозначим Eq) содержит 3 аксиомы:

∀x(x = x);

∀x∀y(x = y → y = x);

∀x∀y∀z(x = y ∧ y = z → x = z).

Всякая модель M сигнатуры равенства – это непустое множество с произволь-
ным 2-местным предикатом = M . Если же M � Eq, то предикат = M должен быть
рефлексивным, симметричным и транзитивным (такой предикат называется экви-
валентностью).
В любой нормальной модели M истинны все аксиомы Eq; в этом случае = M –

предикат равенства.

Определение 6.15. Пусть T – теория, A – замкнутая формула в её сигнатуре.
Говорят, что A логически (или семантически) следует из T (обозначение: T � A),
если A истинна во всех моделях T .

Очевидны следующие свойства:
1. Если T не выполнима, то T � A для всех A.
2. T 2 A ⇔ T ∪ {¬A} выполнима.

Определение 6.16. Теория T называется полной, если для любой замкнутой фор-
мулы A в её сигнатуре хотя бы одна из формул A, ¬A логически следует из T .

Очевидно, что всякая невыполнимая теория полна: из неё следуют все формулы
той же сигнатуры. Если же теория выполнима и полна, то либо T � A, либо T � ¬A,
но не одновременно: в модели T не могут быть истинны и A, и ¬A.
Приведём примеры.
Чистая теория равенства Eq неполна. Чтобы в этом убедиться, рассмотрим фор-

мулу A=1 := ∀x∀y(x = y). Заметим, что в нормальной моделиM имеем:M � A=1 ⇔
⇔ |M | = 1 (где |M | – мощность моделиM , то есть мощность её носителя). Поэтому:

• Eq 2 ¬A=1, так как теория Eq ∪ {A=1} выполнима: у неё есть 1-элементная
нормальная модель.

• Eq 2 A=1, так как теория Eq ∪ {¬A=1} выполнима: у неё есть (например)
10-элементная нормальная модель.

Теория T = Eq ∪ {A=1} полна. Аккуратно это утверждение мы докажем позже
(см. лекцию 9), но интуитивно оно понятно: все нормальные модели этой теории
одноэлементны и потому они не отличимы никакими формулами. А ненормальные
модели можно не учитывать. Значит, не могут быть выполнимы обе теории T ∪{A},
T ∪ {¬A}.

Определение 6.17. Элементарной теорией моделиM называется множество всех
замкнутых формул в её сигнатуре, истинных в M ; обозначение: Th(M).

Любая теория Th(M) полна: если замкнутая формула A верна в M , то она при-
надлежит теории Th(M), значит, следует из неё; если же A ложна в M , то ¬A ∈
∈ Th(M), поэтому Th(M) � ¬A.
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Определение 6.18. Модели M1,M2 одной сигнатуры называются элементарно
эквивалентными, если в них истинны одни и те же замкнутые формулы, то есть
Th(M1) = Th(M2); обозначение: M1 ≡M2.
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Лекция 7

Логика предикатов (продолжение)

Языки первого порядка: семантика (продолжение)

Определение 7.1. Логическое (семантическое) замыкание [T ] – множество всех
логических следствий теории T , то есть [T ] := {A | T � A}, где A – замкнутая
формула.

T полна, если для любой замкнутой формула A выполняется A ∈ [T ] или ¬A ∈
∈ [T ].

Определение 7.2. Теории T1, T2 одной сигнатуры называются эквивалентными
(равносильными), если у них одни и те же модели; обозначение: T1 ∼ T2.

Лемма 7.1. T1 ∼ T2 ⇔ [T1] = [T2].

Доказательство:
Докажем ⇒. Если модели у теорий T1, T2 одинаковые, то и формулы, которые

верны в этих моделях – одни и те же, то есть [T1] = [T2].
Докажем ⇐. Если следствия у теорий одинаковые, то любая формула из T2 яв-

ляется следствием T1, то есть верна во всех моделях T1. Значит, всякая модель T1

оказывается моделью T2. Аналогично, всякая модель T2 является моделью T1.

Лемма 7.2. Пусть T – выполнимая теория. Следующие условия эквивалентны:
1) T полна;
2) любое выполнимое расширение теории T эквивалентно T , то есть ∀T ′ ⊇ T

имеем: T ′ ∼ T или T ′ невыполнима.
3) [T ] = Th(M) для некоторой модели M .
4) Все модели T элементарно эквивалентны.

Доказательство:
Докажем (1) ⇒ (2). Пусть T полна, докажем пункт (2). Пусть T ′ ⊇ T ; тогда

очевидно, что [T ′] ⊇ [T ]. Предположим, что T ′ 6∼ T , тогда T ′ ⊃ T и [T ′] ⊃ [T ]. Тогда
найдётся формула A ∈ ([T ′]\[T ]). Поскольку T 6� A и T полна, получаем T � ¬A.
Но тогда и T ′ � ¬A. С другой стороны, T ′ � A. Значит, T ′ невыполнима.
Докажем (2) ⇒ (3). Предположим, что пункт (2) выполнен. Если M � T , то

T ⊆ Th(M). Теория Th(M) выполнима, поэтому она эквивалентна T (в силу пункта
(2)). Тогда [T ] = [Th(M)]. Но [Th(M)] = Th(M), так как все логические следствия
Th(M) истинны в M . Получаем: [T ] = Th(M).
Докажем (3) ⇒ (4). Предположим, что пункт (3) выполнен. Тогда из M ′ � T

следует M ′ � Th(M). Значит, всякая замкнутая формула, истинная в M , будет
истинной в M ′. И наоборот, если M 2 A, то есть M � ¬A, то M ′ � ¬A, то есть
M ′ 2 A. Итак, M ≡M ′.
Докажем (4) ⇒ (1). Предположим, что пункт (4) выполнен. Допустим, что T

неполна. Тогда для некоторой замкнутой формулы A имеем: T 2 A и T 2 ¬A. Это
означает, что обе теории T ∪{¬A}, T ∪{A} выполнимы. Их модели оказываются мо-
делями T , которые не элементарно эквивалентны. Получили противоречие, значит,
T полна.
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Определение истинности в модели

Определение 7.3. ПустьM – модель сигнатуры Ω; предполагаем, что её носитель
M состоит из совершенно новых элементов, которые не являются словами, содер-
жащими символы из Ω. Через Ω ∪M обозначим расширенную сигнатуру модели
M , которая получается из Ω добавлением множества новых констант M ; то есть
ConstΩ∪M = ConstΩ ∪M , в остальном же Ω ∪M не отличается от Ω.

Техническое требование, чтобы все элементы изM были новыми, нужно для кор-
ректности дальнейших определений. Чтобы его обойти, для всех элементов можно
ввести «новые имена», то есть добавить к ConstΩ не M , а другое множество, кото-
рое находится с ним в биективном соответствии и состоит из новых элементов. Мы
не будем этим заниматься.

Определение 7.4. Пусть M – модель сигнатуры Ω. Терм, оценённый в M , – это
замкнутый терм расширенной сигнатуры M ; аналогично, формула, оценённая в M
– это замкнутая формула сигнатуры Ω ∪M .

Согласно нашим обозначениям, CTmΩ∪M – множество всех термов, оценённых в
M ; а CFmΩ∪M – множество всех формул, оценённых в M .

Определение 7.5. Для терма t, оценённого в моделиM , индукцией по длине опре-
деляется его значение |t|M :

• |c|M := cM для c ∈ ConstΩ;

• |m|M := m для m ∈M ;

• |f(t1, . . . , tn)|M := fM(|t1|M , . . . , |tn|M) для fn ∈ FunΩ, t1, . . . , tn ∈ CTmΩ∪M .

Определение 7.6. Для формулы C, оценённой в модели M , eё «логической дли-
ной» назовём число вхождений в неё логических связок и кванторов. Индукцией по
логической длине формулы C определяется её значение |C|M :

• |P (t1, . . . , tn)|M := PM(|t1|M , . . . , |tn|M) для P n ∈ FunΩ, t1, . . . , tn ∈ CTmΩ∪M ;

• |A ∧B|M := min(|A|M , |B|M);

• |A ∨B|M := max(|A|M , |B|M);

• |A→ B|M := max(1− |A|M , |B|M);

• |¬A|M := 1− |A|M ;

• |∃x[x/a]A|M := 1 ⇔ существует m ∈M такой, что |[m/a]A|M = 1;

• |∀x[x/a]A|M := 1 ⇔ для всех m ∈M выполняется |[m/a]A|M = 1.
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Здесь [m/a]A обозначает оценённую формулу, полученную из A заменой всех
вхождений a на m.

Строго говоря, надо доказывать, что это – действительно формула; доказатель-
ство рутинное, по индукции. Мы определяем значения только для замкнутых фор-
мул. Заметим, что если формула ∀x[x/a]A (или ∃x[x/a]A) замкнута, то A не может
содержать никаких свободных переменных, кроме a. И тогда [m/a]A снова оказы-
вается замкнутой. То есть определение осмысленно.

Заметим, что последние 2 пункта определения можно записать и так:

• |∃x[x/a]A|M = max
m∈M

|[m/a]A|M ;

• |∀x[x/a]A|M = min
m∈M

|[m/a]A|M .

Приведём пример.
Рассмотрим сигнатуру колец, содержащую равенство (=), константы 0, 1 и функ-

циональные символы: ·, + (2-местные). В термах записываем их привычным обра-
зом: t1 · t2, t1 + t2.
Рассмотрим формулу ∃x(x · x = 1 + 1) в моделях R и Q (с обычным пониманием

нуля, единицы, сложения и умножения).
Имеем: R � ∃x(x ·x = 1+1), так как R �

√
2 ·
√

2 = 1+1 (или R � (−
√

2) · (−
√

2) =
= 1 + 1). Отметим, что здесь возникает оценённая формула

√
2 ·
√

2 = 1 + 1 (или
(−
√

2) ·(−
√

2) = 1+1), с константами двух видов: 1 берётся из исходной сигнатуры,
а
√

2 (или −
√

2) – из модели; в сигнатуре колец такого символа нет.
С другой стороны, Q � ¬∃x(x ·x = 1 + 1), так как Q 2 r · r = 1 + 1 для всех r ∈ Q.

Лемма 7.3.
1) |t|M определено корректно для любого оценённого терма t. То есть для лю-

бой модели M существует единственное отображение t → |t|M оценённых в M
термов в M , удовлетворяющее условиям из определения (7.5).
2) |A|M определено корректно для любой оценённой формулы A. То есть для

любой модели M существует единственное отображение A → |A|M оценённых в
M формул в {0, 1}, удовлетворяющее условиям из определения (7.6).

Доказательство:
1) Рассуждаем, как в доказательстве леммы (6.2). Лемма (6.1) об однозначном

анализе термов и формул сохраняется для оценённых термов с небольшим отличи-
ем: они бывают 3 видов. При этом важно, что элементыM не являются константами
Ω и не представляются в виде f(t1, . . . , tn). Но это уже было оговорено.
2) Аналогично лемме (2.1) о продолжении оценки на формулы. Применим лемму

(6.1) об однозначном анализе термов и формул (для оценённых формул она не
меняется).

• Если A = P (t1, . . . , tn) – атомарная, то |A|M однозначно определено – по лемме
(6.3).

• Если A = (B ∧ C), то надо положить |A|M = min(|B|M , |C|M). Формулы B, C
единственны по лемме (6.1) об однозначном анализе термов и формул, а |B|M ,
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|C|M определены однозначно по предположению индукции (B, C – меньшей
длины, чем A). Поэтому |A|M задаётся однозначно.

• Аналогично рассуждаем в случаях A = ¬B, (B ∨ C), (B → C).

• Пусть A = ∃x[x/a]B. Тогда надо определить |A|M = max
m∈M

|[m/a]B|M . B и

[m/a]B – меньшей длины, чем A, поэтому |A|M задаётся однозначно при дан-
ном выборе B.

Однако теперь уже B не единственна. Рассмотрим другую формулу B′, такую
чтоA = ∃x[x/a′]B′ для некоторой свободной переменной a′, причём x не входит
в B′. Тогда [x/a′]B′ = [x/a]B, поэтому B′ получается из B при замене a на a′
(или: заменой сначала всех a на x, а потом всех x на a′). Tо есть B′ = [a′/a]B.

Отсюда получаем, что при всех m ∈ M имеем: [m/a′]B′ = [m/a′][a′/a]B =
= [m/a]B. Поэтому если мы определили |A|M = max

m∈M
|[m/a]B|M , то также

получаем и |A|M = max
m∈M

|[m/a′]B′|M . Таким образом, |A|M и в этом случае

определено однозначно – независимо от того, используем мы B или B′ для
построения A.

• Случай A = ∀x[x/a]B рассматривается аналогично.

Изоморфизмы моделей

Определим теперь точно, какие модели будут считаться «одинаковыми».

Определение 7.7. Пусть M,M ′ – модели сигнатуры Ω. Отображение α : M →M ′

называется изоморфизмом M на M ′, если:

• α – биекция;

• α(cM) = cM ′ для всех c ∈ ConstΩ;

• α(fM(m1, . . . ,mk)) = fM ′(α(m1), . . . , α(mk)) для всех fk ∈ FunΩ иm1, . . . ,mk ∈
∈M ;

• PM(m1, . . . ,mk) = PM ′(α(m1), . . . , α(mk)) для всех P k ∈ PredΩ и m1, . . . ,mk ∈
∈M .

Если говорить не совсем строго, изоморфизм сохраняет значения всех констант,
предикатов и функций из нашей сигнатуры.

Запись α : M ∼= M ′ означает, что α – изоморфизм M на M ′.
Можно записать это определение короче. Обозначим ~m := (m1, . . . ,mk). Тогда

можно писать так:

• α(fM(~m)) = fM ′(α~m);

• PM(~m) = PM ′(α~m).
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Определение 7.8. Модели M , M ′ называются изоморфными (обозначение:
M ∼= M ′), если существует изоморфизм α : M ∼= M ′.

Приведём пример.
Рассмотрим сигнатуру (+, <,=). Приведём две изоморфных модели такой сигна-

туры: (N+,+N+ , < N+ ,= N+) ∼= (N−,+N− , > N− ,= N−).

Лемма 7.4. Изоморфность – это отношение эквивалентности на моделях.

Упражнение 7.1. Доказать лемму (7.4).

Посмотрим, как изменяются значения термов и формул при изоморфизме.
Пусть M,M ′ – модели сигнатуры Ω, α : M ∼= M ′. Для терма t, оценённого в M ,

обозначим через α ·t терм, полученный заменой всех констант m изM на их образы
α(m). Формально α · t надо определять по индукции и доказывать, что α · t – терм,
оценённый в M ′.

Упражнение 7.2. Докажите это, что α · t – терм, оценённый в M ′.

Аналогично по формуле A, оценённой в M , строится формула α ·A, оценённая в
M ′.

Теорема 7.1. Пусть M,M ′ – модели сигнатуры Ω, α : M ∼= M ′.
1) Если t ∈ CTmΩ∪M , то |α · t|M ′ = α(|t|M).
2) Если A ∈ CFmΩ∪M , то |α · A|M ′ = |A|M .

Доказательство:
1) Рассуждаем индукцией по длине t. Возможны 3 случая.
1.1) (Базис индукции). t = c, для c ∈ ConstΩ. Тогда α · t = t = c. Имеем: |α · t|M ′ =

= cM ′ = α(cM) = α(|t|M) по определению значения терма (7.5) и определению
изоморфизма (7.7).

1.2) (Базис индукции). t = m, для m ∈ M . Тогда α · t = α(m), и утверждение
очевидно: |α · t|M ′ = α(m) = α(|t|M) по определению значения терма (7.5).

1.3) (Шаг индукции). t = f(t1, . . . , tn) для функционального символа fn и термов
t1, . . . , tn. Тогда α · t = f(α · t1, . . . , α · tn).
Получаем: |α · t|M ′ = fM ′(|α · t1|M ′ , . . . , |α · tn|M ′) = fM ′(α(|t1|M), . . . , α(|tn|M)) по

определению значения терма (7.5) и предположению индукции для термов ti. Да-
лее, fM ′(α(|t1|M), . . . , α(|tn|M)) = α(fM(|t1|M , . . . , |tn|M)) = α(|t|M) по определению
значения терма (7.5) и определению изоморфизма (7.7). Таким образом, |α · t|M ′ =
= α(|t|M).
Пункт (2) докажем на следующей лекции.

40

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Лекция 8

Изоморфизмы моделей (продолжение)

Продолжаем доказательство теоремы (7.1).

Доказательство:
2) Применяем индукцию по числу вхождений логических связок и кванторов в

A.
2.1) (Базис индукции). A = P (t1, . . . , tn) – атомарная (P n – предикатный

символ, t1, . . . , tn – термы). |A|M = PM(|t1|M , . . . , |tn|M) (определение значения
терма (7.5)). С другой стороны, |α · A|M ′ = PM ′(|α · t1|M ′ , . . . , |α · tn|M ′) =
= PM ′(α(|t1|M), . . . , α(|tn|M)) = PM(|t1|M , . . . , |tn|M)) по пункту (1) доказываемой
теоремы и определению изоморфизма (7.7). Отсюда получаем: |α · A|M ′ = |A|M .

Упражнение 8.1. Доказать теорему для случаев:
2.2) A = (B ∧ C);
2.3) A = (B ∨ C);
2.4) A = (B → C);
2.5) A = ¬B.

2.6) A = ∃x[x/a]B.
По определению истинности |α·A|M ′ = |∃x[x/a](α·B)|M ′ = max

m′∈M ′
|[m′/a](α·B)|M ′ =

= max
m∈M

|[α(m)/a](α · B)|M ′ . Последнее равенство следует из сюръективности α: все

m′ ∈M ′ – это в точности α-образы всех m ∈M .
Также по определению истинности и предположению индукции для [m/a]B име-

ем: |A|M = |∃x[x/a]B|M = max
m∈M

|[m/a]B|M = max
m∈M

|α · [m/a]B|M ′ .
Но α · [m/a]B = [α(m)/a](α · B). Действительно, левая часть получается из B

сначала заменой a на m, a потом всех элементов из M на их образы. В итоге a
заменится на α(m). В правой части: сначала в B все элементы из M заменяются на
их образы, а потом a сразу заменяется на α(m).
Таким образом, |α · A|M ′ = |A|M .
2.7) A = ∀x[x/a]B.
Этот случай совершенно аналогичен доказательству пункта (2.6) с заменой max

на min.

Теорема 8.1. Если M ∼= M ′, то M ≡M ′.

Доказательство:
Пусть α : M ∼= M ′. Если A – замкнутая формула данной сигнатуры, то α ·A = A,

так как A не содержит констант из M . По пункту (2) теоремы (7.1) |A|M = |A|M ′ ,
или M � A ⇔ M ′ � A. Это выполняется для любой замкнутой A, а потому
Th(M) = Th(M ′), то есть M ≡M ′.
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Определимость и автоморфизмы

Определение 8.1. Параметрами формулы A (некоторой сигнатуры) называются
входящие в неё свободные переменные. FV (A) обозначает множество всех парамет-
ров формулы A.

Формулу A мы записываем в виде A(~b), где ~b = (b1, . . . , bk), если хотим отме-
тить, что FV (A) ⊆ {b1, . . . , bk}. При этом некоторые bi могут и не встречаться в A.
Подразумевается, что все bi различны.

Определение 8.2. k-местный предикат, определимый формулой A(~b) в модели
M – это отображение AM : Mk → {0, 1} такое, что для всех m1, . . . ,mk имеем:
AM(m1, . . . ,mk) := |[m1, . . . ,mk/b1, . . . , bk]A|M .

Здесь использовано обозначение многократной подстановки:
[m1, . . . ,mk/b1, . . . , bk]A получается из A заменой b1, . . . , bk соответственно на
m1, . . . ,mk. В сокращённых обозначениях определение записывается так: AM(~m) :=
:= |A(~m)|M для всех ~m ∈Mk.

Определение 8.3. k-местный предикат γ : Mk → {0, 1} определим в M , если
γ = AM для некоторой формулы A.

Любому k-местному предикату на множестве M , то есть отображению γ : Mk →
→ {0, 1}, соответствует k-местное отношение на множестве M – это множество
R ⊆Mk, определяемое следующим образом: R = {~m | γ(~m) = 1}.
И наоборот, любому k-местному отношению R ⊆ Mk соответствует k-местный

предикат – его характеристическая функция χR : Mk → {0, 1}, имеющая вид χR =

=

{
1, если ~m ∈ R
0, иначе

.

Приведём пример.
Рассмотрим опять сигнатуру колец и её модель N – множество натуральных чи-

сел с обычными сложением, умножением, нулём и единицей. Рассмотрим в этой
модели 2-местный предикат M1 ≤ m2. Он определим формулой ∃x(b1 + x = b2).
Действительно, N � ∃x(m1 + x = m2) ⇔ m1 ≤ m2.
В этой формуле используется только сложение, поэтому определимость сохра-

нится и для более «бедной» сигнатуры, в которой есть только + и =.
Для того, чтобы задать порядок на множестве действительных чисел R, сложения

уже не хватит, то есть в R как модели сигнатуры {+,=} предикат m1 ≤ m2 не
определим – это мы установим чуть позже. Но легко доказать определимость в
сигнатуре колец: R � ∃x(m1 + x · x = m2) ⇔ m1 ≤ m2.

Определение 8.4. Автоморфизм модели – это её изоморфизм на себя.

Теорема 8.2. Пусть α – автоморфизм модели M сигнатуры Ω, A(~b) – формула
той же сигнатуры. Тогда AM(α~m) = AM(~m) для всех ~m ∈M .
Таким образом, определимый в M предикат инвариантен при всех автоморфиз-

мах M .
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Доказательство:
По определению (8.2) и теореме (7.1) имеем: AM(α~m) = |A(α~m)|M = |A(~m)|M =

= AM(~m).

Поскольку предикаты соответствуют отношениям, мы можем говорить и об опре-
делимости отношений.

Определение 8.5. k-местное отношение R определимо в M формулой A(~b), ес-
ли определим соответствующий предикат, то есть для всех ~m ∈ Mk выполняется:
M � A(~m) ⇔ ~m ∈ R.

Теорема (8.2) означает, что определимые отношения инвариантны при автомор-
физмах: ~m ∈ R ⇔ α~m ∈ R.

В частности, при k = 1 подмножество S ⊆ M определимо формулой A(b), если
для всех m ∈M выполняется: M � A(m) ⇔ m ∈ S. Тогда m ∈ S ⇔ α(m) ∈ S.
Приведём примеры.
1) Рассмотрим множество действительных чисел R как модель сигнатуры
{= 2,+2, 0}, с обычным пониманием этих символов.
У этой модели есть автоморфизм α(x) = −x: это отображение — биекция (обратно

само к себе), сохраняет 0 и сумму.
Предикат m1 ≤ m2 не определим в этой модели, так как он не инвариантен при

этом автоморфизме: неверно, что m1 ≤ m2 ⇔ −m1 ≤ −m2.
2) Рассмотрим Z в той же сигнатуре, что в примере 1. Тогда подмножество N не

определимо: оно не инвариантно при автоморфизме α(x) = −x.
3) Однако, если добавить в сигнатуру умножение, N станет определимым. Для

этого можно применить теорему Лагранжа о представимости всякого натурального
числа в виде суммы 4 квадратов: Z � ∃x1∃x2∃x3∃x4(x2

1+x2
2+x2

3+x2
4 = m) ⇔ m ∈ N,

где x2 обозначает x · x.
Конечно же, и в этой сигнатуре не все подмножества определимы: определимых

подмножеств (как и всех формул в данной сигнатуре) – счётное число, а всех под-
множеств – континуум.
4) Более того, N определимо в модели Q сигнатуры {= 2

Q,+
2
Q, ·2Q, 0Q}, но доказать

это сложно.

Определение 8.6. Подмножества N, определимые в сигнатуре колец (она же –
сигнатура арифметики), называются арифметическими.

Как и в случае Z, множество таких подмножеств счётно. Однако теорема (8.2)
никак не помогает построить конкретные неарифметические множества: легко ви-
деть, что единственный автоморфизм модели N – тождественный.

Стандартные теории равенства и нормальные модели

Пусть A = A(b1, . . . , bn) – формула. Если же x1, . . . , xn – какие-то (раз-
личные) связанные переменные, не входящие в A, то результат подстановки
[x1, . . . , xn/b1, . . . , bn]A будем обозначать через A(x1, . . . , xn). (Заметим, что вы-
ражение A(x1, . . . , xn) – не формула, но может быть частью формулы: на-
пример, последовательное навешивание кванторов ∀xn, . . . ,∀x1 даёт формулу
∀x1 . . . ∀xnA(x1, . . . , xn).)
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Лемма 8.1. Пусть A(b1, . . . , bn) – формула сигнатуры Ω, x1, . . . , xn – (различные)
связанные переменные, не входящие в A. Тогда для любой модели M сигнатуры Ω
имеем:

M � ∀~xA(~x) ⇔ для любого ~m ∈Mn M � A(~m);

M � ∃~xA(~x) ⇔ существует ~m ∈Mn M � A(~m).

Доказательство:
Мы рассмотрим только случай кванторов ∀; для ∃ доказательство аналогично.
Утверждение следует из определения истинности (формально – индукцией по

n). А именно, A = ∀x1[x1/b1]B(b1), где B(b1) := ∀x2 . . . ∀xnA(b1, x2, . . . , xn). И тогда
M � A ⇔ для любого m1 ∈M M � B(m1).

Но B(m1) = ∀x2 . . . ∀xnA(m1, x2, . . . , xn) – это формула в сигнатуре Ω∪M . Приме-
ним к ней предположение индукции:M � ∀x2 . . . ∀xnA(m1, x2, . . . , xn) ⇔ для любых
m2, . . . ,mn ∈M M � A(m1,m2, . . . ,mn).
Таким образом, получаем утверждение леммы. Это – шаг индукции, а базис (при

n = 1) очевиден.

Теперь рассмотрим сигнатуру Ω, содержащую предикатный символ равенства
(= 2) (и, возможно, другие символы). В этой сигнатуре рассмотрим теорию EqΩ со
следующими стандартными аксиомами равенства:
0) аксиомы теории Eq: рефлексивность, симметричность и транзитивность;

1) ∀x1 . . . ∀xn∀y1 . . . ∀yn(
n∧
i=1

xi = yi → fn(x1, . . . , xn) = fn(y1, . . . , yn)) для всех

fn ∈ FunΩ;

2) ∀x1 . . . ∀xn∀y1 . . . ∀yn(
n∧
i=1

xi = yi → (P n(x1, . . . , xn) ↔ P n(y1, . . . , yn))) для всех

P n ∈ PredΩ.
Запишем аксиомы (1) и (2) в сокращённом виде:
1) ∀~x∀~y (~x = ~y → fn(~x) = fn(~y)) для всех fn ∈ FunΩ;
2) ∀~x∀~y (~x = ~y → (P n(~x)↔ P n(~y))) для всех P n ∈ PredΩ.
Здесь ∀~x∀~y обозначает кванторы ∀ по всем переменным x1, y1, . . . , xn, yn, а ~x = ~y

– сокращение для x1 = y1 ∧ . . . ∧ xn = yn.

Лемма 8.2. Если M – нормальная модель сигнатуры с равенством Ω, то
M � EqΩ.

Доказательство:
Для аксиом (0) это тривиально (и уже отмечалось).
По лемме (8.1) аксиомы (1) верны в M , если и только если для всех ~m, ~m′ ∈
∈ Mn выполнено: M � ~m = ~m′ → f(~m) = f(~m′) (где ~m = ~m′ – сокращение для
m1 = m′1 ∧ . . . ∧mn = m′n).
Но последнее утверждение очевидно: в нормальной моделиM � ~m = ~m′ означает,

что ~m и ~m′ совпадают; тогда и fM(~m) = fM(~m′).
Аналогично рассуждаем для аксиом (2): M � ~m = ~m′ → (P (~m) ↔ P (~m′)), так

как из совпадения ~m и ~m′ следует, что |P (~m)|M = |P (~m′)|M , а потому |P (~m) ↔
↔ P (~m′)|M = 1.

44

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Покажем теперь, как из произвольной модели теории EqΩ построить элементарно
эквивалентную нормальную модель.

Пусть M � EqΩ. Тогда предикат = M задаёт отношение эквивалентности на M ,
которое мы обозначим ≈. То есть m1 ≈ m2 ⇔ = M(m1,m2) = 1 ⇔ M � m1 = m2.
Это действительно отношение эквивалентности, благодаря аксиомам Eq. Класс эк-
вивалентности элемента m по ≈ обозначим через m̃.
На фактор-множестве M/ ≈ зададим нормальную модель M̃ сигнатуры Ω сле-

дующим образом:

cM̃ := c̃M ;

fk
M̃

(m̃1, . . . , m̃k) := ˜fkM(m1, . . . ,mk);

P k
M̃

(m̃1, . . . , m̃k) := P k
M(m1, . . . ,mk)

(где соответственно c ∈ ConstΩ, fk ∈ FunΩ, P k ∈ PredΩ).

Лемма 8.3. Пусть M � EqΩ. Тогда M̃ корректно определена.

Доказательство:
Надо проверить, что если заменить mi на эквивалентные элементы, то правые

части в определении fk
M̃

и P k
M̃

не изменятся.
Действительно, пусть m1 ≈ m′1, . . . , mk ≈ m′k. Это означает, что M � mi = m′i

для i ≤ k, и тогда, в обозначениях из доказательства леммы (8.2), M � ~m = ~m′, где
~m = (m1, . . . ,mk), ~m′ = (m′1, . . . ,m

′
k). Как уже мы видели в доказательстве леммы

(8.2), из аксиом (1) тогда следует, что M � f(~m) = f(~m′), то есть fM(~m) = fM(~m′)
(так как модель нормальна).
Аналогично, из аксиом (2) получаем: M � P (~m) ↔ P (~m′), то есть PM(~m) =

= PM(~m′).
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Лекция 9

Стандартные теории равенства и нормальные модели
(продолжение)

На прошлой лекции по модели M стандартной теории равенства EqΩ мы постро-
или модель M̃ с носителем M/ ≈. Тогда имеется сюръекция α : M → M/ ≈,
переводящая каждый элемент m ∈ M в его класс эквивалентности m̃. Благодаря
определению M̃ , α – сильный гомоморфизм, то есть

• α(cM) = cM̃ ;

• α(fM(~m)) = fM̃(α~m) для ~m ∈Mk, fk ∈ FunΩ;

• PM(~m) = PM̃(α~m) для ~m ∈Mk, P k ∈ PredΩ, кроме случая, когда P есть =.

Для символа = также имеем = M(m1,m2) = = M̃(α(m1), α(m2)).

Лемма 9.1 (Лемма о нормализации).
1) Для любого оценённого терма t ∈ CTmΩ∪M имеем: |α · t|M̃ = α(|t|M) = |̃t|M .
2) Для любой оценённой формулы A ∈ CFmΩ∪M имеем: |α · A|M̃ = |A|M .
3) M ≡ M̃ .

Доказательство:
См. доказательство теоремы (7.1). В доказательстве используется только то, что

α – сюръекция.

Итак, для теорий, содержащих стандартные аксиомы равенства, можно рассмат-
ривать только нормальные модели.

Определение 9.1. Пусть T – теория в сигнатуре с равенством Ω, содержащая
EqΩ. Теория T называется сильно категоричной, если все её нормальные модели
изоморфны.

Теорема 9.1. Если теория T сильно категорична, то она полна.

Доказательство:
По лемме (7.2) достаточно доказать, что все модели T элементарно эквивалентны.
Рассмотрим модели M,M ′ � T . По лемме (8.3) M ≡ M̃ , M ′ ≡ M̃ ′. Поэтому

M̃, M̃ ′ � T . Так как эти модели нормальны, по условию они изоморфны. Следова-
тельно, M̃ ≡ M̃ ′ (теорема (8.1)). В итоге имеем M ≡M ′.

Приведём примеры.
1) В сигнатуре {=} рассмотрим теорию Eq ∪ {A=n} (ещё один вариант записи:

Eq + {A=n}), где

A=n := ∃x1 . . . ∃xn(
∧

1≤i<j≤n

(xi 6= xj) ∧ ∀xn+1

n∨
i=1

(xn+1 = xi)).
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(Здесь мы используем обычное сокращение: (xi 6= xj) := ¬(xi = xj).)
Эта аксиома утверждает, что в (нормальной) модели ровно n элементов:

M � A=n ⇔ |M | = n. Очевидно, что данная теория сильно категорична.
2) Теперь рассмотрим теорию линейных порядков LO в сигнатуре с 2-местными

предикатными символами {<,=}. Кроме стандартных аксиом равенства, она со-
держит аксиомы:
∀x¬(x < x) (иррефлексивность);
∀x∀y∀z(x < y ∧ y < z → x < z) (транзитивность);
∀x∀y(x < y ∨ y < x ∨ x = y) (линейность).
Каждая теория LO + A=n сильно категорична, потому что конечные линейные

порядки с одинаковым числом элементов изоморфны.
3) Рассмотрим сигнатуру групп, содержащую равенство (=), константу e («еди-

ница»), функциональные символы: · (2-местный, «умножение»), −1 (1-местный, «об-
ращение»).

Используем привычную запись: t1 · t2, t−1.
Рассмотрим в этой сигнатуре теорию групп Gr со следующими аксиомами;
1) стандартные аксиомы равенства;
2) аксиомы групп:

∀x∀y∀z((x · y) · z = x · (y · z));

∀x((x · e = x) ∧ (e · x = x));

∀x((x · x−1 = e) ∧ (x−1 · x = e)).

Ясно, что модели теории групп – в точности группы (с единицей и операциями
умножения и обращения).

Теории Gr +A=p, где p – простое, сильно категоричны (так как группа простого
порядка – циклическая), а потому полны.

В дальнейшем мы рассматриваем только теории с равенством и нормальные мо-
дели; отдельные исключения будут оговариваться.

Теория конечной модели

Определение 9.2. Теория T называется конечно аксиоматизируемой, если она
эквивалентна некоторой конечной теории.

Очевидно, что конечная теория T эквивалентна теории, состоящей из одной фор-
мулы

∧
T .

Теорема 9.2. В конечной сигнатуре с равенством элементарная теория конечной
модели конечно аксиоматизируема и сильно категорична.

Доказательство:
Пусть M – конечная модель конечной сигнатуры Ω. Мы построим формулу AM ,

которая полностью описывает M .
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Пусть M = {m1, . . . ,mn}. Положим AM := ∃v1 . . . ∃vnψM(v1, . . . , vn), где

ψM(a1, . . . , an) :=
∧

1≤i<j≤n

(ai 6= aj) ∧ ∀vn+1

n∨
i=1

(vn+1 = ai)∧

∧
∧
{c = ai | c ∈ ConstΩ, cM равно mi}∧

∧
∧
{fk(ai1 , . . . , aik) = aj | fk ∈ FunΩ, f

k
M(mi1 , . . . ,mik) равно mj}∧

∧
∧
{P k(ai1 , . . . , aik) | P k ∈ PredΩ, M � P

k(mi1 , . . . ,mik)}∧

∧
∧
{¬P k(ai1 , . . . , aik) | P k ∈ PredΩ, M � ¬P k(mi1 , . . . ,mik)}.

Лемма 9.2. Для нормальной модели M ′ сигнатуры Ω имеем:

M ′ � AM ⇔ M ′ ∼= M.

Доказательство:
Докажем ⇐. Заметим, что M � ψM(m1, . . . ,mn). Действительно,

ψM(m1, . . . ,mn) =
∧

1≤i<j≤n

(mi 6= mj) ∧ ∀vn+1

n∨
i=1

(vn+1 = mi)∧

∧
∧
{c = mi | c ∈ ConstΩ, cM равно mi}∧

∧
∧
{fk(mi1 , . . . ,mik) = mj | fk ∈ FunΩ, f

k
M(mi1 , . . . ,mik) равно mj}∧

∧
∧
{P k(mi1 , . . . ,mik) | P k ∈ PredΩ, M � P

k(mi1 , . . . ,mik)}∧

∧
∧
{¬P k(mi1 , . . . ,mik) | P k ∈ PredΩ, M � ¬P k(mi1 , . . . ,mik)}.

Проверим, что все 6 членов этой конъюнкции (все они – тоже конъюнкции, кроме
второго) истинны в M .
1) M �

∧
1≤i<j≤n

(mi 6= mj), так как M нормальна и все mi различны.

2) M � ∀vn+1

n∨
i=1

(vn+1 = mi), так как всякий элемент из M равен одному из mi.

3) M �
∧
{c = mi | c ∈ ConstΩ, cM равно mi}, так как для всякой константы c

имеем: M � c = mi, если cM равно mi – это очевидно, по определению истинности
(см. определения (7.5) и (7.6)).
4) Аналогично, для четвёртого члена имеем: M � f(mi1 , . . . ,mik) = mj, если

fM(mi1 , . . . ,mik) равно mj.
5) Истинность пятого члена означает, что M � P k(mi1 , . . . ,mik), если M �

P k(mi1 , . . . ,mik). Это тривиальность.
6) Также очевидно.
Теперь по лемме (8.1), из M � ψM(m1, . . . ,mn) получаем M � AM . И тогда, если

M ∼= M ′, то и M ′ � AM – по теореме (8.1).
Докажем ⇒. Предположим, что M ′ � AM и построим изоморфизм M на M ′.

Снова по лемме (8.1), найдутсяm′1, . . . ,m′n ∈M ′, для которыхM ′ � ψM(m′1, . . . ,m
′
n).
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Для удобства опять распишем ψM(m′1, . . . ,m
′
n):

ψM(m′1, . . . ,m
′
n) =

∧
1≤i<j≤n

(m′i 6= m′j) ∧ ∀vn+1

n∨
i=1

(vn+1 = m′i)∧

∧
∧
{c = m′i | c ∈ ConstΩ, cM равно mi}∧

∧
∧
{fk(m′i1 , . . . ,m

′
ik

) = m′j | fk ∈ FunΩ, f
k
M(mi1 , . . . ,mik) равно mj}∧

∧
∧
{P k(m′i1 , . . . ,m

′
ik

) | P k ∈ PredΩ, M � P
k(mi1 , . . . ,mik)}∧

∧
∧
{¬P k(m′i1 , . . . ,m

′
ik

) | P k ∈ PredΩ, M � ¬P k(mi1 , . . . ,mik)}.

Докажем, что отображение ϕ, переводящее каждый mi в m′i, то есть ϕ(mi) := m′i,
– искомый изоморфизм.
1) ϕ – инъекция. Это обеспечивает 1-й член конъюнкции: при i < j M � m′i 6= m′j,

то есть m′i и m′j не совпадают.
2) ϕ – сюръекция. Об этом говорит 2-й член конъюнкции: любой элемент m′ ∈M ′

равен одному из m′i, так как M �
n∨
i=1

(m′ = m′i) и M нормальна.

3) ϕ(cM) равно cM ′ . Это получается из 3-го члена: если cM равно mi, то M ′ � c =
= m′i, то есть cM ′ равно m′i (которое и есть ϕ(cM)).

4) ϕ(fkM(mi1 , . . . ,mik)) равно fkM ′(ϕ(mi1), . . . , ϕ(mik)), то есть fkM ′(m′i1 , . . . ,m
′
ik

). В
самом деле, если fkM(mi1 , . . . ,mik) равно mj, то из 4-го члена получаем: M ′ � m′j =
= fk(m′i1 , . . . ,m

′
ik

), то есть ϕ(mj) равно fkM ′(m′i1 , . . . ,m
′
ik

).
5) M ′ � P k(m′i1 , . . . ,m

′
ik

) ⇔ M � P k(mi1 , . . . ,mik). Действительно, если
M � P k(mi1 , . . . ,mik), то из 5-го члена получаем: M ′ � P k(m′i1 , . . . ,m

′
ik

).
6) Если же M � ¬P k(mi1 , . . . ,mik), то из 6-го члена получаем:

M ′ � ¬P k(m′i1 , . . . ,m
′
ik

).

Продолжим доказательство теоремы.
Заметим, что Th(M) ∼ {AM}. (Эквивалентность здесь понимается относительно

нормальных моделей. Если рассматривать произвольные модели, то надо добавить
ещё EqΩ.) Действительно, по лемме (9.2) AM ∈ Th(M), значит, M ′ � Th(M) ⇒
⇒ M ′ � AM . Обратно, пусть M ′ � AM . По той же лемме M ′ ∼= M . И тогда
M ′ � Th(M).

Итак, Th(M) конечно аксиоматизируема.
Также Th(M) сильно категорична, так как эквивалентная ей теория {AM} сильно

категорична по лемме (9.2).

Общезначимость и равносильность

Определение 9.3. Замкнутые формулы A,B (в некоторой сигнатуре) называются
равносильными, если формула A↔ B общезначима.

Определение 9.4. Пусть A(b1, . . . , bn) ∈ FmΩ. Тогда универсальным замыканием
формулы A называется формула ∀x1 . . . ∀xnA(x1, . . . , xn), где x1, . . . , xn – различные
новые связанные переменные.
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Лемма 9.3. Пусть A(~b) – формула сигнатуры Ω; ~x, ~y – списки (той же длины,
что ~b) различных связанных переменных, не входящих в A. Тогда ∀~xA(~x) ∼ ∀~yA(~y).

Доказательство:
Из леммы (8.1) получаем:

M � ∀~xA(~x) ⇔ для всех ~m ∈Mn M � A(~m)

и
M � ∀~yA(~y) ⇔ для всех ~m ∈Mn M � A(~m).

Поэтому M � ∀~xA(~x) ⇔ M � ∀~yA(~y).

Определение 9.5. Формула A(~b) называется общезначимой (обозначение: � A(~b)),
если общезначимо её универсальное замыкание, если для всех моделей M имеем:
M � ∀~xA(~x).

Универсальное замыкание A(~b) (какое-нибудь) будем обозначать ∀A.

Определение 9.6. Формулы A(~b), B(~b) называются равносильными (обозначение:
A(~b) ∼ B(~b)), если � ∀(A↔ B).

По лемме (8.1) имеем (подразумевается, что M – в нужной сигнатуре, а ~m –
список её элементов нужной длины):

� A(~b) ⇔ для любой модели M и ~m из M M � A(~m);

A(~b) ∼ B(~b) ⇔ для любой модели M и ~m из M |A(~m)|M = |B(~m)|M .

Лемма 9.4. ∼ задаёт отношение эквивалентности на FmΩ.

Доказательство:
Если |A(~m)|M = |B(~m)|M и |B(~m)|M = |C(~m)|M , то |A(~m)|M = |C(~m)|M .

Определение 9.7. Пусть теперь F (P1, . . . , Pn) – пропозициональная формула, по-
строенная из пропозициональных переменных P1, . . . , Pn, а A1, . . . , An – формулы
сигнатуры Ω. Пусть S – подстановка, заменяющая каждое вхождение Pi на Ai. При
этой замене из F получится формула сигнатуры Ω, которую мы обозначим SF , или
F (A1, . . . , An). Такая формула называется подстановочным примером формулы F .

Сформулируем две леммы, которые докажем на следующей лекции.

Лемма 9.5 (Лемма о тавтологиях). Если F – тавтология, то � SF .

Лемма 9.6.
1) Если F1 ∼ F2, то SF1 ∼ SF2.
2) ¬∀x[x/a]A ∼ ∃x[x/a]¬A.
3) ¬∃x[x/a]A ∼ ∀x[x/a]¬A.
Далее

K

обозначает квантор ∀ или ∃.
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4)

K

x[x/a](A ◦ B) ∼ (

K

x[x/a]A ◦ B), если a не входит в B (и x не входит ни в
A, ни в B). Здесь ◦ – это ∨ или ∧.
5) Если A ∼ B, то ¬A ∼ ¬B.
6) Если A ∼ A′ и B ∼ B′ то (A ◦B) ∼ (A′ ◦B′). Здесь ◦ – это ∨, ∧ или →.
7) Если A ∼ B, то

K

x[x/a]A ∼

K

x[x/a]B (при условии, что x не входит ни в A,
ни в B).
8)

K

x[x/a]A ∼

K

y[y/a]A ∼

K

y[y/b][b/a]A, если x, y, b не входят в A (здесь x, y ∈
∈ BV ar и a, b ∈ FV ar).
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Лекция 10

Общезначимость и равносильность (продолжение)

Докажем лемму (9.5) о тавтологиях.

Доказательство:
Рассмотрим подстановку S, заменяющую P1, . . . , Pn на B1, . . . , Bn. Формулы Bi

запишем как Bi(a1, . . . , ak), считая, что список свободных переменных a1, . . . , ak со-
держит все параметры этих формул.

Рассмотрим произвольную модель M данной сигнатуры и её элементы
m1, . . . ,mk. Обозначим B′i := Bi(m1, . . . ,mk) (это – оценённые в M формулы), и
построим оценку пропозициональных переменных θ : V ar → {0, 1} так: θ(Pi) :=
:= |B′i|M .
Покажем, что для любой пропозициональной формулы F (P1, . . . , Pn) имеем:

θ(F ) = |SF (m1, . . . ,mk)|M . Это легко проверяется по индукции (по длине F ). Дей-
ствительно, если F = Pi, то это следует из определения θ, так как SPi = Bi. А шаг
индукции очевиден: например, при F = F1 ∧ F2 имеем:

SF = SF1 ∧ SF2;

θ(F ) = min(θ(F1), θ(F2));

|SF (m1, . . . ,mk)|M = min(|SF1(m1, . . . ,mk)|M , |SF2(m1, . . . ,mk)|M),

и можно применить предположение индукции.
Из доказанного утверждения сразу следует, что если F – тавтология, то

M � SF (m1, . . . ,mk) для любой M и при любом выборе m1, . . . ,mk. Это даёт об-
щезначимость SF .

Докажем лемму (9.6).

Доказательство:
1) Если (F1 ↔ F2) – тавтология, то по лемме (9.5) о тавтологиях � S(F1 ↔ F2).

Но S(F1 ↔ F2) = (SF1 ↔ SF2). Тогда по определению равносильности SF1 ∼ SF2.
2) Запишем A как A(a,~b); надо проверить, что в любой модели M для всех ~m

выполняется: |¬∀xA(x, ~m)|M = |∃x¬A(x, ~m)|M .
Но это сразу следует из определения истинности: |¬∀xA(x, ~m)|M = 1 ⇔
⇔ |∀xA(x, ~m)|M = 0 ⇔ не для всех k ∈ M |A(k, ~m)|M = 1 ⇔ найдётся k ∈ M ,
для которого |A(k, ~m)|M = 0 ⇔ найдётся k ∈M , для которого |¬A(k, ~m)|M = 1 ⇔
⇔ |∃x¬A(x, ~m)|M = 1.

3) Доказывается аналогично доказательству пункта (2).
4) Проверим это для

K

= ∃ и ◦ = ∧; остальные случаи разбираются аналогично.
Запишем A как A(a,~b), а B – как B(~b) (поскольку a не входит в B). Надо доказать,

что в любой модели M для любого ~m выполняется: |∃x(A(x, ~m) ∧ B(~m))|M = 1 ⇔
⇔ |∃xA(x, ~m) ∧B(~m)|M = 1.

В самом деле, |∃x(A(x, ~m) ∧ B(~m))|M = 1 ⇔ найдётся k такое, что |A(k, ~m) ∧
∧B(~m)|M = 1 ⇔ найдётся k такое, что (|A(k, ~m)|M = 1 и |B(~m)|M = 1).
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Но условие |B(~m)|M = 1 не зависит от k. Поэтому: найдётся k такое, что
(|A(k, ~m)|M = 1 и |B(~m)|M = 1) ⇔ (найдётся k такое, что |A(k, ~m)|M = 1) и
|B(~m)|M = 1 ⇔ |∃xA(x, ~m)|M = 1 и |B(~m)|M = 1 ⇔ |∃xA(x, ~m) ∧B(~m)|M = 1.

Таким образом, |∃x(A(x, ~m) ∧B(~m))|M = 1 ⇔ |∃xA(x, ~m) ∧B(~m)|M = 1.
7) Рассмотрим случай

K

= ∃.
Запишем A как A(a,~b) и B – как B(a,~b). По определению истинности, в моделиM

для любого ~m имеем: |∃[x/a]A(a, ~m)|M = max
k∈M
|A(k, ~m)|M . По тому же определению

получаем: |∃[x/a]B(a, ~m)|M = max
k∈M
|B(k, ~m)|M . Таким образом, равносильность из

пункта (7) очевидна, так как A ∼ B.
8) Рассмотрим случай

K

= ∃.
Запишем A как A(a,~e), где ~e – список всех параметров, кроме a. По определению

истинности, в модели M для любого ~m имеем: |∃xA(x, ~m)|M = max
k∈M
|A(k, ~m)|M . По

тому же определению получаем: |∃yA(y, ~m)|M = max
k∈M
|A(k, ~m)|M . Таким образом,

первая равносильность из пункта (8) очевидна.
Вторая равносильность тоже очевидна, так как выражения [y/a]A и [y/b][b/a]A

совпадают: если заменить в A все вхождения a на новую букву b, а потом все
вхождения b – на y, то это всё равно, что сразу заменить все a на y.

Упражнение 10.1. Доказать оставшиеся пункты теоремы (9.6).

Предваренная нормальная форма

Определение 10.1. Формула с тесными отрицаниями (ТО) – это формула, по-
строенная из литералов (то есть атомарных формул и их отрицаний) с помощью
конъюнкции, дизъюнкции и кванторов.

Точное определение – индуктивное:

• Если A – атомарная формула, то A и ¬A – ТО-формулы.

• Если A,B – ТО-формулы, то (A ∧B) и (A ∨B) – ТО-формулы.

• Если A – ТО-формула, a ∈ FV ar, x ∈ BV ar, x не входит в A, то ∀x[x/a]A и
∃x[x/a]A – ТО-формулы.

Лемма 10.1. Всякая формула первого порядка равносильна некоторой ТО-
формуле.

Доказательство:
Идея доказательства состоит в том, что импликацию можно выразить через отри-

цание и дизъюнкцию, а все отрицания можно задвинуть вглубь, используя законы
Де Моргана и пункты (2), (3) леммы (9.6).

Аккуратное доказательство проводится по индукции: именно, индукцией по
длине формулы A, доказываем, что A равносильна ТО-формуле, в которую вхо-
дят те же переменные.
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Предположим, что утверждение доказано для всех формул, которые короче, чем
A. По лемме (6.1), возможны следующие случаи.

1) A – атомарная. Тогда A – ТО-формула, и доказывать нечего.
2) A = (B ◦ C), где ◦ – это ∧ или ∨. Формулы B,C короче, и по предположению

индукции найдутся ТО-формулы B1, C1 такие, что B ∼ B1, C ∼ C1. Тогда по
пункту (6) леммы (9.6) имеем: A ∼ (B1 ◦C1), а по определению (10.1) ТО-формулы
имеем: (B1 ◦ C1) – ТО-формула. Переменные в ней те же, что в A, так как по
предположению индукции они не изменяются при переходе от B к B1 и от C к C1.
3) A = (B → C). Из логики высказываний (пункт (1) леммы (9.6)) получаем:

A ∼ (¬B ∨ C). Формулы ¬B, C короче, чем A, и тогда найдутся ТО-формулы B1,
C1 такие, что ¬B ∼ B1, C ∼ C1. По пункту (6) леммы (9.6) имеем: A ∼ (B1 ∨C1), а
по определению (10.1) ТО-формулы имеем: (B1 ∨ C1) – ТО-формула. Переменные
не меняются по предположению индукции (как и в доказательстве пункта (2)).

4) A =

K

x[x/a]B, где x не входит в B. По предположению индукции B ∼ B1 для
некоторой ТО-формулы B1 с теми же переменными. Поэтому x не входит в B1, и по
пункту (7) леммы (9.6) имеем: A ∼

K

x[x/a]B1. Ясно, что

K

x[x/a]B1 – ТО-формула,
и переменные из A в ней сохраняются.

5) A = ¬B. Тогда рассмотрим все возможности для B.
5.1) B – атомарная. Тогда A – ТО-формула, и доказывать нечего.
5.2) B = (C ∨ D). Из логики высказываний (закон Де Моргана) имеем: A ∼
∼ (¬C ∧ ¬D). Формулы ¬C, ¬D – короче, поэтому найдутся ТО-формулы C1, D1,
для которых ¬C ∼ C1, ¬D ∼ D1. По пункту (6) леммы (9.6) имеем: A ∼ (C1 ∧D1),
и снова получаем ТО-формулу. Переменные, как и раньше, сохраняются.

5.3) B = (C ∧D). Этот случай аналогичен доказательству пункта (5.2).
5.4) B = (C → D). Из логики высказываний A = ¬(C → D) ∼ (C ∧¬D). Так как

C, ¬D короче, чем A, имеем ТО-формулы C1, D1, для которых C ∼ C1, ¬D ∼ D1.
По пункту (6) леммы (9.6) имеем: A ∼ (C1 ∧D1).

5.5) B = ¬C. По логике высказываний A = ¬¬C ∼ C. По предположению индук-
ции имеем ТО-формулу C1 ∼ C. Итак, A ∼ C1.
5.6) B = ∀x[x/a]C, где x не входит в C. По пункту (2) леммы (9.6) имеем: A =

= ¬B ∼ ∃x[x/a]¬C. Так как ¬C короче, чем A, имеется ТО-формула C1 такая, что
¬C ∼ C1. Из-за сохранения переменных x не входит в C1. По пункту (7) леммы
(9.6) имеем: ∃x[x/a]¬C ∼ ∃x[x/a]C1. Итак, A равносильна ТО-формуле ∃x[x/a]C1 с
теми же переменными.

5.7) B = ∃x[x/a]C. Этот случай аналогичен доказательству пункта (5.6).

Определение 10.2. Предваренная нормальная форма (ПНФ) – это формула вида

K

1x1 . . .

K

nxn[x1, . . . , xn/a1, . . . , an]A,

где

K

1, . . . ,

K

n – кванторы, A – формула без кванторов, a1, . . . , an – (различные) сво-
бодные переменные, x1, . . . , xn – (различные) связанные переменные, не входящие
в A. Формула без кванторов тоже считается ПНФ.

Теорема 10.1. Любая формула первого порядка равносильна некоторой ПНФ.
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Доказательство:
Благодаря лемме (10.1) достаточно доказать это для ТО-формул. То есть индук-

цией по длине ТО-формулы A доказываем, что A равносильна ПНФ. По лемме (6.1)
об однозначном анализе термов и формул возникают такие случаи.

1) A – литерал. Тогда A – ПНФ по определению.
2) A = (B ◦C), где ◦ – это ∨ или ∧. По предположению индукции B ∼ B′, C ∼ C ′

для некоторых ПНФ B′, C ′. Тогда по пункту (6) леммы (9.6) имеем: A = (B ◦C) ∼
∼ (B′ ◦ C ′). Теперь нужна ещё одна лемма.

Лемма 10.2. Если A,B – ПНФ, ◦ – это ∨ или ∧, то формула (A◦B) равносильна
ПНФ.

Доказательство:
Доказываем индукцией по числу кванторов в (A ◦B).
Если кванторов нет, то это уже ПНФ, и доказывать нечего.
Если есть кванторы, то мы можем считать, что они есть в A: если они есть только

в B, можно переставить A и B, так как (A ◦B) ∼ (B ◦ A) (логика высказываний).
Итак, пусть A =

K

x[x/a]A1.
Случай 1. a, x не входят в B.
По пункту (4) леммы (9.6) имеем: (A ◦ B) = (

K

x[x/a]A1 ◦ B) ∼

K

x[x/a](A1 ◦ B).
Число кванторов в A1 ◦ B меньше, чем в A ◦ B, и по предположению индукции
(A1 ◦B) ∼ C для некоторой ПНФ C.

Случай 1.1. Если x не входит в C, то по пункту (7) леммы (9.6) имеем:K
x[x/a](A1 ◦B) ∼

K
x[x/a]C. Таким образом, (A ◦B) равносильна ПНФ

K
x[x/a]C.

Случай 1.2. Если x входит в C, то возьмём новую связанную переменную y, кото-
рой нет в A1, B, C. По пункту (8) леммы (9.6) имеем: A =

K

x[x/a]A1 ∼

K

y[y/a]A1,
и далее (A ◦ B) ∼ (

K

y[y/a]A1 ◦ B). Теперь, как в случае (1.1): (

K

y[y/a]A1 ◦ B) ∼
∼

K

y[y/a]C.
Случай 2. a или x входит в B.
Тогда можно эти переменные переименовать. А именно, выберем b ∈ FV ar, y ∈
∈ BV ar, которые не входят в B. По пункту (8) леммы (9.6) имеем: A =

K

x[x/a]A1 ∼
∼

K

y[y/b][b/a]A1. Формула

K

y[y/b][b/a]A1 равносильна ПНФ, согласно случаю (1)
(где вместо A1 надо использовать [b/a]A1).

Возвращаемся к пункту (2) доказательства теоремы. По лемме (10.2) получаем,
что (B′ ◦ C ′) равносильна ПНФ, поэтому и A равносильна ПНФ.
3) A =

K

x[x/a]B.
По предположению индукции, имеется ПНФ B′, равносильная B. Выберем

какую-нибудь связанную переменную y, не входящую ни в B, ни в B′. По пунктам
(8), (7) леммы (9.6) получаем: A =

K

x[x/a]B ∼

K

y[y/a]B ∼

K

y[y/a]B′. ФормулаK

y[y/a]B′ – ПНФ.

Приведём пример.
Рассмотрим формулу ∀xP (x) ∨ ∃xQ(x). Она приводится к ПНФ следующим об-

разом: (∀xP (x) ∨ ∃xQ(x)) ∼ (∀xP (x) ∨ ∃yQ(y)) ∼ ∀x(P (x) ∨ ∃yQ(y)) ∼ ∀x∃y(P (x) ∨
∨Q(y)).
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Подробнее, это происходит так: (∀x[x/a]P (a) ∨ ∃x[x/a]Q(a)) ∼ (∀x[x/a]P (a) ∨
∨ ∃y[y/b]Q(b)) ∼ ∀x[x/a](P (a) ∨ ∃y[y/b]Q(b)) ∼ ∀x∃y[x, y/a, b](P (a) ∨Q(b)).

Замечание 10.1. В логике высказываний мы можем выяснить, является ли дан-
ная формула тавтологией, приведя её к СДНФ. В логике предикатов аналогичный
метод не работает: у одной и той же формулы могут быть несколько совершенно
разных ПНФ. И по данной ПНФ непонятно, как установить общезначимость. В
частности, неверно, что �

K

x1 . . .

K

xn[x1, . . . , xn/a1, . . . , an]A ⇒ � A.
Например, формула ∃x∀y(P (x) → P (y)) общезначима, так как ∃x∀y(P (x) →
→ P (y)) ∼ ∃x∀y(¬P (x) ∨ P (y)) ∼ ∃x(¬P (x) ∨ ∀yP (y)) ∼ (∃x¬P (x) ∨ ∀yP (y)) ∼
∼ (¬∀xP (x) ∨ ∀yP (y)) ∼ (¬∀xP (x) ∨ ∀xP (x)). При этом формула P (x) → P (y)
совсем не общезначима.
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Лекция 11

Исчисление предикатов

Определение 11.1. Исчисление предикатов в сигнатуре Ω – это аксиоматическая
система гильбертовского типа. Она обозначается через PCΩ и задаётся следующими
аксиомами и правилами вывода.

I. 10 схем аксиом исчисления высказываний CL (см. лекцию 4). Но теперь A,B,C
могут быть любыми формулами сигнатуры Ω.
II. Предикатные аксиомы:
1) ∀x[x/a]A→ [t/a]A;
2) [t/a]A→ ∃x[x/a]A;
3) ∀x[x/a](A→ B)→ (A→ ∀x[x/a]B);
4) ∀x[x/a](B → A)→ (∃x[x/a]B → A).
Здесь A,B – произвольные формулы, t – произвольный терм, a – свободная пе-

ременная, x – связанная переменная. Формула [t/a]A получается из A заменой всех
вхождений a на t. Переменная x не должна входить в A и B. В аксиомах 3, 4
переменная a не должна входить в A.

III. Правила вывода:

ModusPonens (MP ):
A, A→ B

B
;

Gen (правило обобщения):
A

∀x[x/a]A
. Здесь предполагается, что x не входит в A.

Определение вывода в исчислении предикатов аналогично исчислению высказы-
ваний, но здесь добавляется ещё правило Gen.

Определение 11.2. Пусть Γ – некоторое множество формул сигнатуры Ω. Вывод
формулы A в PCΩ из Γ – это конечная последовательность формул, каждая из
которых – аксиома, или принадлежит Γ, или получается из предыдущих по правилу
MP или Gen, a последняя формула есть A.
То есть это последовательность формул A1, . . . , An = A, где для всех k выполня-

ется одно из условий:

• Ak – аксиома,

• Ak ∈ Γ,

• существуют i, j < k, для которых Aj = Ai → Ak,

• существует i < k и переменные x, a такие, что Ak = ∀x[x/a]Ai.

Определение 11.3. Формула A выводима из Γ, если существует eё вывод из Γ;
обозначение: Γ `PCΩ

A.

Для этой выводимости существует аналог леммы (4.1) с тем же доказательством.
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Лемма 11.1.
1) Если ∆ ⊆ Γ и ∆ `PCΩ

A, то Γ `PCΩ
A.

2) Если Γ `PCΩ
A, то существует конечное ∆ ⊆ Γ, для которого ∆ `PCΩ

A.
3) Если ∆ `PCΩ

Γ и Γ `PCΩ
A, то ∆ `PCΩ

A.

Лемма 11.2. Пусть A – пропозициональная формула, SA – её подстановочный
пример в сигнатуре Ω. Если `CL A, то `PCΩ

SA.

Поскольку теоремы CL – это в точности тавтологии (см. лекцию 5), то лемму
можно сформулировать так: все подстановочные примеры тавтологий выводимы в
исчислении предикатов.

Доказательство:
Индукция по длине вывода A в CL.
1) Если A – аксиома, то SA – аксиома того же вида. Это получается из того, что

подстановка S дистрибутивна относительно логических связок. Например, если A
– аксиома 1: A = B → (C → B), то SA = SB → (SC → SB), и это аксиома I.1 (в
исчислении предикатов). Аналогично для других аксиом.
2) Пусть A получается по правилу MP из B и B → A. По предположению ин-

дукции в PCΩ выводимы SB и S(B → A). Но S(B → A) = SB → SA. Применив
MP в исчислении предикатов, получим `PCΩ

SA.

Далее будем опусть индекс PCΩ у символа ` там, где понятно, что речь идёт про
выводимость в исчислении предикатов.

Лемма 11.3.
1) ` ∀x[x/a]A→ A (x не входит в A).
2) ` A→ ∃x[x/a]A (x не входит в A).

3) Допустимо правило
A→ B

A→ ∀x[x/a]B
(x не входит в A,B; a не входит в A).

4) Допустимо правило
B → A

∃x[x/a]B → A
(x не входит в A,B; a не входит в A).

Правила (3), (4) называются ослабленными правилами Бернайса. В исходной (не
ослабленной) форме x может входить в A; этот вариант разберём чуть позже.

Доказательство:
Докажем пункты (1) и (2). Это тривиальные случаи аксиом II.1 и II.2 для t = a.
3) Рассматриваем выводы из некоторого множества гипотез Γ. Пусть Γ ` A→ B.

По правилу Gen тогда Γ ` ∀x[x/a](A→ B). По аксиоме II.3 имеем: Γ ` ∀x[x/a](A→
→ B)→ (A→ ∀x[x/a]B). Теперь Γ ` A→ ∀x[x/a]B по MP .

Упражнение 11.1. По аналогии с доказательством пункта (3), используя аксиому
II.4 вместо аксиомы II.3, доказать пункт (4).

Лемма 11.4. `

K

y[y/a]A →

K

x[x/a]A, где

K

– квантор, а переменные x, y не
входят в A.
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Доказательство:
Рассмотрим случай

K

= ∀.
` ∀y[y/a]A → A по пункту (1) леммы (11.3). Тогда ` ∀y[y/a]A → ∀x[x/a]A по

ослабленному правилу Бернайса.
Случай

K

= ∃ разбирается аналогично.

Лемма 11.5 (Ослабленная теорема дедукции). Если Γ, A ` B без применения пра-
вила Gen, то Γ ` A→ B.

Доказательство:
Доказательство такое же, как для теоремы дедукции для CL (4.2).

Лемма 11.6. В исчислении предикатов допустимо правило силлогизма

A→ B, B → C

A→ C
.

Доказательство:
Из теоремы дедукции следует, что это правило – производное. См. лекцию 4.

Лемма 11.7. Допустимы правила Бернайса:

1)
A→ B

A→ ∀x[x/a]B
;

2)
B → A

∃x[x/a]B → A
,

где переменная x не входит в B, переменная a не входит в A.

Доказательство:
Докажем допустимость правила (1); правило (2) рассматривается аналогично.
Пусть Γ ` A → B. Выберем переменную y, не входящую ни в A, ни в B. Тогда

по пункту (3) леммы (11.3) имеем: Γ ` A → ∀y[y/a]B. По лемме (11.4) имеем: `
∀y[y/a]B → ∀x[x/a]B. Отсюда по правилу силлогизма получаем: Γ ` A→ ∀x[x/a]B.

Теорема 11.1 (Теорема дедукции). Если A – замкнутая формула, то

Γ, A ` B ⇔ Γ ` A→ B.

Доказательство:
Докажем ⇐. Это легко получается по MP (для любой A); см. доказательство

теоремы дедукции для CL (4.2).
Докажем ⇒ по индукции. Это делается аналогично доказательству теоремы де-

дукции для CL (4.2), но еще надо рассмотреть случай, когда B получается по пра-
вилу Gen.

Итак, пусть B = ∀x[x/a]C и Γ, A ` C. По предположению индукции Γ ` A → C.
Тогда по правилу Бернайса (поскольку A замкнута) получаем Γ ` A → ∀x[x/a]C,
то есть Γ ` A→ B.

Сформулируем следствие теоремы дедукции (11.1).
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Утверждение 11.1. Для любой конечной теории T и формулы A сигнатуры Ω

T `PCΩ
A ⇔ `PCΩ

(
∧

T )→ A,

где
∧
T обозначает конъюнкцию всех формул из T .

Доказательство:
По теореме дедукции (11.1) имеем:

∧
T ` A ⇔ ` (

∧
T )→ A.

Заметим также, что T ` A ⇔
∧
T ` A. Действительно, T `

∧
T по допустимому

правилу введения ∧ (см. лекцию 5); его надо применить несколько раз. Поэтому
из

∧
T ` A по транзитивности (пункт (3) леммы (11.1)) следует T ` A. Обратно,∧

T ` T по аксиомам I.3 (T1 ∧ T2 → T1), I.4 (T1 ∧ T2 → T2) и MP . Поэтому из T ` A
по транзитивности следует

∧
T ` A.

Таким образом, T ` A ⇔
∧
T ` A ⇔ ` (

∧
T )→ A, то есть T ` A ⇔ ` (

∧
T )→

→ A.

Корректность исчисления предикатов

Теорема 11.2 (Теорема о корректности исчисления предикатов).
1) Пусть T – теория 1-го порядка в сигнатуре Ω. Тогда для любой формулы A

этой сигнатуры имеем:
T `PCΩ

A ⇒ T � ∀A.
2) Для любой формулы A сигнатуры Ω имеем:

`PCΩ
A ⇒ � A,

то есть все теоремы исчисления предикатов общезначимы.

Доказательство:
Очевидно, что пункт (2) следует из пункта (1): надо взять T = ∅ и вспомнить, что

по определению общезначимость A равносильна общезначимости ∀A (определение
(9.5)).

Пункт (1) доказывается индукцией по длине вывода A в T аналогично теореме
корректности (4.3) для исчисления высказываний.

1.1) Если A ∈ T , то доказывать нечего: A истинна во всех моделях T и ∀A = A,
так как A замкнута.
1.2) Все аксиомы группы I – подстановочные примеры аксиом CL. Например,

предикатная формула A → (B → A) – пример пропозициональной аксиомы P1 →
→ (P2 → P1) и так далее. Аксиомы CL – тавтологии (теорема корректности (4.3)
для исчисления высказываний). Поэтому аксиомы группы I общезначимы по лемме
(9.5) о тавтологиях.

1.3) Пусть A получается по MP из B и B → A. Выводы этих формул короче, и
по предположению индукции T � ∀B, T � ∀(B → A).
Рассмотрим любую модель M теории T и докажем, что M � ∀A. По лемме (8.1)

для этого надо заменить свободные переменные из A (обозначим их список ~a) на
произвольные элементы из M (обозначим этот список ~m) и доказать, что получен-
ная оценённая формула (обозначим её A1) истинна в M .
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Заметим, что при замене ~a на ~m в формуле B могут остаться ещё какие-то сво-
бодные переменные; заменим их тоже на элементы из M (как угодно), и получим
оценённую формулу B1. Поскольку T � ∀B и M � T , имеем: M � ∀B. Тогда по
лемме (8.1) имеем: M � B1.
Аналогично M � ∀(B → A), откуда M � B1 → A1 по лемме (8.1).
Теперь из истинности B1 → A1 и B1 следует истинность A1 (по определению

значения импликации; см. лекцию 7).
1.4) Пусть A получается по правилу Gen, то есть A = ∀x[x/a]B, T ` B. Вывод B

короче, и по предположению индукции T � ∀B.
Случай 1. Если a входит в B, то ∀B и ∀∀x[x/a]B могут отличаться только поряд-

ком кванторов. Из леммы (8.1) следует, что эти формулы равносильны. Поэтому
T � ∀A.
Случай 2. a не входит в B. В этом случае тоже из M � ∀B следует M � ∀A.
В самом деле, пусть B = B(~b), a не входит в ~b. Допустим, что M � ∀B. То-

гда для всех наборов ~m элементов из M (той же длины, что ~b) M � B(~m). В
формуле A = ∀x[x/a]B(~b) остаются все те же свободные переменные ~b. Поэтому
M � ∀ ∀x[x/a]B(~b) означает, что для всех ~m из M имеем: M � ∀x[x/a]B(~m). Но это
– то же, что M � B(~m), так как переменная a в B(~m) не входит, любая её замена
оказывается фиктивной. Итак, M � ∀A.
1.5) A – аксиома II.3: A = ∀x[x/a](C → B)→ (C → ∀x[x/a]B), где x не входит в A

и B, a не входит в C. Докажем общезначимость этой формулы. Выберем модельM и
возьмём произвольную замену свободных переменных на элементы из M . Получим
оценённую формулу A1 = ∀x[x/a](C1 → B1)→ (C1 → ∀x[x/a]B1).

Так как a не входит в C, здесь C1 – замкнутая (то есть тоже оценённая) форму-
ла, а B1 может содержать только одну свободную переменную a (поскольку фор-
мула ∀x[x/a]B1 замкнута). Запишем B1 как B1(a) и соответственно A1 = ∀x(C1 →
→ B1(x))→ (C1 → ∀xB1(x)).
Докажем, что M � A1. Предположим, что M � ∀x(C1 → B1(x)), и проверим,

что M � C1 → ∀xB1(x). В свою очередь, для этого предположим, что M � C1, и
докажем, что M � ∀xB1(x).
Возьмём любое m ∈ M . Из M � ∀x(C1 → B1(x)) следует, что M � C1 → B1(m).

Тогда из M � C1 следует, что M � B1(m). Поскольку m произвольно, получаем
M � ∀xB1(x), что и требовалось.
1.6) A – аксиома II.4. Этот случай аналогичен предыдущему.

Упражнение 11.2. Доказать пункт (1.6).

Оставшиеся аксиомы II.1, II.2 будут рассмотрены на следующей лекции.
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Лекция 12

Корректность исчисления предикатов (продолжение)

Продолжаем доказательство теоремы (11.2) о корректности исчисления предика-
тов.

Доказательство:
Осталось проверить общезначимость аксиом II.1 и II.2. Рассмотрим аксиому II.1

(общезначимость аксиомы II.2 проверяется аналогично).

Упражнение 12.1. Проверить общезначимость аксиомы II.2.

Рассуждаем как в случае II.3 (лекция 11). Нам надо доказать общезначимость
формулы A(a,~b) := ∀x[x/a]B → [t/a]B, где ~b – список дополнительных параметров,
кроме a (переменная a в формулу A может попасть из терма t; если она не входит
в t (и в A), рассуждение не меняется). Тогда запишем B как B(a,~b), t – как t(a,~b).

Рассмотрим модель M и заменим набор параметров a,~b на набор произвольных
элементов q, ~m из M . Получим оценённую формулу A(q, ~m) = ∀x[x/a]B(a, ~m) →
→ [t(q, ~m)/a]B(a, ~m). Обозначим B1(a) := B(a, ~m), t1 := t(q, ~m) и перепишем фор-
мулу A(q, ~m), получим: A(q, ~m) = ∀x[x/a]B1(a) → B1(t1). Здесь B1(t1) обозначает
[t1/a]B1(a).
Нам надо доказать, что M � A(q, ~m). Для этого предположим, что

M � ∀x[x/a]B1(a), и докажем, что M � B1(t1).
Для это достаточно будет доказать следующую лемму.

Лемма 12.1. Пусть B1(a) ∈ FmΩ∪M , r(a) ∈ TmΩ∪M , t1 ∈ CTmΩ∪M . Тогда:
1) |r(t1)|M = |r(|t1|M)|M ;
2) |B1(t1)|M = |B1(|t1|M)|M .
Здесь r(t1) обозначает [t1/a]r(a).

Из пункта (2) леммы (12.1) получаем M � B1(t1) (в предположении M �
∀x[x/a]B1(a)), поскольку из M � ∀x[x/a]B1(a) следует M � B1(|t1|M).
Докажем лемму (12.1).

Доказательство:
Индекс M при | . . . | не пишем. С некоторыми изменениями повторяется доказа-

тельство теоремы (7.1).
Докажем пункт (1) индукцией по длине r.
1.1) (Базис индукции). r = c для c ∈ ConstΩ. Тогда a не входит в r, и доказывать

нечего.
1.2) (Базис индукции). r = m для m ∈M . Опять a не входит в r, и всё очевидно.
1.3) (Базис индукции). r = a. Тогда r(t1) = t1, r(|t1|) = |t1|, а также |t1| = ||t1||

по определению значения оценённого терма (определение (7.5)): |m| = m для всех
m ∈M .
1.4) (Шаг индукции). r(a) = f(r1(a), . . . , rn(a)). Тогда

r(t1) = f(r1(t1), . . . , rn(tn)) и r(|t1|) = f(r1(|t1|), . . . , rn(|tn|)).
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Тогда

|r(t1)| = fM(|r1(t1)|, . . . , |rn(t1)|) и |r(|t1|)| = fM(|r1(|t1|)|, . . . , |rn(|tn|)|).

Но по предположению индукции для термов ri имеем: |ri(t1)| = |ri(|t1|)|. Тогда
|r(t1)| = |r(|t1|)|.
Докажем пункт (2) индукцией по числу связок и кванторов в B1(a).
2.1) (Базис индукции). B1(a) = P (r1(a), . . . , rn(a)) – атомарная. Доказательство

аналогично пункту (1.4).

Упражнение 12.2. Доказать пункт (2.1).

2.2) (Шаг индукции). B1 получается применением ∧, ∨, → или ¬. Эти случаи
почти очевидны.

Упражнение 12.3. Доказать пункт (2.2).

2.3) (Шаг индукции). B1(a) = ∃x[x/b]C(a, b). Тогда

|B1(t1)| = |∃x[x/b]C(t1, b)| = max
l∈M
|C(t1, l)|

и
|B1(|t1|)| = |∃x[x/b]C(|t1|, b)| = max

l∈M
|C(|t1|, l)|.

По предположению индукции, применённому к формуле C(a, l), имеем: |C(t1, l)| =
= |C(|t1|, l)| для каждого l ∈M . Тогда |B1(t1)| = |B1(|t1|)|.
2.4) (Шаг индукции). B1(a) = ∀x[x/b]C(a, b).
Доказательство аналогично пункту (2.3): ∃ заменяется на ∀, a max – на min.

Исчисление предикатов с равенством

Определение 12.1. Пусть Ω – сигнатура, содержащая предикатный символ равен-
ства =. Исчисление предикатов с равенством в сигнатуре Ω получается из обычно-
го исчисления предикатов PCΩ добавлением аксиом стандартной теории равенства
EqΩ (см. лекцию 8): PC=

Ω = PCΩ + EqΩ.

Выводимость из теории T в исчислении предикатов с равенством: T `PC=
Ω
A ⇔

⇔ T ∪ EqΩ `PCΩ
A.

Для теорий в такой сигнатуре можно рассматривать нормальные модели и логи-
ческое следование на них.

Определение 12.2. T �норм A означает, что (замкнутая) формула A истинна во
всех нормальных моделях теории T .

Также можно определить нормальную общезначимость.

Определение 12.3. Формула A нормально общезначима (обозначение �норм A),
если её универсальное замыкание ∀A истинно во всех нормальных моделях данной
сигнатуры.
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Теорема 12.1 (Теорема о корректности исчисления предикатов с равенством).
1) Пусть T – теория 1-го порядка с равенством в сигнатуре Ω. Тогда для любой

замкнутой формулы A этой сигнатуры имеем:

T `PC=
Ω
A ⇒ T �норм A.

2) Для любой формулы A сигнатуры Ω имеем:

`PC=
Ω
A ⇒ �норм A,

то есть все теоремы исчисления предикатов с равенством нормально общезначи-
мы.

Доказательство:
1) Пусть T `PC=

Ω
A. По определению это означает T ∪ EqΩ `PCΩ

A. По теореме
корректности (11.2) имеем: T ∪ EqΩ � A. Если M � T и M нормальна, то M � EqΩ

(лемма (8.2)). Тогда M � A.
2) Как и в теореме (11.2), рассмотрим T = ∅ и применим пункт (1) для ∀A.

Непротиворечивость

Определение 12.4. Теория T в сигнатуре Ω называется противоречивой, если для
некоторой формулы A в этой сигнатуре T `PCΩ

A и T `PCΩ
¬A.

Определение 12.5. Теория T в сигнатуре Ω с равенством называется противоре-
чивой, если для некоторой формулы A в этой сигнатуре T `PC=

Ω
A и T `PC=

Ω
¬A.

Лемма 12.2. Если теория T в сигнатуре Ω противоречива, то T `PCΩ
B для

любой формулы сигнатуры B; аналогично для теорий с равенством.

Доказательство:
См. доказательство пункта (2) леммы (5.2).

Сформулируем следствие.

Утверждение 12.1.
1) Если теория 1-го порядка выполнима, то она непротиворечива.
2) Если теория 1-го порядка с равенством нормально выполнима (то есть име-

ет нормальную модель), то она непротиворечива.

Доказательство:
1) Предположим, что теория T в сигнатуре Ω противоречива. Предположим, что

M � T . Возьмём какую-нибудь замкнутую формулу B, истинную в M (например,
формулу вида A→ A). По лемме (12.2) имеем: T `PCΩ

¬B. Тогда по теореме (11.2)
о корректности исчисления предикатов имеем: T � ¬B. Следовательно, M � ¬B,
что противоречит выбору B.

2) Аналогично с использованием PC=
Ω .
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Пример: арифметика Пеано

Определение 12.6. Арифметика Пеано (PA) – это теория 1-го порядка в сигна-
туре {0, 1,+, ·,=} со следующими аксиомами:
1) ∀x(x+ 1 6= 0);
2) ∀x∀y(x+ 1 = y + 1→ x = y);
3) ∀x(x 6= 0→ ∃y(y + 1 = x));
4) ∀x(x+ 0 = x);
5) ∀x∀y(x+ (y + 1) = (x+ y) + 1);
6) ∀x(x · 0 = 0);
7) ∀x∀y(x · (y + 1) = x · y + x);
8) ∀(A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(x)).

Здесь (1)-(7) – конкретные формулы, a (8) – схема, то есть бесконечное множе-
ство аксиом определённого вида. Предполагается, что A – формула с несколькими
свободными переменными, то есть A = A(a, . . .). Записи A(0), A(x) обозначают со-
ответственно [0/a]A, [x/a]A; запись ∀x(A(x)→ A(x+1)) – это формула ∀x[x/a](A→
→ [a+ 1/a]A).
(8) называется схемой аксиом индукции. Она выражает принцип математической

индукции: если какое-то свойство A верно для 0 и из истинности A для x следует
истинность для x + 1, то A верно для всех x. Однако в теории PA индукция по-
стулируется только для тех свойств, которые можно записать формулами в данной
сигнатуре.
Хотя теория PA и называется «арифметика Пеано», она отличается от той, кото-

рую рассматривал сам Пеано: в его теории индукция применима ко всем свойствам
натуральных чисел. Теория Пеано (в современном понимании) соответствует ариф-
метике 2-го порядка, которая в нашем курсе не изучается.

Теорема 12.2. PA непротиворечива.

Доказательство:
PA имеет стандартную модель N: множество натуральных чисел (включая 0), где

+ интерпретируется как операция сложения, · – как операция умножения, константа
0 – как число нуль, константа 1 – как число единица. Все аксиомы PA верны в этой
модели. По утверждению (12.1) получаем, что PA непротиворечива.

Это – метаматематическое рассуждение; в нём предполагается известным, что та-
кое натуральные числа и какие у них свойства. Чтобы дать строгое математическое
доказательство, нужна формальная теория, где мы можем определить множество
натуральных чисел. Это делается в аксиоматической теории множеств, о чём будет
сказано кратко в лекции 14.

Модальное исчисление S5

Некоторые части логики предикатов можно превратить в логики высказываний
– так называемые модальные логики. В модальных логиках к обычным булевым
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связкам добавляются модальные связки, в простейшем случае – одноместная связка
«необходимо» (�).
В отличие от булевых связок, логические свойства связки � не очевидны и допус-

кают много вариаций. Первые модальные исчисления были построены К. Льюисом
(1918) и названы им S1, . . . , S5. А вообще, имеется огромное число (континуум)
различных модальных логик.

В этом курсе мы рассмотрим только исчисление S5. Современная формулировка
его была дана Гёделем (1933).

Определение 12.7. Множество модальных формул MFm строится по следую-
щим правилам:

• если A ∈ V ar, то A ∈MFm;

• если A,B ∈MFm, то (A ∧B) ∈MFm;

• если A,B ∈MFm, то (A ∨B) ∈MFm;

• если A,B ∈MFm, то (A→ B) ∈MFm;

• если A ∈MFm, то ¬A ∈MFm;

• если A ∈MFm, то �A ∈MFm.

Таким образом, Fm ⊂MFm.
Также будем использовать связку «возможно» (♦), которая определяется как

сокращение: ♦ := ¬�¬.

Определение 12.8. Схемы аксиом S5:
I) Схемы (1)–(10) из CL, но для модальных формул.
II)
(AK) �(A→ B)→ (�A→ �B),
(AT ) �A→ A,
(A4) �A→ ��A,
(A5) ♦�A→ �A.

Определение 12.9. Правила вывода S5:
ModusPonens (MP );

Правило добавления � (Nec):
A

�A
.

Понятия вывода и выводимости в S5 определяются аналогично CL (с учётом
дополнительного правила).

Семантика Крипке для S5

Определение 12.10. Пусть W 6= ∅ – множество. Оценка (пропозициональных
переменных) на W – это отображение V ar → P(W ), где P(W ) – множество всех
подмножеств множества W . Модель Крипке на W – это пара (W, θ), где θ – оценка
на W . W называется множеством (возможных) миров этой модели.
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Определение 12.11. Для модели Крипке M = (W, θ), мира u ∈ W и модальной
формулы A определяем значение A в u; оно обозначается |A|Mu . Определение даётся
индукцией по длине A сразу для всех миров u:

• |Pi|Mu :=

{
1, если u ∈ θ(Pi)
0, иначе

;

• |A ∧B|Mu := min(|A|Mu , |B|Mu );

• |A ∨B|Mu := max(|A|Mu , |B|Mu );

• |¬A|Mu := 1− |A|Mu ;

• |A→ B|Mu := max(1− |A|Mu , |B|Mu );

• |�A|Mu := min
v∈W
|A|Mv .

Вместо |A|Mu = 1 пишут также M,u � A и говорят, что формула A истинна в
модели M в мире u.
В этих обозначениях определение (12.11) записывается так:

• M,u � Pi ⇔ u ∈ θ(Pi);

• M,u � A ∧B ⇔ M,u � A и M,u � B;

• M,u � A ∨B ⇔ M,u � A или M,u � B;

• M,u � ¬A ⇔ M,u 2 A;

• M,u � A→ B ⇔ M,u 2 A или M,u � B;

• M,u � �A ⇔ ∀v ∈ W M, v � A.

Из определения ♦ и |�A|Mu получаем: M,u � ♦A ⇔ ∃v ∈ W M, v � A. В других
обозначениях: |♦A|Mu = max

v∈W
|A|Mv .

Таким образом, в семантике Крипке «необходимо» (�) понимается как истин-
ность во всех мирах («всегда»), а «возможно» (♦) – как истинность в некоторых
мирах («иногда»).

Определение 12.12. Модальная формула A общезначима на (непустом) множе-
стве W (обозначение: W � A), если она истинна во всех мирах в любой модели
Крипке на W , то есть ∀θ ∀u |A|(W,θ)u = 1.

Теорема 12.3 (Теорема корректности для S5). Если `S5 A, то W � A для любого
W 6= ∅.

Это утверждение можно доказать индукцией по длине вывода A. У нас оно по-
лучится как следствие другой теоремы на следующей лекции.
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Стандартный перевод модальных формул

Определение 12.13. Рассмотрим сигнатуру сo счётным множеством одноместных
предикатных символов: P 1

1 , P
1
2 , . . .. Стандартный перевод (или перевод Вайсбер-

га) A 7→ A∗ модальных формул A в формулы 1-го порядка A∗ в этой сигнатуре
определяется по индукции:

• P ∗i := P 1
i (a);

• (A ◦B)∗ := (A∗ ◦B∗) для ◦ = ∨,∧,→;

• (¬A)∗ := ¬A∗;

• (�A)∗ := ∀x[x/a]A∗, где x – первая связанная переменная (в общем списке
BV ar – см. лекцию 6), не входящая в A (можно взять и любую другую пере-
менную, не попавшую в A, но мы выбираем первую для единообразия).

Таким образом, A∗ – формула с одной свободной переменной a или замкнутая.

Определение 12.14. Каждой модели Крипке M = (W, θ) поставим в соответствие
модельM∗ сигнатуры {P 1

1 , P
1
2 , . . .} с носителемW . А именно, полагаем для каждого

u ∈ W следующее:
M∗ � P 1

i (u) ⇔ M,u � Pi.

Это можно записать и так:

|P 1
i (u)|M∗ := |Pi|Mu .

Лемма 12.3. Для любой модальной формулы A имеем: |A∗(u)|M∗ = |A|Mu .

Доказательство:
Индукцией по длине A доказываем утверждение для всех u.
Если A – переменная, утверждение следует из определений (12.13), (12.14).
Если A имеет вид отрицания, конъюнкции, дизъюнкции или импликации, утвер-

ждение легко следует из определений истинности для модальных формул и формул
1-го порядка.

Упражнение 12.4. Доказать утверждение для случая, когда A имеет вид отри-
цания, конъюнкции, дизъюнкции или импликации.

Пусть A = �B. Тогда по определениям (7.6) и (12.11) имеем:

|A∗(u)|M∗ = |(∀x[x/a]B∗)(u)|M∗ = min
v∈W
|B∗(v)|M∗ ; |A|Mu = min

v∈W
|B|Mv .

По предположению индукции, |B∗(v)|M∗ = |B|Mv . Поэтому утверждение верно для
A.

Лемма 12.4. Для любой модальной формулы A и непустого W имеем:

W � ∀x[x/a]A∗ в классической логике ⇔ W � A в модальной логике.
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Доказательство:
Докажем ⇒ от противного. Пусть W 2 A, тогда для некоторой модели Крипке

M на W и какого-то мира u ∈ W имеем: M,u 2 A. Отсюда по лемме (12.3) имеем:
M∗ 2 A∗(u), следовательно, M∗ 2 ∀x[x/a]A∗, значит, W 2 ∀x[x/a]A∗.
Докажем ⇐ тоже от противного. Пусть W 2 ∀x[x/a]A∗. Тогда найдётся модель

µ нашей сигнатуры (с одноместными предикатами) с носителем W такая, что µ 2
∀x[x/a]A∗, то есть для некоторого u ∈ W имеем: µ 2 A∗(u).

Но µ = M∗ для некоторой модели Крипке M на W : она однозначно задаётся
равенствами |Pi|Mv = |P 1

i (v)|µ для всех v, i. Поэтому из µ 2 A∗(u) по лемме (12.3)
получаем, что M,u 2 A. Таким образом, W 2 A.
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Лекция 13

Свойства исчисления S5

Теорема 13.1. Следующие утверждения эквивалентны:
1) `S5 A;
2) `PC A∗;
3) � A∗;
4) W � A∗ для всех конечных W ;
5) W � A для всех W ;
6) W � A для всех конечных W .
Здесь PC понимается как исчисление предикатов в сигнатуре с одноместными

предикатами P 1
i и без равенства.

Доказательство:
Доказывать будем следующие импликации:

• (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (6);

• (3) ⇒ (5) ⇒ (6);

• (6) ⇒ (1).

(2) ⇒ (3) следует из теоремы (11.2) о корректности для PC.
(3) ⇒ (4), (5) ⇒ (6) очевидны.
(4) ⇒ (6), (3) ⇒ (5) получается из леммы (12.4).
Осталось доказать (1) ⇒ (2) и (6) ⇒ (1).
Отметим, что (3) ⇒ (2) – это теорема Гёделя о полноте исчисления предикатов.
Докажем (1) ⇒ (2) индукцией по длине вывода A в S5.

• Если A – аксиома группы (I), то A∗ – аксиома PC того же вида (из группы
I). Например, если A = B → (C → B), то A∗ = B∗ → (C∗ → B∗) и так далее.

• Пусть A = (�(B → C)→ (�B → �C)). Тогда

A∗ = (∀x(B∗(x)→ C∗(x))→ (∀xB∗(x)→ ∀xC∗(x))).

Тогда `PC A∗ получим по теореме дедукции (она применима, так как все
гипотезы – замкнутые) из следующей выводимости:

∀x(B∗(x)→ C∗(x)), ∀xB∗(x) ` ∀xC∗(x).

А это доказывается непосредственно:

1. ∀x(B∗(x)→ C∗(x)) – гипотеза.

2. ∀x(B∗(x)→ C∗(x))→ (B∗(a)→ C∗(a)) – аксиома II.1 из PC.

3. B∗(a)→ C∗(a) – 1, 2, MP .

4. ∀xB∗(x) – гипотеза.
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5. ∀xB∗(x)→ B∗(a) – аксиома II.1 из PC.

6. B∗(a) – 4, 5, MP .

7. C∗(a) – 3, 6, MP .

8. ∀xC∗(x) – 7, Gen.

• Пусть A = (�B → B). Тогда A∗ = ∀xB∗(x)→ B∗(a) – аксиома.

• Пусть A = (�B → ��B). Тогда A∗ = (∀xB∗(x) → ∀y∀xB∗(x)) получается из
∀xB∗(x)→ ∀xB∗(x) с помощью первого правила Бернайса из леммы (11.7).

• Пусть A = (♦�B → �B). Тогда A∗ = (∃y∀xB∗(x) → ∀xB∗(x)) получается из
∀xB∗(x)→ ∀xB∗(x) с помощью второго правила Бернайса из леммы (11.7).

Можно провести доказательство непосредственно из определения ♦. Тогда
A∗ = (¬∀y¬∀xB∗(x)→ ∀xB∗(x)).

Запишем: ¬∀xB∗(x)→ ¬∀xB∗(x). Тогда ¬∀xB∗(x)→ ∀y¬∀xB∗(x) по первому
правилу Бернайса из леммы (11.7). Применяем допустимое правило, позво-
ляющее менять порядок посылки и заключения, при этом дописывая отрица-
ние. Получим: ¬∀y¬∀xB∗(x)→ ¬¬∀xB∗(x). Используя аксиому ¬¬∀xB∗(x)→
→ ∀xB∗(x), по правилу силлогизма (11.6) получаем: ¬∀y¬∀xB∗(x)→ ∀xB∗(x),
то есть `PC A∗.

• Пусть A получается по MP из B, B → A. По предположению индукции
`PC B∗, B∗ → A∗. Тогда `PC A∗ по MP .

• Пусть A = �B получается по Nec из B. Тогда A∗ = ∀xB∗(x). По предположе-
нию индукции `PC B∗(a). Отсюда `PC A∗ по Gen.

Докажем (6) ⇒ (1). Это – теорема o полноте S5 относительно конечных моделей
Крипке. Её доказательство занимает всю оставшуюся часть лекции.

Определение 13.1. Модальные формулы A,B доказуемо эквивалентны в S5, если
`S5 A↔ B. Обозначение: A ≡S5 B.

Далее мы будем опускать индекс S5.

Лемма 13.1 (Некоторые синтаксические свойства S5).

1) Допустимы правила монотонности:
A→ B

�A→ �B
,

A→ B

♦A→ ♦B
.

2) ≡ задаёт отношение эквивалентности на MFm.
3) ≡ согласовано со всеми связками:

если A ≡ A′, то �A ≡ �A′, ¬A ≡ ¬A′;
если A ≡ A′ и B ≡ B′, то (A ◦B) ≡ (A′ ◦B′), где ◦ – это ∨, ∧ или →.

4) Если A – подформула формулы B и A ≡ A′, то замена вхождения A на A′ в
B даст эквивалентную формулу: B(. . . A . . .) ≡ B(. . . A′ . . .).
5) �(A ∧B) ≡ �A ∧�B.
♦(A ∨B) ≡ ♦A ∨ ♦B.

6) ♦(A ∨ ♦B) ≡ ♦A ∨ ♦B.
7) ♦(A ∧�B) ≡ ♦A ∧�B.
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Доказательство (не слишком трудное) пропускаем.

Определение 13.2. Модальные формулы глубины 1 определяются по индукции:

• Pi – глубины 1;

• если A – глубины 1, то ¬A – глубины 1;

• если A,B – глубины 1, то A ◦B – глубины 1, где ◦ – ∨, ∧ или →.

• если A ∈ Fm (классическая формула), то �A – глубины 1.

Лемма 13.2 (О нормальной форме для формул глубины 1). Если A – глубины 1,
то A ≡

∨
i

Ai, где Ai – вида
∧
j

Qij, а каждое Qij – либо литерал, либо формула вида

♦D или ¬♦D, где D – классическая.

Доказательство:
Заметим, что �A ≡ ¬♦¬A. Тогда из определения (13.2) следует, что фор-

мула A имеет вид B(P1, . . . , Pn,♦C1, . . . ,♦Cm), где B(P1, . . . , Pn, Pn+1, . . . , Pn+m) и
C1, . . . , Cm – классические формулы. (Это легко доказывается по индукции.)

Формулу B можно привести к СДНФ: B ∼
∨
i

Bi, где Bi – элементарные конъюнк-

ции. Тогда по теореме (5.1) о полноте CL имеем: `CL B ↔
∨
i

Bi. Тогда, подставив

формулы ♦C1, . . . ,♦Cm вместо Pn+1, . . . , Pn+m в этот вывод, получим: `S5 A↔
∨
i

Ai,

где Ai = Bi(P1, . . . , Pn,♦C1, . . . ,♦Cm). Поскольку Bi – элементарная конъюнкция,
Ai окажется конъюнкцией формул P1, . . . , Pn,♦C1, . . . ,♦Cm или их отрицаний, что
и требовалось.

Лемма 13.3. Существует лишь конечное число попарно не эквивалентных фор-
мул глубины 1 от переменных P1, . . . , Pn.

Доказательство:
Достаточно рассмотреть нормальные формы из леммы (13.2) о нормальной фор-

ме для формул глубины 1.
С точностью до ≡ имеется конечное число конъюнкций Ai. Действительно, каж-

дая из них содержит литералы от P1, . . . , Pn и формулы вида ♦D,¬D, где D –
классическая формула от P1, . . . , Pn. Такие формулы D приводятся к СДНФ в CL,
и тем более, в S5. И если D ≡ D′, то ♦D ≡ ♦D′, ¬♦D ≡ ¬♦D′ – по лемме (13.1).
Из конечного числа Ai можно построить лишь конечное число их дизъюнкций с

точностью до ≡ (здесь снова пользуемся леммой (13.1)).

Лемма 13.4. В S5 всякая формула эквивалентна формуле глубины 1 (от тех же
переменных).

Доказательство:
Запишем эквивалентную формулу, используя связку ♦ вместо � (это можно сде-

лать, так как �A ≡ ¬♦¬A). Далее рассуждаем индукцией по длине формулы.
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Нетривиален только шаг индукции для формулы вида ♦A. По предположению
индукции A эквивалентна формуле глубины 1, и значит, нормальной форме из лем-
мы (13.2) о нормальной форме для формул глубины 1. Тогда ♦A ≡

∨
i

♦Ai (пункты

(3) и (5) леммы (13.1)).
Рассмотрим ♦Ai = ♦

∧
j

Qij. Используя пункты (6) и (7) леммы (13.1) (и эквива-

лентность ¬♦D ≡ �¬D), преобразуем эту формулу в конъюнкцию формул вида
♦Pk, ♦D, �D (где D – классическая), то есть в формулу глубины 1.

Запишем следствие из лемм (13.3), (13.4).

Утверждение 13.1 (О локальной табличности S5). Существует конечное число
формул от переменных P1, . . . , Pn, попарно не эквивалентных в S5.

Определение 13.3. Для множества модальных формул Γ выводимость форму-
лы A (обозначение: Γ `S5 A) означает, что существует вывод A с использованием
формул из Γ, аксиом S5 и правила MP (но не Gen).

Определение 13.4. Γ противоречиво в S5, если Γ `S5 A, ¬A для некоторой фор-
мулы A.

Легко видеть, что для этой выводимости сохраняются лемма (5.2) и теорема де-
дукции (4.2).

Пусть Φ – множество всех модальных формул от P1, . . . , Pn. Рассматриваем непро-
тиворечивые (в S5) подмножества Φ.

Определение 13.5. Множество Γ ⊆ Φ называется максимальным, если оно непро-
тиворечиво, а всякое его собственное расширение внутри Φ противоречиво.

Лемма 13.5. Всякое непротиворечивое множество содержится в максимальном.

Доказательство:
Если Γ непротиворечиво, но не максимально, то найдётся A такая, что Γ ∪ {A}

непротиворечиво. Тогда и Γ ∪ {A′ ∈ Φ | A′ ≡ A} непротиворечиво. Действительно,
если противоречие выводится из Γ, A,A′1, . . . , A

′
k и все A′i эквивалентны A, то оно

выводится уже из Γ ∪ {A} – поскольку `S5 A→ A′i, a тогда Γ ∪ {A} ` A′i (по MP ).
Если же мы будем расширять Γ, добавляя вместе с каждой формулой все эк-

вивалентные ей, то за конечное число шагов мы получим все Φ – это следует из
локальной табличности S5. Значит, за (меньшее) конечное число таких шагов мы
можем получить максимальное множество.

Замечание 13.1. Существует лишь конечное число максимальных множеств, по-
тому что в максимальном множестве вместе с каждой формулой находятся все
формулы, которые ей эквивалентны.

Лемма 13.6 (Свойства максимальных множеств).
Для максимального Γ сохраняются свойства из леммы (5.4):
0) Γ ` B ⇒ B ∈ Γ для B ∈ Φ;
1) ¬B ∈ Γ ⇔ B 6∈ Γ;
2) (B ∧ C) ∈ Γ ⇔ (B ∈ Γ и C ∈ Γ);
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3) (B ∨ C) ∈ Γ ⇔ (B ∈ Γ или C ∈ Γ);
4) (B → C) ∈ Γ ⇔ (B 6∈ Γ или C ∈ Γ).

Теперь продолжаем доказательство импликации (6) ⇒ (1) из теоремы (13.1):
для данной формулы A, не выводимой в S5, построим опровергающую конечную
модель Крипке.

Так как 0S5 A, множество {¬A} непротиворечиво. По лемме (13.5) построим
максимальное множество Γ0, содержащее ¬A.

Определение 13.6. Определим отношение достижимости на максимальных
множествах :

ΓR∆ ⇔ для любой формулы B имеем: �B ∈ Γ ⇒ B ∈ ∆.

Лемма 13.7. R – отношение эквивалентности.

Доказательство:

• Рефлексивность.

Пусть �B ∈ Γ. Так как �B → B – аксиома S5, она лежит в Γ (пункт (0)
леммы (13.6)). Тогда Γ ` B по MP , a потому B ∈ Γ (опять по пункту (0)
леммы (13.6)). По определению R имеем ΓRΓ.

• Транзитивность.

Предположим ΓR∆RΣ и докажем ΓRΣ.

Пусть �B ∈ Γ. Так как �B → ��B – аксиома S5, она лежит в Γ. Тогда
Γ ` ��B по MP , a потому ��B ∈ Γ. Теперь из ΓR∆ получаем, что �B ∈ ∆.
И из ∆RΣ получаем, что B ∈ Σ.

• Симметричность.

Предположим ΓR∆ и докажем ∆RΓ.

Пусть �B ∈ ∆. Тогда ♦�B = ¬�¬�B ∈ Γ. В самом деле, иначе �¬�B ∈ Γ
(пункт (1) леммы (13.6)). А тогда ¬�B ∈ ∆ (так как ΓR∆), что даёт проти-
воречие в ∆.

Таким образом, ♦�B ∈ Γ. Кроме того, (♦�B → B) ∈ Γ – это аксиома S5.
Отсюда поMP и пункту (0) леммы (13.6) получаем B ∈ Γ, что и требовалось.

Продолжаем. Пусть W := {Γ | Γ0RΓ}. Из утверждения (13.1) о локальной таб-
личности S5 и из леммы (13.6) о свойствах максимальных множеств следует, что
W конечно. Зададим оценку на W следующим образом: θ(Pi) := {Γ | Pi ∈ Γ}.
Рассмотрим модель Крипке M := (W, θ) (она называется канонической моделью).

Лемма 13.8 (Основная лемма).
Для всех B(P1, . . . , Pn) ∈ Φ и Γ ∈ W имеем: M,Γ � B ⇔ B ∈ Γ.

74

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Доказательство:
Индукция по длине B.

• B – переменная. Тогда утверждение верно по определению θ.

• B = (C∨D). Тогда по определению (12.11), предположению индукции и пунк-
ту (3) леммы (13.6) имеем:

M,Γ � B ⇔ (M,Γ � C или M,Γ � D) ⇔ (C ∈ Γ или D ∈ Γ) ⇔ (C∨D) ∈ Γ,

что и требовалось.

• Случаи связок ∧, →, ¬ разбираются аналогично.

Упражнение 13.1. Выполнить доказательство для случаев связок ∧, →, ¬.

• B = �C. Проверим эквивалентность M,Γ � �C ⇔ �C ∈ Γ.

Докажем ⇐. Пусть �C ∈ Γ. Чтобы доказать M,Γ � �C, рассмотрим ∆ ∈
∈ W . Поскольку R – отношение эквивалентности и Γ0RΓ, Γ0R∆, получаем
ΓR∆. Тогда C ∈ ∆ (по определению R). Отсюда M,∆ � C по предположению
индукции.

Докажем ⇒. Предположим �C 6∈ Γ и докажем M,Γ 2 �C. Для этого надо
построить ∆ ∈ W такое, что M,∆ 2 C.

Рассмотрим множество V := {D | �D ∈ Γ} ∪ {¬C}. Покажем, что V непроти-
воречиво. Действительно, иначе бы (по лемме (5.2)) D1, . . . , Dk `S5 C для
некоторых D1, . . . , Dk, где �D1, . . . ,�Dk ∈ Γ. Тогда по теореме дедукции
`S5

∧
i

Di → C, откуда по правилу монотонности `S5 �(
∧
i

Di) → �C. Но

по пункту (5) леммы (13.1) (многократно) �(
∧
i

Di) ≡
∧
i

�Di.

Вспоминая, что �Di ∈ Γ, получаем (
∧
i

�Di) ∈ Γ по лемме (13.6). Из той

же леммы следует, что максимальное множество содержит вместе с каждой
формулой и все ей эквивалентные. Поэтому �(

∧
i

Di) ∈ Γ, и из `S5 �(
∧
i

Di)→

→ �C по MP следует �C ∈ Γ. Это противоречит исходному предположению.

Итак, V непротиворечиво. Выберем максимальное ∆, содержащее V . Из опре-
деления V получается: ΓR∆, C 6∈ ∆ (так как ¬C ∈ ∆). Тогда:

Γ0R∆ по транзитивности R (то есть ∆ ∈ W ),

M,∆ 2 C по предположению индукции, так как C 6∈ ∆.

Наконец, из леммы (13.8) следует W 2 A, что и требовалось.
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Лекция 14

Полнота исчисления предикатов и её следствия

Определение 14.1. Мощностью сигнатуры Ω (обозначение: |Ω|) назовём мощ-
ность множества всех её символов, то есть множества PredΩ ∪ ConstΩ ∪ FunΩ.

Теорема 14.1 (Теорема о существовании модели).
1) Пусть T – непротиворечивая в PCΩ теория без равенства в сигнатуре Ω.

Тогда T имеет модель мощности |Ω| или счётную, если Ω конечна.
2) Пусть T – непротиворечивая в PC=

Ω теория с равенством в сигнатуре Ω.
Тогда T имеет нормальную модель мощности ≤ |Ω| или не более, чем счётную,
если Ω конечна.

Доказательство:
Утверждение (1) в этом курсе не доказывается.
Докажем (1) ⇒ (2).
Напомним, что непротиворечивость теории с равенством T понимается относи-

тельно PC=
Ω , то есть как непротиворечивость теории T ∪ EqΩ относительно PCΩ.

Согласно пункту (1), T ∪EqΩ имеет модельM мощности |Ω| (или счётную). По лем-
ме (9.1) о нормализации, M ≡ M̃ , где M̃ – нормальная модель с носителем M/ ≈.
Тогда |M̃ | ≤ |M |. Таким образом, M̃ – модель T нужной мощности.

Теорема 14.2 (Теорема Гёделя о полноте).
1) Для теории T и замкнутой формулы A сигнатуры Ω имеем:

T � A ⇒ T `PCΩ
A.

2) Для любой формулы A сигнатуры Ω имеем:

� A ⇒ `PCΩ
A.

1 =) Для теории с равенством T и замкнутой формулы A сигнатуры Ω имеем:

T �норм A ⇒ T `PC=
Ω
A.

2 =) Для любой формулы A сигнатуры с равенством Ω имеем:

�норм A ⇒ `PC=
Ω
A.

Доказательство:
Не будем писать индексы при `.
1) Если T 0 A, то T ∪ {¬A} непротиворечива (по лемме (5.2); она переносится

на предикатный случай). Тогда по теореме (14.1) о существовании модели теория
T ∪ {¬A} выполнима, и значит, T 2 A.

2) По определению � A означает � ∀A. А в силу пункта (1) для T = ∅ из � ∀A
следует ` ∀A. Наконец, ` ∀A → A (по аксиоме II.1 и правилу силлогизма). Тогда
по MP получаем ` A.

1 =) Аналогично доказательству пункта (1). Если T 0 A, то T ∪ {¬A} непротиво-
речива в PC=

Ω , а потому нормально выполнима по теореме (14.1) о существовании
модели. Следовательно, T 2норм A.
2 =) получается из пункта (1 =) аналогично доказательству пункта (2).
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Теорема 14.3 (Теорема о компактности).
1) Если любая конечная подтеория теории T выполнима, то и T выполнима.
2) Если любая конечная подтеория с равенством теории с равенством T нор-

мально выполнима, то и T нормально выполнима.

Доказательство:
1) Если все конечные подмножества T выполнимы, то они непротиворечивы

(утверждение (12.1)). Тогда T непротиворечива (лемма (11.1)) и, следовательно,
выполнима (теорема (14.1) о существовании модели).

2) Аналогично доказательству пункта (1).

Далее мы рассматриваем только теории с равенством и нормальные модели.

Теорема 14.4 (Теорема Лёвенгейма-Сколема о понижении мощности). Если тео-
рия в сигнатуре Ω выполнима, то она имеет модель мощности ≤ max(|Ω|,ℵ0).

Доказательство:
Если теория выполнима, то она непротиворечива (утверждение (12.1)). Тогда по

теореме (14.1) о существовании модели она имеет модель нужной мощности.

Теорема 14.5 (Теорема о повышении мощности).
1) Если теория имеет конечные модели неограниченной мощности, то она име-

ет и бесконечную модель.
2) Если теория в сигнатуре Ω имеет бесконечную модель, то она имеет модели

любой бесконечной мощности k ≥ |Ω|.

Доказательство:
1) Пусть T – данная теория. Согласно условию, для любого натурального n тео-

рия T имеет конечную модель мощности больше n.
Рассмотрим сигнатуру Ω+, которая получается из Ω добавлением счётного мно-

жества новых констант {c1, c2, . . .}. В этой сигнатуре построим теорию

T+ := T ∪ {ci 6= cj | i < j}.

Докажем, что T+ выполнима. По теореме (14.3) о компактности достаточно до-
казать, что любая конечная T ′ ⊂ T выполнима. В самом деле,

T ′ ⊂ T ∪ {ci 6= cj | 1 ≤ i < j ≤ n}

для некоторого n. Пусть M – модель теории T мощности > n. Превратим её
в модель M ′ сигнатуры Ω+, добавив интерпретацию констант c1, . . . , cn какими-
нибудь различными элементами, а остальных новых констант – как угодно. Тогда
M ′ � T ∪ {ci 6= cj | 1 ≤ i < j ≤ n}, и подавно M ′ � T ′.

Итак, T+ выполнима. ЕслиM+ � T+, тоM+ � T , и она бесконечна, так как все её
элементы (ci)M+ различны. РассматриваяM+ в сигнатуре Ω, получаем бесконечную
модель теории T .
2) Аналогично доказательству пункта (1), рассмотрим сигнатуру Ω+ с множе-

ством новых констант {ci | i ∈ k}, где k – данная бесконечная мощность. В этой
сигнатуре построим теорию

T+ := T ∪ {ci 6= cj | i, j ∈ k; i 6= j}.
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Любая конечная T ′ ⊂ T+ содержится в некоторой теории

T ∪ {ci 6= cj | i, j ∈ I},

где I – конечное подмножество k. Последняя теория выполнима в бесконечной мо-
дели теории T с интерпретацией констант ci для i ∈ I какими-нибудь различными
элементами, а остальных новых констант – произвольно. Тогда по теореме (14.3) о
компактности T+ выполнима.

Из теории множеств следует, что |Ω+| = k. Пo теореме (14.4) Лёвенгейма-Сколема
о понижении мощности T+ имеет модель M+ мощности ≤ k. В этой модели интер-
претации всех констант ci различны (см. определение T+), поэтому её мощность
≥ k. Значит, |M+| = k. Рассматривая M+ в сигнатуре Ω, получим модель T мощ-
ности k.

Нестандартные модели арифметики

Пусть N – стандартная модель PA (см. лекцию 12).

Теорема 14.6. Существует счётная модель M такая, что M ≡ N, но M 6∼= N.

Доказательство:
Построим теорию в сигнатуре PA с дополнительной новой константой c:

T := Th(N) ∪ {c 6= 0, c 6= 1, . . . , c 6= n, . . .},

где n обозначает терм 1 + (1 + (1 + . . .))︸ ︷︷ ︸
n раз

.

В стандартной модели, очевидно, имеем: |n|N = n.
Как и в предыдущих теоремах, докажем выполнимость T , используя теорему

(14.3) о компактности. Для этого рассмотрим

Tn := Th(N) ∪ {c 6= 0, c 6= 1, . . . , c 6= n}.

ПустьMn – модель N с интерпретацией cM ′ := n+1. ТогдаMn � Tn. Таким образом,
любая Tn выполнима.
По теореме (14.3) о компактности T выполнима, a по теореме (14.4) Лёвенгейма-

Сколема о понижении мощности она имеет не более, чем счётную модель M+.
Заметим, что M+ � Th(N) и N � m 6= n при m 6= n. Поэтому и M+ � m 6= n при

m 6= n. Значит, M+ бесконечна, и следовательно, счётна.
Кроме того, для всех n имеем: M+ � c 6= n, или M+ � cM+ 6= n. Рассмотрим

теперь M+ в исходной сигнатуре арифметики. Обозначим эту модель через M .
Имеем: M � cM+ 6= n для всех n, a также M � Th(N), то есть M ≡ N.

Наконец, докажем, что M 6∼= N. Предположим противное, и пусть α : M ∼= N. Из
M � cM+ 6= n по теореме (7.1) получаем N � α(cM+) 6= n, то есть α(cM+) 6= |n|N.
Но |n|N = n, то есть α(cM+) не равно никакому натуральному числу. Получили
противоречие.

Замечание 14.1. Можно показать, что в модели M новые элементы – бесконечно
большие, то есть больше всех натуральных чисел.
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Теория множеств

Наивная теория множеств

Будем строить аксиоматику теории множеств в сигнатуре с двумя двуместными
предикатными символами ∈,=.

Определение 14.2. Рассмотрим сначала теорию N («наивную теорию мно-
жеств») со следующими аксиомами:

1) аксиома объёмности:

∀x∀y(∀z(z ∈ x ↔ z ∈ y)→ x = y);

2) схема аксиом свёртывания:

∀ ∃y∀x(x ∈ y ↔ A(x, . . .)).

Здесь A(x, . . .) – произвольная формула, в которой один параметр (например, a)
заменён на связанную переменную x. Отметим, что y не входит в A.

Смысл аксиомы объёмности: если 2 множества состоят из одних и тех же элемен-
тов, то они равны.

Смысл аксиомы свёртывания: существует множество y, состоящее из всех x, об-
ладающих свойством A, то есть y = {x | A(x, . . .)}.

Утверждение 14.1. Теория N противоречива.

Доказательство:
Выведем противоречие в N ; это доказательство – формализация парадокса Рас-

села.
1. ∀x(x ∈ a ↔ x 6∈ x)→ (a ∈ a ↔ a 6∈ a) – аксиома II.1 исчисления предикатов.
2. (a ∈ a ↔ a 6∈ a)→ ∃y(y ∈ y ↔ y 6∈ y) – аксиома II.2 исчисления предикатов.
3. ∀x(x ∈ a ↔ x 6∈ x)→ ∃y(y ∈ y ↔ y 6∈ y) – по правилу силлогизма из 1, 2.
4. ∃y∀x(x ∈ y ↔ x 6∈ x)→ ∃y(y ∈ y ↔ y 6∈ y) – 3, второе правило Бернайса.
5. ∃y∀x(x ∈ y ↔ x 6∈ x) – аксиома свёртывания для (a 6∈ a).
6. ∃y(y ∈ y ↔ y 6∈ y) – 4, 5, MP .
7. (A ↔ ¬A)→ B ∧¬B – подстановочный пример тавтологии (с любыми A,B).

В частности, (a ∈ a ↔ a 6∈ a)→ B ∧ ¬B, где B – любая замкнутая формула.
8. ∃y(y ∈ y ↔ y 6∈ y)→ B ∧ ¬B – 7, второе правило Бернайса.
9. B ∧ ¬B – 6, 8, MP .

Утверждение 14.2. Существует хотя бы одно множество, формально:

`PC= ∃x(x = x).

Доказательство:
Это получается из аксиомы равенства ∀x(x = x) и теоремы ∀xA→ ∃xA, которую

легко доказать: из ∀xA(x)→ A(a), A(a)→ ∃xA(x) по транзитивности выводимости
получаем то, что требовалось.
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Теория множеств Цермело

Самая известная аксиоматическая теория множеств – это теория Цермело-
Френкеля с аксиомой выбора (ZFC). В этом курсе мы рассмотрим очень кратко
более слабую теорию Цермело (Z).

Определение 14.3. Сигнатура теории Z состоит из ∈,=. Eё аксиомы – это аксио-
ма объёмности, некоторые варианты аксиомы свёртывания и ещё 2 особые аксиомы
(бесконечности и выбора).

1. Аксиома объёмности – такая же, как в N :

∀x∀y(∀z(z ∈ x ↔ z ∈ y)→ x = y).

Введём обозначение a ⊆ b := ∀z(z ∈ a → z ∈ b) («a – подмножество b»). Тогда
можем привести равносильную формулировку аксиомы объёмности:

∀x∀y(x ⊆ y ∧ y ⊆ x→ x = y).

2. Аксиома пары.

∀x∀y∃z∀u(u ∈ z ↔ (u = x ∨ u = y)).

Смысл этой аксиомы: для всех x, y можно построить множество z = {x, y} (неупо-
рядоченную пару). Если x = y, то получается множество {x, x}, которое обознача-
ется просто {x}.
3. Аксиома объединения.

∀x∃y∀z(z ∈ y ↔ ∃u(z ∈ u ∧ u ∈ x)).

Tо есть y = {z | ∃u(z ∈ u ∧ u ∈ x)}. Другими словами, множество y является объ-
единением всех множеств, являющихся элементами множества x, то есть y =

⋃
u⊆x

u.

Такое y называется объединением множества x и обозначается
⋃
x.

Теперь можем определить x∪y :=
⋃
{x, y}, {x, y, z} := {x, y}∪{z} и тому подобное.

4. Аксиома степени.
∀x∃y∀z(z ∈ y ↔ z ⊆ x),

то есть y = {z | z ⊆ x} – множество всех подмножеств x. Оно обычно обозначается
P(x).
5. Схема аксиом выделения – ослабленный вариант свёртывания.

∀ ∀x∃y∀z(z ∈ y ↔ (z ∈ x ∧ A(z, . . .))).

Здесь A(z, . . .) – произвольная формула, в которой один параметр (например, a)
заменён на связанную переменную z. Отметим, что y не входит в A.
В этой теории мы не можем строить произвольные множества вида {x | A(x, . . .)}.

Однако неформально можно рассматривать такие совокупности (классы). Некото-
рые классы заведомо не являются множествами (они называются собственными).
Например, R := {x | x 6∈ x} – собственный класс; в нашей теории это доказывается,
см. предыдущий раздел.
Аксиома выделения утверждает, что пересечение любого класса {z | A(z, . . .)} с

любым множеством x – множество. Или: подкласс любого множества – множество.
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Утверждение 14.3. Пусть V := {x | x = x} – класс всех множеств. Тогда

Z ` (V – собственный класс).

Доказательство:
Очевидно, что R ⊆ V . По аксиоме выделения, если V – множество, то и R –

множество. Значит, V – собственный класс.

Утверждение 14.4 (Существование пустого множества). Z ` ∃y∀x(x 6∈ y).

Доказательство:
Возьмём множество x из утверждения (14.2). По аксиоме выделения построим

y := {z | z ∈ x ∧ z 6= z}. Очевидно, что y пусто.

Из аксиомы объёмности следует, что все пустые множества равны. Поэтому мож-
но ввести обозначение ∅.

Определение 14.4. Теперь мы можем последовательно (по индукции) определить
натуральные числа:

0 := ∅, 1 := {0}, 2 := {0, 1}, . . . , n+ 1 := n ∪ {n}, . . .

(определение фон Неймана).

Tо есть получается n = {0, 1, . . . , n− 1}. Однако для построения множества всех
натуральных чисел нужна дополнительная аксиома.

6. Аксиома бесконечности.

∃x(0 ∈ x ∧ ∀y(y ∈ x→ (y ∪ {y}) ∈ x)).

Определение 14.5. Множество x назовём индуктивным, если оно имеет свойства,
указанные в аксиоме бесконечности (6), то есть содержит 0 и вместе с каждым y
содержит «y + 1».

Аксиома бесконечности (6) утверждает, что существует индуктивное множество.

Определение 14.6. Теперь можно определить множество натуральных чисел ω
как наименьшее индуктивное множество:

ω := {y | ∀x(x индуктивно→ y ∈ x)}.

Этот класс – действительно множество по аксиоме выделения, так как ω ⊆ x0

для индуктивного множества x0 (какого-то, которое существует по аксиоме беско-
нечности).
Дальше можно развивать арифметику в ω и, в частности, превратить его в модель

PA.

Определение 14.7. Имея неупорядоченные пары {a, b}, можно определить упоря-
доченные пары:

(a, b) := {{a}, {a, b}}.
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Если упорядоченные пары равны, то равны их соответственные элементы:

(a, b) = (a′, b′)→ a = a′ ∧ b = b′.

Определение 14.8. Также можно определить декартово произведение (и доказать
в Z, что оно всегда существует):

a× b := {(x, y) | x ∈ a ∧ y ∈ b}. (14.1)

Определение 14.9. Функция f : a→ b – это подмножество декартова произведе-
ния f ⊆ a× b такое, что:

1) pr1f = a и ∀x(x ∈ a→ ∃y (x, y) ∈ f);
2) однозначность: (x, y), (x, y′) ∈ f → y = y′.

После этого можно определить формулы «f – биекция a на b» и «f – инъекция
a в b».

Определение 14.10. Теперь определим сравнение множеств по мощности:

|a| = |b| := ∃ биекция f : a→ b;

|a| ≤ |b| := ∃ инъекция f : a→ b.

Теорема 14.7 (Теорема Кантора-Бернштейна).

Z ` ∀x∀y(|x| ≤ |y| ∧ |y| ≤ |x| → |x| = |y|).

Доказательство пропускаем.

Теорема 14.8 (Теорема Кантора).

Z ` ∀x(|x| < |P(x)|).

Доказательство:
Имеется инъекция x в P(x): она отображает каждый a ∈ x в {a}. Значит, |x| ≤
≤ |P(x)|. Докажем от противного, что |x| 6= |P(x)|.
Предположим, что f : x → P(x) – биекция. Тогда для некоторого y ∈ x имеем:
{z ∈ x | z 6∈ f(z)} = f(y). Поэтому для всех z ∈ x имеем: z ∈ f(y) ↔ z 6∈ f(z).
Тогда y ∈ f(y) ↔ y 6∈ f(y). Получили противоречие.
Таким образом, |x| < |P(x)|.

По теореме кантора для любого множества можно построить множество большей
мощности, значит, не существует множества самой большой мощности.

7. Аксиома выбора.
Запишем её (не совсем формально) в двух вариантах.
I) Если x – непустое множество попарно не пересекающихся непустых множеств

(разбиение), то
∃y∀z(z ∈ x→ |z ∩ y| = 1)).

II) Если существует отображение x на y (сюръекция), то |y| ≤ |x|.
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Из аксиомы выбора следует теорема o сравнении мощностей:

∀x∀y(|x| ≤ |y| ∨ |y| ≤ |x|).

Кроме того, явно определяются «мощности» – это множества специального вида
(кардиналы).

Другое известное следствие аксиомы выбора – лемма Цорна. Она утверждает, что
если в частично упорядоченном множестве X каждая цепь (линейно упорядоченное
подмножество) ограничена сверху, то X имеет максимальный элемент.
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Лекция 15

Алгоритмы

Перечислим свойства алгоритмов (вычислительных устройств) неформально.
1. Алгоритмы работают со словами. Слово – это конечная последовательность

символов (букв), взятых из некоторого конечного алфавита. Слово может быть
пустым.

2. Алгоритм основан на программе. Программа – это конечный набор команд,
которые записываются словами.

3. Алгоритм содержит «процессор», который обращается к программе и изменяет
текущее состояние (слово).

4. Имеется начальное слово (вход) и заключительное слово (выход). Если заклю-
чительное слово не появляется, алгоритм работает бесконечно долго (зациклива-
ние).

5. Вычисление разбивается на дискретные шаги.
6. Вычисление детерминированно (то есть каждый следующий шаг однозначно

определён) и не обращается к случайным данным.
Имеется несколько точных определений алгоритма (рекурсивные функции, ма-

шины Тьюринга, алгоритмы Маркова, системы Поста, абстрактные RAM и другие).
Все они оказываются эквивалентными.

Это понятие алгоритма абстрактно, так как предполагается неограниченность
ресурсов времени и памяти.

Вычислимые функции

Будем записывать положительные натуральные числа как последовательности
единиц, нуль – как 0. Конечный кортеж натуральных чисел (n1, . . . , nk) записыва-
ется как n1# . . .#nk, где # – специальный символ (разделитель).

Рассматриваем частичные функции f из Nk в N. Это записывается так: f : Nk→̃N.
Если функция всюду определена (тотальна), пишем f : Nk → N.

Также рассматриваем функции на словах. Если ∆ – конечный алфавит, ∆∗ –
множество всех слов в нём, то рассматриваем частичные функции f из ∆∗ в ∆∗.
Обозначения аналогичны: f : ∆∗→̃∆∗, f : ∆∗ → ∆∗.

Область определения f обозначается dom f , область значений – rng f . В частно-
сти, возможно, что dom f = ∅ (пустая функция).

Определение 15.1. Функция f : Nk→̃N или f : ∆∗→̃∆∗ называется вычислимой,
если существует алгоритм M со следующими свойствами:

• если x ∈ dom f , то M на входе x заканчивает работу и выдаёт f(x). Это
записывается так: M : x |⇒ f(x);

• если x 6∈ dom f , то M на входе x зацикливается. Это записывается так:
M : x |⇒ ?.

Утверждение 15.1 (Тезис Чёрча-Тьюринга). Всякая вычислимая функция вычис-
лима по Тьюрингу.
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Разрешимость и перечислимость

Определение 15.2. Множество слов A ⊆ ∆∗ называется разрешимым, если его
характеристическая функция χA вычислима.

(Функция χA : ∆∗ → {0, 1} принимает значение 1 на A и 0 на его дополнении.)
Аналогично определяются разрешимые подмножества Nk.

Утверждение 15.2.
1) Если A разрешимо, то его дополнение (−A) (до ∆∗ или Nk) разрешимо.
2) Если A и B разрешимы, то A ∩B, A ∪B разрешимы.

Доказательство:
1) χ−A = g ◦ χA, где g(0) = 1, g(1) = 0. Функция g вычислима, и композиция

сохраняет вычислимость, поэтому функция χ−A вычислима, значит, (−A) разре-
шимо.
2) χA∩B = 1, если χA = 1 и χB = 1 (иначе χA∩B = 0).
χA∪B = 1, если χA = 1 или χB = 1 (иначе χA∪B = 0).

Сформулируем следствие.

Утверждение 15.3. Конечные множества разрешимы.

Доказательство:
Одноэлементное множество {n} разрешимо. Тогда по индукции получаем, что ко-

нечное множество разрешимо, так как оно является объединением одноэлементных
множеств.

Приведём примеры разрешимых множеств: N (так как характеристическая функ-
ция – константа, значит, вычислима), ∅ (как дополнение к N), 2N – множество чёт-
ных чисел (так как характеристическая функция зависит от количества единиц в
нашей записи числа), P – множество простых чисел (решето Эратосфена).

Утверждение 15.4. Существуют неразрешимые подмножества N.

Доказательство:
Каждый алгоритм записывается некоторой программой, то есть множеством

слов, состоящих из символов, взятых из некоторого конечного алфавита. Таким
образом, множество программ счётно. Значит, мощность множества разрешимых
множеств счётна. Таким образом, существуют неразрешимые подмножества N.

Определение 15.3. Множество слов A ⊆ ∆∗ (или A ⊆ Nk) называется полуразре-
шимым, если его полухарактеристическая функция χ−A вычислима.
(Частичная функция χ−A : ∆∗→̃{1} принимает значение 1 на A и не определена

на его дополнении.)

Утверждение 15.5. Если A и B полуразрешимы, то A∩B, A∪B полуразрешимы.

Доказательство:
χA∩B = 1, если χA = 1 и χB = 1 (иначе χA∩B не определена).
χA∪B = 1, если χA = 1 или χB = 1 (иначе χA∪B не определена).
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Приведём пример множества, про которое нам известно, что оно полуразрешимо,
но неизвестно, что оно разрешимо:

{n | в разложении π встретится n нулей подряд}.

Теорема 15.1 (Теорема Поста). Множество слов A ⊆ ∆∗ разрешимо ⇔ A и −A
полуразрешимы.

Доказательство:
Докажем ⇒. Если χA вычислима, то и χ−A вычислима, так как χ−A = h ◦ χA, где

h(1) = 1, h(0) не определено.
Аналогично, −A полуразрешимо, так как −A разрешимо по утверждению (15.2).
Докажем ⇐. Если χ−A(x) = 1, то χA(x) = 1. Если χ−−A(x) = 1, то χA(x) = 0. Так

как x ∈ A или x ∈ (−A), то χA вычислима, значит, A разрешимо.

Определение 15.4. Множество A ⊆ ∆∗ (или A ⊆ Nk) называется перечислимым,
если оно пусто или является множеством значений некоторой вычислимой после-
довательности, то есть тотальной функции N→ ∆∗.

Теорема 15.2. Существуют вычислимые биекции N→ Nk и N→ ∆∗ (для конеч-
ного ∆), причём обратные биекции тоже вычислимы.

Доказательство пропускаем (оно несложное).

Теорема 15.3. Множество A ⊆ ∆∗ (или A ⊆ Nk) перечислимо ⇔ A полуразре-
шимо.

Доказательство:
Рассмотрим сначала случай A ⊆ N.
Докажем ⇒.
∅ разрешимо.
Пусть A = rng f для вычислимой f : N→ N. Тогда χ−A вычислима по следующему

алгоритму.
0. Пусть на входе дано n.
1. Полагаем i := 0.
2. В цикле по i проверяем, верно ли f(i) = n. Если да, выдаём 1 и заканчиваем

работу. Если нет, полагаем i := i+ 1 и продолжаем цикл.
Докажем ⇐.
∅ перечислимо.
Пусть A 6= ∅. Выберем a0 ∈ A.
Пусть γ : N→ N×N – вычислимая биекция (теорема (15.2); например, это может

быть канторовская нумерация пар натуральных чисел). Пусть γ(n) = (α(n), β(n)).
Тогда α и β тоже вычислимы.
Построим последовательность f , перечисляющую A следующим образом. Для

нахождения f(n) делаем β(n) шагов в вычислении χ−A(α(n)) (или меньше, если
вычисление заканчивается раньше). Если за это время вычисление закончилось,
полагаем f(n) := α(n). Иначе полагаем f(n) := a0.
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Тогда rng f = A. Действительно, включение ⊆ очевидно, так как по построению
множество значений функции f формируется только из элементов множества A.
Обратно, пусть a ∈ A. Тогда χ−A(a) вычислится через сколько-то (k) шагов. Так как
γ – биекция, имеем γ(n) = (a, k) для некоторого n. Tо есть α(n) = a, β(n) = k. По
построению тогда f(n) = a.
Общий случай сводится к случаю A ⊆ N с помощью теоремы (15.2).

Теорема 15.4. Пусть h : ∆∗ → ∆∗ – вычислимая тотальная функция.
1) Если A ⊆ ∆∗ разрешимо, то h−1(A) разрешимо.
2) Если A ⊆ ∆∗ перечислимо, то h(A) и h−1(A) перечислимы.

Доказательство:
1) x ∈ h−1(A) ⇔ h(x) ∈ A. Тогда χh−1(A) = χA ◦ h, a композиция вычислимых

функций вычислима.
2) Докажем для прообраза. x ∈ h−1(A) ⇔ h(x) ∈ A. Тогда χ−h−1(A) = χ−A ◦ h. И

используем теорему (15.3).
Докажем для образа. Если A = ∅, то всё очевидно. Если A = rng f для вычисли-

мой f , то h(A) = rng(h ◦ f).

Универсальная вычислимая функция. Неразрешимость

Сформулируем ключевой результат теории алгоритмов.

Теорема 15.5 (Теорема об универсальной вычислимой функции). Существует
вычислимая функция F : N × N→̃N такая, что для любой вычислимой f : N→̃N
существует m такое, что для всех n f(n) ' F (m,n).
Здесь ' означает условное равенство, то есть обе части определены одновре-

менно и равны, когда определены.

Идея доказательства: нумеруем программы, работающие с натуральными числа-
ми. F вычисляется компьютером, который по номеру программы восстанавливает
саму программу и запускает её на различных входах. То есть F (m,n) – результат
работы программы с номером m на входе n (если этот результат существует).
Обозначим через ϕm вычислимую функцию с номером m, то есть ϕm(n) '
' F (m,n). Тогда всякая вычислимая f : N→̃N совпадает с ϕm, где m – номер
программы, вычисляющей f .

Теорема 15.6. Существует перечислимое неразрешимое подмножество в N.

Доказательство:
Пусть d(x) ' F (x, x) ' ϕx(x). Рассмотрим K := dom d. Ясно, что K полураз-

решимо. Докажем, что K неразрешимо. Для этого по теореме Поста (15.1) надо
доказать, что (−K) не является полуразрешимым.
Допустим противное. Тогда −K = domϕn, где ϕn = χ−−K . Тогда для любого x

имеем: x 6∈ K ⇔ x ∈ domϕn. В частности, n 6∈ K ⇔ n ∈ domϕn. Но по
определению K имеем: n ∈ K ⇔ n ∈ domϕn. Таким образом, n ∈ K ⇔ n 6∈ K.
Получили противоречие, аналогичное парадоксу Рассела и доказательству теоремы
Кантора.
Таким образом, K неразрешимо.
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Разрешимость теорий первого порядка

Рассмотрим теории в конечной сигнатуре Ω.

Лемма 15.1. Множества FmΩ, CFmΩ разрешимы.

Доказателсьтво пропускаем.
Для теории T ⊆ CFmΩ обозначим через [T ] множество всех её замкнутых теорем,

то есть [T ] = {A ∈ CFmΩ | T ` A}.

Теорема 15.7. Если T – разрешимое множество, то множество [T ] перечислимо.

Доказательство:
Будем записывать доказательства в T в виде A1# . . .#An. Пусть Док(T ) – мно-

жество всех этих доказательств.
Заметим, что Док(T ) разрешимо: по любой последовательности формул можно

узнать, является ли она правильно построенным доказательством, так как элемен-
ты T , аксиомы исчисления предикатов и применения правил вывода распознаются
алгоритмически.

Имеем: [T ] = h[Док(T )] ∩ CFmΩ, где h – вычислимая функция, выбирающая
последний член кортежа. По теореме (15.4) множество h[Док(T )] перечислимо. По
лемме (15.1) CFmΩ разрешимо и, следовательно, перечислимо. Пересечение сохра-
няет перечислимость по пункту (2) утверждения (15.2).

Теорема 15.8. Если T – разрешимое множество и T полна, то множество [T ]
разрешимо.

Доказательство:
По теореме (15.7) это множество перечислимо. Поэтому, учитывая теорему (15.3),

достаточно доказать перечислимость его дополнения и применить теорему Поста
(15.1).

Имеем: −[T ] = −CFmΩ ∪ (CFmΩ\[T ]). Первое множество перечислимо, ввиду
разрешимости CFmΩ. Поскольку T полна, CFmΩ\[T ] = {A ∈ CFmΩ | T ` ¬A}.
Тогда это множество равно f−1([T ]), где f – вычислимая функция, которая до-
бавляет в начале слова знак ¬. По теореме (15.4) оно перечислимо. Объединение
сохраняет перечислимость.

Теорема Гёделя о неполноте

Напомним, что определимые (в арифметической сигнатуре {+, ·, 0, 1,=}) подмно-
жества стандартной модели N называются арифметическими.

Теорема 15.9 (Теорема Гёделя об определимости). Всякое перечислимое подмно-
жество N является арифметическим.

Доказательство пропускаем.

Теорема 15.10 (Первая теорема Гёделя о неполноте). Пусть T – теория в сигна-
туре PA с разрешимым множеством аксиом, причём N � T . Тогда T неполна.
В частности, PA неполна.
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Доказательство:
Допустим, что T полна. По теореме (15.8) [T ] разрешимо. Поскольку N � T ,

получаем [T ] = Th(N), значит, Th(N) разрешима.
Рассмотрим теперь множество K, построенное в доказательстве теоремы (15.6).

По теореме (15.9) существует формула A (с одной свободной переменной) такая,
что для всех n имеем: n ∈ K ⇔ N � A(n). Здесь A(n) – формула, оценённая в N.
Заметим, что N � A(n) ⇔ N � A(n), где n – терм (сумма единиц); это следует из
леммы (12.1). Таким образом, n ∈ K ⇔ A(n) ∈ Th(N). Поэтому K = h−1(Th(N)),
где h – вычислимая функция, переводящая число n в формулу A(n). По теореме
(15.4) K разрешимо. Получили противоречие.
Таким образом, T неполна.
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