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ЛЕКЦИЯ 1. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 

 Первый семестр математического анализа был посвящен изучению 

дифференциального и интегрального исчисления функций одной переменной 𝑦 = 𝑓(𝑥), 

где 𝑥, 𝑦 − числовые переменные. Мы изучали различные дифференциальные свойства 

функций, ввели понятия предела, непрерывности и дифференцируемости функции, 

рассмотрели теоремы Вейерштрасса, Кантора, формулу Лагранжа, формулу Тейлора, 

неопределенный и определенный интегралы и т.д. Второй семестр в некотором смысле 

будет дальнейшим развитием дифференциального и интегрального исчислений, но уже 

применительно к функциям нескольких переменных или функциям многих 

переменных. 

Понятие n-мерного координатного пространства 

 Для функций одной переменной мы активно использовали геометрическую 

иллюстрацию. Аналогично, в случае функций многих переменных введём понятие -

мерного пространства, и с геометрической точки зрения можно будет трактовать эти 

функции как некие геометрические объекты в 𝑚-мерном пространстве. Мы живем в 

трехмерном пространстве, в прямоугольной системе координат каждая точка 

пространства – это три ее координаты. Значит, все наше трёхмерное пространство – это 

множество точек с тремя координатами. Обобщим понятие трехмерного пространства 

на m-мерное, будем трактовать -мерное пространство как множество всевозможных 

упорядоченных совокупностей из 𝑚 чисел.  

 Определение. Совокупность 𝑚 чисел называется упорядоченной, если указано, 

какое из чисел считается первым, какое – вторым, и т.д. Произвольную упорядоченную 

совокупность 𝑚 чисел будем обозначать так: (𝑥1, 𝑥2, . . . , 𝑥𝑚), то есть числа 

записываются в порядке их номеров. 

 Определение. Множество всевозможных упорядоченных совокупностей 𝑚 чисел 

называется -мерным координатным пространством. Произвольную упорядоченную 

совокупность будем записывать в виде 𝑀(𝑥1, 𝑥2, . . . , 𝑥𝑚) и называть ее точкой в -

мерном пространстве. Числа (𝑥1, 𝑥2, . . . , 𝑥𝑚) будем называть координатами точки 𝑀. 

Точка 𝑂(0, 0, . . . , 0), у которой все координаты равны нулю, назовем началом 

координат.  

 Введем расстояние между точками 𝑀1(𝑥1, 𝑥2, . . . , 𝑥𝑚) и 𝑀2(𝑦1, 𝑦2, . . . , 𝑦𝑚) в -

мерном пространстве по формуле  

𝜌(𝑀1,𝑀2) = √(𝑦1 − 𝑥1)2+. . . +(𝑦𝑚 − 𝑥𝑚)2.   (1.1) 

Эта формула хорошо известна из курса аналитической геометрии для плоскости (𝑚 =

2) и трехмерного пространства (𝑚 = 3). 

 Определение. Координатное пространство с введенным по формуле (9.1) 

расстоянием между точками называется -мерным евклидовым пространством ℝ𝑚. 

https://vk.com/teachinmsu
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 Пусть 𝐴 ∈ ℝ𝑚, 𝑅 > 0 − некоторое число. Множество точек {𝑀: 𝜌(𝑀, 𝐴) ≤ 𝑅} 

называется -мерным шаром радиуса 𝑅 с центром в точке 𝐴. Множество {𝑀: 𝜌(𝑀, 𝐴) =

𝑅} называется 𝑚-мерной сферой радиуса 𝑅. Множество {𝑀: 𝜌(𝑀, 𝐴) < 𝑅} − открытый 

𝑚-мерный шар. Открытый шар {𝑀: 𝜌(𝑀, 𝐴) < 𝜀} называется -окрестностью точки 𝐴, а 

{𝑀: 0 < 𝜌(𝑀, 𝐴) < 𝜀} − проколотой 𝜀-окрестностью точки 𝐴. 

 Множество {𝑀(𝑥1, 𝑥2, . . . , 𝑥𝑚): |𝑥1 − 𝑎1| ≤ 𝑑1, . . . , |𝑥𝑚 − 𝑎𝑚| ≤ 𝑑𝑚 , 𝑑𝑖 > 0 } 

называется -мерным параллелепипедом с центром в точке 𝐴(𝑎1, 𝑎2, . . . , 𝑎𝑚).  

 Пусть {𝑀}⸦ℝ𝑚. Точка 𝐴 называется внутренней точкой множества {𝑀}, если 

существует -окрестность точки 𝐴, целиком принадлежащая множеству {𝑀}. Точка 𝐴 

называется граничной точкой множества {𝑀}, если в любой 𝜀-окрестности точки 𝐴 

содержатся как точки множества {𝑀}, так и точки, которые этому множеству не 

принадлежат.  

 

Рис. 1.1. Внутренняя 𝑀1 и граничная 𝑀2 точки множества {𝑀}. 

 Пример. В пространстве ℝ𝑚 рассмотрим множество 𝐺 = {𝑀(𝑥1, 𝑥2, 𝑥3): 0 ≤ 𝑥𝑖 ≤

1, 𝑖 = 1,2,3, 𝑥𝑖 − рациональные числа}. Данное множество не имеет внутренних точек, 

любая его точка является граничной. Любая точка 𝐴 ∈ 𝐺̅ = {𝑀(𝑥1, 𝑥2, 𝑥3): 0 ≤ 𝑥𝑖 ≤

1, 𝑖 = 1,2,3} будет граничной для множества 𝐺. Отметим, что 𝐺 − счетное множество, а 

его граница 𝐺̅ − множество мощности континуума. Таким образом, граничные точки 

образуют множество более мощное, чем само исходное множество. Граница куба 𝐺̅ 

состоит из его шести граней. 

 Определение. Совокупность всех граничных точек множества называется его 

границей.  

 Определение. Множество {𝑀} называется открытым, если все его точки – 

внутренние. (Пример: открытый шар {𝑀: 𝜌(𝑀, 𝐴) < 𝑅}.) 

 Определение. Множество {𝑀} называется замкнутым, если оно содержит все 

свои граничные точки. (Пример: шар {𝑀: 𝜌(𝑀, 𝐴) ≤ 𝑅}.) 

 Множество может быть и не открытым, и не замкнутым, например, 

рассмотренное выше множество 𝐺 = {𝑀(𝑥1, 𝑥2, 𝑥3): 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,3, 𝑥𝑖 −

рациональные числа}. Также множество может быть одновременно и открытым, и 

замкнутым, например, вся плоскость ℝ2.  

 Определение. Точка 𝐴 называется предельной точкой множества {𝑀}, если в 

любой проколотой -окрестности точки 𝐴 содержатся точки из множества {𝑀}, 

https://vk.com/teachinmsu
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отличные от 𝐴. Предельная точка может как принадлежать, так и не принадлежать 

множеству {𝑀}.  

 Определение. Точка 𝐴 называется изолированной точкой множества {𝑀}, если 

существует -окрестность точки 𝐴, в которой нет других точек из {𝑀}, кроме 𝐴. 

 Внутренняя точка не может быть граничной, а граничная – не может быть 

внутренней. Любая внутренняя точка множества является его предельной точкой. А 

граничная точка множества может быть предельной точкой и может быть 

изолированной точкой этого множества.   

 Определение. Множество точек {𝑀(𝑥1, 𝑥2, . . . , 𝑥𝑚): 𝑥1 = 𝜑1(𝑡), . . . , 𝑥𝑚 =

𝜑𝑚(𝑡), 𝜑𝑖 − непрерывные на [𝛼, 𝛽]} называется непрерывной -мерной кривой в 

евклидовом пространстве ℝ𝑚. Если точки 𝐴(𝜑1(𝛼), . . . , 𝜑𝑚(𝛼)) и 𝐵(𝜑1(𝛽), . . . , 𝜑𝑚(𝛽)) 

не совпадают, то они называются концами кривой. Если точки 𝐴 и 𝐵 совпадают, то 

кривая называется замкнутой.8 

 Определение. Множество точек  {𝑀(𝑥1, 𝑥2, . . . , 𝑥𝑚): 𝑥1 = 𝑥1
0 + 𝛼1𝑡, . . . , 𝑥𝑚 = 𝑥𝑚

0 +

𝛼𝑚𝑡,−∞ < 𝑡 < ∞},  где 𝑥1
0, . . . , 𝑥𝑚

0 , 𝛼1, . . . , 𝛼𝑚 − некоторые числа, называется прямой в -

мерном евклидовом пространстве ℝ𝑚. Данная прямая проходит через точку 

𝑀0(𝑥1
0, 𝑥2

0, . . . , 𝑥𝑚
0 ). 

 Определение. Множество {𝑀} называется связным, если любые две его точки 

можно соединить непрерывной кривой, целиком принадлежащей этому множеству. 

(Географическим примером несвязного множества является Российская Федерация.) 

  Определение. Окрестностью точки 𝑀 ∈ ℝ𝑚  называется любое открытое связное 

множество, содержащее точку 𝑀. 

 Задание. Докажите, что в любой окрестности точки 𝑀 содержится некоторая -

окрестность этой точки. 

Последовательности точек в n-мерном евклидовом пространстве 

Если каждому натуральному числу 𝑛 ∈ 𝑁 поставлена в соответствие некоторая 

точка 𝑀𝑛 ∈ ℝ
𝑚

, то говорят, что задана последовательность точек {𝑀𝑛} в пространстве 

ℝ
𝑚

.  

Определение. Точка 𝐴 ∈ ℝ𝑚 называется пределом последовательности {𝑀𝑛}, 

если предел числовой последовательности 

lim
𝑛→∞

𝜌(𝑀𝑛 , 𝐴) = 0. 

Будем использовать обозначение lim
𝑛→∞

𝑀𝑛 = 𝐴 или 𝑀𝑛 → 𝐴 при 𝑛 → ∞.  

 Лемма 1. Последовательность точек {𝑀𝑛(𝑥1
(𝑛), … , 𝑥𝑚

(𝑛))} сходится к точке 

𝐴(𝑎1, . . . , 𝑎𝑚) тогда и только тогда, когда последовательности {𝑥1
(𝑛)},… , {𝑥𝑚

(𝑛)} 

координат точек 𝑀𝑛 сходятся к соответствующим координатам 𝑎1, . . . , 𝑎𝑚 точки 𝐴.  
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 Доказательство:  

 Запишем выражение для расстояния между точками 𝑀𝑛 и 𝐴: 

𝜌(𝑀𝑛 , 𝐴) = √(𝑥1
(𝑛) − 𝑎1)

2

+⋯+ (𝑥𝑚
(𝑛) − 𝑎𝑚)

2

. 

 Пусть 𝑀𝑛 → 𝐴, тогда расстояние 𝜌(𝑀𝑛 , 𝐴) → 0, значит, каждое слагаемое под 

корнем в формуле стремится к нулю. Откуда следует, что {𝑥1
(𝑛)} → 𝑎1, … , {𝑥𝑚

(𝑛)} → 𝑎𝑚.   

 Пусть {𝑥1
(𝑛)} → 𝑎1, … , {𝑥𝑚

(𝑛)} → 𝑎𝑚 , тогда каждое слагаемое под корнем в 

формуле 𝜌(𝑀𝑛, 𝐴) стремится к нулю, следовательно, все выражение 𝜌(𝑀𝑛 , 𝐴) → 0, это 

означает, что 𝑀𝑛 → 𝐴. 

 Определение. Последовательность точек {𝑀𝑛} называется фундаментальной, 

если ∀𝜀 > 0 ∃𝑁, такой, что ∀𝑛 > 𝑁 и ∀ натурального 𝑝: 

𝜌(𝑀𝑛 ,𝑀𝑛+𝑝) < 𝜀. 

 Лемма 2. Последовательность точек {𝑀𝑛(𝑥1
(𝑛), … , 𝑥𝑚

(𝑛))} фундаментальна тогда и 

только тогда, когда последовательности {𝑥1
(𝑛)},… , {𝑥𝑚

(𝑛)} фундаментальны. 

 Теорема 1. (Критерий Коши сходимости последовательности). Для того, чтобы 

последовательность {𝑀𝑛(𝑥1
(𝑛),… , 𝑥𝑚

(𝑛))} сходилась, необходимо и достаточно, чтобы 

она была фундаментальной.  

 Доказательство:  

 Пусть последовательность {𝑀𝑛(𝑥1
(𝑛),… , 𝑥𝑚

(𝑛))} сходится, тогда по Лемме 1 

сходятся числовые последовательности {𝑥1
(𝑛)},… , {𝑥𝑚

(𝑛)}. Необходимые и достаточные 

условия сходимости и фундаментальности для числовых последовательностей мы 

доказывали в прошлом семестре. Таким образом, из сходимости последовательностей 

{𝑥1
(𝑛)},… , {𝑥𝑚

(𝑛)} следует их фундаментальность. Тогда по Лемме 2 последовательность 

{𝑀𝑛(𝑥1
(𝑛), … , 𝑥𝑚

(𝑛))} также является фундаментальной.   

 Пусть последовательность {𝑀𝑛(𝑥1
(𝑛),… , 𝑥𝑚

(𝑛))} фундаментальная, тогда по Лемме 

2 фундаментальными являются последовательности {𝑥1
(𝑛)},… , {𝑥𝑚

(𝑛)}. Мы знаем, что 

если числовые последовательности фундаментальны, то они сходятся. Тогда по Лемме 

1 из сходимости {𝑥1
(𝑛)},… , {𝑥𝑚

(𝑛)} следует сходимость {𝑀𝑛(𝑥1
(𝑛), … , 𝑥𝑚

(𝑛))}. 

 Определение. Последовательность точек {𝑀𝑛} называется ограниченной, если 

все 𝑀𝑛 принадлежат некоторому шару, т.е. ∀𝑛: 𝜌(𝑀𝑛 , 𝑂) ≤ 𝑅. 
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 Теорема 2. (Теорема Больцано-Вейерштраса). Из любой ограниченной 

последовательности {𝑀𝑛(𝑥1
(𝑛),… , 𝑥𝑚

(𝑛))} можно выделить сходящуюся 

подпоследовательность.  

 Доказательство: 

 Пусть {𝑀𝑛(𝑥1
(𝑛),… , 𝑥𝑚

(𝑛))} − ограниченная последовательность, то есть ∃𝑅 >

0: 𝜌(𝑀𝑛 , 𝑂) = √(𝑥1
(𝑛))

2

+⋯+ (𝑥𝑚
(𝑛))

2

≤ 𝑅. Отсюда получаем |𝑥1
(𝑛)| ≤ 𝑅,… , |𝑥𝑚

(𝑛)| ≤ 𝑅, 

следовательно, {𝑥1
(𝑛)},… , {𝑥𝑚

(𝑛)} − ограниченные числовые последовательности.  

 По теореме Больцано-Вейерштрасса для числовых последовательностей из 

ограниченной последовательности {𝑥1
(𝑛)} можно выделить подпоследовательность 

{𝑥1
(𝑘𝑛)}, сходящуюся к некоторому числу 𝑎1. 

 Из подпоследовательности {𝑥2
(𝑘𝑛)}, которая также является ограниченной, можно 

выделить сходящуюся подпоследовательность {𝑥2
(𝑙𝑛)} → 𝑎2. При этом {𝑥1

(𝑙𝑛)} → 𝑎1. 

 Из подпоследовательности {𝑥3
(𝑙𝑛)} можно выделить сходящуюся 

подпоследовательность {𝑥3
(𝑚𝑛)} → 𝑎3. При этом {𝑥1

(𝑚𝑛)} → 𝑎1, {𝑥2
(𝑚)} → 𝑎2. 

 Продолжая этот процесс, на -ом шаге мы получим подпоследовательности 

{𝑥1
(𝑝𝑛)} → 𝑎1, {𝑥2

(𝑝𝑛)} → 𝑎2, … , {𝑥𝑚
(𝑝𝑛)} → 𝑎𝑚 . В силу Леммы 1 подпоследовательность 

точек {𝑀𝑝𝑛
} сходится к точке 𝐴(𝑎1, 𝑎2, . . . , 𝑎𝑚). Теорема доказана. 

 В прошлом семестре мы рассматривали еще много различных теорем, вводили 

два определения предельной точки и доказывали их эквивалентность, понятия верхнего 

и нижнего пределов. Однако не все эти понятия годятся для последовательностей в -

мерном пространстве.    

Понятие функции многих переменных. Предел функции многих переменных 

 Пусть {𝑀(𝑥1, 𝑥2, . . . , 𝑥𝑚)} ∈ ℝ
𝑚

 и каждой точке 𝑀(𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ {𝑀} 

поставлено в соответствие некоторое число 𝑢, тогда говорят, что на множестве {𝑀} 

определена функция 𝑚 переменных, которую будем обозначать как 𝑢 =

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑓(𝑀). Координаты 𝑥1, 𝑥2, . . . , 𝑥𝑚 называются независимыми 

переменными или аргументами функции, а {𝑀} − областью определения функции. 

 В случае функции двух переменных будем использовать обозначения 𝑧 =

𝑓(𝑥, 𝑦) или 𝑢 = 𝑓(𝑥, 𝑦). Графиком функции двух переменных является поверхность в 

прямоугольной системе координат 𝑂𝑥𝑦𝑧, точки которой имеют координаты 

(𝑥, 𝑦, 𝑓(𝑥, 𝑦)).  
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Рис. 2.1. График функции двух переменных. 

 Пусть функция 𝑢 = 𝑓(𝑀) определена на множестве {𝑀} и точка 𝐴 – предельная 

точка множества {𝑀}. 

 Определение 1 (по Коши). Число 𝑏 называется пределом функции 𝑢 = 𝑓(𝑀) в 

точке 𝐴, если ∀𝜀 > 0 ∃𝛿 > 0, такое, что ∀𝑀 ∈ {проколотой 𝛿 − окр. т. 𝐴,𝑀 ∈ {𝑀}} 

выполняется неравенство |𝑓(𝑀) − 𝑏| < 𝜀. 

 Определение 1 (по Гейне). Число 𝑏 называется пределом функции 𝑢 = 𝑓(𝑀) в 

точке 𝐴, если ∀{𝑀𝑛} → 𝐴 (𝑀𝑛 ∈ {𝑀},𝑀𝑛 ≠ 𝐴) соответствующая последовательность 

{𝑓(𝑀𝑛)} → 𝑏. 

 Обозначения:  

lim
𝑀→𝐴

𝑓(𝑀)  = 𝑏 или lim
x1→a1
…

xm→am

f(x1, . . . , xm) = 𝑏, где 𝐴 = 𝐴(a1, . . . , am). 

 Теорема 3. Определения 1 и 2 эквивалентны. 

Доказательство проводится так же, как и для функции одной переменной. 

 Примеры. 

1) lim
𝑥→0
𝑦→0

{(𝑥 +  𝑦) 𝑠𝑖𝑛
1

𝑥
 𝑠𝑖𝑛 

1

𝑦
} = 0 

Функция 𝑢(𝑥, 𝑦) не определена на осях координат, однако точка 𝑂(0,0) является 

предельной точкой ее области определения, поэтому задача поставлена 

корректно. Поскольку первый множитель 𝑢(𝑥, 𝑦) при 𝑥 → 0 и 𝑦 → 0 стремится к 

нулю, а другие два ограничены, получим lim
𝑥→0
𝑦→0

𝑢(𝑥, 𝑦) = 0. 

Для доказательства можно воспользоваться определением предела функции по 

Коши, для произвольно заданного 𝜀 взяв 𝛿 =
𝜀

2
. 

 

2) 𝑢(𝑥, 𝑦) =
𝑥𝑦

𝑥2+𝑦2
 

Функция 𝑢(𝑥, 𝑦) не определена на осях координат, однако точка 𝑂(0,0) является 

предельной точкой ее области определения. 
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Докажем, что lim
𝑥→0
𝑦→0

𝑢(𝑥, 𝑦) не существует. Устремим точку (𝑥, 𝑦) к началу 

координат по прямой 𝑦 = 𝑘𝑥. Тогда 

lim
𝑦=𝑘𝑥
𝑥→0

𝑢(𝑥, 𝑦) = lim
𝑥→0

𝑘

1 + 𝑘2
=

𝑘

1 + 𝑘2
. 

При стремлении точки (𝑥, 𝑦) к началу координат по разным прямым, будем 

получать разные предельные значения, поэтому предел lim
𝑥→0
𝑦→0

𝑢(𝑥, 𝑦) не 

существует. 
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ЛЕКЦИЯ 2. ПРЕДЕЛ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 

 На прошлой лекции мы рассматривали предел функции 𝑢(𝑥, 𝑦) =
𝑥𝑦

𝑥2+𝑦2
 при 𝑥 →

0, 𝑦 → 0 и доказали, что он не существует. Мы устремляли точки к началу координат по 

различным прямым и получали разные предельные значения. Что, если по разным 

прямым получается одно и то же предельное значение, следует ли отсюда, что предел, 

как мы его определили, будет равен этому числу? Оказывается, что этого недостаточно.     

 Лемма 3. Если {𝑀𝑛} → 𝐴 при 𝑛 → ∞ и все {𝑀𝑛} ∈ замкнутому множеству {𝑀}, то 

𝐴 ∈ {𝑀}.  

 Доказательство: 

 Так как {𝑀𝑛} → 𝐴 при 𝑛 → ∞, то в любой -окрестности точки 𝐴 имеются члены 

последовательности {𝑀𝑛}, а значит и точки из множества {𝑀}. Следовательно, 𝐴 

является либо внутренней точкой, а значит, принадлежит {𝑀}, как любая внутренняя 

точка, либо граничной и принадлежит {𝑀}, множество по условию замкнуто, то есть 

содержит все свои граничные точки. В любом случае 𝐴 ∈ {𝑀}, что и требовалось 

доказать.  

 Определение. Функция 𝑢 = 𝑓(𝑀) называется бесконечно малой в точке 𝐴 (при 

𝑀 → 𝐴), если lim
𝑀→𝐴

𝑓(𝑀)  = 0. 

 Пусть 𝑓(𝑀) и 𝑔(𝑀) − бесконечно малые функции в точке 𝐴. Рассмотрим предел 

их отношения lim
𝑀→𝐴

𝑓(𝑀)

𝑔(𝑀)
.  

1) Если lim
𝑀→𝐴

𝑓(𝑀)

𝑔(𝑀)
= 𝐶 ≠ 0, то 𝑓(𝑀) и 𝑔(𝑀) − бесконечно малые одного порядка;  

2) Если lim
𝑀→𝐴

𝑓(𝑀)

𝑔(𝑀)
= 1, то 𝑓(𝑀) и 𝑔(𝑀) − эквивалентные;  

3) Если lim
𝑀→𝐴

𝑓(𝑀)

𝑔(𝑀)
= 0, то говорят, что 𝑓(𝑀) является бесконечно малой более 

высокого порядка, чем 𝑔(𝑀) в точке 𝐴, и пишут 𝑓(𝑀) = 𝑜(𝑔) при 𝑀 → 𝐴.   

 

 Пример. Пусть 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3, 𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 − бесконечно малые в точке 

𝑂(0,0). Докажем, что 𝑓 = 𝑜(𝑔) при 𝑀 → 𝑂(0,0). Переходя к полярным координатам 

𝑥 = 𝑟 cos𝜑 , 𝑦 = 𝑟 sin 𝜑, имеем 

 

lim
𝑀→𝑂

𝑓(𝑥, 𝑦)

𝑔(𝑥, 𝑦)
= lim

𝑥→0
𝑦→0

𝑥3 + 𝑦3

𝑥2 + 𝑦2
= lim

𝑟→0

𝑟3(cos3 𝜑 + sin3 𝜑)

𝑟2
= lim

𝑟→0
𝑟(cos3 𝜑 + sin3 𝜑) = 0. 

 Теорема 4. Пусть 𝑓(𝑀) и 𝑔(𝑀) определены на {𝑀} и lim
𝑀→𝐴

𝑓(𝑀) = 𝑏, lim
𝑀→𝐴

𝑔(𝑀) =

𝑐, тогда  

1) lim
𝑀→𝐴

{𝑓(𝑀) ± 𝑔(𝑀)} = 𝑏 ± 𝑐,  

2) lim
𝑀→𝐴

{𝑓(𝑀)𝑔(𝑀)} = 𝑏𝑐,  

3) если 𝑐 ≠ 0, то lim
𝑀→𝐴

𝑓(𝑀)

𝑔(𝑀)
=

𝑏

𝑐
. 
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Обратим внимание на условие: 𝑓(𝑀) и 𝑔(𝑀) определены на {𝑀}. Это важно, поскольку 

возможен случай, когда функции 𝑓(𝑀) и 𝑔(𝑀) определены на разных множествах, но 

имеют общую предельную точку 𝐴. Тогда, например, о сумме этих функций речи быть 

не может.  

 Определение. Говорят, что функция 𝑓(𝑀) удовлетворяет в точке 𝐴 условию 

Коши, если ∀𝜀 > 0 ∃𝛿 > 0, такое, что ∀𝑀1, 𝑀2 ∈ {проколотой 𝛿 − окр. т. 𝐴,𝑀1, 𝑀2 ∈

{𝑀}} выполняется неравенство |𝑓(𝑀2) − 𝑓(𝑀1)| < 𝜀. 

 Теорема 5 (Критерий Коши существования предела функции в данной точке). 

Для того, чтобы функция 𝑓(𝑀) имела предел в точке 𝐴, необходимо и достаточно, 

чтобы она удовлетворяла в этой точке условию Коши. 

 Мы до сих пор говорили о пределе функции в точке, но можно также дать 

определение предела при 𝑀 → ∞, когда расстояние точки 𝑀 от начала координат 

неограниченно увеличивается.  

 Задача. Сформулировать определение предела функции 𝑓(𝑀) при 𝑀 → ∞ по 

Коши и по Гейне, доказать их эквивалентность, сформулировать условие Коши 

существования предела функции 𝑓(𝑀) при 𝑀 → ∞ и доказать критерий Коши. 

 

Непрерывность функции многих переменных 

 Пусть функция 𝑢 = 𝑓(𝑀) определена на множестве {𝑀}, пусть точка 𝐴 ∈ {𝑀} и 

является предельной точкой множества {𝑀}.  

 Определение. Функция 𝑢 = 𝑓(𝑀) называется непрерывной в точке 𝐴, если 

lim
𝑀→𝐴

𝑓(𝑀)  = 𝑓(𝐴).      (2.1) 

Введем функцию ∆𝑢 = 𝑓(𝑀) − 𝑓(𝐴) и назовем ее приращением (полным 

приращением) функции 𝑓(𝑀) в точке 𝐴. Условие непрерывности функции 𝑢 = 𝑓(𝑀) в 

точке 𝐴 можно записать в виде: 

lim
𝑀→𝐴

∆𝑢 = lim
𝑀→𝐴

{𝑓(𝑀) − 𝑓(𝐴)} = 0.    (2.2) 

Равенство (2.2) называется разностной формой условия непрерывности функции 𝑓(𝑀) 

в точке 𝐴. 

 Пусть точки 𝑀 и 𝐴 имеют координаты: 𝑀(𝑥1, . . . , 𝑥𝑚) и 𝐴(𝑎1, . . . , 𝑎𝑚). Положим 

𝑥1 − 𝑎1 = 𝛥𝑥1, . . . , 𝑥𝑚 − 𝑎𝑚 = 𝛥𝑥𝑚, тогда  

∆𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚) − 𝑓(𝑎1, . . . , 𝑎𝑚) = 𝑓(𝑎1 + 𝛥𝑥1, . . . , 𝑎𝑚 + 𝛥𝑥𝑚) − 𝑓 (𝑎1, . . . , 𝑎𝑚). 

Разностная форма условия непрерывности функции принимает вид 

lim
𝛥𝑥1→0
…

𝛥𝑥𝑚→0

∆𝑢 = 0.     (2.3) 

Непрерывность функции, определенную условием (2.2) (или (2.3)), называют также 

непрерывностью по совокупности переменных. 

 Введем понятие непрерывности функции по отдельным переменным. 

Рассмотрим функцию двух переменных 𝑢 = 𝑓(𝑥, 𝑦). Зафиксируем значение одной из 
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переменных, положив 𝑦 = 𝑦0 = 𝑐𝑜𝑛𝑠𝑡 (рис. 2.1), тогда наша функция станет функцией 

одной переменной 𝑢 = 𝑓(𝑥, 𝑦0).  

 
Рис. 2.1. Приращение. 

 Определение. Если 

lim
𝑥→𝑥0

𝑓(𝑥, 𝑦0) = 𝑓(𝑥0, 𝑦0),    (2.4) 

то функция 𝑢 = 𝑓(𝑥, 𝑦) называется непрерывной в точке 𝑀0(𝑥0, 𝑦0) по переменной 𝑥. 

Аналогично определяется непрерывность по переменной 𝑦. 

 Введем обозначение ∆𝑥𝑢 = 𝑓(𝑥, 𝑦0) − 𝑓(𝑥0, 𝑦0), получим функцию одной 

переменной, которая называется частным приращением функции 𝑓(𝑥, 𝑦) в точке 𝑀0 по 

переменной 𝑥. Тогда условие (2.4) можно переписать в виде 

lim
𝑥→𝑥0

∆𝑥𝑢 = 0.     (2.5) 

Если обозначить 𝑥 − 𝑥0 = ∆𝑥, тогда 𝑥 = 𝑥0 + ∆𝑥 и ∆𝑥𝑢 = 𝑓(𝑥0 + ∆𝑥, 𝑦0) − 𝑓(𝑥0, 𝑦0), 

условие (2.4), (2.5) примет вид 

𝑓(𝑥0 + ∆𝑥, 𝑦0) − 𝑓(𝑥0, 𝑦0) → 0 при ∆𝑥 → 0.   (2.6) 

 

 Теорема 6. Пусть функция 𝑢 = 𝑓(𝑥, 𝑦) определена в окрестности точки 

𝑀0(𝑥0, 𝑦0) и непрерывна по совокупности переменных в точке 𝑀0, тогда 𝑢 = 𝑓(𝑥, 𝑦) 

непрерывна в точке 𝑀0 по каждой переменной 𝑥 и 𝑦. 

 Доказательство. По условию lim
𝑥→𝑥0
𝑦→𝑦0

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0). В частности, 

lim
𝑥→𝑥0

𝑓(𝑥, 𝑦0) = 𝑓(𝑥0, 𝑦0), а это и означает, что 𝑓(𝑥, 𝑦) непрерывна в точке 𝑀0 по 

переменной 𝑥. Аналогично доказывается непрерывность в точке 𝑀0 по переменной 𝑦. 

 Замечание. Обратное к теореме 6 утверждение неверно. 

 Пример 1. 

𝑢(𝑥, 𝑦) = {

𝑥𝑦

𝑥2 + 𝑦2
, 𝑥2 + 𝑦2 ≠ 0,

0,    𝑥 = 𝑦 = 0.
 

 На прошлой лекции мы уже рассматривали эту функцию без доопределения ее в 

начале координат и доказали, что lim
𝑥→0
𝑦→0

𝑢(𝑥, 𝑦) не существует. Следовательно, функция 

𝑢(𝑥, 𝑦) разрывна в точке 𝑂(0,0) по совокупности переменных. Тем не менее, функция 

𝑢(𝑥, 𝑦) непрерывна в точке O(0, 0) по отдельным переменным. В самом деле, 
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зафиксируем 𝑦 = 0, тогда ∀𝑥 ∈ (−∞, +∞) 𝑢(𝑥, 0) = 0, отсюда следует, что lim
𝑥→0

𝑢(𝑥, 0) =

0 = 𝑢(0,0), то есть функция 𝑢(𝑥, 𝑦) непрерывна в точке 𝑂(0,0) по переменной 𝑥. 

Аналогично доказывается непрерывность функции в точке 𝑂(0,0) по переменной 𝑦. 

 

 Пример 2. 

𝑢(𝑥, 𝑦) = {
(𝑥 +  𝑦) 𝑠𝑖𝑛

1

𝑥
 𝑠𝑖𝑛 

1

𝑦
, 𝑥 ≠ 0, 𝑦 ≠ 0,

0,    𝑥 = 𝑦 = 0.

 

 На прошлой лекции мы доказали, что lim
𝑥→0
𝑦→0

𝑢(𝑥, 𝑦) = 0 = 𝑢(0,0), то есть функция 

𝑢(𝑥, 𝑦) непрерывна в точке 𝑂(0,0) по совокупности переменных. Вместе с тем, она не 

определена на осях координат (кроме точки 𝑂(0,0)), и поэтому не является 

непрерывной по отдельным переменным в точке 𝑂(0,0). Обратим внимание на то, что в 

данном случае теорема 6 неприменима, поскольку функция 𝑢(𝑥, 𝑦) не определена на 

осях 𝑥 и 𝑦, то есть в окрестности точки 𝑂(0,0). 

 

Основные теоремы о непрерывных функциях 

 Теорема 7. Пусть 𝑓(𝑀) и 𝑔(𝑀) определены на множестве {𝑀} и непрерывны в 

точке 𝐴, тогда 𝑓(𝑀) ± 𝑔(𝑀), 𝑓(𝑀)𝑔(𝑀),
𝑓(𝑀)

𝑔(𝑀)
 (при условии 𝑔(𝐴) ≠ 0) непрерывны в 

точке 𝐴. 

 Доказательство теоремы 7 моментально следует из теоремы 4 и определения 

непрерывности. 

 Рассмотрим функцию 𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚), пусть ее аргументы являются не 

независимыми переменными, а функциями аргументов 𝑡1, … , 𝑡𝑘: 

𝑥1 = 𝜑1(𝑡1, … , 𝑡𝑘), . . . , 𝑥𝑚 = 𝜑𝑚(𝑡1, … , 𝑡𝑘), 

где функции 𝜑1, … , 𝜑𝑚 определены на множестве {𝐾} = {𝐾(𝑡1, … , 𝑡𝑘)}. 

 Теорема 8 (о непрерывности сложной функции). Пусть функции 

𝜑1(𝑡1, … , 𝑡𝑘), . . . , 𝜑𝑚(𝑡1, … , 𝑡𝑘) непрерывны в точке 𝐴(𝑎1, … , 𝑎𝑘) и пусть функция 𝑢 =

𝑓(𝑥1, . . . , 𝑥𝑚) непрерывна в точке 𝐵(𝑏1, … , 𝑏𝑘), где 𝑏1 = 𝜑1(𝐴), … , 𝑏𝑚 = 𝜑𝑚(𝐴). Тогда 

сложная функция 𝑢 = 𝑓(𝜑1(𝑡1, … , 𝑡𝑘), . . . , 𝜑𝑚(𝑡1, … , 𝑡𝑘)) =: 𝐹(𝑡1, … , 𝑡𝑘) непрерывна в 

точке 𝐴. 

 Теорема 9 (об устойчивости знака непрерывной функции). Если функция 𝑢 =

𝑓(𝑀) непрерывна в точке 𝐴 и 𝑓(𝐴) > 0 (< 0), то ∃ -окрестность точки 𝐴, в которой 

𝑓(𝑀) > 0 (< 0). 

 Доказательство. Так как 𝑓(𝑀) непрерывна в точке 𝐴, то lim
𝑀→𝐴

𝑓(𝑀) = 𝑓(𝐴), то 

есть ∀𝜀 > 0 ∃𝛿 > 0 ∀𝑀 ∈ {𝛿 − окр.т. 𝐴, 𝑀 ∈ {𝑀}} выполнено |𝑓(𝑀) − 𝑓(𝐴)| < 𝜀. 
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 Пусть 𝑓(𝐴) > 0, возьмем 𝜀 = 𝑓(𝐴), ему соответствует 𝛿 > 0 такое, что в -

окрестности точки 𝐴: −𝑓(𝐴) < 𝑓(𝑀) − 𝑓(𝐴) < 𝑓(𝐴). Отсюда следует, что 𝑓(𝑀) > 0 в -

окр. т. 𝐴. 

 Теорема 10 (о  прохождение непрерывной функции через любое промежуточное 

значение). Пусть функция 𝑢 = 𝑓(𝑀) непрерывна на связном множестве {𝑀}. Пусть 𝑀1 

и 𝑀2 ∈ {𝑀}, 𝑓(𝑀1) = 𝑢1, 𝑓(𝑀2) = 𝑢2. Тогда ∀𝑢0 ∈ [𝑢1, 𝑢2] на любой непрерывной 

кривой 𝐿 ⸦{𝑀} найдется точка 𝑀0: 𝑓(𝑀0) = 𝑢0. 

 Доказательство. Пусть кривая 𝐿 задана уравнениями: 

𝐿: 𝑥1 = 𝜑1(𝑡), . . . , 𝑥𝑚 = 𝜑𝑚(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽, 

где функции 𝜑𝑖(𝑡) непрерывны на сегменте [𝛼, 𝛽]. При этом точки 𝑀1 и 𝑀2 имеют 

координаты: 𝑀1(𝜑1(𝛼), . . . , 𝜑𝑚(𝛼)), 𝑀2(𝜑1(𝛽), . . . , 𝜑𝑚(𝛽)). На кривой L наша функция 

принимает вид 𝑢 = 𝑓(𝜑1(𝑡), . . . , 𝜑𝑚(𝑡)) =: 𝐹(𝑡). По теореме 8 функция 𝐹(𝑡) непрерывна 

на сегменте [𝛼, 𝛽]. На концах сегмента [𝛼, 𝛽] функция 𝐹(𝑡) принимает значения 𝐹(𝛼) =

𝑓(𝜑1(𝛼), . . . , 𝜑𝑚(𝛼)) = 𝑓(𝑀1) = 𝑢1, 𝐹(𝛽) = 𝑓(𝜑1(𝛽), . . . , 𝜑𝑚(𝛽)) = 𝑓(𝑀2) = 𝑢2. По 

известной теореме из 1-го семестра ∃𝑡0 ∈ [𝛼, 𝛽] : 𝐹(𝑡0) = 𝑢0, то есть 

𝑓(𝜑1(𝑡0), . . . , 𝜑𝑚(𝑡0)) = 𝑢0. Но 𝐹(𝑡0) = 𝑓(𝜑1(𝑡0), . . . , 𝜑𝑚(𝑡0)) = 𝑓(𝑀0), причем точка 

𝑀0(𝜑1(𝑡0), . . . , 𝜑𝑚(𝑡0)) ∈ 𝐿. Итак, ∃ точка 𝑀0 ∈ 𝐿: 𝑓(𝑀0) = 𝑢0, что и требовалось 

доказать. 

 
Рис. 2.2. Иллюстрация к теореме 10. 
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ЛЕКЦИЯ 3. НЕПРЕРЫВНОСТЬ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ 

 

 Определение. Функция 𝑢 = 𝑓(𝑀) ограничена на множестве {𝑀}, если ∃ числа 𝐶1 

и 𝐶2, такие, что ∀𝑀 ∈ {𝑀}: 𝐶1 ≤ 𝑓(𝑀) ≤ 𝐶2.  

  

 Теорема 11 (первая теорема Вейерштрасса). Непрерывная на замкнутом 

ограниченном множестве функция ограничена на этом множестве. 

 Доказательство. Допустим, что непрерывная на замкнутом ограниченном 

множестве {𝑀} функция 𝑢 = 𝑓(𝑀) не ограничена на этом множестве. Тогда ∀ 

натурального числа 𝑛 ∃𝑀𝑛 ∈ {𝑀}: |𝑓(𝑀𝑛)| > 𝑛. Последовательность {𝑓(𝑀𝑛)} является 

неограниченной. Последовательность точек {𝑀𝑛} – ограничена, следовательно, по 

теореме Больцано-Вейерштраса из нее можно выделить сходящуюся 

подпоследовательность.  

 Пусть подпоследовательность {𝑀𝑘𝑛
} → 𝐴 при 𝑛 → ∞. В силу леммы 3 точка 𝐴 ∈

{𝑀} и поэтому функция 𝑓(𝑀) непрерывна в точке 𝐴. Следовательно, соответствующая 

последовательность значений функции {𝑓(𝑀𝑘𝑛
)} → 𝑓(𝐴) при 𝑛 → ∞, а это 

противоречит тому, что {𝑓(𝑀𝑘𝑛
)} – неограниченная последовательность. Полученное 

противоречие доказывает, что наше предположение не верно и, следовательно, 

функция 𝑢 = 𝑓(𝑀) ограничена на множестве {𝑀}. 

 

 Определение. Число 𝑈 называется точной верхней гранью функции 𝑢 = 𝑓(𝑀) на 

множестве {𝑀}, если  

1. ∀ 𝑀 ∈ {𝑀}: 𝑓(𝑀) ≤ 𝑈; 

2. ∀ числа 𝑈̃ < 𝑈 ∃𝑀̃ ∈ {𝑀}: 𝑓(𝑀̃) > 𝑈̃.  

 

 Теорема 12 (вторая теорема Вейерштрасса). Непрерывная на замкнутом 

ограниченном множестве функция достигает на этом множестве своих точных граней. 

 

 Определение. Функция 𝑢 = 𝑓(𝑀) называется равномерно непрерывной на 

множестве {𝑀}, если ∀𝜀 > 0 ∃𝛿 > 0 такое, что ∀𝑀1 и 𝑀2 ∈ {𝑀}, удовлетворяющих 

условию 𝜌(𝑀1, 𝑀2) < 𝛿, выполняется неравенство |𝑓(𝑀1) − 𝑓(𝑀2)| < 𝜀. 

 

 Задача. Привести пример многих переменных функции, которая непрерывна на 

некотором множестве, но не является равномерно непрерывной. 

 

 Теорема 13 (Кантора). Непрерывная на замкнутом ограниченном множестве 

функция равномерно непрерывна на этом множестве. 

 

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

19 

 

 

 Задача. Привести примеры, показывающие, что если множество {𝑀} не является 

ограниченным или замкнутым, то для такого множества утверждения теорем 11,12,13 

не верны. 

Частные производные и дифференцируемость 

 Пусть точка 𝑀(𝑥1, . . . , 𝑥𝑚) – внутренняя точка области определения функции 

𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚). Зафиксируем все аргументы функции кроме 𝑥𝑘. Рассмотрим частное 

приращение функции в точке 𝑀, соответствующее приращению 𝛥𝑥𝑘 аргумента 𝑥𝑘:  

𝛥𝑥𝑘𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑘 − 1, 𝑥𝑘  +  𝛥𝑥𝑘, 𝑥𝑘 + 1, . . . , 𝑥𝑚) − 𝑓(𝑥1, . . . , 𝑥𝑘, . . . , 𝑥𝑚). 

 

 Определение.  Если предел lim
𝛥𝑥𝑘→0

𝛥𝑥𝑘𝑢

𝛥𝑥𝑘
 существует, то он называется частной 

производной функции 𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚) в точке 𝑀(𝑥1, . . . , 𝑥𝑚) по переменной 𝑥𝑘. 

 Для частной производной по переменной 𝑥𝑘 используются различные 

обозначения: 𝑢′
𝑥𝑘
, 𝑓 ′

𝑥𝑘
, 𝑢𝑥𝑘 ,

𝜕𝑢

𝜕𝑥𝑘
. 

 Вычисление частных производных производится по тем же правилам, что и 

вычисление производных функций одной переменной. 

  

 Примеры. 

1) 𝑢 = 𝑥𝑦, 𝑥 > 0, 𝑦 ∈ ℝ 

𝜕𝑢

𝜕𝑥
= 𝑦𝑥𝑦−1 

𝜕𝑢

𝜕𝑦
= 𝑥𝑦 ln 𝑥 

 

2) 𝑢(𝑥, 𝑦) = {
1   на осях координат,
0 в остальных точках.

 

Функция 𝑢(𝑥, 𝑦) не является непрерывной в точке начала координат 𝑂(0,0), так 

как предел lim
𝑥→0
𝑦→0

𝑢(𝑥, 𝑦) не существует. Однако функция 𝑢(𝑥, 𝑦) имеет частные 

производные в этой точке:  

𝜕𝑢

𝜕𝑥
(0,0) = 0, 

𝜕𝑢

𝜕𝑦
(0,0) = 0. 

 

 Замечание. Если 𝑀(𝑥1, . . . , 𝑥𝑚) – граничная точка области определения функции, 

то для нее введенное определение частной производной может быть непригодно.  
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 Например, для точки 𝑀0 на рис. 3.1 не существует частное приращение 𝛥𝑥𝑢. В 

этом случае, если существует 
𝜕𝑢

𝜕𝑥
(𝑀) во внутренних точках 𝑀 области определения 

функции {𝑀}, то полагают 
𝜕𝑢

𝜕𝑥
(𝑀0) = lim

𝑀→𝑀0

𝜕𝑢

𝜕𝑥
(𝑀) (если этот предел существует). 

 
Рис. 3.1. Граничная точка. 

 Пусть точка 𝑀(𝑥1, . . . , 𝑥𝑚) – внутренняя точка области определения функции 

𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚). Рассмотрим теперь полное приращение функции в этой точке  

𝛥𝑢 = 𝑓(𝑥1 +𝛥𝑥1, … , 𝑥𝑚 +𝛥𝑥𝑚)− 𝑓(𝑥1, … , 𝑥𝑚). 

  

 Определение. Функция 𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚) называется дифференцируемой в точке 

𝑀(𝑥1, . . . , 𝑥𝑚), если ее полное приращение в этой точке можно представить в виде  

𝛥𝑢 = 𝐴1𝛥𝑥1+. . . +𝐴𝑚𝛥𝑥𝑚 + 𝛼1𝛥𝑥1+. . . +𝛼𝑚𝛥𝑥𝑚,     (3.1) 

где 𝐴1, . . . , 𝐴𝑚 – какие-то числа (то есть они не зависят от 𝛥𝑥1, … , 𝛥𝑥𝑚), а 𝛼𝑖 =

𝛼𝑖(𝛥𝑥1, … , 𝛥𝑥𝑚), 𝑖 = 1, 2, . . . , 𝑚 удовлетворяют условиям:  

lim
𝛥𝑥1→0
…

𝛥𝑥𝑚→0

𝛼𝑖 = 0 и 𝛼𝑖(0,… ,0) = 0. 

 

Физический смысл дифференцируемости функции многих переменных 

 В механике во многих задачах скорость 𝑣 движущейся точки на плоскости 

раскладывается на компоненты 𝑣𝑥⃗⃗⃗⃗⃗ и 𝑣𝑦⃗⃗⃗⃗⃗ вдоль оси 𝑥 и вдоль оси 𝑦, соответственно. 

Теперь мы имеем функцию двух переменных 𝑢(𝑥, 𝑦), частная производная 
𝜕𝑢

𝜕𝑥
 есть 

скорость изменения функции в направлении оси 𝑥, аналогично, 
𝜕𝑢

𝜕𝑦
 – скорость 

изменения функции в направлении оси 𝑦.  Но ведь мы можем выйти из точки 𝑀(𝑥, 𝑦) 

по произвольному направлению, на следующей лекции лекцию мы введем понятие 

производной по направлению, которая будет характеризовать скорость изменения 

функции в произвольном направлении. Спрашивается, можно ли выразить скорость 

изменения функции в произвольном направлении через ее скорости по осям координат, 

то есть представить ее в виде линейной комбинации частных производных. 

Оказывается, что если функция дифференцируема, то можно, в противном случае – нет.  

 Вспомним, что для функции одной переменной 𝑦 = 𝑓(𝑥) условие 

дифференцируемости имело вид:  

𝛥𝑦 = 𝐴𝛥𝑥 + 𝛼(𝛥𝑥)𝛥𝑥 = 𝐴𝛥𝑥 + 𝑜(𝛥𝑥). 
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Возникает вопрос: каков аналог слагаемого 𝑜(𝛥𝑥) в случае функции многих 

переменных? Можно предположить, что аналогом будет сумма 𝑜(𝛥𝑥1)+. . . +𝑜(𝛥𝑥𝑚), но 

это не верно. Рассмотрим полное приращение функции в точке 𝑀(𝑥1, . . . , 𝑥𝑚), 

обозначим буквой 𝜌 расстояние между точками 𝑀(𝑥1, . . . , 𝑥𝑚) и 𝑀′(𝑥1 + 𝛥𝑥1, … , 𝑥𝑚 +

𝛥𝑥𝑚) (рис. 3.2). 

 
Рис. 3.2. Приращение.  

 

 Утверждение. Условие дифференцируемости (3.1) эквивалентно условию: 

𝛥𝑢 = 𝐴1𝛥𝑥1 +⋯+ 𝐴𝑚𝛥𝑥𝑚 + 𝑜(𝜌),   (3.2) 

причем 𝑜(𝜌) = 0 при 𝜌 = 0. 

 Доказательство:  

1) Пусть выполнено условие дифференцируемости в виде (3.1), докажем, что ℎ: =

𝛼1𝛥𝑥1+. . . +𝛼𝑚𝛥𝑥𝑚 = 𝑜(𝜌), причем ℎ = 0 при 𝜌 = 0. 

Если 𝜌 = 0, то все 𝛥𝑥𝑖 = 0. Тогда в силу условия (3.1) все 𝛼𝑖 = 0. А значит и ℎ =

0. 

Если 𝜌 ≠ 0, то 

ℎ

𝜌
= 𝛼1

𝛥𝑥1

𝜌
+. . . +𝛼𝑚

𝛥𝑥𝑚

𝜌
. 

Так как |
𝛥𝑥𝑖

𝜌
| ≤ 1 и все 𝛼𝑖 → 0 при 𝜌 → 0, то lim

𝜌→0

ℎ

𝜌
= 0, то есть ℎ = 𝑜(𝜌) при 𝜌 →

0. 

2) Пусть выполнено условие дифференцируемости в виде (3.2), докажем, что ℎ: =

𝑜(𝜌) можно представить в виде 𝛼1𝛥𝑥1+. . . +𝛼𝑚𝛥𝑥𝑚 ,  причем lim
𝛥𝑥1→0
…

𝛥𝑥𝑚→0

𝛼𝑖 = 0 и 

𝛼𝑖(0,… ,0) = 0. 

Если 𝜌 ≠ 0, то запишем  

ℎ =
ℎ

𝜌

𝜌2

𝜌
=
ℎ

𝜌

(𝛥𝑥1)
2 +⋯+ (𝛥𝑥𝑚)

2

𝜌
= [

ℎ

𝜌

𝛥𝑥1

𝜌
]𝛥𝑥1 + ⋯+ [

ℎ

𝜌

𝛥𝑥𝑚

𝜌
]𝛥𝑥𝑚

= 𝛼1𝛥𝑥1+. . . +𝛼𝑚𝛥𝑥𝑚, 
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мы ввели обозначения 𝛼𝑖 =
ℎ

𝜌

𝛥𝑥𝑖

𝜌
. Докажем, что 𝛼𝑖 удовлетворяют необходимым 

условиям. Так как |
𝛥𝑥𝑖

𝜌
| ≤ 1 и 

ℎ

𝜌
=

𝑜(𝜌)

𝜌
→ 0 при 𝜌 → 0, то есть при 𝛥𝑥1 →

0,… , 𝛥𝑥𝑚 → 0, то lim
𝛥𝑥1→0
…

𝛥𝑥𝑚→0

𝛼𝑖 = 0. 

Если 𝜌 = 0, то положим по определению, что все 𝛼𝑖 = 0, отсюда следует, что 

𝛼𝑖(0,… ,0) = 0. 

 

Связь дифференцируемости с существованием частных производных 

 

 Теорема 14 (необходимое условие дифференцируемости функции). Если функция 

𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚) дифференцируема в точке 𝑀(𝑥1, . . . , 𝑥𝑚),, то она имеет в точке 𝑀 

частные производные по всем переменным, то есть ∃
𝜕𝑢

𝜕𝑥𝑖
(𝑀), 𝑖 = 1, …𝑚. 

 Доказательство. Запишем условие дифференцируемости функции в точке 𝑀 в 

виде (3.1):  

𝛥𝑢 = 𝐴1𝛥𝑥1+. . . +𝐴𝑚𝛥𝑥𝑚 + 𝛼1𝛥𝑥1+. . . +𝛼𝑚𝛥𝑥𝑚. 

Положим все 𝛥𝑥𝑖 = 0, кроме 𝛥𝑥𝑘, тогда  

𝛥𝑢 = 𝛥𝑥𝑘𝑢 = 𝐴𝑘𝛥𝑥𝑘 + 𝛼𝑘𝛥𝑥𝑘, 

где 𝐴𝑘 − число, а 𝛼𝑘 → 0 при 𝛥𝑥𝑘 → 0. Получим  

𝛥𝑥𝑘𝑢

𝛥𝑥𝑘
= 𝐴𝑘 + 𝛼𝑘, 

то есть ∃ lim
𝛥𝑥𝑘→0

𝛥𝑥𝑘𝑢

𝛥𝑥𝑘
= 𝐴𝑘. Таким образом, существует 

𝜕𝑢

𝜕𝑥𝑘
(𝑀) = 𝐴𝑘. Теорема доказана. 

 Следствие. Условие дифференцируемости функции в точке 𝑀 можно записать в 

виде 

𝛥𝑢 =
𝜕𝑢

𝜕𝑥1
(𝑀)𝛥𝑥1+. . . +

𝜕𝑢

𝜕𝑥𝑚
(𝑀)𝛥𝑥𝑚 + 𝛼1𝛥𝑥1+. . . +𝛼𝑚𝛥𝑥𝑚 .  (3.3) 

 Замечание 1. Из любого вида условия дифференцируемости следует, что если 

функция дифференцируема в точке 𝑀, то она непрерывна в этой точке. Утверждение 

следует из того, что 𝛥𝑢 → 0 при 𝛥𝑥1 → 0,… , 𝛥𝑥𝑚 → 0, а это и есть  условие 

непрерывности в разностной форме. 

 Замечание 2. Обратное к Теореме 14 утверждение не верно. 

 Пример.  

 𝑢(𝑥, 𝑦) = {
1   на осях координат,
0 в остальных точках.

 

Ранее было показано, что ∃
𝜕𝑢

𝜕𝑥
(0, 0) = 0 и 

𝜕𝑢

𝜕𝑦
(0, 0) = 0, но функция 𝑢(𝑥, 𝑦) не является 

непрерывной в точке 𝑂(0,0), а потому не дифференцируема в этой точке.  

 Таким образом, существование частных производных – только необходимое, но 

не достаточное условие дифференцируемости функции в данной точке. 
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 Теорема 15 (достаточное условие дифференцируемости функции). Если 

функция 𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚) имеет частные производные по всем аргументам в 

окрестности точки 𝑀, и эти частные производные непрерывны в точке 𝑀, то функция 

дифференцируема в этой точке. 
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ЛЕКЦИЯ 4. ДИФФЕРЕНЦИАЛ ФУНКЦИИ МНОГИХ 

ПЕРЕМЕННЫХ 

 На прошлой лекции мы ввели достаточное условие дифференцируемости 

функции, а является ли оно необходимым? Оказывается, что нет. 

 Замечание. Условие Теоремы 15 является только достаточным, но не 

необходимым условием дифференцируемости функции в точке 𝑀. 

 Пример 1. 

𝑢(𝑥, 𝑦) = {
(𝑥2 + 𝑦2) sin

1

√𝑥2 + 𝑦2

0, 𝑥 = 𝑦 = 0.

, 𝑥2 + 𝑦2 ≠ 0 

В случае 𝑥2 + 𝑦2 ≠ 0 частные производные существуют, их можно вычислить, просто 

продифференцировав выражение (𝑥2 + 𝑦2) sin
1

√𝑥2+𝑦2
 как произведение. В начале 

координат 𝑥 = 𝑦 = 0 производные также существуют. Рассмотрим приращение 

функции в начале координат по аргументу 𝑥: 𝛥𝑥𝑢 = 𝑥
2 sin

1

|𝑥|
− 0. Тогда 

𝛥𝑥𝑢

∆𝑥
=

𝛥𝑥𝑢

𝑥
=

𝑥 sin
1

|𝑥|
→ 0 при 𝑥 → 0, значит 

𝜕𝑢

𝜕𝑥
(0,0) = 0. Аналогично вычисляется производная 

𝜕𝑢

𝜕𝑦
. 

Таким образом, функция 𝑢(𝑥, 𝑦) имеет частные производные во всех точках плоскости. 

 Отметим, что эти частные производные не являются непрерывными в точке 

начала координат 𝑂(0,0), тем не менее функция 𝑢(𝑥, 𝑦) дифференцируема в этой точке. 

Для того, чтобы доказать дифференцируемость функции в начале координат, нужно 

доказать, что ее полное приращение ∆𝑢 = 𝑢(𝑥, 𝑦) − 𝑢(0,0) = (𝑥2 + 𝑦2) sin
1

√𝑥2+𝑦2
 

можно представить в виде ∆𝑢 =
𝜕𝑢

𝜕𝑥
(0,0)𝑥 +

𝜕𝑢

𝜕𝑦
(0,0)𝑦 + 𝑜(𝜌), где 𝜌 = √𝑥2 + 𝑦2. Так как 

𝜕𝑢

𝜕𝑥
(0,0) =

𝜕𝑢

𝜕𝑦
(0,0) = 0, нужно доказать, что ∆𝑢 = (𝑥2 + 𝑦2) sin

1

√𝑥2+𝑦2
= 𝑜(𝜌) при 𝜌 →

0. Выразим приращение ∆𝑢 через 𝜌: ∆𝑢 = 𝜌2 sin
1

𝜌
. Учитывая, что |sin

1

𝜌
| ≤ 1, получим, 

что отношение 
∆𝑢

𝜌
= 𝜌 sin

1

𝜌
→ 0 при 𝜌 → 0. Таким образом, функция 𝑢(𝑥, 𝑦) 

дифференцируема в точке 𝑂(0,0). 

 Пример 2. 

𝑢(𝑥, 𝑦) = {
1   на осях координат,
0 в остальных точках.

 

 Ранее мы получали, что 
𝜕𝑢

𝜕𝑥
(0,0) =

𝜕𝑢

𝜕𝑦
(0,0) = 0. Докажите самостоятельно, что 

частные производные непрерывны в точке 𝑂(0,0). Заметим, что частные производные 

существуют не во всех точках плоскости. Так, 
𝜕𝑢

𝜕𝑥
 существует везде кроме точек оси 𝑦, 
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отличных от начала координат 𝑂(0,0), 
𝜕𝑢

𝜕𝑦
 существует везде кроме точек оси 𝑥, 

отличных от начала координат 𝑂(0,0). В тех точках, в которых 
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦) и 

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) 

существуют, они равны нулю.   

 Заметим, что этот пример не противоречит Теореме 15, поскольку важным 

условием теоремы было существование производной в некоторой окрестности точки, а 

в нашем примере производные существуют не во всех точках окрестности 𝑂(0,0).  

 

Дифференцируемость сложной функции 

  

 Теорема 16. Пусть  

1) функции 𝑥 = 𝜑(𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣) дифференцируемы в точке 

(𝑢0, 𝑣0) и 𝜑(𝑢0, 𝑣0) = 𝑥0, 𝜓(𝑢0, 𝑣0) = 𝑦0;  

2) функция 𝑧 = 𝑓(𝑥, 𝑦) дифференцируема в точке (𝑥0, 𝑦0). 

Тогда сложная функция 𝑧 = 𝑓(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣)) дифференцируема в точке 

(𝑢0, 𝑣0).  

 Доказательство. Зададим произвольные приращения 𝛥𝑢 и 𝛥𝑣 аргументам 𝑢 и 𝑣 в 

точке (𝑢0, 𝑣0). Функции 𝑥 = 𝜑(𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣)  получат приращения 𝛥𝑥 и 𝛥𝑦, 

которые в силу условия (3.3) можно записать в виде: 

𝛥𝑥 =
𝜕𝜑

𝜕𝑢
(𝑢0, 𝑣0)𝛥𝑢 +

𝜕𝜑

𝜕𝑣
(𝑢0, 𝑣0)𝛥𝑣 + 𝛼1𝛥𝑢 + 𝛼2𝛥𝑣,   (4.1) 

𝛥𝑦 =
𝜕𝜓

𝜕𝑢
(𝑢0, 𝑣0)𝛥𝑢 +

𝜕𝜓

𝜕𝑣
(𝑢0, 𝑣0)𝛥𝑣 + 𝛽1𝛥𝑢 + 𝛽2𝛥𝑣,   (4.2) 

где 𝛼𝑖, 𝛽𝑖 → 0 при (𝛥𝑢 → 0, 𝛥𝑣 → 0) и 𝛼𝑖 = 0,𝛽𝑖 = 0 при 𝛥𝑢 = 𝛥𝑣 = 0.  

 Этим приращениям 𝛥𝑥 и 𝛥𝑦 соответствует приращение 𝛥𝑧 функции 𝑧 = 𝑓(𝑥, 𝑦) 

в точке (𝑥0, 𝑦0), которое в силу второго условия теоремы можно записать в виде: 

𝛥𝑧 =
𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0)𝛥𝑥 +

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0)𝛥𝑦 + 𝛾1𝛥𝑥 + 𝛾2𝛥𝑦,   (4.3) 

где 𝛾1, 𝛾2 → 0 при (𝛥𝑥 → 0, 𝛥𝑦 → 0) и 𝛾1 = 0, 𝛾2 = 0 при 𝛥𝑥 = 𝛥𝑦 = 0. Из (4.1), (4.2) 

следует, что  𝛾1, 𝛾2 → 0 при (𝛥𝑢 → 0, 𝛥𝑣 → 0) и 𝛾1 = 0, 𝛾2 = 0 при 𝛥𝑢 = 𝛥𝑣 = 0.  

 Выразим 𝛥𝑧 через 𝛥𝑢, 𝛥𝑣 и убедимся в том, что будет выполнено условие 

дифференцируемости. Подставим (4.1), (4.2) в правую часть (4.3) и получим выражение 

вида: 

𝛥𝑧 = 𝐴𝛥𝑢 + 𝐵𝛥𝑣 + 𝛼𝛥𝑢 + 𝛽𝛥𝑣,     (4.4) 

где  

𝐴 =
𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0)

𝜕𝜑

𝜕𝑢
(𝑢0, 𝑣0) +

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0)

𝜕𝜓

𝜕𝑢
(𝑢0, 𝑣0), 

𝐵 =
𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0)

𝜕𝜑

𝜕𝑣
(𝑢0, 𝑣0) +

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0)

𝜕𝜓

𝜕𝑣
(𝑢0, 𝑣0). 
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Выражения для 𝛼 и 𝛽 выпишите самостоятельно. Очевидно, что 𝛼 → 0, 𝛽 → 0 при 

(𝛥𝑢 → 0, 𝛥𝑣 → 0) и 𝛼 = 0, 𝛽 = 0 при 𝛥𝑢 = 𝛥𝑣 = 0. Равенство (4.4) означает, что 

сложная функция 𝑧 = 𝑓(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣)) дифференцируема в точке (𝑢0, 𝑣0).  

  

 Следствие. Так как 𝐴 =
𝜕𝑧

𝜕𝑢
(𝑢0, 𝑣0), 𝐵 =

𝜕𝑧

𝜕𝑣
(𝑢0, 𝑣0), то для производных сложной 

функции имеем:   
𝜕𝑧

𝜕𝑢
(𝑢0, 𝑣0) =

𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0)

𝜕𝜑

𝜕𝑢
(𝑢0, 𝑣0) +

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0)

𝜕𝜓

𝜕𝑢
(𝑢0, 𝑣0),   (4.5) 

𝜕𝑧

𝜕𝑣
(𝑢0, 𝑣0) =

𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0)

𝜕𝜑

𝜕𝑣
(𝑢0, 𝑣0) +

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0)

𝜕𝜓

𝜕𝑣
(𝑢0, 𝑣0).   (4.6) 

В более краткой записи формулы (4.5) и (4.6) выглядят следующим образом: 
𝜕𝑧

𝜕𝑢
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑢
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑢
,      (4.5)’ 

𝜕𝑧

𝜕𝑣
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑣
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑣
.      (4.6)’ 

 Пример. Рассмотрим уравнение в частных производных 𝑦
𝜕𝑧

𝜕𝑥
− 𝑥

𝜕𝑧

𝜕𝑦
= 0, где 

искомой функцией является 𝑧(𝑥, 𝑦). Мы пока не знаем, как решать такие уравнения, но 

проверить, удовлетворяет некая функция уравнению или нет, мы можем.  

 Пусть 𝑧 = 𝑓(𝑡) − произвольная дифференцируемая функция аргумента 𝑡. 

Докажем, что функция 𝑧 = 𝑓(𝑥2 + 𝑦2) будет решением данного уравнения. Найдем ее 

частные производные  

𝜕𝑧

𝜕𝑥
= 𝑓′(𝑥2 + 𝑦2)2𝑥,  

𝜕𝑧

𝜕𝑦
= 𝑓′(𝑥2 + 𝑦2)2𝑦. 

Тогда  

𝑦
𝜕𝑧

𝜕𝑥
− 𝑥

𝜕𝑧

𝜕𝑦
= 𝑓′(𝑥2 + 𝑦2)(2𝑥𝑦 − 2𝑥𝑦) = 0. 

Таким образом, любая функция 𝑧 = 𝑓(𝑥2 + 𝑦2), где 𝑓(𝑡) − дифференцируемая 

функция, является решением данного уравнения. 

  

 Теперь рассмотрим общий случай сложной функции 𝑧 = 𝑓(𝑥1, . . . , 𝑥𝑚), которая 

зависит от 𝑚 переменных, где 𝑥𝑖 = 𝜑𝑖(𝑡1, . . . , 𝑡𝑘). Аналогично формулам (4.5)’, (4.6)’ 

получим общую формулу для производной сложной функции: 

𝜕𝑧

𝜕𝑡𝑖
=

𝜕𝑧

𝜕𝑥1

𝜕𝑥1

𝜕𝑡𝑖
+⋯+

𝜕𝑧

𝜕𝑥𝑚

𝜕𝑥𝑚

𝜕𝑡𝑖
= ∑

𝜕𝑧

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑡𝑖

𝑚
𝑗=1 .    (4.7) 

 

Дифференциал функции многих переменных 

 Дифференциалом 𝑑𝑦 функции одной переменной 𝑦 = 𝑓(𝑥), если она 

дифференцируема, мы называли линейное по 𝛥𝑥 слагаемое в выражении для 

приращения функции 𝛥𝑦 = 𝑓′(𝑥)𝛥𝑥 + 𝑜(𝛥𝑥), то есть 𝑑𝑦 = 𝑓′(𝑥)𝛥𝑥.  
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 Пусть функция 𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚) дифференцируема в точке 𝑀, тогда по 

определению дифференцируемости ее полное приращение в этой точке можно 

представить в виде 

∆𝑢 = (
𝜕𝑓

𝜕𝑥
(𝑀)𝛥𝑥1 +⋯+

𝜕𝑓

𝜕𝑥𝑚
(𝑀)𝛥𝑥𝑚) + (𝛼1𝛥𝑥1 +⋯+ 𝛼𝑚𝛥𝑥𝑚). 

Заметим, что каждая из сумм в формуле ∆𝑢 стремится к нулю при (𝛥𝑥1 → 0,… , 𝛥𝑥𝑚 →

0). При этом первое слагаемое является линейной функцией аргументов 𝛥𝑥1, … , 𝛥𝑥𝑚 , а 

второе – функцией более высокого порядка малости, чем линейная функция. 

 Определение. Дифференциалом (первым дифференциалом) функции 𝑢 =

𝑓(𝑥1, . . . , 𝑥𝑚) в точке 𝑀 называется линейная относительно 𝛥𝑥1, … , 𝛥𝑥𝑚 часть 

приращения функции в этой точке:  

𝑑𝑢 =
𝜕𝑓

𝜕𝑥
(𝑀)𝛥𝑥1 +⋯+

𝜕𝑓

𝜕𝑥𝑚
(𝑀)𝛥𝑥𝑚 . 

Дифференциалом независимой переменной 𝑥𝑖 будем называть приращение этой 

переменной 𝑑𝑥𝑖 = 𝛥𝑥𝑖. Тогда дифференциал функции можно записать в виде 

𝑑𝑢 = ∑
𝜕𝑓

𝜕𝑥𝑗
(𝑀)𝑑𝑥𝑖

𝑚
𝑗=1 .     (4.8) 

Пример.  

𝑢 = 𝑥𝑦(𝑥 > 0, 𝑦 ∈ ℝ) 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 = 𝑦𝑥𝑦−1𝑑𝑥 + 𝑥𝑦 ln 𝑥 𝑑𝑦 

𝑑𝑢|(1,1) = 𝑑𝑥 

𝑑𝑢|(1,0) = 0 

 

 Лемма 4 (об инвариантности формы первого дифференциала). Формула (4.8) 

остается верной и в том случае, когда аргументы функции 𝑥1, . . . , 𝑥𝑚 являются не 

независимыми переменными, а дифференцируемыми функциями каких-то 

независимых переменных. 

 Доказательство. Пусть 𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑚) − дифференцируемая функция, у 

которой 𝑥1 = 𝜑1(𝑡1, . . . , 𝑡𝑘), . . . , 𝑥𝑚 = 𝜑𝑚(𝑡1, . . . , 𝑡𝑘) − дифференцируемые функции 

независимых переменных 𝑡1, . . . , 𝑡𝑘. Тогда 𝑢 = 𝑓(𝜑1(𝑡1, . . . , 𝑡𝑘), . . . , 𝜑𝑚(𝑡1, . . . , 𝑡𝑘)) − 

сложная функция независимых переменных 𝑡1, . . . , 𝑡𝑘, дифференцируемая в силу 

Теоремы 16. Запишем выражение для ее дифференциала, учитывая формулу (4.7): 

𝑑𝑢 =∑
𝜕𝑢

𝜕𝑡𝑖
𝑑𝑡𝑖

𝑘

𝑖=1

=∑(∑
𝜕𝑢

𝜕𝑥𝑗

𝑚

𝑗=1

𝜕𝑥𝑗
𝜕𝑡𝑖
)𝑑𝑡𝑖

𝑘

𝑖=1

. 

Изменим порядок суммирования, тогда 

𝑑𝑢 = ∑
𝜕𝑢

𝜕𝑥𝑗

𝑚
𝑗=1 (∑

𝜕𝑥𝑗

𝜕𝑡𝑖
𝑑𝑡𝑖

𝑘
𝑖=1 ) = ∑

𝜕𝑢

𝜕𝑥𝑗
𝑑𝑥𝑗

𝑚
𝑗=1 .    (4.9) 

Мы получили не что иное, как формулу (4.8). 
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 Замечание. Формула (4.8) отличается от формулы (4.9) тем, что в ней 𝑑𝑥𝑗 =

𝛥𝑥𝑗 − приращение переменной 𝑥𝑗, а в формуле (4.9) 𝑑𝑥𝑗 − дифференциал функции 𝑥𝑗 =

𝜑𝑗(𝑡1, . . . , 𝑡𝑘). Таким образом, сохраняется форма (вид) выражения для дифференциала 

функции, а содержание (наполнение) этой формулы изменяется. 

Правила дифференцирования 

Пусть 𝑢 и 𝑣 − дифференцируемые функции аргументов 𝑥1, . . . , 𝑥𝑚. Тогда 

1) 𝑑(𝑐𝑢) = 𝑐𝑑𝑢 (𝑐 = 𝑐𝑜𝑛𝑠𝑡), 

2) 𝑑(𝑢 ± 𝑣) = 𝑑𝑢 ± 𝑑𝑣, 

3) 𝑑(𝑢𝑣) = 𝑣𝑑𝑢 + 𝑢𝑑𝑣, 

4) если 𝑣 ≠ 0, то 𝑑 (
𝑢

𝑣
) =

𝑣𝑑𝑢−𝑢𝑑𝑣

𝑣2
. 

 Докажем, например, формулу 4. Функцию 𝑤 =
𝑢

𝑣
 является сложной функцией 

аргументов 𝑥1, . . . , 𝑥𝑚. В силу леммы 4 мы можем вычислить ее дифференциал так, как 

если бы 𝑢 и 𝑣 были независимыми переменными:  

𝑑𝑤 =
𝜕𝑤

𝜕𝑢
𝑑𝑢 +

𝜕𝑤

𝜕𝑣
𝑑𝑣 =

1

𝑣
𝑑𝑢 −

𝑢

𝑣2
𝑑𝑣 =

𝑣𝑑𝑢 − 𝑢𝑑𝑣

𝑣2
, 

что и требовалось доказать. 
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ЛЕКЦИЯ 5. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ 

Касательная плоскость 

 Давайте вспомним, в чем состоял геометрический смысл дифференцируемости 

для функции одной переменной. Рассмотрим график функции 𝑦 = 𝑓(𝑥) на плоскости 

𝑂𝑥𝑦 (рис. 5.1), выберем точку 𝑀0(𝑥0, 𝑦0). Если функция 𝑓(𝑥) дифференцируема в точке 

𝑀0, то есть имеет производную в этой точке, то в этой точке существует касательная к 

графику функции, причем угловой коэффициент касательной равен производной 

функции в этой точке 𝑘 = tg𝜑0 = 𝑓′(𝑥0). Уравнение касательной записывается в виде:  

𝑦 − 𝑦0 = 𝑓′(𝑥0)(𝑥 − 𝑥0). 

 
Рис. 5.1. Касательная к кривой на плоскости. 

 Покажем, что если функция двух переменных дифференцируема в некоторой 

точке, то в соответствующей точке существует касательная плоскость. 

 
Рис. 5.2. Касательная плоскость. 

 Рассмотрим функцию двух переменных 𝑧 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐷, ее графиком 

является поверхность 𝑆 = {𝑁(𝑥, 𝑦, 𝑓(𝑥, 𝑦)), (𝑥, 𝑦) ∈ 𝐷} в прямоугольной системе 

координат 𝑂𝑥𝑦𝑧 (рис. 5.2). Проекция поверхности 𝑆 на плоскость 𝑂𝑥𝑦 есть область 𝐷, в 
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которой определена наша функция. Выберем на поверхности 𝑆 точку 𝑁0(𝑥0, 𝑦0, 𝑧0) ∈

𝑆, 𝑧0 = 𝑓(𝑥0, 𝑦0). Точка 𝑀0(𝑥0, 𝑦0) ∈ 𝐷 является проекцией точки 𝑁0 на плоскость 𝑂𝑥𝑦. 

Проведем через точку 𝑁0 плоскость 𝑃, 𝑁0 ∈ 𝑃. Выберем произвольную точку 

𝑁(𝑥, 𝑦, 𝑧) ∈ 𝑆, 𝑧 = 𝑓(𝑥, 𝑦), ее проекцией на плоскость 𝑂𝑥𝑦 является точка 𝑀(𝑥, 𝑦, 𝑧). 

Проведем отрезки 𝑁𝑁1 ⊥ 𝑃, 𝑁1 ∈ 𝑃 и 𝑁0𝑁.  

 Определение. Плоскость 𝑃, проходящая через точку 𝑁0 поверхности 𝑆, 

называется касательной плоскостью к поверхности 𝑆 в этой точке, если при 𝑁 →

𝑁0 (𝑁 ∈ 𝑆) расстояние 𝜌(𝑁, 𝑁1) является бесконечно малой величиной более высокого 

порядка, чем 𝜌(𝑁,𝑁0): 𝜌(𝑁,𝑁1) = 𝑜(𝜌(𝑁,𝑁0)), то есть 

lim
𝑁→𝑁0  (𝑁∈𝑆)

𝜌(𝑁,𝑁1)

𝜌(𝑁, 𝑁0)
= 0. 

 Теорема 17. Если функция 𝑧 = 𝑓(𝑥, 𝑦) дифференцируема в точке 𝑀0(𝑥0, 𝑦0), то в 

точке 𝑁0(𝑥0, 𝑦0, 𝑧0), где 𝑧0 = 𝑓(𝑥0, 𝑦0), существует касательная плоскость к графику 

этой функции.  

 Доказательство.  

 Введем обозначения 𝛥𝑧 = 𝑧 − 𝑧0 = 𝑓(𝑥, 𝑦) − 𝑓(𝑥0, 𝑦0), ∆𝑥 = 𝑥 − 𝑥0, ∆𝑦 = 𝑦 − 𝑦0. 

Так как функция 𝑧 = 𝑓(𝑥, 𝑦) дифференцируема в точке 𝑀0, то ее приращение 𝛥𝑧 можно 

представить в виде 

 𝛥𝑧 =
𝜕𝑧

𝜕𝑥
(𝑀0)𝛥𝑥 +

𝜕𝑧

𝜕𝑦
(𝑀0)𝛥𝑦 + 𝑜(𝜌), 

где 𝜌 = 𝜌(𝑀,𝑀0) = (𝛥𝑥)2 + (𝛥𝑦)2. Введем обозначения: 
𝜕𝑧

𝜕𝑥
(𝑀0) = 𝐴,

𝜕𝑧

𝜕𝑦
(𝑀0) = 𝐵 и 

перепишем условие дифференцируемости в виде  

𝑧 − 𝑧0 = 𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) + 𝑜(𝜌). 

Рассмотрим плоскость 𝑃, заданную уравнением  

𝑍 − 𝑧0 = 𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0), 

где 𝑍 − координата на плоскости, 𝑧 − координата на поверхности. Докажем, что 𝑃 

является касательной плоскостью к поверхности 𝑆 в точке 𝑁0(𝑥0, 𝑦0, 𝑧0). 

 Плоскость 𝑃 очевидно проходит через точку 𝑁0(𝑥0, 𝑦0, 𝑧0) и имеет вектор 

нормали n = {A, B, −1}. Нам надо доказать, что  

lim
𝑁→𝑁0  (𝑁∈𝑆)

𝜌(𝑁,𝑁1)

𝜌(𝑁, 𝑁0)
= 0. 

Обозначим через 𝑁2 точку пересечения прямой 𝑁𝑀 с плоскостью 𝑃. Тогда можно 

записать условие, что перпендикуляр меньше наклонной, то есть 𝜌(𝑁𝑁1) ≤ 𝜌(𝑁𝑁2) =

|𝑧 − 𝑍| = 𝑜(𝜌). Расстояние между точками больше, чем расстояние между их 

проекциями, поэтому 𝜌(𝑁𝑁0) ≥ 𝜌(𝑀𝑀0) = 𝜌. Таким образом, 
𝜌(𝑁,𝑁1)

𝜌(𝑁,𝑁0)
≤

𝑜(𝜌)

𝜌
→ 0 при 𝜌 → 0 (при 𝑁 → 𝑁0). 

Теорема доказана. 
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 Уравнение касательной к поверхности, заданной уравнением 𝑧 = 𝑓(𝑥, 𝑦) в точке 

𝑁0(𝑥0, 𝑦0, 𝑧0) имеет вид: 

𝑍 − 𝑧0 =
𝜕𝑧

𝜕𝑥
(𝑀0)(𝑥 − 𝑥0) +

𝜕𝑧

𝜕𝑦
(𝑀0)(𝑦 − 𝑦0) + 𝑜(𝜌). 

 Вектор 𝑛⃗⃗ = {
𝜕𝑧

𝜕𝑥
(𝑀0),

𝜕𝑧

𝜕𝑦
(𝑀0),−1} называется вектором нормали к поверхности 

𝑆 в точке 𝑁0(𝑥0, 𝑦0, 𝑧0). 

  

 Пример. 

 Рассмотрим поверхность, которая задана уравнением 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 +

𝑦2, (𝑥, 𝑦) ∈ ℝ2 (параболоид вращения). Выберем на ней точку 𝑁0(1,2,5), ее проекцией 

является точка 𝑀0(1,2), для которой 
𝜕𝑧

𝜕𝑥
(𝑀0) = 2,

𝜕𝑧

𝜕𝑦
(𝑀0) = 4. Уравнение касательной 

плоскости к данной поверхности в точке 𝑁0 примет вид:  

𝑍 − 5 = 2(𝑥 − 1) + 4(𝑦 − 2). 

 

 Задача.  

 Пусть поверхность задана уравнением 𝑧 = 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2, (𝑥, 𝑦) ∈ ℝ2 

(коническая поверхность, рис. 5.3). В точке (0,0) функция не дифференцируема, и в 

точке 𝑂(0,0,0) касательная плоскость к поверхности не существует. Возьмем точку 

𝑁0(0,1,1). Напишите уравнение касательной плоскости, проходящей через точку 𝑁0 и 

докажите, что эта касательная плоскость содержит образующую конической 

поверхности. 

 
Рис. 5.3. Коническая поверхность. 

 

Производная по направлению. Градиент функции 

 Пусть функция трех переменных 𝑢 = 𝑓(𝑥, 𝑦, 𝑧) определена в окрестности точки 

𝑀0. Проведем через точку 𝑀0 какую-нибудь прямую 𝐿 и выберем на ней одно из двух 

возможных направлений, оно характеризуется единичным вектором 𝑙, |𝑙| = 1 (рис. 5.4). 

Выберем другую произвольную точку 𝑀 из указанной окрестности, лежащую на 

прямой 𝐿. Через 𝑀0𝑀 обозначим величину направленного отрезка 𝑀0𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , то есть 

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

32 

 

 

𝑀0𝑀 = {
|𝑀0𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |, если 𝑀0𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ↑↑ 𝑙

−|𝑀0𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |, если 𝑀0𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ↓↑ 𝑙
 . 

 
Рис. 5.4. Окрестность точки 𝑀0. 

 Определение. Если существует предел  

lim
𝑀→𝑀0
(𝑀∈𝐿)

𝑓(𝑀) − 𝑓(𝑀0)

𝑀0𝑀
, 

то он называется производной функции 𝑢 = 𝑓(𝑀) в точке 𝑀0 по направлению 𝑙 и 

обозначается 
𝜕𝑢

𝜕𝑙
(𝑀0) или 𝑢

𝑙
′(𝑀0). 

 Покажем, что если функция 𝑢 = 𝑓(𝑀) дифференцируема в точке 𝑀0, то ее 

производную по любому направлению можно выразить через частные производные в 

точке 𝑀0, то есть скорость изменения функции в произвольном направлении можно 

выразить через скорости изменения по осям координат. 

 Пусть 𝑀0(𝑥0, 𝑦0, 𝑧0) ∈ 𝐿, 𝑙 = {𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽, 𝑐𝑜𝑠 𝛾}, обозначим величину 𝑀0𝑀 = 𝑡,

𝑡 ∈ (−∞, +∞). Запишем параметрические уравнения прямой 𝐿: 

𝑥 = 𝑥0 + 𝑡𝑐𝑜𝑠 𝛼,  

𝑦 = 𝑦0 + 𝑡𝑐𝑜𝑠 𝛽,  

𝑧 = 𝑧0 + 𝑡𝑐𝑜𝑠 𝛾. 

Очевидно, что 𝑡 = 0 соответствует точка 𝑀0(𝑥0, 𝑦0, 𝑧0). 

 Запишем нашу функцию на прямой 𝐿:  

𝑢 = 𝑓(𝑥0 + 𝑡𝑐𝑜𝑠 𝛼, 𝑦0 + 𝑡𝑐𝑜𝑠 𝛽, 𝑧0 + 𝑡𝑐𝑜𝑠 𝛾) =: 𝜑(𝑡),   (5.1) 

где 𝜑(𝑡) − сложная функция одной переменной 𝑡. По определению для производной по 

направлению получим 

𝜕𝑢

𝜕𝑙
(𝑀0) = lim

𝑀→𝑀0
(𝑀∈𝐿)

𝑓(𝑀) − 𝑓(𝑀0)

𝑀0𝑀
= lim

𝑡→0

𝜑(𝑡) − 𝜑(0)

𝑡
= 𝜑′(0), 

если этот предел существует. Пусть наша функция 𝑢 = 𝑓(𝑀) дифференцируема в точке 

𝑀0, тогда по правилу дифференцирования сложной функции из равенства (5.1) 

получаем:  

𝜕𝑢

𝜕𝑙
(𝑀0) = 𝜑

′(0) =
𝜕𝑢

𝜕𝑥
(𝑀0)

𝑑𝑥

𝑑𝑡
(0) +

𝜕𝑢

𝜕𝑦
(𝑀0)

𝑑𝑦

𝑑𝑡
(0) +

𝜕𝑢

𝜕𝑧
(𝑀0)

𝑑𝑧

𝑑𝑡
(0). 
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Поскольку для любого 𝑡, в том числе и для 𝑡 = 0, 
𝑑𝑥

𝑑𝑡
= 𝑐𝑜𝑠 𝛼,

𝑑𝑦

𝑑𝑡
= 𝑐𝑜𝑠 𝛽,

𝑑𝑧

𝑑𝑡
= 𝑐𝑜𝑠 𝛾, то  

𝜕𝑢

𝜕𝑙
(𝑀0) = 𝜑′(0) =

𝜕𝑢

𝜕𝑥
(𝑀0)𝑐𝑜𝑠 𝛼 +

𝜕𝑢

𝜕𝑦
(𝑀0)𝑐𝑜𝑠 𝛽 +

𝜕𝑢

𝜕𝑧
(𝑀0)𝑐𝑜𝑠 𝛾.  (5.2) 

 Скорость изменения функции по направлению 𝑙 является линейной 

комбинацией скоростей изменения этой функции по направлениям координатных осей, 

то есть линейной комбинацией частных производных 
𝜕𝑢

𝜕𝑥
, 

𝜕𝑢

𝜕𝑦
 и 

𝜕𝑢

𝜕𝑧
. Причем 

коэффициентами этой линейной комбинации выступают координаты 𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽, 𝑐𝑜𝑠 𝛾 

единичного вектора 𝑙, задающего направление; эти коэффициенты являются весовыми 

множителями, показывающими, какую долю вносит каждая частная производная в 

производную (скорость) по направлению 𝑙 = {𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽, 𝑐𝑜𝑠 𝛾 }. В частности, если 

𝑙 = {1, 0, 0}, то есть направление 𝑙 совпадает с направлением оси 𝑂𝑥, то из формулы 

(5.2) получаем 
𝜕𝑢

𝜕𝑙
(𝑀0) =

𝜕𝑢

𝜕𝑥
(𝑀0). 

 Определение. Градиентом дифференцируемой функции 𝑢 = 𝑓(𝑀) = 𝑓(𝑥, 𝑦, 𝑧) в 

точке 𝑀0 называется вектор 

𝑔𝑟𝑎𝑑 𝑢 (𝑀0) =
𝜕𝑢

𝜕𝑥
(𝑀0)𝑖 +

𝜕𝑢

𝜕𝑦
(𝑀0)𝑗 +

𝜕𝑢

𝜕𝑧
(𝑀0)𝑐𝑜𝑠 𝑘⃗⃗. 

 Равенство (5.2) можно переписать в виде  
𝜕𝑢

𝜕𝑙
(𝑀0) = (𝑔𝑟𝑎𝑑 𝑢 (𝑀0), 𝑙) = |𝑔𝑟𝑎𝑑 𝑢 (𝑀0)||𝑙| cos𝜑 = |𝑔𝑟𝑎𝑑 𝑢 (𝑀0)| cos𝜑,  (5.3) 

где 𝜑 − угол между векторами 𝑔𝑟𝑎𝑑 𝑢 (𝑀0) и 𝑙. Если 𝜑 = 0, то есть 𝑙 ↑↑ 𝑔𝑟𝑎𝑑 𝑢 (𝑀0), 

то производная принимает максимальное значение: 

(
𝜕𝑢

𝜕𝑙
(𝑀0))

𝑚𝑎𝑥
= |𝑔𝑟𝑎𝑑 𝑢 (𝑀0)|.     (5.4) 

Отсюда следует, что вектор 𝑔𝑟𝑎𝑑 𝑢 не зависит от выбора системы координат. 

Равенство (5.4) показывает, что вектор 𝑔𝑟𝑎𝑑 𝑢 (𝑀0) определяет направление, в котором 

функция имеет наибольшую скорость роста, а |𝑔𝑟𝑎𝑑 𝑢 (𝑀0)| является величиной этой 

скорости.  

 

Физические примеры 

1) Электростатическое поле, то есть электрическое поле неподвижных зарядов, 

можно описать с помощью скалярной функции 𝑢(𝑀), которая называется 

потенциалом этого поля. Напряженность электрического поля выражается 

формулой: 

𝐸⃗⃗(𝑀) = −𝑔𝑟𝑎𝑑 𝑢 (𝑀). 
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Рис. 5.5. Электростатическое поле. 

 Пусть электростатическое поле создается точечным зарядом 𝑒, 

помещенным в начале координат. Потенциал поля в произвольной точке 

𝑀(𝑥, 𝑦, 𝑧) имеет вид:  

𝑢(𝑀) = 𝑘
𝑒

𝑟
, 

где постоянная 𝑘 зависит от выбора системы единиц, 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 − 

расстояние от точки 𝑀 до заряда. Для напряженности электрического поля 

получаем выражение: 

𝐸⃗⃗(𝑀) = −𝑔𝑟𝑎𝑑 𝑘
𝑒

𝑟
= −𝑘𝑒 (

𝜕

𝜕𝑥
(
1

𝑟
) 𝑖 +

𝜕

𝜕𝑦
(
1

𝑟
) 𝑗 +

𝜕

𝜕𝑧
(
1

𝑟
) 𝑐𝑜𝑠 𝑘⃗⃗) =

𝑘𝑒

𝑟3
(𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗⃗)

=
𝑘𝑒

𝑟3
𝑟. 

Значит, вектор электрической напряженности коллинеарен вектору 𝑟.  

 

2) Пусть в начале координат помещена ньютоновская масса 𝑚. Она создает 

гравитационное поле, которое описывается потенциалом  

𝑢(𝑀) = 𝛾
𝑚

𝑟
, 

где 𝛾 − постоянная тяготения, зависящая от системы единиц. Сила, с которой 

масса 𝑚 притягивает единичную массу, помещенную в точку 𝑀(𝑥, 𝑦, 𝑧), 

выражается формулой: 

𝐹⃗(𝑀) = −𝑔𝑟𝑎𝑑 𝑢(𝑀) = −
𝛾𝑚

𝑟3
𝑟. 

 Данные два примера показывают великую роль математики, которая позволяет 

описать два совершенно разных объекта – электрическое поле и поле тяготения –

одинаковыми средствами. 

 

 Производная по направлению вводится аналогично для функций двух и любого 

числа переменных. Для функции двух переменных 𝑢 = 𝑓(𝑥, 𝑦) производная по 

направлению 𝑙 = {cos𝛼 , sin 𝛼}, где 𝛼 − угол наклона 𝑙 к оси 𝑂𝑥, в точке 𝑀0 имеет вид:  
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𝜕𝑢

𝜕𝑙
(𝑀0) =

𝜕𝑢

𝜕𝑥
(𝑀0) cos𝛼 +

𝜕𝑢

𝜕𝑦
(𝑀0) sin 𝛼 = (𝑔𝑟𝑎𝑑 𝑢 (𝑀0), 𝑙). 

 Наконец, для функции произвольного 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) числа переменных 𝑚 

производная по направлению 𝑙 = {cos𝛼1 , … , cos 𝛼𝑚}, где cos2 𝛼1 +⋯+ cos
2 𝛼𝑚 = 1, в 

точке 𝑀0(𝑥1
0, … , 𝑥𝑚

0 ) имеет вид: 

𝜕𝑢

𝜕𝑙
(𝑀0) = (𝑔𝑟𝑎𝑑 𝑢 (𝑀0), 𝑙). 

 
Рис. 5.6. Вектор в -мерном пространстве. 

 

 Рассмотрим в -мерном пространстве точки 𝑀1(𝑥1, … , 𝑥𝑚),𝑀2(𝑦1, … , 𝑦𝑚), 

вектором в 𝑚-мерном пространстве является 𝑀1𝑀2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {𝑦1 − 𝑥1, … , 𝑦𝑚 − 𝑥𝑚}. Градиент 

функции 𝑢(𝑀) имеет вид 𝑔𝑟𝑎𝑑 𝑢 = {
𝜕𝑢

𝜕𝑥1
, … ,

𝜕𝑢

𝜕𝑥𝑚
}, производная в произвольной точке 𝑀: 

𝜕𝑢

𝜕𝑙
(𝑀) = (𝑔𝑟𝑎𝑑 𝑢 (𝑀), 𝑙) =∑

𝜕𝑢

𝜕𝑥𝑖
(𝑀) cos𝛼𝑖

𝑚

𝑖=1

. 

Скалярное произведение векторов в -мерном пространстве определяется формулой:  

(𝑎⃗, 𝑏⃗⃗) =∑𝑎𝑖𝑏𝑖

𝑚

𝑖=1

, 

а угол 𝜑 между векторами 𝑎⃗ и 𝑏⃗⃗, соответственно, формулой: 

cos 𝜑 =
(𝑎⃗, 𝑏⃗⃗)

|𝑎⃗||𝑏⃗⃗|
, 

где |𝑎⃗| = √𝑎1
2 +⋯+ 𝑎𝑚2 , |𝑏⃗⃗| = √𝑏1

2 +⋯+ 𝑏𝑚2 . 

 

Производные и дифференциалы высших порядков 

 Пусть функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) имеет частную производную 
𝜕𝑢

𝜕𝑥𝑖
 в некоторой 

окрестности точки 𝑀. Тогда 
𝜕𝑢

𝜕𝑥𝑖
 сама является функцией переменных 𝑥1, … , 𝑥𝑚, 

определенной в этой окрестности точки 𝑀. Пусть 
𝜕𝑢

𝜕𝑥𝑖
 имеет частную производную в 

точке 𝑀 по аргументу 𝑥𝑘, то есть существует 
𝜕

𝜕𝑥𝑘
(
𝜕𝑢

𝜕𝑥𝑖
), она называется второй частной 
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производной или частной производной 2-го порядка функции 𝑢 по переменным 𝑥𝑖, 𝑥𝑘 в 

точке 𝑀.  

 Частные производные 2-го порядка обозначаются следующим образом: 

𝜕2𝑢

𝜕𝑥𝑘𝑥𝑖
, 𝑢𝑥𝑘𝑥𝑖

′′ , 𝑓𝑥𝑘𝑥𝑖
′′  и т.д. 

 Если 𝑖 ≠ 𝑘, то частнаяпроизводная2-го порядка называется смешанной частной 

производной 2-го порядка. Если 𝑖 = 𝑘, то вторая производная обозначается 
𝜕2𝑢

𝜕𝑥𝑖
2. 
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ЛЕКЦИЯ 6. ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ 

  

 Частная производная -го порядка функции 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) по аргументам 

𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛 определяется формулой 

𝜕𝑛𝑢

𝜕𝑥𝑖𝑛 , 𝑥𝑖𝑛−1, … , 𝑥𝑖1
=

𝜕

𝜕𝑥𝑖𝑛
(

𝜕𝑛𝑢

𝜕𝑥𝑖𝑛−1 , … , 𝑥𝑖1
). 

Если хотя бы два номера из набора 𝑖1, … , 𝑖𝑛 не совпадают, то частная производная 

называется смешанной частной производной -го порядка. Если все номера 𝑖1, … , 𝑖𝑛 

совпадают, то используется обозначение 
𝜕𝑛𝑢

𝜕𝑥𝑖1
𝑛 . 

 Пример 1. 

Пусть 𝑢 = 𝑥𝑦, 𝑥 > 0, 𝑦 ∈ ℝ. Вычислим частные производные 1-го порядка:  

𝑢𝑥 = 𝑦𝑥
𝑦−1, 𝑢𝑦 = 𝑥𝑦 ln 𝑥 ; 

смешанные частные производные:  

𝑢𝑥𝑦 = (𝑢𝑥)𝑦 = 𝑥𝑦−1 + 𝑦𝑥𝑦−1 ln 𝑥, 

𝑢𝑦𝑥 = (𝑢𝑦)𝑥 = 𝑦𝑥
𝑦−1 ln 𝑥 + 𝑥𝑦

1

𝑥
. 

Обратим внимание на то, что в данном примере 𝑢𝑦𝑥 = 𝑢𝑥𝑦. Возникает вопрос: всегда ли 

выполняется это равенство, оказывается, что нет. 

 

 Пример 2. 

Пусть 𝑢 = {
𝑥𝑦, |𝑦| ≤ |𝑥|

−𝑥𝑦, |𝑦| > |𝑥|
. Докажем, что 𝑢𝑥𝑦(0,0) ≠ 𝑢𝑦𝑥(0,0). 

 
Рис. 6.1. Область определения функции 𝑢(𝑥, 𝑦). 

 Выберем точку на оси 𝑂𝑦, у которой 𝑦 ≠ 0. Ясно, что точка (0, 𝑦) лежит вне 

заштрихованной области, значит, можно указать такую окрестность этой точки, 
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которая тоже целиком лежит вне заштрихованной области. Таким образом в -

окрестности точки (0, 𝑦): 𝑢 = −𝑥𝑦, 𝑢𝑥(𝑥, 𝑦) = −𝑦, в частности 

𝑢𝑥(0, 𝑦) = −𝑦.      (6.1) 

 При 𝑦 = 0 функция определена на оси 𝑂𝑥, то есть в заштрихованной области. 

Тогда 𝑢 = 𝑥𝑦 = 0, 𝑢𝑥(𝑥, 0) = 0, в частности  

𝑢𝑥(0,0) = 0.       (6.2) 

Из равенств (6.1) и (6.2) следует, что 𝑢𝑥(0, 𝑦) = −𝑦 ∀𝑦 ∈ ℝ. Рассмотрим производную 

2-го порядка: 

𝜕

𝜕𝑦
(𝑢𝑥(0, 𝑦)) = 𝑢𝑥𝑦(0, 𝑦) = −1, 

в частности 𝑢𝑥𝑦(0,0) = −1. 

 Проделаем аналогичную процедуру с точкой (𝑥, 0) на оси 𝑂𝑥 и получим, что 

𝑢𝑦(𝑥, 0) = 𝑥, 𝑢𝑦𝑥(𝑥, 0) = 1, в частности 𝑢𝑦𝑥(0,0) = 1. Таким образом, для данной 

функции 𝑢𝑥𝑦(0,0) ≠ 𝑢𝑦𝑥(0,0). 

 

 Задача. 

Пусть 𝑢(𝑥, 𝑡) =
1

√𝑡
𝑒− 

𝑥2

4𝑡 , 𝑥 ∈ ℝ, 𝑡 > 0. Убедитесь самостоятельно, что 𝑢(𝑥, 𝑡) 

удовлетворяет уравнению 

𝑢𝑡 = 𝑢𝑥𝑥 .      (6.3) 

Это уравнение играет важную роль в математической физике и называется уравнением 

теплопроводности. Оно описывает процесс распространения тепла в одномерном 

стержне. Пусть в начальный момент времени 𝑡 = 0 в точке 𝑥 = 0 стержню сообщили 

некоторое количество тепла. Решение 𝑢(𝑥, 𝑡) уравнения (6.3) имеет физический смысл 

температуры в точке стержня с координатой 𝑥 в момент времени 𝑡. Функция 𝑢(𝑥, 𝑡) 

называется фундаментальным решением уравнения теплопроводности. 

 Постройте графики функции 𝑢(𝑥, 𝑡) при фиксированных значениях времени 

𝑡1, 𝑡2 и 𝑡3: 𝑡1 < 𝑡2  <  𝑡3 и при фиксированных значениях координаты 𝑥1 = 0, 𝑥2 и 𝑥3: 

0 <  𝑥2  <  𝑥3. 

 

 Теорема 18 (о равенстве смешанных производных). Пусть 𝑢 = 𝑓(𝑥, 𝑦) имеет 

смешанные частные производные 𝑓𝑥𝑦
′′ (𝑥, 𝑦) и 𝑓𝑦𝑥

′′ (𝑥, 𝑦) в некоторой окрестности точки 

𝑀0(𝑥0, 𝑦0), и пусть эти смешанные производные непрерывны в точке 𝑀0. Тогда они 

равны в этой точке: 

𝑓𝑥𝑦
′′ (𝑥, 𝑦) = 𝑓𝑦𝑥

′′ (𝑥, 𝑦). 

 Доказательство. Рассмотрим квадрат 𝑀0𝑀1𝑀2𝑀3 со сторонами, параллельными 

осям координат и равными ℎ, целиком лежащий внутри окрестности точки 𝑀0 (рис. 

6.2). Вершины квадрата будут иметь координаты: 𝑀1(𝑥0 + ℎ, 𝑦0),𝑀2(𝑥0, 𝑦0 +

ℎ),𝑀3(𝑥0 + ℎ, 𝑦0 + ℎ).  
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Рис. 6.2. Иллюстрация к доказательству Теоремы 18. 

 Введем вспомогательные функции 

𝐹(ℎ) = 𝑓(𝑀0) + 𝑓(𝑀2) − 𝑓(𝑀1) − 𝑓(𝑀3)

= 𝑓(𝑥0, 𝑦0) − 𝑓(𝑥0 + ℎ, 𝑦0) − 𝑓(𝑥0, 𝑦0 + ℎ) − 𝑓(𝑥0 + ℎ, 𝑦0 + ℎ), 

𝜑(𝑥) = 𝑓(𝑥, 𝑦0 + ℎ) − 𝑓(𝑥, 𝑦0). 

Тогда 𝐹(ℎ) = 𝜑(𝑥0 + ℎ) − 𝜑(𝑥0). Дважды применяя формулу Лагранжа конечных 

приращений, получим 

𝐹(ℎ) = 𝜑′(𝑥0 + 𝜃1ℎ)ℎ = [𝑓𝑥
′(𝑥0 + 𝜃1ℎ, 𝑦0 + ℎ) − 𝑓𝑥

′(𝑥0 + 𝜃1ℎ, 𝑦0)]ℎ

= 𝑓𝑥𝑦
′′ (𝑥0 + 𝜃1ℎ, 𝑦0 + 𝜃2ℎ)ℎ

2, 

где 𝜃1, 𝜃2 − некоторые числа в интервале (0,1). 

 Так как по условию функция 𝑓𝑥𝑦
′′ (𝑥, 𝑦) непрерывна в точке 𝑀0(𝑥0, 𝑦0), то можно 

записать, что  

𝑓𝑥𝑦
′′ (𝑥0 + 𝜃1ℎ, 𝑦0 + 𝜃2ℎ) = 𝑓𝑥𝑦

′′ (𝑥0, 𝑦0) + 𝛼(ℎ), 

где 𝛼(ℎ) → 0 при ℎ → 0. Следовательно,  

𝐹(ℎ) = [𝑓𝑥𝑦
′′ (𝑥0, 𝑦0) + 𝛼(ℎ)]ℎ

2.     (6.4) 

 Введем еще одну вспомогательную функцию: 

𝜓(𝑥) = 𝑓(𝑥0 + ℎ, 𝑦) − 𝑓(𝑥0, 𝑦). 

Тогда 𝐹(ℎ) = 𝜓(𝑦0 + ℎ) − 𝜓(𝑦0). Аналогично дважды применяя формулу Лагранжа, 

получим 

𝐹(ℎ) = [𝑓𝑦𝑥
′′ (𝑥0, 𝑦0) + 𝛽(ℎ)]ℎ

2,    (6.5) 

где 𝛽(ℎ) → 0 при ℎ → 0. Приравняем (6.4) и (6.5), сократим на ℎ2: 

𝑓𝑥𝑦
′′ (𝑥0, 𝑦0) + 𝛼(ℎ) = 𝑓𝑦𝑥

′′ (𝑥0, 𝑦0) + 𝛽(ℎ), 

перейдем к пределу при ℎ → 0 и получим: 

𝑓𝑥𝑦
′′ (𝑥0, 𝑦0) = 𝑓𝑦𝑥

′′ (𝑥0, 𝑦0). 

Теорема доказана. 

  

 Определение. Функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) называется дважды дифференцируемой 

в точке 𝑀0(𝑥1
0, … , 𝑥𝑚

0 ), если она дифференцируема в некоторой окрестности точки 𝑀0, и 

все ее частные производные 1-го порядка дифференцируемы в самой точке 𝑀0. 

 

 Понятие -кратной дифференцируемости вводится по индукции.  
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 Определение. Функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) называется -кратно дифференцируемой 

в точке 𝑀0(𝑥1
0, … , 𝑥𝑚

0 ), если она 𝑛 − 1 раз дифференцируема в некоторой окрестности 

точки 𝑀0, и все ее частные производные (𝑛 − 1)-го порядка дифференцируемы в самой 

точке 𝑀0. 

  

 Теорема 18а. Если функция 𝑢 = 𝑓(𝑥, 𝑦) дважды дифференцируема в точке 

𝑀0(𝑥0, 𝑦0), то 𝑓𝑥𝑦
′′ (𝑥0, 𝑦0) = 𝑓𝑦𝑥

′′ (𝑥0, 𝑦0). 

 Доказательство проводится сходно с тем, как была доказана Теорема 18.  

 

 Теорема 18б. Если функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) 𝑛 раз дифференцируема в точке 

𝑀0(𝑥1
0, … , 𝑥𝑚

0 ), то все ее частные производные до -го порядка включительно в точке 𝑀0 

не зависят от порядка дифференцирования. 

 

Дифференциалы высших порядков 

 

 Пусть функция двух независимых переменных 𝑢 = 𝑓(𝑥, 𝑦) дважды 

дифференцируема в точке 𝑀0(𝑥0, 𝑦0), тем самым она дифференцируема в некоторой 

окрестности точки 𝑀0, и ее частные производные 1-го порядка 
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦)  и 

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) 

дифференцируемы в точке 𝑀0. Рассмотрим дифференциал функции в окрестности 

точки 𝑀0: 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦)𝑑𝑥 +

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦)𝑑𝑦.     (6.6) 

Отметим, что дифференциал 𝑑𝑢 является функцией четырех переменных: 𝑥, 𝑦, 𝑑𝑥, 𝑑𝑦. 

При введении дифференциала 2-го порядка функции 𝑢 = 𝑓(𝑥, 𝑦), будем рассматривать 

первый дифференциал 𝑑𝑢 как функцию только 𝑥 и 𝑦, то есть так, как если бы 𝑑𝑥 и 𝑑𝑦 

были постоянными множителями. 

 

 Определение. Дифференциалом второго порядка (или вторым дифференциалом) 

𝑑2𝑢 функции 𝑢 = 𝑓(𝑥, 𝑦) в точке 𝑀0 называется дифференциал от первого 

дифференциала 𝑑𝑢 при следующих условиях:  

1. 𝑑𝑢 рассматривается как функция только 𝑥 и 𝑦, 

2. при вычислении дифференциалов функций 
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦)  и 

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) приращения 𝛥𝑥 и 

𝛥𝑦 независимых переменных 𝑥 и 𝑦 будем брать такими же, как в формуле (6.6) 

для 𝑑𝑢, то есть равными 𝑑𝑥 и 𝑑𝑦. 

 

Таким образом, 
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𝑑2𝑢 = 𝑑(𝑑𝑢) = [𝑑 (
𝜕𝑢

𝜕𝑥
)] 𝑑𝑥 + [𝑑 (

𝜕𝑢

𝜕𝑦
)] 𝑑𝑦 = [

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
)𝑑𝑥 +

𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
)𝑑𝑦]𝑑𝑥 +

[
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑦
)𝑑𝑥 +

𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑦
)𝑑𝑦] 𝑑𝑦 =

𝜕2𝑢

𝜕𝑥2
(𝑑𝑥)2 + 2

𝜕2𝑢

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑢

𝜕𝑦2
(𝑑𝑦)2.   (6.7) 

Отметим, что производные 2-го порядка берутся в точке 𝑀0, а равенство 

𝜕2𝑢

𝜕𝑥𝜕𝑦
(𝑀0) =

𝜕2𝑢

𝜕𝑦𝜕𝑥
(𝑀0) 

следует из Теоремы 18а. 

 

 Пример.  

Пусть 𝑢 = 𝑥𝑦, 𝑥 > 0, 𝑦 ∈ ℝ. Вычислим второй дифференциал 𝑑2𝑢 функции 𝑢 в точке 

𝑀0(1,0) по формуле (6.7). Предварительно вычислим  

𝜕𝑢

𝜕𝑥
= 𝑦𝑥𝑦−1, 

𝜕𝑢

𝜕𝑦
= 𝑥𝑦 ln 𝑥,  

𝜕2𝑢

𝜕𝑥2
= 𝑦(𝑦 − 1)𝑥𝑦−2, 

𝜕2𝑢

𝜕𝑥𝑦
= 𝑥𝑦−1 + 𝑦𝑥𝑦−1 ln 𝑥, 

𝜕2𝑢

𝜕𝑦2
= 𝑥𝑦(ln𝑥)2, 

в точке 𝑀0 будем иметь 
𝜕2𝑢

𝜕𝑥2
( 𝑀0) = 0, 

𝜕2𝑢

𝜕𝑥𝑦
( 𝑀0) = 1, 

𝜕2𝑢

𝜕𝑦2
( 𝑀0) = 0, подставляя в (6.7), 

получим: 

𝑑2𝑢 |𝑀0(1,0) = 2𝑑𝑥𝑑𝑦. 

  

 Заметим, что выражение (6.7) для 2-го дифференциала похоже на квадрат 

суммы. Оказывается, его действительно можно записать как квадрат, но квадрат 

операторный или символический.  

 Под оператором будем понимать правило, согласно которому каждой функции 

из некоторого множества ставится в соответствие определенная функция из, вообще 

говоря, другого множества. Например, операцию вычисления частной производной 
𝜕𝑢

𝜕𝑥
 

можно рассматривать как действие некоторого оператора 
𝜕

𝜕𝑥
 на функцию 𝑢(𝑥, 𝑦), 

преобразующего ее в функцию 
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦): 

𝜕

𝜕𝑥
𝑢 =

𝜕𝑢

𝜕𝑥
. Таким образом, 

𝜕

𝜕𝑥
− оператор 

частной производной по 𝑥. Аналогично определяется оператор 
𝜕

𝜕𝑦
 частной производной 

по 𝑦. 

 Оператором дифференциала назовем оператор  
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𝑑 =
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
 𝑑𝑦. 

При действии этого оператора на функцию 𝑢(𝑥, 𝑦) получается дифференциал: 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
 𝑑𝑦. 

 

 Произведение операторов частных производных определим следующим 

образом:  

𝜕

𝜕𝑥
∙
𝜕

𝜕𝑦
=
𝜕2𝑢

𝜕𝑥𝑦
, 

(
𝜕

𝜕𝑥
)
2

=
𝜕2

𝜕𝑥2
, 

(
𝜕

𝜕𝑥
)
𝑘

∙ (
𝜕

𝜕𝑦
)
𝑙

=
𝜕𝑘+𝑙

𝜕𝑥𝑘𝜕𝑥𝑙
. 

 Определим -ю степень оператора дифференциала как 𝑛-ю степень двучлена: 

𝑑𝑛 = (
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
 𝑑𝑦)

𝑛

, 

в частности при 𝑛 = 2: 

𝑑2 =
𝜕2

𝜕𝑥2
(𝑑𝑥)2 + 2

𝜕2𝑢

𝜕𝑥𝑦
𝑑𝑥𝑑𝑦 +

𝜕2

𝜕𝑦2
(𝑑𝑦)2. 

Таким образом, равенство (6.7) получается путем действия оператора 𝑑2 на функцию 

𝑢(𝑥, 𝑦). Можно переписать (6.7) в виде:  

𝑑2𝑢 = (
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
 𝑑𝑦)

2

𝑢.      (6.8) 

 Определение дифференциала -го порядка функции вводится по индукции. 

Дифференциала -го порядка функции 𝑢(𝑥, 𝑦) определяется как дифференциал от 

дифференциала (𝑛 − 1)-го порядка при таких же двух условиях как и в определении 

дифференциала 2-го порядка, то есть 

𝑑𝑛𝑢 = 𝑑(𝑑𝑛−1𝑢). 

Нетрудно доказать по индукции, что  

𝑑𝑛𝑢 = (
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
 𝑑𝑦)

𝑛

𝑢.     (6.9) 

 В случае функции произвольного числа переменных 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) оператор 

дифференциала имеет вид 

𝑑 =
𝜕

𝜕𝑥1
𝑑𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
𝑑𝑥𝑚, 

и справедлива формула 

𝑑𝑛𝑢 = (
𝜕

𝜕𝑥1
𝑑𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
𝑑𝑥𝑚)

𝑛

𝑢. 

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

43 

 

 

ЛЕКЦИЯ 7. ФОРМУЛА ТЕЙЛОРА 

Инвариантность дифференциала 

 Для функции двух независимых переменных 𝑢 = 𝑓(𝑥, 𝑦) дифференциал -го 

порядка можно записать в виде 

𝑑2𝑢 = (
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
 𝑑𝑦)

2

𝑢.      (7.1) 

Для функции произвольного числа независимых переменных 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) 

дифференциал выражается аналогичным образом: 

𝑑𝑛𝑢 = (
𝜕

𝜕𝑥1
𝑑𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
𝑑𝑥𝑚)

𝑛

𝑢.    (7.2) 

 Рассмотрим случай, когда аргументы не являются независимыми переменными, 

а являются функциями каких-то независимых переменных. В первом семестре мы 

доказали, что вид первого дифференциала в этом случае не меняется, это свойство 

называется инвариантностью формы первого дифференциала. Такое же свойство мы 

доказали уже в этом семестре для функции нескольких переменных, а вот 

дифференциалы более высокого порядка (2-го и т.д.) не являются инвариантами.  

 Если аргументы функции являются не независимыми переменными, а 

дифференцируем функциями каких-то независимых переменных, то формулы (7.1) и 

(7.2) изменяются.  

 Пусть аргументы функции 𝑢 = 𝑓(𝑥, 𝑦) в свою очередь являются функциями 

независимых переменных 𝑡1, … , 𝑡𝑘 . В силу инвариантности формы первого 

дифференциала можем записать: 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
 𝑑𝑦, 

где 
𝜕𝑢

𝜕𝑥
 и 

𝜕𝑢

𝜕𝑦
 зависят от 𝑡1, … , 𝑡𝑘 , а 𝑑𝑥 и 𝑑𝑦 зависят от 𝑡1, … , 𝑡𝑘 , 𝑑𝑡1, … , 𝑑𝑡𝑘 . Мы 

договорились, что когда мы вводим дифференциалы высших порядков, в частности 

дифференциал второго порядка 𝑑2𝑢, мы при этом рассматриваем первый 

дифференциал как функцию только независимых переменных 𝑡1, … , 𝑡𝑘, как если бы 

дифференциалы независимых переменных 𝑑𝑡1, … , 𝑑𝑡𝑘 были постоянными 

множителями. Тогда 

𝑑2𝑢 = 𝑑(𝑑𝑢) = 𝑑 (
𝜕𝑢

𝜕𝑥
𝑑𝑥)+ 𝑑 (

𝜕𝑢

𝜕𝑦
𝑑𝑦) = 𝑑 (

𝜕𝑢

𝜕𝑥
) 𝑑𝑥 +

𝜕𝑢

𝜕𝑥
𝑑2𝑥 + 𝑑 (

𝜕𝑢

𝜕𝑦
)𝑑𝑦 +

𝜕𝑢

𝜕𝑦
𝑑2𝑦

= [𝑑 (
𝜕𝑢

𝜕𝑥
)𝑑𝑥 + 𝑑 (

𝜕𝑢

𝜕𝑦
)𝑑𝑦] + {

𝜕𝑢

𝜕𝑥
𝑑2𝑥 +

𝜕𝑢

𝜕𝑦
𝑑2𝑦}

= [(
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
 𝑑𝑦)

2

] + {
𝜕𝑢

𝜕𝑥
𝑑2𝑥 +

𝜕𝑢

𝜕𝑦
𝑑2𝑦}. 
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Таким образом, форма 2-го дифференциала не инвариантна. Аналогично, для функции 

𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) так же имеет место неинвариантность формы высших 

дифференциалов. 

 Замечание. Оказывается есть один частный случай, когда форма 

дифференциалов высших порядков остаются инвариантной. 

 Если 𝑥 и 𝑦 − линейные функции 𝑡1, … , 𝑡𝑘, то есть 

𝑥 = 𝛼1𝑡1 +⋯+ 𝛼𝑘𝑡𝑘 + 𝛼𝑘+1, 

𝑦 = 𝛽1𝑡1 +⋯+ 𝛽𝑘𝑡𝑘 + 𝛽𝑘+1, 

где 𝛼𝑖, 𝛽𝑖 − числа, то формула (7.1) остается в силе. В этом случае дифференциалы 

принимают вид: 

𝑑𝑥 = 𝛼1𝑑𝑡1 +⋯+ 𝛼𝑘𝑑𝑡𝑘 , 

𝑑𝑦 = 𝛽1𝑑𝑡1 +⋯+ 𝛽𝑘𝑑𝑡𝑘. 

Обратим внимание на то, что 𝑑𝑥, 𝑑𝑦 не зависят от 𝑡1, … , 𝑡𝑘, поэтому вторые 

дифференциалы равны нулю: 

𝑑2𝑥 = 𝑑(𝑑𝑥) = 0, 

𝑑2𝑦 = 𝑑(𝑑𝑦) = 0. 

Следовательно, выражение  

{
𝜕𝑢

𝜕𝑥
𝑑2𝑥 +

𝜕𝑢

𝜕𝑦
𝑑2𝑦} = 0 

и   

𝑑2𝑢 = (
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
 𝑑𝑦)

2

𝑢. 

 Аналогично, для функции 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚),  если  𝑥1, … , 𝑥𝑚 − линейные 

функции 𝑡1, … , 𝑡𝑘, то сохраняется формула (7.2) для дифференциалов любого порядка 

функции 𝑢, то есть  

𝑑𝑛𝑢 = (
𝜕

𝜕𝑥1
𝑑𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
𝑑𝑥𝑚)

𝑛

𝑢, 

где 𝑑𝑥1, … , 𝑑𝑥𝑚 − дифференциалы указанных выше линейных функций. 

Формула Тейлора 

 Для функции одной переменной 𝑢 = 𝐹(𝑡) в первом семестре была доказана 

теорема: если функция 𝑢 = 𝐹(𝑡) (𝑛 + 1) раз дифференцируема в окрестности точки 𝑡0, 

то ∀𝑡 из этой окрестности справедливо равенство (формула Тейлора): 
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𝐹(𝑡) = 𝐹(𝑡0) +
1

1!
𝐹(𝑡0)(𝑡 − 𝑡0) +

1

2!
𝐹′′(𝑡0)(𝑡 − 𝑡0)

2 +⋯+
1

𝑛!
𝐹(𝑛)(𝑡0)(𝑡 − 𝑡0)

𝑛

+
1

(𝑛 + 1)!
𝐹(𝑛+1)(𝑡0 + 𝜃(𝑡 − 𝑡0))(𝑡 − 𝑡0)

𝑛+1, 

где 𝜃 − число в интервале (0,1). 

  Введем обозначение 𝑡 − 𝑡0 = ∆𝑡 = 𝑑𝑡, 𝐹(𝑡) − 𝐹(𝑡0) = ∆𝑢 и вспомним, что  

𝐹(𝑘)(𝑡0)(𝑑𝑡)
𝑘 = 𝑑𝑘𝐹|𝑡=𝑡0 , 

тогда формулу Тейлора можно переписать в виде: 

∆𝑢 = 𝑑𝐹|𝑡=𝑡0 +
1

2!
𝑑2𝐹|𝑡=𝑡0 +⋯+

1

𝑛!
𝑑𝑛𝐹|𝑡=𝑡0 +

1

(𝑛+1)!
𝑑𝑛+1𝐹|𝑡=𝑡0+𝜃(𝑡−𝑡0).  (7.3) 

Оказывается, что для функции многих переменных имеет место аналогичная формула. 

 Теорема 19. Пусть функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) (𝑛 + 1) раз дифференцируема в -

окрестности точки 𝑀0(𝑥1
0, … , 𝑥𝑚

0 ). Тогда ∀ точки 𝑀(𝑥1
0 + ∆𝑥1, … , 𝑥𝑚

0 + ∆𝑥𝑚) из этой 𝜀-

окрестности для приращения функции 𝛥𝑢 = 𝑓(𝑀) − 𝑓(𝑀0) справедливо равенство: 

𝛥𝑢 = 𝑑𝑢|𝑀0 +
1

2!
𝑑2𝑢|𝑀0 +⋯+

1

𝑛!
𝑑𝑛𝑢|𝑀0 +

1

(𝑛+1)!
𝑑𝑛+1𝑢|𝑁 ,   (7.4) 

где а дифференциалы 𝑑𝑘𝑢 вычисляются по формуле (7.2), то есть 

𝑑𝑘𝑢 = (
𝜕

𝜕𝑥1
∆𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
∆𝑥𝑚)

𝑘

𝑢, 

∆𝑥1, … , ∆𝑥𝑚 − те самые приращения, которые фигурируют в точке 𝑀, а 𝑁 −  некоторая 

точка, лежащая на отрезке 𝑀0𝑀. 

 

Рис. 7.1. Иллюстрация к Теореме 19. 

 

 Доказательство. 

 Зафиксируем точку 𝑀(𝑥1
0 + ∆𝑥1, … , 𝑥𝑚

0 + ∆𝑥𝑚) из указанной -окрестности точки 

𝑀0 (рис. 7.1). Запишем параметрические уравнения отрезка 𝑀0𝑀: 

{
𝑥1 = 𝑥1

0 + 𝑡∆𝑥1
…

𝑥𝑚 = 𝑥𝑚
0 + 𝑡∆𝑥𝑚

, 0 ≤ 𝑡 ≤ 1.     (7.5) 
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При этом 𝑡 = 0 соответствует точка 𝑀0, а 𝑡 = 1 – точка 𝑀. 

 На отрезке 𝑀0𝑀 имеем: 

𝑢 = 𝑓(𝑥1
0 + 𝑡∆𝑥1, … , 𝑥𝑚

0 + 𝑡∆𝑥𝑚) =: 𝐹(𝑡). 

𝐹(𝑡) − сложная функция одной переменной 𝑡, причем она (𝑛 + 1) раз 

дифференцируема на отрезке 0 ≤ 𝑡 ≤ 1.  

 Заметим, что 

𝛥𝑢 = 𝑓(𝑀) − 𝑓(𝑀0) = 𝐹(1) − 𝐹(0),    (7.6) 

и применим формулу (7.3), положив 𝑡0 = 0, 𝑡 = 1, ∆𝑡 = 𝑑𝑡 = 1: 

𝐹(1) − 𝐹(0) = 𝑑𝐹|𝑡=0 +⋯+
1

𝑛!
𝑑𝑛𝐹|𝑡=0 +

1

(𝑛+1)!
𝑑𝑛+1𝐹|𝑡=𝜃 .   (7.7) 

Так как 𝑥1, … , 𝑥𝑚 − линейные функции переменной 𝑡 (см.(7.5)), то дифференциалы 

функции 𝐹(𝑡) можно вычислить по формуле: 

𝑑𝑘𝐹|𝑡=0 = (
𝜕

𝜕𝑥1
𝑑𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
𝑑𝑥𝑚)

𝑘

𝑢|
𝑡=0

, (𝑘 = 1,… , 𝑛), 

где 𝑑𝑥1, … , 𝑑𝑥𝑚 − дифференциалы функций (7.5): 

𝑑𝑥1 = 𝑑𝑡∆𝑥1 = ∆𝑥1, … , 𝑑𝑥𝑚 = 𝑑𝑡∆𝑥𝑚 = ∆𝑥𝑚 . 

Тогда  

𝑑𝑘𝐹|𝑡=0 = (
𝜕

𝜕𝑥1
∆𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
∆𝑥𝑚)

𝑘

𝑢|
𝑀0

, (𝑘 = 1, … , 𝑛),   (7.8) 

𝑑𝑛+1𝐹|𝑡=𝜃 = (
𝜕

𝜕𝑥1
∆𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
∆𝑥𝑚)

𝑛+1

𝑢|
𝑁
.    (7.9) 

Так как 0 < 𝜃 < 1, то точка 𝑁 лежит на отрезке 𝑀0𝑀. Подставляя выражения (7.8) и 

(7.9) в правую часть равенства (7.7)и учитывая (7.6), приходим к формуле (7.4). 

Теорема доказана. 

 

 Следствия. 

 1. При 𝑛 = 0 из (7.4) получаем формулу Лагранжа конечных приращений для функции 

многих переменных:  

𝛥𝑢 = 𝑓(𝑀) − 𝑓(𝑀0) = 𝑑𝑢|𝑁 =
𝜕𝑢

𝜕𝑥1
(𝑁)∆𝑥1 +⋯+

𝜕𝑢

𝜕𝑥𝑚
(𝑁)∆𝑥𝑚 

2. Формулу Тейлора можно записать не через дифференциалы функции, а через ее 

производные. Для этого нужно раскрыть выражения для дифференциалов в формуле 

(7.4): 

𝑑𝑢|𝑀0 =
𝜕𝑓

𝜕𝑥1
(𝑀0)∆𝑥1 +⋯+

𝜕𝑓

𝜕𝑥𝑚
(𝑀0)∆𝑥𝑚 , 
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𝑑2𝑢|𝑀0 = (
𝜕

𝜕𝑥1
∆𝑥1 +⋯+

𝜕

𝜕𝑥𝑚
∆𝑥𝑚)

2

𝑓|
𝑀0

= ∑
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑖,𝑗=1

(𝑀0)∆𝑥𝑖∆𝑥𝑗

= ∑
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑀0)(𝑥𝑖 − 𝑥𝑖

0)(𝑥𝑗 − 𝑥𝑗
0)

𝑚

𝑖,𝑗=1

 

и т.д. Окончательно получим 

𝑓(𝑥1, … , 𝑥𝑚) = 𝑓(𝑥1
0, … , 𝑥𝑚

0 ) +
𝜕𝑓

𝜕𝑥1
(𝑀0)(𝑥1 − 𝑥1

0) +⋯+
𝜕𝑓

𝜕𝑥𝑚
(𝑀0)(𝑥𝑚 − 𝑥𝑚

0 )

+
1

2
(
𝜕2𝑓

𝜕𝑥1
2
(𝑀0)(𝑥1 − 𝑥1

0)2 +⋯+
𝜕2𝑓

𝜕𝑥𝑚2
(𝑀0)(𝑥𝑚 − 𝑥𝑚

0 )2) + ⋯

+
1

𝑛!
(…

𝜕𝑛𝑓

𝜕𝑥𝑚
𝑛
(𝑀0)(𝑥𝑚 − 𝑥𝑚

0 )𝑛) + 𝑅𝑛+1 = 𝑃𝑛(𝑥1, … , 𝑥𝑚)+ 𝑅𝑛+1 . 

где 𝑃𝑛(𝑥1, … , 𝑥𝑚) — многочлен Тейлора, зависящий от 𝑥1, … , 𝑥𝑚 , степень которого не 

превосходит 𝑛, а остаточный член равен 

𝑅𝑛+1 =
1

(𝑛 + 1)!
𝑑𝑛+1𝑓|𝑁 . 

Заметим, что 𝑃𝑛(𝑥1, … , 𝑥𝑚) обладает тем свойством, что все его частные производные 

до -го порядка включительно в точке 𝑀0 равны соответствующим частным 

производным функции 𝑓(𝑥1, … , 𝑥𝑚) в точке 𝑀0. 

 

 Пример. 

Пусть 𝑢 = 𝑥𝑦, 𝑥 > 0, 𝑦 ∈ ℝ; 𝑀0(1,0). Вычислим многочлен Тейлора второго порядка 

𝑃2(𝑥, 𝑦). Учитывая, что 

𝑓(𝑀0) = 1, 𝑑𝑢|𝑀0 = 0, 𝑑2𝑢|𝑀0 = 2𝑑𝑥𝑑𝑦 = 2(𝑥 − 1)𝑦, 

так как 

𝑑𝑥 = ∆𝑥 = 𝑥 − 1, 𝑑𝑦 = ∆𝑦 = 𝑦, 

из формулы Тейлора получим  

𝑃2(𝑥, 𝑦) = 1 + (𝑥 − 1)𝑦 = 1 − 𝑦 + 𝑥𝑦. 

Формула Тейлора с остаточным членом 3-го порядка примет вид: 

𝑥𝑦 = 1 − 𝑦 + 𝑥𝑦 + 𝑅3. 

В достаточно малой окрестности точки 𝑀0(1, 0) для приближенного вычисления 𝑥𝑦 

можно использовать формулу 𝑥𝑦 = 1 − 𝑦 + 𝑥𝑦. 

 Замечание 1. Остаточный член в формуле Тейлора 𝑅𝑛+1 = 𝑜(𝜌
𝑛), где 𝜌 =

𝜌(𝑀0𝑀) = √(∆𝑥1)2 +⋯+ (∆𝑥𝑚)2. 

 В нашем примере 𝑢 = 𝑥𝑦 = 1 − 𝑦 + 𝑥𝑦 + 𝑜((𝑥 − 1)2 + 𝑦2). 
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 Замечание 2. Формулу Тейлора можно записать в виде 

𝑓(𝑥1, … , 𝑥𝑚) = 𝑃𝑛(𝑥1, … , 𝑥𝑚) + 𝑜(𝜌
𝑛), 

такой вид остаточного члена называется формой Пеано.  

 

 Можно доказать, что формула Тейлора с остаточным членом в форме Пеано 

справедлива при меньших требованиях к функции, чем в Теореме 19. В частности при 

𝑛 = 2 имеет место Теорема 19а. 

 

 Теорема 19а. Если 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) дважды дифференцируема в точке 

𝑀0(𝑥1
0, … , 𝑥𝑚

0 ), то для приращения функции 𝛥𝑢 = 𝑓(𝑀) − 𝑓(𝑀0) справедливо 

равенство: 

𝛥𝑢 = 𝑑𝑢|𝑀0 +
1

2
𝑑2𝑢|𝑀0 + 𝑜(𝜌

2).    

 В Теореме 19 функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) должна быть трижды дифференцируема 

в окрестности точки 𝑀0(𝑥1
0, … , 𝑥𝑚

0 ). 
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ЛЕКЦИЯ 8. ЛОКАЛЬНЫЙ ЭКСТРЕМУМ 

Пусть функция 𝑢 = 𝑓(𝑀) определена в некоторой окрестности точки 𝑀0 ∈ ℝ
3. 

 Определение. Говорят, что в точке 𝑀0 функция 𝑢 = 𝑓(𝑀) имеет локальный 

максимум (минимум), если существует такая -окрестность точки 𝑀0, в которой 𝑓(𝑀) <

𝑓(𝑀0) (𝑓(𝑀) > 𝑓(𝑀0)) при 𝑀 ≠ 𝑀0. 

Теорема 20 (необходимое условие экстремума). Пусть функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) 

имеет локальный экстремум в точке 𝑀0(𝑥1
0, … , 𝑥𝑚

0 ), и пусть ∃
𝜕𝑢

𝜕𝑥𝑘
(𝑀0). Тогда  

𝜕𝑢

𝜕𝑥𝑘
(𝑀0) = 0. 

Доказательство. Зафиксируем значения всех аргументов функции, кроме 𝑥𝑘, 

положив 𝑥1 = 𝑥1
0, … , 𝑥𝑘−1 = 𝑥𝑘−1

0 , 𝑥𝑘+1 = 𝑥𝑘+1
0 , … , 𝑥𝑚 = 𝑥𝑚

0 . Получим функцию одной 

переменной  

𝑢 = 𝑓(𝑥1
0, … , 𝑥𝑘−1

0 , 𝑥𝑘, 𝑥𝑘+1
0 , … , 𝑥𝑚

0 ) =: 𝜑(𝑥𝑘).  

Функция 𝜑(𝑥𝑘) имеет локальный экстремум в точке 𝑥𝑘 = 𝑥𝑘
0 и имеет производную в 

точке 𝑥𝑘
0: 𝜑′(𝑥𝑘

0) =
𝜕𝑢

𝜕𝑥𝑘
(𝑀0). По теореме о необходимом условии экстремума для 

функции одной переменной 𝜑′(𝑥𝑘
0) = 0, то есть 

𝜕𝑢

𝜕𝑥𝑘
(𝑀0) = 0. Теорема доказана. 

 Следствие. Если функция 𝑢 = 𝑓(𝑀) дифференцируема в точке 𝑀0 и имеет в этой 

точке локальный экстремум, то  

𝑑𝑢|𝑀0 =
𝜕𝑢

𝜕𝑥1
(𝑀0)𝑑𝑥1 +⋯+

𝜕𝑢

𝜕𝑥𝑚
(𝑀0)𝑑𝑥𝑚 = 0. 

 Замечание. Условие 𝑑𝑢|𝑀0 = 0 является только необходимым, но не 

достаточным условием локального экстремума дифференцируемой функции в точке 

𝑀0. 

 Пример. 

Пусть 𝑢 = 𝑥𝑦 и 𝑀0(0,0), тогда 
𝜕𝑢

𝜕𝑥
(0,0) = 0,

𝜕𝑢

𝜕𝑦
(0,0) = 0, следовательно 𝑑𝑢|𝑀0 = 0. 

Однако в точке 𝑀0 экстремума у данной функции нет, так как в любой окрестности 

точки 𝑀0 функция принимает как положительные, так и отрицательные значения, то 

есть как значения, большие, чем 𝑢(𝑀0) = 0, так и значения, меньшие 𝑢(𝑀0). 

 Точки 𝑀, в которых 𝑑𝑢|𝑀 = 0, будем называть точками возможного экстремума 

дифференцируемой функции 𝑢(𝑀). Чтобы установить, имеет ли функция в такой точке 

экстремум или нет, нужны достаточные условия экстремума. Чтобы сформулировать 

такие условия, нам понадобятся некоторые сведения о квадратичных формах.  

Некоторые сведения о квадратичных формах 

 Определение. Функция  
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𝑄(𝑥1, … , 𝑥𝑚) = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑚

𝑖,𝑗=1

, 

где 𝑎𝑖𝑗 − числа, причем 𝑎𝑖𝑗 = 𝑎𝑗𝑖 , называется квадратичной формой от аргументов 

𝑥1, … , 𝑥𝑚 . 

 Определение. Квадратичная форма 𝑄(𝑥1, … , 𝑥𝑚) называется положительно 

определенной (отрицательно определенной), если ∀(𝑥1, … , 𝑥𝑚): 𝑄(𝑥1, … , 𝑥𝑚) ≥ 0 (≤ 0), 

причем 𝑄(𝑥1, … , 𝑥𝑚) = 0 только в начале координат, то есть при 𝑥1 = ⋯ = 𝑥𝑚 = 0. 

Пример положительно определенной квадратичной формы: 𝑄(𝑥1, 𝑥2) = 2𝑥1
2 + 3𝑥2

2. 

 Определение. Положительно определенные и отрицательно определенные 

квадратичные формы называются знакоопределенными. 

 Определение. Квадратичная форма называется квазизнакоопределенной, если 

она принимает значения либо только неотрицательные, либо только неположительные, 

но при этом обращается в нуль не только в начале координат. Пример: 𝑄(𝑥1, 𝑥2) = 𝑥1
2 −

2𝑥1𝑥2 + 𝑥2
2 = (𝑥1 − 𝑥2)

2 ≥ 0,𝑄(1,1) = 0.  

 Определение. Квадратичная форма называется знакопеременной, если она 

принимает как положительные, так и отрицательные значения. Пример: 𝑄(𝑥1, 𝑥2) =

𝑥1
2 + 𝑥1𝑥2 − 𝑥2

2, 𝑄(1,0) = 1 > 0, 𝑄(0,1) = −1 < 0. 

 Рассмотрим общий вид квадратичной формы  

𝑄(𝑥1, … , 𝑥𝑚) = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑚

𝑖,𝑗=1

. 

Составим матрицу  

𝐴 = (

𝑎11 𝑎12 … 𝑎1𝑚
𝑎21 𝑎22 … 𝑎2𝑚
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
…

⋮
𝑎𝑚𝑚

), 

которая называется матрицей квадратичной формы 𝑄. Заметим, что матрица 𝐴 является 

симметричной, так как выполнено 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . Выделим у матрицы 𝐴 угловые миноры: 

𝛿1 = 𝑎11, 

𝛿2 = |
𝑎11 𝑎12
𝑎21 𝑎22

|, 

… 

𝛿𝑘 = |

𝑎11 … 𝑎1𝑘
⋮ ⋱ ⋮
𝑎𝑘1 … 𝑎𝑘𝑘

|, 

… 
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𝛿𝑚 = |

𝑎11 … 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑚𝑚

|. 

 Оказывается по знакам этих угловых миноров можно сделать вывод о том, будет 

квадратичная форма положительно определенной или отрицательно определенной или 

не будет.  

 

 Критерий Сильвестра знакоопределенности квадратичной формы.  

Для того, чтобы квадратичная форма 𝑄(𝑥1, … , 𝑥𝑚) = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗
𝑚
𝑖,𝑗=1  была положительно 

определенной, необходимо и достаточно, чтобы все угловые миноры матрицы 𝐴 были 

положительны: 𝛿1 > 0, 𝛿2 > 0, . . . , 𝛿𝑚 > 0.  

Для того, чтобы квадратичная форма была отрицательно определенной, необходимо и 

достаточно, чтобы знаки угловых миноров чередовались следующим образом: 𝛿1 <

0, 𝛿2 > 0, 𝛿3 < 0, 𝛿4 > 0,… . 

Доказательство критерия будет рассматриваться в курсе линейной алгебры.  

Достаточные условия экстремума 

 Для функции одной переменной 𝑦 = 𝑓(𝑥) достаточными условиями максимума 

(минимума) в точке 𝑥0 являются условия: 

𝑓′(𝑥0) = 0, 𝑓′′(𝑥0) < 0 (> 0). 

Эти же условия можно записать через дифференциалы функции в точке 𝑥0:  

𝑑𝑦|𝑥0  = 𝑓
′(𝑥0)𝛥𝑥 = 0,  

𝑑𝑦|𝑥0 = 𝑓
′′(𝑥0)(𝛥𝑥)

2 < 0 (> 0) ∀𝛥𝑥 ≠ 0. 

 Аналогичное достаточное условие имеет место и для функции многих 

переменных. Напомним, что для функции 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) первый и второй 

дифференциалы в точке 𝑀0(𝑥1
0, … , 𝑥𝑚

0 ) имеют вид: 

𝑑𝑢|𝑀0  = ∑
𝜕𝑢

𝜕𝑥𝑖
(𝑀0)∆𝑥𝑖

𝑚

𝑖=1

, 

𝑑2𝑢|𝑀0  = ∑
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑀0)∆𝑥𝑖∆𝑥𝑗

𝑚

𝑖,𝑗=1

. 

Обратим внимание, что 𝑑2𝑢|𝑀0 − квадратичная форма от аргументов ∆𝑥1, … , ∆𝑥𝑚 . 

Согласно Теореме 18б 
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑀0) =

𝜕2𝑢

𝜕𝑥𝑗𝜕𝑥𝑖
(𝑀0), то есть выполнено условие 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . 

 Теорема 21 (о достаточных условиях экстремума функции нескольких 

переменных). Пусть выполнены условия:  
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1. функция 𝑢 = 𝑓(𝑥1, … , 𝑥𝑚) дважды дифференцируема в точке 𝑀0(𝑥1
0, … , 𝑥𝑚

0 );  

2. 𝑑𝑢|𝑀0 = 0; 

3. 𝑑2𝑢|𝑀0 − положительно (отрицательно) определенная квадратичная форма от 

аргументов ∆𝑥1, … , ∆𝑥𝑚.  

Тогда в точке 𝑀0 функция 𝑢 = 𝑓(𝑀) имеет локальный минимум (максимум).  

 

 Доказательство.  

 Пусть 𝑀(𝑥1
0 + ∆𝑥1, … , 𝑥𝑚

0 + ∆𝑥𝑚) − произвольная точка из окрестности точки 

𝑀0(𝑥1
0, … , 𝑥𝑚

0 ). По Теореме 19а приращение функции 𝑢 в точке 𝑀0 можно представить в 

виде: 

∆𝑢 = 𝑑𝑢|𝑀0 +
1

2
𝑑2𝑢|𝑀0 + 𝑜(𝜌

2), 

где 𝜌 = 𝜌(𝑀0𝑀) = √(∆𝑥1)
2 +⋯+ (∆𝑥𝑚)

2. Из условий 2 и 3 нашей теоремы получаем 

∆𝑢 =
1

2
∑

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑀0)∆𝑥𝑖∆𝑥𝑗

𝑚

𝑖,𝑗=1

+ 𝑜(𝜌2) =
1

2
𝜌2 [∑

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑀0)

∆𝑥𝑖
𝜌

∆𝑥𝑗
𝜌

𝑚

𝑖,𝑗=1

+
𝑜(𝜌2)

𝜌2
]. 

Введем обозначения 
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑀0) = 𝑎𝑖𝑗,  

∆𝑥𝑖

𝜌
= ℎ𝑖 и 

𝑜(𝜌2)

𝜌2
= 𝛼(𝜌), причем 𝛼(𝜌) → 0 при 

𝜌 → 0, тогда  

∆𝑢 =
1

2
𝜌2 [∑ 𝑎𝑖𝑗ℎ𝑖ℎ𝑗

𝑚

𝑖,𝑗=1

+ 𝛼(𝜌)]. 

Сумма в выражении для ∆𝑢 является квадратичной формой аргументов ℎ1, … , ℎ𝑚: 

𝑄 = 𝑄(ℎ1, … , ℎ𝑚) = ∑ 𝑎𝑖𝑗ℎ𝑖ℎ𝑗

𝑚

𝑖,𝑗=1

, 

тогда имеем  

∆𝑢 =
1

2
𝜌2[𝑄 + 𝛼(𝜌)]. 

 Рассмотрим случай, когда 𝑑2𝑢|𝑀0 − положительно определенная квадратичная 

форма. Тогда согласно определению требуется доказать, что ∃ -окрестность точки 𝑀0, в 

которой ∆𝑢 > 0 при 𝑀 ≠ 𝑀0. Согласно условию 3 нашей теоремы 𝑄 = ∑ 𝑎𝑖𝑗ℎ𝑖ℎ𝑗
𝑚
𝑖,𝑗=1 − 

положительно определенная квадратичная форма. Величины ℎ1, … , ℎ𝑚, очевидно, 

удовлетворяют условию:  

ℎ1
2 +⋯+ ℎ𝑚

2 = 1.      (8.1) 

В пространстве ℝ𝑚 точек (ℎ1, … , ℎ𝑚) уравнение (8.1) описывает сферу единичного 

радиуса с центром в начале координат. Сфера – это ограниченное замкнутое 

множество. Функция 𝑄 − непрерывна. По второй теореме Вейерштраса функция 𝑄 

достигает на сфере (8.1) своей точной нижней грани, то есть имеет на этой сфере 

минимальное значение 𝑚 = 𝑚𝑖𝑛(𝑄). Так как в любой точке сферы 𝑄 > 0, то 𝑚 > 0. 
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Возьмем 𝛿 > 0 столь малым, чтобы |𝛼(𝜌)| < 𝑚 при 0 < 𝜌 < 𝛿. Следовательно, при 

𝜌(𝑀0,𝑀) < 𝛿 (𝑀 ≠ 𝑀0): 

∆𝑢 =
1

2
𝜌2[𝑄 + 𝛼(𝜌)] ≥

1

2
𝜌2[𝑚 + 𝛼(𝜌)] > 0. 

Таким образом, ∆𝑢 > 0 в -окрестности точки 𝑀0 при 𝑀 ≠ 𝑀0. Теорема доказана. 

 

 Теорема 22 (об отсутствии экстремума). Пусть выполнены условия 1 и 2 

Теоремы 21 и пусть 𝑑2𝑢|𝑀0 − знакопеременная квадратичная форма. Тогда в точке 𝑀0 

экстремума нет. 

  

 Замечание. Если выполнены условия 1 и 2 Теоремы 21, и 𝑑2𝑢|𝑀0 − 

квазизнакопеременная квадратичная форма, то экстремум в точке 𝑀0 может быть, а 

может и не быть. 

 

 Пример 1. 

 Рассмотрим функцию 𝑢 = 𝑥𝑦, 𝑥 > 0, 𝑦 ∈ ℝ. Определим, есть ли у нее точки 

локального экстремума, для это решим систему уравнений: 

{
𝑢𝑥 = 𝑦𝑥

𝑦−1 = 0

𝑢𝑦 = 𝑥𝑦 ln 𝑥 = 0
⇒ {

𝑦 = 0
𝑥 = 1

. 

Мы имеем одну точку возможного экстремума 𝑀0(1,0). Так как второй дифференциал 

𝑑2𝑢|𝑀0 = 2𝛥𝑥𝛥𝑦 − знакопеременная квадратичная форма, то по Теореме 22 функция 𝑢 

не имеет экстремума точке 𝑀0. 

 

 Пример 2. 

 Рассмотрим функцию 𝑢 = 𝑥2 + 2𝑥𝑦 + 𝑦2 + 𝑥𝑧 + 𝑧3 − 4𝑧, 𝑥 > 0, 𝑦 ∈ ℝ. Для 

нахождения точек возможного экстремума функции решим систему уравнений: 

{

𝑢𝑥 = 2𝑥 + 2𝑦 + 𝑧 = 0
𝑢𝑦 = 2𝑥 + 4𝑦 = 0

𝑢𝑧 = 𝑥 + 3𝑧
2 − 4 = 0

⇒

{
 
 

 
 

𝑥 = −𝑧

𝑦 = −
𝑥

2

𝑧1 = −1, 𝑧2 = −
4

3
 

⇒

{
 
 

 
 𝑥1 = 1, 𝑥2 = −

4

3

𝑦1 = −
1

2
, 𝑦2 =

2

3

𝑧1 = −1, 𝑧2 =
4

3
 

. 

Мы получили две точки возможного экстремума 𝑀1(1,−
1

2
, −1) и 𝑀2(−

4

3
,
2

3
,
4

3
). 

Вычислим вторые производные функции:  

𝑢𝑥𝑥 = 2, 𝑢𝑥𝑦 = 2, 𝑢𝑥𝑧 = 1,  

𝑢𝑦𝑥 = 2, 𝑢𝑦𝑦 = 4, 𝑢𝑦𝑧 = 0, 

𝑢𝑧𝑥 = 1, 𝑢𝑧𝑦 = 0, 𝑢𝑧𝑧 = 6𝑧. 

Составим матрицу квадратичной формы 𝑑2𝑢, элементами которой являются частные 

производные 2-го порядка: 
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𝐴 = (
2 2 1
2 4 0
1 0 6𝑧

) 

и вычислим ее угловые миноры: 

𝛿1 = 2 > 0, 

𝛿2 = 4 > 0, 

𝛿3 = |𝐴| = −4 + 24𝑧. 

 В точке 𝑀1 (1,−
1

2
, −1): 𝛿1 > 0, 𝛿2 > 0, 𝛿3 < 0 не выполнено ни условие 

положительной определенности, ни отрицательной определенности квадратичной 

формы. Убедимся, что дифференциал 𝑑2𝑢|𝑀1 − знакопеременная квадратичная форма. 

При выборе 𝛥𝑥 = 𝛥𝑦 = 0, 𝛥𝑧 = 1 получим 𝛥𝑢|𝑀1 = −6 < 0, при 𝛥𝑥 = 1, 𝛥𝑦 = 𝛥𝑧 = 0 

получим 𝛥𝑢|𝑀1 = 2 > 0, значит, 𝑑2𝑢|𝑀1 − знакопеременная квадратичная форма, и по 

Теореме 22 функция 𝑢 не имеет экстремума точке 𝑀1. 

 Для точки 𝑀2(−
4

3
,
2

3
,
4

3
): 𝛿1 > 0, 𝛿2 > 0, 𝛿3 > 0, по критерию Сильвестра 𝑑2𝑢|𝑀2 − 

положительно определенная квадратичная форма, следовательно, по Теореме 21 в 

точке 𝑀2 функция имеет локальный минимум.  

 

Случай функции двух переменных 

 

 Рассмотрим функцию 𝑢 = 𝑓(𝑥, 𝑦), ее второй дифференциал в точке 𝑀0 

принимает вид: 

𝑑2𝑢|𝑀0 =
𝜕2𝑢

𝜕𝑥2
(𝑀0)(∆𝑥)

2 + 2
𝜕2𝑢

𝜕𝑥𝑦
(𝑀0)∆𝑥∆𝑦 +

𝜕2𝑢

𝜕𝑦2
(𝑀0)(∆𝑦)

2

= 𝑎11(∆𝑥)
2 + 2𝑎12∆𝑥∆𝑦 + 𝑎22(∆𝑦)

2. 

Составим матрицу квадратичной формы:  

𝐴 = (
𝑎11 𝑎12
𝑎12 𝑎22

), 

тогда угловые миноры: 𝛿1 = 𝑎11, 𝛿2 = 𝑎11𝑎22 − (𝑎12)
2. На основании теоремы 21 можно 

сделать вывод: если 𝑑𝑢|𝑀0 = 0 и  𝛿1 = 𝑎11 > 0, 𝛿2 = 𝑎11𝑎22 − (𝑎12)
2 > 0, то в точке 𝑀0 

функция имеет локальный минимум; если 𝑑𝑢|𝑀0 = 0 и  𝛿1 = 𝑎11 < 0, 𝛿2 = 𝑎11𝑎22 −

(𝑎12)
2 > 0, то в точке 𝑀0 функция имеет локальный максимум; если 𝛿2 < 0, то 

экстремума в точке 𝑀0 нет.    
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ЛЕКЦИЯ 9. ТЕОРИЯ НЕЯВНЫХ ФУНКЦИЙ 

О неявных функциях, определяемых одним уравнением 

 

 Функция 𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝑋 может быть задана путем непосредственного (явного) 

указания правила 𝑓, по которому каждому числу 𝑥 из области определения функции 𝑋 

ставится в соответствие определенное число 𝑦 из области значений функции. 

Например, функция 𝑦 = 𝑥2, 𝑥 ∈ (−∞,+∞) задана непосредственно или явно. 

 Существует и другой способ задания функции 𝑦 = 𝑓(𝑥). Рассмотрим уравнение 

с двумя переменными:  

𝐹(𝑥, 𝑦) = 0.      (9.1) 

Пусть ∀𝑥 ∈ 𝑋 уравнение (9.1) имеет решение 𝑦 = 𝑓(𝑥). Данное решение и называется 

неявной функцией, определяемой уравнением (9.1).  

 

 Пример 1. 

 В прямоугольнике 𝑄 = {𝑥 ∈ [−1,1] , 𝑦 ∈ [0,1] } рассмотрим уравнение 

𝐹(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 = 0.      (9.2) 

Решая, получим, что ∀𝑥 ∈ [−1,1]: 

𝑦 = √1 − 𝑥2.       (9.3) 

Функция (9.3) – неявная функция, определяемая уравнением (9.2). 

 

 Пример 2.  

 Рассмотрим уравнение 

𝐹(𝑥, 𝑦) = 2𝑦 + sin 𝑦 − 𝑥 = 0 

и покажем, что ∀𝑥 ∈ ℝ уравнение имеет единственное решение 𝑦 = 𝑓(𝑥), но найти его 

в явном виде не удается.  

  

 Обратим внимание, что не всякое уравнение вида (9.1) определяет неявную 

функцию. И если оно определяет неявную функцию, то, как показывают примеры 1 и 2, 

мы различаем два момента: существование неявной функции и возможность найти ее в 

явном виде.  

 

 Теорема 1.  

Пусть выполнены условия:  

1) функция 𝐹(𝑥, 𝑦) определена и непрерывна в прямоугольнике 𝑄 = {(𝑥, 𝑦): 𝑎 <

𝑥 < 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑};  

2) ∀𝑥 ∈ (𝑎, 𝑏): 𝐹(𝑥, 𝑦) ∙ 𝐹(𝑥, 𝑦) < 0, то есть на верхней и нижней сторонах 

прямоугольника 𝑄 функция 𝐹(𝑥, 𝑦) имеет разные знаки; 

3) ∀𝑥 ∈ (𝑎, 𝑏): 𝐹(𝑥, 𝑦) является строго монотонной функцией переменной 𝑦 ∈

[𝑐, 𝑑].  

Тогда:  
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1) в прямоугольнике 𝑄 уравнение 𝐹(𝑥, 𝑦) = 0 имеет единственное решение 

относительно 𝑦 (𝑦 = 𝑓(𝑥)), причем 𝑐 ≤ 𝑓(𝑥) ≤ 𝑑, то есть в прямоугольнике 𝑄 

уравнение (9.1) определяет неявную функцию вида 𝑦 = 𝑓(𝑥); 

2) 𝑦 = 𝑓(𝑥) непрерывна на интервале (𝑎, 𝑏). 

 

 Доказательство.  

1) Зафиксируем любое число 𝑥 из интервала (𝑎, 𝑏) и рассмотрим при этом 

значении 𝑥 функцию 𝐹(𝑥, 𝑦) аргумента 𝑦 на сегменте [𝑐, 𝑑]. По условию 3 

функция 𝐹(𝑥, 𝑦) является строго монотонной, рассмотрим случай, когда 

𝐹(𝑥, 𝑦) − возрастающая функция 𝑦 при каждом 𝑥, тогда 𝐹(𝑥, 𝑐) < 0, 𝐹(𝑥, 𝑑) > 0. 

Поскольку на концах сегмента [𝑐, 𝑑] функция 𝐹(𝑥, 𝑦) имеет значения разных 

знаков (условие 2) и является непрерывной на сегменте [𝑐, 𝑑] (условие 1), 

следовательно, ∃𝑦 ∈ [𝑐, 𝑑]:𝐹(𝑥, 𝑦) = 0. В силу возрастания функции 𝐹(𝑥, 𝑦) по 

переменной 𝑦 такое значение 𝑦 единственно. Итак, ∀𝑥 ∈ (𝑎, 𝑏) существует 

решение уравнения (9.1): 𝑦 = 𝑓(𝑥). Таким образом, мы доказали существование 

и единственность неявной функции, определяемой уравнением (9.1). 

 

2) Докажем непрерывность неявной функции 𝑦 = 𝑓(𝑥) на интервале (𝑎, 𝑏), то есть 

ее непрерывность в каждой точке этого интервала 𝑥0 ∈ (𝑎, 𝑏). По определению 

непрерывности нужно доказать, что ∀𝜀 > 0 ∃𝛿 > 0:  

|𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 при |𝑥 − 𝑥0| < 𝛿.    (9.4) 

Возьмем 𝜀 > 0 столь малым, чтобы были выполнены неравенства: 𝑓(𝑥0) − 𝜀 >

𝑐 и 𝑓(𝑥0) + 𝜀 > 𝑑 (рис. 9.1). 

 
Рис. 9.1. Иллюстрация к доказательству Теоремы 1. 

Рассмотрим функцию 𝐹(𝑥, 𝑦) при 𝑥 = 𝑥0. Функция 𝐹(𝑥0, 𝑦) является 

возрастающей функцией переменной 𝑦 и 𝐹(𝑥0, 𝑓(𝑥0)) = 0, следовательно,  

𝐹(𝑥0, 𝑓(𝑥0) − 𝜀) < 0 и 𝐹(𝑥0, 𝑓(𝑥0) + 𝜀) > 0.    (9.5) 

Но 𝐹(𝑥, 𝑦) - непрерывная функция. В силу устойчивости знака непрерывной 

функции следует: 

∃ 𝛿 > 0, такое, что 

𝐹(𝑥, 𝑓(𝑥0) − 𝜀) < 0 и 𝐹(𝑥, 𝑓(𝑥0) + 𝜀) > 0, 
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при |𝑥 − 𝑥0| < 𝛿. 

Таким образом в 𝛿 - окрестностях выделенных точек знак функции 𝐹(𝑥, 𝑦) 

сохраняется (рис. 9.1).  

Из полученных неравенств следует, что 

𝑓(𝑥0) − 𝜀 < 𝑓(𝑥) < 𝑓(𝑥0) + 𝜀 при |𝑥 − 𝑥0| < 𝛿, 

т.е. |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 при |𝑥 − 𝑥0| < 𝛿. 

Выполняется условие  9.4, значит, Теорема 1 доказана. 

 

 Пример.  Рассмотрим уравнение 

F(x, y):  2𝑦 − sin 𝑦 − 𝑥 = 0     (9.6) 

Докажем, что для  ∀ 𝑥𝜖ℝ  уравнение 9.6 имеет единственное решение 

относительно y. И тем самым определяет единственную неявную функцию. 

Зафиксируем произвольное значение 𝑥 и рассмотрим функцию 𝐹(𝑥, 𝑦) при этом 

𝑥. Для этого положим: 

𝑦 = 𝑦1 =
𝑥

2
− 1, 

тогда  𝐹(𝑥, 𝑦1) = −2 + sin 𝑦1 < 0. 

Теперь положим: 

𝑦 = 𝑦2 =
𝑥

2
+ 1, 

тогда  𝐹(𝑥, 𝑦2) = 2 + sin 𝑦2  > 0. 

Отсюда следует: 

∃ 𝑦 ∈ (𝑦1, 𝑦2), такое что 𝐹(𝑥, 𝑦) = 0. 

Обозначим это значение 𝑦 = 𝑓(𝑥). Такое значение 𝑦 для ∀𝑥 единственное, так 

как 

𝐹𝑦
′ = 2 + cos𝑦, 

значит функция 𝐹(𝑥, 𝑦) – возрастающая функция аргумента 𝑦 для ∀𝑥. 

Так уравнение 9.6 определяет единственную неявную функцию вида: 

𝑦 = 𝑓(𝑥), 𝑥 ∈ ℝ. 

Раз исходная функция 𝐹(𝑥, 𝑦) – непрерывна, мы можем утверждать, что 

функция 𝑦 = 𝑓(𝑥) – непрерывна на всей числовой прямой. Но мы не можем 

найти её в явном виде. 

 

Существенным условием в Теореме 1 было условие 3 - строгой монотонности 

функции 𝐹(𝑥, 𝑦)  по аргументу 𝑦 для ∀𝑥. В этом примере мы видим, что строгую 

монотонность функции по 𝑦, обеспечивает знакопостоянство производной 

функции 𝐹𝑦
′(𝑥, 𝑦) . Это условие будет использовано в следующей теореме. 

 

Теорема 2. 

Рассматриваем уравнение 
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𝐹(𝑥, 𝑦) = 0. 

Пусть выполнены условия: 

1) функция 𝐹(𝑥, 𝑦) определена и непрерывна в некоторой окрестности 𝜔 точки 

𝑀0(𝑥0, 𝑦0); 

2) В окрестности 𝜔 ∃ 𝐹𝑦
′(𝑥, 𝑦), непрерывная в точке 𝑀0; 

3) 𝐹(𝑥0, 𝑦0) = 0, 𝐹𝑦
′(𝑥0, 𝑦0) ≠ 0. 

Тогда существует прямоугольник: 

𝑄 = {(𝑥, 𝑦): |𝑥 − 𝑥0| < 𝑑, |𝑦 − 𝑦0| ≤ 𝑐} ∈ 𝜔, 𝑑 > 0, 𝑐 > 0 

В котором уравнение 9.1 определяет единственную неявную функцию 𝑦 = 𝑓(𝑥) 

непрерывную при |𝑥 − 𝑥0| < 𝑑. 

Доказательство.  

Пусть для определенности 𝐹𝑦
′(𝑥0, 𝑦0) > 0 (см. условие 3).  

По условию 2 функция 𝐹𝑦
′(𝑥0, 𝑦0) непрерывна в точке 𝑀0, в силу устойчивости 

знака непрерывной функции 𝐹𝑦
′(𝑥0, 𝑦0) > 0 и в некоторой окрестности точки 𝑀0. 

Тогда найдется прямоугольник: 

𝑄̃ = {(𝑥, 𝑦): |𝑥 − 𝑥0| < 𝑑̃, |𝑦 − 𝑦0| ≤ 𝑐̃}, 

в котором 𝐹𝑦
′(𝑥0, 𝑦0) > 0, и следовательно, функция 𝐹(𝑥, 𝑦) является 

возрастающей функцией переменной 𝑦 при каждом 𝑥 в этом прямоугольнике. 

Т.е. выполнено условие 3 Теоремы 1. Функция 𝐹(𝑥0, 𝑦) является возрастающей 

функцией переменной 𝑦 и 𝐹(𝑥0, 𝑦0) = 0, следовательно,  

𝐹(𝑥0, 𝑦0 − 𝑐) < 0 и 𝐹(𝑥0, 𝑦0 + 𝑐) > 0.    (9.7) 

Рассмотрим теперь функцию 𝐹(𝑥, 𝑦) на нижней и верхней сторонах 

прямоугольника 𝑄̃, то есть рассмотрим функции 𝐹(𝑥, 𝑦0 − 𝑐) и 𝐹(𝑥, 𝑦0 + 𝑐) при 

|𝑥 − 𝑥0| < 𝑑̃. В силу непрерывности этих функций (условие 1) и неравенств (9.7) 

следует, что ∃𝑑 (0 < 𝑑 ≤ 𝑑̃) такое, что  

𝐹(𝑥, 𝑦0 − 𝑐) < 0 и 𝐹(𝑥, 𝑦0 + 𝑐) > 0 

при |𝑥 − 𝑥0| < 𝑑̃. 

 Таким образом, мы построили прямоугольник 𝑄 = {(𝑥, 𝑦): |𝑥 − 𝑥0| <

𝑑, |𝑦 − 𝑦0| ≤ 𝑐}, в котором выполнены все условия Теоремы 1. По Теореме 1 в 

прямоугольнике 𝑄 уравнение (9.1) определяет единственную неявную функцию 

вида 𝑦 = 𝑓(𝑥), и эта функция непрерывна при |𝑥 − 𝑥0| < 𝑑. Теорема 2 доказана. 

 

 Задание. Пусть выполнены условия 1 и 2 Теоремы 2, а вместо условия 3 

выполнено противоположное условие: 𝐹(𝑥0, 𝑦0) = 0, 𝐹𝑦
′(𝑥0, 𝑦0) = 0. Придумайте 

два примера, в одном из которых утверждение Теоремы 2 остается верным, а в 

другом – неверным.  

1) Пусть 𝐹(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 = 0,𝑀0(1,0), тогда 𝐹𝑦
′(1,0) = 0. Докажите, 

что для этой точки заключение теоремы неверно.  
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2) Пусть 𝐹(𝑥, 𝑦) = 𝑥3 − 𝑦3 = 0,𝑀0(0,0), тогда 𝐹𝑦
′(0,0) = 0. Докажите, что в 

этом случае заключение теоремы верно, решением уравнения будет 

функция 𝑦 = 𝑥.  

 

 Теорема 3. 

 Пусть выполнены условия Теоремы 2, и функция 𝐹(𝑥, 𝑦) − дифференцируема в 

точке 𝑀0(𝑥0, 𝑦0). Тогда неявная функция 𝑦 = 𝑓(𝑥), определяемая уравнением (9.1), 

дифференцируема в точке 𝑥0, и ее производная в этой точке выражаетсяформулой  

𝑓 ′(𝑥0) = −
𝐹𝑥

′ (𝑥0,𝑦0)

𝐹𝑦
′ (𝑥0,𝑦0)

.      (9.8) 

 Доказательство.  

Зададим в точке 𝑀0(𝑥0, 𝑦0) приращения ∆𝑥 и ∆𝑦 аргументам 𝑥 и 𝑦 функции 𝐹(𝑥, 𝑦) так, 

чтобы точка 𝑀(𝑥0 + ∆𝑥, 𝑦0 + ∆𝑦) ∈ 𝑄, где 𝑄 − прямоугольник, фигурирующий в 

Теореме 2. Функция 𝐹(𝑥, 𝑦) получит приращение, которое в силу дифференцируемости 

функции в точке 𝑀0 можно записать в виде: 

 𝛥𝐹: = 𝐹(𝑥0 + ∆𝑥, 𝑦0 + ∆𝑦) − 𝐹(𝑥0, 𝑦0) = 𝐹𝑥
′(𝑥0, 𝑦0)𝛥𝑥 + 𝐹𝑦

′(𝑥0, 𝑦0)𝛥𝑦 + 𝛼1𝛥𝑥 +

𝛼2𝛥𝑦,   (9.9) 

где 𝛼1 → 0 и 𝛼2 → 0 при (𝛥𝑥 → 0, 𝛥𝑦 → 0). Возьмем в качестве ∆𝑦 приращение неявной 

функции в точке 𝑥0, то есть ∆𝑦 = 𝑓(𝑥0 + ∆𝑥)− 𝑓(𝑥0) = 𝑓(𝑥0 + ∆𝑥) − 𝑦0. Тогда 

𝛥𝐹 = 𝐹(𝑥0 + ∆𝑥, 𝑓(𝑥0) + ∆𝑥) − 𝐹(𝑥0, 𝑦0) = 𝐹(𝑥, 𝑓(𝑥)) − 𝐹(𝑥0, 𝑦0) = 0 − 0 = 0, 

из равенства (9.8) получаем  

𝐹𝑥
′(𝑥0, 𝑦0)𝛥𝑥 + 𝐹𝑦

′(𝑥0, 𝑦0)(𝑓(𝑥0 + ∆𝑥)− 𝑓(𝑥0)) + 𝛼1𝛥𝑥 + 𝛼2(𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0)) = 0, 

𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0)

∆𝑥
= −

𝐹𝑥
′(𝑥0, 𝑦0) + 𝛼1
𝐹𝑦′(𝑥0, 𝑦0) + 𝛼2

. 

В силу непрерывности неявной функции ∆𝑦 = 𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0) → 0 при 𝛥𝑥 → 0. 

Перейдем к пределу при 𝛥𝑥 → 0, тогда ∆𝑦 → 0, следовательно, 𝛼1 → 0 и 𝛼2 → 0, в итоге 

получаем 

𝑓 ′(𝑥0) = lim
𝛥𝑥→0

𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0)

∆𝑥
= −

𝐹𝑥
′(𝑥0, 𝑦0)

𝐹𝑦′(𝑥0, 𝑦0)
. 

 

 Пример. Рассмотрим уравнение 

𝐹(𝑥, 𝑦) = 2𝑦 + 𝑠𝑖𝑛𝑦 − 𝑥 = 0, (𝑥, 𝑦) ∈ ℝ2.    (9.10) 

Ранее нами уже было установлено, что оно определяет единственную неявную 

функцию вида 𝑦 = 𝑓(𝑥), 𝑥 ∈ (−∞,+∞). Вычислим производную неявной функции по 

формуле (9.8) в произвольной точке 𝑥: 

𝑓 ′(𝑥) = −
𝐹𝑥

′(𝑥, 𝑦)

𝐹𝑦′(𝑥, 𝑦)
|
𝑦=𝑓(𝑥)

= −
−1

2 + cos𝑦
|
𝑦=𝑓(𝑥)

=
1

2 + cos𝑓(𝑥)
. 
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Возьмем, например, 𝑥 = 2𝜋. Значение функции 𝑓(2𝜋) = 𝜋 найдем методом 

пристального взгляда на исходное уравнение (9.10). Вычислим первую производную в 

точке 𝑥 = 2𝜋: 

𝑓 ′(2𝜋) =
1

2 + cos𝜋
= 1. 

Вторую производную найдем по формуле: 

𝑓 ′′(𝑥) = −
1

2 + cos𝑓(𝑥)
∙ (− sin 𝑓(𝑥)) ∙ 𝑓 ′(𝑥). 

  

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

61 

 

 

ЛЕКЦИЯ 10. ТЕОРИЯ НЕЯВНЫХ ФУНКЦИЙ 

 Рассмотрим теперь уравнение, которое является обобщением уравнения (9.1):  

𝐹(𝑥1, . . . , 𝑥𝑛, 𝑦) = 0.      (10.1) 

Решение этого уравнения относительно 𝑦 является функцией 𝑛 переменных 

𝑦 = 𝑓(𝑥1, . . . , 𝑥𝑛)      (10.2) 

и называется неявной функцией, определяемой уравнением (10.1). 

  

 Теорема 4.  

 Пусть выполнены условия:  

1. функция 𝐹(𝑥1, . . . , 𝑥𝑛 , 𝑦) определена и дифференцируема в некоторой окрестности 𝜔 

точки 𝑀0(𝑥1
0, . . . , 𝑥𝑛

0, 𝑦0); 

2. частная производная 𝐹𝑦
′(𝑥1, . . . , 𝑥𝑛 , 𝑦)  непрерывна в точке 𝑀0;  

3. 𝐹(𝑥1
0, . . . , 𝑥𝑛

0, 𝑦0) = 0, 𝐹𝑦
′(𝑥1

0, . . . , 𝑥𝑛
0, 𝑦0) ≠ 0.  

Тогда существует параллелепипед  

𝑄 = {(𝑥1, . . . , 𝑥𝑛 , 𝑦): |𝑥𝑖 − 𝑥𝑖
0| < 𝑑𝑖, 𝑖 = 1, . . . , 𝑛, |𝑦 − 𝑦0| ≤ 𝑐; 𝑑𝑖 > 0, 𝑐 > 0}⸦𝜔,  

в котором уравнение (10.1) определяет единственную неявную функцию вида (10.2). 

Эта функция дифференцируема, и ее частные производные выражаются формулой: 

𝜕𝑓

𝜕𝑥𝑖
= −

𝐹𝑥
′(𝑥1, . . . , 𝑥𝑛 , 𝑦)

𝐹𝑦′(𝑥1, . . . , 𝑥𝑛 , 𝑦)
|
𝑦=𝑓(𝑥1,...,𝑥𝑛)

. 

 Доказательство теоремы 4 проводится аналогично доказательству теорем 2 и 3. 

 

О неявных функциях, определяемых системой уравнений  

 Рассмотрим систему 𝑚 уравнений 

{
𝐹1(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) = 0,

…
𝐹𝑚(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) = 0.

    (10.3) 

Решение этой системы относительно 𝑦1, . . . , 𝑦𝑚: 

𝑦1 = 𝑓1(𝑥1, . . . , 𝑥𝑛), . . . , 𝑦𝑚 = 𝑓𝑚(𝑥1, . . . , 𝑥𝑛)    (10.4) 

называется системой неявных функций, определяемой системой уравнений (10.3). 

 Мы рассмотрим вопросы о существовании, единственности и 

дифференцируемости неявных функций вида (10.4), определяемых системой уравнений 

(10.3). Оказывается, что при исследовании системы (10.3) важную роль играет 

определитель: 

∆=

|

|

𝜕𝐹1
𝜕𝑦1

𝜕𝐹1
𝜕𝑦2

…
𝜕𝐹1
𝜕𝑦𝑚

𝜕𝐹2
𝜕𝑦1

𝜕𝐹2
𝜕𝑦2

…
𝜕𝐹2
𝜕𝑦𝑚

⋮
𝜕𝐹𝑚
𝜕𝑦1

⋮
𝜕𝐹𝑚
𝜕𝑦2

⋱
…

⋮
𝜕𝐹𝑚
𝜕𝑦𝑚

|

|

, 
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который называется определителем Якоби или якобианом функций 𝐹1, … , 𝐹𝑚 по 

аргументам 𝑦1, . . . , 𝑦𝑚 . Часто для якобиана используют более краткое обозначение: 

∆=
𝐷(𝐹1, … , 𝐹𝑚)

𝐷(𝑦1, . . . , 𝑦𝑚)
. 

 

 Теорема 5.  

 Пусть выполнены условия:  

1. 𝐹1, … , 𝐹𝑚 определены и дифференцируемы в некоторой окрестности 𝜔 точки 

𝑀0(𝑥1
0, . . . , 𝑥𝑛

0, 𝑦1
0, . . . , 𝑦𝑚

0 ); 

2. 
𝜕𝐹𝑖

𝜕𝑦𝑗
(𝑖, 𝑗 = 1,… ,𝑚) непрерывны в точке 𝑀0;  

3. 𝐹1(𝑀0) = 0, … , 𝐹𝑚(𝑀0) = 0, ∆|𝑀0 ≠ 0.  

Тогда существует параллелепипед  

𝑄 = {(𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑚): |𝑥𝑖 − 𝑥𝑖
0| < 𝑑𝑖 , 𝑖 = 1, . . . , 𝑛, |𝑦𝑗 − 𝑦𝑗

0| ≤ 𝑐𝑗, 𝑗 = 1, . . . ,𝑚; 𝑑𝑖 >

0, 𝑐𝑗 > 0}⸦𝜔,  

в котором система уравнений (10.3) определяет единственную систему неявных 

функций вида (10.4). Причем эти неявные функции дифференцируемы. 

 

 Пример. 

 Рассмотрим систему из двух уравнений: 

{
𝐹1(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 3 = 0,

𝐹2(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 − 1 = 0.
    (10.5) 

Первое уравнение описывает сферу радиуса √3 с центром в начале координат, второе – 

плоскость. Будем рассматривать данную систему относительно 𝑦 и 𝑧 (выразим их через 

𝑥) в окрестности точки 𝑀0(1,1,−1).  

 Убедимся, что для нашей системы выполнены все условия Теоремы 5. Функции 

𝐹1, 𝐹2 дифференцируемы в окрестности точки 𝑀0. Частные производные 𝐹1𝑦
′ = 2𝑦, 𝐹1𝑧

′ =

2𝑧, 𝐹2𝑦
′ = 1, 𝐹2𝑧

′ = 1 непрерывны в окрестности точки 𝑀0. Наконец, 𝐹1(𝑀0) =

0, 𝐹2(𝑀0) = 0 и якобиан 

∆|𝑀0 = 
𝐷(𝐹1, 𝐹2)

𝐷(𝑦, 𝑧)
|
𝑀0

= |
2 −2
1 1

| = 4 ≠ 0. 

Следовательно, в некоторой окрестности точки 𝑀0 система уравнений (10.5) 

определяет единственную пару функций вида 𝑦 = 𝑓1(𝑥), 𝑧 = 𝑓2(𝑥), причем эти функции 

дифференцируемы. Получим формулы для производных функций 

𝑓1(𝑥), 𝑓2(𝑥), подставим их в систему (10.5), тогда ∀𝑥 в окрестности точки 𝑥 = 1 имеем: 

{
𝑥2 + 𝑓1

2(𝑥) + 𝑓2
2(𝑥) − 3 = 0,

𝑥 + 𝑓1(𝑥) + 𝑓2(𝑥) − 1 = 0.
 

Продифференцируем оба тождества по 𝑥 и получим систему уравнений относительно 

первых производных 𝑓1
′(𝑥), 𝑓2

′(𝑥): 
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{
2𝑥 + 2𝑓1(𝑥)𝑓1

′(𝑥) + 2𝑓2(𝑥)𝑓2
′(𝑥) = 0

1 + 𝑓1
′(𝑥) + 𝑓2

′(𝑥) = 0
⇒ {

𝑓1(𝑥)𝑓1
′(𝑥) + 𝑓2(𝑥)𝑓2

′(𝑥) = −𝑥

𝑓1
′(𝑥) + 𝑓2

′(𝑥) = −1
. 

По формулам Крамера решение имеет вид: 

𝑓1
′(𝑥) =

𝑓2(𝑥) − 𝑥

𝑓1(𝑥) − 𝑓2(𝑥)
, 

𝑓2
′(𝑥) =

𝑥 − 𝑓1(𝑥)

𝑓1(𝑥) − 𝑓2(𝑥)
. 

Полагая 𝑥 = 1, имеем 𝑓1(1) = 1, 𝑓2(1) = −1 и 𝑓1
′(1) = −1, 𝑓2

′(1) = 0. Производные 2-го 

порядка можно найти по формулам: 

𝑓1
′′(𝑥) = [

𝑓2(𝑥) − 𝑥

𝑓1(𝑥) − 𝑓2(𝑥)
]

′

, 

𝑓2
′′(𝑥) = [

𝑥 − 𝑓1(𝑥)

𝑓1(𝑥) − 𝑓2(𝑥)
]

′

. 

 Если нарисовать сферу и плоскость, которые задаются уравнениями (10.5) в 

прямоугольной системе координат 𝑂𝑥𝑦𝑧, то линией их пересечения будет некая 

окружность. Отметим на этой окружности точку 𝑀0(1,1,−1), в  некоторой небольшой 

окрестности этой точки мы получим дугу окружности, рассмотрим проекции этой дуги 

на координатные плоскости 𝑂𝑥𝑦 и 𝑂𝑧𝑥. Эти проекции являются графиками функций 

𝑦 = 𝑓1(𝑥) и 𝑧 = 𝑓2(𝑥), то есть тех самых неявных функций, которые определяются 

уравнениями (10.5) в окрестности точки 𝑀0. 

 

Зависимость функций 

 В курсе линейной алгебры было введено понятие линейного пространства и 

линейной зависимости элементов линейного пространства. Элементы называются 

линейно зависимыми, если существует их линейная комбинация, у которой не все 

коэффициенты равны нулю, дающая нулевой элемент пространства.  

 Рассмотрим линейное пространство 𝐶[𝑎, 𝑏] функций, непрерывных на сегменте 

[𝑎, 𝑏], то есть 𝐶[𝑎, 𝑏] = {𝑓(𝑥): 𝑓(𝑥) − непрерывны на [𝑎, 𝑏]}. Линейная зависимость 

функций  в пространстве 𝐶[𝑎, 𝑏] означает, что хотя бы одну из них можно представить 

в виде линейной комбинации остальных. 

 Введем более общее понятие зависимости функций, которое включает в себя как 

частный случай понятие линейной зависимости. Начнем с примера:  

𝑦1(𝑥) = 𝑥, 𝑦2(𝑥) = 𝑥
2, 𝑎 ≤ 𝑥 ≤ 𝑏. 

Функции 𝑦1(𝑥) и 𝑦2(𝑥) не являются линейно зависимыми на сегменте [𝑎, 𝑏], так как ни 

при каких числах 𝐶1 и 𝐶2 равенства:  

𝑦1(𝑥) = 𝐶1𝑦2(𝑥) ∀𝑥 ∈ [𝑎, 𝑏], 

𝑦2(𝑥) = 𝐶2𝑦1(𝑥) ∀𝑥 ∈ [𝑎, 𝑏], 

или 

𝑥 = 𝐶1𝑥
2 ∀𝑥 ∈ [𝑎, 𝑏], 
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𝑥2 = 𝐶2𝑥 ∀𝑥 ∈ [𝑎, 𝑏] 

не выполняются. Они верны только в точках 𝑥 = 0 и 𝑥 = 1. Однако между функциями 

𝑦1(𝑥) и 𝑦2(𝑥) есть нелинейная зависимость, которая выражается формулой:  

𝑦2(𝑥) = 𝑦1
2(𝑥) ∀𝑥 ∈ [𝑎, 𝑏]. 

 Перейдем к общему понятию зависимости функций. Пусть функции  

𝑦1 = 𝑓1(𝑥1, . . . , 𝑥𝑛), 𝑦2 = 𝑓2(𝑥1, . . . , 𝑥𝑛), . . . , 𝑦𝑚 = 𝑓𝑚(𝑥1, . . . , 𝑥𝑛)   (10.6) 

определены и дифференцируемы в области 𝐷 ⊂ ℝ
𝑛 . 

  

 Определение. Функция 𝑦𝑘 = 𝑓𝑘(𝑥1, . . . , 𝑥𝑛) называется зависимой в области 𝐷 от 

остальных функций системы (10.6), если для всех точек области 𝐷 эту функцию можно 

представить в виде  

𝑦𝑘 = 𝛷(𝑦1, . . . , 𝑦𝑘−1, 𝑦𝑘+1, . . . , 𝑦𝑚),     (10.7)  

где 𝛷(𝑦1, . . . , 𝑦𝑘−1, 𝑦𝑘+1, . . . , 𝑦𝑚) − дифференцируемая функция своих аргументов. 

 

 Равенство (10.7) нужно понимать так, что если в него вместо 𝑦1, … , 𝑦𝑚 

подставить функции (10.6), то получится тождество, справедливое ∀𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈

𝐷:  

𝑓𝑘(𝑥) = 𝛷(𝑓1(𝑥),… , 𝑓𝑘−1(𝑥), 𝑓𝑘+1(𝑥),… , 𝑓𝑚(𝑥)). 

В данном определении существенно то, что функция 𝛷 зависит только от 𝑦1, . . . , 𝑦𝑚 

(кроме 𝑦𝑘) и не зависит от 𝑥1, . . . , 𝑥𝑛. 

 

 Определение. Функции (10.6) называются зависимыми в области 𝐷, если одна из 

них (все равно какая) зависит в этой области от остальных функций. В противном 

случае функции (10.6) называются независимыми в области 𝐷. 

 

 Пример 1. Рассмотрим 3 функции от 4-х аргументов: 

{

𝑦1 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4,
𝑦2 = 𝑥1 − 𝑥2 + 𝑥3 − 𝑥4,

𝑦3 = (𝑥1 + 𝑥3)
2 + (𝑥2 + 𝑥4)

2.
 

Эти функции зависимы в любой области 𝐷 ⊂ ℝ
4
, поскольку для любой точки 

(𝑥1, 𝑥2, 𝑥3, 𝑥4) выполняется равенство  

𝑦3 =
1

2
(𝑦1

2 + 𝑦2
2). 

 

 Пример 2. Рассмотрим две функции от двух аргументов: 

𝑦1 = 𝑥1 + 𝑥2, 

𝑦2 = 𝑥1𝑥2. 

Интуитивно ясно, что сумму 𝑥1 + 𝑥2 двух произвольных чисел нельзя выразить через 

их произведение 𝑥1𝑥2, и наоборот. Докажем, что функции 𝑦1 и 𝑦2 независимы в любой 

окрестности точки начала координат 𝑂(0,0). 
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 Предположим противное, что функции 𝑦1 и 𝑦2 зависимы в некоторой 

окрестности точки 𝑂(0,0). Тогда для всех точек (𝑥1, 𝑥2) из этой окрестности либо 𝑦1 =

𝛷1(𝑦2), либо 𝑦2 = 𝛷2(𝑦1).  

 Допустим, что верно  

𝑦1 = 𝛷1(𝑦2).       (10.8) 

Рассмотрим отрезок лежащий на оси 𝑂𝑥 в окрестности точки начала координат 

𝐿1 = {(𝑥1, 𝑥2): 𝑥1 ∈ 𝐼, 𝑥2 = 0}, 

где 𝐼 − некоторый интервал. На этом отрезке  

𝑦1 = 𝑥1, 

𝑦2 = 0, 

поэтому равенство (10.8) принимает вид  

𝑥1 = 𝛷1(0) = 𝑐𝑜𝑛𝑠𝑡, 

но это противоречит тому, что на отрезке 𝐿1 координата 𝑥1 не является постоянной, а 

изменяется на интервале 𝐼. Значит предположение (10.8) неверно. 

 Допустим, что верно  

𝑦2 = 𝛷2(𝑦1).       (10.9) 

В этом случае рассмотрим отрезок лежащий на прямой 𝑥1 = −𝑥2 в окрестности точки 

начала координат 

𝐿2 = {(𝑥1, 𝑥2):  𝑥1 + 𝑥2 = 0}. 

На этом отрезке  

𝑦1 = 0, 

𝑦2 = −𝑥1
2. 

Следовательно, из равенства (10.9) мы получаем, что 

−𝑥1
2 = 𝛷2(0) = 𝑐𝑜𝑛𝑠𝑡, 

но это противоречит тому, что на отрезке 𝐿2 координата 𝑥1 не является постоянной. 

 Итак, ни одна из функций 𝑦1, 𝑦2 не зависит от другой в любой окрестности 

точки 𝑂(0,0), значит, эти функции независимы в любой окрестности точки 𝑂(0,0). 

  

 Задание. Докажите, что функции в примере 2 независимы в любой области из 

ℝ
2. 

 

 Пример 3. Рассмотрим функции 

𝑦1 = {
𝑥2, 𝑥 ≥ 0
0, 𝑥 ≤ 0

, 𝑦2 = {
𝑥2, 𝑥 ≥ 0

0, −1 ≤ 𝑥 ≤ 0
(𝑥 + 1)2, 𝑥 ≤ −1

. 

 Докажите, что ∀𝑥 ∈ ℝ ∃ окрестность этой точки, в которой функция 𝑦1 зависит 

от функции 𝑦2, но вместе с тем функция 𝑦1 не зависит от функции 𝑦2 на всей числовой 

прямой. Аналогично, докажите, что функция 𝑦2 не зависит от функции 𝑦1 на всей 

числовой прямой, тем самым будет доказано, что эти функции независимы на всей 

числовой прямой.  
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 Рассмотрим функции 

𝑦1 = 𝑓1(𝑥1, . . . , 𝑥𝑛), 𝑦2 = 𝑓2(𝑥1, . . . , 𝑥𝑛), . . . , 𝑦𝑚 = 𝑓𝑚(𝑥1, . . . , 𝑥𝑛)   (10.10) 

при условии 𝑛 ≥ 𝑚. Введем матрицу 

𝐴 =

(

 
 
 
 
 
 

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…
𝜕𝑓1
𝜕𝑥𝑚

⋮
𝜕𝑓𝑘
𝜕𝑥1

⋮
𝜕𝑓𝑘
𝜕𝑥2

…

⋮
𝜕𝑓𝑘
𝜕𝑥𝑚

⋮
𝜕𝑓𝑚
𝜕𝑥𝑦1

⋮
𝜕𝑓𝑚
𝜕𝑥2

⋱
…

⋮
𝜕𝑓𝑚
𝜕𝑥𝑚)

 
 
 
 
 
 

. 

Выберем какие-нибудь 𝑚 столбцов с номерами 𝑖1, 𝑖2, . . . , 𝑖𝑚 . Пересечение этих столбцов 

со строками матрицы 𝐴 дает минор -го порядка, который является якобианом  
𝐷(𝑓1,…,𝑓𝑚)

𝐷(𝑥𝑖1 ,...,𝑥𝑖𝑚)
.      (10.11) 

  

 Теорема 6 (достаточное условие независимости функций). Пусть 

1. функции (10.10) определены и дифференцируемы в окрестности 𝜔 точки 

𝑀0(𝑥1
0, . . . , 𝑥𝑛

0), 

2. какой-нибудь якобиан вида (10.11) не равен нулю в точке 𝑀0.  

Тогда функции (10.11) независимы в любой окрестности точки 𝑀0. 

 Доказательство. 

 Допустим, что функции (10.11) зависимы в окрестности 𝜔 точки 𝑀0, тогда одна 

из них, например, 𝑦𝑘  может быть представлена в виде: 

𝑦𝑘 = 𝛷(𝑦1, … , 𝑦𝑘−1, 𝑦𝑘+1, … , 𝑦𝑚), 

то есть 

𝑓𝑘(𝑥) = 𝛷(𝑓1(𝑥),… , 𝑓𝑘−1(𝑥), 𝑓𝑘+1(𝑥),… , 𝑓𝑚(𝑥)), 

где для краткости введено обозначение 𝑥 = (𝑥1, . . . , 𝑥𝑛). И пусть якобиан 

𝐷(𝑓1, … , 𝑓𝑚)

𝐷(𝑥1, . . . , 𝑥𝑚)
|
𝑀0

≠ 0. 

По правилу дифференцирования сложной функции получаем 

𝜕𝑓𝑘
𝜕𝑥1

=
𝜕𝛷

𝜕𝑦1

𝜕𝑓1
𝜕𝑥1

+⋯+
𝜕𝛷

𝜕𝑦𝑚

𝜕𝑓𝑚
𝜕𝑥1

,  

… 

𝜕𝑓𝑘
𝜕𝑥𝑛

=
𝜕𝛷

𝜕𝑦1

𝜕𝑓1
𝜕𝑥𝑛

+⋯+
𝜕𝛷

𝜕𝑦𝑚

𝜕𝑓𝑚
𝜕𝑥𝑛

. 

Эти равенства показывают, что -я строка якобиана 
𝐷(𝑓1,…,𝑓𝑚)

𝐷(𝑥1,...,𝑥𝑚)
 является линейной 

комбинацией остальных строк с коэффициентами 
𝜕𝛷

𝜕𝑦1
, … ,

𝜕𝛷

𝜕𝑦𝑘−1
,
𝜕𝛷

𝜕𝑦𝑘+1
, … ,

𝜕𝛷

𝜕𝑦𝑚
. 

Следовательно, этот якобиан равен нулю во всех точках окрестности 𝜔, в том числе и в 
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точке 𝑀0. Но это противоречит условию теоремы, и, значит, функции (10.10) 

независимы в 𝜔. Теорема 6 доказана. 
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ЛЕКЦИЯ 11. УСЛОВНЫЙ ЭКСТРЕМУМ 

 На прошлой лекции мы сформулировали Теорему 6, сформулируем следствие из 

нее. 

 Следствие. Если функции (10.11) зависимы в некоторой области, то все миноры 

m-го порядка матрицы 𝐴 равны нулю во всех точках этой области. Для якобиана 
𝐷(𝑓1,…,𝑓𝑚)

𝐷(𝑥1,...,𝑥𝑚)
 это доказано по ходу доказательства теоремы 6, для любого другого якобиана 

вида утверждение доказывается аналогично. 

 

Общая теорема о зависимости и независимости функций 

 

 Теорема 7.  

 Пусть 

1. функции 𝑓1, … , 𝑓𝑚  дифференцируемы в окрестности 𝜔 точки 𝑀0(𝑥1
0, . . . , 𝑥𝑛

0), 

2. все 
𝜕𝑓𝑖

𝜕𝑥𝑗
 (𝑖 = 1,… , 𝑛, 𝑗 = 1, … ,𝑚) непрерывны в точке 𝑀0, 

3. имеется минор -го порядка матрицы 𝐴, неравный нулю в точке 𝑀0. 

4. все миноры (𝑟 + 1)-го порядка матрицы 𝐴 тождественно равны нулю в окрестности 

𝜔 точки 𝑀0. 

 Тогда  

1. 𝑟 функций, указанных в миноре -го порядка независимы в 𝜔, 

2. остальные (𝑚 − 𝑟) функций зависят от указанных 𝑟 функций в некоторой 

окрестности 𝜔1 ⊂ 𝜔. 

  

 Первое утверждение следует из Теоремы 6, доказательство второго утверждения 

технически довольно сложное.  

 

 Пример. Рассмотрим функции  

{

𝑦1 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4,
𝑦2 = 𝑥1 − 𝑥2 + 𝑥3 − 𝑥4,

𝑦3 = (𝑥1 + 𝑥3)
2 + (𝑥2 + 𝑥4)

2.
 

Составим для этих функций матрицу 𝐴: 

𝐴 = (
1 1 1                   1
1 −1 1               −1

2(𝑥1 + 𝑥3) 2(𝑥2 + 𝑥4) 2(𝑥1 + 𝑥3) 2(𝑥2 + 𝑥4)
). 

Минор, образованный пересечением первых двух строк и первых двух столбцов 

матрицы 𝐴: 

𝑀 = |
1 1
1 −1

| = −2 ≠ 0 

отличен от нуля в любой точке, а все миноры третьего порядка матрицы 𝐴 

тождественно равны нулю в любой области. Поэтому, согласно Теореме 7, функции 𝑦1 
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и 𝑦2 независимы в любой окрестности любой точки, а функция 𝑦3 зависит от 𝑦1 и 𝑦2. 

Мы уже решали этот пример, не зная Теоремы 7, усмотрев, что  

𝑦3 =
1

2
(𝑦1

2 + 𝑦2
2). 

 

Условный экстремум 

 Задача об условном экстремуме функции заключается в нахождении точек 

локального экстремума данной функции при условии, что ее аргументы не являются 

независимыми переменными, а связаны между собой некоторыми равенствами 

(условиями связи). 

  

 Пример. Требуется найти экстремумы функции  

𝑢 = 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 

при условии, что ее аргументы 𝑥 и 𝑦 связаны соотношением 

𝐹(𝑥, 𝑦) = 𝑥𝑦 − 1 = 0. 

У функции 𝑢 нет точек локального экстремума, хотя бы потому что не выполнено 

необходимое условие экстремума, то есть равенство нулю частных производных. 

Таким образом функция 𝑢 не имеет никакого безусловного экстремума, но, если же 

наложить условие связи, то окажется, что у данной функции есть условный экстремум. 

 Из условия связи выразим  

𝑦 =
1

𝑥
, 

подставим это выражение в формулу для функции и получим 

𝑢 = 𝑔(𝑥) = 𝑥 +
1

𝑥
. 

Найдем точки возможного экстремума функции 𝑔(𝑥):  

𝑔′(𝑥) = 1 −
1

𝑥2
= 0 ⇒ 𝑥 = ±1. 

Поскольку  

𝑔′′(𝑥) =
2

𝑥3
 

и 𝑔′′(1) > 0, 𝑔′′(−1) < 0, в точке 𝑥 = 1 функция 𝑔(𝑥) имеет локальный минимум, а 

точке 𝑥 = −1 – локальный максимум. По условию связи 𝑥 = 1 соответствует 𝑦 = 1, и 

𝑥 = −1 соответствует 𝑦 = −1. Тогда в точке 𝑀1(1,1) функция 𝑢 = 𝑥 + 𝑦 имеет 

минимум при условии связи 𝑥𝑦 − 1 = 0, а в точке 𝑀2(−1,−1) – максимум при том же 

условии связи. 

 Данная задача допускает наглядную геометрическую иллюстрацию. Мы 

рассматриваем нашу функцию на плоскости 𝑥𝑦, множество точек, которые 

удовлетворяет условию связи, является гиперболой (рис. 11.1). Мы находим 

экстремумы нашей функции по отношению не ко всем точкам плоскости, а по 

отношению только к точкам, лежащим на этих гиперболах. Проведем, так называемые, 
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линии уровня нашей функции, то есть линии, на которых функция сохраняет 

постоянное значение:  

𝑢 = 𝑥 + 𝑦 = 𝐶 = 𝑐𝑜𝑛𝑠𝑡. 

Точка 𝑀1(1,1) соответствует 𝐶 = 2, наглядно видно, что это минимальное значение 

функции по отношению ко остальным точкам гиперболы. Аналогично, в точке 

𝑀2(−1, −1) функция равна −2, это максимальное значение функции по отношению ко 

остальным точкам гиперболы. 

  

 
Рис. 11.1. Иллюстрация к примеру. 

  

 Перейдем к общей постановке задачи об условном экстремуме функции. 

Рассмотрим функцию  

𝑢 = 𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑓(𝑀)      (11.1) 

при условии, что ее аргументы связаны между собой 𝑚 (𝑚 < 𝑛) соотношениями 

(условиями связи): 

𝐹1(𝑥1, . . . , 𝑥𝑛) = 0, … , 𝐹𝑚(𝑥1, . . . , 𝑥𝑛) = 0.    (11.2) 

Пусть координаты точки 𝑀0(𝑥1
0, . . . , 𝑥𝑛

0) удовлетворяют системе уравнений (11.2). 

 

 Определение. Говорят, что функция (11.1) имеет в точке 𝑀0 условный минимум 

(максимум), если существует окрестность точки 𝑀0, в которой для любой точки 

𝑀(𝑥1, . . . , 𝑥𝑛) ≠ 𝑀0, координаты которой удовлетворяют уравнениям (11.2), 

выполняется неравенство  

𝑓(𝑀) < 𝑓(𝑀0) (𝑓(𝑀) > 𝑓 (𝑀0)). 

 Иначе говоря, условный минимум (максимум) – это наименьшее (наибольшее) 

значение функции в точке 𝑀0 по отношению не ко всем точкам из некоторой 

окрестности точки 𝑀0, а только к тем из них, которые связаны между собой условиями 
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связи. Экстремум функции без условий связи (то есть тот экстремум, который 

рассматривался в предыдущих лекциях) будем называть безусловным. 

 

Два метода решения задачи об условном экстремуме 

 Первый метод. Сведение к задаче о безусловном экстремуме.  

 Пусть для системы уравнений (11.2) выполнены условия Теоремы 5 о неявных 

функциях: 

1. 𝐹1, … , 𝐹𝑚 определены и дифференцируемы в некоторой окрестности 𝜔 точки 

𝑀0(𝑥1
0, . . . , 𝑥𝑛

0); 

2. 
𝜕𝐹𝑖

𝜕𝑥𝑗
(𝑖, 𝑗 = 1,… ,𝑚) непрерывны в точке 𝑀0;  

3. 𝐹1(𝑀0) = 0, … , 𝐹𝑚(𝑀0) = 0,
𝐷(𝐹1,…,𝐹𝑚)

𝐷(𝑥1,...,𝑥𝑚)
|
𝑀0

≠ 0.  

 Тогда в некотором параллелепипеде  

𝑄 = {(𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑚): |𝑥𝑖 − 𝑥𝑖
0| < 𝑑𝑖 , 𝑖 = 1, . . . , 𝑛, |𝑦𝑗 − 𝑦𝑗

0| ≤ 𝑐𝑗, 𝑗 = 1, . . . ,𝑚; 𝑑𝑖

> 0, 𝑐𝑗 > 0}⸦𝜔, 

система уравнений (11.2) имеет единственное решение относительно 𝑥1, … , 𝑥𝑚: 

𝑥1 = 𝜑1(𝑥𝑚+1, … , 𝑥𝑛),… , 𝑥𝑚 = 𝜑𝑚(𝑥𝑚+1, … , 𝑥𝑛).   (11.3) 

Причем 𝜑1, … , 𝜑𝑚 дифференцируемы, и  

𝜑1(𝑀0
′ ) = 𝜑1(𝑥𝑚+1

0 , … , 𝑥𝑛
0) = 𝑥1

0, 

… 

𝜑𝑚(𝑀0
′ ) = 𝜑𝑚(𝑥𝑚+1

0 , … , 𝑥𝑛
0) = 𝑥𝑚

0 . 

 Если удается найти функции (11.3) в явном виде, то, подставляя их вместо 

𝑥1, . . . , 𝑥𝑚 в формулу (11.1), получим функцию 

𝑢 = 𝑓(𝜑1(𝑥𝑚+1, … , 𝑥𝑛), . . . , 𝜑𝑚(𝑥𝑚+1, … , 𝑥𝑛), 𝑥𝑚+1, … , 𝑥𝑛) =: 𝑔(𝑥𝑚+1, … , 𝑥𝑛).   

   (11.4) 

Если функция (11.4) имеет в точке 𝑀0
′ (𝑥𝑚+1

0 , … , 𝑥𝑛
0) безусловный экстремум, то 

функция (11.1) имеет в точке 𝑀0 условный экстремум при условиях связи (11.2). 

 Таким образом, вопрос об условном экстремуме функции (11.1) при условиях 

связи (11.2) сводится в параллелепипеде 𝑄 к вопросу о безусловном экстремуме 

функции (11.4). Именно такой подход был использован в рассмотренном в начале 

параграфа примере. 

 

 Второй метод. Метод Лагранжа. 

 В этом методе не используются явные выражения для неявных функций (11.3), 

но по-прежнему считаются выполненными условия Теоремы 5. 

 Введем так называемую функцию Лагранжа: 

𝛷(𝑀) = 𝑓(𝑀) + 𝜆1𝐹1(𝑀) + ⋯+ 𝜆𝑚𝐹𝑚(𝑀), 

где 𝑓(𝑀) − функция (11.1), 𝐹1(𝑀),… , 𝐹𝑚(𝑀) − функции из (11.2), 𝜆1, … , 𝜆𝑚 − пока 

произвольные числа (они называются множителями Лагранжа). Заметим, что в точках 
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𝑀(𝜑1(𝑥𝑚+1, … , 𝑥𝑛), . . . , 𝜑𝑚(𝑥𝑚+1, … , 𝑥𝑛), 𝑥𝑚+1, … , 𝑥𝑛), удовлетворяющих условиям связи 

(11.2), выполняются равенства: 

𝛷(𝑀) = 𝑓(𝑀) = 𝑔(𝑀′), 

где 𝑀′ = 𝑀′(𝑥𝑚+1, … , 𝑥𝑛) ∈ ℝ
𝑛−𝑚 . Таким образом, 

𝑔(𝑥𝑚+1, … , 𝑥𝑛) = 𝛷(𝜑1(𝑥𝑚+1, … , 𝑥𝑛), . . . , 𝜑𝑚(𝑥𝑚+1, … , 𝑥𝑛), 𝑥𝑚+1, … , 𝑥𝑛).  

 (11.5) 

 Выведем необходимое (по Лагранжу) условие условного экстремума функции 

(11.1) при условиях связи (11.2) в точке 𝑀0(𝜑1(𝑀0
′ ),… , 𝜑𝑚(𝑀0

′ ), 𝑥𝑚+1
0 , … , 𝑥𝑛

0). Пусть 

функция 𝑓(𝑀) (а значит и функция 𝛷(𝑀)) дифференцируема в точке 𝑀0 и имеет в этой 

точке условный экстремум при условиях связи (11.2). Тогда функция 𝑔(𝑀′) 

дифференцируема в точке 𝑀0
′ (𝑥𝑚+1

0 , … , 𝑥𝑛
0) и имеет безусловный экстремум в этой 

точке. Следовательно, 

𝑑𝑔|𝑀0′ = 0. 

Это равенство в силу (11.5) можно записать в виде: 

𝑑𝑔|𝑀0′ =
𝜕𝛷

𝜕𝑥1
(𝑀0)𝑑𝑥1 +⋯+

𝜕𝛷

𝜕𝑥𝑚
(𝑀0)𝑑𝑥𝑚 +

𝜕𝛷

𝜕𝑥𝑚+1
(𝑀0)𝑑𝑥𝑚+1 +⋯+

𝜕𝛷

𝜕𝑥𝑛
(𝑀0)𝑑𝑥𝑛 = 0, 

 (11.6) 

где 𝑑𝑥𝑚+1, … , 𝑑𝑥𝑛 − дифференциалы независимых переменных, а  

𝑑𝑥𝑖 = 𝑑𝜑𝑖|𝑀0′ , 𝑖 = 1, … ,𝑚. 

 Докажем, что 𝜆1, … , 𝜆𝑚 можно выбрать так, что будут выполнены равенства: 
𝜕𝛷

𝜕𝑥1
(𝑀0) = 0,… ,

𝜕𝛷

𝜕𝑥𝑚
(𝑀0) = 0.     (11.7) 

Запишем равенства (11.7) в развернутом виде: 

𝜕𝑓

𝜕𝑥1
(𝑀0) + 𝜆1

𝜕𝐹1
𝜕𝑥1

(𝑀0) + ⋯+ 𝜆𝑚
𝜕𝐹𝑚
𝜕𝑥1

(𝑀0) = 0, 

… 

𝜕𝑓

𝜕𝑥𝑚
(𝑀0) + 𝜆1

𝜕𝐹1
𝜕𝑥𝑚

(𝑀0) +⋯+ 𝜆𝑚
𝜕𝐹𝑚
𝜕𝑥𝑚

(𝑀0) = 0. 

Написанные равенства представляют собой систему 𝑚 линейных уравнений 

относительно 𝜆1, … , 𝜆𝑚, определитель которой является транспонированным по 

отношению к якобиану 
𝐷(𝐹1,…,𝐹𝑚)

𝐷(𝑥1,...,𝑥𝑚)
|
𝑀0

≠ 0 в силу нашего предположения о выполнении 

условий Теоремы 5. 

 Взяв в качестве 𝜆1, … , 𝜆𝑚 это решение, получим вполне определенную функцию 

Лагранжа, удовлетворяющую условиям  (11.7). В силу (11.7) равенство (11.6) 

принимает вид: 
𝜕𝛷

𝜕𝑥𝑚+1
(𝑀0)𝑑𝑥𝑚+1 +⋯+

𝜕𝛷

𝜕𝑥𝑛
(𝑀0)𝑑𝑥𝑛 = 0.    (11.8) 

Так как 𝑑𝑥𝑚+1, … , 𝑑𝑥𝑛 − дифференциалы независимых переменных, то из (11.8) 

следует, что 
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𝜕𝛷

𝜕𝑥𝑚+1
(𝑀0)𝑑 = 0, … ,

𝜕𝛷

𝜕𝑥𝑛
(𝑀0) = 0.     (11.9) 

Наши рассуждения приводят к следующей теореме. 

 

 Теорема 8 (необходимое по Лагранжу условие условного экстремума).  

 Если функция 𝑓(𝑀) дифференцируема в точке 𝑀0 и имеет в этой точке 

условный экстремум при условиях связи (11.2), и если выполнены условия Теоремы 5, 

то существует функция Лагранжа  

𝛷(𝑀) = 𝑓(𝑀) + 𝜆1𝐹1(𝑀) +⋯+ 𝜆𝑚𝐹𝑚(𝑀), 

которая удовлетворяет в точке 𝑀0 условиям (11.7) и (11.9), то есть  
𝜕𝛷

𝜕𝑥𝑖
(𝑀0) = 0, 𝑖 = 1,… , 𝑛.     (11.10) 

  

 Теорема 8 определяет следующий метод отыскания точек условного экстремума 

функции 𝑓(𝑀) при условиях связи (11.2). Составим функцию Лагранжа 

𝛷(𝑀) = 𝑓(𝑀) + 𝜆1𝐹1(𝑀) + ⋯+ 𝜆𝑚𝐹𝑚(𝑀) 

и рассмотрим систему уравнений, состоящую из равенств (11.2) и (11.10): 

𝐹1(𝑀) = 0,… , 𝐹𝑚 = 0,
𝜕𝛷

𝜕𝑥1
= 0,… ,

𝜕𝛷

𝜕𝑥𝑛
= 0.   (11.11) 

Система (11.11) состоит из 𝑚 + 𝑛 уравнений относительно 𝑚 + 𝑛 неизвестных 

𝜆1, … , 𝜆𝑚 , 𝑥1, . . . , 𝑥𝑛 . Пусть система (11.11) имеет решение 𝜆1
0, … , 𝜆𝑚

0 , 𝑥1
0, … , 𝑥𝑛

0. Тогда для 

функции Лагранжа  

𝛷 = 𝑓 + 𝜆1
0𝐹1 +⋯+ 𝜆𝑚

0 𝐹𝑚 

в точке 𝑀0(𝑥1
0, … , 𝑥𝑛

0) выполнены равенства (11.10). В силу Теоремы 8 это означает, что 

точка 𝑀0 является точкой возможного условного экстремума функции 𝑓(𝑀) при 

условиях связи (11.2). 

 Чтобы установить, имеет ли на самом деле функция 𝑓(𝑀) условный экстремум в 

точке 𝑀0, воспользуемся тем, что вопрос об условном экстремуме функции 𝑓(𝑀) в 

точке 𝑀0 эквивалентен вопросу о безусловном экстремуме функции 𝑔(𝑀′) в точке 

𝑀0
′ (𝑥𝑚+1

0 , … , 𝑥𝑛
0). В свою очередь, для того, чтобы функция 𝑔(𝑀′)  имела безусловный 

экстремум в точке 𝑀0
′ , достаточно, чтобы квадратичная форма 

𝑑2𝑔|𝑀0′ = 𝑄(𝑑𝑥𝑚+1, … , 𝑑𝑥𝑛)     (11.12) 

была знакоопределенной. Если эта квадратичная форма знакоопределенная, то функция 

𝑔(𝑀′)  имеет в точке 𝑀0
′  экстремум, а значит функция 𝑓(𝑀) имеет в точке 𝑀0 условный 

экстремум при условиях связи (11.2). Если же эта квадратичная форма 

знакопеременная, то условного экстремума функции 𝑓(𝑀) в точке 𝑀0 нет. Это и есть 

достаточное условие наличия или отсутствия условного экстремума функции 𝑓(𝑀) в 

точке 𝑀0 при условиях связи (11.2). 
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 Встает вопрос о том, как вычислить квадратичную форму 𝑄(𝑑𝑥𝑚+1, … , 𝑑𝑥𝑛), то 

есть как найти ее коэффициенты, если нам неизвестны явные выражения функций 

(11.3), хотя сами эти функции существуют. 
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ЛЕКЦИИ 12. КРАТНЫЕ И ДВОЙНЫЕ ИНТЕГРАЛЫ 

 

Вычисление квадратичной формы 

 На прошлой лекции мы остановились на этапе вычисления квадратичной формы 

(11.12). Из (11.5) следует, что первый дифференциал функции 𝑔(𝑀’) можно записать в 

виде 

𝑑𝑔|𝑀’ = (
𝜕

𝜕𝑥1
+⋯+

𝜕

𝜕𝑥𝑛
)𝛷|

𝑀’

, 

где 𝑑𝑥𝑚+1, … , 𝑑𝑥𝑛 − дифференциалы независимых переменных, 𝑑𝑥1, … , 𝑑𝑥𝑚 − 

дифференциалы неявных функций (11.3). В точке 𝑀0
′ (𝑥𝑚+1

0 , … , 𝑥𝑛
0) второй 

дифференциал имеет вид: 

𝑑2𝑔|𝑀0′ = (
𝜕

𝜕𝑥1
+⋯+

𝜕

𝜕𝑥𝑛
)
2

𝛷|
𝑀0

+ [
𝜕𝛷

𝜕𝑥1
(𝑀0)𝑑

2𝑥1 +⋯+
𝜕𝛷

𝜕𝑥𝑚
(𝑀0)𝑑

2𝑥𝑚]. 

В силу (11.10) каждое слагаемое в квадратных скобках равно нулю, и значит 

𝑑2𝑔|𝑀0′ = (
𝜕

𝜕𝑥1
+⋯+

𝜕

𝜕𝑥𝑛
)
2

𝛷|
𝑀0

.     (12.1) 

 Таким образом, для нахождения 𝑑2𝑔|𝑀0′ , то есть для вычисления квадратичной 

формы нужно вычислить второй дифференциал функции Лагранжа 𝛷(𝑀) в точке 𝑀0, 

причем так, как если бы все аргументы 𝑥1, . . . , 𝑥𝑛 были независимыми переменными, а 

затем заменить 𝑑𝑥1, … , 𝑑𝑥𝑚 дифференциалами неявных функций (11.3) в точке 𝑀0
′ .  

 В свою очередь, чтобы найти дифференциалы функций (11.3) в точке 𝑀0
′ : 

𝑑𝑥1 = 𝑑𝜑1|𝑀0′ , … , 𝑑𝑥𝑚 = 𝑑𝜑𝑚|𝑀0′ , 

не используя явных выражений для этих функций (у нас нет этих явных выражений), 

подставим неявные функции 𝑥1, … , 𝑥𝑚 в систему уравнений (11.2). Получим тождества: 

𝐹1(𝜑1, … , 𝜑𝑚 , 𝑥𝑚+1, … , 𝑥𝑛) ≡ 0, 

… 

𝐹𝑚(𝜑1, … , 𝜑𝑚 , 𝑥𝑚+1, … , 𝑥𝑛) ≡ 0. 

Дифференцируя эти тождества в точке 𝑀0
′  и используя инвариантность формы первого 

дифференциала, приходим к равенствам: 

𝜕𝐹1
𝜕𝑥1

(𝑀0)𝑑𝜑1|𝑀0′ +⋯+
𝜕𝐹1
𝜕𝑥𝑚

(𝑀0)𝑑𝜑𝑚|𝑀0′ +
𝜕𝐹1
𝜕𝑥𝑚+1

(𝑀0)𝑑𝑥𝑚+1 +⋯+
𝜕𝐹1
𝜕𝑥𝑛

(𝑀0)𝑑𝑥𝑛 = 0, 

… 

𝜕𝐹𝑚
𝜕𝑥1

(𝑀0)𝑑𝜑1|𝑀0′ +⋯+
𝜕𝐹𝑚
𝜕𝑥𝑚

(𝑀0)𝑑𝜑𝑚|𝑀0′ +
𝜕𝐹𝑚
𝜕𝑥𝑚+1

(𝑀0)𝑑𝑥𝑚+1 +⋯+
𝜕𝐹𝑚
𝜕𝑥𝑛

(𝑀0)𝑑𝑥𝑛 = 0. 

(12.2) 

Эти равенства представляют собой систему 𝑚 линейных уравнений относительно 

дифференциалов 𝑑𝜑1|𝑀0′ , … , 𝑑𝜑𝑚
|
𝑀0

′ , причем определитель системы равен якобиану  
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𝐷(𝐹1, … , 𝐹𝑚)

𝐷(𝑥1, . . . , 𝑥𝑚)
|
𝑀0

≠ 0.  

 Следовательно, из этой системы однозначно находятся искомые дифференциалы 

𝑑𝜑1|𝑀0′ , … , 𝑑𝜑𝑚
|
𝑀0

′  через 𝑑𝑥𝑚+1, … , 𝑑𝑥𝑛 . Подставляя найденные выражения в формулу 

(12.1), получаем искомую квадратичную форму 𝑄(𝑑𝑥𝑚+1, … , 𝑑𝑥𝑛). 

 

 Пример. 

 Найдем экстремумы функции 𝑢 = 𝑥 + 𝑦 при условии связи 𝑥𝑦 − 1 = 0. В данном 

случае для решения задачи можно было бы использовать первый метод, но мы 

применим для решения метод Лагранжа. Введем функцию Лагранжа  

𝛷 = 𝑓 + 𝜆1𝐹1 = 𝑥 + 𝑦 + 𝜆(𝑥𝑦 − 1). 

Рассмотрим систему уравнений (11.11), которая в нашем случае имеет вид: 

{
 
 

 
 
𝐹1 = 𝑥𝑦 − 1 = 0
𝜕𝛷

𝜕𝑥
= 1 + 𝜆𝑦 = 0

𝜕𝛷

𝜕𝑦
= 1 + 𝜆𝑥 = 0

. 

Эта система имеет два решения: 𝜆1 = 1, 𝑥1 = −1, 𝑦1 = −1 и 𝜆1 = −1, 𝑥1 = 1, 𝑦1 = 1. 

Таким образом, имеем две точки возможного условного экстремума функции 𝑢 = 𝑥 + 𝑦 

при условии связи 𝑥𝑦 − 1 = 0: точка 𝑀1(−1,−1), при этом 𝛷 = 𝑥 + 𝑦 + (𝑥𝑦 − 1), и 

𝑀2(1,1), при этом 𝛷 = 𝑥 + 𝑦 − (𝑥𝑦 − 1), и точка . 

 Далее в соответствии с описанным алгоритмом вычислим второй дифференциал 

функции Лагранжа, причем так, как если бы 𝑥 и 𝑦 были независимыми переменными. 

Для точки 𝑀1(−1, −1) имеем: 

𝑑𝛷 = 𝑑𝑥 + 𝑑𝑦 + 𝑦𝑑𝑥 + 𝑥𝑑𝑦, 

𝑑2𝛷 = 2𝑑𝑥𝑑𝑦. 

В нашем случае система (12.2) состоит из одного уравнения: 

𝜕𝐹1
𝜕𝑥

(𝑀1)𝑑𝑥 +
𝜕𝐹1
𝜕𝑦

(𝑀1)𝑑𝑦 = 0 ⇒ 𝑑𝑦 = −𝑑𝑥. 

Тогда  

𝑄(𝑑𝑥) = −2(𝑑𝑥)2. 

Так как 𝑄(𝑑𝑥) − положительно определенная квадратичная форма, то в точке 

𝑀1(−1,−1) функция 𝑢 = 𝑥 + 𝑦 имеет условный максимум при условии связи 𝑥𝑦 − 1 =

0. 

 Аналогично доказывается, что в точке 𝑀2(1,1) функция 𝑢 = 𝑥 + 𝑦 имеет 

условный минимум при условии связи 𝑥𝑦 − 1 = 0 (проведите доказательство 

самостоятельно). 

 

Кратные интегралы. Площадь плоской фигуры 
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 Под плоской фигурой будем понимать любое множество точек плоскости. 

Рассмотрим произвольную ограниченную плоскую фигуру 𝐺. Многоугольник 𝑄в будем 

называть вписанным в фигуру 𝐺, а многоугольник 𝑄о — описанным около фигуры 𝐺, 

если 𝑄в ⊂ 𝐺 ⊂ 𝑄о (рис. 12.1). Понятие площади многоугольника считаем известным, 

будем использовать обозначения 𝑃(𝑄в) = 𝑃в и 𝑃(𝑄о) = 𝑃о для площадей вписанного и 

описанного многоугольников соответственно.  

 
Рис. 12.1. Вписанный и описанный многоугольники. 

 Рассмотрим  множество {𝑃в} площадей всех вписанных в фигуру 𝐺 

многоугольников. Оно ограничено сверху (площадью любого описанного 

многоугольника) и, следовательно, имеет точную верхнюю грань 𝑃 = 𝑠𝑢𝑝{𝑃в}. Если в 

фигуру 𝐺 нельзя вписать ни одного многоугольника, то положим 𝑃 = 0. Аналогично, 

множество {𝑃о} площадей всевозможных описанных многоугольников ограничено 

снизу (например, числом нуль) и, следовательно, имеет точную нижнюю грань 𝑃 =

𝑖𝑛𝑓{𝑃о}. Числа 𝑃 и 𝑃 называются нижней и верхней площадью фигуры 𝐺. 

 Отметим, что всегда верно утверждение 𝑃 ≤ 𝑃. Если допустить, что 𝑃 > 𝑃 (см. 

рис. 12.2), то найдутся такие 𝑃в и 𝑃о, для которых выполнено неравенство 𝑃о < 𝑃в, чего 

не может быть. Таким образом, для любых 𝑄в и 𝑄о выполняются неравенства: 

𝑃в ≤ 𝑃 ≤ 𝑃 ≤ 𝑃о.      (12.3) 

 

 
Рис. 12.2. Допущение. 

 

 Определение. Плоская фигура 𝐺 называетсяквадрируемой, если 𝑃 = 𝑃. При этом 

число 𝑃 = 𝑃 = 𝑃 называется площадью фигуры 𝐺 (по Жордану).  

 

 Примеры.  

1. Всякий многоугольник является, очевидно, квадрируемой фигурой в смысле данного 

определения, и его площадь по Жордану равна площади, введенной в элементарной 

геометрии.  

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

78 

 

 

2. Примером неквадрируемой фигуры является множество точек 𝐺 = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤

1, 0 ≤ 𝑦 ≤ 1, 𝑥 и 𝑦 − рациональные числа}. Так как 𝑃 = 0, 𝑃 = 1, то 𝑃 ≠ 𝑃, поэтому 

фигура 𝐺 не квадрируема по Жордану. (Тем не менее она будет квадрируема по 

Лебегу.) 

 

 Теорема 1. Для того, чтобы плоская фигура 𝐺 была квадрируемой, необходимо и 

достаточно, чтобы ∀𝜀 > 0 ∃ 𝑄в и 𝑄о: 𝑃о − 𝑃в < 𝜀. 

 Доказательство.  

1) Необходимость. Пусть 𝐺 — квадрируемая фигура площади 𝑃, тогда по определению 

𝑃 = 𝑃 = 𝑃. Согласно определению точных граней числового множества ∀𝜀 > 0 ∃ 𝑄в и 

𝑄о: 𝑃 − 𝑃в <
𝜀

2
 и 𝑃о − 𝑃 <

𝜀

2
. Складывая эти неравенства, получаем 𝑃о − 𝑃в < 𝜀, и, тем 

самым, утверждение о необходимости доказано. 

2) Достаточность. Пусть ∀𝜀 > 0 ∃ 𝑄в и 𝑄о: 𝑃о − 𝑃в < 𝜀. Отсюда и из неравенств (12.3) 

следует, что 0 ≤ 𝑃 − 𝑃 < 𝜀, а так как 𝜀 — произвольное положительное число, то𝑃 −

𝑃 = 0, то есть 𝑃 = 𝑃. Это и означает (по определению), что фигура 𝐺 квадрируема. 

Утверждение о достаточности доказано. 

 

 Пусть функция 𝑦 = 𝑓(𝑥) ≥ 0 неотрицательна и непрерывна на сегменте [𝑎, 𝑏] 

(рис. 12.3). Фигура, ограниченная графиком этой функции, отрезком [𝑎, 𝑏] оси 𝑂𝑥 и 

двумя вертикальными отрезками 𝑥 = 𝑎 и 𝑥 = 𝑏 (каждый из этих отрезков может 

вырождаться в точку), называется криволинейной трапецией. 

 
Рис. 12.3. Криволинейная трапеция. 

  

 Теорема 2. Криволинейная трапеция квадрируема и ее площадь 𝑃 выражается 

формулой: 

𝑃 = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

. 

 Доказательство. Так как функция 𝑓(𝑥) непрерывна на сегменте [𝑎, 𝑏], то она 

интегрируема на этом сегменте. Поэтому ∀𝜀 > 0 найдется такое разбиение сегмента 
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[𝑎, 𝑏], для которого 𝑆 − 𝑠 < 𝜀, где 𝑆, 𝑠 − суммы Дарбу этого разбиения. Заметим, что 

𝑆 − площадь описанного около криволинейной трапеции ступенчатого многоугольника 

(𝑆 = 𝑃о), а 𝑠 − площадь вписанного ступенчатого многоугольника (𝑠 = 𝑃в) (рис. 12.4). 

 
Рис. 12.4. Вписанный и описанный ступенчатые многоугольники. 

 Таким образом, для ∀𝜀 > 0 ∃ 𝑄в и 𝑄о: 𝑃о − 𝑃в < 𝜀. Следовательно, согласно 

Теореме 1, криволинейная трапеция квадрируема. Пусть ее площадь равна 𝑃. Тогда для 

любых 𝑄в и 𝑄о выполняются неравенства 𝑃в ≤ 𝑃 ≤ 𝑃о, в частности, 𝑠 ≤ 𝑃 ≤ 𝑆. 

Перейдем в этих неравенствах к пределу при 𝛥 → 0 (𝛥 = max
1≤𝑖≤𝑛

∆𝑥𝑖 — максимальная 

длина частичного сегмента разбиения сегмента [𝑎, 𝑏]). По лемме Дарбу 

lim
𝛥→0 

𝑠 = lim
𝛥→0 

𝑆 = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

. 

Отсюда следует, что площадь также 

𝑃 = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

. 

Теорема 2 доказана. 

 

 Рассмотрим фигуру, изображенную на рис. 12.5. изображена. Это плоская 

фигура, ограниченная отрезками OA и OB, а также непрерывной кривой, заданной в 

полярных координатах уравнением 𝑟 = 𝑟(𝜑), 𝜑1 ≤ 𝜑 ≤ 𝜑2 .  

 
Рис. 12.5. Криволинейный сектор. 

Такая фигура называется криволинейным сектором. Площадь 𝑃 криволинейного 

сектора выражается формулой 
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𝑃 =
1

2
∫ 𝑟2(𝜑)𝑑𝜑

𝜑2

𝜑1

. 

Двойные интегралы 

 Пусть 𝐺 — квадрируемая и, следовательно, ограниченная область на плоскости 

𝑥𝑦. Пусть в области 𝐺 задана ограниченная функция 𝑓(𝑥, 𝑦) = 𝑓(𝐾).  

 
Рис. 12.6. Разбиение области 𝐺 на плоскости 𝑥𝑦. 

Разобьем произвольным образом область 𝐺 на 𝑛 квадрируемых частей 𝐺𝑖: 𝐺 = ⋃ 𝐺𝑖
𝑛
𝑖=1  

(рис. 12.6) так, что никакие две части 𝐺𝑖 и 𝐺𝑗 не имеют общих внутренних точек. В 

каждой части 𝐺𝑖 возьмем произвольным образом точку 𝐾𝑖(𝜉𝑖 , 𝜂𝑖) и составим сумму 

𝐼(𝐺𝑖, 𝐾𝑖) =∑𝑓(𝐾𝑖)𝑃(𝐺𝑖)

𝑛

𝑖=1

. 

 Введем понятие диаметра множества. Пусть G — ограниченное множество 

точек в пространстве ℝ
𝑛

, и пусть 𝑀1 и 𝑀2 — две произвольные точки из 𝐺. Числовое 

множество {𝜌(𝑀1,𝑀2)} всевозможных расстояний между точками 𝑀1 и 𝑀2 ограничено 

сверху и, следовательно, имеет точную верхнюю грань. Число  

𝑑 = 𝑠𝑢𝑝𝑀1∈𝐺
𝑀2∈𝐺

 {𝜌(𝑀1,𝑀2)} 

называется диаметром множества 𝐺. Обозначим через 𝑑𝑖 диаметр частичной области 𝐺𝑖, 

и 𝑑 = max
1≤𝑖≤𝑛

𝑑𝑖 . 

 Предел интегральных сумм lim
𝑑→0

𝐼(𝐺𝑖, 𝐾𝑖) (если он существует) называется 

двойным интегралом от функции 𝑓(𝑥, 𝑦) по области 𝐺 и обозначается: 

lim
𝑑→0

𝐼(𝐺𝑖, 𝐾𝑖) = ∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

=∬𝑓(𝐾)𝑑𝑆

𝐺

. 

 

Геометрический смысл двойного интеграла 

 Пусть 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺 непрерывная неотрицательная функция, тогда 

∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐺

− объем тела, изображенного на рисунке 12.7. 
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Рис. 12.7. Геометрический смысл двойного интеграла. 

Если 𝑓(𝑥, 𝑦) = 1 ∀(𝑥, 𝑦) ∈ 𝐺, то любая интегральная сумма равна площади области 𝐺: 

𝐼(𝐺𝑖, 𝐾𝑖) =∑𝑓(𝐾𝑖)𝑃(𝐺𝑖)

𝑛

𝑖=1

= 𝑃(𝐺), 

поэтому  

∬𝑑𝑥𝑑𝑦

𝐺

= 𝑃(𝐺). 
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ЛЕКЦИЯ 13. ДВОЙНЫЕ ИНТЕГРАЛЫ 

 Рассмотрим функцию двух переменных 𝑓(𝑥, 𝑦) в некоторой квадрируемой 

области 𝐺 на плоскости 𝑥𝑦. Разобьем эту область на частичные подобласти, составим 

интегральную сумму, предел интегральных сумм и называется двойным интегралом. 

Для того, чтобы вывести необходимые и достаточные условия интегрируемости для 

определенного интеграла, мы вводили понятие сумм Дарбу.  

 Для произвольного разбиения 𝐺 = ⋃ 𝐺𝑖
𝑛
𝑖=1  введем верхнюю и нижнюю суммы 

Дарбу функции 𝑓(𝑥, 𝑦): 

𝑆 =∑𝑀𝑖𝑃(𝐺𝑖)

𝑛

𝑖=1

, 𝑠 =∑𝑚𝑖𝑃(𝐺𝑖)

𝑛

𝑖=1

, 

где 𝑀𝑖 = sup
𝐺𝑖

𝑓(𝑥, 𝑦) ,𝑚𝑖 = inf
𝐺𝑖
𝑓(𝑥, 𝑦) , 𝑃(𝐺𝑖) − площадь 𝐺𝑖. Суммы Дарбу обладают 

такими же свойствами, как и в случае определенного интеграла, в частности, 

существуют нижний и верхний интегралы Дарбу 𝑠𝑢𝑝{𝑠} = 𝐼 и 𝑖𝑛𝑓{𝑆} = 𝐼. При этом 𝐼 ≤

𝐼 и lim
𝑑→0

𝑠 = 𝐼, lim
𝑑→0

𝑆 = 𝐼, где 𝑑 = max
1≤𝑖≤𝑛

𝑑𝑖 − диаметр 𝐺𝑖 (лемма Дарбу). 

 

 Теорема 3. Для того, чтобы ограниченная в квадрируемой области 𝐺 функция 

𝑓(𝑥, 𝑦) была интегрируемой в этой области, необходимо и достаточно, чтобы 𝐼 = 𝐼. 

При этом  

∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

= 𝐼 = 𝐼. 

 

 Теорема 4. Для того, чтобы ограниченная в квадрируемой области 𝐺 функция 

𝑓(𝑥, 𝑦) была интегрируемой в этой области, необходимо и достаточно, чтобы ∀𝜀 > 0 

существовало разбиение области 𝐺, у которого 𝑆 − 𝑠 < 𝜀. 

 

 Теорема 5. Если функция 𝑓(𝑥, 𝑦) непрерывна в замкнутой квадрируемой 

области, то она интегрируема в этой области.  

 

 Определение. Говорят, что множество 𝐺 является множеством площади нуль, 

если ∀𝜀 > 0 можно указать конечное число многоугольников, имеющих сумму 

площадей меньшую 𝜀 и содержащих в себе все точки множества 𝐺.  

 

 Теорема 6. Для того, чтобы ограниченая в замкнутой квадрируемой области 𝐺 

функция 𝑓(𝑥, 𝑦) была интегрируема в этой области, достаточно, чтобы множество ее 

точек разрыва было множеством площади нуль.   
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 Теоремы 3–6 доказываются так же, как аналогичные теоремы для определенного 

интеграла. Двойные интегралы обладают такими же свойствами, как и определенные 

интегралы. 

 

Вычисление двойных интегралов с помощью повторного интегрирования 

  

1) Сначала рассмотрим случай, когда функция 𝑓(𝑥, 𝑦) определена в 

прямоугольнике 𝑄 = {(𝑥, 𝑦): 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑}.  

 

 Теорема 7. Пусть:  

1. ∀𝑥 ∈ [𝑎, 𝑏] ∃∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑑

𝑐
= 𝐼(𝑥),  

2. ∃∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑄

. 

 Тогда ∃∫ 𝐼(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦

𝑑

𝑐

𝑏

𝑎
, он называется повторным и равен 

двойному интегралу, то есть 

∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑄

= ∫𝑑𝑥∫𝑓(𝑥, 𝑦)𝑑𝑦

𝑑

𝑐

𝑏

𝑎

. 

2) Рассмотрим область 𝑄 = {(𝑥, 𝑦): 𝑦1(𝑥) ≤ 𝑦 ≤ 𝑦2(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏} (рис. 13.1). 

 
Рис. 13.1. Трапециевидная область. 

Теорема 7’. Пусть  

1. ∀𝑥 ∈ [𝑎, 𝑏] ∃∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑦2(𝑥)

𝑦1(𝑥)
= 𝐼(𝑥), 

2. ∃∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑄

.  

Тогда ∃∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑦2(𝑥)

𝑦1(𝑥)

𝑏

𝑎
= ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺
.  

 

Для доказательства теоремы 7’ введем прямоугольник 𝑄 = {(𝑥, 𝑦): 𝑎 ≤ 𝑥 ≤

𝑦, 𝑐 ≤ 𝑦 ≤ 𝑑} такой, что 𝑐 ≤ 𝑦1(𝑥) ≤ 𝑦2(𝑥) ≤ 𝑑 (рис. 13.1). Введем функцию 𝐹(𝑥, 𝑦) в 

прямоугольнике 𝑄: 
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𝐹(𝑥, 𝑦) = {
𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺 

0, (𝑥, 𝑦) ∈ 𝑄\𝐺 
 

и применим к ней Теорему 7. 

 

 Пример.  

Рассмотрим на плоскости 𝑥𝑦 область, заключенную между кривыми 𝑦 = 𝑥 и 𝑦 =

𝑥2 (рис. 13.2) и вычислим интеграл 

𝐼 = ∬ 𝑥𝑦𝑑𝑥𝑑𝑦
𝐺

= ∫ 𝑑𝑥 ∫ 𝑥𝑦𝑑𝑦
𝑥

𝑥2
1

0
= ∫ 𝑑𝑥 [𝑥

𝑦2

2
|
𝑥2

𝑥

]
1

0
=

1

2
∫ (𝑥3 − 𝑥5)𝑑𝑥
1

0
=

1

2
(
𝑥4

4
−

𝑥6

6
)|
0

1

=

1

2
(
1

4
−

1

6
) =

1

24
. 

 
Рис. 13.2. Пример. 

 Вычислите этот же интеграл, но в обратном порядке, то есть 

𝐼 = ∫𝑑𝑦∫ 𝑥𝑦𝑑𝑥

√𝑦

𝑦

1

0

. 

Замена переменных в двойном интеграле 

Запишем хорошо вам известную формулу замены переменных в определенном 

интеграле. Рассмотрим интеграл ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 и произведем замену переменных 𝑥 =

𝜑(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽, тогда  

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ 𝑓(𝜑(𝑡))𝜑′(𝑡)𝑑𝑡

𝛽

𝛼

. 

Рассмотрим двойной интеграл ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐺

. Перейдем от переменных (𝑥, 𝑦) 

к новым переменным (𝑢, 𝑣) по формулам: 

𝑥 = 𝜑(𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝑔.   (13.1) 

При некоторых условиях справедливо равенство: 

∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐺

= ∬ 𝑓(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣)) |
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
| 𝑑𝑢𝑑𝑣

𝑔
,  (13.2) 
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где 
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
= |
𝜑𝑥
′ 𝜑𝑦

′

𝜓𝑢
′ 𝜓𝑣

′ |. Формула (13.2) называется формулой замены переменных в 

двойном интеграле. Произведение 𝑑𝑥𝑑𝑦 в формуле двойного интеграла, то есть элемент 

площади в декартовых прямоугольных координатах, в формуле (13.2) заменили на 

произведение |
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
| 𝑑𝑢𝑑𝑣, где 𝑑𝑢𝑑𝑣 так же является элементом площади, но уже в 

области 𝑔, |
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
| −  коэффициент растяжения площади.  

Рассмотрим нестрогий вывод формулы (13.2). Пусть функции (13.1) 

удовлетворяют условиям:  

I. Если точка (𝑢, 𝑣) пробегает область 𝑔, то соответствующая точка (𝑥, 𝑦) =

(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣)) пробегает область 𝐺, причем различным точкам (𝑢, 𝑣) из 

области 𝑔 соответствуют различные точки (𝑥, 𝑦) из области 𝐺. В таком случае 

говорят, что функции (13.1) задают взаимно однозначное отображение области 

𝑔 на область 𝐺. Область 𝑔 является праобразом области 𝐺, а 𝐺 − образом 𝑔 при 

отображении (13.1). 

 
Рис. 13.3. Взаимно однозначное отображение. 

II. Функции 𝜑(𝑢, 𝑣) и 𝜓(𝑢, 𝑣) имеют непрерывные частные производные первого 

порядка 𝜑𝑢
′ , 𝜑𝑣

′ , 𝜓𝑢
′ , 𝜓𝑣

′  в области 𝑔. 

III.  |
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
| ≠ 0 ∀(𝑢, 𝑣) ∈ 𝑔.  

 

 Зафиксируем переменную 𝑢, положив 𝑢 = 𝑢0 = 𝑐𝑜𝑛𝑠𝑡. Тогда по формулам (13.1) 

получим:  

𝑥 = 𝜑(𝑢0, 𝑣), 𝑦 = 𝜓(𝑢0, 𝑣).      (13.3) 

Уравнения (13.3) являются параметрическими уравнениями кривой, лежащей в области 

𝐺 (роль параметра играет переменная 𝑣). Аналогично, положив 𝑣 = 𝑣0 = 𝑐𝑜𝑛𝑠𝑡, 

получим параметрические уравнения другой кривой, лежащей в области 𝐺 (роль 

параметра играет переменная 𝑢): 

𝑥 = 𝜑(𝑢, 𝑣0), 𝑦 = 𝜓(𝑢, 𝑣0).     (13.4) 

Кривые (13.3) и (13.4) пересекаются в точке 𝑀0(𝑥0, 𝑦0), где 𝑥0 = 𝜑(𝑢0, 𝑣0), 𝑦0 =

𝜓(𝑢0, 𝑣0). 
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Рис. 13.4. Координатные 𝑢- и -линии. 

 

В силу условия I точка 𝑀0(𝑥0, 𝑦0) ∈ 𝐺 соответствует только одной точке (𝑢0, 𝑣0) 

из области 𝑔. Таким образом, точка 𝑀0 однозначно определяется парой чисел (𝑢0, 𝑣0) ∈

𝑔. Поэтому эти числа можно рассматривать как новые координаты точки 𝑀0. Кривая 

(13.3), на которой меняется только переменная 𝑣 называется координатной -линией, а 

кривая (13.4) –  координатной 𝑢-линией. Поскольку эти линии, вообще говоря, кривые, 

то числа 𝑢0 и 𝑣0 называются криволинейными координатами точки 𝑀0. Итак, формулы 

(13.1) можно рассматривать как формулы, посредством которых в области 𝐺 вводятся 

криволинейные координаты точек.  

 
Рис. 13.5. Пары близких координатных линий. 

Рассмотрим две пары близких координатных линий в области 𝐺. Они 

ограничивают криволинейный четырехугольник 𝑄 (рис. 13.5). Вычислим приближенно 

площадь этого четырехугольника, заменив его параллелограммом, построенным на 

векторах 𝑙1 и 𝑙2: 

𝑙1 = {𝜑(𝑢 + ∆𝑢, 𝑣) − 𝜑(𝑢, 𝑣), 𝜓(𝑢 + ∆𝑢, 𝑣) − 𝜓(𝑢, 𝑣)} = {𝜑𝑢
′ ∆𝑢, 𝜓𝑢

′ ∆𝑢}, 

𝑙2 = {𝜑𝑣
′∆𝑣, 𝜓𝑣

′∆𝑣}, 

где ∆𝑢 > 0, ∆𝑣 > 0 и производные 𝜑𝑢
′ , 𝜑𝑣

′ , 𝜓𝑢
′ , 𝜓𝑣

′  берутся в некоторых промежуточных 

точках. Площадь криволинейного четырехугольника приближенно вычисляется по 

формуле: 
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𝑃(𝑄) ≅ |[𝑙1 × 𝑙2]| = |
𝑖 𝑗 𝑘⃗⃗

𝜑𝑢
′ ∆𝑢 𝜓𝑢

′ ∆𝑢 0

𝜑𝑣
′∆𝑣 𝜓𝑣

′∆𝑣 0

| = |𝑘⃗⃗(𝜑𝑢
′𝜓𝑣

′ − 𝜑𝑣
′𝜓𝑢

′ )∆𝑢∆𝑣| ≅ |
𝐷(𝑥, 𝑦)

𝐷(𝑢, 𝑣)
|
(𝑢,𝑣̃)

∆𝑢∆𝑣, 

 

где (𝑢̃, 𝑣̃) − некоторая точка криволинейного четырехугольника. 

 

 
Рис. 13.6. Разбиения. 

Проведем на плоскости 𝑢𝑣 𝑛 + 1 вертикальный отрезок и 𝑚+ 1 горизонтальный 

отрезок, они разобьют область 𝑔 на части 𝑔𝑖𝑗 . Таким образом, для области 𝑔 мы имеем 

разбиение: 

𝑔 =⋃𝑔𝑖𝑗

𝑛,𝑚

𝑖=1
𝑗=1

. 

При этом область G разобьется на криволинейные четырехугольники 𝐺𝑖𝑗:  

𝐺 =⋃𝐺𝑖𝑗

𝑛,𝑚

𝑖=1
𝑗=1

. 

Конечно, те частичные области, которые примыкают к границе, не являются 

прямоугольниками, но мы будем игнорировать этот факт в рамках наших не строгих 

рассуждений. Тем более что, когда мы будем измельчать разбиения, эти 

прямоугольники, примыкающие к границе, будут становиться сколь угодно 

маленькими. Основная сложность в полном доказательстве формулы замены 

переменной состоит именно в том, что надо аккуратно оценить эти области, не 

являющиеся прямоугольниками. 

 Для площади 𝐺𝑖𝑗 имеем 

𝑃(𝐺𝑖𝑗) ≅ |
𝐷(𝑥, 𝑦)

𝐷(𝑢, 𝑣)
|
(𝑢𝑖,𝑣̃𝑗)

∆𝑢𝑖∆𝑣𝑗, 
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где ∆𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1, ∆𝑣𝑗 = 𝑣𝑗 − 𝑣𝑗−1. Составим интегральную сумму для функции 

𝑓(𝑥, 𝑦), соответствующую разбиению области 𝐺 на части 𝐺𝑖𝑗: 

𝐼(𝐺𝑖𝑗 , 𝐾𝑖𝑗) =∑𝑓(𝐾𝑖𝑗)𝑃(𝐺𝑖𝑗)

𝑖,𝑗

≅∑𝑓(𝜑(𝑢̃𝑖 , 𝑣̃𝑗), 𝜓(𝑢̃𝑖, 𝑣̃𝑗)) |
𝐷(𝑥, 𝑦)

𝐷(𝑢, 𝑣)
|
(𝑢𝑖,𝑣̃𝑗)

∆𝑢𝑖∆𝑣𝑗
𝑖,𝑗

, 

(13.5) 

где в качестве промежуточных точек берем 𝐾𝑖𝑗(𝑥𝑖𝑗, 𝑦𝑖𝑗), 𝑥𝑖𝑗 = 𝜑(𝑢̃𝑖 , 𝑣̃𝑗), 𝑦𝑖𝑗 = 𝜓(𝑢̃𝑖, 𝑣̃𝑗). 

Сумма в правой части формулы (13.5) является интегральной суммой для функции 

𝑓(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣)) |
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
|, соответствующей разбиению области 𝑔 на частичные 

области 𝑔𝑖𝑗 .  

 Пусть функция 𝑓(𝑥, 𝑦) непрерывная и пусть 𝐺, 𝑔 − замкнутые области. 

Перейдем в равенстве (13.5) к пределу при 𝑑𝑔 → 0, где 𝑑𝑔 = max 𝑑𝑖𝑗 , 𝑑𝑖𝑗 − диаметр 𝑔𝑖𝑗 , 

при этом также 𝑑𝐺 → 0, получим по определению двойного интеграла, что 

∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

= ∬𝑓(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣)) |
𝐷(𝑥, 𝑦)

𝐷(𝑢, 𝑣)
| 𝑑𝑢𝑑𝑣

𝑔

. 
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ЛЕКЦИЯ 14. ТРОЙНЫЕ ИНТЕГРАЛЫ 

Двойные интегралы 

 Продолжим рассматривать замену переменных в двойных интегралах. Пусть 

𝑓(𝑥, 𝑦) = 1, тогда из формулы (13.2) имеем: 

∬𝑑𝑥𝑑𝑦

𝐺

= 𝑃(𝐺) = ∬|
𝐷(𝑥, 𝑦)

𝐷(𝑢, 𝑣)
| 𝑑𝑢𝑑𝑣

𝑔

. 

Мы получили выражение для площади области 𝐺 через криволинейные координаты. 

𝑑𝑠 = 𝑑𝑥𝑑𝑦 − элемент площади в декартовых координатах, 𝑑𝑠 = |
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
| 𝑑𝑢𝑑𝑣 − элемент 

площади в криволинейных координатах, |
𝐷(𝑥,𝑦)

𝐷(𝑢,𝑣)
| − коэффициент растяжения площади. 

 
Рис. 14.1. Преобразование элемента площади. 

 

Пример 1(полярные координаты). Формулы, связывающие декартовы 

прямоугольные координаты (𝑥, 𝑦) и полярные координаты (𝑟, 𝜑): 

𝑥 = 𝑟 cos 𝜑 , 𝑦 = 𝑟 sin 𝜑 (𝑟 ≥ 0,0 ≤ 𝜑 ≤ 2𝜋).    (14.1) 

Равенства (14.1) задают отображение заштрихованной полу-полосы на плоскости (𝑟, 𝜑) 

(рис. 14.1) на всю плоскость (𝑥, 𝑦). 

 
Рис. 14.1. Полу-полоса 0 ≤ 𝜑 ≤ 2𝜋. 

Якобиан |
𝐷(𝑥,𝑦)

𝐷(𝑟,𝜑)
| = |

cos𝜑 −𝑟 sin𝜑
sin 𝜑 𝑟 cos𝜑

| = 𝑟. 

 Вычислим двойной интеграл 
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𝐼 = ∬(𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

𝐺

, 

где 𝐺 = {(𝑥, 𝑦): 𝑎2 ≤ 𝑥2 + 𝑦2 ≤ 𝑏2} − кольцо на плоскости 𝑥𝑦 (рис. 14.2). Перейдем к 

полярным координатам 0 ≤ 𝜑 ≤ 2𝜋, 𝑎 ≤ 𝑟 ≤ 𝑏: 

𝐼 = ∬𝑟2𝑟𝑑𝑟𝑑𝜑

𝑔

= ∫ 𝑑𝜑∫ 𝑟3𝑑𝑟

𝑏

𝑎

2𝜋

0

= 2𝜋
1

4
(𝑏4 − 𝑎4). 

 
Рис. 14.2. Кольцо 𝑎2 ≤ 𝑥2 + 𝑦2 ≤ 𝑏2. 

 

 Пример 2. Рассмотрим криволинейный сектор 𝐺 на плоскости 𝑥𝑦, вычислим его 

площадь. Переходя к полярным координатам 𝜑1 ≤ 𝜑 ≤ 𝜑2, 0 ≤ 𝑟 ≤ 𝑟(𝜑), получим на 

плоскости 𝑟𝜑 криволинейную трапецию 𝑔 (рис. 14.3). Для площади криволинейного 

сектора получим выражение 

𝑃(𝐺) =∬𝑑𝑥𝑑𝑦

𝐺

=∬𝑟𝑑𝑟𝑑𝜑

𝑔

= ∫ 𝑑𝜑 ∫ 𝑟𝑑𝑟

𝑟(𝜑)

0

𝜑2

𝜑1

=
1

2
∫ 𝑟2(𝜑)𝑑𝜑

𝜑2

𝜑1

. 

 
Рис. 14.3. Криволинейный сектор (слева) и криволинейная трапеция (справа). 

 

Тройные интегралы 

Тройные интегралы вводятся аналогично двойным интегралам. Понятия 

кубируемости и объема тела в трехмерном пространстве вводятся аналогично понятию 

квадрируемости и площади плоской фигуры (на основе рассмотрения вписанных и 

описанных для данного тела многогранников, для которых понятие объема считаем 

известным). 
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Пусть 𝐺 − кубируемая фигура в пространстве, и пусть в 𝐺 задана ограниченная 

функция 𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝐾),𝐾(𝑥, 𝑦, 𝑧). Разобьем фигуру 𝐺 на 𝑛 кубируемых фигур 

𝐺𝑖: 𝐺 = ⋃ 𝐺𝑖
𝑛
𝑖=1  без общих внутренних точек у любых двух частей и составим 

интегральную сумму: 

𝐼(𝐺𝑖, 𝐾𝑖) =∑𝑓(𝜉𝑖 , 𝜂𝑖 , 𝜁𝑖)𝑉(𝐺𝑖)

𝑛

𝑖=1

, 

где 𝐾𝑖(𝜉𝑖 , 𝜂𝑖 , 𝜁𝑖) ∈ 𝐺𝑖 − промежуточная точка, 𝑉(𝐺𝑖) − объем 𝐺𝑖. Введем диаметр 𝑑𝑖 

частичной области 𝐺𝑖 и 𝑑 = max
1≤𝑖≤𝑛

𝑑𝑖. Рассмотрим предел интегральных сумм при 𝑑 → 0, 

если lim
𝑑→0

𝐼(𝐺𝑖, 𝐾𝑖) существует, то он называется тройным интегралом от функции 

𝑓(𝑥, 𝑦, 𝑧) по области 𝐺 и обозначается 

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝐺

= ∫ 𝑓(𝐾)𝑑𝑉. 

Для тройных интегралов имеют место теоремы, аналогичные теоремам 3 – 6 для 

двойных интегралов.  

Вычисление тройных интегралов с помощью повторного интегрирования 

Мы сводили вычисление двойного интеграла к последовательному вычислению 

двух определенных интегралов. Аналогично можно свести вычисление тройного 

интеграла к вычислению сначала двойного интеграла, а затем определенного, либо, 

наоборот, сначала определенного, а затем двойного. 

 

1) Пусть 𝐺 − квадрируемая область на плоскости 𝑥𝑦, и в области 𝐺 задано две 

непрерывные функции 𝑧 = 𝑧1(𝑥, 𝑦) и 𝑧 = 𝑧2(𝑥, 𝑦), причем 𝑧1(𝑥, 𝑦) ≤ 𝑧2(𝑥, 𝑦). 

Рассмотрим в пространстве область 𝑇 = {(𝑥, 𝑦, 𝑧): 𝑧1(𝑥, 𝑦) ≤ 𝑧 ≤ 𝑧2(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺} 

(рис. 14.4). Пусть в области 𝑇 задана ограниченная функция 𝑓(𝑥, 𝑦, 𝑧). 
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Рис. 14.4. Область 𝑇 в пространстве. 

 

Теорема 8. Пусть  

1) ∃∭  𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
𝑇

, 

2) ∀(𝑥, 𝑦) ∈ 𝐺 ∃ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧
𝑧2(𝑥,𝑦)

𝑧1(𝑥,𝑦)
 

Тогда  

∃∬𝐼(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

, 

его обозначают 

∬𝑑𝑥𝑑𝑦 ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧

𝑧2(𝑥,𝑦)

𝑧1(𝑥,𝑦)𝐺

, 

он называется повторным интегралом, и справедливо равенство: 

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝑇

=∬𝑑𝑥𝑑𝑦 ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧

𝑧2(𝑥,𝑦)

𝑧1(𝑥,𝑦)𝐺

. 

(14.1) 

Теорема 8 доказывается аналогично Теореме 7’. 

 

Пример 1. Пусть область 𝑇 ограничена поверхностями 𝑆1: 𝑧
2 = 𝑥2 + 𝑦2 и 𝑆1: 𝑧 =

1 (рис. 14.5). Вычислим интеграл  
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∭ (𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦𝑑𝑧

𝑇

=∬𝑑𝑥𝑑𝑦 ∫ (𝑥2 + 𝑦2)𝑑𝑧

1

√𝑥2+𝑦2𝐺

=∬𝑑𝑥𝑑𝑦(𝑥2 + 𝑦2) (1 − √𝑥2 + 𝑦2)

𝐺

, 

где 𝐺 − круг радиуса 1 с центром в начале координат на плоскости. В двойном 

интеграле по области 𝐺 перейдем к полярным координатам: 𝑥 = 𝑟 cos𝜑 , 𝑦 =

𝑟 sin 𝜑 (0 ≤ 𝑟 ≤ 1,0 ≤ 𝜑 ≤ 2𝜋). Получим: 

𝐼 = ∫ 𝑑𝜑∫𝑟2(1 − 𝑟)𝑟𝑑𝑟

1

0

2𝜋

0

= 2𝜋 (
𝑟4

4
−
𝑟5

5
)
0

1

=
𝜋

10
. 

 
Рис. 14.5. Пример 1. 

 

 Пример 2. Пусть область 𝐺 = {(𝑥, 𝑦): 𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑦 ≤ 𝑦(𝑥)} на плоскости 𝑥𝑦 

является криволинейной трапецией. В этом случае  

∬𝐼(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

= ∫𝑑𝑥 ∫ 𝐼(𝑥, 𝑦)𝑑𝑦

𝑦(𝑥)

0

𝑏

𝑎

, 

и вычисление тройного интеграла сводится к последовательному вычислению трех 

определенных интегралов: 

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝑇

= ∫𝑑𝑥 ∫ 𝑑𝑦 ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧

𝑧2(𝑥,𝑦)

𝑧1(𝑥,𝑦)

𝑦(𝑥)

0

𝑏

𝑎

. 

 

2) Рассмотрим кубируемую область 𝑇, изображенную на рис. 14.6. Рассмотрим сечение 

тела плоскостью 𝑥 = 𝑐𝑜𝑛𝑠𝑡, получим фигуру 𝐺(𝑥). Пусть 𝐺(𝑥) − квадрируемая фигура 

∀𝑥 ∈ [𝑎, 𝑏], и в области 𝑇 задана ограниченная функция 𝑓(𝑥, 𝑦, 𝑧). 
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Рис. 14.6. Область 𝑇. 

Теорема 9. Пусть  

3) 1) ∃∭  𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
𝑇

, 

4) ∀𝑥 ∈ [𝑎, 𝑏] ∃∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧
𝐺(𝑥)

=: 𝐼(𝑥). 

Тогда  

∃∫ 𝐼(𝑥, 𝑦)𝑑𝑥

𝑏

𝑎

, 

его обозначают 

∫𝑑𝑥 ∬𝑓(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧

𝐺(𝑥)

𝑏

𝑎

, 

он называется повторным интегралом, и справедливо равенство: 

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝑇

= ∫𝑑𝑥 ∬𝑓(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧

𝐺(𝑥)

𝑏

𝑎

. 

(14.2) 

 Пример. Рассмотрим область 𝑇 = {(𝑥, 𝑦, 𝑧): √𝑥2 + 𝑦2 ≤ 𝑧 ≤ 1, (𝑥, 𝑦) ∈ 𝐺}, 

изображенную на рис. 14.6 и вычислим интеграл  

𝐼 =∭ (𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦𝑑𝑧

𝑇

= ∫𝑑𝑧 ∬(𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

𝐺(𝑧)

1

0

. 

Во внутреннем интеграле перейдем к полярным координатам:  

𝐼 = ∫𝑑𝑧∫ 𝑑𝜑∫𝑟2𝑟𝑑𝑟

𝑧

0

2𝜋

0

1

0

= ∫𝑑𝑧∫ 𝑑𝜑
𝑧4

4

2𝜋

0

1

0

= 2𝜋
𝑧5

20
|
0

1

=
𝜋

10
. 
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Рис. 14.6. Пример. 

 

Замена переменных в тройном интеграле 

Рассмотрим тройной интеграл ∭  𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
𝑇

. Перейдем от переменных 

(𝑥, 𝑦, 𝑧) к новым переменным (𝑢, 𝑣, 𝑤) по формулам: 

 𝑥 = 𝜑(𝑢, 𝑣,𝑤), 𝑦 = 𝜓(𝑢, 𝑣, 𝑤), 𝑧 = 𝜒(𝑢, 𝑣, 𝑤), (𝑢, 𝑣, 𝑤) ∈ 𝑔.   (14.3)  

Пусть функции (14.3) удовлетворяют таким же условиям I-III как в случае двойного 

интеграла. В частности  

|
𝐷(𝑥, 𝑦, 𝑧)

𝐷(𝑢, 𝑣, 𝑤)
| ≠ 0 ∀(𝑢, 𝑣,𝑤) ∈ 𝑔. 

Напишем формулу замены переменных по аналогии с тем, как она выглядела для 

двойного интеграла. Если 𝐺, 𝑔 − кубируемые замкнутые области, функция 𝑓(𝑥, 𝑦, 𝑧) − 

непрерывна в 𝐺 (за исключением быть может множества точек объема нуль) и 

ограничена в 𝐺, то справедлива формула: 

∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝑇

=∭ 𝑓(𝜑(𝑢, 𝑣, 𝑤), 𝜓(𝑢, 𝑣,𝑤), 𝜒(𝑢, 𝑣,𝑤)) |
𝐷(𝑥, 𝑦, 𝑧)

𝐷(𝑢, 𝑣,𝑤)
| 𝑑𝑢𝑑𝑣𝑑𝑤

𝑔

. 

(14.4) 

  Формула (14.4) называется формулой замены переменных в тройном интеграле.  

 Отметим частный случай 𝑓(𝑥, 𝑦, 𝑧) = 1, из формулы (14.4) получим формулу для 

объема тела через криволинейные координаты: 

∭ 𝑑𝑥𝑑𝑦𝑑𝑧

𝑇

= 𝑉(𝑇) =∭|
𝐷(𝑥, 𝑦, 𝑧)

𝐷(𝑢, 𝑣, 𝑤)
| 𝑑𝑢𝑑𝑣𝑑𝑤

𝑔

, 
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где 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 − элемент объема в декартовых координатах, 𝑑𝑉 =

|
𝐷(𝑥,𝑦,𝑧)

𝐷(𝑢,𝑣,𝑤)
| 𝑑𝑢𝑑𝑣𝑑𝑤 − элемент объема в криволинейных координатах, |

𝐷(𝑥,𝑦,𝑧)

𝐷(𝑢,𝑣,𝑤)
| − 

коэффициент растяжения объема. 
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ЛЕКЦИЯ 15. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 

Примеры криволинейных координат 

1) Цилиндрические координаты.  

Тройка чисел (𝑟, 𝜑, 𝑧) называется цилиндрическими координатами точки 𝑀 (рис. 15.1). 

Координатная поверхность 𝑟 = 𝑐𝑜𝑛𝑠𝑡 − цилиндрическая поверхность. Формулы, 

связывающие декартовы прямоугольные координаты (𝑥, 𝑦, 𝑧) и цилиндрические 

координаты: 

𝑥 = 𝑟 cos𝜑 , 𝑦 = 𝑟 sin 𝜑 , 𝑧 = 𝑧 (𝑟 ≥ 0, 0 ≤ 𝜑 ≤ 2𝜋,∞ ≤ 𝑧 ≤ ∞). 

Якобиан перехода имеет вид: 

|
𝐷(𝑥, 𝑦, 𝑧)

𝐷(𝑟, 𝜑, 𝑧)
| = 𝑟, 

тогда элемент объема 𝑑𝑉 = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧. 

 

 

 
Рис. 15.1. Цилиндрические координаты. 

 

2) Сферические координаты. 

Тройка чисел (𝑟, 𝜃, 𝜑) − сферические координаты точки 𝑀 (рис. 15.2). Координатная 

поверхность 𝑟 = 𝑐𝑜𝑛𝑠𝑡 − сфера. Формулы, связывающие декартовы прямоугольные 

координаты (𝑥, 𝑦, 𝑧) и сферические координаты: 

𝑥 = 𝑟 sin 𝜃 cos𝜑 , 𝑦 = 𝑟 sin 𝜃 sin 𝜑 , 𝑧 = 𝑟 cos𝜃 (𝑟 ≥ 0, 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜑 ≤ 2𝜋). 

Якобиан перехода имеет вид: 

|
𝐷(𝑥, 𝑦, 𝑧)

𝐷(𝑟, 𝜃, 𝜑)
| = 𝑟2 sin 𝜃, 

тогда элемент объема 𝑑𝑉 = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜑𝑑𝜃. 
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Рис. 15.2. Сферические координаты. 

 

 

Длина кривой 

Пусть на плоскости задана прямоугольная система координат 𝑂𝑥𝑦. Рассмотрим 

множество точек {𝑀(𝑥, 𝑦)}, координаты которых задаются уравнениями: 

 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽,     (15.1)  

где 𝜑(𝑡) и 𝜓(𝑡) − непрерывные функции на сегменте [𝛼, 𝛽]. В формуле (15.1) каждому 

𝑡 ∈ [𝛼, 𝛽] ставится в соответствие некоторая точка 𝑀(𝑥, 𝑦) из этого множества. Если же 

некоторой точке 𝑀(𝑥, 𝑦) соответствует несколько значений 𝑡, то такую точку назовем 

кратной. Пусть множество {𝑀(𝑥, 𝑦)} не содержит кратных точек, тогда оно называется 

простой плоской незамкнутой кривой. Точки 𝐴(𝜑(𝛼),𝜓(𝛼)) и 𝐵(𝜑(𝛽),𝜓(𝛽)) назовем 

граничными точками или концами кривой. Переменную 𝑡 называется параметром, а 

уравнения (15.1) параметрическими уравнениями кривой. Если точки 𝐴 и 𝐵 совпадают, 

а остальные точки не являются кратными, то кривая называется простой замкнутой 

кривой. 

 

Примеры: 

1) 𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 

a) 0 ≤ 𝑡 ≤ 𝜋 ⟹ простая незамкнутая кривая (полуокружность) 

b) 0 ≤ 𝑡 ≤ 2𝜋 ⟹ простая замкнутая кривая (окружность) 

c) 0 ≤ 𝑡 ≤ 4𝜋 ⟹ не простая кривая (двукратная окружность) 

2) График непрерывной функции 𝑦 = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 можно рассматривать как 

простую незамкнутую кривую, записав ее параметрические уравнения в виде: 

𝑥 = 𝑡, 𝑦 = 𝑓(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏. 

Пусть простая кривая (замкнутая или незамкнутая) задана параметрически 

уравнениями (15.1). Разобьем сегмент [𝛼, 𝛽] на 𝑛 частей точками 𝛼 = 𝑡0 < 𝑡1 < 𝑡2 <

⋯ < 𝑡𝑛 = 𝛽. Каждому значению 𝑡𝑖 соответствует точка 𝑀𝑖(𝜑(𝑡𝑖), 𝜓(𝑡𝑖)) на кривой (рис. 

15.3). Впишем в кривую ломаную 𝐴𝑀1𝑀2…𝐵. Длина 𝛥𝑙𝑖 𝑖-го звена ломаной равна 

длине отрезка 𝑀𝑖−1𝑀𝑖, а длина всей ломаной:  

𝑙(𝑡𝑖) =∑𝛥𝑙𝑖

𝑛

𝑖=1

. 
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Введем также обозначения: ∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1, ∆𝑡 = max
1≤𝑖≤𝑛

∆𝑡𝑖. 

 
Рис. 15.3. Ломаная. 

Определение. Число 𝑙 называется пределом длин ломаных 𝑙(𝑡𝑖) при 𝛥𝑡 → 0, если 

∀𝜀 > 0 ∃𝛿 > 0, такое, что для любого разбиения сегмента [𝛼, 𝛽], у которого 𝛥𝑡 < 𝛿 

выполняется неравенство 

0 ≤ 𝑙 − 𝑙(𝑡𝑖) < 𝜀. 

Если существует lim
𝛥𝑡→0

𝑙(𝑡𝑖) = 𝑙, то кривая называется спрямляемой, а число 𝑙 называется 

длиной кривой (иногда говорят «длиной дуги кривой»). 

 

 Теорема 1. Пусть простая кривая задана параметрическими уравнениями (15.1), 

и функции 𝜑(𝑡) и 𝜓(𝑡) имеют непрерывные производные 𝜑′(𝑡) и 𝜓′(𝑡)  на сегменте 

[𝛼, 𝛽]. Тогда кривая спрямляема, и ее длина 𝑙 выражается формулой: 

𝑙 = ∫ 𝑑𝑡√𝜑′2(𝑡) + 𝜓′2(𝑡)

𝛽

𝛼

. 

(15.2) 

Эвристика обосновывающая формулу (15.2). 

Рассмотрим сколь угодно малый элемент кривой 𝑑𝑙 (рис. 15.4): 

𝑑𝑙 = √𝑑𝑥2 + 𝑑𝑦2 = 𝑑𝑡√𝜑′2(𝑡) + 𝜓′2(𝑡), 

где мы учли, что 𝑑𝑥 = 𝜑′(𝑡)𝑑𝑡, 𝑑𝑦 = 𝜓′(𝑡)𝑑𝑡. Тогда для длины кривой получим 

𝑙 = ∫ 𝑑𝑡√𝜑′2(𝑡) + 𝜓′2(𝑡)

𝛽

𝛼

. 
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Рис. 15.4. Элемент кривой. 

Следствия: 

1) Пусть кривая задана в прямоугольной системе координат уравнением 𝑦 = 𝑓(𝑥), 𝑎 ≤

𝑥 ≤ 𝑏, причем функция 𝑓(𝑥) имеет на сегменте [𝑎, 𝑏] непрерывную производную 𝑓′(𝑥). 

Перейдем к параметрическим уравнениям кривой: 

𝑥 = 𝜑(𝑡) = 𝑡, 𝑦 = 𝜓(𝑡) = 𝑓(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏. 

Из (15.2) получаем формулу длины кривой, заданной явным уранвением: 

𝑙 = ∫ √1 + 𝑓′2(𝑡)𝑑𝑡

𝛽

𝛼

= ∫√1 + 𝑓′2(𝑥)𝑑𝑥

𝑏

𝑎

. 

2) Пусть кривая задана в полярных координатах уравнением 𝑟 = 𝑟(𝜑), 𝜑1 ≤ 𝜑 ≤ 𝜑2, и 

функция 𝑟(𝜑) имеет на сегменте [𝜑1, 𝜑2] непрерывную производную 𝑟′(𝜑). Переходя к 

декартовым координатам, получим уравнения кривой в параметрической форме (𝜑 − 

параметр): 

𝑥 = 𝑟(𝜑) cos𝜑 , 𝑦 = 𝑟(𝜑) sin 𝜑 (𝜑1 ≤ 𝜑 ≤ 𝜑2). 

По формуле (15.2) для длины кривой в полярных координатах получаем: 

𝑙 = ∫ 𝑑𝜑√𝑥′2(𝜑) + 𝑦′2(𝜑)

𝜑2

𝜑1

= ∫ 𝑑𝜑√𝑟2(𝜑) + 𝑟′2(𝜑)

𝜑2

𝜑1

. 

3) Пусть в полярных координатах кривая задана уравнением 𝜑 = 𝜑(𝑟), 𝑟1 ≤ 𝑟 ≤ 𝑟2. 

Выведите формулу: 

𝑙 = ∫ 𝑑𝑟√1 + 𝑟2𝜑′2(𝑟)

𝑟2

𝑟1

. 

 

Замечание о пространственной кривой.  

Простая не замкнутая кривая в пространстве задается как множество точек 

{𝑀(𝑥, 𝑦, 𝑧): 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝑧 = 𝜒(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽}, где 𝜑(𝑡), 𝜓(𝑡) и 𝜒(𝑡) − 

непрерывные функции на сегменте [𝛼, 𝛽], и множество {𝑀(𝑥, 𝑦, 𝑧)} не содержит 

кратных точек. Понятие длины кривой вводится таким же образом, как и для плоской 

кривой, и длина кривой выражается формулой 

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

101 

 

 

𝑙 = ∫ 𝑑𝑡√𝜑′2(𝑡) + 𝜓′2(𝑡) + 𝜒′2(𝑡)

𝛽

𝛼

. 

Пример 1. Пусть 𝑥 = 𝑅 cos 𝑡 , 𝑦 = 𝑅 sin 𝑡 , 0 ≤ 𝑡 ≤ 2𝜋, тогда по формуле (15.2) 

получаем: 

𝑙 = ∫ 𝑑𝑡√(−𝑅 sin 𝑡)2 + (𝑅 cos 𝑡)2

2𝜋

0

= 𝑅∫ 𝑑𝑡

2𝜋

0

= 2𝜋𝑅. 

Пример 2. Вычислите длину куска параболы 𝑦 = 𝑥2, 0 ≤ 𝑥 ≤ 1.  

 

Криволинейные интегралы первого рода 

Пусть 𝐿 − простая спрямляемая кривая, заданная параметрически, то есть 

𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽. 

Пусть на кривой 𝐿 задана ограниченная функция 𝑧 = 𝑓(𝑥, 𝑦). Разобьем сегмент [𝛼, 𝛽] на 

𝑛 частей точками 𝛼 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 = 𝛽. Каждому значению 𝑡𝑖 соответствует 

точка 𝑀𝑖(𝜑(𝑡𝑖), 𝜓(𝑡𝑖)) на кривой. При этом кривая 𝐿 разобьетсяна 𝑛 частей точками 𝐴 =

𝑀0, 𝑀1, . . . , 𝑀𝑛 = 𝐵. Обозначим через 𝛥𝑙𝑖  длину дуги 𝑀𝑖−1𝑀𝑖. Выберем на каждой дуге 

𝑀𝑖−1𝑀𝑖 выберем произвольную точку 𝐾𝑖(𝜉𝑖 , 𝜂𝑖) (см. рис. 15.5) и составим интегральную 

сумму: 

𝐼(𝑀𝑖, 𝐾𝑖) =∑𝑓(𝜉𝑖 , 𝜂𝑖)𝛥𝑙𝑖

𝑛

𝑖=1

. 

 

 
Рис. 15.5. Разбиение кривой 𝐿. 

Введем обозначение ∆𝑙 = max
1≤𝑖≤𝑛

𝛥𝑙𝑖.  

Предел интегральных сумм lim
∆𝑙→0

𝐼(𝑀𝑖, 𝐾𝑖) (если он существует) называется 

криволинейным интегралом первого рода от функции 𝑓(𝑥, 𝑦) по кривой 𝐿 и 

обозначается так ∫ 𝑓(𝑥, 𝑦)𝑑𝑙
𝐿

 или ∫ 𝑓(𝑥, 𝑦)𝑑𝑙
𝐴𝐵

. 

Из определения криволинейного интеграла следует, что он не зависит от того, в 

каком направлении пробегается кривая 𝐿, то есть 

∫ 𝑓(𝑥, 𝑦)𝑑𝑙

𝐴𝐵

= ∫ 𝑓(𝑥, 𝑦)𝑑𝑙

𝐵𝐴

. 
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Вычисление криволинейных интегралов первого рода с помощью определенных 

интегралов 

Теорема 2. Пусть  

1) 𝐿 − простая кривая, заданная параметрически уравнениями 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝛼 ≤ 𝑡 ≤

𝛽, причем функции 𝜑(𝑡) и 𝜓(𝑡) имеют на сегменте [𝛼, 𝛽] непрерывные производные 

𝜑′(𝑡) и 𝜓′(𝑡), одновременно не равные нулю, то есть 𝜑′2(𝑡) + 𝜓′2(𝑡) ≠ 0 ∀𝑡 ∈ [𝛼, 𝛽] (в 

таком случае кривая 𝐿 называется гладкой); 

2) функция 𝑓(𝑥, 𝑦) непрерывна вдоль кривой 𝐿.  

Тогда криволинейный интеграл ∫ 𝑓(𝑥, 𝑦)𝑑𝑙
𝐿

 существует, и справедливо равенство: 

∫ 𝑓(𝑥, 𝑦)𝑑𝑙

𝐿

= ∫ 𝑓(𝜑(𝑡), 𝜓(𝑡))√𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝛽

𝛼

. 

 Доказательство. 

Разобьем сегмент [𝛼, 𝛽] на 𝑛 частей точками 𝛼 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 = 𝛽. При 

этом кривая 𝐿 разобьетсяна 𝑛 частей точками 𝐴 = 𝑀0,𝑀1, … ,𝑀𝑛 = 𝐵, где 

𝑀𝑖(𝜑(𝑡𝑖), 𝜓(𝑡𝑖)). Обозначим через 𝛥𝑙𝑖   длину дуги 𝑀𝑖−1𝑀𝑖 , ∆𝑙 = max
1≤𝑖≤𝑛

𝛥𝑙𝑖, ∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1, 

∆𝑡 = max
1≤𝑖≤𝑛

∆𝑡𝑖 . Отметим, что 𝛥𝑙 → 0 при 𝛥𝑡 → 0, поскольку  

𝛥𝑙𝑖 = ∫ √𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1

, 

 и верно обратное утверждение: 𝛥𝑡 → 0 при 𝛥𝑙 → 0 (докажите сами). 

 
Рис. 15.6. Элемент дуги. 

Выберем на каждой дуге 𝑀𝑖−1𝑀𝑖 выберем произвольную точку 𝐾𝑖(𝜑(𝜏𝑖), 𝜓(𝜏𝑖)) и 

составим интегральную сумму: 

𝐼(𝑀𝑖, 𝐾𝑖) =∑𝑓(𝜑(𝜏𝑖), 𝜓(𝜏𝑖))𝛥𝑙𝑖

𝑛

𝑖=1

=∑ ∫ 𝑓(𝜑(𝜏𝑖), 𝜓(𝜏𝑖))√𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑛

𝑖=1

. 

Требуется доказать, что lim
∆𝑙→0

𝐼(𝑀𝑖, 𝐾𝑖) = 𝐼 (или, что то же самое, при 𝛥𝑡 → 0) 

существует и равен определенному интегралу  

𝐼 = ∫ 𝑓(𝜑(𝑡), 𝜓(𝑡))√𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝛽

𝛼

, 
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(15.3) 

или же что  

lim
∆𝑡→0

(𝐼(𝑀𝑖, 𝐾𝑖) − 𝐼) = 0. 

Интеграл (15.3) можно представить в виде суммы: 

𝐼 =∑ ∫ 𝑓(𝜑(𝑡), 𝜓(𝑡))√𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑛

𝑖=1

. 

Тогда 

𝐼(𝑀𝑖, 𝐾𝑖) − 𝐼 =∑ ∫[𝑓(𝜑(𝜏𝑖), 𝜓(𝜏𝑖)) − 𝑓(𝜑(𝑡), 𝜓(𝑡))]√𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑛

𝑖=1

. 

(15.4) 

Докажем, что ∀𝜀 > 0 ∃𝛿 > 0, такое, что для любого разбиения сегмента [𝛼, 𝛽], у 

которого ∆𝑡 < 𝛿 выполняется неравенство 

|𝐼(𝑀𝑖, 𝐾𝑖) − 𝐼| < 𝜀. 

Зададим произвольное 𝜀 > 0 и воспользуемся тем, что функция 𝑓(𝜑(𝑡), 𝜓(𝑡)) 

непрерывна на сегменте [𝛼, 𝛽], а, следовательно, по теореме Кантора и равномерно 

непрерывна на нем. Поэтому ∃𝛿 > 0, такое, что, если ∆𝑡 < 𝛿, то ∀𝜏𝑖 , 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖] будет 

выполнено неравенство: 

|𝑓(𝜑(𝜏𝑖), 𝜓(𝜏𝑖)) − 𝑓(𝜑(𝑡), 𝜓(𝑡))| <
𝜀

𝑙
, 

где 𝑙 − длина кривой 𝐿. Из (15.4) получаем 

|𝐼(𝑀𝑖, 𝐾𝑖) − 𝐼| ≤ ∑
𝜀

𝑙
∫ √𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑛

𝑖=1

=
𝜀

𝑙
∑𝛥𝑙𝑖

𝑛

𝑖=1

= 𝜀. 

Что и требовалось доказать. 
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ЛЕКЦИЯ 16. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ I И II РОДА 

 На прошлой лекции мы ввели понятие криволинейного интеграла I рода по 

плоской кривой 𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽 при условии, что кривая гладкая, то 

есть 𝜑(𝑡) и 𝜓(𝑡) имеют непрерывные производные 1-го порядка, причем ∀𝑡 ∈

[𝛼, 𝛽]:  𝜑′2(𝑡) + 𝜓′2(𝑡) ≠ 0. На кривой 𝐿 задана непрерывная функция 𝑓(𝑥, 𝑦). Тогда  

∫ 𝑓(𝑥, 𝑦)𝑑𝑙

𝐿

= ∫ 𝑓(𝜑(𝑡), 𝜓(𝑡))√𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡

𝛽

𝛼

. 

(16.1) 

 Замечания. 

1) Пусть 𝑀(𝜑(𝑡), 𝜓(𝑡)) − произвольная точка на кривой 𝐴𝐵, где 

𝐴(𝜑(𝛼),𝜓(𝛼)), 𝐵(𝜑(𝛽),𝜓(𝛽)) − граничные точки кривой. Обозначим длину дуги 𝐴𝑀 

через 𝑙(𝑡), она выражается формулой: 

𝑙(𝑡) = ∫√𝜑′2(𝑠) + 𝜓′2(𝑠)𝑑𝑠

𝑡

𝛼

. 

Функцию 𝑙(𝑡) часто называют переменной дугой. Найдем ее дифференциал 

𝑑𝑙 = 𝑙′(𝑡)𝑑𝑡 = √𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡. 

Пусть кривая задана в декартовых координатах 𝐿: 𝑦 = 𝑦(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 и  𝑦′(𝑥) − 

непрерывна, в таком случае кривую 𝐿 также называют гладкой. Тогда для 

дифференциала имеем 

𝑑𝑙 = √1 + 𝑦′2(𝑥)𝑑𝑥. 

Криволинейный интеграл сводим к определенному интегралу следующим образом: 

∫ 𝑓(𝑥, 𝑦)𝑑𝑙

𝐿

= ∫𝑓(𝑥, 𝑦(𝑥))√1 + 𝑦′2(𝑥)𝑑𝑥

𝑏

𝑎

. 

Пусть кривая задана в полярных координатах 𝐿: 𝑟 = 𝑟(𝜑), 𝜑1 ≤ 𝜑 ≤ 𝜑2 и  

𝑟′(𝜑) − непрерывна. Тогда  

𝑑𝑙 = √𝑟2(𝜑) + 𝑟′2(𝜑)𝑑𝜑 

и 

∫ 𝑓(𝑥, 𝑦)𝑑𝑙

𝐿

= ∫ 𝑓(𝑟(𝜑) cos𝜑 , 𝑟(𝜑) sin𝜑)√𝑟2(𝜑) + 𝑟′2(𝜑)𝑑𝜑

𝜑2

𝜑1

. 

2) Непрерывная кривая, состоящая из конечного числа гладких кривых, называется 

кусочно гладкой (рис. 16.1). Если кривая 𝐿 − кусочно гладкая, а функция 𝑓(𝑥, 𝑦) − 

кусочно непрерывная вдоль кривой 𝐿, то формула (16.1) остается в силе. 
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Рис. 16.1. Кусочно гладкая кривая. 

3) Криволинейные интегралы первого рода по пространственной кривой вводится 

аналогично тому, как это сделано на плоскости. Если 𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝑧 =

𝜒(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽 − кусочно гладкая, а 𝑓(𝑥, 𝑦, 𝑧) − кусочно непрерывная, то справедлива 

формула: 

∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑙

𝐿

= ∫𝑓(𝜑(𝑡), 𝜓(𝑡), 𝜒(𝑡))√𝜑′2(𝑡) + 𝜓′2(𝑡) + 𝜒′2(𝑡)𝑑𝑡

𝛽

𝛼

. 

 

 Примеры. 

1) Вычислить интеграл ∫ 𝑥𝑑𝑙
𝐿

, где кривая 𝐿: 𝑦 = 𝑥2, 0 ≤ 𝑥 ≤ 1. Получим  

∫ 𝑥𝑑𝑙

𝐿

= ∫𝑥√1 + 4𝑥2𝑑𝑥

1

0

=
1

8
∫√1 + 4𝑥2𝑑(1 + 4𝑥2)

1

0

=
1

8

2

3
(1 + 4𝑥2)3 2⁄ |

0

1

=
1

12
(5√5 − 1). 

2) Вычислить интеграл ∫ 𝑥𝑦𝑑𝑙
𝐿

, где кривая 𝐿:
𝑥2

𝑎2
+

𝑥2

𝑏2
= 1, 0 ≤ 𝑥 ≤ 1. Перейдем к 

параметрическим уравнениям для 𝐿: 𝑥 = 𝑎 cos 𝑡 , 𝑦 = 𝑏 sin 𝑡 , 0 ≤ 𝑡 ≤ 2𝜋. Тогда  

∫ 𝑥𝑦𝑑𝑙

𝐿

= ∫ 𝑎𝑏 cos 𝑡 sin 𝑡 √(−𝑎 sin 𝑡)2 + (𝑏 cos 𝑡)2𝑑𝑡

2𝜋

0

. 

 

Криволинейные интегралы второго рода 

Пусть 𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽 − простая незамкнутая спрямляемая 

кривая, на которой заданы две функции 𝑃(𝑥, 𝑦) и 𝑄(𝑥, 𝑦). Разобьем сегмент [𝛼, 𝛽] на 𝑛 

частей точками 𝛼 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 = 𝛽. При этом кривая 𝐿 разобьетсяна 𝑛 

частей точками 𝐴 = 𝑀0,𝑀1, … ,𝑀𝑛 = 𝐵, где 𝑀𝑖(𝑥𝑖, 𝑦𝑖) = 𝑀𝑖(𝜑(𝑡𝑖), 𝜓(𝑡𝑖)). Введем 

обозначения 𝛥𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 и 𝛥𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖−1, обозначим через 𝛥𝑙𝑖 длину дуги 

𝑀𝑖−1𝑀𝑖, а ∆𝑙 = max
1≤𝑖≤𝑛

𝛥𝑙𝑖. На каждой дуге 𝑀𝑖−1𝑀𝑖 выберем произвольную точку 𝐾𝑖(𝜉𝑖 , 𝜂𝑖) 

и составим две интегральные суммы: 

𝐼1(𝑀𝑖, 𝐾𝑖) =∑𝑃(𝜉𝑖 , 𝜂𝑖)𝛥𝑥𝑖

𝑛

𝑖=1

, 

𝐼2(𝑀𝑖, 𝐾𝑖) =∑𝑄(𝜉𝑖 , 𝜂𝑖)𝛥𝑦𝑖

𝑛

𝑖=1

. 
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Рис. 16.2. Разбиение кривой 𝐿. 

Рассмотрим пределы интегральных сумм при ∆𝑙 → 0. Пусть существуют  

lim
∆𝑙→0

𝐼1(𝑀𝑖, 𝐾𝑖) = 𝐼1 и lim
∆𝑙→0

𝐼2(𝑀𝑖, 𝐾𝑖) = 𝐼2. Числа 𝐼1 и 𝐼2 называются криволинейными 

интегралами 2-го рода и обозначаются 

𝐼1 = ∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐴𝐵

, 

𝐼2 = ∫ 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

. 

Сумма 

𝐼 = 𝐼1 + 𝐼2 = ∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

 

называется общим криволинейным интегралом 2-го рода. 

Из определения следует, что криволинейный интеграл второго рода зависит от 

того, в каком направлении пробегается кривая 𝐿, то есть от того, какая из точек 𝐴 и 𝐵 

считается начальной, а какая конечной. Если двигаться от 𝐵 к 𝐴, то все 𝛥𝑥𝑖 и 𝛥𝑦𝑖в 

интегральных суммах изменят знаки, следовательно, интегралы также изменят знак, то 

есть 

∫ 𝑃𝑑𝑥

𝐴𝐵

= − ∫ 𝑃𝑑𝑥

𝐵𝐴

, 

∫ 𝑄𝑑𝑦

𝐴𝐵

= − ∫ 𝑄𝑑𝑦

𝐵𝐴

. 

 

Физический пример. Пусть материальная точка движется по кривой 𝐴𝐵 из 

точки 𝐴 в точку 𝐵 под действием силы 𝐹⃗(𝑥, 𝑦) = 𝑃(𝑥, 𝑦)𝑖 + 𝑄(𝑥, 𝑦)𝑗 (рис. 16.3). 

Рассмотрим перемещение материальной точки из точки 𝑀(𝑥, 𝑦) на сколь угодно малый 

вектор 𝑑𝑙⃗⃗⃗⃗ = 𝑥𝑖 + 𝑦𝑗. Скалярное произведение 
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(𝐹⃗ ∙ 𝑑𝑙⃗⃗⃗⃗ ) = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 

имеет смысл работы силы 𝐹⃗ при перемещении точки на вектор 𝑑𝑙⃗⃗⃗⃗ . Тогда работа силы 

при перемещении точки по кривой 𝐴𝐵 из точки 𝐴 в точку 𝐵: 

∫(𝐹⃗ ∙ 𝑑𝑙⃗⃗⃗⃗ )

𝐴𝐵

= ∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

. 

 
Рис. 16.3. Пример. 

 

Вычисление криволинейных интегралов второго рода с помощью определенных 

интегралов 

 Теорема 3. Пусть  

1) 𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽 − гладкая незамкнутая кривая; 

2) функции 𝑃(𝑥, 𝑦) и 𝑄(𝑥, 𝑦) непрерывны вдоль кривой 𝐿.  

Тогда криволинейные интегралы второго рода от функций 𝑃(𝑥, 𝑦) и 𝑄(𝑥, 𝑦) 

существуют, и справедливы равенства: 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐴𝐵

= ∫ 𝑃(𝜑(𝑡), 𝜓(𝑡))𝜑′(𝑡)𝑑𝑡

𝛽

𝛼

, 

∫ 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

= ∫𝑄(𝜑(𝑡), 𝜓(𝑡))𝜓′(𝑡)𝑑𝑡

𝛽

𝛼

. 

(16.2) 

Доказательство аналогично доказательству Теоремы 2. 

 

 Замечания. 

1) Если кривая задана в декартовых координатах 𝐿: 𝑦 = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, то 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

= ∫(𝑃(𝑥, 𝑓(𝑥)) + 𝑄(𝑥, 𝑓(𝑥))𝑓′(𝑥))𝑑𝑥

𝑏

𝑎

. 

2) Пусть L — замкнутая кривая (замкнутый контур), то есть точки 𝐴 и 𝐵 совпадают. Тогда 

криволинейный интеграл второго рода по кривой 𝐿 вводится так же, как и для 
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незамкнутой кривой, но только теперь в обозначении ∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦
𝐴𝐵

 не 

отражено, в каком направлении пробегается кривая. Договоримся считать 

положительным то направление обхода замкнутого контура, при котором область, 

лежащая внутри контура, остается слева по отношению к движущейся по контуру 

точке (рис. 16.4). Интеграл по замкнутому контуру 𝐿 в положительном направлении 

обозначается  

∮ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

. 

 
Рис. 16.4. Положительное направление обхода замкнутого контура. 

3) Криволинейные интегралы второго рода в пространстве вводятся аналогично 

интегралам на плоскости. Для незамкнутой кривой 𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), 𝑧 = 𝜒(𝑡), 𝛼 ≤

𝑡 ≤ 𝛽 получим 

𝐼 = ∫ 𝑃(𝑥, 𝑦, 𝑧)𝑑𝑥 + 𝑄(𝑥, 𝑦, 𝑧)𝑑𝑦 + 𝑅(𝑥, 𝑦, 𝑧)𝑑𝑧

𝐿

= ∫[𝑃(𝜑, 𝜓, 𝜒)𝜑′(𝑡) + 𝑄(𝜑,𝜓, 𝜒)𝜓′(𝑡) + 𝑅(𝜑,𝜓, 𝜒)𝜒′(𝑡)]𝑑𝑡

𝛽

𝛼

. 

Интеграл 𝐼 можно записать более компактно: 

𝐼 = ∫(𝐹⃗ ∙ 𝑑𝑙⃗⃗⃗⃗ )

𝐴𝐵

, 

где 𝐹⃗ = {𝑃,𝑄, 𝑅}, 𝑑𝑙⃗⃗⃗⃗ = {𝑑𝑥, 𝑑𝑦, 𝑑𝑧}. 

 

 Примеры. 

1) Вычислим интеграл 𝐼 = −
1

2
∮ 𝑦𝑑𝑥 − 𝑥𝑑𝑦
𝐿

, где 𝐿:
𝑥2

𝑎2
+

𝑥2

𝑏2
= 1, 0 ≤ 𝑥 ≤ 1. Перейдем к 

параметрическим уравнениям эллипса: 

𝑥 = 𝑎 cos 𝑡 , 𝑦 = 𝑏 sin 𝑡 , 0 ≤ 𝑡 ≤ 2𝜋 

и воспользуемся формулами (16.2): 

𝐼 = −
1

2
∮[𝑏 sin 𝑡 (−𝑎 sin 𝑡) − 𝑎 cos 𝑡 (𝑏 cos 𝑡)]𝑑𝑡

𝐿

=
1

2
∫ 𝑎𝑏𝑑𝑡

2𝜋

0

= 𝜋𝑎𝑏 = 𝑆эл , 

где 𝑆эл − площадь фигуры, ограниченной эллипсом.  
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Оказывается, что если мы рассмотрим произвольную фигуру 𝐺, ограниченную 

замкнутым контуром 𝐿, то ее площадь находится по формуле: 

𝑆(𝐺) =
1

2
∮ 𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝐿

. 

2) Вычислим интеграл 𝐼 = ∮ 2𝑥𝑦𝑑𝑥 + 𝑥2𝑑𝑦
𝐿

 по трем кривым, соединяющим точки 𝐴(0,0) 

и 𝐵(1,1), изображенным на рис. 16.5: 

1. 𝑦 = 𝑥: 𝐼1 = ∫ (2𝑥𝑥 + 𝑥
2)𝑑𝑥

1

0
= ∫ 3𝑥2𝑑𝑥

1

0
= 𝑥3|0

1 = 1; 

2. 𝑦 = 𝑥2: 𝐼2 = ∫ (2𝑥𝑥
2 + 𝑥22𝑥)𝑑𝑥

1

0
= ∫ 4𝑥3𝑑𝑥

1

0
= 𝑥4|0

1 = 1; 

3. ломаная 𝐴𝐶𝐵: 𝐼3 = ∫𝐴𝐶 + ∫
𝐶𝐵

= 0 + ∫ 1𝑑𝑦
1

0
= 1. 

Получили 𝐼 = 𝐼1 = 𝐼2 = 𝐼3, что тоже не случайно. Оказывается, что значение интеграла 

𝐼 не зависит от кривой, соединяющей точки 𝐴 и 𝐵.  

 
Рис. 16.5. Пример 2. 

 

Связь между криволинейными интегралами первого и второго рода 

Рассмотрим простой случай, когда гладкая кривая 𝐿 задана в декартовых 

координатах уравнением 𝐿: 𝑦 = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏. Рассмотрим произвольную точку 

𝑀(𝑥, 𝑓(𝑥)) на кривой 𝐿. Проведем в этой точке касательную и луч, параллельный оси 

𝑂𝑥. Обозначим через 𝛼(𝑥) угол между направленной касательной к кривой в точке 

𝑀(𝑥, 𝑓(𝑥)) и осью 𝑂𝑥. Направление касательной выберем в соответствии с 

направлением движения по кривой (рис. 16.6).  
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Рис. 16.6. Движение по кривой. 

При движении от 𝐴 к 𝐵: 

−
𝜋

2
≤ 𝛼 ≤

𝜋

2
, 

t𝑔 𝛼 = 𝑓′(𝑥),  

cos𝛼 =
1

√1 + 𝑓′2(𝑥)
,  

sin 𝛼 =
𝑓′(𝑥)

√1 + 𝑓′2(𝑥)
. 

При движении от 𝐵 к 𝐴: 

𝜋

2
≤ 𝛼 ≤ 3

𝜋

2
, 

t𝑔 𝛼 = 𝑓′(𝑥),  

cos𝛼 = −
1

√1 + 𝑓′2(𝑥)
,  

sin 𝛼 = −
𝑓′(𝑥)

√1 + 𝑓′2(𝑥)
. 

Рассмотрим два криволинейных интеграла:  

1) криволинейный интеграл второго рода 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐴𝐵

= ∫𝑃(𝑥, 𝑓(𝑥))𝑑𝑥

𝑏

𝑎

, 

2) криволинейный интеграл первого рода 

∫ 𝑃(𝑥, 𝑦) cos𝛼 𝑑𝑙

𝐴𝐵

= ∫𝑃(𝑥, 𝑓(𝑥))
1

√1 + 𝑓′2(𝑥)
√1 + 𝑓′2(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ 𝑃(𝑥, 𝑓(𝑥))𝑑𝑥

𝐴𝐵

. 

Из написанных равенств следует, что 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐴𝐵

= ∫ 𝑃(𝑥, 𝑦) cos 𝛼 𝑑𝑙

𝐴𝐵

. 

Аналогично получаем 

∫ 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

= ∫ 𝑄(𝑥, 𝑦) sin 𝛼 𝑑𝑙

𝐴𝐵

. 

Тогда формула, связывающая интегралы 1-го и 2-го рода имеет вид: 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

= ∫(𝑃(𝑥, 𝑦) cos 𝛼 + 𝑄(𝑥, 𝑦) sin 𝛼)𝑑𝑙

𝐴𝐵

. 
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 Введем векторы 𝐹⃗ = {𝑃,𝑄} и 𝜏 = {cos𝛼 , sin 𝛼} − единичный вектор 

направленной касательной к кривой, тогда полученную формулу можно записать 

следующим образом: 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

= ∫(𝐹⃗ ∙ 𝜏)𝑑𝑙

𝐴𝐵

. 

Аналогичные формулы имеют место для криволинейных интегралов по 

пространственной кривой 𝐴𝐵: 

∫ 𝑃(𝑥, 𝑦, 𝑧)𝑑𝑥 + 𝑄(𝑥, 𝑦, 𝑧)𝑑𝑦 + 𝑅(𝑥, 𝑦, 𝑧)𝑑𝑧

𝐴𝐵

= ∫(𝐹⃗ ∙ 𝜏)𝑑𝑙

𝐴𝐵

, 

где 𝐹⃗ = {𝑃,𝑄, 𝑅} и 𝜏 = {cos𝛼 , cos𝛽 , cos 𝛾} − единичный вектор направленной 

касательной к кривой. 

 

Формула Грина 

Существует формула, которая связывает между собой двойной интеграл с 

криволинейным. Пусть у нас есть некоторая область 𝐺, ограниченная контуром 𝐿. 

Оказывается, что  

∬(
𝜕𝑄

𝜕𝑥
−
𝜕𝑃

𝜕𝑦
)𝑑𝑥𝑑𝑦

𝐺

= ∮ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐿

. 

  

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

112 

 

 

ЛЕКЦИЯ 17. ФОРМУЛА ГРИНА 

Пусть уравнения  𝑦 = 𝑦1(𝑥) и 𝑦 = 𝑦2(𝑥) (𝑎 ≤ 𝑥 ≤ 𝑏) задают кусочно гладкие 

кривые в декартовых координатах, и пусть 𝑦1(𝑥) ≤ 𝑦2(𝑥). Рассмотрим область  

𝐺 = {(𝑥, 𝑦): 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦1(𝑥) ≤ 𝑦 ≤ 𝑦2(𝑥)}, 

будем называть ее «𝑦-трапециевидной» (рис. 17.1). Аналогично определяется «𝑥-

трапециевидная» область. 

 
Рис. 17.1. «𝑦-трапециевидная» область. 

Замкнутую область 𝐺 назовем простой, если ее можно разбить как на конечное 

число «-трапециевидных» областей, так и на конечное число «𝑦-трапециевидных» 

областей (без общих внутренних точек у любых двух областей). Примеры простых 

областей: прямоугольник, круг, кольцо (рис. 17.2). 

 
Рис. 17.2. Кольцо. 

Теорема 4. Пусть функции 𝑃(𝑥, 𝑦) и 𝑄(𝑥, 𝑦) и их частные производные 
𝜕𝑃

𝜕𝑦
 и 

𝜕𝑄

𝜕𝑥
 

непрерывны в простой области 𝐺 с границей 𝐿. Тогда справедливо равенство: 

∬(
𝜕𝑄

𝜕𝑥
−
𝜕𝑃

𝜕𝑦
)𝑑𝑥𝑑𝑦

𝐺

= ∮ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐿

. 

(17.1) 

Заметим, что граница 𝐿 области G может состоять из конечного числа 

замкнутых контуров (рис. 17.3). Как было оговорено ранее, направление обхода 

контура считается положительным, если при этом обходе область 𝐺 остается слева от 

движущейся по контуру точки. 
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Рис. 17.3. Граница 𝐿 области G. 

Доказательство. 

Докажем сначала, что 

∬
𝜕𝑃

𝜕𝑦
(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

= −∮ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐿

. 

(17.2) 

Рассмотрим сначала случай, когда 𝐺 – «y-трапециевидная» область, то есть 𝐺 =

{(𝑥, 𝑦): 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦1(𝑥) ≤ 𝑦 ≤ 𝑦2(𝑥)}. Сводя двойной интеграл к повторному, 

получаем: 

∬
𝜕𝑃

𝜕𝑦
(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

= ∫𝑑𝑥 ∫
𝜕𝑃

𝜕𝑦
(𝑥, 𝑦)𝑑𝑦

𝑦2(𝑥)

𝑦1(𝑥)

𝑏

𝑎

= ∫𝑑𝑥 [𝑃(𝑥, 𝑦)|𝑦1(𝑥)
𝑦2(𝑥)]

𝑏

𝑎

= ∫𝑃(𝑥, 𝑦2(𝑥))𝑑𝑥

𝑏

𝑎

−∫𝑃(𝑥, 𝑦1(𝑥))𝑑𝑥

𝑏

𝑎

. 

(17.3) 

Выпишем интегралы по каждой части границы области 𝐺 на рис. 17.2:  

∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐴𝐵

= ∫𝑃(𝑥, 𝑦1(𝑥))𝑑𝑥

𝑏

𝑎

, 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐵𝐶

= 0, 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐶𝐷

= −∫𝑃(𝑥, 𝑦2(𝑥))𝑑𝑥

𝑏

𝑎

, 

 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐷𝐴

= 0. 

Сложив эти интегралы и используя (17.3), получим: 
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∮ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐿
(𝐿−𝐴𝐵𝐶𝐷)

= −∬
𝜕𝑃

𝜕𝑦
(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

. 

Тем самым, справедливость равенства (17.2) доказана для «y-трапециевидной» области. 

  

Пусть теперь 𝐺 – простая область. Разобьем ее на конечное число «y-

трапециевидных» областей 𝐺𝑖, (𝑖 = 1, 2, . . . , 𝑛): 𝐺 = ⋃ 𝐺𝑖
𝑛
𝑖=1  , обозначим 𝐿𝑖 − граница 

области 𝐺𝑖. 

 
Рис. 17.4. Разбиение области 𝐺. 

Напишем для каждой области 𝐺𝑖 равенство (17.2): 

∬
𝜕𝑃

𝜕𝑦
(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺𝑖

= − ∮ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐿𝑖

. 

Суммируя эти равенства по 𝑖 от 1 до 𝑛, получим в левой части интеграл 

∬
𝜕𝑃

𝜕𝑦
(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺
, а в правой части – интеграл −∮ 𝑃(𝑥, 𝑦)𝑑𝑥

𝐿
, так как криволинейный 

интеграл по каждой внутренней разделительной линии берется дважды, причем в 

противоположных направлениях, потому сумма таких интегралов равна нулю. Итак, 

для каждой простой области справедливо равенство (17.2). 

Аналогично можно доказать, используя разбиения 𝐺 на «x-трапециевидные» 

области, что 

∬
𝜕𝑄

𝜕𝑥
𝑑𝑥𝑑𝑦

𝐺

= ∮ 𝑄𝑑𝑦

𝐿

. 

(17.4) 

Вычитая (17.2) из (17.4), получим (17.1). Теорема 4 доказана. 

 Замечание. Если проводить аналогию с определенным интегралом, то формула 

Грина аналогична формуле Ньютона-Лейбница: 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝑓(𝑏) − 𝑓(𝑎). 

 Следствия. Полагая в (17.1) 𝑄 = 𝑥, 𝑃 = 0, получаем: 

https://vk.com/teachinmsu
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𝑆(𝐺) = ∬𝑑𝑥𝑑𝑦

𝐺

= ∮ 𝑥𝑑𝑦

𝐿

, 

аналогично, полагая 𝑄 = 0,𝑃 = −𝑦: 

𝑆(𝐺) = ∬𝑑𝑥𝑑𝑦

𝐺

= −∮ 𝑦𝑑𝑥

𝐿

. 

Пусть 𝛼 и 𝛽 – произвольные числа, такие, что 𝛼 + 𝛽 = 1. Умножая первое равенство 

для 𝑆(𝐺) на 𝛼, а второе на 𝛽, и складывая их, приходим к формуле: 

𝑆(𝐺) = ∮ 𝛼𝑥𝑑𝑦 − 𝛽𝑦𝑑𝑥

𝐿

. 

Наиболее употребительна эта формула при 𝛼 = 𝛽 =
1

2
: 

𝑆(𝐺) =
1

2
∮ 𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝐿

. 

Пример. Вычислить интеграл 𝐼 = ∮ (𝑥2 − 𝑦)𝑑𝑥 + (𝑦2 + 𝑥)𝑑𝑦
𝐿

, где 𝐿: (𝑥 − 𝑥0)
2 +

(𝑦 − 𝑦0)
2 = 𝑅2. По формуле Грина: 

𝐼 = ∬(1 + 1)𝑑𝑥𝑑𝑦

𝐺

= 2∬𝑑𝑥𝑑𝑦

𝐺

= 2𝑆(𝐺) = 2𝜋𝑅2. 

 

Условия независимости криволинейного интеграла второго рода от пути 

интегрирования 

Нам понадобится понятие односвязной области. Областью мы называем 

открытое связное множество. Объединение области и ее границы называется замкнутой 

областью. Область 𝐺 на плоскости называется односвязной, если она обладает 

следующими свойством: для любого кусочно гладкого замкнутого контура 𝐿, целиком 

лежащего в области 𝐺, часть плоскости, ограниченная этим контуром также целиком 

принадлежит G. 

Примеры. Открытые круг и прямоугольник – односвязные области. Кольцо, круг 

с выколотой точкой не являются односвязными областями.  

Теорема 5.  

I. Пусть функции 𝑃(𝑥, 𝑦) и 𝑄(𝑥, 𝑦) непрерывны в области 𝐺. Тогда следующие три 

утверждения эквивалентны (то есть из каждого из них следуют два другие):  

1) Для любого кусочно гладкого замкнутого контура 𝐿 ⊂ 𝐺 выполняется равенство 

https://vk.com/teachinmsu
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∮ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐿

= 0. 

2) Для любых двух точек 𝐴, 𝐵 ∈ 𝐺 криволинейный интеграл ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦
𝐴𝐵

 не 

зависит от пути интегрирования (то есть от кривой, соединяющей точки 𝐴 и 𝐵, и 

целиком лежащей в области 𝐺). 

3) Выражение 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 является полным дифференциалом, то есть 

существует функция 𝑢(𝑥, 𝑦) такая, что ∀(𝑥, 𝑦) ∈ 𝐺: 

𝑑𝑢 = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦. 

При этом для точек 𝐴,𝐵 ∈ 𝐺 выполняется равенство 

∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐵

= 𝑢(𝐵) − 𝑢(𝐴). 

(17.5) 

II. Если, кроме того, область 𝐺 – односвязная, а функции 𝑃 и 𝑄 имеют в области 𝐺 

непрерывные производные 
𝜕𝑃

𝜕𝑦
 и 

𝜕𝑄

𝜕𝑥
, то каждое из условий 1-3 эквивалентно условию 4: 

𝜕𝑃

𝜕𝑦
=

𝜕𝑄

𝜕𝑥
 ∀(𝑥, 𝑦) ∈ 𝐺. 

 

Доказательство. 

Доказательство проведем по схеме: 

I. 1 → 2 → 3 → 1; 

II. 3 → 4 → 1. 

I. а) 1 → 2 

Пусть выполнено условие 1. Рассмотрим две произвольные точки 𝐴,𝐵 ∈ 𝐺 и две 

произвольные кривые, соединяющие эти точки: 𝐴𝐶𝐵 и 𝐴𝐷𝐵. В силу условия 1: 

∮ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐴𝐶𝐵𝐷𝐴

= 0 ⟹ 

∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐴𝐶𝐵

+ ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐵𝐷𝐴

= 0 ⟹ 

∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐴𝐶𝐵

= ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐴𝐷𝐵

. 

Таким образом, выполнено условие 2. 

 

b) 2 → 3 

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

117 

 

 

Пусть выполнено условие 2. Пусть 𝑀0(𝑥0, 𝑦0) – фиксированная точка области 𝐺, а  

𝑀(𝑥, 𝑦) – произвольная точка. В силу условия 2 интеграл ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦
𝑀0𝑀

 не зависит от 

выбора кривой 𝑀0𝑀, а зависит только от точки 𝑀(𝑥, 𝑦), то есть является функцией от 𝑥 

и 𝑦. Обозначим эту функцию 𝑢(𝑥, 𝑦) и докажем, что  

𝜕𝑢

𝜕𝑥
= 𝑃(𝑥, 𝑦),

𝜕𝑢

𝜕𝑦
= 𝑄(𝑥, 𝑦). 

Отсюда последует, так как 𝑃 и 𝑄 – непрерывные функции, что 𝑢(𝑥, 𝑦) – 

дифференцируемая функция, причем 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 + 

𝜕𝑢

𝜕𝑦
𝑑𝑦 = 𝑃𝑑𝑥 + 𝑄𝑑𝑦. 

Зададим в точке 𝑀(𝑥, 𝑦) приращение 𝛥𝑥 переменной 𝑥 и получим точку 𝑀1(𝑥 + ∆𝑥, 𝑦) 

(рис. 17.5). Функция 𝑢(𝑥, 𝑦) получит частное приращение: 

∆𝑥𝑢 = 𝑢(𝑀1) − 𝑢(𝑀) =  ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝑀0𝑀1

− ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝑀0𝑀

= ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝑀𝑀1

= ∫ 𝑃(𝑠, 𝑦)𝑑𝑠

𝑥+∆𝑥

𝑥

= 𝑃(𝜉, 𝑦)∆𝑥, 

де 𝜉 ∈ [𝑥, 𝑥 + 𝛥𝑥] (последнее равенство получено с помощью формулы среднего 

значения). Отношение 
∆𝑥𝑢

𝛥𝑥
= 𝑃(𝜉, 𝑦) → 𝑃(𝑥, 𝑦) при 𝛥𝑥 → 0. То есть функция 𝑢(𝑥, 𝑦) 

имеет в точке 𝑀(𝑥, 𝑦) частную производную по переменной 𝑥 и 
𝜕𝑢

𝜕𝑥
= 𝑃(𝑥, 𝑦). 

Аналогично доказывается, что 
𝜕𝑢

𝜕𝑦
= 𝑄(𝑥, 𝑦). 

 
Рис. 17.5. Иллюстрация к доказательству теоремы 5. 

 Докажем формулу (17.5): 
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∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐴𝐵

= ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝐴𝑀0

+ ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝑀0𝐵

= − ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝑀0𝐴

+ ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦

𝑀0𝐵

= −𝑢(𝐴) + 𝑢(𝐵). 

 

c) 3 → 1 

Пусть выполнено условие 3, и, следовательно, верна формула (17.5). Возьмем 

произвольный замкнутый контур 𝐿 ⊂ 𝐺, отметим на нем точку 𝐴 = 𝐵. По формуле 

(17.5) получаем: 

∮ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐿

= 𝑢(𝐵) − 𝑢(𝐴) = 0. 

Таким образом, выполнено условие 1. 

 

II. а) 3 → 4 

Пусть выполнено условие 3, то есть существует 𝑢(𝑥, 𝑦), такая, что  
𝜕𝑢

𝜕𝑥
= 𝑃(𝑥, 𝑦),

𝜕𝑢

𝜕𝑦
= 𝑄(𝑥, 𝑦). 

Дифференцируя первое равенство по 𝑦, а второе – по 𝑥, получим: 

𝜕2𝑢

𝜕𝑥𝜕𝑦
=
𝜕𝑃

𝜕𝑦
,
𝜕2𝑢

𝜕𝑦𝜕𝑥
=
𝜕𝑄

𝜕𝑥
. 

Так как 
𝜕𝑃

𝜕𝑦
,
𝜕𝑄

𝜕𝑥
 – непрерывные функции, то 

𝜕2𝑢

𝜕𝑥𝜕𝑦
=

𝜕2𝑢

𝜕𝑦𝜕𝑥
, то есть 

𝜕𝑃

𝜕𝑦
=
𝜕𝑄

𝜕𝑥
. 

Таким образом, выполнено условие 4. 

 

Замечание. Односвязность области 𝐺 здесь пока не использовалась, она будет 

использована в доказательстве следующего утверждения. 

 

b) 4 → 1 

Пусть выполнено условие 4, то есть
𝜕𝑃

𝜕𝑦
=

𝜕𝑄

𝜕𝑥
 в области 𝐺, и G – односвязная область. 

Рассмотрим произвольный замкнутый контур 𝐿 ⊂ 𝐺. В силу односвязности области 𝐺 

область 𝐷, ограниченная контуром 𝐿, целиком принадлежит области 𝐺. Тогда 
𝜕𝑃

𝜕𝑦
=

𝜕𝑄

𝜕𝑥
 в 

области 𝐷. По формуле Грина 
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∮ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦

𝐿

= ∬(
𝜕𝑄

𝜕𝑥
−
𝜕𝑃

𝜕𝑦
)𝑑𝑥𝑑𝑦

𝐷

= 0. 

Таким образом, выполнено условие 1. Теорема 5 полностью доказана. 
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ЛЕКЦИЯ 18. ПЛОЩАДЬ ПОВЕРХНОСТИ 

 

 Определение. Множество 𝛷 ⊂ 𝐸3 называется непрерывной поверхностью, если 

𝛷 = {(𝑥, 𝑦, 𝑧): 𝑥 = 𝜑(𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣), 𝑧 = 𝜒(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝐺}, где 𝐺 ⊂ 𝐸2 − замкнутая 

ограниченная область,  𝜑,𝜓, 𝜒 ∈ 𝐶(𝐺).  

 Возьмем произвольную точку 𝑀(𝑢, 𝑣) ∈ 𝐺, в пространстве 𝑥𝑦𝑧 ей соответствует 

точка 𝑀(𝑥, 𝑦, 𝑧) = 𝑀((𝑢, 𝑣), 𝜓(𝑢, 𝑣), 𝜒(𝑢, 𝑣)) =:𝑀𝑢,𝑣 ∈ 𝛷. Соответствие осуществляется 

упорядоченной тройкой функций 𝜑,𝜓, 𝜒, иногда ее называют вектор-функцией. Будем 

называть 𝑢, 𝑣 криволинейными координатами точки 𝑀 на поверхности 𝛷. Тем самым у 

точек поверхности не 3, а в каком-то смысле 2 координаты. Обозначим через 𝐿 границу 

области 𝐺, а через Г − границу поверхности 𝛷. 

 

Определение. Точка 𝑀 ∈ 𝛷 называется простой, если ∃! (𝑢, 𝑣):𝑀 = 𝑀𝑢,𝑣 . Если 

точка не является простой, ее часто называют кратной. 

 

Определение. Непрерывная поверхность 𝛷 называется простой, если все ее 

точки, за исключением, быть может, граничных, – простые.    

 

Замечание. Если 𝜑(𝑢, 𝑣) = 𝑢,𝜓(𝑢, 𝑣) = 𝑣, то 𝛷 = {𝑀(𝑥, 𝑦, 𝑧(𝑥, 𝑦)): (𝑥, 𝑦) ∈ 𝐺}, 

где 𝑧(𝑥, 𝑦) =  𝜒(𝑥, 𝑦), то есть 𝛷 является графиком непрерывной функции 𝑧(𝑥, 𝑦): 𝑂𝑧 =

𝐺, то есть частным случаем параметрически заданной поверхности. В этом случае в 

роли плоскости параметров выступает плоскость 𝑥𝑦, которая находится прямо в нашем 

пространстве 𝑥𝑦𝑧 (рис. 18.1). 

 
Рис. 18.1. График функции 𝑧(𝑥, 𝑦). 

 

Определение. Будем говорить, что поверхность 𝛷 задана явно, если 𝛷 

представляет собой график функции 𝑥(𝑦, 𝑧)V𝑦(𝑥, 𝑧)V𝑧(𝑥, 𝑦). 

Замечание. Если поверхность задана явно, то она простая. 
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Пусть 𝛷 − график функции 𝑧(𝑥, 𝑦): 𝑂𝑧 = 𝐺, при этом 𝐺 − замкнутая 

квадрируемая область, 𝑧(𝑥, 𝑦) − дифференцируема в 𝐺, 𝐺 = ⋃ 𝐺𝑖
𝑛
𝑖=1 , где ∀𝑖 𝐺𝑖 − 

квадрируема. Введем обозначение для разбиения 𝑇[𝐺] ≔ {𝐺1, … , 𝐺𝑛}, ему отвечает 

разбиение 𝑇̃[𝛷] ≔ {𝛷1, … ,𝛷𝑛}. Произвольной точке 𝑀𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) ∈ 𝛷𝑖 соответствует 

точка 𝐾𝑖(𝑥𝑖, 𝑦𝑖) ∈ 𝐺𝑖, обозначим через 𝛯(𝑇) ≔ {𝐾1, … ,𝐾𝑛}, где ему отвечает 

разбиение  𝛯̃(𝑇̃) ≔ {𝑀1, … ,𝑀𝑛}. 

Пусть 𝜋𝑖 ⊂ касательной плоскости к поверхности 𝛷 в точке 𝑀𝑖, и проекция 

𝑃𝑟𝑥𝑦𝜋𝑖 = 𝐺𝑖, 𝑛⃗⃗𝑖 − верхняя нормаль (cos 𝛾𝑖 > 0) к поверхности 𝛷 в точке 𝑀𝑖. Рассмотрим 

сумму 

∑𝑆(𝜋𝑖)

𝑛

𝑖=1

= 𝜎(𝑇̃, 𝛯̃). 

Введем обозначения: ∆𝑖: = 𝑑𝑖𝑎𝑚 𝐺𝑖, max ∆𝑖 ≔ ∆(𝑇) − диаметр разбиения 𝑇, ∆̃𝑖=

𝑑𝑖𝑎𝑚 𝛷𝑖 , max ∆̃𝑖 ≔ ∆̃(𝑇̃) − диаметр разбиения 𝑇̃. 

 
Рис. 18.2. Элемент поверхности 𝛷𝑖. 

  

Определение. Если существует lim
∆̃→0

𝜎(𝑇̃, 𝛯̃) ≔ 𝑆(𝛷), то поверхность 𝛷 называется 

квадрируемой, а число 𝑆(𝛷) − площадью поверхности 𝛷. 

 

Лемма. 𝑆(𝐺𝑖) = 𝑆(𝜋𝑖) cos 𝛾𝑖  

Доказательство: 

Введем дополнительные обозначения: 

{𝑖, 𝑗, 𝑘⃗⃗} ≔ 𝑒 − ОНБ декартовой системы координат 𝑥𝑦𝑧; 

{𝑖′, 𝑗′, 𝑘⃗⃗′ ≔ 𝑛⃗⃗𝑖} ≔ 𝑒′ − ОНБ, где 𝑖′, 𝑗′ ⊂ 𝜋𝑖; 

 𝑟0 ≔ 𝑂𝑀𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑟′ ≔ 𝑀𝑖𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑟: = 𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗, где 𝑀(𝑥′, 𝑦′) ∈ 𝜋𝑖 − произвольная точка, 𝐾(𝑥, 𝑦) ∈ 𝐺𝑖 − 

ее проекция. Тогда 

𝑟 = 𝑟0 + 𝑟
′. 

Разложим 𝑟0, 𝑟
′, 𝑟 по базисам 𝑒 и 𝑒′: 
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𝑟 = 𝑒𝑋𝑒 , 

𝑟0 = 𝑒𝑋0𝑒 , 

𝑟′ = 𝑒′𝑋𝑒′ . 

Запишем разность координат векторов 𝑟 и 𝑟0: 

𝑋𝑒 − 𝑋0𝑒 = 𝐶𝑒𝑒′𝑋𝑒′ ,      (18.1) 

где  

𝑋𝑒 = (
𝑥
𝑦
𝑧
) , 𝑋0𝑒 = (

𝑥0
𝑦0
𝑧0
) , 𝑋𝑒′ = (

𝑥′

𝑦′

𝑧′
) 

и 𝐶𝑒𝑒′ − ортогональная матрица перехода. Распишем построчно уравнение (18.1): 

𝑥 = 𝐶11𝑥
′ + 𝐶12𝑦

′ + 𝐶13𝑧
′ + 𝑥0, 

𝑦 = 𝐶21𝑥
′ + 𝐶22𝑦

′ + 𝐶23𝑧
′ + 𝑦0, 

𝑧 = 𝐶31𝑥
′ + 𝐶32𝑦

′ + 𝐶33𝑧
′ + 𝑧0. 

Заметим, что на плоскости 𝜋𝑖 выполняется 𝑧′ ≡ 0. Распишем вектора в базисе 𝑒′: 

𝑖′ = {𝐶11, 𝐶21, 𝐶31}, 𝑗
′ = {𝐶12, 𝐶22, 𝐶32}, 𝑘⃗⃗

′ = {𝐶13, 𝐶31, 𝐶33}

= {sin 𝛾𝑖 cos𝜑𝑖 , sin 𝛾𝑖 sin 𝜑𝑖 , cos 𝛾𝑖}. 

Получим, что 𝜋𝑖 : {
𝑥 = 𝐶11𝑥

′ + 𝐶12𝑦
′ + 𝑥0

𝑦 = 𝐶21𝑥
′ + 𝐶22𝑦

′ + 𝑦0
. Поскольку далее мы будем рассматривать 

проекцию точки 𝑀 на плоскость 𝑥𝑦, то есть 𝑧 = 0, не будем рассматривать координату 

𝑧. Учтем, что 𝑒′ − правый ОНБ, то есть 

𝑘⃗⃗′ = [𝑖′, 𝑗′] = |
𝑖 𝑗 𝑘⃗⃗
𝐶11 𝐶21 𝐶31
𝐶12 𝐶22 𝐶32

| ⟹ |
𝐶11 𝐶21
𝐶12 𝐶22

| = cos 𝛾𝑖 = 𝑐𝑜𝑛𝑠𝑡 > 0. 

Транспонируем определитель |
𝐶11 𝐶21
𝐶12 𝐶22

| и получим якобиан 
𝐷(𝑥,𝑦)

𝐷(𝑥′,𝑦′)
. Следовательно,  

𝑆(𝐺𝑖) = ∬𝑑𝑥𝑑𝑦

𝐺𝑖

=∬|
𝐷(𝑥, 𝑦)

𝐷(𝑥′, 𝑦′)
| 𝑑𝑥′𝑑𝑦′

𝜋𝑖

= cos𝛾𝑖 𝑆(𝜋𝑖). 

  

 Определение. Поверхность 𝛷 = {𝑀(𝑥, 𝑦, 𝑧(𝑥, 𝑦)): (𝑥, 𝑦) ∈ 𝐺} называется гладкой, 

если 𝐺 − замкнутая квадрируемая область, 𝑧 ∈ 𝐶1(𝐺) (𝐶1 − класс непрерывно-

дифференцируемых функций).  

 

 Теорема 1. Пусть 𝛷 = {𝑀(𝑥, 𝑦, 𝑧(𝑥, 𝑦)): (𝑥, 𝑦) ∈ 𝐺} − гладкая поверхность, тогда  

1)  𝛷 − квадрируема, 

2) 𝑆(𝛷) = ∬ √1 + 𝑧𝑥2(𝑥, 𝑦) + 𝑧𝑦2(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝐺
. 

Доказательство. Надо доказать, что 
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∃ lim
∆̃→0

𝜎(𝑇̃, 𝛯̃) = ∬√1+ 𝑧𝑥2(𝑥, 𝑦) + 𝑧𝑦2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

≔ lim
∆→0

𝜎(𝑇, 𝛯), 

где 𝜎(𝑇, 𝛯) ≔ ∑ 𝐹(𝐾𝑖)𝑆(𝐺𝑖)
𝑛
𝑖=1 .  

Вспомним, что 

𝑛⃗⃗𝑖 = {−𝑧𝑥(𝐾𝑖),−𝑧𝑦(𝐾𝑖),+1} ⟹ 

cos 𝛾𝑖 =
(𝑛⃗⃗𝑖, 𝑘⃗⃗)

|𝑛⃗⃗𝑖||𝑘⃗⃗|
=
−𝑧𝑥(𝐾𝑖) ∙ 0 − 𝑧𝑦(𝐾𝑖) ∙ 0 + 1 ∙ 1

√𝑧𝑥2(𝐾𝑖) + 𝑧𝑦2(𝐾𝑖) + 1
=

1

𝐹(𝐾𝑖)
⟹

лемма
 

𝜎(𝑇, 𝛯) =∑𝐹(𝐾𝑖)𝑆(𝜋𝑖) cos 𝛾𝑖

𝑛

𝑖=1

=∑𝑆(𝜋𝑖)

𝑛

𝑖=1

=:𝜎(𝑇̃, 𝛯̃). 

Так как 0 ≤ ∆(𝑇) ≤ ∆̃(𝑇̃), то ∆̃→ 0 ⟹ ∆→ 0. Следовательно,  

lim
∆̃→0

𝜎(𝑇̃, 𝛯̃) = lim
∆→0

𝜎(𝑇, 𝛯) =:∬√1+ 𝑧𝑥2(𝑥, 𝑦) + 𝑧𝑦2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

. 

Определение. Поверхность 𝛷 = {𝑀(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣), 𝜒(𝑢, 𝑣)): (𝑢, 𝑣) ∈ 𝐺} 

называется гладкой, если 𝐺 − замкнутая квадрируемая область, 𝜑,𝜓, 𝜒 ∈ 𝐶1(𝐺). 

Теорема 1+. Пусть 𝛷 = {𝑀(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣), 𝜒(𝑢, 𝑣)): (𝑢, 𝑣) ∈ 𝐺} − простая гладкая 

поверхность, тогда  

1)  𝛷 − квадрируема, 

2) 𝑆(𝛷) = ∬ |[𝑟𝑢(𝑢, 𝑣), 𝑟𝑣(𝑢, 𝑣)]|𝑑𝑢𝑑𝑣𝐺
, где 𝑟(𝑢, 𝑣) ≔ 𝜑(𝑢, 𝑣)𝑖 + 𝜓(𝑢, 𝑣)𝑗 +

 𝜒(𝑢, 𝑣)𝑘⃗⃗ − радиус-вектор поверхности 𝛷, 𝑟𝑢 = {𝜑𝑢 , 𝜓𝑢 , 𝜒𝑢}, 𝑟𝑣 = {𝜑𝑣 , 𝜓𝑣 , 𝜒𝑣}. 
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ЛЕКЦИЯ 19. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ I РОДА 

 Если 𝛷: 𝑧(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺, функция 𝑧 имеет непрерывные частные производные 

1-го порядка, то 𝛷 − квадрируема, и 

𝑆(𝛷) =∬√1+ 𝑧𝑥2 + 𝑧𝑦2𝑑𝑥𝑑𝑦

𝐺

. 

 Рассмотрим случай параметрически заданной поверхности 𝛷: 𝑥 = 𝜑(𝑢, 𝑣), 𝑦 =

𝜓(𝑢, 𝑣), 𝑧 = 𝜒(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝑔. Пусть 𝑀(𝑥, 𝑦, 𝑧) ∈ 𝛷, для радиус-вектора поверхности 𝛷 

получим: 

𝑟 = 𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗ = 𝑥𝑖 + 𝑦𝑗 +  𝑧𝑘⃗⃗ = 𝜑(𝑢, 𝑣)𝑖 + 𝜓(𝑢, 𝑣)𝑗 +  𝜒(𝑢, 𝑣)𝑘⃗⃗. 

Частные производные 1-го порядка вектор-функции 𝑟(𝑢, 𝑣) выражаются следующими 

формулами: 

𝑟𝑢 = 𝜑𝑢𝑖 + 𝜓𝑢𝑗 + 𝜒𝑢 𝑘⃗⃗, 

 𝑟𝑣 = 𝜑𝑣𝑖 + 𝜓𝑣𝑗 + 𝜒𝑣 𝑘⃗⃗. 

Из геометрических (и также физических) соображений ясно, что вектор 𝑟𝑢(𝑢, 𝑣) 

является касательным вектором к линии 𝑣 = 𝑐𝑜𝑛𝑠𝑡 в точке 𝑀(𝜑(𝑢, 𝑣), 𝜓(𝑢, 𝑣), 𝜒(𝑢, 𝑣)) 

(см. рис. 19.1), а вектор 𝑟𝑣(𝑢, 𝑣) − касательным вектором к линии 𝑢 = 𝑐𝑜𝑛𝑠𝑡 в точке 𝑀. 

Поэтому векторы 𝑟𝑢(𝑢, 𝑣) и 𝑟𝑣(𝑢, 𝑣) лежат в касательной плоскости к поверхности 𝛷 в 

точке 𝑀. Следовательно, вектор 𝑛⃗⃗ = [𝑟𝑢(𝑢, 𝑣) × 𝑟𝑣(𝑢, 𝑣)] является вектором нормали к 

поверхности 𝛷 в точке 𝑀.  

 

Рис. 19.1. Линия 𝑢 = 𝑐𝑜𝑛𝑠𝑡. 

 Оказывается, что  

𝑆(𝛷) =∬|[𝑟𝑢 × 𝑟𝑣]|𝑑𝑢𝑑𝑣

𝑔

.  

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

125 

 

 

 

Рис. 19.2. Пары близких координатных линий. 

Рассмотрим на поверхности 𝛷 две пары близких координатных линий (рис. 

19.2). Они ограничивают криволинейный четырехугольник 𝑀𝑀1𝑀3𝑀2 – «элемент» 

поверхности 𝛷. Вычислим приближенно его площадь 𝑑𝑆, заменив криволинейный 

четырехугольник параллелограммом, построенным на векторах 𝑀𝑀1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑟𝑢𝑑𝑢 и 𝑀𝑀2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

𝑟𝑣𝑑𝑣 (𝑑𝑢 > 0, 𝑑𝑣 > 0): 

𝑑𝑆 = |[𝑀𝑀1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑀𝑀2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ]| = |[𝑟𝑢 × 𝑟𝑣]|𝑑𝑢𝑑𝑣. 

Суммируя по всем «элементам» поверхности 𝛷, приходим к формуле площади 

поверхности, заданной параметрически: 

𝑆(𝛷) =∬|[𝑟𝑢 × 𝑟𝑣]|𝑑𝑢𝑑𝑣

𝑔

. 

(19.1) 

Вычислим векторное произведение 

[𝑟𝑢 × 𝑟𝑣] = |
𝑖 𝑗 𝑘⃗⃗
𝜑𝑢 𝜓𝑢 𝜒𝑢
𝜑𝑣 𝜓𝑣 𝜒𝑣

| = |
𝜓𝑢 𝜒𝑢
𝜓𝑣 𝜒𝑣

| 𝑖 + |
𝜒𝑢 𝜑𝑢
𝜒𝑣 𝜑𝑣

| 𝑗 + |
𝜑𝑢 𝜓𝑢
𝜑𝑣 𝜓𝑣

| 𝑘⃗⃗

= 𝐴(𝑢, 𝑣)𝑖 + 𝐵(𝑢, 𝑣)𝑗 + 𝐶(𝑢, 𝑣)𝑘⃗⃗ ⟹ 

|[𝑟𝑢 × 𝑟𝑣]| = √𝐴2 + 𝐵2 + 𝐶2. 

Формула для площади принимает вид: 

𝑆(𝛷) =∬√𝐴2 + 𝐵2 + 𝐶2𝑑𝑢𝑑𝑣

𝑔

. 
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(19.2) 

Векторное произведение перепишем в виде 

|[𝑟𝑢 × 𝑟𝑣]| = |𝑟𝑢||𝑟𝑣| sin 𝛼 = √𝑟𝑢2𝑟𝑣2 − (𝑟𝑢𝑟𝑣)2 = √𝐸𝐺 − 𝐹2, 

где 𝐸 = 𝑟𝑢
2 = 𝜑𝑢

2 +𝜓𝑢
2 + 𝜒𝑢

2, 𝐺 = 𝑟𝑣
2 = 𝜑𝑣

2 +𝜓𝑣
2 + 𝜒𝑣

2, 𝐹 = (𝑟𝑢𝑟𝑣) = 𝜑𝑢𝜑𝑣 + 𝜓𝑢𝜓𝑣 + 𝜒𝑢𝜒𝑣 . 

Тогда формула (19.1) предстанет в другом виде: 

𝑆(𝛷) =∬√𝐸𝐺 − 𝐹2𝑑𝑢𝑑𝑣

𝑔

. 

(19.3) 

 

 Замечание 1. Формулы (19.2), (19.3) верны при следующих условиях: функции 

𝜑, 𝜓, 𝜒 имеют непрерывные частные производные первого порядка в 𝑔, различным 

внутренним точкам (𝑢, 𝑣) области 𝑔 соответствуют различные точки (𝜑, 𝜓, 𝜒) 

поверхности 𝛷, а коэффициенты 𝐴, 𝐵 и 𝐶 не обращаются одновременно в нуль, то есть 

∀(𝑢, 𝑣) ∈ 𝑔: 𝐴2 + 𝐵2 + 𝐶2 ≠ 0 (⟹ |𝑟𝑢| ≠ 0, |𝑟𝑣| ≠ 0). 

 

Рис. 19.3. Поверхность 𝛷. 

  Замечание 2. Рассмотрим на поверхности 𝛷 две близкие точки 𝑀(𝑢, 𝑣) и 

𝑀1(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣) (рис. 19.3), через которые по поверхности проходит кривая. 

Вычислим приближенно длину 𝑑𝑙 «элемента» дуги кривой, заменив его отрезком 𝑀𝑀1: 

𝑀𝑀1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑟(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣) − 𝑟(𝑢, 𝑣) = 𝑟𝑢𝑑𝑢 + 𝑟𝑣𝑑𝑣. 

Тогда  

𝑑𝑙 = |𝑀𝑀1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | = |𝑟𝑢𝑑𝑢 + 𝑟𝑣𝑑𝑣| = √(𝑟𝑢𝑑𝑢 + 𝑟𝑣𝑑𝑣)2 = √𝑟𝑢2(𝑑𝑢)2 + 2𝑟𝑢𝑟𝑣𝑑𝑢𝑑𝑣 + 𝑟𝑣2(𝑑𝑣)2

= √𝐸(𝑑𝑢)2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺(𝑑𝑣)2, 
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где под корнем стоит квадратичная форма от 𝑑𝑢, 𝑑𝑣, она называется первой 

квадратичной формой поверхности. С помощью первой квадратичной формы 

вычисляются на поверхности площади, длины кривых и углы между кривыми. Матрица 

первой квадратичной формы имеет вид (
𝐸 𝐹
𝐹 𝐺

), ее угловые миноры равны 𝐸 > 0 и 

𝐸𝐺 − 𝐹2 > 0. Так как оба угловых минора положительны, то по формуле Сильвестра, 

эта квадратичная форма положительно определенная. 

Пусть кривая 𝐴𝐵 на поверхности задана параметрически уравнениями 𝑢 =

𝑢(𝑡), 𝑣 = 𝑣(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽 (рис. 19.4), то ее длина выражается формулой: 

𝑙𝐴𝐵 = ∫√𝐸(𝑢′)2 + 2𝐹𝑢′𝑣′ + 𝐺(𝑣′)2

𝛽

𝛼

. 

 

Рис. 19.4. Параметрическая кривая. 

Пример. Рассмотрим сферу, заданную параметрически: 

𝑥 = 𝑅 sin 𝑢 cos 𝑣 , 𝑦 = 𝑅 sin 𝑢 cos 𝑣 , 𝑧 = 𝑅 cos𝑢, 

где 𝑅 = 𝑐𝑜𝑛𝑠𝑡 > 0, 0 ≤ 𝑢 ≤ 𝜋, 0 ≤ 𝑣 ≤ 2𝜋. Коэффициенты: 

𝐸 = 𝑟𝑢
2 = 𝑅2 cos2 𝑢 cos2 𝑣 + 𝑅2 cos2 𝑢 𝑠𝑖𝑛2 𝑣 + 𝑅2 𝑠𝑖𝑛2 𝑣 = 𝑅2, 

𝐺 = 𝑟𝑣
2 = 𝑅2 𝑠𝑖𝑛2 𝑢 𝑠𝑖𝑛2 𝑣 + 𝑅2 𝑠𝑖𝑛2 𝑢 cos2 𝑣 + 0 = 𝑅2 𝑠𝑖𝑛2 𝑢,  

𝐹 = (𝑟𝑢𝑟𝑣) = 0, 

следовательно, √𝐸𝐺 − 𝐹2 = 𝑅2 sin 𝑢 и 

𝑆(𝛷) =∬𝑅2 sin 𝑢 𝑑𝑢𝑑𝑣

𝑔

= ∫ 𝑑𝑣∫𝑅2 sin 𝑢 𝑑𝑢

𝜋

0

2𝜋

0

= 2𝜋𝑅2∫sin 𝑢 𝑑𝑢

𝜋

0

= 4𝜋𝑅2. 

Поверхностные интегралы первого рода 

 Пусть 𝛷 − квадрируемая поверхность, заданная явным уравнением или 

параметрически, и пусть на поверхности 𝛷 определена ограниченная функция 

𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑀). Разобьем поверхность 𝛷 на 𝑛 квадрируемых частей: 𝛷 = ⋃ 𝛷𝑖
𝑛
𝑖=1  
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площадей 𝑆(𝛷𝑖), на каждой части 𝛷𝑖 возьмем произвольную точку 𝑀𝑖 и составим 

интегральную сумму 

𝐼(𝛷𝑖,𝑀𝑖) = ∑𝑓(𝑀𝑖)𝑆(𝛷𝑖)

𝑛

𝑖=1

. 

Обозначим через 𝑑𝑖 = 𝑑𝑖𝑎𝑚 𝛷𝑖, 𝑑 = max
1≤𝑖≤𝑛

𝑑𝑖 . Если существует lim
𝑑→0

𝐼(𝛷𝑖, 𝑀𝑖) = 𝐼, то 

число 𝐼 называется поверхностным интегралом 1-го рода от 𝑓(𝑀) по поверхности 𝛷 и 

обозначается: 

𝐼 = ∬𝑓(𝑀)𝑑𝑠

𝛷

. 

 Пример. 

1) 𝑓(𝑀) = 1 ⟹ ∬ 𝑑𝑠
𝛷

= 𝑆(𝛷); 

2) Если 𝛷 – заряженная поверхность и 𝜌(𝑀) − поверхностная плотность заряда в 

точке 𝑀, то ∬ 𝜌(𝑀)𝑑𝑠
𝛷

= 𝑞 − суммарный заряд поверхности 𝛷. 

Теорема 2. Пусть:  

1) поверхность 𝛷: 𝑧 = 𝑧(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺, где 𝐺 − квадрируемая замкнутая область, а 

функция 𝑧(𝑥, 𝑦) имеет в области 𝐺 непрерывные частные производные 1-го порядка (то 

есть 𝛷 − гладкая поверхность);  

2) функция 𝑓(𝑥, 𝑦, 𝑧) непрерывна на поверхности 𝛷.  

Тогда поверхностный интеграл первого рода от функции 𝑓(𝑥, 𝑦, 𝑧) по поверхности 𝛷 

существует, и справедливо равенство 

∬𝑓(𝑥, 𝑦, 𝑧)𝑑𝑠

𝛷

=∬𝑓(𝑥, 𝑦, 𝑧(𝑥, 𝑦))√1 + 𝑧𝑥
2 + 𝑧𝑦

2𝑑𝑥𝑑𝑦

𝐺

. 

(19.4) 

Доказательство проводится аналогично доказательству теоремы 2 в лекции о 

криволинейных интегралах. 

 Пример. Вычислить 𝐼 = ∬ (𝑥2 + 𝑦2 + 𝑧2)𝑑𝑠
𝛷

, где 𝛷: 𝑧 = √𝑥2 + 𝑦2, (𝑥, 𝑦) ∈ 𝐺 =

{(𝑥, 𝑦): 𝑥2 + 𝑦2 ≤ 1} (рис. 19.5). По формуле (19.4) получаем 

𝐼 = ∬(𝑥2 + 𝑦2 + 𝑥2 + 𝑦2)√1 +
𝑥2

𝑥2 + 𝑦2
+

𝑦2

𝑥2 + 𝑦2
𝑑𝑥𝑑𝑦

𝐺

= 2√2∬(𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

𝐺

= 𝜋√2. 
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Рис. 19.5. Пример. 

Если гладкая поверхность задана параметрически 𝛷: 𝑥 = 𝜑(𝑢, 𝑣), 𝑦 =

𝜓(𝑢, 𝑣), 𝑧 = 𝜒(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝑔, то поверхностный интеграл первого рода от функции 

𝑓(𝑥, 𝑦, 𝑧) по поверхности 𝛷 вычисляется по формуле 

∬𝑓(𝑥, 𝑦, 𝑧)𝑑𝑠

𝛷

= ∬𝑓(𝜑,𝜓, 𝜒)√𝐸𝐺 − 𝐹2𝑑𝑢𝑑𝑣

𝐺

. 

Поверхностные интегралы второго рода 

Если поверхность задана уравнением 𝑧 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺, то на основе 

наглядных представлений можно различать у нее верхнюю и нижнюю стороны. У 

поверхности, ограничивающей некоторое тело, например у сферы, можно различать 

внешнюю и внутреннюю стороны. Введем понятие стороны поверхности. 

Пусть 𝛷 − поверхность, в каждой точке которой существует касательная 

плоскость. Вектор нормали к поверхности 𝛷 в точке M обозначим. Поскольку вектор 

𝑛⃗⃗(𝑀) можно задать в каждой точке 𝑀 поверхности 𝛷, то можем считать, что 𝑛⃗⃗(𝑀),𝑀 ∈

𝛷 – вектор-функция на поверхности 𝛷. Пусть она будет непрерывной на всей 

поверхности 𝛷, то есть в каждой точке поверхности непрерывны координаты вектор-

функции. В таком случае будем говорить, что если на поверхности 𝛷 существует 

непрерывное векторное поле нормалей, то под стороной поверхности будем понимать 

множество всех ее точек с заданными в них векторами нормали 𝑛⃗⃗(𝑀), образующими 

непрерывное векторное поле нормалей. Отметим, что в этом случае вектор-функция 

−𝑛⃗⃗(𝑀),𝑀 ∈ 𝛷 также задает непрерывное векторное поле нормалей. Будем считать, что 

это поле нормалей относится к другой стороне поверхности. 

Поверхность, на которой существует непрерывное векторное поле нормалей, 

называется двусторонней. Существуют поверхности, на которых нет непрерывного 

векторного поля нормалей (при наличии вектора нормали в каждой точке поверхности), 

такие поверхности называются односторонними.  
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Классическим примером односторонней поверхности является лист Мeбиуса. 

Его можно изготовить из прямоугольной полоски бумаги, повернув ее узкие стороны и 

склеив их так, чтобы совпадали вершины прямоугольника, являющиеся концами одной 

и той же диагонали (рис. 19.6). 

 

Рис. 19.6. Лист Мебиуса. 
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ЛЕКЦИЯ 20. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ II РОДА 

 Если гладкая поверхность задана явно 𝛷: 𝑧 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺, то на одной 

стороне поверхности непрерывное векторное поле нормалей можно задать вектор–

функцией 𝑛⃗⃗(𝑀) = {−𝑓𝑥(𝑥, 𝑦),−𝑓𝑥(𝑥, 𝑦), 1}, где 𝑀(𝑥, 𝑦, 𝑓(𝑥, 𝑦)) (верхняя сторона 

поверхности), а на другой стороне – вектор-функцией −𝑛⃗⃗(𝑀) = {𝑓𝑥(𝑥, 𝑦), 𝑓𝑥(𝑥, 𝑦),−1}. 

Если гладкая двусторонняя поверхность задана параметрически 𝛷: 𝑥 =

𝜑(𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣), 𝑧 = 𝜒(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝑔, то на одной стороне непрерывное векторное 

поле нормалей можно задать вектор-функцией 𝑛⃗⃗(𝑀) = {𝐴, 𝐵, 𝐶}, а на другой стороне – 

вектор-функцией −𝑛⃗⃗(𝑀) = {−𝐴, −𝐵, −𝐶}. 

Двусторонняя поверхность называется также ориентируемой, а выбор 

определенной стороны называется ориентацией поверхности.  

Понятия двусторонней и односторонней поверхности можно ввести и для 

кусочно-гладких поверхностей (то есть поверхностей, составленных из нескольких 

гладких поверхностей). Примером кусочно-гладкой двусторонней поверхности 

является поверхность параллелепипеда. 

Определение поверхностных интегралов второго рода 

Пусть 𝛷 – гладкая двусторонняя поверхность. Выберем на ней одну из сторон, 

то есть зафиксируем непрерывное поле нормалей 𝑛⃗⃗(𝑀). Обозначим через 

𝛼(𝑀), 𝛽(𝑀), 𝛾(𝑀) углы между вектором 𝑛⃗⃗(𝑀) и осями координат. Если |𝑛⃗⃗(𝑀)| = 1, то 

𝑛⃗⃗(𝑀) = {𝑐𝑜𝑠 𝛼(𝑀), 𝑐𝑜𝑠 𝛽(𝑀), 𝑐𝑜𝑠 𝛾(𝑀)}. 

Пусть на поверхности 𝛷 определены три функции: 𝑃(𝑀), 𝑄(𝑀), 𝑅(𝑀). 

Рассмотрим поверхностные интегралы первого рода: 

𝐼1 = ∬𝑃(𝑀) cos𝛼(𝑀)𝑑𝑠

𝛷

, 

𝐼2 = ∬𝑄(𝑀) cos𝛽(𝑀)𝑑𝑠

𝛷

, 

𝐼3 = ∬𝑅(𝑀) cos 𝛾(𝑀)𝑑𝑠

𝛷

. 

Интегралы 𝐼1, 𝐼2, 𝐼3 называются поверхностными интегралами второго рода от функций 

𝑃, 𝑄, 𝑅 по выбранной стороне поверхности 𝛷. Если выбрать другую сторону 

поверхности, то вектор 
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𝑛⃗⃗(𝑀) во всех точках изменит направление, поэтому его координаты 

{𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽, 𝑐𝑜𝑠 𝛾} изменят знак, следовательно, интегралы 𝐼1, 𝐼2, 𝐼3 изменят знак. В 

этом отношении поверхностные интегралы второго рода аналогичны криволинейным 

интегралам второго рода, которые изменяют знак при изменении направления 

движения по кривой. 

 Для интегралов 𝐼1, 𝐼2, 𝐼3 используются также следующие обозначения: 

𝐼1 =∬𝑃(𝑀)𝑑𝑦𝑑𝑧

𝛷

, 

𝐼2 =∬𝑄(𝑀)𝑑𝑧𝑑𝑥

𝛷

, 

𝐼3 =∬𝑅(𝑀)𝑑𝑥𝑑𝑦

𝛷

. 

Cмысл этих обозначений состоит в том, что 𝑑𝑦𝑑𝑧 = 𝑑𝑆 · 𝑐𝑜𝑠 𝛼 – площадь проекции 

элемента поверхности с площадью 𝑑𝑆 на плоскость 𝑂𝑦𝑧, и аналогично 𝑑𝑧𝑑𝑥 = 𝑑𝑆 ·

𝑐𝑜𝑠 𝛽 и 𝑑𝑥𝑑𝑦 = 𝑑𝑆 · 𝑐𝑜𝑠 𝛾. 

 Сумма  

𝐼 = 𝐼1 + 𝐼2 + 𝐼3 = ∬𝑃𝑑𝑦𝑑𝑧 + 𝑄𝑑𝑧𝑑𝑥 + 𝑅𝑑𝑥𝑑𝑦

𝛷

 

называется общим поверхностным интегралом второго рода. Введем вектор 𝑎⃗(𝑀) =

{𝑃(𝑀),𝑄(𝑀), 𝑅(𝑀)}, тогда общий интеграл 𝐼 можно переписать в виде: 

𝐼 = ∬(𝑎⃗ ∙ 𝑛⃗⃗)𝑑𝑆

𝛷

, 

его также называют потоком векторного поля 𝑎⃗(𝑀) через ориентированную 

поверхность 𝛷. 

 Физический пример. 

 Пусть некоторая область в пространстве занята движущейся жидкостью, 𝑣(𝑀) − 

скорость течения жидкости в точке 𝑀. Будем считать поток стационарным. Рассмотрим 

элементарный столб жидкости (рис. 20.1), его объем выражается формулой: 

𝑑𝑉 = (𝑎⃗ ∙ 𝑛⃗⃗)𝑑𝑆, 

это есть не что иное, как поток жидкости через элемент поверхности с площадью 𝑑𝑆. 

Тогда поток жидкости через всю поверхность (объем жидкости, протекающей через 

поверхность 𝛷 за единицу времени): 
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∬(𝑣 ∙ 𝑛⃗⃗)𝑑𝑆

𝛷

. 

 

Рис. 20.1. Физический пример. 

Вычисление поверхностных интегралов второго рода 

1) Пусть гладкая поверхность 𝛷: 𝑧 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐺. Выберем, например, 

верхнюю сторону поверхности 𝛷, на которой 𝑛⃗⃗(𝑀) = {−𝑓𝑥(𝑥, 𝑦), −𝑓𝑥(𝑥, 𝑦), 1}. 

Тогда  

cos𝛼(𝑀) = −
𝑓𝑥(𝑥, 𝑦)

√1 + 𝑓𝑥2 + 𝑓𝑦2
, 

cos 𝛽(𝑀) = −
𝑓𝑦(𝑥, 𝑦)

√1 + 𝑓𝑥2 + 𝑓𝑦2
, 

cos 𝛾(𝑀) =
1

√1 + 𝑓𝑥2 + 𝑓𝑦2
. 

По формуле (19.4) получаем: 

𝐼1 = ∬𝑃(𝑥, 𝑦, 𝑧) cos 𝛼(𝑀)𝑑𝑆

𝛷

= −∬𝑃(𝑥, 𝑦, 𝑓(𝑥, 𝑦))
𝑓𝑥(𝑥, 𝑦)

√1 + 𝑓𝑥2 + 𝑓𝑦2
√1+ 𝑓𝑥2 + 𝑓𝑦2𝑑𝑥𝑑𝑦

𝐺

= −∬𝑃(𝑥, 𝑦, 𝑓(𝑥, 𝑦))𝑓𝑥(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

, 

𝐼2 =∬𝑄(𝑥, 𝑦, 𝑧) cos 𝛽(𝑀)𝑑𝑆

𝛷

= −∬𝑄(𝑥, 𝑦, 𝑓(𝑥, 𝑦))𝑓𝑦(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐺

, 
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𝐼3 =∬𝑅(𝑥, 𝑦, 𝑧) cos 𝛾(𝑀)𝑑𝑆

𝛷

=∬𝑅(𝑥, 𝑦, 𝑓(𝑥, 𝑦))𝑑𝑥𝑑𝑦

𝐺

. 

2) Пусть гладкая двусторонняя поверхность задана параметрически 𝛷: 𝑥 =

𝜑(𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣), 𝑧 = 𝜒(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝑔. Выберем ту сторону поверхности, на 

которой 𝑛⃗⃗(𝑀) = {𝐴,𝐵, 𝐶}. Тогда  

cos 𝛼(𝑀) =
𝐴

√𝐴2 + 𝐵2 + 𝐶2
, 

cos𝛽(𝑀) =
𝐵

√𝐴2 + 𝐵2 + 𝐶2
, 

cos 𝛾(𝑀) =
𝐶

√𝐴2 + 𝐵2 + 𝐶2
. 

По формуле (19.2) получаем: 

𝐼1 =∬𝑃(𝜑,𝜓, 𝜒)
𝐴(𝑢, 𝑣)

√𝐴2 + 𝐵2 + 𝐶2
√𝐴2 + 𝐵2 + 𝐶2𝑑𝑢𝑑𝑣

𝑔

=∬𝑃(𝜑, 𝜓, 𝜒)𝐴(𝑢, 𝑣)𝑑𝑢𝑑𝑣

𝑔

, 

𝐼2 =∬𝑄(𝜑, 𝜓, 𝜒)𝐴(𝑢, 𝑣)𝑑𝑢𝑑𝑣

𝑔

, 

𝐼3 =∬𝑅(𝜑,𝜓, 𝜒)𝐶(𝑢, 𝑣)𝑑𝑢𝑑𝑣

𝑔

. 

Пример. Вычислить поверхностный интеграл  

𝐼 =
1

3
∬𝑥𝑑𝑦𝑑𝑧 + 𝑦𝑑𝑧𝑑𝑥 + 𝑧𝑑𝑥𝑑𝑦

𝛷

 

по внешней стороне эллипсоида 𝛷:
𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1. Перейдем к параметрическим 

уравнениям эллипсоида: 

𝑥 = 𝑎 sin 𝑢 cos 𝑣 , 𝑦 = 𝑏 sin 𝑢 sin 𝑣 , 𝑧 = 𝑐 cos𝑢 , (𝑢, 𝑣) ∈ 𝑔 = {0 ≤ 𝑢 ≤ 𝜋, 0 ≤ 𝑣 ≤ 2𝜋}. 

Вычислим координаты вектора нормали: 

𝑛⃗⃗ = [𝑟𝑢 × 𝑟𝑣] = |
𝑖 𝑗 𝑘⃗⃗
𝜑𝑢 𝜓𝑢 𝜒𝑢
𝜑𝑣 𝜓𝑣 𝜒𝑣

| = 𝐴(𝑢, 𝑣)𝑖 + 𝐵(𝑢, 𝑣)𝑗 + 𝐶(𝑢, 𝑣)𝑘⃗⃗, 

𝐴 = |
𝜓𝑢 𝜒𝑢
𝜓𝑣 𝜒𝑣

| = |
𝑏 cos𝑢 sin 𝑣 −𝑐 sin 𝑢
𝑏 sin 𝑢 cos 𝑣 0

| = 𝑏𝑐 sin2 𝑢 cos 𝑣, 
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𝐵 = |
𝜒𝑢 𝜑𝑢
𝜒𝑣 𝜑𝑣

| = |
−𝑐 sin 𝑢 𝑎 cos𝑢 cos 𝑣

0 −𝑎 sin 𝑢 sin 𝑣
| = 𝑎𝑐 sin2 𝑢 sin 𝑣, 

𝐶 = |
𝜑𝑢 𝜓𝑢
𝜑𝑣 𝜓𝑣

| = |
𝑎 cos𝑢 cos 𝑣 𝑏 cos𝑢 sin 𝑣
−𝑎 sin 𝑢 sin 𝑣 𝑏 sin 𝑢 cos 𝑣

| = 𝑎𝑏 sin 𝑢 cos𝑢. 

Интеграл 𝐼 принимает вид: 

𝐼 =
1

3
∬(𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶)𝑑𝑢𝑑𝑣

𝑔

=
1

3
𝑎𝑏𝑐∬(sin3 𝑢 cos2 𝑣 + sin3 𝑢 sin2 𝑣 + sin 𝑢 cos2 𝑢)𝑑𝑢𝑑𝑣

𝑔

=
1

3
𝑎𝑏𝑐∬sin 𝑢 𝑑𝑢𝑑𝑣

𝑔

=
1

3
𝑎𝑏𝑐 ∫ 𝑑𝑣∫ sin 𝑢 𝑑𝑢

𝜋

0

2𝜋

0

=
4

3
𝜋𝑎𝑏𝑐. 

Мы получили объем тела, ограниченного эллипсоидом. Этот результат не случайный. В 

следующем параграфе будет получена формула Остроградского-Гаусса, из которой 

следует, что объем любого тела, ограниченного кусочно-гладкой поверхностью 𝛷, 

вычисляется с помощью такого же поверхностного интеграла, как в рассмотренном 

примере: 

𝑉(𝑇) =
1

3
∬𝑥𝑑𝑦𝑑𝑧 + 𝑦𝑑𝑧𝑑𝑥 + 𝑧𝑑𝑥𝑑𝑦

𝛷

. 

Формула Остроградского–Гаусса 

Пусть функции 𝑧1(𝑥, 𝑦) и 𝑧2(𝑥, 𝑦) определены и непрерывны в ограниченной 

связной замкнутой области 𝐷, причем 𝑧1(𝑥, 𝑦) ≤ 𝑧2(𝑥, 𝑦) (𝑥, 𝑦) ∈ 𝐷. Область 𝐺 =

{(𝑥, 𝑦, 𝑧): (𝑥, 𝑦) ∈ 𝐷, 𝑧1(𝑥, 𝑦) ≤ 𝑧 ≤ 𝑧2(𝑥, 𝑦)} назовем «z-цилиндрической» (рис. 20.2). 

Аналогично определяются «x-цилиндрическая» и «y-цилиндрическая» области.  

Область G назовем простой, если ее можно представить в виде объединения 

конечного числа «x-цилиндрических» областей, и также «y-цилиндрических» областей, 

и «z-цилиндрических» областей. 
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Рис. 20.2. «z-цилиндрическая» область. 

Границу области 𝐺, то есть ограничивающую ее поверхность, будем обозначать буквой 

𝛷.  

Теорема 3. Пусть 𝐺 − простая область, ограниченная кусочно-гладкой 

поверхностью 𝛷, в области 𝐺 заданы функции 𝑃(𝑥, 𝑦, 𝑧), 𝑄(𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧), причем 

они и их частные производные 
𝜕𝑃

𝜕𝑥
,
𝜕𝑄

𝜕𝑦
,
𝜕𝑅

𝜕𝑧
 непрерывны в 𝐺. Тогда справедливо равенство 

∭(
𝜕𝑃

𝜕𝑥
+ 
𝜕𝑄

𝜕𝑦
+ 
𝜕𝑅

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧

𝐺

= ∬(𝑃𝑐𝑜𝑠 𝛼 + 𝑄𝑐𝑜𝑠 𝛽 + 𝑅𝑐𝑜𝑠 𝛾)𝑑𝑆

𝛷

, 

(20.1) 

где 𝛼, 𝛽, 𝛾 – углы между вектором внешней нормали 𝑛⃗⃗(𝑀) и осями координат.  

Формула (20.1) называется формулой Остроградского-Гаусса. Она была 

получена М.В. Остроградским в 1827 году в связи с рассмотрением задачи о 

распространении тепла в твердом теле. Гаусс получил эту формулу ранее в частном 

случае, когда 𝑃 = 𝑥, 𝑄 = 𝑦, 𝑅 = 𝑧. 

Следствие. Если 
𝜕𝑃

𝜕𝑥
+ 

𝜕𝑄

𝜕𝑦
+ 

𝜕𝑅

𝜕𝑧
= 1, то получим выражение для объема области 

𝐺 через поверхностный интеграл: 

𝑉(𝐺) =∭𝑑𝑥𝑑𝑦𝑑𝑧

𝐺

= ∬(𝑃𝑐𝑜𝑠 𝛼 + 𝑄𝑐𝑜𝑠 𝛽 + 𝑅𝑐𝑜𝑠 𝛾)𝑑𝑆

𝛷

. 

В частности при 𝑃 =
1

3
𝑥,𝑄 =

1

3
𝑦, 𝑅 =

1

3
𝑧 для объема области 𝐺 получим формулу:  

𝑉(𝐺) =
1

3
∬(𝑥𝑐𝑜𝑠 𝛼 + 𝑦𝑐𝑜𝑠 𝛽 + 𝑧𝑐𝑜𝑠 𝛾)𝑑𝑆

𝛷

=
1

3
∬𝑥𝑑𝑦𝑑𝑧 + 𝑦𝑑𝑧𝑑𝑥 + 𝑧𝑑𝑥𝑑𝑦

𝛷

. 

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

137 

 

 

 Введем вектор 𝑎⃗ = {𝑃,𝑄, 𝑅} и скалярную функцию 𝑑𝑖𝑣 𝑎⃗ =
𝜕𝑃

𝜕𝑥
+ 

𝜕𝑄

𝜕𝑦
+ 

𝜕𝑅

𝜕𝑧
, 

которая называется дивергенцией. Тогда формулу Остроградского-Гаусса можно 

переписать в виде: 

∭𝑑𝑖𝑣 𝑎⃗ 𝑑𝑥𝑑𝑦𝑑𝑧

𝐺

=∬(𝑎⃗ ∙ 𝑛⃗⃗)𝑑𝑆

𝛷

. 

Формула Стокса 

 Рассмотрим кусочно-гладкую двустороннюю поверхность 𝛷, которая 

ограничена контуром 𝐿. Выберем одну из сторон поверхности, то есть ориентируем 

поверхность. Введем положительное направление обхода контура 𝐿, соответствующее 

ориентации поверхности, следующим образом: если наблюдатель находится на 

выбранной стороне поверхности (то есть направление от ног к голове совпадает с 

направлением вектора нормали), то при обходе контура в положительном направлении 

он оставляет поверхность слева от себя (рис. 20.3). 

 

Рис. 20.3. Положительное направление обхода контура 𝐿. 

Если граница поверхности состоит из нескольких контуров, то для каждого из них 

положительное направление обхода определяется таким же образом. Выбор 

положительного направления обхода контура называется также согласованием 

ориентации контура с ориентацией поверхности. 

 Определение. Поверхность 𝛷 называется «xyz-проектируемой», если она 

взаимно однозначно проектируется на каждую координатную плоскость 

прямоугольной системы координат 𝑂𝑥𝑦𝑧.  

Простейшим примером такой поверхности является плоский треугольник 𝐴𝐵𝐶, 

изображенный на рис. 20.4.  
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Рис. 20.4. Пример «xyz-проектируемой» поверхности. 

 Если поверхность 𝛷 «xyz-проектируема», то ее можно задать любым из трех 

уравнений вида: 

𝑧 = 𝑓1(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐷1, 

𝑥 = 𝑓2(𝑦, 𝑧), (𝑦, 𝑧) ∈ 𝐷2, 

𝑦 = 𝑓3(𝑥, 𝑧), (𝑥, 𝑧) ∈ 𝐷3. 

В дальнейшем будем считать, что при этом функции 𝑓1, 𝑓2, 𝑓3 непрерывно 

дифференцируемы. 

 Теорема 4. Пусть  

1) функции 𝑃(𝑥, 𝑦, 𝑧), 𝑄(𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧) и их частные производные первого порядка 

непрерывны в области 𝐺;  

2) гладкая «xyz-проектируемая» поверхность 𝛷, ограниченная кусочно-гладким 

контуром 𝐿, расположена внутри области 𝐺. 

Тогда справедливо равенство 

∮ 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧

𝐿

=∬[(
𝜕𝑄

𝜕𝑥
− 
𝜕𝑃

𝜕𝑦
) 𝑐𝑜𝑠 𝛾 + (

𝜕𝑅

𝜕𝑦
− 
𝜕𝑄

𝜕𝑧
) 𝑐𝑜𝑠 𝛼 + (

𝜕𝑃

𝜕𝑧
− 
𝜕𝑅

𝜕𝑥
) 𝑐𝑜𝑠 𝛽] 𝑑𝑆

𝛷

, 

(20.2) 

где ориентация контура 𝐿 согласована с ориентацией поверхности 𝛷, 𝑛⃗⃗ =

{𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽, 𝑐𝑜𝑠 𝛾} − вектор нормали на выбранной стороне поверхности. Формула 

(20.2) называется формулой Стокса. 

 Замечание. Если поверхность 𝛷 является плоской областью, лежащей, например, 

в плоскости 𝑥𝑦, то формула Стокса переходит в формулу Грина. 
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ЛЕКЦИЯ 21. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ 

На прошлой лекции мы записали формулу Стокса: 

∮ 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧

𝐿

=∬[(
𝜕𝑄

𝜕𝑥
− 
𝜕𝑃

𝜕𝑦
) 𝑐𝑜𝑠 𝛾 + (

𝜕𝑅

𝜕𝑦
− 
𝜕𝑄

𝜕𝑧
) 𝑐𝑜𝑠 𝛼 + (

𝜕𝑃

𝜕𝑧
− 
𝜕𝑅

𝜕𝑥
) 𝑐𝑜𝑠 𝛽] 𝑑𝑆

𝛷

. 

Введем вектор-функции: 𝑎⃗ = {𝑃, 𝑄, 𝑅} и ротор 𝑎⃗ 

𝑟𝑜𝑡 𝑎⃗ = ||

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑃 𝑄 𝑅

|| = (
𝜕𝑅

𝜕𝑦
− 
𝜕𝑄

𝜕𝑧
) 𝑖 + (

𝜕𝑃

𝜕𝑧
− 
𝜕𝑅

𝜕𝑥
) 𝑗 + (

𝜕𝑄

𝜕𝑥
− 
𝜕𝑃

𝜕𝑦
) 𝑘⃗⃗. 

Тогда формулу Стокса можно переписать в виде: 

∮(𝑎⃗ ∙ 𝑑𝑙)

𝐿

=∬(𝑟𝑜𝑡 𝑎⃗ ∙ 𝑛⃗⃗)𝑑𝑆

𝛷

. 

Эта формула читается так: циркуляция векторного поля 𝑎⃗(𝑀) вдоль контура 𝐿 равна 

потоку векторного поля 𝑟𝑜𝑡 𝑎⃗(𝑀) через выбранную сторону поверхности 𝛷, 

ограниченную контуром 𝐿. 

Условия независимости криволинейного интеграла второго рода от 

пути интегрирования в пространстве 

Теорема 5.  

I. Пусть функции 𝑃(𝑥, 𝑦, 𝑧), 𝑄(𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧) определены и непрерывны в области 𝐺. 

Тогда следующие три условия эквивалентны:  

1. Для любого замкнутого кусочно-гладкого контура 𝐿, расположенного в области 

𝐺, справедливо равенство 

∮ 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧

𝐿

= 0. 

2. Для любых двух точек 𝐴 и 𝐵 области 𝐺 криволинейный интеграл ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦 +
𝐴𝐵

𝑅𝑑𝑧 не зависит от пути интегрирования, расположенного в области 𝐺.  

3. Выражение 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧 является полным дифференциалом, то есть в области 

𝐺 существует функция 𝑢(𝑥, 𝑦, 𝑧): 𝑑𝑢 = 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧. При этом для любой 

кусочно-гладкой кривой 𝐴𝐵, лежащей в области 𝐺, имеет место равенство: 

https://vk.com/teachinmsu


 

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ II 

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

141 

 

 

∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦 +𝑅𝑑𝑧

𝐴𝐵

= 𝑢(𝐵) − 𝑢(𝐴). 

II. Если функции 𝑃,𝑄, 𝑅 имеют в области 𝐺 непрерывные частные производные первого 

порядка, и область 𝐺 является поверхностно-односвязной, то каждое из условий 1–3 

эквивалентно условию 4: 

𝜕𝑄

𝜕𝑥
=  

𝜕𝑃

𝜕𝑦
,
𝜕𝑅

𝜕𝑦
=  

𝜕𝑄

𝜕𝑧
,
𝜕𝑃

𝜕𝑧
=

𝜕𝑅

𝜕𝑥
 в области 𝐺, 

или 𝑟𝑜𝑡 𝑎⃗ = 0. 

Область 𝐺 называется поверхностно-односвязной, если для любого замкнутого 

контура 𝐿 ⊂ 𝐺 существует поверхность 𝛷 ⊂ 𝐺 с границей 𝐿. 

 Пример. Шар, параллелепипед, область между двумя концентрическими 

сферами – поверхностно-односвязные области; тор не является поверхностно-

односвязной областью. 

 Доказательство проводится по схеме: 

I. 1 → 2 → 3 → 1; 

II. 3 → 4 → 1. 

Геометрические приложения дифференциального исчисления 

С помощью дифференциального исчисления мы умеем находить точки 

локального экстремума функции, промежутки монотонности, направление выпуклости, 

точки перегиба и асимптоты графиков функций. Здесь мы рассмотрим применение 

дифференциального исчисления к другим геометрическим вопросам: касание плоских 

кривых, огибающая семейства кривых, кривизна плоской кривой. 

Касание плоских кривых 

Если две кривые 𝐿1 и 𝐿2 имеют общую точку 𝑀0 и общую касательную в этой 

точке, то говорят, что эти кривые касаются в точке 𝑀0 (рис. 21.1).  

 

Рис. 21.1. Соприкасающиеся кривые. 

Пусть кривые 𝐿1 и 𝐿2 являются графиками функций 𝑦 = 𝑓1(𝑥) и 𝑦 = 𝑓2(𝑥), и 

пусть они касаются в точке 𝑀0(𝑥0, 𝑓1(𝑥0)) (рис. 21.2). Пусть 𝑛 — натуральное число. 
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Рис. 21.2. Касательная. 

Определение. Если существует  

lim
𝑥→𝑥0

|𝑓2(𝑥) − 𝑓1(𝑥)|

|𝑥 − 𝑥0|𝑛+1
≠ 0, 

(21.1) 

то говорят, что порядок касания кривых 𝐿1 и 𝐿2 в точке 𝑀0 равен 𝑛. Если предел (21.1) 

равен нулю, то говорят, что порядок касания кривых 𝐿1 и 𝐿2 в точке 𝑀0 выше 𝑛. Если 

порядок касания выше любого 𝑛, то говорят, что порядок касания бесконечный. 

 Примеры.  

1) Пусть 𝐿1: 𝑦 = sin 𝑥 и 𝐿2: 𝑦 = 𝑥. Определим порядок касания кривых 𝐿1 и 𝐿2 в точке 

𝑀0(0,0). Запишем предел 

lim
𝑥→0

|sin 𝑥 − 𝑥|

|𝑥|𝑛+1
= {

0, 𝑛 < 2
1

3
, 𝑛 = 2

∞,𝑛 > 2

, 

откуда по определению следует, что порядок касания 𝑛 = 2. 

 

Рис. 21.3. Пример 1. 

2) Пусть 𝐿1: 𝑦 = 0 и 𝐿2: 𝑦 = {
𝑒−1 𝑥2⁄ , 𝑥 ≠ 0
0, 𝑥 = 0

. Убедитесь, что порядок касания кривых 𝐿1 и 

𝐿2 в точке 𝑀0(0,0) равен бесконечности. 
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Особые точки кривых 

Кривая на плоскости 𝑂𝑥𝑦 может быть задана тремя способами:  

1) явно, то есть уравнением вида 𝑦 = 𝑓(𝑥) или 𝑥 = 𝑓(𝑦);  

2) неявно, то есть уравнением вида 𝐹(𝑥, 𝑦) = 0;  

3) параметрически, то есть уравнениями 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), где 𝑡 – параметр, 

принимающий значения из некоторого промежутка.  

В случае неявного или параметрического задания кривая может иметь особые 

точки. Пусть кривая задана неявно 𝐿: 𝐹(𝑥, 𝑦) = 0, и точка 𝑀0 ∈ 𝐿, то есть 𝐹(𝑥0, 𝑦0) = 0. 

В дальнейшем будем считать, что функции, входящие в уравнения кривых, непрерывно 

дифференцируемы, то есть имеют непрерывные производные первого порядка. 

 Определение. Точка 𝑀0(𝑥0, 𝑦0) ∈ 𝐿 называется особой (обыкновенной), если  

𝐹𝑥
2(𝑥0, 𝑦0) + 𝐹𝑦

2(𝑥0, 𝑦0) = 0 (≠ 0). 

 Пусть 𝑀0(𝑥0, 𝑦0) ∈ 𝐿 − обыкновенная точка, пусть 𝐹𝑦(𝑥0, 𝑦0) ≠ 0. Так как 𝑀0 ∈

𝐿, то 𝐹(𝑥0, 𝑦0) = 0. Тогда по теореме о неявной функции в некоторой окрестности 

точки 𝑀0 уравнение 𝐹(𝑥, 𝑦) = 0 имеет единственное решение относительно 𝑦: 𝑦 =

𝑓(𝑥). Тем самым кривую 𝐿 в этой окрестности можно задать явным уравнением 𝑦 =

𝑓(𝑥). При этом функция 𝑓(𝑥) дифференцируема, и 

𝑓′(𝑥) = −
𝐹𝑥(𝑥,𝑦)

𝐹𝑦(𝑥,𝑦)
|
𝑦=𝑓(𝑥)

.     (21.2) 

Если же 𝑀0(𝑥0, 𝑦0) ∈ 𝐿 − особая точка, то в ее окрестности кривая может не 

иметь явного уравнения. 

 Пример. Пусть 𝐿: 𝑥2 − 𝑦2 = 0 и 𝑀0(0,0) ∈ 𝐿. Кривая 𝐿 представляет собой две 

прямые, пересекающихся в точке 𝑀0(0,0) (рис. 21.4). Очевидно, что в окрестности 

точки 𝑀0 наша кривая не имеет явного уравнения. 

 

Рис. 21.4. Пример. 

Пусть 𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), и 𝑀0(𝜑(𝑡0), 𝜓(𝑡0)) − обыкновенная точка, то есть 

𝜑′2(𝑡0) + 𝜓
′2(𝑡0) ≠ 0. Пусть, например, 𝜑′2(𝑡0) ≠ 0. Тогда в силу непрерывности 
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𝜑′(𝑡0) ≠ 0 и сохраняет знак в некоторой окрестности точки 𝑡0, следовательно, функция 

𝑥 = 𝜑(𝑡) − строго монотонная в этой окрестности точки 𝑡0 и, значит, имеет обратную 

функцию 𝑡 = 𝜑−1(𝑥). Подставив ее в уравнение 𝑦 = 𝜓(𝑡), получим явное уравнение 

кривой 𝐿: 𝑦 = 𝜓(𝜑−1(𝑥)) =: 𝑓(𝑥) в некоторой окрестности точки 𝑀0(𝜑(𝑡0), 𝜓(𝑡0)). При 

этом функция 𝑓(𝑥) дифференцируема, и 

𝑓′(𝑥) = −
𝜓′(𝑡)

𝜑′(𝑡)
|
𝑡=𝜑−1(𝑥)

. 

(21.3) 

Если же 𝑀0(𝜑(𝑡0), 𝜓(𝑡0)) − обыкновенная точка, то есть 𝜑′2(𝑡0) + 𝜓
′2(𝑡0) = 0, 

то в окрестности 𝑀0 кривая может не иметь явного задания. 

Огибающая семейства плоских кривых 

Рассмотрим уравнение  

𝐹(𝑥, 𝑦, 𝑎) = 0.      (21.4) 

Пусть для любого значения переменной 𝑎 (из некоторого промежутка) 

уравнение (21.4) задает неявно некоторую кривую на плоскости 𝑂𝑥𝑦. Изменяя 𝑎 (в 

пределах указанного промежутка), будем получать различные кривые. Совокупность 

всех этих кривых называется однопараметрическим семейством кривых, переменная 𝑎 

называется параметром, а уравнение (21.4) – уравнением однопараметрического 

семейства кривых. 

Пример. Уравнение 𝑦 − (𝑥 − 𝑎)2 = 0, 𝑎 ∈ 𝑅 задает однопараметрическое 

семейство парабол (рис. 21.5). Заметим, что ось 𝑂𝑥 касается всех парабол семейства. 

 

Рис. 21.5. Пример. 

Определение. Кривая, которая в каждой своей точке касается и притом только 

одной кривой данного семейства, а в различных точках касается различных кривых 

семейства, называется огибающей данного семейства кривых. (В рассмотренном 

примере ось 𝑂𝑥 (прямая 𝑦 = 0) – огибающая семейства парабол.) 
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Необходимое условие огибающей 

 

Рис. 21.6. Огибающая и кривая семейства. 

Пусть однопараметрическое семейство кривых, заданное уравнением (21.4), 

имеет огибающую 𝐿. Рассмотрим точку 𝑀(𝑥, 𝑦) на огибающей (рис. 21.6), в этой точке 

огибающая касается только одной кривой семейства, в свою очередь этой кривой 

соответствует некоторое значение параметра 𝑎, причем различные точки огибающей 

соответствуют различным значениям 𝑎. Следовательно, координаты точки 𝑀(𝑥, 𝑦) 

огибающей являются функциями параметра 𝑎, обозначим их так:  

𝑥 = 𝜑(𝑎), 𝑦 = 𝜓(𝑎). 

Выведем уравнения, которым удовлетворяют эти функции. Так как точка 

𝑀(𝜑(𝑎),𝜓(𝑎)) ∈ кривой семейства, то ее координаты удовлетворяют уравнению (21.4): 

𝐹(𝜑(𝑎),𝜓(𝑎), 𝑎) = 0.     (21.5) 

Равенство (11.6) выполняется для любого значения 𝑎, то есть является тождеством. 

Продифференцируем его по 𝑎: 

𝐹𝑥𝜑
′(𝑎) + 𝐹𝑦𝜓

′(𝑎) + 𝐹𝑎|𝑥=𝜑(𝑎)
𝑦=𝜓(𝑎)

= 0.    (21.6) 

Так как огибающая и кривая семейства касаются в точке 𝑀(𝜑(𝑎),𝜓(𝑎)), то они имеют 

в этой точке общую касательную, и, значит, одинаковые угловые коэффициенты 

касательной. Приравнивая угловые коэффициенты касательной для огибающей и для 

кривой семейства в точке 𝑀(𝜑(𝑎),𝜓(𝑎)), получаем равенства: 

𝜓′(𝑡)

𝜑′(𝑡)
= −

𝐹𝑥(𝑥, 𝑦, 𝑎)

𝐹𝑦(𝑥, 𝑦, 𝑎)
|
𝑥=𝜑(𝑎)

𝑦=𝜓(𝑎)

. 

Откуда следует, что 

𝐹𝑥𝜑
′(𝑎) + 𝐹𝑦𝜓

′(𝑎)|𝑥=𝜑(𝑎)
𝑦=𝜓(𝑎)

= 0.     (21.7) 

В силу (21.7) равенство (21.6) принимает вид: 

𝐹𝑎(𝜑(𝑎),𝜓(𝑎), 𝑎) = 0.     (21.8) 
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Таким образом, если семейство кривых (21.4) имеет огибающую, то функции 

𝑥 = 𝜑(𝑎), 𝑦 = 𝜓(𝑎), задающие эту огибающую, удовлетворяют равенствам (21.5) и 

(21.8), то есть эти функции являются решением системы уравнений: 

{
𝐹(𝜑(𝑎),𝜓(𝑎), 𝑎) = 0

𝐹𝑎(𝜑(𝑎), 𝜓(𝑎), 𝑎) = 0
,     (21.9) 

это и есть необходимое условие огибающей. 

 Если система (21.9) не имеет решения относительно 𝑥 и 𝑦, то у семейства 

кривых (21.4) огибающей нет. Если же система (21.9) имеет решение 𝑥 = 𝜑(𝑎), 𝑦 =

𝜓(𝑎), то эти функции могут описывать огибающую, но могут быть и уравнениями 

кривой, которая не является огибающей. Дело в том, что равенство (21.7) выполняется 

также и в том случае, когда либо  

𝐹𝑦(𝜑(𝑎),𝜓(𝑎), 𝑎) = 𝐹𝑥(𝜑(𝑎),𝜓(𝑎), 𝑎) = 0, 

либо  

𝜑′(𝑎) = 𝜓′(𝑎) = 0. 

В первом случае 𝑀(𝜑(𝑎),𝜓(𝑎)) является особой точкой кривой семейства, во втором 

случае – особой точкой кривой, заданной уравнениями 𝑥 = 𝜑(𝑎), 𝑦 = 𝜓(𝑎). 

Решение 𝑥 = 𝜑(𝑎), 𝑦 = 𝜓(𝑎) системы (21.9) называется дискриминантной 

кривой семейства кривых (21.4). Таким образом, дискриминантная кривая может быть 

либо огибающей, либо множеством особых точек, либо частично тем, частично другим. 

Примеры.  

1) Рассмотрим уравнение (𝑥 − 𝑎)3 − (𝑦 − 𝑎)2 = 0, 𝑎 ∈ 𝑅. При 𝑎 = 0 мы получаем 𝑦 =

±𝑥
3
2⁄ . 

Таким образом, уравнение задает семейство кривых, называемых полукубическими 

параболами. Запишем производную 𝐹𝑎 = −3(𝑥 − 𝑎)2 + 2(𝑦 − 𝑎) = 0. Полученная 

система имеет два решения: 

𝐿1: 𝑥 = 𝑎, 𝑦 = 𝑎 ↔  𝐿1: 𝑦 = 𝑥; 

𝐿2: 𝑥 = 𝑎 +
4

9
, 𝑦 = 𝑎 +

8

27
 ↔  𝐿2: 𝑦 = 𝑥 −

4

27
. 

Дискриминантная кривая данного семейства кривых представляет собой две 

параллельные прямые. 

В кривой 𝐿1: 𝐹𝑥 = 𝐹𝑦 = 0, то есть эта прямая является множеством особых точек 

кривых семейства, а прямая 𝐿2 является огибающей (рис. 21.7). 
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Рис. 21.7. Пример 1. 

Замечание. Понятие огибающей используется в теории дифференциальных 

уравнений. Рассмотрим уравнение  

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦). 

Оно называется дифференциальным уравнением первого порядка, и задача состоит в 

том, чтобы найти все функции 𝑦 = 𝑦(𝑥), удовлетворяющие этому уравнению. В курсе 

дифференциальных уравнений будет доказано, что общее решение данного уравнения 

зависит от одной произвольной постоянной: 𝑦 = 𝛷(𝑥, 𝑎), где 𝑎 - произвольная 

постоянная, а функция 𝛷 определяется правой частью уравнения, то есть функцией 

𝑓(𝑥, 𝑦). это семейство кривых имеет огибающую, то она является графиком, так 

называемого, особого решения дифференциального уравнения. 

Кривизна плоской кривой 

Рассмотрим плоскую кривую, изображенную на рис. 21.8, выделим на ней два 

участка одинаковой длины (I и II). Наглядно видно, что искривленность на участке II 

больше, чем на участке I. Наша задача состоит в том, чтобы ввести количественную 

характеристику искривленности плоской кривой (меру искривленности). Эту меру 

искривленности мы назовем в дальнейшем кривизной плоской кривой. 
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Рис. 21.7. Кривая. 

 Рассмотрим кривую 𝐿, в каждой точке которой существует касательная. Будем 

рассматривать в каждой точке направленную касательную. За направление касательной 

примем то, которое соответствует направлению движения точки по кривой, и будем 

отмечать его стрелкой. Отметим на кривой точки 𝑀0 и 𝑀1 (рис. 21.8). Обозначим через 

∆𝜑 угол, на который повернется направленная касательная при движении по кривой 𝐿 

из точки 𝑀0 в точку 𝑀1. Будем считать ∆𝜑 ≥ 0. Через ∆𝑙 обозначим длину дуги 𝑀0𝑀1. 

Ясно, что чем больше искривленность участка 𝑀0𝑀1 кривой 𝐿, тем на больший угол ∆𝜑 

повернется касательная, и наоборот, чем больше угол ∆𝜑 (при заданной длине дуги 

𝑀0𝑀1), тем больше искривленность участка кривой 𝑀0𝑀1. Эти наглядные 

представления положим в основу определения кривизны кривой. 

 

Рис. 21.8. Иллюстрация к определению кривизны кривой. 

Определение. Средней кривизной участка кривой 𝑀0𝑀1 называется отношение  

∆𝜑

∆𝑙
= 𝑘𝑀0𝑀1 . 

Кривизной кривой 𝐿 в точке 𝑀0 называется lim
𝑀1→𝑀0
𝑀1∈𝐿

𝑘𝑀0𝑀1 = 𝑘(𝑀0). 

Примеры.  

1) Пусть 𝐿 – прямая, тогда для любого ее отрезка 𝑀0𝑀1 имеем: ∆𝜑 = 0⟹ 𝑘𝑀0𝑀1 =

0 ⟹ 𝑘(𝑀0) = 0, то есть у прямой нет кривизны. 
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Рис. 21.9. Пример 1. 

2) Длина ∆𝑙 дуги 𝑀0𝑀1 окружности радиуса 𝑅 выражаетсяформулой ∆𝑙 = 𝑅∆𝜑 

(рис. 21.10), поэтому 𝑘𝑀0𝑀1 =
∆𝜑

∆𝑙
=

1

𝑅
, 𝑘(𝑀0) =

1

𝑅
, то есть как средняя кривизна 

любой дуги окружности, так и кривизна в каждой ее точке, равны 
1

𝑅
. Отметим, 

что при 𝑅 → ∞ кривизна окружности стремится к нулю, и в этом смысле дуга 

окружности очень большого радиуса мало отличается от прямой. Заметим, что 

прямая и окружность – кривые постоянной кривизны. 

 

Рис. 21.10. Пример 2. 

3) Рассмотрим эллипс, заданный уравнением 
𝑥2

𝑎2
+

𝑥2

𝑏2
= 1, где 𝑎 > 𝑏 (рис. 21.11). 

Интуитивно ясно, что кривизна эллипса в точке 𝑀1 меньше, чем в точке 𝑀2: 

𝑘(𝑀1) < 𝑘(𝑀2). Чтобы доказать это строго, нужно научиться вычислять 

кривизну в точке. 

 
Рис. 21.11. Пример 3. 

 

Вычисление кривизны кривой 
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Рис. 21.12. Иллюстрация к вычислению кривизны кривой. 

Пусть 𝐿: 𝑦 = 𝑓(𝑥), где 𝑓(𝑥) − дважды дифференцируемая функция. 

Обозначим буквой 𝛼 угол между направленной касательной к кривой 𝐿 в точке 

𝑀 (при движении в сторону возрастания 𝑥) и осью 𝑂𝑥, −
𝜋

2
 < 𝛼 <

𝜋

2
 (на рис. 

21.12 𝛼 > 0). Значение 𝛼 для точки 𝑀0(𝑥0, 𝑓(𝑥0)) обозначим через 𝛼0. Положим 

∆𝛼 = 𝛼 − 𝛼0, тогда ∆𝜑 = |∆𝛼|. Для средней кривизны и кривизны получим: 

𝑘𝑀0𝑀1 =
∆𝜑

∆𝑙
= |
∆𝛼

∆𝑙
|, 

𝑘(𝑀0) = lim
∆𝑙→0

|
∆𝛼

∆𝑙
| = |

𝑑𝛼

𝑑𝑙
|
𝑥=𝑥0

. 

Поскольку t𝑔 𝛼 = 𝑓′(𝑥), имеем 𝛼 = 𝑎𝑟𝑐𝑡𝑔 𝑓′(𝑥) и  

𝑑𝛼 =
𝑓′′(𝑥)

1 + 𝑓′2(𝑥)
𝑑𝑥. 

Вспомним, что  

𝑙 = 𝑙𝑀0𝑀1 = ∫√1 + 𝑓′2(𝑥)𝑑𝑆

𝑥

𝑥0

, 

тогда  

𝑑𝑙 = √1 + 𝑓′2(𝑥)𝑑𝑥. 

Взяв отношение дифференциалов, получим: 

𝑘(𝑀0) = |
𝑑𝛼

𝑑𝑙
|
𝑥=𝑥0

=
|𝑓′′(𝑥0)|

[1 + 𝑓′2(𝑥0)]3 2⁄
. 

Мы видим, что кривизна 𝑘(𝑀0) тем больше, чем больше |𝑓′′(𝑥0)|, и если 

𝑓′′(𝑥0) ≠ 0, то 𝑘(𝑀0) ≠ 0. Обозначим через 𝑅 =
1

𝑘(𝑀0)
 величину, обратную 

кривизне. Окружность радиуса 𝑅, касающаяся кривой 𝐿 в точке 𝑀0, и имеющая в 
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окрестности 𝑀0 такое направление выпуклости, как и кривая, называется кругом 

кривизны кривой 𝐿 в точке 𝑀0. 

 

Рис. 21.13. Величина обратная кривизне. 

Пример. Рассмотри параболу, заданную уравнением 𝑦 = 𝑥2, и точку 

𝑀0(0,0) на этой параболе (рис. 21.14). Напишите уравнение окружности радиуса 

𝑅 =
1

𝑘(𝑀0)
.  

 

Рис. 21.14. Пример. 

 Пусть 𝐿: 𝑥 = 𝜑(𝑡), 𝑦 = 𝜓(𝑡), тогда  

𝑑𝑙 = √𝜑′2(𝑡) + 𝜓′2(𝑡)𝑑𝑡, 

t𝑔 𝛼 =
𝜓′(𝑡)

𝜑′(𝑡)
, 𝛼 = 𝑎𝑟𝑐𝑡𝑔 

𝜓′(𝑡)

𝜑′(𝑡)
, 

𝑑𝛼 =
𝜓′′(𝑡)𝜑′(𝑡) − 𝜑′′(𝑡)𝜓′(𝑡)

𝜑′2(𝑡) + 𝜓′2(𝑡)
𝑑𝑡. 

Для кривизны кривой 𝐿 в точке 𝑀0(𝜑(𝑡0), 𝜓(𝑡0)) получается формула: 

𝑘(𝑀0) = |
𝑑𝛼

𝑑𝑙
|
𝑡=𝑡0

=
|𝜓′′(𝑡)𝜑′(𝑡) − 𝜑′′(𝑡)𝜓′(𝑡)|

(𝜑′2(𝑡) + 𝜓′2(𝑡))
3 2⁄

|

𝑡=𝑡0

. 

 

 

https://vk.com/teachinmsu


ФИЗИЧЕСКИЙ 
ФАКУЛЬТЕТ  
МГУ ИМЕНИ 
М.В. ЛОМОНОСОВА


	ЛЕКЦИЯ 1. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ
	Понятие n-мерного координатного пространства
	Последовательности точек в n-мерном евклидовом пространстве
	Понятие функции многих переменных. Предел функции многих переменных

	ЛЕКЦИЯ 2. ПРЕДЕЛ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ
	Непрерывность функции многих переменных
	Основные теоремы о непрерывных функциях

	ЛЕКЦИЯ 3. НЕПРЕРЫВНОСТЬ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
	Частные производные и дифференцируемость
	Физический смысл дифференцируемости функции многих переменных
	Связь дифференцируемости с существованием частных производных

	ЛЕКЦИЯ 4. ДИФФЕРЕНЦИАЛ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ
	Дифференцируемость сложной функции
	Дифференциал функции многих переменных
	Правила дифференцирования

	ЛЕКЦИЯ 5. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ
	Касательная плоскость
	Производная по направлению. Градиент функции
	Физические примеры
	Производные и дифференциалы высших порядков

	ЛЕКЦИЯ 6. ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ
	Дифференциалы высших порядков
	Инвариантность дифференциала
	Формула Тейлора

	ЛЕКЦИЯ 8. ЛОКАЛЬНЫЙ ЭКСТРЕМУМ
	Некоторые сведения о квадратичных формах
	Достаточные условия экстремума
	Случай функции двух переменных

	ЛЕКЦИЯ 9. ТЕОРИЯ НЕЯВНЫХ ФУНКЦИЙ
	О неявных функциях, определяемых одним уравнением

	ЛЕКЦИЯ 10. ТЕОРИЯ НЕЯВНЫХ ФУНКЦИЙ
	О неявных функциях, определяемых системой уравнений
	Зависимость функций

	ЛЕКЦИЯ 11. УСЛОВНЫЙ ЭКСТРЕМУМ
	Общая теорема о зависимости и независимости функций
	Условный экстремум
	Два метода решения задачи об условном экстремуме

	ЛЕКЦИИ 12. КРАТНЫЕ И ДВОЙНЫЕ ИНТЕГРАЛЫ
	Вычисление квадратичной формы
	Кратные интегралы. Площадь плоской фигуры
	Двойные интегралы
	Геометрический смысл двойного интеграла

	ЛЕКЦИЯ 13. ДВОЙНЫЕ ИНТЕГРАЛЫ
	Вычисление двойных интегралов с помощью повторного интегрирования
	Замена переменных в двойном интеграле

	ЛЕКЦИЯ 14. ТРОЙНЫЕ ИНТЕГРАЛЫ
	Двойные интегралы
	Тройные интегралы
	Вычисление тройных интегралов с помощью повторного интегрирования
	Замена переменных в тройном интеграле

	ЛЕКЦИЯ 15. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ
	Примеры криволинейных координат
	Длина кривой
	Криволинейные интегралы первого рода
	Вычисление криволинейных интегралов первого рода с помощью определенных интегралов

	ЛЕКЦИЯ 16. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ I И II РОДА
	Криволинейные интегралы второго рода
	Вычисление криволинейных интегралов второго рода с помощью определенных интегралов
	Связь между криволинейными интегралами первого и второго рода
	Формула Грина

	ЛЕКЦИЯ 17. ФОРМУЛА ГРИНА
	Условия независимости криволинейного интеграла второго рода от пути интегрирования

	ЛЕКЦИЯ 18. ПЛОЩАДЬ ПОВЕРХНОСТИ
	ЛЕКЦИЯ 19. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ I РОДА
	Поверхностные интегралы первого рода
	Поверхностные интегралы второго рода

	ЛЕКЦИЯ 20. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ II РОДА
	Определение поверхностных интегралов второго рода
	Вычисление поверхностных интегралов второго рода
	Формула Остроградского–Гаусса
	Формула Стокса

	ЛЕКЦИЯ 21. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ
	Условия независимости криволинейного интеграла второго рода от пути интегрирования в пространстве
	Геометрические приложения дифференциального исчисления
	Касание плоских кривых
	Особые точки кривых
	Огибающая семейства плоских кривых
	Необходимое условие огибающей
	Кривизна плоской кривой
	Вычисление кривизны кривой




