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Лекция 1. Вещественные числа. Часть 1.

Вещественные числа

y“ f pxq x и y - вещественные переменные.

Исторически первыми возникли натуральные числа - те, которые исполь-
зуются для счета предметов. Потом появились простые дроби, чтобы изме-
рять части целого. Считается, что индусы изобрели число 0, а в начале нашей
эры итальянцы изобрели отрицательные числа.

Понятие числа относится к первичным понятиям. Наиболее безупречная тео-
рия вещественных чисел - числами называются объекты произвольной приро-
ды, для них установлены правила сравнения, сложения, умножения, которые
подчиняются определенным аксиомам.

Рациональные числа

Рациональное число – это число, которое можно представить в виде от-
ношения m

n , где m – целое число, n – натуральное число.

Для рациональных чисел имеет место три правила.

Правило сравнения:

Рациональные числа m1
n1

, связаны тем же знаком (>,= или <), что и целые
числа m1n2 и m2n1.

Свойство множества рациональных чисел, состоящее в том, что любые два
рациональных числа связаны между собой знаком ď, .

Правило сложения:

m1

n1
`

m2

n2
“

m1n2`m2n1

n1n2

Правило умножения:
m1

n1
¨

m2

n2
“

m1n2

n1n2

Эти три правила обладают рядом свойств:
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1) правило сравнения обладает свойством транзитивности знака ą (если
aą b и bą c, то aą c) и знака “ (если a“ b и b“ c, то a“ c);

2) правило сложения обладает перестановочным pa` b “ b` aq, сочета-

тельным ppa`bq` c“ a`pb` cqq и рядом других свойств;

3) правило умножения также обладает перестановочным и сочетатель-

ным свойствами.

Рациональных чисел недостаточно для измерения различных величин, в
частности, длин любых отрезков. Так, длина диагонали квадрата со стороной
1 не является рациональным числом. Возникает потребность расширить мно-
жество рациональных чисел и дополнить его так, чтобы иметь возможность
измерять длины любых отрезков.

Любое рациональное число с помощью процесса деления можно представить
в виде бесконечной десятичной периодической дроби:

1
6
“ 0,166 . . .6 ¨ ¨ ¨ “ 0,01p6q

Для конечных десятичных дробей, отличных от 0 возможно двоякое пред-
ставление в виде бесконечной десятичной дроби.

1
2
“ 0,5“ 0,5000 ¨ ¨ ¨ “ 0,5p0q

1
2
“ 0,49 ¨ ¨ ¨9“ 0,4p9q

Иррациональные числа

Наряду с периодическими существуют непериодические десятичные дроби.

0,10011000111 ¨ ¨ ¨

1,414213 ¨ ¨ ¨число
?

2

3,141592 ¨ ¨ ¨число π

2,7182818284590452353 ¨ ¨ ¨число ε
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Любая непериодическая десятичная дробь – иррациональное число. Мно-
жество всех рациональных и иррациональных чисел с тремя правилами (срав-
нения, сложения и умножения) называются множеством вещественных (или
действительных) чисел.

Q ´множество иррациональных чисел

R ´множество рациональных чисел

Любое вещественное число a можно представить в виде бесконечной деся-
тичной дроби

a :“˘α0,α1α2 ¨ ¨ ¨αn ¨ ¨ ¨

где из двух знаков плюс и минус берется какой-то один, α0 – целое неотри-
цательное число, αk цифры pk “ 1,2, ¨ ¨ ¨ q.

Далее возникает задача введения для вещественных чисел трех правил (срав-
нения, сложения и умножения) с сохранением тех свойств, которые имели место
для рациональных чисел.

Сравнение вещественных чисел

1) Если все αk “ 0, то независимо от знака перед дробью число α считаем
равным нулю: α “ 0. Если хотя бы одно αk ‰ 0 и перед дробью стоит знак плюс,
то число α будем называть положительным и писать α ą 0, если же стоит знак
минус, то число α будем называть отрицательным и писать α ă 0.

2) Пусть a :“˘α0,α1 ¨ ¨ ¨ ,αn, ¨ ¨ ¨ , b :“˘β0,β1 ¨ ¨ ¨ ,βn, ¨ ¨ ¨

Числа a и b называются равными (пишем a “ b), если числа имеют один и
тот же знак и αk “ βk для всех k “ 0,1,2, ¨ ¨ ¨

3) Пусть aď 0, bď 0,a‰ b

Тогда для некоторого k имеют место соотношения: α0 “ β0, α1 “ β1, αk´1 “

βk´1. Будем считать, что
aą bесли αk ą βk

aă bесли αk ă βk

4) Пусть aě 0,bă 0. Тогда будем считать, что aă b.
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5) Пусть aă 0,bă 0, a‰ b. Будем считать, что:

aą b если |a| ă |b|

aă b если |a| ą |b|

Можно доказать, что введенное правило сравнения вещественных чисел об-
ладает такими же свойствами, как и правило сравнения рациональных чисел,
и что в применении к рациональным числам оно дает тот же результат, что и
правило сравнения рациональных чисел.

Для введения правил сложения и умножения вещественных чисел нам по-
надобится новое понятие точных граней ограниченного числового мно-

жества.

Точные грани ограниченного числового множества

Обозначим буквой X множество вещественных чисел, содержащее хотя бы
одно число (такое множество называется непустым). Любое число x P X назы-
вают элементом множества X .

Определение 1.1. Ограниченное сверху (снизу) множество и его верх-

няя (нижняя) грань

Множество X называется ограниченным сверху (снизу), если суще-
ствует число Mpmq такое, что для любого элемента x P X выполняется нера-
венство

xďM pxě mq

Число Mpmq называется верхней (нижней) гранью множества X . Для
краткости вместо слов «существует» и «для любого» будем использовать
логические символы (кванторы):

D – квантор существования (заменяет слово «существует» или «найдет-
ся») и @ – квантор всеобщности (заменяет выражения «для любого» или «для
всех»).

Определение 1.2 (Альтернативное). Множество X называется ограничен-

ным сверху, если
DM, @ P X : xďM
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Число M называется верхней гранью множества X

Отрицание этого предложения в позитивной форме выглядит так: Мно-
жество X называется неограниченным сверху, если

@M Dx P X : xąM

Сравнивая две записи, видим, что для построения отрицания нужно кван-
тор D заменить на @, а квантор @ на D, и стоящее после двоеточия неравен-
ство заменить ему противоположным. Это правило можно использовать и
для построения отрицаний любых других утверждений, содержащих кванто-
ры D и @.

Множество X называется ограниченным снизу, если

Dm, такое, что @ x P X : xě m

Число m называется нижней гранью множества X

Введем понятие точных верхней и нижней граней.

Пример 1.1. Множество X “ tx : x ă 1u ограничено сверху, но не ограничено
снизу. Очевидно, любое неотрицательное число является верхней гранью это-
го множества. Таким образом, ограниченное сверху множество имеет беско-
нечно много верхних граней.

Среди всех верхних граней в данном примере имеется наименьшая – число
1.Такую наименьшую грань будем называть точной верхней гранью.

Определение 1.3. Точная верхняя и нижняя грани

Наименьшая из верхних граней ограниченного сверху множества X назы-
вается точной верхней гранью этого множества и обозначается

supX psupremum множества Xq

Иногда пишут: x “ supX Аналогично,наибольшая из нижних граней огра-
ниченного снизу множества X называется точной нижней гранью этого
множества и обозначается

infX pinfinum множества Xq
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Иначе пишут: x “ infX . Определение точной верхней грани можно сфор-
мулировать иначе: число x называется точной верхней гранью ограниченного
сверху множества X , если:

1) @x P X : xď x

– это означает, что x – одна из верхних граней множества X ;

2) @x̃ Dx P X : xą x̃

– это означает, что x – наименьшая из верхних граней.

Поставим вопрос: всегда ли среди верхних граней ограниченного сверху
множества имеется наименьшая? Ответ на этот вопрос неочевиден. Например,
множество tx : x ą 0u не имеет наименьшего числа. Оказывается, что в отно-
шении верхних граней ограниченного сверху множества ответ на поставленный
вопрос положительный.

Пример 1.2. Рассмотрим множество X “ tx : xą 1u

Наименьшего числа нет.

Теорема 1.1. Ограниченное сверху (снизу) непустое множество имеет точ-
ную верхнюю (нижнюю) грань.

Доказательство. Мы докажем теорему для точной верхней грани (для
точной нижней грани доказательство аналогично).

Пусть X – ограниченное сверху множество, то есть DM, @x P x :ďM.

Возможны два случая:

1) среди элементов множества X имеется хотя бы одно число xě 0

2) @x P X : xă 0

Рассмотрим подробно первый случай. Отбросим все отрицательные числа
из множества X и рассмотрим множество

X` “ tx P X : x“ x0,x1,x2 ¨ ¨ ¨ ,xn ¨ ¨ ¨ ě 0u

Тогда @x0 : x0 ďM.

Положим x0 “ max
X`
tx0u
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Оставим только те числа, у которых целая часть равна максимальной.

Рассмотрим множество

X0 “ tx P X : x0,x1 ¨ ¨ ¨xn ¨ ¨ ¨ u

Положим x1 “ max
X0
tx1u

Рассмотрим множество

X1 “ tx P X : x0,x1 ¨ ¨ ¨ u

Положим x2 “ max
X0
tx2u

Алгоритм выработан. На шаге k рассмотрим множество

Xk´1 “ tx P X : x“ x0,x1 ¨ ¨ ¨xk´1u

Положим xk “ max
Xk´1

txku

Продолжая неограниченно этот процесс, определим xk для всех k“ 0,1,2 ¨ ¨ ¨ .

Введем число
x“ x0,x1, ¨ ¨ ¨ ,xn ¨ ¨ ¨

Докажем, что x“ supX

Для этого воспользуемся эквивалентным определением точной верхней гра-
ни. Для этого нужно доказать, что:

a) @x P X : xď x;

b) @x̃ă x Dx P X : xą x̃.
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Лекция 2. Вещественные числа. Часть 2.

Рассмотрим два случая. Первый – когда хотя бы одно число положительное,
второй – когда все числа отрицательные.

Dx P X : xě 0

x“ x0,x1,x2 ¨ ¨ ¨xn

Рис. 2.1. x0 - самая большая целая часть среди всех чисел множества

Докажем, что x“ SupX – верхняя грань множества. Для этого нужно дока-
зать, что:

• @x P X : xď x;

• @rxă x Dx P X : xą rx.

Выполнение двух этих условий докажет, что x - супремум множества X (SupX)

Докажем, что @x P X : xď x.

@xă 0px P Xq : xă x

x“ x0, x1 ¨ ¨ ¨xn ¨ ¨ ¨ ď 0px P Xq

Доказательство от противного. Допустим, что

Dxą x“ x0, x1 ¨ ¨ ¨xn ¨ ¨ ¨

Тогда по правилу сравнения вещественных чисел

Dk : x0 “ x0 ¨ ¨ ¨xk´1 “ xk´1

xk ą xk
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В силу равенств
Dk : x0 “ x0 ¨ ¨ ¨xk´1 “ xk´1

x P Xk´1

Согласно определению xk “ max xk из множества Xk´1 ñ xk ď xk. Это про-
тиворечит неравенству xk ą xk. То есть условие выполнено:

@x P X : xď x

Докажем, что
@rxă xDx P X : xą rx

Возьмем
0ă rx“ rx0,rx1 ¨ ¨ ¨rxn ¨ ¨ ¨ ă x“ x0,x1 ¨ ¨ ¨

Воспользуемся правилом сравнения вещественных чисел.

Dk : rx0, ¨ ¨ ¨ ,rxk´1 “ xk´1

rxk ă xk

Возьмем произвольное

x“ x0,x1 ¨ ¨ ¨xkxk`1 ¨ ¨ ¨ P Xk

Очевидно, что xą rx. Выполнено условие @rxă x Dx P X : xą rx

ñ x“ SupX

Рассмотрим второй случай, когда все числа отрицательные

@x P X : xă 0 px“´x0,x1 ¨ ¨ ¨ q

Точную верхнюю грань можно построить следующим образом:

x“´x0,x1 ¨ ¨ ¨xn ¨ ¨ ¨

При этом нужно положить:

x0 “
min
X tx0u
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X0 “ tx P X : x“´x0,x1 ¨ ¨ ¨ u

x1 “
min
X0 tx1u

Доказать самостоятельно, что x“ SupX .

Теорема доказана: всякое ограниченное сверху множество имеет точную
верхнюю грань. Аналогично доказывается, что всякое ограниченное снизу мно-
жество имеет точную нижнюю грань.

Замечание

Точная грань множества (верхняя, нижняя) – это какое-то число, которое
может принадлежать или не принадлежать множеству.

Пример 2.1.

X “ t : 1ă xď 2u

SupX “ 2 P X

in f X “ 1 R X

Нужно различать существование точных граней у ограниченного сверху
или снизу множества и их принадлежность этому множеству. В этом от-
ношении точная верхняя и точная нижняя грани имеют преимущество перед
максимумом и минимумом.

В данном примере есть наибольшее число:

maxX “ 2,min нет

Множество называется ограниченным, если оно ограничено сверху и снизу.
В виде неравенства запишем так:

X ограничено, если DM и m, такие, что

@x P X : mď xďM

Используют такое определение: X ограничено, если

DAą 0,@x P X : |x| ď A
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Арифметические действия над вещественными числами

Сложение вещественных чисел

Пусть x и y – произвольные вещественные числа, и пусть xr и yr – любые
рациональные числа, удовлетворяющие неравенствам:

xr ď x, yr ď y

Составим множество сумм этих рациональных чисел txr` yru. Эти числа
складываются по правилу сложения рациональных чисел. Это числовое мно-
жество ограничено сверху.

Пусть xr ą x, yr ą y. По свойству транзитивности знака

xr ď xă xr ñ xr ă xr

yr ď yă yr ñ yr ă yr

Отсюда следует, что xr` yr ă xr` yr. Это означает, что множество txr` yru

ограничено сверху. Следовательно, оно имеет точную верхнюю грань.

Определение 2.1. Сумма вещественных чисел

Суммой вещественных чисел x и y называется точная верхняя грань мно-
жества txr` yru.

x` y“ txr` yru

x` y“ Sup
xr,yrPQ

xrďx,yrďy

txr` yru

Q – множество рациональных чисел.

Умножение вещественных чисел

Пусть x ą 0 и y ą 0 – произвольные вещественные числа. И пусть xr и yr –
любые рациональные числа, удовлетворяющие неравенствам

0ă xr ď x, 0ă yr ď y

Рассмотрим множество txr ¨ yru, где умножение xr ¨yr производится по прави-
лу для рациональных чисел. Оно ограничено сверху (доказывается так же, как
ограниченность суммы), то есть имеет точную верхнюю грань.
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Определение 2.2. Произведение положительных вещественных чи-

сел

1) Произведением положительных вещественных чисел x и y называется
точная верхняя грань множества txr ¨ yru

x ¨ y“ Sup
xr,yrPQ

xrďx, yrďy

txr ¨ yru

2) @x : x ¨0“ 0 ¨ x“ 0

3) @x‰ 0 y‰ 0 по определению

x ¨ y“

$

&

%

|x| ¨ |y|, если x и y одного знака;

´|x| ¨ |y|, если x и y разных знаков;

Можно доказать, что введенные правила сложения и умножения веществен-
ных чисел обладают такими же свойствами, как и правила сложения и умно-
жения рациональных чисел, и что в применении к рациональным числам эти
правила дают тот же результат, что и правила сложения и умножения рацио-
нальных чисел.

Вычитание вещественных чисел вводится как действие, обратное сложению.
Разность чисел x и y – это такое число z, что

y` z“ x, pz“ x´ yq

Можно доказать, что
@x и y D!z : y` x“ z

Иначе говорят, что для любых вещественных чисел существует единственная
разность.

Деление определяется как действие, обратное умножению: частное от деле-
ния x на y‰ 0 это такое число z, что y ¨ z“ x.

Можно доказать, что @x, y ‰ 0D! z:y ¨z“ x. Иначе говорят, что для любых
x и y, не равных нулю, частное существует, и оно единственное.
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Некоторые числовые неравенства

1) Для любого вещественного числа имеет место двойное неравенство:

´|a| ď aď ||a

Данное неравенство непосредственно следует из правила сравнения веще-
ственных чисел.

2) Для любых чисел a и b справедливо неравенство:

|a˘b| ď |a|` |b|

По введенному определению

a`b“ Suptxr` yru , где xr ď a, yr ď b, xr,yr PQ

3) Для любых чисел a и b справедливо неравенство:

|a´b| ě |a|´ |b|

Доказательство. Так как |a| = pa´bq`b| ď |a´b|`|b| в силу утверждения

2, то |a´b| ě |a|´ |b|.

Геометрическое изображение вещественных чисел

Введем в рассмотрение координатную прямую (или ось координат), т.е. пря-
мую, на которой выбрано направление, начало отсчета (точка O) и масштабный
отрезок OE, длину которого считается равной 1

Рис. 2.2. Координатная прямая

Каждой точке M на координатной прямой поставим в соответствие веще-
ственное число x – длину отрезка OM, такое, что x “ OM, если точка M ле-
жит на положительной полуоси, и взятую со знаком минус длину отрезка OM
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(x“´OM), если точка M лежит на отрицательной полуоси.Точке O поставим в
соответствие число нуль.

Каждой точке M координатной прямой соответствует некоторое веществен-
ное число. Имеет место и обратное соответствие, т.е. каждому вещественному
числу соответствует некоторая точка на координатной прямой. Доказательство
этого утверждения основывается на аксиомах геометрии, а именно, на аксиоме
непрерывности прямой.

Для наглядности пользуются геометрическим изображением вещественных
чисел в виде точек на координатной прямой. Поэтому сами числа часто будем
называть точками.

Если x “ supX , то каждая точка множества X лежит левее x или совпадает
с x, причем сколь угодно близко от x имеются точки множества X .

Некоторые числовые множества

1) Интервал

pa,bq “ tx : aă xă bu

Точки a и b не принадлежат интервалу, это граничные точки.

2) Сегмент (или отрезок)

ra,bs “ tx : aď xď bu

точки a и b называются граничными точками сегмента, остальные его точки
– внутренними точками.

3) Полуинтервал, полусегмент

pa,bs “ txă aă bu или ra,bq “ txą aą bu

4) Окрестность точки c

любой интервал, содержащий точку c

5) ε-окрестность точки c

интервал p´ ε,c` εq
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Иное название - симметричная окрестность точки c. Иное обозначение:

c“ tx : |x´ c| ă εu

6) Проколотая ε-окрестность точки c. Записывается:

tx : 0ă |x´ c| ă εu

7) Числовая прямая

R“ p`8,´8q Или t´{8,`8u

Это множество всех вещественных чисел.

8) Полупрямая

ra,`8q “ txě au

Если a не входит, то pa,`8q. Могут быть варианты p´8,bs, p´8,bq.

Все множества, кроме проколотой окрестности, называются еще проме-

жутками. Проколотая окрестность – это два промежутка.

Предел функции

Понятие функции

Пусть X – некоторое числовое множество. Если каждому числу x P X постав-
лено в соответствие некоторое (единственное) число y. Говорят, что на множе-
стве X определена (задана) функция и пишут y“ f pxq (или y“ ypxq).

При этом множество X называется областью определения функции. Пе-
ременная числовая величина x, принимающая значения из X (пробегающая мно-
жество X) называется независимой переменной или аргументом функ-

ции. Число y, соответствующее данному значению x, называется частным зна-

чением функции в точке x; tyu – множество значений функции.

Геометрически функция y “ f pxq изображается своим графиком. График
функции – это множество точек tMpx, f pxqq,x P Xu в прямоугольной системе ко-
ординат Oxy
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Рис. 2.3. График функции

Определение 2.3. Ограниченная сверху функция. Верхняя грань функ-

ции

Функция y “ f pxq, x P X называется ограниченной сверху на множестве
X , если

DM, @x P X : f pxq ďM

То есть все значения функции не превосходят некоторого числа. Число M

называется верхней гранью функции f(x) на множестве X .

Определение 2.4. Ограниченная снизу функция. Нижняя грань функ-

ции

Функция y“ f pxq, x P X называется ограниченной снизу на множестве X ,
если Dm, @x P X : f pxq ě m. Число m называется нижней гранью функции f(x)
на множестве X .

Определение 2.5. Ограниченная на множестве функция

Функция называется ограниченной на множестве, если она ограничена
сверху и снизу на этом множестве. То есть DM и m такие, что @x P X : m ď

f pxq ďM.

Часто пишут так: y“ f pxq ограничена на X , если DAą 0, P X : | f pxq| ď A.

Определение 2.6. Точная верхняя грань
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Наименьшая из верхних граней ограниченной сверху функции f pxq на мно-
жестве X называется ее точной верхней гранью на этом множестве и обо-
значается

Sup
X

f pxq pin f
X

f pxqq

Иначе говорят: точная верхняя грань функции y “ f pxq – это suptyu, где
tyu – множество значений функции.

Определение 2.7 (Эквивалентное определение точной верхней грани). Число
M называется точной верхней гранью функции f pxq на множестве X , если:

1) @x P X : f pxq ď M (это условие показывает, что M – одна из верхних
граней f pxq на X ;

2) @ rM ăMDx P X : f prxq ą rM (это условие показывает, что M – наименьшая
из верхних граней).

Пример 2.2. Рассмотрим функцию y“ sinx, 0ă xď π

2 .

sup
p0, π

2 s

sinx“ 1 P tyu

in f
p0, π

2 s

sinx“ 1 R tyu

Этот пример показывает, что ограниченная функция может не прини-
мать значения, равного какой-либо ее точной грани. В таком случае говорят,
что функция не достигает этой точной грани.

Определение предела функции

Рис. 2.4. Точки множества, проколотая окрестность
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Определение 2.8. Предельная точка числового множества

Число a называется предельной точкой числового множества X , если в
любой проколотой ε-окрестности точки a содержатся точки из множества
X .

При этом сама точка a может принадлежать, а может и не принадле-
жать множеству X .

Пример 2.3. 1) X “ tx : aă xă bu. Любая точка интервала X , а также точки
a и b – предельные точки интервала X .

2) N – множество натуральных чисел – не имеет предельных точек.
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Лекция 3. Предел функции. Часть 1.

На понятии предела основан математический анализ. Есть пределы раз-
ных величин, функций, последовательностей, интегральных сумм и так далее.
Прежде всего речь о пределе функции.

Определение 3.1. Предельная точка числового множества

Число a называется предельной точкой числового множества X , если в
любой проколотой ε-окрестности точки a содержатся точки из множества
X .

При этом сама точка a может принадлежать, а может и не принадле-
жать множеству X .

Рис. 3.1. Предельная точка числового множества

Пример 3.1. Пусть X “ pa,bq

Рис. 3.2. X “ pa,bq

Предельной точкой будет любая точка внутри интервала. Точки a и b

тоже будут предельными точками интервала, хотя в интервал не входят.

Рис. 3.3. Любая окрестность
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Определение 3.2. Пусть Q“ x P R : x - рациональное число. То есть рассмат-
ривается множество всех рациональных чисел.

Любая точка числовой прямой будет предельной точкой этого множе-
ства.

Рис. 3.4. Любая точка - предельная

Определение 3.3. Предел функции.

Пусть f pxq определена на множестве X . Пусть точка a - предельная точка
области определения (множества X).

Определение по Коши

Число b называется пределом функции f pxq в точке a (при x Ñ a), если
для @ε ą 0 Dδ ą 0 такое, что для любого значения аргумента x из проколотой
δ -окрестности точки a выполняется неравенство | f pxq´b| ă ε.

Обозначение:
lim
xÑα

f pxq “ b

Задание.

1. Постройте отрицание определения предела функции, то есть сформули-
руйте определение

lim
xÑα

f pxq ‰ b

2. Сформулируйте определение того, что limxÑα f pxq не существует.

Геометрическая иллюстрация определения предела функции.

Геометрическим изображением функции является ее график.

| f pxq´b| ă ε ô ε ă f pxq ă ε ô b´ ε ă f pxq ă b` ε

С геометрической точки зрения определение предела функции означает, что
для любого ε ą 0 найдется такая проколотая δ -окрестность точки a, в пределах
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Рис. 3.5. y“ f pxq

которой график функции лежит между горизонтальными прямыми y“ b´ ε и
y“ b` ε

Замечание 1. Функция может иметь в данной точке не более одного пре-
дела.

Рис. 3.6. Геометрическая иллюстрация определения

В самом деле, если предположить, что функция имеет в точке a два предела:
b и c, то, взяв непересекающиеся ε-окрестности точек b и c, получим, что в
пределах некоторой проколотой δ -окрестности точки a график функции лежит
одновременно в полосе между y “ b´ ε и y “ b` ε и также в полосе между
прямыми y“ c´ ε и y“ c` ε , чего не может быть.
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Замечание 2. Если функция f pxq имеет предел в точке a, то она ограничена
в некоторой окрестности этой точки.

Утверждение следует непосредственно из определения предела функции:

b´ ε ă f pxq ă b` ε при 0ă |x´a| ă δ

Или так:
@x P 0ă px´aq ă δ

Пример 3.2. Пусть f pxq “ b“ const,@x P R, тогда @a:

lim
xÑα

f pxq “ b

Действительно, @ε ą 0 возьмем любое δ ą 0. Тогда | f pxq´b“ 0ă ε при всех
x и, значит, при 0ă |x´a| ă δ .

Пример 3.3. Пусть

f pxq “

$

&

%

b, если x‰ a;

c‰ b, если x“ a.

Рис. 3.7. Пример 1.3

Тогда
lim
xÑα

f pxq “ b
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Рис. 3.8. В точке a функция не определена

Пример 3.4. Пусть

f pxq “

$

&

%

b, если x‰ a;

не определена, при x“ a.

Тогда
lim
xÑα

f pxq “ b

Замечание 3 В примерах 1.2, 1.3, 1.4 для любого ε ą 0 можно взять про-
извольное δ ą 0, то есть δ не зависит от ε .

Замечание 4 Если в определении предела функции исключить неравен-
ство 0ă |x´a|, т.е. потребовать выполнения неравенства | f pxq´b| ă ε для всех
значений аргумента x из δ -окрестности точки a, включая и саму точку a (если,
конечно, она принадлежит области определения функции), то ответ в примере
1.4 не изменится, поскольку x“ a не является значением аргумента функции.

В примере 2, напротив, ответ изменится: предел у функции f pxq при xÑ a

не будет существовать, так как для x “ a неравенство | f pxq´b| ă ε принимает
вид |c´b| ă ε , и, следовательно, оно не выполняется, если взять ε меньше, чем
|c..b|.

Пример 3.5. Пусть f pxq “ x, x P R тогда для любого a

lim
xÑα

f pxq “ a
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Для @ε ą 0 возьмем δ “ ε.

Тогда если 0ă |x´a| ă δ “ ε, то | f pxq´a| “ |x´a| ă ε, то есть определение
выполнено.

Пример 3.6. Пусть f pxq “ sin1
x ,x‰ 0. Заметим, что x“ 0 является предель-

ной точкой области определения функции, и докажем, что эта функция не
имеет предела при xÑ sin1

x .

Доказательство проведем от противного: предположим, что

lim
xÑ0

sin
1
x
“ b

b - некоторое число. Возьмем ε “ 1, @x,0 ă |x| ă δ Должно выполняться
неравенство Dδ ą 0, такое, что

ˇ

ˇ

ˇ

ˇ

sin
1
x
´bă 1

ˇ

ˇ

ˇ

ˇ

при 0ă |x| ă δ

Возьмем
x1 “

1
2πn` π

2
, x2 “

1
2πn´ π

2
, n P N

При достаточно большом n PN числа x1 и x2 удовлетворяют неравенствам:
0ă |xi| ă δ , i“ 1,2. При этом

ˇ

ˇ

ˇ

ˇ

sin
1
x1
´b

ˇ

ˇ

ˇ

ˇ

“ |1´b| ă 1 и
ˇ

ˇ

ˇ

ˇ

sin
1
x2
´b

ˇ

ˇ

ˇ

ˇ

“ |´1´b| “ |1`b| ă 1

Последние два неравенства не могут одновременно выполняться ни при
каком b, следовательно, наше предположение неверно и предел функции sin1

x

при xÑ 0 не существует.

Пример 3.7. Пусть f pxq “ sinx, тогда

lim
xÑ0

sinx“ 0

Чтобы доказать это, воспользуемся известным неравенством sinxă x при
0ă xă π

2 .
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Рис. 3.9. Получение неравенства

Неравенство выражает тот факт, что площадь равнобедренного треуголь-
ника, вписанного в сектор единичной окружности, меньше площади этого сек-
тора:

S∆AOC ă Sсект AOC ă SAOD

S∆AOC “
1
2

sinx

Sсект AOC “
1
2

x

1
2

sinxă
1
2

xă
1
2

tgx

sinxă xă tgx, @x P p0;
π

2
q

В силу нечетности функций sinx и x имеем

|x´nx| ď |x| @x P p´
π

2
;
π

2
q

Проверим выполнение определения предела Зададим произвольное ε ą 0 и
возьмем δ “ ε. Тогда для всех x, удовлетворяющих условию 0 ă |x| ă δ “ ε,
получим

|sinx´0| “ |sinx| ă |x| ă ε

а это и означает, что
lim
xÑ0

sinx“ 0
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Односторонние пределы

Может случиться так, что при стремлении аргумента x к точке a слева и
справа функция f pxq имеет разные предельные значения. В качестве примера
приведем функцию

f pxq “ sgnx“

$

’

’

’

&

’

’

’

%

`1, если xą 0,

0, если x“ a,

´1, если xă 0.

Рис. 3.10. График функции

Определение 3.4. Число b называется пределом функции f pxq в точке a спра-
ва (слева), если @ε ą 0 Dδ ą 0, такое, что @x P pa,a` δ q (соответственно,
@x P pa´δ ,aqq выполняется неравенство | f pxq´b| ă ε.

Обозначение:
lim

xÑα`0
f pxq “ b или f pa`0q “ b

lim
xÑα´0

f pxq “ b или f pa´0q “ b

Пример 3.8. Рассмотрим функцию f pxq “ rxs, где rxs - целая часть числа x,
т.е. наибольшее целое число, не превосходящее x.

Для любого n P Z (Z - множество всех целых чисел, включая нуль) имеем:

f pn´0q “ n´1, f pn`0q “ n, f pnq “ n

Из определения предела функции и определений односторонних пределов
следует теорема.
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Рис. 3.11. График функции

Теорема 3.1. Если функция f pxq имеет в точке a правый и левый пределы,
причем f pa´ 0q “ f pa` 0q “ b, то в данной точке существует предел этой
функции, равный односторонним пределам b.

Предел функции при xÑ8

Пусть функция f pxq задана на множестве X и @A Dx P X : xą A.

Определение 3.5. Число b называется пределом функции f pxq при xÑ`8,
если @ε ą 0 DA, такое, что для любого значения аргумента xąA выполняется
неравенство | f pxq´b| ă ε.

Обозначение
lim

xÑ`8
f pxq “ b

Аналогично определяется предел функции при xÑ´8. Если функция f pxq

имеет равный числу b предел при x Ñ`8 и равный этому же числу предел
при xÑ´ in f ty, то пишут

lim
xÑ8

f pxq “ b

Пример 3.9. Рассмотрим функцию f pxq “ 1
x и докажем, что

lim
xÑ`8

f pxq “ 0
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Действительно, @ε ą 0 возьмем A“ 1
ε
. Тогда если xą A“ 1

ε
, то |1x | ă ε, т.е.

|1x ´0| ă ε, а это по определению означает, что

lim
xÑ`8

1
x
“ 0
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Лекция 4. Предел функции. Часть 2

Определение 4.1.

@ε ą 0 Aą 0

@xą A : | f pxq´b| ă ε

Обозначение:
lim

xÑ`8
f pxq “ b

Частным случаем предела функции при xÑ`8 является предел числовой
последовательности.

Числовая последовательность - это функция, определенная на множестве
натуральных чисел. Областью определения этой функции является множество
натуральных чисел.

f pnq,n P N“ t1,2, ¨ ¨ ¨ u

Чаще числовая последовательность обозначается txnu “ x1,x2 ¨ ¨ ¨ ,xn, ¨ ¨ ¨

Определение 4.2. Число a называется пределом числовой последовательно-
сти txnu при nÑ`8, если @ε ą 0 DN, @ną N : |xn´a| ă ε

Записывается так:
lim

nÑ8
xn “ a

Пример 4.1. Рассмотрим последовательность txnu “ t
1
nu

Докажем, что
lim

nÑ8

1
n
“ 0

@ε ą 0 возьмем N ą 1
ε
. Тогда

@ną N : ną
1
ε

p
1

nă ε
q

ñ |
1
n
´0| “

1
n

Это означает, что lim
nÑ8

1
n “ 0
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Бесконечно малые и бесконечно большие функции

Определение 4.3. Функция f pxq называется бесконечно малой в точке a

(при xÑ a), если
lim
xÑa

f pxq “ 0

Пример 4.2. 1) Функция f pxq “ sinx является бесконечно малой в точке x“ 0,
так как (это было доказано)

lim
xÑ0

sinx“ 0

2) Функция

f pxq “

$

&

%

sinx, если x‰ 0

1, если x“ 0

Функция также является бесконечно малой в точке x“ 0 (заметим, что
при этом f p0q “ 1‰ 0q.

3) Функция f pxq “ sgnx не является бесконечно малой в точке x“ 0, хотя
f p0q “ 0.

Аналогично определяется бесконечно малая при xÑ`8 (или ´8) функция,
в частности, бесконечно малая последовательность txnu:

lim
nÑ`8

xn “ 0

Определение 4.4. Эквивалентное определение бесконечно малой

f pxq называется бесконечно малой в точке a, если

@ε ą 0 D δ ą 0,@x P t0ă |x´a| ă δu : | f pxq| ą ε

Определение 4.5. Функция f pxq называется бесконечно большой в точке
a (при xÑ a), если

@Aą 0 D δ ą 0,@x P t0ă |x´a| ă δu : | f pxq| ą A

lim
xÑa

f pxq “ 8
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Если при этом выполнено неравенство f pxq ą Ap f pxq, то пишут:

lim
xÑa

f pxq “ `8

Если при этом выполнено неравенство f pxq ă ´A, то пишут:

lim
xÑa

f pxq “ ´8

Аналогичные определения бесконечно малой и бесконечно большой функции
имеют место при xÑ a`0,xÑ a´0,xÑ`8,xÑ´8

Пример 4.3. f pxq “ Sinx?
x – бесконечно малая при xÑ πn, n P N, при xÑ πn`0,

при xÑ πn´0, при xÑ`8.

Пример 4.4. f pxq “ 1
x – бесконечно большая при xÑ 0

lim
xÑ`0

1
x
“`8

lim
xÑ´0

1
x
“´8

Задание Пусть f pxq определена в проколотой окрестности точки a. Дока-
зать три утверждения:

1) Если f pxq бесконечно большая функция в точке a, то в некоторой про-
колотой окрестности точки a определена функция gpxq “ 1

f pxq и она является
бесконечно малой в точке a.

2) если f pxq – бесконечно малая в точке a функция и f pxq ‰ 0 в некоторой
проколотой окрестности точки a, то gpxq “ 1

f pxq бесконечно большая функция в
точке a.

3) если f pxq “ c“ const и
lim
xÑa

f pxq “ 0

то c“ 0.

Теорема 4.1. Сумма и разность двух бесконечно малых в точке a функций
являются бесконечно малыми в точке a функциями.
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Доказательство. Пусть f pxq и gpxq – бесконечно малые в точке a функции.
Тогда

@ε ą 0 Dδ1 ą 0, @x P t0ă |x´a| ă δ1u : | f pxq| ă
ε

2

Dδ2 ą 0, @x P t0ă |x´a| ă δ2u : |gpxq| ă
ε

2

Возьмем δ minpδ1,δ2q Тогда @x P t0ă |x´a| ă δu выполнены неравенства:

| f pxq| ă
π

2
и |gpxq| ă

π

2

следовательно

@x P t0ă |x´a| ă δu : | f pxq˘gpxq| ď | f pxq|` |gpxq| ă ε

а это и означает, что функции f pxq`gpxqи f pxq´gpxq являются бесконечно
малыми в точке a.

Следствие. Алгебраическая сумма конечного числа бесконечно малых в
точке a функций является бесконечно малой в точке a функцией.

Доказательство проведем по индукции. Для двух слагаемых утверждение
верно в силу теоремы 4.1. Предположим, что утверждение верно для n слагае-
мых pną 2q, и докажем, что тогда оно верно и для n`1 слагаемых.

Пусть f 1pxq, f 2pxq, ¨ ¨ ¨ , fnpxq, fn`1pxq – бесконечно малые в точке a функции.
Их сумму представим в виде

n`1
ÿ

i“1

fipxq “
n
ÿ

i“1

fipxq` fn`1pxq “ gpxq` fn`1pxq

Функция gpxq является бесконечно малой в точке a в силу индуктивного
предположения. Поэтому

řn`1
i“1 fipxq представляет собой сумму двух бесконечно

малых в точке a функций gpxq и fn`1pxq, а такая сумма является бесконечно
малой в точке a функцией в силу теоремы . Следствие доказано.

Теорема 4.2. Произведение бесконечно малой в точке a функции на ограничен-
ную в окрестности точки a функцию есть бесконечно малая функция в точке
a. Доказательство. Пусть f pxq бесконечно малая в точке a функция, а gpxq
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– ограниченная функция в некоторой окрестности точки a (обозначим эту
окрестность ω. Тогда существует такое число M ą 0, что @x P ω : |gpxq| ďM.

Зададим произвольное ε ą 0. Так как f pxq – бесконечно малая в точке a

функция, то
Dδ ą 0,@x P t0ă |x´a| ă δu : | f pxq| ă

ε

M

Возьмем δ1 ď δ столь малым, что δ1-окрестность точки a принадлежит
ω. Тогда

@x P t0ă |x´a| ă δ1u : | f pxq ¨gpxq| “ | f pxq ¨gpxq| ă
ε

M
“ ε

а это и означает, что f pxq ¨gpxq – бесконечно малая в точке a функция.

Следствие. Произведение конечного числа ограниченных функций, из ко-
торых хотя бы одна – бесконечно малая в точке a, есть бесконечно малая в
точке a функция.

Сравнение бесконечно малых и бесконечно больших функций

Пусть f pxq и gpxq – бесконечно малые в точке a функции. Тогда

lim
xÑa

f pxq
gpxq

называется неопределенностью типа 0
0 .

Пример 4.5. lim
xÑ0

sinx
x является неопределенностью типа 0

0

Определение 4.6. Функция f pxq называется бесконечно малой более высокого
порядка (имеет более высокий порядок малости), чем gpxq при xÑ a, если

lim
xÑa

f pxq
gpxq

“ 0

Обозначение f “ opgq при xÑ a (символ opgq читается так: o-малое от
g).

Пример 4.6. x2 “ opxq при xÑ 0
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Определение 4.7. Функции f pxq и gpxq называются бесконечно малыми од-
ного порядка (имеют одинаковый порядок малости) при xÑ a, если

lim
xÑa

f pxq
gpxq

“ b‰ 0

Обозначение: f “Opgq при xÑ a (символ Opgq читается так: O-большое от
g).

Пример 4.7. 2x2` x3 “ Opx2q при xÑ 0

Определение 4.8. Функции f pxq и gpxq называются эквивалентными беско-
нечно малыми при xÑ a, если

lim
xÑa

f pxq
gpxq

“ 1

Обозначение: f „ g при xÑ a.

Пример 4.8. 1) x2` x3 „ x2 при xÑ 0.

2) sinx„ x при xÑ 0.

Рис. 4.1. График функции

Замечание. Для неопределенностей типа 0
0 при xÑ a`0, xÑ a´0 и xÑ 1

можно дать аналогичные определения.

Свойства символа o-малое:

а) opgq˘opgq “ opgq.
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б) Если f “ opgq, то op f q˘opgq “ opgq. Пример: opx2q˘opxq “ opxq.

в) Если f и g – бесконечно малые, то f ¨g“ op f q, f ¨g“ opgq.

г) Если f „ g, то f ´g“ op f q и f ´g“ opgq.

д) opc ¨gq “ opgq, если c“ const ‰ 0.

е) opg`opgqq “ opgq. Пример: opx`2x2q “ opxq.

ж) sinx“ x`opxq при xÑ 0

Доказательство:
f ´g“ op f q ô lim

xÑa

f ´g
f
“ 0

lim
xÑa

f ´g
f
“ lim

xÑa

„

1´
g
f



“ 0

Справедливость этих утверждений нетрудно доказать, используя определе-
ние символа «o-малое».

Замечание. Равенства с символом o-малое, как правило, верны только в
одну сторону (слева направо). Например, x2 “ opxq при xÑ 0, или opxq ‰ x2.

Сравнение бесконечно больших функций

Пусть f pxq и gpxq – бесконечно большие функции при x Ñ a. Тогда lim
xÑa

f pxq
gpxq

называется неопределенностью типа 8
8

.

Определение 4.9. Если lim
xÑa

f pxq
gpxq “ 8, то говорят, что f pxq при x Ñ a более

высокий порядок роста, чем gpxq.

Пример 4.9. f pxq “ 1
x2 имеет более высокий порядок роста при x Ñ 0, чем

gpxq “ 1
x .

f pxq
gpxq

“
1
x
Ñ8; xÑ 0

Определение 4.10. Если lim
xÑa

f pxq
gpxq “ b ‰ 0, то говорят, что f pxq и gpxq при

xÑ a имеют одинаковый порядок роста.

Пример 4.10.

f pxq “
1
x

и gpxq “
2
x

при xÑ 0
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Лекция 5. Непрерывность функции. Часть 1

Определение непрерывности. Точки разрыва функции

Наглядное представление о непрерывной и разрывной функциях дают непре-
рывная и разрывная кривые, являющиеся графиками этих функций

Рис. 5.1. График непрерывной функции

Рис. 5.2. Разрывная в точке a функция

Определение 5.1. Пусть функция f pxq определена в некоторой окрестности
точки a.

Функция f px) называется непрерывной в точке a, если

lim
xÑa

f pxq “ f paq
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Пример 5.1. Приведем два примера

1) Функция f pxq “ sinx непрерывна в точке x“ 0, поскольку sin0“ 0 и было
доказано, что

lim
xÑ0

sinx“ 0; sin0“ 0

lim
xÑ0

“ sin0; sin0“ f p0q

2)Рациональная функция f pxq “ Pnpxq
Qmpxq

. Если Qmpaq ‰ 0, то

lim
xÑa

Pnpxq
Qmpxq

“
Pnpaq
Qmpaq

То есть рациональная функция непрерывна в любой точке, в которой зна-
менатель не равен нулю.

Пример 5.2. (эквивалентное определение)

Функция f pxq называется непрерывной в точке a, если @ε ą 0 Dδ ą 0 та-
кое, что

@x P t|x´a| ă δu : | f pxq´ f pqa| ă ε

Пусть f pxq непрерывна в точке a и f pa ą 0q. Возьмем ε “ f paq. Тогда, со-
гласно определению, существует δ ą 0, такое, что | f pxq ´ f paq| ă ε “ f paq в
δ -окрестности точки a, т.е. ´ f paq ă f pxq´ f paq ă f paq. Из левого неравенства
следует, что f pxq ą 0 в δ -окрестности точки a.

Тем самым мы доказали, что если функция f pxq непрерывна в точке a и поло-
жительна в этой точке, то она будет положительной и в некоторой окрестности
точки a (аналогичное утверждение справедливо и в случае, когда f pxq отрица-
тельна в точке a). Это свойство называется устойчивостью знака непрерыв-
ной функции.

Задача Установите, верны ли утверждения:

1) если функция f pxq непрерывна в точке a, то функция | f pxq| также непре-
рывна в точке a?

2) если функция | f pxq| непрерывна в точке a, то и функция f pxq непрерывна
в точке a?

Если утверждение верно, то его необходимо доказать, если же неверно, при-
вести контрпример. Первое утверждение верно, его нужно доказать. Второе –
неверно, приведите примеры в виде формулы или геометрически.
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Односторонняя непрерывность

Пусть функция f pxq определена в правой полуокрестности точки a, т.е. при
aď xă a`δ .

Определение 5.2. Функция f pxq называется непрерывной справа в точке a,
если

lim
xÑa`0

f pxq “ f paq

Другая форма записи: f pa` 0q “ f paq. Аналогичным образом определяется
непрерывность слева в точке a:

lim
xÑa´0

f pxq “ f paq или f pa´0q “ f paq

Пример 5.3. Рассмотрим функцию f pxq “ rxs (целая часть x).

Для любого n P Z имеем: f pn` 0q “ n, f pn´ 0q “ n´ 1 и f pnq “ n, поэтому
функция rxs непрерывна в точках x “ n только справа, а в остальных точках
– и справа, и слева.

Теорема 5.1. Если функция f pxq непрерывна в точке a слева и справа, то она
непрерывна в точке a.

Доказательство.

По условию
lim

xÑa`0
f pxq “ f paq

lim
xÑa´0

f pxq “ f paq

Согласно теореме 3.1. отсюда следует, что существует

lim
xÑa

f pxq “ f paq

Это и означает, что f pxq непрерывна в точке a. Теорема доказана. �
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Точки разрыва функции

Определение 5.3. Предельная точка области определения функции, в кото-
рой функция не является непрерывной, называется точкой разрыва функ-

ции.

Пример 5.4. Приведем три примера:

1) Функция f pxq “ rxs разрывна в точках x“ n,n P Z.

2) Функция Дирихле

Dpxq “

$

&

%

1, если x PQ

0, если x RQ

где Q – множество всех рациональных чисел, разрывна во всех точках,
так как @a P Rlim

xÑa
Dpxq

не существует

3) Функция f pxq “ x ¨Dpxq непрерывна в точке x“ 0, поскольку

lim
xÑ0

f pxq “ f p0q “ 0

В @a‰ 0 f pxq разрывна

Классификация точек разрыва

1) Устранимый разрыв. Точка a называется точкой устранимого разрыва
функции f pxq, если

Dlim
xÑa

f pxq “ b

но в точке a функция f pxq либо не определена, либо f paq ‰ b.

Если положить f paq “ b (переопределить функцию в точке a), то разрыв
будет устранен, т.е. функция станет непрерывной в точке a.

Пример 5.5. Рассмотрим функцию f pxq “ sin x
x ,x‰ 0.

lim
xÑ0

sinx
x
“ 1
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Но в точке x“ 0 эта функция не определена. Введем новую функцию f̃ pxq

f̃ pxq “

$

&

%

sinx
x

, если x‰ 0

1, если x“ 0

то функция f̃ pxq будет непрерывной в точке x“ 0.

2) Разрыв 1-го рода

Точка a называется точкой разрыва 1-го рода функции f pxq, если существу-
ют

lim
xÑa`0

f pxq

lim
xÑa´0

f pxq

но они не равны: f pa´0q ‰ f pa`0q

Пример 5.6. Рассмотрим функцию f pxq “ rxs. Точки x “ n,n P Z являются
точками разрыва 1-ого рода данной функции, так как

f pn´0q “ n´1, а f pn`0q “ n‰ f pn´0q

3) Разрыв 2-го рода. Точка a называется точкой разрыва 2-го рода
функции f pxq, если в этой точке не существует по крайней мере один из од-
носторонних пределов f pxq.

Пример 5.7. Приведем два примера:

1) Точка x “ 0 является точкой разрыва 2-ого рода функции sin 1
x , так как

оба односторонних предела lim
xÑ´0

sin 1
x и lim

xÑ`0
sin 1

x не существуют.

2) Точка x“ 1 является точкой разрыва 2-го рода функции f pxq “ 2
1

x´1 , x‰

0, поскольку
lim

xÑ0´1
2

1
x´1 “ 0, но

lim
xÑ0`1

2
1

x´1 “8, то есть не существует
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Свойства непрерывных функций

Теорема 5.2. Если функции f pxq и gpxq непрерывны в точке a, то функции

f pxq˘gpxq, f pxq ¨gpxq, f pxq “ gpxq и
f pxq
gpxq

(при условии gpaq ‰ 0q

также непрерывны в точке a.

Доказательство.

Основано на определении непрерывности. По условию

lim
xÑa

f pxq “ f paq

lim
xÑa

gpxq “ gpaq

Отсюда следует, что

lim
xÑa
p f pxq˘gpxqq “ f paq˘gpaq

lim
xÑa
p f pxq ¨gpxqq “ f paq ¨gpaq

Если выполнено условие gpaq ‰ 0, то

lim
xÑa

f pxq
gpxq

“
f paq
gpaq

а это и означает справедливость утверждения теоремы. �

Понятие сложной функции

Пусть аргумент t функции y “ f ptq является не независимой переменной, а
функцией независимой переменной t “ ϕpxq.

Тогда говорят, что переменная y является сложной функцией переменной
x (или суперпозицией функций f и ϕ) и пишут y“ f pϕpxqq.

Пример 5.8. y“ sinpx3q – сложная функция: y“ sin t, где t “ x3

Теорема 5.3. Пусть функция t “ ϕpxq непрерывна в точке x “ a, ϕpaq “ b, а
функция y “ f ptq непрерывна в точке b. Тогда сложная функция y “ f pϕpxqq

непрерывна в точке x“ a.
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Доказательство.

Нужно доказать, что
lim
xÑa

f pϕpxqq “ f pϕpaqq,

то есть @ε ą 0 Dδ ą 0 такое, что

| f pϕpxqq´ f pϕpaqq| ă ε при условии, что|x´a| ă δ

Зададим произвольное ε ą 0. Так как функция f ptq непрерывна в точке b,
то Dγ ą 0, такое, что | f ptq´ f pbq| ă ε при |t´b| ă γ , откуда следует, что

| f pϕpxqq´ f pϕpaqq| ă ε при|ϕpxq´ϕpaq| ă γ

В свою очередь, в силу непрерывности функции ϕpxq в точке a для указан-
ного γ существует δ ą 0, такое, что

|ϕpxq´ϕpaq| ă γ при|x´a| ă δ

Следовательно

|x´a| ă δ , то | f pϕpxqq´ f pϕpaqq| ă ε

Теорема доказана. �

Определение 5.4. Функция f pxq называется непрерывной на множестве X ,
если она непрерывна в каждой точке этого множества.

Пример 5.9. рациональная функция
Pnpxq
Qmpxq

непрерывна на любом интервале,

на котором Qmpxq ‰ 0.

В частности, f pxq называется непрерывной на сегменте ra,bs при pa ă

bq, если она непрерывна в каждой внутренней точке сегмента ra,bs, непре-
рывна в точке a справа и в точке b слева.

Теорема 5.4. Если функция f pxq непрерывна на сегменте ra,bs и f paq f pbq ă 0,
то существует точка c P pa,bq, такая, что f pcq “ 0.
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Доказательство.

Пусть для определенности f paq ă 0, f pbq ą 0. Тогда в силу устойчивости зна-
ка непрерывной функции f pxq ă 0 в некоторой правой полуокрестности точки a.
Рассмотрим множество X таких чисел x̃ сегмента ra,bs, для которых f pxq ă 0 на
ra, x̃q, то есть X “ tx̃ : f pxq ă 0 при aď xă x̃u. Это множество ограничено сверху
и, следовательно, имеет точную верхнюю грань.

Пусть supX “ c.
@xă c : f pxq ă 0

Действительно, если x ă c, то x не является верхней гранью множества X и
значит существует число x̃ P X , такое, что x̃ą x. Так как f pxq ă 0 при aď xă x̃,
то f pxq ă 0.

Докажем, что f pcq “ 0 методом от противного. Допустим, что f pcq ă 0. Тогда
в силу устойчивости знака непрерывной функции f pxq ă 0 в некоторой окрест-
ности точки c и, следовательно, Dx̃ ą c, такое, что f pxq ă 0 при a ď a ă x, а это
противоречит тому, что supX “ c.

Допустим теперь, что f pcq ą 0. Тогда в силу устойчивости знака непре-
рывной функции f pxq ą 0 в некоторой окрестности точки c, и, следовательно,
Dxă c : f pxq ą 0, что противоречит неравенству @xă c : f pxq ă 0.

Итак, мы заключаем, что f pcq “ 0. Теорема доказана. �
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Лекция 6. Непрерывность функции. Часть 2

Следствие. (Теорема о прохождении непрерывной функции через любое
промежуточное значение.)

Пусть f pxq непрерывна на сегменте ra,bs, причем f paq “ A, f pbq “ B. Тогда

@C P pA,Bq Dc P pa,bq : f pcq “C

Доказательство

Пусть для определенности Aă B, AăCă B. Введем функцию gpxq “ f pxq´

C. Она непрерывна на сегменте ra,bs, причем

gpaq “ f paq´C “ A´C ă 0

gpbq “ f pbq´C “ B´C ą 0

По теореме о прохождении непрерывной функции через любое промежуточ-
ное значение существует такая точка c P pa,bq, что gpcq “ 0, т.е. f pcq ´C “ 0,
откуда f pcq “C. Что и требовалось доказать.

Теорема о существовании и непрерывности обратной

функции

Пусть функция y“ f pxq определена на множестве X и пусть Y – множество
ее значений. Пусть каждое y PY соответствует ровно одному значению x из мно-
жества X . В этом случае говорят, что функция y“ f pxq устанавливает взаимно
однозначное соответствие между элементами множеств X и Y .

Поставим в соответствие каждому y из Y то число x из X , для которого f pxq “

y. Тем самым на множестве Y будет определена функция, которая называется
обратной по отношению к функции y“ f pxq и обозначается x“ f´1pyq, y PY .

Очевидно, обратной по отношению к функции x“ f´1pyq является функция
y“ f pxq. Поэтому эти две функции называются взаимно обратными.
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Рис. 6.1. График функции y“ x2

Пример 6.1. Приведем два примера.

1) Рассмотрим функцию y“ x2, x P X , X “ r0,`8q. Множество ее значе-
ний Y “ r0,`8q.

Обратной по отношению к этой функции будет функция x “
?

y , опреде-
ленная на множестве Y . Можно записать так:

x“ y
1
2 , y P Y

2) Рассмотрим функцию y“ x2, определенную на множестве X “p´8,`8q.
То есть область определения - вся числовая прямая.

Рис. 6.2. График функции y“ x2, x P p´8,`8q

В этом случае, как и в примере 1, Y P r0,`8q, но обратной функции не су-
ществует, поскольку соответствие, устанавливаемое данной функцией меж-
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ду элементами множеств X и Y , не является взаимно однозначным (каж-
дому значению y соответствует два симметричных значения x).

Теорема 6.1. Пусть функция y “ f pxq определена, строго монотонна (либо
возрастает, либо убывает) и непрерывна на сегменте ra,bs. Тогда:

1) множеством значений функции y“ f pxq является сегмент Y “ r f paq, f pbqs;

2) на сегменте Y существует обратная функция x“ f´1pyq;

3) обратная функция также строго монотонна на Y ;

4) обратная функция непрерывна на сегменте Y .

Доказательство.

Пусть (для определенности) функция y“ f pxq возрастает на ra,b]. Все утвер-
ждения теоремы наглядно очевидны.Проведем аккуратное доказательство.

1) Согласно следствию из теоремы (доказанному) непрерывности функция
y “ f pxq принимает все значения от f paq до f pbq, а так как она возрастает на
сегменте ra,bs она не имеет значений, меньших f paq и больших f pbq. Таким
образом, множеством ее значений является сегмент Y “ r f paq, f pbqs

Рис. 6.3. График функции, непрерывной на сегменте ra,bs

2) Каждое число y P Y соответствует ровно одному числу x P ra,bs. Действи-
тельно, если предположить, что некоторое y из Y соответствует двум числам x1

и x2 из ra,bs, x1x2). Пусть x1 ą x2.
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Тогда получим f px1q ą f px2q, а это противоречит возрастанию функции f pxq

на отрезке ra,bs. Следовательно, на сегменте Y существует обратная функция
x“ f´1pyq.

3) Докажем, что обратная функция x “ f´1pyq возрастает на Y . Пусть
y1,y2 P Y,y1 ă y2. Нужно доказать, что f´1py1q ă f´1py2q. Положим f´1py1q “

x1, f´1py2q “ x2. Нужно доказать, что x1 ă x2, то есть f´1py1q ă f ´ 1py2q Поло-
жим противное – допустим, что y1 ă y2, но f´1py1q ě f´1py2q.

Обозначим f py1q“ x1, f py2q“ x2. Иначе можно записать так: f px1q“ y1, f px2q“

y2, поскольку функции взаимно обратные. Тогда так как f pxq – возрастающая
функция, то из нашего предположения, что x1 ě x2 последует, что f px1q ě f px2q,
то есть y1 ě y2. Это противоречит неравенству y1 ă y2.

Полученное противоречие доказывает, что обратная функция возрастает на
сегменте Y .

4) Докажем, что обратная функция непрерывна на сегменте Y . По определе-
нию функция непрерывна на сегменте, если она непрерывна в каждой внутрен-
ней точке, а в граничных точках непрерывна с одной стороны. Докажем, что
x “ f´1pyq непрерывна в любой внутренней точке y0 P Y . В граничных точках
рассуждения будут аналогичны.

Для этого нужно доказать, что @ε ą 0Dδ ą 0 : | f´1pyq ´ | f´1py0q| ă ε в δ -
окрестности точки y0 (то есть @y P |y´ y0| ă δ q. Обозначим значение обратной
функции в точке y0: f´1py0q “ x0. Надо доказать, что Dδ ą 0 : | f´1pyq´ x0| ă ε в
δ -окрестности точки y0.

Обозначим f px0´ εq “ y1, f px0` εq “ y2. Так как y “ f pxq – возрастающая
функция, то y1 ă y0 ă y2. А так как обратная функция также возрастающая, то
@y P py1,y2q соответствующее значение f´1pyq P px0´ ε,x0` εq.

Возьмем любую δ -окрестность точки y0, которая лежит в интервале py1,y2q.
Тогда для любого значения y из этой δ -окрестности значения обратной функции
будут принадлежать δ -окрестности точки x0, т.е. @y P t|y´y0| ă δu выполняется
неравенство | f´1pyq´ x0| ă ε , что и требовалось доказать. �
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Непрерывность элементарных функций

Используя доказанную теорему, докажем непрерывность элементарных функ-
ций.

1) Рассмотрим функцию y“ sinx. Ранее было доказано, что lim
xÑ0

sinx“ sin0“

0, откуда следует непрерывность sinx в точке x“ 0. Иначе можно записать

sinxÑ 0“ sin“ 0 приxÑ 0

Докажем непрерывность функции y “ sinx в произвольной точке x “ a P R.
Нужно доказать, что sinxÑ sina при xÑ a, или, что то же самое,

sinx´ sinaÑ 0 при xÑ a

Имеем:
sinx´ sina“ 2sin

x´a
2

cos
x`a

2
приÑ a

В этой формуле 2 постоянный множитель, cos x`a
2 – ограниченная функция,

|cos x`a
2 | ď 0, аргумент x´a

2 Ñ 0, то есть sin x´a
2 Ñ 0 при xÑ a.

Поэтому можно записать так:

sinx´ sina“ 2sin
x´a

2
cos

x`a
2

Ñ 0 при xÑ a

Мы доказали непрерывность функции sinx в любой точке a.

Введем обратную функцию. Рассмотрим функцию y “ sinx,x P X “ r´π

2 ,
π

2 s.
Это непрерывная и возрастающая функция на X . То есть если x1 и x2 P r´

π

2 ,
π

2 s

и x1 ă x2, то
sinx1 ă sinx2

Это следует из формулы:

sinx2´ sinx1 “ 2sin
x2´ x1

2
¨ cos

x2` x1

2

0ă
x2´ x1

2
ď

π

2

sin
x2´ x1

2
ą 0
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x2` x1

2
ą 0

2sin
x2´ x1

2
¨ cos

x2` x1

2
ą 0

Значит, sinx – возрастающая функция. По доказанной теореме множеством
значений f “ sinx, где x P p´π

2 ,
π

2 q является сегмент Y “ rsin´π

2 ,sin π

2 s “ r´1,1s.

На сегменте r´1,1s существует обратная функция x“ arcsiny,y P r´1,1s. Эта
обратная функция возрастающая и непрерывная.

Рис. 6.4. График функции y“ arcsinx

2) Функция y“ cosx и обратная ей x“ arccosy, где y P r´1,1s рассматривается
по образу и подобию sin и arcsin. Сделать самостоятельно.

3) Рассмотрим функцию y“ tgx. По определению

y“ tgx“
sinx
cosx

При этом исключаются точки, где cosx обращается в нуль:

x‰
π

2
`πn, n P Z

Функция y“ tgx непрерывна во всех точках, кроме указанных, как частное
двух непрерывных функций.

Введем обратную функцию. Рассмотрим функцию Ey“ tgx на сегменте r´π

2 `

δ , π

2 ´δ s.

На этом сегменте функция x “ arctgy определена, возрастает и непрерывна
на всей числовой прямой p´8,`8q
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Рис. 6.5. Сегмент r´π

2 `δ , π

2 ´δ s

Возрастание следует из формулы:

tgx2´ tgx1 “
sinpx2´ x1q

cosx1 ¨ cosx2

tgx2´ tgx1 ą 0,если

x2 ą x1, x1,x2 P r´
π

2
`δ ,

π

2
´δ s

По теореме множеством значений данной функции является сегмент

rtg´
π

2
`δ , tg

π

2
´δ s

То есть это сегмент, ограниченный значениями tg в концевых точках сег-
мента. На этом сегменте Y существует обратная функция (она обозначается
x“ arctgy, y P Y ), возрастающая и непрерывная.

Рис. 6.6. График y“ arctgx

Так как при δ Ñ`

tgp´
π

2
`δ q Ñ ´8

tgp
π

2
´δ q Ñ `8
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то @y Dδ ą 0, такое, что

y P rtg´
π

2
`δ , tg

π

2
´δ s

Следовательно, функция x “ arctgy определена для любого y P p´8,`8q и
на всей числовой прямой является возрастающей и непрерывной.

4) Рассмотрим функцию y“ ctgx. По определению:

ctgx“
cosx
sinx

x‰ πn, n P Z

Обратная функция x“ arcctgy, y P p´8,`8q

Непрерывность, монотонность доказываются аналогично доказательству для
ctg. Докажите самостоятельно.

5) Степенная функция y“ xn, где n – натуральное число. Она непрерывна
в каждой точке как произведение n непрерывных функций, равных x.

При любом натуральном показателе эта функция определена для любого x.
Но обратная функция, n

?
x не будет существовать для отрицательных x

Поэтому нужно рассматривать данную функцию на полупрямой r0,`8q, где
aą 0 – произвольное неотрицательное фиксированное число. Чтобы применить
доказанную теорему, нужно ограничиться сегментом.

Рассмотрим данную функцию на сегменте r0,as, где a ą 0 – произвольное
положительное число. Функция непрерывна как произведение n непрерывных
функций, равных x. Функция возрастающая: чем больше x, тем больше xn. По
теореме 5 множеством ее значений является сегмент Y “ r0,ans.

На сегменте Y существует обратная функция. Она обозначается x“ n
?

y или
x“ y

1
n , y P Y . Функция возрастающая и непрерывная.

Так как @yą 0 Da : y inr0,ans, то x“ n
?

y определена на полупрямой r0,`8q,
является на этой полупрямой возрастающей и непрерывной. Для любого поло-
жительного натурального n и любого целого m положим

x
m
n “ px

1
n q

m
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Таким образом мы определили степенную функцию с любым рациональным
показателем.

6) Показательная функция y“ ax paą 0,a‰ 1q.

Для рациональных показателей степени ax определена в предыдущем при-
мере. Для рациональных показателей степени показательная функция обладает
следующими свойствами:

1) если r1 ą r2, то ar1 ą ar2 при aą 1 и ar1 ă ar2 при 0ă aă 1;

2) ar1 ¨ar2 “ ar1`r2 ;

3) par1qr2 “ ar1r2 ;

4) a0 “ 1 (по определению);

5) a´r “ 1
ar (по определению);

6) arbr “ pabqr;

7) @r : ar ą 0.

Определим теперь ax для любого вещественного числа x. Пусть a ą 1, x –
произвольное вещественное число.

Рассмотрим множество taru, где r – любое рациональное число, не превосхо-
дящее x. Это множество ограничено сверху, например, числом ar̄, где r̄ – любое
рациональное число, большее x.

Следовательно, это множество имеет точную верхнюю грань, то есть суще-
ствует suptaru. По определению:

ax
“ sup

rPQ,rďx
tar
u

Можно определить ax иначе:

ax
“ inf

RPQ,Rěx
taR
u

Если 0ă aă 1, то 1
a ą 1, тогда

ax
“ p

1
a
q
´x
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Лекция 7. Непрерывность функции. Часть 3

Показательная функция ax, где aą 0, a‰ 1 Для рациональных x эта функ-
ция определена, определим ее для иррациональных x.

Берем случай, когда a ą 1. Рассматриваем множество рациональных чисел
tr´´рациональное число,r ď xu

Рассматриваем множество taru, где r – рациональные числа. Это множество
ограничено сверху, то есть имеет точную верхнюю грань. По определению:

ax
“ sup

rPQ,rďx
tar
u p1q

Доказательство этого тривиально. Если x рациональное и рассматриваем
множество для r ď x, то наибольшее ar будет при r “ x. Тогда sup

rPQ,rďx
taru “ ar

Докажите самостоятельно.

Можно определить ax иначе.

ax
“ inf

rPQ,rěx
tar
u “ ar

p2q

Докажите самостоятельно эквивалентность определений (1) и (2).

Если 0ă aă 1, то 1
a ą 1. Тогда

ax
“

ˆ

1
a

˙´x

Можно доказать, что функция ax для любых вещественных x обладает таки-
ми же свойствами, как и отмеченные свойства для рациональных x. В частности
ax – строго монотонная функция. Если основание aą 1, то возрастающая, если
основание aă 1, то убывающая.

Докажем непрерывность функции ax в любой точке.

Рассмотрим случай, когда aą 1. Докажем, что ax непрерывна в произволь-
ной точке x“ c. Используя определение (1) докажем непрерывность ax в точке
c слева. Для этого нужно доказать, что @ε ą 0 найдется левая полуокрестность
точки c, в которой (@x из этой полуокрестности) выполняется неравенство:

|ax
´ac

| ă ε
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Можно записать иначе:
ac
´ax

ă ε

Зададим произвольное ε ą 0. Согласно определению (1) ac “ sup
rPQ,rďc

taru.

Рассмотрим ac´ε . Понятно, что ac´ε ă ac. По определению точной верхней
грани найдется r̃ ă c такое, что ar̃ ą ac´ ε .

Рис. 7.1. График функции при ax ą ar̃, если r̃ ă xď c

Так как ax – возрастающая функция, то ax ą ar̃, если r̃ ă xď c. Из этих двух
неравенств следует, что ax ą ac ´ ε при r̃ ă x ď c. то есть ac´ ax ă ε в левой
полуокрестности pr̃,cs точки c. Что и требовалось доказать.

Аналогично, используя определение (2) можно доказать непрерывность ax

в точке c справа. Из непрерывности ax в точке c слева и справа следует непре-
рывность функции ax в точке c.

Введем обратную функцию. Для показательной функции обратной является
логарифмическая.

Рассмотрим функцию y “ ax на произвольном сегменте rb,cs. На этом сег-
менте y“ ax строго монотонна и непрерывна. Поэтому согласно теореме 5 мно-
жеством значений данной функции является сегмент

Y “ rab,ac
s

На сегменте Y существует обратная функция

x´ loga y
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Эта обратная функция строго монотонна и непрерывна. Так как @yą 0 най-
дутся b и c такие, что ab ă yă ac, то y“ loga y определена, строго монотонна и
непрерывна на полупрямой p0,`8q.

Если a“ e, то показательная функция ex называется экспонентой, а loge x

обозначается lnx и называется натуральным логарифмом.

7) Степенная функция с произвольным вещественным показателем.

Рассмотрим функцию y“ xα . α – произвольное действительное число, α PR,
xą 0. Эта функция непрерывна на прямой xą 0, потому что:

y“ xα
“ eα lnx

“ et , t “ α lnx

xa – суперпозиция двух непрерывных функций et и t “ α lnx. Следователь-
но xα - непрерывная функция как суперпозиция двух непрерывных функций
согласно теореме о непрерывности сложной функции.

Рассмотренные семь функций называются основными элементарными

функциями. Любая функция, которая получается из основных элементарных
функций с помощью конечного числа арифметических действий и суперпози-
ций, называется просто элементарной функцией, а множество всех элемен-
тарных функций называется классом элементарных функций. Например,

y“ psinxqarctgx

Из непрерывности основных элементарных функций следует, что любая эле-
ментарная функция непрерывна в каждой точке, в окрестности которой она
определена.

Пример 7.1.

y“
?

cosx´1

Это элементарная функция. Она определена только на дискретном мно-
жестве точек x“ 2πn, n P Z.

Чтобы ввести понятие непрерывности функции, функция должна быть
определена в окрестности точки.
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Замечательные пределы

Первый замечательный предел

lim
x0

sinx
x
“ 1

Этот предел является неопределенностью типа 0
0

Доказательство.

Ранее было доказано, что

sinxă xă tgx при 0ă xă
π

2

1ă
x

sinx
ă

1
cosx

cosxă
sinx

x
ă 1 при 0ă xă

π

2

В силу четности функций cosx и sinx“ x эти неравенства верны также при
π

2 ă xă 0.

Перейдем к пределу при xÑ 0. Поскольку cosxÑ 1 (в силу непрерывности
функции cosx) и 1Ñ 1 при xÑ 0, то, согласно теореме, sin x

x Ñ 1 при xÑ 0, что
и требовалось доказать. �

Следствия 1) Так как sinxx̃ при xÑ 0, то sinx´ x “ opxq, откуда получаем
простейшую асимптотическую формулу для функции sinx при xÑ 0:

sinx“ x`opxq

Здесь pxq “ ´
x3

6
`opx3

q

2)

cosx“ 1´
x2

2
`opx2

q

Доказательство.

Доказательство будет основано на первом замечательном пределе.

lim
xÑ0

1´ cosx
x2

2

63



МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ 1.
БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

1´ cosx“ 2sin2 x
2

lim
xÑ0

1´ cosx
x2

2

“ lim
xÑ0

ˆ

sin x
2

x
2

˙2

“ 1

Отсюда получаем

1´ cosx„
x2

2
, xÑ 0

ñ 1´ cosx´
x2

2
“ opx2

q

ñ cosx“ 1´
x
2
`opxq2

�

3)
tgx“ x`opxq приxÑ 0

Здесь opxq “ x33` opx3q Докажите самостоятельно. Для доказательства
рассмотрите предел отношения tgx к x.

Асимптотические формулы очень удобны для вычисления пределов.

Пример 7.2. Рассмотрим два примера.

1)

lim
xÑ0

1´ cos3x`2sin2 x
x2 “

“ lim
xÑ0

1´
´

1´ 9x2

2 `opx2q
¯

`2px`opxqq2

x2 “

“ lim
xÑ0

9x2

2 `opx2q`2x2`opx2q

x2 “

“ lim
xÑ0

ˆ

13
2
`

opx2q

x2

˙

“
13
2

2)

lim
xÑ0

tgx´ sinx
x3

Первая попытка, используем простейшие асимптотические формулы,
получим:

lim
xÑ0

tgx´ sinx
x3 “ lim

xÑ0

x`opxq´px`opxqq
x3 “ lim

xÑ0

opxq
x3 “?
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Но предел можно вычислить другим способом. Вторая попытка, исполь-
зуем первый замечательный предел.

lim
xÑ0

tgx´ sinx
x3 “ lim

xÑ0

sinxpcosx´1q
cosxx3 “

“ lim
xÑ0

1
cosx

¨
sinx

x
¨

1´ cosx
x2 “ 1 ¨1 ¨

ˆ

1
2

˙

Ñ

ˆ

1
2

˙

при xÑ 0

Второй замечательный предел

Утверждение о втором замечательном пределе выглядит так:

lim
xÑ0
p1` xq

1
x “ e

Этот предел является неопределенностью типа 18. По определению

e“ lim
nÑ`8

ˆ

1`
1
n

˙n

Положим 1
n “ x, тогда n“ 1x, xÑ 0 при nÑ`8 и мы получаем

lim
nÑ`0

p1` xq
1
x “ e

Однако, это еще не доказывает, что второй замечательный предел имеет
место, т.к. при таком подходе x Ñ 0, принимая лишь значения 1

n , где n P N,
а нужно доказать справедливость предельного равенства при любом способе
стремления x к нулю, в том числе и когда x принимает отрицательные значения.

Введем функцию

f pxq “
ˆ

1`
1
rxs

˙rxs

, xě 1

Если nď xď 1, где n P N, то rxs “ n. Следовательно

f pxq “
ˆ

1`
1
n

˙n

ñ

ñ lim
xÑ`8

f pxq “ lim
nÑ`8

ˆ

1`
1
n

˙n

“ e

Воспользуемся неравенствами. При xě 1 справедливы такие неравенства:

rxs ď xă rx`1s “ rxs`1
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1
x`1

ă
1
x
ď

1
rxs

Ко всем трем частям прибавим единицу:

1`
1

rx`1s
ď 1`

1
x
ď 1`

1
rxs

Возведем неравенства в степень:
ˆ

1`
1

rx`1s

˙rxs

ď

ˆ

1`
1
x

˙x

ď

ˆ

1`
1
rxs

˙rxs`1

ˆ

1`
1

rx`1s

˙rx`1s´1

ď

ˆ

1`
1
x

˙x

ď

ˆ

1`
1
rxs

˙rxsˆ

1`
1
rxs

˙

ˆ

1`
1
rxs

˙rxs

“ f pxq

ˆ

1`
1

rx`1s

˙rx`1s´1

“ f px`1q
ˆ

1`
1

rx`1s

˙´1

ď

ˆ

1`
1
x

˙x

ď f pxq
ˆ

1`
1
rxs

˙

Через цепочку преобразований мы подошли к важным неравенствам. Пусть
x Ñ `8. Левая и правая части последнего двойного неравенства, очевидно,
стремятся к e. Следовательно, мы доказали, что

lim
xÑ`8

ˆ

1`
1
x

˙x

“ e

Положим 1
x “ y. Тогда yÑ`0 при xÑ`8 и мы получаем:

lim
yÑ`0

p1` yq
1
y “ e

Для удобства перепишем последнее равенство в виде:

lim
xÑ`0

p1` xq
1
x “ e (7.1)

Это и есть второй замечательный предел, но только справа. Докажем теперь,
что предел слева тоже равен e.

lim
xÑ´0

p1` xq
1
x “ e (7.2)
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Тогда из p7.1q и p7.2q по теореме о пределах последует, что

lim
xÑ0
p1` xq

1
x “ e

Это доказывается с помощью простых преобразований. Рассмотрим

lim
xÑ´0

p1` xq
1
x “ e

Положим y“´x. Тогда yÑ`0 при xÑ´0. Значит можно записать так:

lim
xÑ´0

p1` xq
1
x “ lim

yÑ`0
p1´ yq´

1
y “

“ lim
yÑ`0

ˆ

1
1´ y

˙
1
y

“ lim
yÑ`0

ˆ

1`
y

1´ y

˙
1
y

Введем еще одно обозначение. Пусть z“
y

1´ y
. Если yÑ`0, то zÑ`0 при

x Ñ ´0. Из z “
y

1´ y
следует, что 1

z “
1
y ´ 1. Это значит, что 1

y “
1
z ` 1. Таким

образом можно продолжить равенство:

lim
xÑ´0

p1` xq
1
x “ lim

zÑ`0
p1` zq

1
z p1` zq

lim
xÑ´0

– это первый замечательный предел справа.

lim
zÑ`0

p1` zq
1
z Ñ e

p1` zq Ñ 1, ñ lim
xÑ´0

“ e

Равенство 8.2 доказано, тем самым доказан второй замечательный предел.
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Лекция 8. Производные функций

Равенство lim
xÑ´0

p1` xq
1
x “ e – это второй замечательный предел.

Приведем два примера.

Пример 8.1.

y“ logap1` xq

При xÑ 0 эта функция стремится к нулю. Рассмотрим

lim
xÑ0

logap1` xq
x

Значение легко вычислить с помощью второго замечательного предела.

lim
xÑ0

logap1` xq
x

“ lim
xÑ0

loga

”

p1` xq
1
x

ı

”

p1` xq
1
x

ı

Ñ e

lim
xÑ0

logap1` xq
x

“ loga e

loga e“
1

lna

Функции, предел отношений которых равен единице, называются эквива-
лентными функциями.

logap1` xq „
x

lna
, при xÑ 0

Разность двух эквивалентных бесконечно малых есть бесконечно малая
более высокого порядка.

logap1` xq´
x

lna
“ opxq ñ

ñ logap1` xq “
x

lna
`opxq при xÑ 0

Мы получили асимптотическую формулу для логарифмической функции.
Как частный случай, если a“ e,

lnp1` xq “ x`opxq при xÑ 0 (8.1)

В данном случае opxq “ ´ x2

2 `opx2q
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Пример 8.2. Второй пример. Рассмотрим

lim
xÑ0

ax´1
x

Здесь x Ñ 0, показательная функция – непрерывная функция, ax Ñ a0, то
есть a Ñ 1. Значит, числитель стремится к нулю, знаменатель - тоже к
нулю. То есть это неопределенность вида 0

0

Сделаем замену переменной: обозначим ax´1“ y. Тогда x“ logap1`yq. yÑ 0

при xÑ 0. Получим:

lim
xÑ0

ax´1
x

“ lim
yÑ0

y
logapy`1q

“ lna

ax
´1´ x lna“ opxq при xÑ 0

ax
„ 1` x lna`opxq при xÑ 0

Поэтому имеет место асимптотическая формула

ax
“ 1` x lna`opxq при xÑ 0 (8.2)

ax
´1´ x lna“ opxq при xÑ 0

В частности, для a“ e получаем формулу

ex
“ 1` x`opxq при xÑ 0

opxq “
x2

2
`opx2

q

Производные и дифференциалы

Определение производной. Производные некоторых основных

элементарных функций

Пусть функция y“ f pxq определена на промежутке X . Зафиксируем какую-
нибудь точку x из pa,bq и рассмотрим другую точку x`∆x этого интервала.
Величину ∆x назовем приращением аргумента функции в точке x.

Составим разность
∆y“ f px`∆xq´ f pxq
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Рис. 8.1. График функции

При фиксированной точке x эта разность является функцией аргумента ∆x.
Она называется приращением функции y“ f pxq в точке x. При этом ∆x‰ 0.

Рассмотрим отношение

∆x
∆y
“

f pxq`∆x´ f pxq
∆x

Оно также является функцией аргумента ∆x.

Определение 8.1. Если существует

lim
∆xÑ0

∆y
∆x

то он называется производной функции y“ f pxq в точке x. Обозначения
производной: f 1pxq или y1pxq. В физике часто используется обозначение 9ypxq,
обычно в том случае, когда x – время. Несколько позже мы введем еще одно
обозначение: dy

dx , но это будет не единый символ, а дробь, в которой числитель
и знаменатель имеют свой смысл.

Пример 8.3. Постоянная функция y “ c, где c – некоторое число. x P X Так
как ∆y“ f px`∆xq´ f pxq “ c´ c“ 0, то

lim
∆xÑ0

∆y
∆x
“ 0, то есть c1 “ 0
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Пример 8.4. Степенная функция y“ xn, n P N. Найдем приращение функции:

∆y“ f px`∆xq´ f pxq “

“ px`∆xqn´ xn
“

“ xn
`nxn´1

¨∆x`npn´1qxn´2
¨
p∆xq2

2
` ...`p∆xqn´ xn

“

“ nxn´1
¨∆x`op∆xq при ∆xÑ 0

Отсюда следует:

∆y
∆x
“ nxn´1

`
op∆xq

∆x
Ñ nxn´1 при xÑ 0

то есть
pxn
q
1
“ nxn´1, n P N

Позднее мы докажем, что эта формула верна для любого вещественного
числа n и любого xą 0.

Пример 8.5.

y“ sinx, x P p´8,`8q

Вычислим производную sinx, пользуясь определением производной.

∆y“ sinpx`∆xq´ sinx“

“ 2sin
∆x
2
¨ cos

ˆ

x`
∆x
2

˙

“

“ 2
ˆ

∆x
2
`op∆xq

˙

¨ cos
ˆ

x`
∆x
2

˙

∆xÑ 0

Здесь мы воспользовались формулой sin ∆x
2 “

∆y
2 `op∆xq при xÑ 0. Используя

теперь непрерывность функции cosx, получаем:

∆y
∆x
“

ˆ

1`
op∆xq

∆x

˙

¨ cos
ˆ

x`
∆x
2

˙

Ñ cosx

∆xÑ 0

То есть доказано, что

psinxq1 “ cosx x P p´8,`8q
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Пример 8.6. Так же доказывается, что

pcosxq1 “´sinx x P p´8,`8q

Пример 8.7. Логарифмическая функция y“ logax pxą 0q. Так как

∆y“ logapx`∆xq´ logax“ loga

ˆ

1`
∆x
x

˙

Так как logap1` xq “ x
lna `opxq при xÑ 0, то получаем:

loga

ˆ

1`
∆x
x

˙

“
∆x

x lna
`op∆xq

∆y
∆x
“

1
x lna

`
op∆xq

∆x
Ñ

1
x lna

при ∆xÑ 0

То есть получаем:

ploga xq1 “
1

x lna
для любого xą 0

В частности если a“ e, то:

plnxq1 “
1
x

Пример 8.8. Показательная функция y“ ax, где paą 0;a‰ 1q Составим при-
ращение y:

∆y“ ax`∆x
´ax

“

“ ax
pa∆x

´1q

Воспользуемся формулой ax “ 1` x lna`opxq при xÑ 0. Тогда:

ax
pa∆x

´1q “ ax
p1`∆x lna`op∆xq´1q

∆y
∆x
“ ax

ˆ

lna`
op∆xq

∆x

˙

Ñ ax lna

∆xÑ 0

То есть получаем:
pax
q
1
“ ax lna

В частности если a“ e, то

pex
q
1
“ ex
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Односторонние производные

Рассмотрим разностное отношение

∆y
∆x
“

f pxq`∆x
∆x

, ∆xą 0

Определение 8.2. Рассмотрим предел:

lim
∆Ñ`0

∆y
∆x

Если такой предел существует, то он называется правой производной

функции y“ f pxq. Обозначается f 1прpxq. То есть

lim
∆Ñ`0

∆y
∆x
“ f 1прpxq

Аналогично определяется левая производная функции y“ f pxq в точке x:

lim
∆Ñ´0

∆y
∆x
“ f 1левpxq

Функция y“ f pxq может иметь в какой-то точке не равные односторонние
производные.

Пример 8.9. Рассмотрим функцию y“ |x|.

Рис. 8.2. График функции y“ |x|

В точке x“ 0 имеем

∆y“ f p0`∆xq´ f p0q “
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“ |∆x| “

“

$

&

%

∆x, если xą 0;

´∆x, если xă 0.

Поэтому

∆y
∆x
“

$

&

%

`1, если xą 0;

´1, если xă 0.

Следовательно, правая производная функции y “ |x| в точке 0 равна 1, а
левая производная равна ´1. Производной в этой точке функция y “ |x| не
имеет.

Частные производные

Рассмотрим функцию не одной, а нескольких переменных. Возьмем функ-
цию

z“ f px,yq

Если зафиксировать значение одной из переменных, например y, то функция
z станет функцией одной переменной x. Производная этой функции называется
частной производной функции z“ f px,yq по аргументу x и обозначается

z1x

Аналогично определяется частная производная z1y по аргументу y.

Пример 8.10. Рассмотрим функцию z“ xy. Тогда

z1x “ y ¨ xy´1

z1y “ xy
¨ lnx

Физический и геометрический смысл производной

Физический смысл производной

Пусть x – время, а y “ f pxq – координата точки, движущейся по оси y, в
момент времени x.
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Рис. 8.3. Физический смысл производной

Зафиксируем какой-то момент времени x и рассмотрим приращение функ-
ции y“ f pxq за время ∆x:

∆y“ f px`∆xq´ f pxq

Рис. 8.4. Ось времени

∆y
∆x
“Vср

представляет собой среднюю скорость точки на промежутке времени от
момента x до момента x`∆x, а величина

lim
xÑ0

∆y
∆x
“V pxq “ f 1pxq

является мгновенной скоростью точки в момент времени x. В случае про-
извольной функции y“ f pxq производная f 1pxq характеризует скорость изме-

нения переменной y (функции) по отношению к изменению аргумента x.

Геометрический смысл производной

Пусть задана прямоугольная система координат и дана прямая l.

Обозначим буквой α величину угла, на который нужно повернуть ось Ox,
чтобы совместить ее положительное направление с одним из направлений на
прямой l, причем

´
π

2
ă α ď

π

2

Число k “ tgα называется угловым коэффициентом прямой l в данной си-
стеме координат.
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Рис. 8.5. Геометрический смысл производной

Рассмотрим график функции y“ f pxq, т.е. множество точек f px, f pxqq,x P X ,
где X – область определения этой функции. Отметим на графике точки Mpx, f pxqq

и Npx`∆x, f px`qq.

Рис. 8.6. y“ f pxq

Прямая MN называется секущей по отношению к графику функции. Ве-
личину угла между секущей MN и осью Ox обозначим φp∆xq.

Если φ0 ‰
π

2 и φ0 ‰ ´
π

2 , то прямая l, проходящая через точку Mpx, f pxqq и
имеющая угловой коэффициент k “ tgφ0 называется касательной к графику
функции y“ f pxq в точке M.

Говорят также, что прямая l является предельным положением секущей
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Рис. 8.7. Пример функции

MN при ∆xÑ 0. В соответствии с этим можно сказать, что касательная к графи-
ку функции y“ f pxq в точке Mpx, f pxqq есть предельное положение секущей
MN при ∆xÑ 0.

Теорема 8.1. Если функция y “ f pxq имеет в точке x производную f 1pxq, то
график функции имеет в точке Mpx, f pxqq касательную, причем угловой коэф-
фициент касательной равен f 1pxq.

Доказательство.

Из треугольника MNP (Рис. 8.6) получаем:

tgφp∆xq “
∆y
∆x
ñ φp∆xq “ arctg

∆y
∆x

Перейдем к пределу при ∆xÑ 0 и воспользуемся тем, что

lim
∆xÑ0

∆y
∆x
“ f 1pxq

и arctg t – непрерывная функция. Получим:

lim
∆xÑ0

φp∆xq “ lim
∆xÑ0

arctg
∆y
∆x
“ arctg f 1pxq

Отсюда по определению касательной следует, что существует касательная к
графику функции в точке Mpx, f pxqq. При этом

φ0 “ lim
∆xÑ0

φp∆xq “ arctg f 1pxq
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и, следовательно, для углового коэффициента касательной получаем равен-
ство k “ tgφ0 “ f 1pxq. Теорема доказана. �

Уравнение касательной к графику функции y “ f pxq в точке Mpx0, f px0qq

имеет вид:
y´ f px0q “ f 1px0qpx´ x0q

Дифференцируемость и дифференциал функции

Пусть функция y“ f pxq имеет производную в точке x, то есть существует

lim
∆xÑ0

∆y
∆x
“ f 1pxq

Введем функцию

αp∆xq “
∆y
∆x
´ f 1pxq “

f px`∆xq´ f pxq
∆x

´ f 1pxq

Функция αp∆xq определена при ∆x ‰ 0 и является бесконечно малой при
∆xÑ 0. Из равенства получаем

∆y“ f 1pxq ¨∆x`αp∆xq ¨∆x при ∆x‰ 0

Равенство будет верным и для ∆x “ 0, если доопределить каким-нибудь об-
разом функцию αp∆xq при ∆x“ 0. Для дальнейшего удобно положить αp0q “ 0,
то есть доопределить αp∆xq в точке ∆x “ 0 по непрерывности. f 1pxq не зависит
от ∆x, т.е. для данной точки x является некоторым числом.

Итак, если функция y“ f pxq имеет производную в точке x, то ее приращение
в этой точке можно представить в виде

∆y“ f 1pxq ¨∆x`αp∆xq ¨∆x при ∆x‰ 0

где αp∆xq Ñ 0 при xÑ 0, αp0q “ 0.

Пусть теперь дано, что приращение функции y“ f pxq в точке x имеет вид

∆y“ A ¨∆x`αp∆xq ¨∆x

где A – некоторое число, а αp∆xq Ñ 0 при xÑ 0, αp0q “ 0.
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В этом случае функция y“ f pxq имеет производную в точке x, причем f 1pxq “

A. Получаем:
∆y
∆x
“ A`αp∆xq

Отсюда следует, что
lim

∆xÑ0
“ f 1pxq “ A

Таким образом, если функция y “ f pxq имеет производную в точке x, то ее
приращение в этой точке можно представить в виде

∆y“ A ¨∆x`αp∆xq ¨∆x

где A“ f 1pxq, и обратно, если приращение функции в точке x можно пред-
ставить в виде

∆y“ A ¨∆x`αp∆xq ¨∆x

то она имеет в точке x производную, причем f 1pxq “ A, т.е. существование
производной функции в точке x и представление приращения функции в ука-
занном виде являются эквивалентными свойствами функции.
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Лекция 9. Производные и дифференциалы.

Часть 1

Наряду с понятием производной мы ввели эквивалентное понятие.

y“ f pxq

∆y“ f px`∆xq´ f pxq

x - фиксированная точка, ∆x может меняться. То есть приращение - это
функция аргумента ∆x.

lim
∆xÑ0

∆y
∆x
“ f 1pxq

Эквивалентное определение: функция f pxq называется дифференцируемой
в точке x, если

∆y“ A ¨∆x`αp∆xq ¨∆x

A – некоторое число, αp∆xq Ñ 0 при ∆x Ñ 0, то есть она бесконечно малая
при ∆xÑ 0. αp0q “ 0.

Таким образом для того чтобы функция y “ f pxq была дифференцируемой
в точке x необходимо и достаточно чтобы функция имела производную в
точке x.

Операцию вычисления производной называют дифференцированием функ-

ции.

Замечание. Условие дифференцируемости с учетом равенств A“ f 1pxq, αp∆xq¨

∆x“ op∆xq при ∆xÑ 0 (как произведение двух бесконечно малых), можно за-
писать в виде:

∆y“ f 1pxq ¨∆x`op∆xq

Пример 9.1. Рассмотрим функцию y“ x2. Имеем:

∆y“ px`∆xq2´ x2
“ 2x ¨∆x`∆x ¨∆x“ 2x ¨∆x`op∆xq

A“ f 1pxq “ 2x
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Теорема 9.1. Если функция y “ f px дифференцируема в точке a, то она и
непрерывна в этой точке. Эта теорема устанавливает связь между поня-
тиями дифференцируемости и непрерывности.

Доказательство.

Нужно доказать, что
lim
xÑa

f px“ f paqq

Введем обозначение: x´a“ ∆x.

Рис. 9.1. График функции

Тогда ∆xÑ 0 при xÑ a, x“ a`∆x, и нужно доказать, что

lim
xÑ0

f pa`∆xq “ f paq

lim
xÑ0
r f pa`∆xq´ f paqs “ 0

Но f pa`∆xq´ f paq “ ∆y – приращение функции в точке a. Таким образом,
требуется доказать, что

lim
xÑ0

∆y“ 0

По условию теоремы функция y“ f pxq дифференцируема в точке a, поэтому

∆y“ f 1paq ¨∆x`op∆xq

Следовательно,
lim
xÑ0

∆y“ 0

Что и требовалось доказать. �

Замечание. Равенство
lim
xÑ

∆y“ 0
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где ∆y“ f pa`∆xq´ f paq называется разностной формой условия непре-

рывности функции y“ f pxq в точке a. Если это условие выполнено, то функ-
ция непрерывна в точке a, и обратно, если функция непрерывна в точке a, то
это условие выполнено.

Обратное к теореме 9.1 утверждение неверно, т.е. непрерывная в некото-
рой точке функция может быть недифференцируемой в этой точке. Функция
f pxq “ |x| непрерывна в точке x“ 0, но не дифференцируема в этой точке.

Пример 9.2. Функция f pxq “ |x| непрерывна в точке x“ 0, но не дифференци-
руема в этой точке.

Рис. 9.2. График функцииy“ |x|

Существуют функции, которые непрерывны в каждой точке числовой пря-
мой, но ни в одной точке не дифференцируемы.

∆y|x“0 f p0`∆x´ f p0qq “

“ |∆x| “

$

&

%

∆x, если xą 0;

´∆x, если xă 0.

Функция недифференцируема, поскольку у нее нет производной.

“
∆y
∆x
“

$

&

%

`1, если xą 0;

´1x, если xă 0.

Отсюда легко понять, что

“ lim
∆xÑ0

∆y
∆x
“

$

&

%

`1, если ∆xÑ`0;

´1x, если ∆xÑ´0.
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Это значит, что предел не существует. То есть

f 1p0q не существует

Значит функция не дифференцируема в точке x“ 0. Впервые пример такой
функции построил Карл Вейерштрасс (1815-1897) в 1872 году. Этот пример
подводит нас к понятию правой и левой производных функции.

f 1прp0q “ 1

f 1левp0q “ ´1

Дифференциал функции

Пусть функция y “ f pxq дифференцируема в точке x. Тогда ее приращение
в этой точке можно представить в виде:

∆y“ f 1pxq ¨∆x`αp∆xq ¨∆x

Приращение представлено в виде суммы двух слагаемых. Оба слагаемых
являются бесконечно малыми функциями при ∆xÑ 0. Если f 1pxq ‰ 0, то первое
слагаемое является бесконечно малой того же порядка, что и ∆x : f 1pxq∆x “

Op∆xq. Второе слагаемое op∆xq всегда является бесконечно малой более высокого
порядка, чем ∆x.

Определение 9.1. Дифференциалом функции y “ f pxq в точке x называется
линейная функция аргумента ∆x:

dy“ f 1pxq ¨∆x

Если f 1pxq ‰ 0, то dy “ f 1pxq ¨∆x является главной частью ∆y при ∆xÑ 0.
Если же f 1pxq “ 0, то dy“ 0 и уже не является главной частью приращения
функции.

Дифференциалом независимой переменной x назовем приращение этой
переменной: dx“∆x. Формула принимает теперь вид: dy“ f 1pxqdx, откуда сле-
дует, что

f 1pxq “
dy
dx
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То есть если x – независимая переменная, то производная функции в
точке x равна отношению дифференциала функции в этой точке к дифферен-
циалу независимой переменной.

Пример 9.3. Рассмотрим функцию y “ cosx. Найдем ее дифференциал: dy “

´sinx ¨dx – линейная функция аргумента dx при фиксированном x. В частно-
сти,

dy|
π
, p@dxq

dy| π
3 ,dx“0,1 “´

?
3

2
¨0.1

Физический смысл дифференциала функции

Пусть x – время, y“ f pxq – координата точки, движущейся по оси y в момент
времени x. Тогда ∆y“ f px`∆xq´ f pxq – изменение (приращение) координаты за
промежуток времени от момента x до момента x`∆x.

При этом dy“ f 1pxq ¨∆x“ vpxq ¨∆x, то есть дифференциал равен тому измене-
нию координаты, которое имела бы точка, если бы ее скорость vpxq на отрезке
времени rx,x`∆xs была постоянной, равной f 1pxq. То есть движение должно
быть равномерным со скоростью vpxq.

Геометрический смысл дифференциала функции

Иначе можно сказать, что это геометрическое изображение дифференциала.

Дифференциал dy равен тому изменению функции y “ f pxq при изменении
аргумента на ∆x, которое имела бы функция, если бы на отрезке rx,x`∆xs она
была линейной с угловым коэффициентом прямой (ее графика), равным f 1pxq.

Правила дифференцирования

Теорема 9.2. Если функции f pxq и gpxq дифференцируемы в точке x, то функ-
ции f pxq˘gpxq, f pxq ¨ f pxq, f pxq

gpxq , где gpxq ‰ 0, также дифференцируемы в точке
x, причем:

1) r f pxq˘gpxqs1 “ f 1pxq˘g1pxq
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Рис. 9.3. Геометрическое изображение дифференциала

2) r f pxq ¨gpxqs1 “ f 1pxq ¨gpxq` f pxq ¨g1pxq

3)
”

f pxq
gpxq

ı1

“
f 1pxq¨gpxq´ f pxq¨gpxq

g2pxq

При условии, что gpxq ‰ 0

Доказательство.

Все три формулы доказываются одинаковым образом. Докажем, например,
формулу 2).

Чтобы найти производную от произведения r f pxq ¨ gpxqs1, нужно взять при-
ращение этой функции, разделить на ∆x, рассмотреть предел при ∆x Ñ 0.
Требуется доказать, что он равен f 1pxq ¨gpxq` f pxq ¨g1pxq.

Введем обозначение y“ f pxq ¨gpxq. Составим приращение этой функции:

∆y“ f px`∆xq ¨gpx`∆xq´ f pxq ¨gpxq “

“ ˘ f pxq ¨gpx`∆xq “

“ r f px`∆xq´ f pxqs ¨gpx`∆xq` f pxqrgpx`∆xq´gpxqs

Здесь:
r f px`∆xq´ f pxqs “ ∆ f

rgpx`∆xq´gpxqs “ ∆g
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Поэтому:

lim
∆xÑ0

∆y
∆x
“ lim

∆xÑ0

ˆ

∆ f
∆x
¨gpx`∆xq` f pxq ¨

∆g
∆x

˙

По условию функции f и g дифференцируемы, то есть имеют производную.
Значит:

∆ f
∆x
Ñ f 1pxq

gpx`∆xq Ñ gpxq

f pxq Ñ f pxq

∆g
∆x
Ñ g1pxq

При этом:
lim

∆xÑ0

∆y
“ y1pxq “ r f pxq ¨gpxqs1

Таким образом получаем, что

r f pxq ¨gpxqs1 “ f 1pxq ¨gpxq` f pxq ¨g1x

Это и требовалось доказать. �

Следствия из теоремы.

1) Если c“ const и Dy1pxq то:

rc ¨ ypxqs1 “ c ¨ y1pxq

Иначе можно сказать так: постоянный множитель можно выносить за знак
производной. Доказательство простое.

pc ¨ ypxqq “ c1 cdotypxq` c ¨ y1pxq

c1 “ 0,ñ

pc ¨ ypxqq “ c ¨ y1pxq

2)

ptgxq1 “
ˆ

sinx
cosx

˙

“
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“
psinxq1 ¨ cosx´pcosxq1 ¨ sinx

cos2 x
“

cos2 x` sin2 x
cos2 x

“
1

cos2 x

Формула верна для x‰ π

2 `πn, n P N

3) Доказать самостоятельно:

pctgxq1 “
1

sin2 x

x‰
π

2
`πn, n P N

Производная обратной функции

Теорема 9.3. Пусть функция y“ f pxq определена, строго монотонна и непре-
рывна в окрестности точки x0, дифференцируема в самой точке x0 и f 1px0q ‰ 0.
Будем считать, что f px0q “ y0. Тогда в некоторой окрестности точки y0 су-
ществует обратная функция x“ f´1pyq, эта функция дифференцируема в точ-
ке y0 и

f´11
“

1
f 1px0q

Доказательство.

Рассмотрим какой-нибудь сегмент ra,bs, расположенный в указанной окрест-
ности точки x0 и такой, что a ă x0 ă b. Функция y “ f pxq строго монотонна и
непрерывна на этом сегменте.

Поэтому, согласно теореме о существовании и непрерывности обратной функ-
ции, множеством значений функции y “ f pxq, заданной на ra,bs, является сег-
мент Y “ r f paq, f pbqs, на сегменте Y существует обратная функция x “ f´1pyq,
строго монотонная и непрерывная. При этом y0 P p f paq, f pbqq.

Зададим аргументу y обратной функции в точке y0 приращение ∆y‰ 0 столь
малое, что py0`∆yq P r f paq, f pbqs. Обратная функция получит приращение ∆x“

f´1py00`∆yq´ f´1py0q, которое отлично от нуля в силу строгой монотонности
обратной функции ∆x‰ 0, ∆y‰ 0. Поэтому справедливо равенство:

∆x
∆y
“

1
∆y
∆x
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Рис. 9.4. График функции y“ f pxq

Устремим в этом равенстве ∆yÑ 0 и воспользуемся непрерывностью обрат-
ной функции x“ f´1pyq и условием непрерывности в разностной форме ∆xÑ 0

при ∆yÑ 0.
∆yÑ 0,ñ ∆xÑ 0

Так как при ∆xÑ 0 знаменатель в равенстве ∆x
∆y “

1
∆y
∆x

стремится к f 1px0q, то

предел правой части равен 1
f 1px0q

.

∆y
∆x ‰ в силу условия теоремы. Следовательно, существует предел и левой

части равенства ∆x
∆y “

1
∆y
∆x

, который по определению производной равен f´11py0q.

Таким образом, переходя к пределу при ∆yÑ 0 в равенстве, мы получаем:

f´11
“

1
f 1px0q

Теорема доказана. �

Следствия из теоремы, примеры

Пример 9.4. Рассмотрим функцию

y“ sinx, x P p´
π

2
,
π

2
q
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Для @x P p´π

2 ,
π

2 q выполнены все условия только что доказанной теоремы
(9.4). По теореме 9.4 для производной обратной функции справедлива форму-
ла:

parcsinyq1 “
1

psinxq1
“

1
cosx

“
1

a

1´ sin2 x
“

1
a

1´ y2

parcsinyq1 “
1

a

1´ y2

Перепишем формулу в «нормальных обозначениях», заменив y на x:

parcsinxq1 “
1

?
1´ x2

, x P p´1,1q

Заметим, что parcsinxq1Ñ8 при xÑ 1 или xÑ´1. В таком случае гово-
рят, что функция в данной точке имеет бесконечную производную. Гео-
метрически это означает, что касательная в соответствующей точке гра-
фика параллельна оси y.

Рис. 9.5. График функции y“ arcsinx

Пример 9.5. Рассмотрим функцию y“ cosx на интервале x P p0,πq.

y“ cosx – непрерывная монотонная функция, имеет производную. Для нее
выполнены все условия теоремы 9.3.

Доказать самостоятельно, что:

parccosxq1 “
1

?
1´ x2

, p´1ă xă 1q
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Пример 9.6. Аналогично выводятся формулы для производной arctg и arcctg:

parctgxq1 “
1

1` x2 , x P p´8,`8q

Пример 9.7.

parcctgxq1 “´
1

1` x2 , x P p´8,`8q
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Лекция 10. Производные и дифференциалы.

Часть 2

Производная сложной функции

Рассмотрим сложную функцию y“ f ptq, t “ φpxq, то есть

y“ f pφpxqq :“ Fpxq

Теорема 10.1. Теорема о дифференцируемости сложной функции

Пусть функция t “ φpxq дифференцируема в точке x0, φpx0q “ t0, и функ-
ция y“ f ptq дифференцируема в точке t0. Тогда сложная функция Fpxq“ f pφpxqq

дифференцируема вточке x0 и выполняется равенство:

F 1px0q “ f 1pt0q ¨φ 1px0q “ f 1pφpx0qq ¨φ
1
px0q p1q

Доказательство.

Согласно определению дифференцируемости функции нужно доказать, что
приращение функции y“ Fpxq в точке x0 можно представить в виде:

∆y“ f 1pφpx0qq ¨∆φ
1
px0q ¨`αp∆xq ¨∆x p2q

где αp∆xq0 при ∆xÑ 0 и αp0q “ 0

Дадим аргументу φpxq приращение ∆x в точке x0. Функция t ““ φpxq получит
приращение ∆t “ φpx0`∆xq´φpx0q, которое можно представить в виде (в силу
дифференцируемости функции

∆t “ φ
1
px0q ¨∆x`β p∆xq ¨∆x p3q

lim
∆x0

β∆x“ 0

β p0q “ 0

Этому приращению ∆t переменной t соответствует приращение ∆y “ f pt0`

∆tq´ f pt0q функции y “ f ptq. Поскольку функция y “ f ptq дифференцируема в
точке t0, то ∆y можно представить в виде

∆y“ f 1pt0q ¨∆t` γ∆t ¨∆t p4q
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γ∆t0 при ∆t0

γp0q “ 0

Выразим ∆y через ∆x. Для этого подставим выражение (3) в правую часть
равенства (4):

∆y“ f 1pφpx0qq ¨φ
1
px0q ¨∆x`r f 1pt0q ¨β ` γφ

1
px0q` γβ s ¨∆x

r f 1pt0q ¨β ` γφ
1
px0q` γβ s “ αp∆xq

αp∆xq Ñ 0 при ∆xÑ 0

αp0q “ 0

Полученное равенство совпадает с равенством:

∆y“ f 1pφpx0qq ¨∆φ
1
px0q ¨`αpq ¨∆x

Что и требовалось доказать. �

Замечание

Полученная формула имеет простой и ясный физический смысл:

φ 1px0q – скорость изменения переменной t по отношению к изменению пере-
менной x,

f 1pt0q – скорость изменения y по отношению к изменению t,

F 1px0q – скорость измененияy по отношению к изменению x.

Ясно, что эти скорости связаны равенством:

F 1px0q “ f 1pt0q ¨φ 1px0q

Следствия из теоремы

Пример 10.1. Рассмотрим функцию

y“ xα , α P R, xą 0

Можно записать так:
xα
“ eα lnx
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Это же можно записать как et , где t “ α lnx. То есть xa можно предста-
вить как сложную функцию:

pxα
q
1
“ pet

q
1
¨ pα lnxq1 “ et

¨
al pha

x
|t“α lnx “ xα

¨
α

x
“ αxα´1

Формула для производной степенной функции будет такой:

pxα
q
1
“ αxα´1

Отметим два частных случая этой формулы.

1) Для α “ 1
2

p
?

xq1 “
1
2
¨ x´

1
2 “

1
2
?

x

2) Для α “´1:
ˆ

1
x

˙1

“´1 ¨ x´2
“´

1
x2

Пример 10.2. Выведем формулу для степенно-показательной функции.

y“ rupxqsvpxq upxq ą 0

uv
“ ev lnu

“ et , t “ v lnu

puv
q
1
“ et

|t“v lnu ¨ pv lnuq1 “ uv
ˆ

v1 ¨ lnu` v ¨
1
u
¨u1

˙

“ uv
¨ lnu ¨ v1` v ¨uv´1

¨u1

uv
¨ lnu ¨ v1 “ puv

q|u“

v ¨uv´1
¨u1 “ puv

q
1
|v“

Тогда окончательно полученная формула будет такой:

puv
q
1
“ puv

q
1
|u“`puv

q
1
|v“

Инвариантность формы первого дифференциала

Дифференциал функции y “ f pxq, где x независимая переменная, выража-
ется формулой

dy“ f 1pxqdx p1q

x в этой формуле – независимая переменная. Дифференциал функции dy

называется также первым дифференциалом функции.
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Если x не будет независимой переменной, а будет зависеть от какой-то пе-
ременной t, то это выражение (вид, форма) останется неизменной. В этом и
состоит инвариантность формы первого дифференциала.

Докажем, что равенство (1) сохраняется и в том случае, если x будет не
независимой переменной, а дифференцируемой функцией некоторой независи-
мой переменной t : x“ φptq.

В этом случае y“ f pφptqq :“ Fptq – сложная функция независимой перемен-
ной t, дифференцируемая в силу теоремы 10.1 как сложная функция. Согласно
определению дифференциала функции dy“ F 1ptqdt, а по теореме 10.1

F 1ptq “ f 1pφptqq ¨φ 1ptq

поэтому dy “ f 1pφptqq ¨ φ 1ptqdt. Так как x “ φptq, dx “ φ 1ptqdt, то выражение
для dy также можно записать в виде

dy“ f 1pxqdx p2q

То есть формула имеет место и в том случае, когда x – дифференцируемая
функция некоторого аргумента t. Это свойство называется инвариантностью

формы первого дифференциала. Инвариантной (не изменяющейся) явля-
ется только форма (вид) первого дифференциала, а суть меняется, поскольку
теперь dx“ φ 1ptqdt ‰ ∆x. Из dy“ f 1pxqdx следует,

f 1pxq “
dy
dx

p3q

То есть производная функции равна отношению дифференциалов функции
и аргумента и в том случае, когда аргумент x – не независимая переменная, а
функция некоторой независимой переменной t.

Производная функции, заданной параметрически

Пусть переменные x и y заданы как функции аргумента t, который назовем
параметром:

x“ φptq, y“ ψptq

t P Tpпромежутокq
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Пусть параметр t изменяется на некотором промежутке и пусть существует
функция t “ φ´1pxq, обратная к функции x“ φptq. Тогда можно записать:

y“ ψpφ
´1
pxqq :“ f pxq

Таким образом, уравнения x “ φptq, y “ ψptq определяют функцию y “

f pxq. Такой способ задания функции называется параметрическим задани-

ем функции. Вычислим f 1pxq. Воспользуемся формулой f 1pxq “ dy
dx .

f 1pxq “
ψ 1ptqdt
φ 1ptqdt

“
ψ 1ptq
φ 1ptq

ˇ

ˇ

ˇ

ˇ

t“φ´1pxq
p5q

Это и есть формула производной функции, заданной параметрически:

f 1pxq “
ψ 1ptq
φ 1ptq

ˇ

ˇ

ˇ

ˇ

t“φ´1pxq

Эту же формулу можно получить иначе, если использовать правило диффе-
ренцирования сложной функции и формулу производной обратной функции:

f pxq “ ψpφ
´1
pxqq

f 1pxq “ ψ
1
pφ´1pxqq ¨ pφ´1

pxqq1 “

“ ψ
1
pφ
´1
pxqq ¨

1
φ 1ptq

ˇ

ˇ

ˇ

ˇ

t“φpxq
“

ψ 1ptq
φ 1ptq

ˇ

ˇ

ˇ

ˇ

φ´1pxq

Получили ту же формулу (5), но выведенную иначе.

Физическая интерпретация

Уравнения можно рассматривать как уравнения, задающие движение точки
на плоскости: t время, px,yq “ pφptq,ψptqq – координаты точки в момент времени
t.

При такой интерпретации график функции y“ f pxq представляет собой тра-
екторию движения точки на плоскости. Вектор скорости этой точки ~vptq “

φ 1ptq~i`ψ 1ptq~j направлен по касательной к траектории, так как

tgα “
ψ 1ptq
φ 1ptq

“ f 1pxq
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Рис. 10.1. Физическая интерпретация

Производные высших порядков

Пусть функция y“ f pxq дифференцируема в каждой точке интервала pa,bq.
Тогда производная f 1pxq является функцией, определенной на интервале pa,bq.

Если f 1pxq имеет производную в некоторой точке x из pa,bq, то производная
от f 1pxq в точке x называется второй производной функции f pxq в точке x

(или производной второго порядка) и обозначается f 2pxq

f 2pxq “ r f 1pxqs1

Другие обозначения: f p2qpxq, y2pxq, yp2qpxqq. Производная n-ого порядка (или
n-я производная) функции y“ f pxq определяется как производная от производ-
ной pn´1q- ого порядка:

f n
pxq “

“

f n´1
pxq

‰

Физический смысл второй производной

Если x – время, а y“ f pxq – координата точки на оси y в момент времени x,
то f 1pxq “ vpxq – мгновенная скорость точки в момент x, а f 2pxq “ r f 1pxqs1 “

v1pxq “ apxq – ускорение точки в момент x.
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Геометрический смысл второй производной

Позже будет установлено, что знак f 2pxq определяет направление выпукло-
сти графика функции y“ f pxq:

Рис. 10.2. График функции y“ f pxq

Некоторые формулы

Пример 10.3. Рассмотрим функцию y“ xα

y1 “ αxα´1

y2 “ αpα´1qxα´2

y3 “ αpα´1qpα´2qxα´3

И так далее. Для производной n-ого порядка получается выражение

ypnq “ αpα´1q ¨ ¨ ¨ pα´n`1qxα´n

если α “ m P N, то

pxm
q

m
“ mpm´1qˆ ¨ ¨ ¨ˆ “ 1 ¨ x0

“ m!

pxm
q

n
“ 0 @ną m

Пример 10.4. Рассмотрим функцию paxqn:

y1 “ ax lna

y2 “ ax
plnaq2
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Пример 10.5. Рассмотрим функцию y“ sinx

y1 sinx“ cosx“ sinpx`
π

2
q

psinxq1 “ sinpx`
π

2
q

График такой функции сдвинется на π

2 влево.

psinxq2 “ sinpx`2
π

2
q

¨ ¨ ¨

psinxqpnq “ sinpx`n
π

2
q

Пример 10.6.

pcosxqpnq “ cospx`n
π

2
q

Две формулы для производных n-ого порядка

Если функции upxq и vpxq имеют производные n-ого порядка, то функции
upxq˘ vpxq, upxq ¨ vpxq также имеют производные n-ого порядка, причем:

Для суммы и разности формула будет такой:

pupxq˘ vpxqqpnq “ upnqpxq˘ vpnqpxq

Для произведения формула иная:

puvqpnq “ upnq ¨ v`C1
n ¨u

pn´1qv1`C2
n ¨u

pn´2qvp2q`¨¨ ¨`Ck
n ¨u

pn´kqvpkq`¨¨ ¨`u ¨ vpnq “

“

n
ÿ

k“0

Ck
n ¨u

pn´kq
¨ vpkq

В обеих формулах:
up0q :“ u

Ck
n “

n!
rk!pn´ kq!s

n!“ 1 ¨2 ¨ ¨ ¨n

0!“ 1
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Эта формула называется формулой Лейбница. Она верна для @n P N.

Для n“ 2 получаем:

pupxq˘ vpxqqp2q “
“

pupxq˘ vpxqq1
‰1
“
“

u1pxqv1pxq
‰1
“ up2qpxq˘ vp2qpxq

то есть для n “ 2 формула верна. Равенство по форме похоже на формулу
бинома Ньютона:

pu` vqn “
n
ÿ

k“0

Ck
nun´kvk

Пример 10.7. Рассмотрим функцию y “ x2 ¨ e3x. Используя формулу, найдем
yp10q:

yp10q
“ pe3x

q
p10q

¨ x2
`C1

10 ¨ pe
3x
q
p9q
¨ px2

q
1
`C2

10 ¨ pe
3x
q
p8q
¨ px2

q
2
`¨¨ ¨ “

“ 310
¨ e3x

¨ x2
`10 ¨39

¨ e3x
¨2x`

10 ¨9
2

e3x
¨38
¨2“

“ 39e3x
p3x2

`20x`30q

Дифференциалы высших порядков

Пусть функция y“ f pxq дифференцируема на интервале pa,bq, то есть имеет
производную в каждой точке этого интервала. Если x – независимая перемен-
ная, то первый дифференциал функции выражается формулой

dy“ f 1pxqdx

Если x“ φptq – дифференцируемая функция независимой переменной t, то

dy“ f 1pxqdx“ f 1pφptqq ¨φ 1ptqdt

В каждом из двух случаев dy является функцией двух переменных: незави-
симой переменной (x или t) и ее дифференциала (dx или dt), который входит в
виде сомножителя.

При введении дифференциала второго порядка мы будем рассматривать y

как функцию только независимой переменной (x или t), то есть дифферен-
циал независимой переменной (dx или dt) будем рассматривать как постоян-

ный множитель в выражении для dy.
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В любом случае dy зависит от двух переменных:

x или t и dx или dt

Такую же договоренность примем при определении дифференциалов более
высокого порядка. При этом условии определим дифференциал второго поряд-
ка (или второй дифференциал) d2y функции y “ f pxq как дифференциал от
первого дифференциала:

d2y“ dpdyq

Причем при вычислении дифференциала от dy приращение дифференци-
ала независимой переменной (x или t) будем снова брать равным dx или dt.
Дифференциал n-ого порядка dnypně 2q определим формулой

dny“ drdn´1ys, n“ 2,3, ¨ ¨ ¨

при таких же условиях, как при ведении дифференциала второго порядка.
Форма (вид) дифференциала второго порядка будет не инвариантна.
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Лекция 11. Производные и дифференциалы.

Часть 3

Дифференциал второго порядка функции ypxq определяется как дифферен-
циал от первого дифференциала:

d2y“ dpdyq

По индукции для любого n:

dny“ dpdn´1yq, n“ 2,3 ¨ ¨ ¨

Рассмотрим два случая.

Пример 11.1. Возьмем y “ f pxq, где x – независимая переменная. По опреде-
лению дифференциала первый дифференциал запишем так

dy“ f 1pxqdx, dx“ ∆x

Второй дифференциал:
d2y“ dp f 1pxqdxq

По условиям первый дифференциал рассматривается как функция только
от x. От него зависит f 1 так, как если бы dx было постоянным множителем.
Тогда:

dx ¨ rdp f 1pxqqs “ dx ¨ rp f 1pxqq1dxs “ f p2qpxqpdxq2

Дифференциал от второго дифференциала определяется так:

d3y“ dpd2yq “ pdxq2d ¨ f p2qpxqs “ pdxq2 ¨ f p3qpxqdx“ f p3qpxqpdxq3

и т.д. По индукции несложно доказать общую формулу для любого n:

dny“ f pnqpxqpdxqn

Из этой формулы вытекает, что

f pnqpxq “
dny
dxn , n“ 2,3, ¨ ¨ ¨
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То есть производная n-го порядка функции y“ f pxq равна отношению диф-
ференциала n-го порядка функции к n-й степени дифференциала независимой
переменной.

Пример 11.2. Рассмотрим функцию y“ sinx. Найдем d20y:

d20
psinxq “ psinxqp20q

¨ pdxqp20q
“

“ sinpx`20 ¨
π

2
qpdxq20

“ sinx ¨ pdxq20

Пусть теперь x – функция некоторой независимой переменной t : x“ φptq.
В этом случае

dx“ φ
1
ptqdt, dy“ f 1pφptqq ¨φ 1ptqdt

Вычисляем производную по формуле производной сложной функции:

d2y“ dpdyq “ dt ¨d
`

f 1pφptqqφ 1ptq
˘

“ dt ¨
`

f 1pφptqq ¨φ 1ptq
˘1 dt “

“ r f 2pφptqq ¨ pφ 1ptqq2` f 1pφptqq ¨φ2ptqsdt2
“

“ f 2pφptqq ¨ pφ 1ptqdtq2` f 1pφptqq ¨φ2ptqdt2
“

“ f 2pxqpdxq2` f 1pxqd2x

В результате получаем:

d2y“ f 2pxqpdxq2` f 1pxqd2x

Таким образом, форма второго дифференциала не инвариантна. Это же
относится к дифференциалам более высокого порядка.

Пример 11.3. Пусть y“ cosx. Вычислим дифференциал 10-го порядка от этой
функции. x – независимая переменная.

d10y“ pcosxqp10q ¨dx10
“ cospx`10

π

2
qpdxq10

“´cosxpdxq10
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Вектор-функция и ее производные

Функция вида y“ f pxq – скалярная функция.Потому что y – это переменное
число, или говорят, что y принимает числовые значения.

Вектор-функция (векторная функция) –это когда каждому числу ставится
в соответствие не число, а вектор. Пример такой функции в физике – напря-
женность электрического поля.

Если каждому числу t из множества T поставлен в соответствие некото-
рый вектор ~r, то говорят, что на множестве T задана векторная функция (или
вектор-функция) = (t).

Модуль вектора ~rptq будем обозначать, как обычно, |~rptq|. |~rptq| – скалярная
функция аргумента t.

Определение 11.1. Вектор ~a называется пределом вектор-функции ~rptq при
t Ñ t0, если

lim
tÑt0

|~rptq´~a| “ 0

Записывается это так
lim
tÑ0

~rptq “~a или

~rptq Ñ~a при t Ñ t0

Теперь легко ввести понятие производной вектор-функции. Зададим аргу-
менту t приращение ∆t ‰ 0. Вектор-функция получит приращение

∆~r “~rpt`∆tq´~rptq

Определение 11.2. Если существует

lim
∆tÑ0

∆~r
∆t

,

то он называется производной вектор-функции ~rptq в точке t.

Обозначение: ~r1ptq или ∆~r
∆t

Введем прямоугольную систему координат Oxyz и введем базис t~i,~j,~ku. Раз-
ложим вектор ~rptq по этому базису:

~rptq “ xptq~i` yptq~j`ptq~k “ txptq,yptq,zptqu
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Модуль вектора через его координаты выражается так:

|~rptq| “
b

x2ptq` y2ptq` z2ptq

Утверждение 11.1. Для того, чтобы ~rptq Ñ~a“ ta1,a2,a3u при t Ñ t0, необхо-
димо и достаточно, чтобы при t Ñ t0

xptq Ñ a1

yptq Ñ a2

zptq Ñ a3

Доказательство.

Используем равенство:

|~rptq´~a| “
b

pxptq´a1q2`pyxptq´a2q2`pzptq´a3q2

Из этого утверждения следует, что

d~r
dt
“ x1ptq~i` y1ptq~j` z1ptq~k “

“ tx1ptq,y1ptq,z1ptqu

То есть вычисление производной вектор-функции сводится к вычислению
производных ее координат. �

Определение 11.3. Множество концов всех векторов ~rptq pt P T q, отло-
женных от начала координат (точки ), называется годографом вектор-

функции ~r “~rptq.

Физический смысл годографа – это траектория точки, движение кото-
рой в пространстве задано уравнением

~r “ ~OM “~rptq

Физический смысл производной d~r
dt – это скорость точки. Можно дока-

зать, что вектор d~r
dt является касательным к годографу.
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Рис. 11.1. Годограф вектор-функции

Правила дифференцирования вектор-функций

1) r~r1ptq˘~r2ptqs
1
“~r11ptq˘~r12ptq

2) r f ptq ¨~rptqs1 “ f 1ptq ¨~rptq` f ptq ¨~r1ptq

3)p~r1ptq ¨~r2ptqq
1
“~r11ptq ¨~r2ptq`~r11ptq ¨~r12ptq

4)r~r1ptq ¨~r2ptqs
1
“

”

~r11ptq ¨~r2ptq
ı

`

”

~r1ptq ¨~r12ptq
ı

Здесь ~r1 ¨~r2 – скалярное произведение, а r~r1 ¨~r2s – векторное произведение
векторов ~r1 и ~r2. Эти правила нетрудно обосновать, используя выражения для
~r1˘~r2, ¨ ¨ ¨ , r~r1 ¨~r2s в координатах.

Производные высших порядков вектор-функции вводятся так же, как и для
скалярной функции:

d2~r
dt2 “

d
dt

ˆ

d~r
dt

˙

, ¨ ¨ ¨ ,~rn
ptq “ r~rn´1

ptqs1

В координатах:
d2~r
dt2 “ tx

2
ptq,y2ptq,z2ptqu

Пример 11.4. Рассмотрим прямую (ось вращения) и вектор ~a с началом на
этой прямой, составляющий угол α с прямой.

Пусть вектор ~a вращается вокруг прямой с постоянной угловой скоростью
ω, причем угол α и длина вектора ~a остаются неизменными. Положим |~a| “ a
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и введем вектор ~ω, у которого |ω | “ ω, а направление показано на рисунке
(Рис. 11.2).

Рис. 11.2. Направление вектора

Вектор ~a зависит от времени: ~a“~aptq. Докажем, что

d~a
dt
“ r~ω ¨~as

Введем прямоугольную систему координат xyz так, чтобы положительное
направление оси Oz совпало с направлением вектора ~ω, и запишем координаты
вектора ~aptq:

~aptq “ tasinα ¨ cosωt, asinα ¨ sinωt, acosαu

Введем обозначения: asinα “ b, acosα “ c, тогда

d~a
dt
“ t´bω sinωt, bω cosωt, 0u

r~ω ¨~aptqs “

∣∣∣∣∣∣∣∣
~i ~j ~k

0 0 ω

bcosωt bsinωt c

∣∣∣∣∣∣∣∣“
t´bω sinωt, bω cosωt, 0u
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Отсюда следует, что
d~a
dt
“ r~ω ¨~as

Если начало вектора ~a не лежит на оси вращения, то доказанная формула
остается в силе, поскольку такой вектор можно представить в виде разно-
сти двух векторов с началами на оси вращения:

Рис. 11.3. Разность двух векторов

~a“~a1´~a2 ñ

ñ
d~a
dt
“

d~a1

dt
´

d~a2

dt
“

“ r~ω ¨~a1´~ω ¨~a2s “

“ r~ω ¨ p~a1q´~a2s “

r~ω ¨~as

Пример 11.5. Рассмотрим твердое тело (например, Земной шар), вращаю-
щееся с постоянной угловой скоростью ω относительно неподвижной систе-
мы координат с базисом t~i0,~j0,~k0u.

Введем на этом твердом теле свой базисt~i,~j,~ku. Он вращается вместе с
твердым телом с угловой скоростью ω, поэтому

~i“~iptq, ~æ“ ~jptq, ~k “~kptq
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Рис. 11.4. Пример 2

d~i
dt
“ r~ω ¨~is

d~j
dt
“ r~ω ¨~js

d~k
dt
“ r~ω ¨~ks

Рассмотрим точку M, движущуюся внутри тела или по его поверхности.
Ее положение относительно неподвижной системы координат в каждый мо-
мент времени можно задать радиус-вектором ~OM, который обозначим ~rptq.

Выведем формулу скорости точки M относительно неподвижной системы
координат, т.е. формулу для ~v “ d~r

dt . С этой целью разложим вектор ~rptq по
вращающемуся базису t~i,~j,~ku:

~rptq “ xptq~i` yptq~j` zptq~k

Отсюда следует, что:

d~r
dt
“

dx
dt
¨~i` x ¨

d~i
dt
`

dy
dt
¨~j` y ¨

d~j
dt
`

dz
dt
¨~k “

ˆ

dx
dt
¨~i`

dy
dt
~j`

dz
dt
~k
˙

` x ¨ r~ω ¨~is` y ¨ r~ω ¨~js` z ¨ r~ω ¨~ks
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Выражение в скобках представляет собой скорость точки относительно
связанного с телом базиса t~i,~j,~ku. Назовем ее относительной скоростью

и обозначим ~vотн. Таким образом,

d~r
dt
“~vотн`r~ω ¨ px~i` y~j` z~kqs “~vотн`r ~ω ¨~rs

В полученном равенстве векторное произведение r ~ω ¨~rs представляет собой
компоненту скорости, обусловленную вращением тела.

Назовем ее переносной скоростью и обозначим ~vпер.. Итак, абсолютная
скорость точки M, то есть скорость относительно неподвижной системы
координат, равна сумме переносной и относительной скоростей:

~v“
d~r
dt
“~vпер.`~vотн.

Выведем формулу для ускорения точки M. Имеем:

~a“
d~v
dt
“

d~vпер.

dt
`
~vотн.

dt
“

“

„

~ω ¨
d~r
dt



`
d
dt

ˆ

dx
dt
¨~i`

dy
dt
¨~j`

dz
dt
¨~k
˙

“

“ r~ω ¨ p~vпер.`~vотн.qs`

ˆ

d2x
dt2 ¨

~i`
d2y
dt2 ¨

~j`
d2z
dt2 ¨

~k
˙

`

`

ˆ

dx
dt
¨ r~ω ¨~is`

dy
dt
¨ r~ω ¨~js`

dz
dt
¨ r~ω ¨~ks

˙

“

“ r~ω ¨~vпер.s` r~ω ¨~vотн.s`~aотн.`r~ω ¨ ~отн.s “

“~aотн.`2r~ω ¨~vотн.s

В этом равенстве слагаемые

~ω ¨~vпер. “:~aпер.

d2x
dt2 ¨

~i`
d2y
dt2 ¨

~j`
d2z
dt2 ¨

~k “:~aотн.

являются соответственно переносным и относительным ускорени-

ями, а слагаемое r~ωотн.s – так называемым кориолисовым ускорением ~aкор.
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Итак, абсолютное ускорение равно сумме переносного, относитель-

ного и кориолисова ускорений:

~a“~aпер.`~aотн.`~aкор.

Отметим, что ~aпер. “ r~ω ¨~vпер.s “ r~ω ¨ r~ω ¨~rss представляет собой двойное

векторное произведение.

Здесь же:
~aотн. “

d2x
dt2 ¨

~i`
d2y
dt2 ¨

~j`
d2z
dt2 ¨

~k

~aкор. “ 2r~ω ¨~vотн.s

Из формулы видно, что кориолисово ускорение возникает только тогда,
когда есть вращение, когда ~ω ‰ 0, и когда точка движется по вращающемуся
телу.
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Лекция 12. Интегралы. Часть 1.

Первообразная и неопределённый интеграл

Пусть x – время, а y “ f pxq – координата точки, движущейся по оси y в
момент времени x. Пусть известна vpxq – скорость в каждый момент времени.
Необходимо найти f pxq. Математически задача сводится к отысканию такой
f pxq, что f 1pxq “ vpxq. Т.е. возникает задача, обратная дифференцированию.

Определение 12.1. F(x) называется первообразной для функции f(x) на про-
межутке X, если @x P X : F 1pxq “ f pxq

Пример 12.1. Fpxq “ ln – первообразная f pxq “ 1
x на X` “ txą 0u

Т.к. plnxq1 “ 1
x для x P X`

Fpxq “ lnp´xq – первообразная для f pxq “ 1
x на X´ “ txă 0u

Т.к.
`

lnp´xq
˘1
“ 1
´x ¨ p´1q “ 1

x на X´ “ txą 0u

Fpxq “ ln|x| – первообразная для f pxq “ 1
x на X` и на X´

Пример 12.2.

f pxq “ sgnpxq “

$

’

’

’

&

’

’

’

%

`1, xą 0

0, x“ 0

´1, xă 0

При xą 0 : Fpxq “ x

Т.к. F 1pxq “ 1

При xă 0 : Fpxq “ ´x

В 0 функция не дифференцируема ñ f pxq “ sgnpxq не имеет первообразной
на всей числовой прямой.

Позднее будет доказано, что любая непрерывная на промежутке X функ-
ция f pxq имеет первообразную на этом промежутке. Разрывная функция также
может иметь первообразную.
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Пример 12.3.

Fpxq “

$

&

%

x2sin1
x , x‰ 0

0, x“ 0

Убедимся, что у этой функции есть производная.

x‰ 0 :

F 1pxq “ 2xsin
1
x
´ cos

1
x

x“ 0 :

F 1p0q “ lim
∆xÑ0

Fp0`∆xq´Fp0q
∆x

“ lim
∆xÑ0

p∆xq2sin 1
∆x ´0

∆x
“ lim

∆xÑ0
∆xsin

1
∆x
“ 0

f pxq “ F 1pxq “

$

&

%

2xsin1
x ´ cos1

x , x‰ 0

0, x“ 0

f pxq разрывна в т. x “ 0, но имеет первообразную Fpxq на всей числовой
прямой.

Если Fpxq – первообразная для f pxq на промежутке X , то Fpxq`C – также
первообразная для f pxq на промежутке X

Теорема 12.1. Любые две первообразные для f pxq на заданном промежутке X

отличаются на постоянную.

Доказательство.

Пусть F1pxq и F2pxq – две первообразные для f pxq на X , т.е. F 11pxq“ f pxq и F 12pxq“

f pxq@x P X

Fpxq “ F1pxq´F2pxq

Требуется доказать: Fpxq “ const на X

F 1pxq “ F 11pxq´F 12pxq “ 0 @x P X ñ Fpxq “ const

Это утверждение будет доказано позднее. �

Если Fpxq – какая-то первообразная для функции f pxq на промежутке X , то
любая другая первообразная Φpxq для f pxq на X имеет вид Φpxq “ Fpxq`C
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Замечание 12.1. Существенно, что X – промежуток.

Предположим, что X – не промежуток, а два промежутка. Возьмём функ-
цию sgnpxq. Возьмём одну первообразную F1pxq “ x на промежутке p0,`8q
и F1pxq “ ´x на промежутке p´8,0q, а другую – F2pxq “ x` 1 на p0,`8q и
F2pxq “ ´x`2 на p´8,0q. Они отличаются на разные константы.

Определение 12.2. Совокупность всех первообразных для функции f pxq на
промежутке X называется неопределённым интегралом от f pxq на данном
промежутке и обозначается так:

ż

f pxqdx

Функция f pxq называется подынтегральной функцией, а произведение f pxqdx

называется подынтегральным выражением. dx показывает, по какой перемен-
ной интегрирование.

Заметим, что подынтегральное выражение p f pxqdxq является дифференци-
алом любой первообразной для функции f pxq.

dFpxq “ F 1pxqdx“ f pxqdx (12.1)

В силу следствия из теоремы 12.1:

ż

f pxqdx“ Fpxq`C, (12.2)

где Fpxq – какая-то первообразная для f pxq, C – произвольная постоянная.

Пример 12.4.
ż

sinxdx“´cosx`C

Не любая элементарная функция интегрируется в элементарных функциях.

Пример 12.5.
ż

e´x2
dx

Первообразная e´x2
не является элементарной функцией.

Но например: xe´x2
dx – интегрируема в элементарных функциях

ż

xe´x2
dx“´

1
2

e´x2
`C
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Определение 12.3. Операция вычисления первообразной (неопределённого ин-
теграла) называется интегрированием. Интегрирование – операция, обратная
дифференцированию.

Основные свойства неопределённых интегралов

1. d
ˆ
ż

f pxqdx
˙

“ f pxqdx

2.
ż

dFpxq “ Fpxq`C

3.
ż

“

f1pxq˘ f2pxq
‰

dx“
ż

f1pxqdx˘ f2pxqdx

4.
ż

k f pxqdx“ k
ż

f pxqdx, k “ const

Доказательство.

Свойства 1 и 2 следуют непосредственно из формул 12.1 и 12.2

3. Пусть F1pxq и F2pxq – первообразные для функций f1pxq и f2pxq соответ-
ственно. Т.е. F 11pxq “ f1pxq, F 12pxq “ f2pxq

Верны также следующие два равенства:

ż

f1pxqdx“ F1pxq`C1

ż

f2pxqdx“ F2pxq`C2

Складывая и вычитая два последних равенства получим:

ż

f1pxqdx˘
ż

f2pxqdx“ F1pxq˘F2pxq`pC1˘C2q (12.3)

`

F1pxq˘F2pxq
˘1
“ F 11pxq˘F 12pxq “ f1pxq˘ f2pxq

Следовательно
`

F1pxq˘F2pxq
˘

– первообразная для f1pxq˘ f2pxq

ż

“

f1pxq˘ f2pxq
‰

dx“ F1pxq˘F2pxq`C (12.4)
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Сравнивая правые части равенств 12.3 и 12.4 приходим к выводу, что равны
левые части этих равенств:

ż

“

f1pxq˘ f2pxq
‰

dx“
ż

f1pxqdx˘
ż

f2pxqdx

�

Упражнение 12.1. Доказать свойство 4.

Два метода интегрирования

1. Замена переменной

Теорема 12.2. Пусть x“ ϕptq определена и дифференцируема на промежутке
T и пусть множеством её значений является промежуток X

Пусть f pxq определена на X и имеет первообразную Fpxq (т.е. F 1pxq “ f pxq)

Тогда F
`

ϕptq
˘

является первообразной для f
`

ϕptq
˘

¨ϕ 1ptq на T

Доказательство.

По правилу дифференцирования сложной функции получаем:

F
`

ϕptq
˘1
“ f

`

ϕptq
˘

¨ϕ 1ptq @t P T �

ż

f
`

ϕptq
˘

¨ϕ
1
ptqdt “ F

`

ϕptq
˘

`C “
`

Fpxq`C
looomooon

ş

f pxqdx

˘

ˇ

ˇ

ˇ

ˇ

ˇ

x“ϕptq

“

ż

f pxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

x“ϕptq

ż

f pxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

x“ϕptq

“

ż

f
`

ϕptq
˘

¨ϕ
1
ptqdt

– формула замены переменной в неопределённом интеграле

Пример 12.6.
ż

coskxdx“
1
k

ż

cost dt “
1
k

sint`C “
1
k

sinkx`C

x“
t
k
“ ϕptq, dx“

1
k
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Пример 12.7.
ż

dx
?

x2`1

1 способ (с использованием гиперболических функций):

shx“
ex´ e´x

2

chx“
ex` e´x

2
ch2x´ sh2x“ 1

pshxq1 “ chx

pchxq1 “ shx
ż

dx
?

x2`1
“
“

x“ sht
‰

“

ż

cht dt
cht

“

ż

dt “ t`C

x“
et ´ e´t

2
ñ t “ ln

`

x`
a

x2`1
˘

ż

dx
?

x2`1
“ ln

`

x`
a

x2`1
˘

`C

2 способ (с использованием подстановки Эйлера):

t “ x`
a

x2`1ñ t2
´2tx` x2

“ x2
`1ñ x“

t2´1
2t

dx“
1
2
¨

2t2´ t2`1
t2 dt “

t2`1
2t2 dt

a

x2`1“ t´
t2´1

2t
“

t2`1
2t

ż

dx
?

x2`1

ˇ

ˇ

ˇ

ˇ

ˇ

t“x`
?

x2`1

“

ż

dt
t
“ lnt`C “ ln

`

x`
a

x2`1
˘

`C

2. Интегрирование по частям

Теорема 12.3. Пусть upxq и vpxq определены и дифференцируемы на проме-
жутке X и пусть u1pxqvpxq имеет первообразную на X ,

т.е. существует
ż

u1pxqvpxqdx

Тогда существует
ż

v1pxqupxqdx“ upxqvpxq´
ż

u1pxqvpxqdx
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Доказательство.

puvq1 “ u1v` v1uñ v1u“ puvq1´u1v

puvq1 имеет первообразную uv, u1v имеет первообразную по условию ñ v1u

имеет первообразную
ż

v1udx“ uv´
ż

u1vdx

�

v1 dx“ dv, u1dx“ du
ż

udv“ uv´
ż

vdu– формула интегрирования по частям в неопределённом интеграле

Пример 12.8.
ż

xex dx“
ż

xdex
“ xex

´

ż

ex dx“ xex
´ ex

`C
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Лекция 13. Интегралы. Часть 2.

Было введено понятие первообразной и неопределенного интеграла.

Первообразная для функции f pxq – это такая функция Fpxq производная
которой равна f pxq.

F 1pxq “ f pxq

Неопределенный интеграл – это совокупность первообразных, отлича-
ющихся друг от друга на произвольную постоянную.

ż

f pxqdx“ Fpxq`C

Отметили, что интеграл от элементарной функции может не быть элемен-
тарной функцией. Если не любая элементарная функция интегрируется в эле-
ментарную, то, возможно, подмножество элементарных функций обладает этим
свойством.

Любая рациональная функция интегрируется в элементарную функцию.

Интегрирование рациональных функций

Рациональная функция – это функция, имеющая вид

Pnpxq
Qmpxq

где Pn и Qm многочлены степени n и m соответственно.

Дробь правильная, если n ă m. Степень многочлена числителя меньше сте-
пени многочлена знаменателя. Любую правильную рациональную дробь можно
разложить на сумму простейших дробей.

Пример 13.1.
x

x4´1

Разложим знаменатель на множители

x
x4´1

“
x

px´1qpx`1qpx2`1q
“

A
x´1

`
B

x`1
`

Cx`D
x2`1
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Каждому из сомножителей знаменателя соответствует та дробь, в знамена-
теле которой стоит только этот сомножитель. Там где в знаменателе многочлен
первой степени, в числителе – число, где в знаменателе многочлен второй сте-
пени, в числителе – многочлен первой степени. Чтобы найти коэффициенты A,
D, C, D, сложим дроби, приведя их к общему знаменателю.

Apx`1qpx2`1q
x´1

`
Bpx´1qpx2`1q

x`1
`
pCx`Dqpx2´1q

x2`1
“

“
x3pA`B`Cq` x2pAB`Dq` xpA`BCq`pA´B´Dq

x4´1

Знаменатели дробей одинаковы, следовательно, должны быть одинаковы и
числители.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

A`B`C “ 0

A´B`D“ 0

A`B´C “ 1

A´B´D“ 0

Получили для неизвестных коэффициентов систему линейных уравнений.

Решение системы
$

’

’

’

&

’

’

’

%

A“ B“ 1
4

C “´1
2

D“ 0

x
x4´1

“

1
4

x´1
`

1
4

x`1
`
´1

2x
x2`1

Пусть Pnpxq
Qmpxq

– произвольная правильная рациональная дробь (n ă m) и раз-
ложение знаменателя на вещественные множители имеет вид

Qmpxq “ px´aqα ...px´bqβ px2
` px`qqγ ...px2

` rx` sqd (13.1)

где a, ...,b – вещественные корни Qmpxq

x2` px`q, ...,x2` rx` s – квадратные трехчлены с вещественными коэффи-
циентами, имеющие комплексные (различные) корни

α,β ,γ – натуральные числа, кратности соответствующих корней.
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Равенство 13.1 называется разложением многочлена с вещественными коэф-
фициентами на произведение неприводимых вещественных множителей. "Непри-
водимые"означает, что дальше раскладывать нельзя.

Pnpxq
Qmpxq

“
Aα

px´aqα
`

Aα´1

px´aqα´1 ` ...`
A1

x´a
` ...`

`
Bβ

px´bqβ
` ...`

B1

x´b
`

`
Mγx`Nγ

px2` px`qqγ
` ...`

M1x`N1

x2` px`q
` ...`

`
Lδ x`Kδ

px2` rx` sqδ
` ...`

L1x`K1

x2` rx`

(13.2)

Каждому из квадратных трехчленов будет соответствовать группа из столь-
ких слагаемых, какова кратность корня. Чтобы найти коэффициенты нужно
сложить все дроби и приравнять коэффициенты при одинаковых степенях x.
Чем больше степень многочлена, тем больше уравнений. Данный метод назы-
вается метод неопределенных коэффициентов.

Есть и более удобные методы для нахождения коэффициентов для более
простых случаев.

При сложении крайностей корней, получим

α` ...`β `2pγ` ...`δ q “ m

где m – степень многочлена

Из написанного разложения видно, что интегрирование правильной рацио-
нальной дроби сводится к интегрированию четырех видов простейших дробей:

• Число делится на многочлен степени больше 1;

• Число делится на многочлен с единичной степенью;

• Многочлен делится на многочлен степени больше 1;

• Многочлен делится на многочлен с единичной степенью.

От каждой из простейших дробей интеграл выражается в элементарную
функцию.
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Пример I.
ż

A
x´a

dx“ A
ż

dpx´aq
x´a

“ A ¨ ln|x´a|`C

Пример II.
ż

A
px´aqα

dx“ A
ż

dpx´aq
px´aqα

“ Apx´aq´α`1 1
´α`1

`C “
A

1´α

1
px´aqα´1 `C

Пример III.
ż

Mx`N
x2` px`q

dx“
ˇ

ˇp2
´4qă 0

ˇ

ˇ

x2
` px`q“

´

x`
p
2

¯

`q´
p2

4
“

ˇ

ˇ

ˇ

ˇ

q´
p2

4
“ a2

ą 0
ˇ

ˇ

ˇ

ˇ

x`
p
2
“ t

Тогда
x2
` px`q“ t2

`a2

Заметим, что dx“ dt.
ż

Mx`N
x2` px`q

dx“
ż

Mpt´ p
2 q`N

t2`a2 dt “M
ż

tdt
t2`a2 `

ˆ

N´
Mp

2

˙
ż

dt
t2`a2 “

“
M
2

lnpt2
`a2

q`

ˆ

N´
Mp

2

˙

1
a

ż

d
` t

a

˘

` t
a

˘2
`1

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

d
` t

a

˘

` t
a

˘2
`1

“ arctan
´ t

a

¯

ˇ

ˇ

ˇ

ˇ

ˇ

(13.3)

Пример IV.
ż

Mx`N
px2` px`qqα

dx где pα ą 1q

Если дробь Pnpxq
Qmpxq

– неправильная, то следует разделить числитель на знаме-
натель.

Pnpxq “ Qmpxq ¨Tn´mpxq`Rkpxq

Pnpxq
Qmpxq

“ Tn´mpxq`
Rkpxq
Qmpxq

где Tn´mpxq – многочлен, Rkpxq
Qmpxq

– правильная рациональная дробь.

Таким образом, интегрирование неправильной рациональной дроби сводится
к интегрированию многочлена и правильной рациональной дроби.

Любая рациональная функция интегрируется в элементарную функцию.
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Пример 13.2.
ż

dx
x2´a2

1
x2´a2 “

A
x2
`

B
x`a

“
xpA`Bq`pA´bqa

x2´a2

$

&

%

A`B“ 0

A´B“ 1
a

$

&

%

A“ 1
2a

B“´ 1
2a

ż

dx
x2´a2 “

1
2a

ˆ
ż

dx
x´a

´

ż

dx
x`a

˙

“
1

2a
ln
ˇ

ˇ

ˇ

ˇ

x´a
x`a

ˇ

ˇ

ˇ

ˇ

`C

Важно выделить классы функций, которые с помощью замены переменной
сводятся к интегралу по рациональной функции. Такие классы как дробно-
линейные рациональности, квадратичные рациональности, иррациональности,
тригонометрические функции.

Понятие определенного интеграла

Пусть f pxq определена на сегменте ra,bs при (a ă b). Выберем на сегменте
ra,bs произвольным образом точки x1, x2, ..., xn´1 так, что a“ x0 ă x1 ă x2 ă ...ă

xn “ b.

Рис. 13.1. Изображение сегмента

Определенный выбор точек x1,x2, ...,xn´1 назовем разбиением сегмента

ra,bs. А точки – точки разбиения. Сегменты rxi´1,xis назовем частичными

сегментами.

На rxi´1,xis возьмем произвольную точку ξi.
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Введем длину i-го сегмента ∆i “ xi´ xi´1 и составим сумму

n
ÿ

i“1

f pξ q∆xi “: Ipxi,ξiq

Интегральная сумма функции f pxq соответствует данному разбиению сег-
мента и данному выбору промежуточных точек. Для такого разбиения имеется
множество интегральных сумм, зависящих от выбора точек.

Обозначим через ∆ максимальную из длин ∆xi.

∆“ max∆xi 1ď iď n´диаметр разбиения

Сформулируем определение предела интегральных сумм, при условии, что
∆Ñ 0

Определение 13.1. Число I называется пределом интегральных сумм Ipxi,ξiq

при ∆Ñ 0, если для @ε ą 0 Dδ ą 0 такое, что для любого разбиения сегмента
ra,bs, у которого ∆ă δ и для любого выбора ξi выполняется равенство

|Ipxi,ξiq´ I| ă ε

Данный предел не есть предел функций, так как при ∆ Ñ 0 число точек
разбиения стремится к бесконечности.

Определение 13.2. Если существует предел lim∆Ñ0 Ipxi,ξiq “ I, то функция
f pxq называется интегрируемой по Риману на сегменте ra,bs, а число I – это
определенный интеграл от функции f pxq по сегменту ra,bs.

I “
ż b

a
f pxqdx

Геометрический смысл

Из школьного курса известно, что интеграл для неотрицательной непрерыв-
ной функции – это площадь криволинейной трапеции.

ż b

a
f pxqdx“ S
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Рис. 13.2. Геометрический смысл определенного интеграла

Какие функции интегрируемы ?

Любая неограниченная на сегменте ra,bs функция – неинтегрируема, так
как для любого сколь угодно мелкого разбиения сегмента интегральная сум-
ма может быть сделана сколь угодно большой за счет выбора промежуточных
точек и, следовательно, не существует предела интегральных сумм.

n
ÿ

i“1

f pξiq∆xi

Два примера ограниченных функций

1) Пример интегрируемой функции

f pxq “ c“ const наra,bs

@ разбиения ra,bs и для @ξi :

Ipxi,ξiq “

n
ÿ

i“1

f pξiq∆xi “C
n
ÿ

i“1

∆xi “Cpb´aq “ const

lim
∆Ñ0

Ipxi,ξiq “Cpb´aq
ż b

a
Cdx“Cpb´aq

2) Пример неинтегрируемой функции (функции Дирихле)

f pxq “

$

&

%

1, если x - рациональное

0, если x - иррациональное

124



МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ 1.
БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

x P ra,bs

Для любого сколь угодно маленького разбиения ra,bs интегральная сумма
řn

i“1 f pξiq∆xi может изменяться от 0 до pb´aq и, следовательно, не суще-
ствует предела интегральных сумм. В дальнейшем будем рассматривать
только ограниченные функции.

Цель: доказать интегрируемость любой непрерывной на сегменте функции, а
также любой функции из некоторого класса разрывных функций и любой мо-
нотонной функции.

Суммы Дарбу

Пусть f pxq определена и ограничена на сегменте ra,bs. Рассмотрим произ-
вольное разбиение сегмента ra,bs и введем следующие обозначения

Suprxi´1,xis f pxq “Mi j

in frxi´1,xis f pxq “ mi j

Составим 2 суммы

S “
m
ÿ

i“1

Mi∆xi

s“
m
ÿ

i“1

mi∆xi

Суммы S и s называются верхней и нижней суммами для данного разбиения
сегмента ra,bs или суммами Дарбу.

Свойства сумм Дарбу:

1) sď Ipxi,ξiq “ S

Во множестве интегральных сумм для данного разбиения s является ниж-
ней гранью числового множества, а S – верхней.

s“ in f tIpxi,ξiqu´точная нижняя грань

S “ SuptIpxi,ξiqu´точная верхняя грань
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2) Обозначим разбиения как T1, T2 и т.д. T2 назовем измельчением разбиения
T1, если оно получено из разбиения T1 путем добавления нескольких новых
точек разбиения.

Пусть
T1 : S1 и s1

T2 : S2 и s2

И пусть разбиение T2 является измельчением разбиения T1. Тогда при из-
мельчении разбиения верхняя сумма не возрастает, а нижняя не убывает.

S2 ď S1, s2 ě s1

3) Нижняя сумма любого разбиения не превосходит верхней суммы любого
другого разбиения.

s1 ď S2 и s2 ď S1

4) Рассмотрим множество всевозможных верхних сумм tSu, ограниченное
снизу любой нижней суммой и имеющее точную нижнюю грань.

in f tSu “ Ī´´верхний интеграл Дарбу

Множество всех нижних сумм ограничено сверху и имеет точную верхнюю
грань.

suptsu “ I´нижний интеграл Дарбу

Всегда нижний интеграл меньше или равен верхнему интегралу.

I ď Ī

Следовательно
@ra,bs : sď I ď Ī ď S

5) Лемма Дарбу
lim
∆Ñ0

S “ Ī, lim
∆Ñ0

s“ I
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Лекция 14. Интегралы. Часть 3.

Приведем верхнюю и нижнюю сумм Дарбу

S “
m
ÿ

i“1

Mi∆xi

s“
m
ÿ

i“1

mi∆xi

В отличие от интегральной суммы, верхняя и нижняя суммы не связаны
с промежуточными точками. Для данного разбиения имеется множество инте-
гральных сумм, одну верхнюю и одну нижнюю суммы.

Разберем подробнее свойства сумм Дарбу.

1) sď Ipxi,ξiq ď S

Любая интегральная сумма заключена между нижней и верхней сумма-
ми. Точная верхняя грань функции f pxq по частичному сегменту tIpxi,ξiqu.

S “ SuptIpxi,ξiqu (14.1)

Точная нижняя грань функции f px по частичному сегменту tIpxi,ξiqu.

s“ in f tIpxi,ξiqu

Доказательство.

Мы можем так выбрать точку ξi, что f pξiq будет сколь угодной близко к
точной нижней грани, а, следовательно, интегральная сумма будет сколь
угодна близка к s. Аналогично для верхней грани. �

2) При измельчении сегмента верхняя сумма не возрастает, а нижняя не убы-
вает.

Доказательство.
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Рис. 14.1. Изображение сегмента верхних сумм при добавлении одной точки

Если при каждом добавлении хотя бы одной новой точки верхняя сумма
не возрастает, то верхняя сумма не возрастет и при добавлении множества
новых точек.

Mi ěM1
i

Поэтому при сложении M1
i и M2

i их сумма будет меньше или равна Mi, что
означает, что верхняя сумма не увеличилась. �

3) Нижняя сумма любого разбиения не превосходит верхней суммы любого
другого разбиения.

s1 ď S2 и s2 ď S1

Доказательство.

При объединении точек двух разбиений, нижняя сумма не увеличится, а
верхняя сумма не уменьшится. �

4) Рассмотрим всевозможные разбиения и связанные с ними всевозможные
верхние и нижние суммы. Множество всевозможных верхних сумм огра-
ничено снизу любой нижней суммой, так как любая верхняя больше или
равна нижней.

tSu in f tSu “ Ī´верхний интеграл Дарбу

tsu suptsu “ I´нижний интеграл Дарбу
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Всегда нижний интеграл меньше или равен верхнему.

I ď Ī

Допустим верхний интеграл меньше нижнего (14.2).

Рис. 14.2. Изображение верхнего и нижнего интегралов

Доказательство.

Так как Ī является точной нижней гранью множества всех верхних сумм,
значит множество верхних сумм расположено правее Ī, а так как это точ-
ная нижняя грань, то сколь угодно близко найдется верхняя сумм S1. Все
множество нижних сумм лежит левее I, а так как это точная верхняя
грань, то сколь угодно близко найдется нижняя сумма s2. Получили про-
тиворечие, что нижняя сумма больше чем верхняя. �

sď I ď Ī ď S (14.2)

5) Лемма Дарбу

Предел нижних сумм при ∆Ñ 0 равен нижнему интегралу Дарбу, предел
верхних сумм – верхнему интегралу Дарбу.

lim
∆Ñ0

S “ Ī, lim
∆Ñ0

s“ I
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Необходимое и достаточное условие интегрируемости

Теорема 14.1. Для того, чтобы ограниченная на сегменте функция была ин-
тегрируемой на этом сегменте необходимо и достаточно, чтобы нижний ин-
теграл равнялся верхнему интегралу.

I “ Ī

Доказательство.

Необходимость условия

Равенство с необходимостью следует из интегрируемости, значит функция
интегрируема. Пусть f pxq интегрируема на сегменте ra,bs, т.е. существует пре-
дел интегральных сумм.

lim
∆Ñ0

Ipi,ξiq “ I

Это означает, что

@ε ą 0Dδ ą 0,@ разбиение ra,bs, у которого ∆ă δ@ξi : |Ipi,ξiq´ I| ă
1
4

ε

Зафиксируем одно из таких разбиений и будем использовать свойство сумм
Дарбу.

Обозначим через s и S суммы Дарбу для этого разбиения. s – точная нижняя
грань, а S – точная верхняя грань. В силу неравенства 14.1 можно так выбрать
точки ξ 1i , что будет выполнено неравенство

Ipxiξ
1
i q´ să

ε

4

Аналогично
S´ Ipxi,ξ

2
i q ă

ε

4

В силу написанных неравенств получаем

S´ s“
“

S´ Ipxi,ξ
2
i q
‰

`
“

Ipxi,ξ
2
i q´ I

‰

`
“

I´ Ipxi,ξ
1
i q
‰

`
“

Ipxi,ξ
1
i q´ s

‰

ă ε

S´ Ipxi,ξ
2
i q ă

ε

4

Ipxi,ξ
1
i 1q´ I ă

ε

4
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I´ Ipxi,ξ
1
i q ă

ε

4

Ipxi,ξ
1
i q´ să

ε

4

Следовательно
S´ să ε

Воспользуемся неравенством 14.2

0ď Ī´ I ă ε ñ I “ Ī

Необходимость доказана.

Замечание 14.1. Попутно мы доказали, что если f pxq интегрируема на сег-
менте ra,bs, то @ε ą 0 D разбиение ra,bs, разность которого S´ să ε.

Достаточность условия

Пусть I “ Ī “ I.

В силу леммы Дарбу
lim
∆Ñ0

s“ I

lim
∆Ñ0

S “ I

Любая интегральная сумма данного разбиения удовлетворяет следующим
неравенствам

sď Ipi,ξiq ď S

Следовательно D lim∆Ñ0 Ipi,ξiq “ I, что означает, что функция интегрируема.
�

Пример 14.1.

f pxq “

$

&

%

1, если x - рациональное

0, если x - иррациональное

@ разбиения ra,bs : s“ 0, S “ b´a

Следовательно
I “ 0, Ī “ b´a

I ‰ Ī

Функция Дирихле не интегрируема.
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Теорема 14.2. Для того, чтобы ограниченная на сегменте ra,bs функция бы-
ла интегрируемой на этом сегменте необходимо и достаточно, чтобы @ε ą

0 D разбиение ra,bs, у которого S´ să ε.

Доказательство.

Необходимость См. замечание после доказательства необходимости в тео-
реме 14.1

Достаточность Пусть для @ε ą 0 D разбиение ra,bs, у которого S´să ε .

Воспользуемся цепочкой неравенств 14.2.

0ď Ī´ I ď ε

I “ Ī

Для того, чтобы доказать, что функция интегрируема воспользуемся теоре-
мой 14.1. Откуда следует, что f pxq интегрируема на сегменте ra,bs. �

Замечание 14.2. Используя обозначения

Mi “ Suprxi´1,xis f pxq

mi “ in frxi`1,xis f pxq

Введем следующую величину – колебание функции f pxq на частичном
сегменте.

ωi “Mi´mi

S´ s“
n
ÿ

i“1

pMi´miq∆xi “

n
ÿ

i“1

ωi∆xi

Классы интегрируемых функций

Интегрируемость непрерывных функций

Сформулируем свойства непрерывных функций.
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Определение 14.1. Функция f pxq называется равномерно непрерывной на
промежутке X , если @ε ą 0 Dδ ą 0, такое, что

@x1x2 P X , |x2´ x1| ă δ : | f px2q´ f px1q| ă ε

Из определения следует, что равномерно непрерывная на промежутке X

функция непрерывна в каждой точке на этом промежутке. Функция непре-
рывная в каждой точке промежутка может не быть равномерно непрерывной.

Пример 14.2.

f pxq “
1
x
, 0ă xă 1

Функция непрерывна на интервале r0,1s. Докажем, что данная функция не
является равномерно непрерывной на этом интервале.

Докажем, что

Dε ą 0, такое, что @δ ą 0 Dx1иx2 P p0,1q, такие, что |x2´ x1| ă δ ,

но | f px2q´ f px1q| “
ˇ

ˇ

ˇ

ˇ

1
x1
´

1
x2
ě ε

Возьмем ε “ 1

x1 “
1
n
, x1 “

1
n`2

pn P Nq

Очевидно, что для @δ ą 0 Dn : |x2´ x1| ă δ

Но
| f px11q´ f px1q| “ |pn`2q´n| “ 2ą ε “ 1

Выполнено отрицание определения равномерности непрерывности, что озна-
чает, что данная функция не является равномерно непрерывной на рассмот-
ренном интервале. Отметим, что особое месть среди промежутков занимают
сегменты.

Теорема 14.3. Теорема Кантора

Непрерывная на сегменте функция равномерно непрерывна на этом сегмен-
те.
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Теорема 14.4. 1-ая теорема Вейерштрасса

Непрерывная на сегменте функция ограничена на этом сегменте.

Теорема 14.5. 2-ая теорема Вейерштрасса

Непрерывная на сегменте функция достигает на этом сегменте своих
точных граней.

Если f pxq непрерывна на ra,bs, то D x1 и x2 P ra,bs :

f pxq “M “ Supra,bs f pxq

f pxq “ m“ in fra,bs f pxq

Следствие из теоремы Кантора

Если f pxq непрерывна на ra,bs, то @ε разбиение ra,bs у которого каждое ωiă

ε

Доказательство.

По теореме Кантора f pxq равномерно непрерывна на ra,bs, и значит, @ε ą

0Dδ ą,такое, что @x1x2 P ra,bs, |x2´ x1| ă δ :

| f pxq11´ f pxq1| ă ε

Рассмотрим произвольное разбиение ra,bs, у которого

∆“ max∆xi ă δ 1 P i P n

Рис. 14.3. Изображение произвольного частичного сегмента

По 2-ой теореме Вейерштрасса f pxq достигает на этом сегменте своих точных
граней.
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Т.е. ξ 1ξ 1 P rxi´1,xis, такие, что

f pξ 1q “Mi

f pξ 2q “ mi

Так как |ξ 2´ξ 1| ď xi´ xi´1 ď ∆ă δ , то | f pξ 2q´ϕpξ 1q|ε

Mi´mi ă ε ñ ωi ă ε

�

Теорема 14.6. Непрерывная на сегменте функция интегрируема на этом сег-
менте.

Доказательство.

Зададим произвольный ε ą 0 и рассмотрим такое разбиение сегмента ra,bs,
у которого ω´ iă ε

b´a . Оно существует в силу следствия теорема Кантора.

Для этого разбиения

S´ s“
n
ÿ

i“1

ωi∆xi ă
ε

b´a

n
ÿ

i“1

∆xi “ ε

@ε ą 0D разбиение ra,bs : S´ să ε

Следовательно, по теореме 14.2 функция f pxq интегрируема на сегменте
ra,bs. �

Интегрируемость некоторых разрывных функций

Пусть f pxq имеет точки разрыва на сегменте ra,bs. Будем говорить, что все
точки разрыва f pxq можно покрыть конечным числом интервалов со сколь угод-
но малой суммой длин, если для @ε ą 0D конечное число интервалов, заключа-
ющих в себе все точки разрыва функции и имеющие сумму длин < ε .

Например, если функция имеет конечное число точек разрыва, то она удо-
влетворяет этому условию.
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Теорема 14.7. Если f pxq ограничена на ra,bs и если все её точки разрыва мож-
но покрыть конечным числом интервалов со сколь угодно малой суммой длин,
что f pxq интегрируема на сегменте ra,bs.

Доказательство.

Зададим произвольное ε ą 0, и покроем все точки разрыва функции конеч-
ным числом интервало с суммой длин ă ε

M´m

M “ Supra,bs f pxq,m“ in fra,bs f pxq pM ą mq

Рис. 14.4. Изображение конечного числа интервалов

Остальная часть сегмента ra,bs представляет собой конечное число не пере-
секающихся сегментов, на каждом из которых f pxq непрерывна. В силу след-
ствия из теоремы Кантора каждый из сегментов можно разбить на частичные
сегменты так, что колебания функции ωi ă

ε

2pb´aq . Объединяя эти разбиения с
интервалами, покрывающими точки разрыва, получим разбиение сегмента ra,bs
для которого

S´ s“
n
ÿ

i“1

ωi∆xi “

1
ÿ

ωi∆xi`

2
ÿ

ωi∆xi ă pM´mq
1
ÿ

∆xi`
ε

2pb´aq

1
ÿ

1∆xi ă ε

1
ÿ

ωi∆xi´ сумма по интервалам

1
ÿ

1ωi∆xi´ сумма по частичным сегментам

Что означает, что @ε ą 0D разбиение ra,bs : S´ să ε

Следовательно, по теореме 14.2 функция f pxq интегрируема на ra,bs. �
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Лекция 15. Интегралы. Часть 4.

Интегрируемость монотонных функций

Теорема 15.1. Монотонная на сегменте функция интегрируема на этом сег-
менте.

Доказательство

Пусть f pxq не убывает на сегменте ra,bs и не равна константе.

Рис. 15.1. График непрерывной функции y“ f pxq

f pbq ą f paq

Для произвольного ε ą 0 разобьем сегмент на равные частичные сегменты.

∆xi ă
ε

f pbq´ f paq

Рассмотрим колебание функции на каждом частичном сегменте.

ωi “Mi´mi

S´ s“
n
ÿ

i“1

ωi∆xi ă
ε

f pbq´ f paq

n
ÿ

i“1

ωi

n
ÿ

i“1

ωi “ f pbq´ f paq
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S´ să ε

Следовательно, функция интегрируема на сегменте ra,bs.

Следствие из теоремы 15.1

Если функция кусочно-непрерывна на сегменте (т.е. имеет конечное число
точек разрыва 1-го рода), то она интегрируема на этом сегменте.

Свойства определенного интеграла

1) Мы ввели определенный интеграл в том случае, когда aă b.

Рис. 15.2. Изображение сегмента ra,bs

ż a

a
f pxqdx“ 0

Сегмент ra,bs вырождается в точку.
ż b

a
f pxqdx“´

ż a

b
f pxqdx“

Если поменять пределы интегрирования местами, то интеграл изме-
нит знак.

Все следующие свойства будем рассматривать для случая aă b.

2) Линейное свойство

Если f pxq и gpxq интегрируемы на ra,bs, а α и β – любые числа, то функ-
ция α f pxq ` βgpxq также интегрируема на сегменте ra,bs и справедливо
равенство

ż b

a
rα f pxq`βgpxqsdx“ α

ż b

a
f pxqdx`β

ż b

a
gpxqdx (15.1)

Доказательство
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Составим интегральную сумму для функции α f pxq`βgpxq

n
ÿ

i“1

rα f pξiq`βgpξiqs∆xi “ α

n
ÿ

i“1

f pξiq∆x`β

n
ÿ

i“1

gpξiq∆x

Переходя к пределу в написанном равенстве при ∆Ñ 0 p∆“ max∆xiq по-
лучаем 15.1.

Если в формуле 15.1 α “ 1, β “ 1 или β “´1, то получим
ż b

a
r f pxq˘gpxqsdx“

ż b

a
f pxqdx˘

ż b

a
gpxqdx

Если в формуле 15.1 α ‰ 0, а β “ 0

ż b

a
α f pxqdx“ α

ż b

a
f pxqdx

Постоянный множитель можно выносить за знак интеграла.

3) Если f pxq интегрируема на сегменте ra,bs, то f pxq интегрируема на @rc,ds P
ra,bs

Доказательство основано на теореме 14.2.

4) Аддитивность

Пусть f pxq интегрируема на ra,bs и точка C P pa,bq

Рис. 15.3. Изображение сегмента ra,bs

ż c

a
f pxqdx`

ż b

c
f pxqdx“

ż b

a
f pxqdx (15.2)

Доказательство

Рассмотрим такие разбиения сегмента ra,bs, в которых C является точкой
разбиения.
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Интегральные суммы по частичным сегментам равны
ÿ

ra,cs

f pξiqxi`
ÿ

rc,bs

f pξiqxi “
ÿ

ra,bs

f pξiqxi

Переходя к пределу при ∆Ñ 0 получим равенство 15.2. Замечание

Если C лежит вне сегмента ra,bs, то равенство 15.2 остается в силе.

Пусть aă bă c и f pxq интегрируема на ra,cs

Рис. 15.4. Изображение сегмента ra,cs

Применяя формулу 15.2, получим
ż b

a
f pxqdx`

ż c

b
f pxqdx“

ż c

a
f pxqdx

ż c

a
f pxqdx´

ż c

b
f pxqdx“

ż b

a
f pxqdx

ż c

b
f pxqdx“´

ż b

c
f pxqdx

ż c

a
f pxqdx`

ż b

c
f pxqdx“

ż b

a
f pxqdx (15.3)

Сравним интегралы 15.2 и 15.3. Выражения равны, только в случае фор-
мулы 15.3 точка c не лежит на сегменте ra,bs.

5) Если f pxq интегрируема на ra,bs в случае paă bq и f pxq ą 0 для @x P ra,bs,
то

I “
ż b

a
f pxqdxě 0

Интеграл от неотрицательной функции неотрицателен.

Доказательство
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Так как f pxq ě 0, то любая интегральная сумма тоже больше или равна 0.

Ipxi,ξiq “

n
ÿ

i“1

f pξiq∆xi ą 0 (15.4)

Допустим, что I ă 0. По определению предела интегральных сумм @ε ą

0 Dδ ą 0, такое, что @ разбиение ra,bs, у которого ∆ă δ :

|Ipxi,ξiq| ă ε

I´ ε ă Ipxi,ξiq ă I` ε

Возьмем ε “´I ą 0, тогда Ipxi,ξiq ă 0, что противоречит 15.4. Следствие

Если f pxq и gpxq интегрируемы на ra,bs и f pxq ě gpxq для @x P ra,bs, то
ż b

a
f pxqdxě

ż b

a
gpxqdx (15.5)

Доказательство

Так как f pxq´gpxq ě 0 на ra,bs, то
ż b

a
r f pxq´gpxqsdxě 0

6) Если f pxq интегрируема на ra,bs, то | f pxq| – также интегрируем на ra,bs и
справедливо неравенство

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a
f pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż b

a
| f pxq|

Доказательство свойства основывается на теореме 14.2.

Отметим, что обратное утверждение неверно. Т.е. из интегрируемости
функции | f pxq| не следует интегрируемость самой функции f pxq.

Пример 15.1.

f pxq “

$

&

%

1, если x - рациональное

0, если x - иррациональное
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| f pxq| “ 1“ const

7) Если произведение f pxq ¨gpxq интегрируемо на ra,bs, то

• f pxq ¨gpxq интегрируемая функция на ra,bs

• Если Supra,bsgpxq ă 0, либо in fra,bsgpxq ą 0, то

f pxq
gpxq

интегрируемо на ra,bs

Доказательство основано на теореме 14.2.

Формулы среднего значения

Теорема 15.2. Пусть f pxq и gpxq интегрируемы на ra,bs, gą 0 (либо =0) @x P

ra,bs,
M “ Supra,bs f pxq, m“ in fra,bs f pxq

Тогда
Dµ P rm,Ms :

ż b

a
f pxqgpxqdx“ µ

ż b

a
gpxqdx

За знак интеграла можно вынести среднее значение функции f pxq, которое
лежит в пределах этой функции.

Доказательство

Пусть gpxq ą 0 на ra,bs. Так как mď f pxq ďM @x P ra,bs, то

mgpxq ď f pxqgpxq ďMgpxq

m
ż b

a
gpxqdxď

ż b

a
f pxqgpxqdxďM

ż b

a
gpxqdx

Так как gpxq “ 0, то
ż b

a
gpxqdxě 0
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Если
şb

a gpxqdx“ 0, то
ż b

a
f pxqgpxqdx“ 0

Если
şb

a gpxqdxą 0, то

mď

şb
a f pxqgpxqdx
şb

a gpxqdx
ďM

Обозначим
şb

a f pxqgpxqdx
şb

a gpxqdx
“ µ

µ P rm,Ms

Тогда
ż b

a
f pxqgpxqdx“ µ

ż b

a
gpxqdx (15.6)

Следствие 1

1) Если f pxq непрерывна на ra,bs, то f pxq принимает все значения rm,Ms и,
следовательно, для µ Dξ P ra,bs : f pξ q “ µ , формула 15.6 принимает вид

ż b

a
f pxqgpxqdx“ f pξ q

ż b

a
gpxqdx (15.7)

2) Если gpxq “ 1 @x P ra,bs, то
ż b

a
f pxqgpxqdx“ µ

ż b

a
dx“ µpb´aq (15.8)

ż b

a
f pxqdx“ f pξ qpb´aq (15.9)

Формулы 15.6-15.9 называются формулами среднего значения.

Формула Ньютона-Лейбница

Пусть f pxq непрерывна на ra,bs, тогда она интегрируема на любом сегменте,
лежащем на ra,bs. Обозначим t как переменную, изменяющуюся a ď t ď x и
рассмотрим интеграл

ż x

a
f ptqdt
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Рис. 15.5. Изображение сегмента

Fpxq “
ż x

a
f ptqdt

где Fpxq – интеграл с переменным верхним пределом

Теорема 15.3. Непрерывная на ra,bs функция f pxq имеет первообразную на
этом сегменте, одной из первообразных является Fpxq.

Доказательство

Требуется доказать, что @x P ra,bs : F 1pxq “ f pxq

T.е.
lim

∆xÑo

Fpx`∆xq´Fpxq
∆x

“ f pxq

Fpx`∆xq´Fpxq “
ż x`∆x

a
f ptqdt´

ż x

a
f ptqdt

Поскольку функция непрерывна, воспользуемся формулой среднего значе-
ния 15.9.

ż x`∆x

x
f ptqdt “ f pξ q∆x

Fpx`∆xq´Fpxq
∆x

“ f pξ q

Перейдем в этом равенстве к пределу при ∆xÑ 0

ñ ξ Ñ xñ f pξ q Ñ f pxq

lim
∆xÑ0

Fpx`∆xq´Fpxq
∆x

“ f pxq

Т.е.
F 1pxq “ f pxq @x P ra,bs

Следствие
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Так как любые 2 первообразные отличаются на константу, то произвольная
первообразная Φpxq для f pxq имеет вид

Φpxq “
ż b

a
f ptqdt`C

x“ a Φpaq “C

x“ b Φpbq “
ż b

a
f ptqdt`Φpxq

ż b

a
f pxqdx“Φpbq´Φpaq´формула Ньютона-Лейбница

Формула связывает определенный и неопределенный интегралы.

Φpbq´Φpaq “Φpxq
ˇ

ˇ

b
a

Пример 15.2.
ż 1

0

dx
1` x2 “ arctgx

ˇ

ˇ

1
0 “

π

4
´0“

π

4

Пример 15.3.
ż 1

0

dx
1` x2 “ arctgx

ˇ

ˇ

1
0 “

π

4
´0“

π

4

Пример 15.4.
ż 1

0
sinxdx“´cosx|10 “ cosπ´ cos0“ 1`1“ 2
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Рис. 15.6. График функции f pxq
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Лекция 16. Интегралы. Часть 5.

Обобщим следующую формулу

d
dx

ż x

a
f ptqdt “ f pxq

Рассмотрим интеграл, у которого оба предела переменные и зададим вопрос:
"Как вычислить производную от этого интеграла ?"

d
dx

ż

ψpxq

ϕpxq
f ptqdt “?

Пусть F 1pxq первообразная для f pxq.

F 1pxq “ f pxq

По формуле Ньютона-Лейбница получим

d
dx

ż

ψpxq

ϕpxq
f ptqdt “ Fptq

ˇ

ˇ

ψpxq
ϕpxq “ Fpψpxqq´Fpϕpxqq

Получаем

d
dx

ż

ψpxq

ϕpxq
f ptqdt “ F 1pψpxqq ¨ψ 1pxq´F 1pϕpxqq ¨ϕ 1pxq “ f pψpxqq ¨ψ 1pxq´ f pϕpxqq ¨ϕ 1pxq

d
dx

ż

ψpxq

ϕpxq
f ptqdt “ f pψpxqq ¨ψ 1pxq´ f pϕpxqq ¨ϕ 1pxq

Замена переменной и интегрирование по частям в

определенном интеграле

Замена переменной

Теорема 16.1. Пусть f pxq непрерывна на ra,bs, а gptq имеет непрерывную
производную g1ptq на ra,bs, gpαq “ a, gpβ q “ b, aď gptq ď b при α ď t ď β .

Тогда
ż b

a
f pxqdx“

ż

α
β f pgptqq ¨g1ptqdt (16.1)
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Неравенство 16.1 является формулой замены переменной в определен-
ном интеграле.

Доказательство

Пусть F 1pxq “ f pxq, aď xď b

Тогда Fpgptqq – первообразная для f pgptqq ¨g1ptq при α ď t ď β

Применяя формулу Ньютона-Лейбница, получаем
ż b

a
f pxqdx“ Fpxq|ba “ Fpbq´Fpaq (16.2)

ż

β

α

f pgptqq ¨g1ptqdt “ Fpgptqq|βα “ Fpgpβ qq´Fpgpαqq “ Fpbq´Fpaq (16.3)

Правые части уравнений 16.2 и 16.3 равны, следовательно, равны и левые
части.

Пример 16.1.
ż 1

´1

a

1´ x2dx

Сделаем замену
x“ sin t, ´

π

2
ď t ď

π

2
ż π

2

´ π

2

cos2 tdt “
ż π

2

´ π

2

1` cos2t
2

dt “
ˆ

1
2
`

1
4

sin2t
˙

ˇ

ˇ

π

2
´ π

2
“

1
2

π

2
´

ˆ

1
2

π

2

˙

“
π

2

Интеграл от функции y“
?

1´ x2 – это площадь фигуры под графиком.

Интегрирование по частям

Теорема 16.2. Пусть Upxq и V pxq имеют непрерывные производные на ra,bs.

Тогда справедливо равенство
ż b

a
UpxqV 1pxqdx“UpxqV pxq

ˇ

ˇ

b
a´

ż b

a
V pxqU 1

pxqdx (16.4)
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Рис. 16.1. График функции y“
?

1´ x2

Доказательство

Так как pUpxqV pxqq1 “UpxqV 1pxq`V pxqU 1pxq

Т.е. UpxqV pxq – первообразная для UpxqV 1pxq`V pxqU 1pxq

По формуле Ньютона-Лейбница
ż b

a

“

UpxqV 1pxq`V pxqU 1
pxq

‰

dx“UpxqV pxq
ˇ

ˇ

b
a

Непосредственно следует формула 16.4.

Так как V 1pxqdx“ dV, Udx“ dU , то
ż b

a
UdV “UV

ˇ

ˇ

b
a´

ż b

a
V dU

Пример 16.2.
ż

π

0
cosxdx“

ż

π

0
xsinx“ xsinx|π0 ´

ż

π

0
sinxdx“ cosx|π0 “´1´1“´2

Геометрические приложения определенного интеграла

1. Длина кривой

Пусть кривая на плоскости задана уравнениями

x“ ϕptq, y“ ψptq, α ď t ď β (16.5)
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Рис. 16.2. График кривой ypxq

Переменная t называется параметром, а уравнение 16.4 – уравнение кри-

вой.

Пусть ϕ и ψ непрерывны на сегменте rα,β s и пусть различным значениям
параметра t соответствуют различные точки ϕptq и ψptq. В таком случае кривая
называется простой плоской незамкнутой кривой на плоскости.

Пример кривой

x“ Rcos t, y“ Rsin t 0ď t ď π

Если все точки кривой простые (не кратные), а совпадают только точки A

и B, то кривая – простая замкнутая кривая.

x“ Rcos t, y“ Rsin t 0ď t ď 2π

Пусть кривая L задана уравнениями 16.5 и является простой кривой. Разо-
бьем сегмент rα,β s на частичные сегменты (рис. 16.3).

Рис. 16.3. Изображение сегмента rα,β s
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Обозначим через ∆ti длину i-го частичного сегмента rα,β s.

∆ti “ ti´ ti´1

∆t “ max∆ti 1ď iď n

Впишем в кривую ломаную. Обозначим длину ломаной через ∆li, а через
lpMiq – сумму длин звеньев.

lpMiq “

n
ÿ

i“1

∆li´´длина ломаной

Определение 16.1. l называется пределом lpMiq при ∆tÑ 0, если @ε ą 0Dδ ą 0,
такое что @ разбиение rα,β s, у которого ∆t ă δ : l´ lpMiq ă ε

Если D lim∆tÑ0 lpMiq “ l, то кривая L называется спрямляемой, а l – длина
дуги кривой. Если функции ϕptq и ψptq имеют непрерывные производные ϕ 1ptq и
ψ 1ptq на сегменте rα,β s, то кривая является спрямляемой и ее длина выражается
формулой

l “
ż

β

α

b

ϕ21ptq`ψ21ptqdt

Рис. 16.4. График кривой L

dx“ ϕ
1
ptqdt, dy“ ψ

1
ptqdt

dl2
» pdxq2`pdyq2 “ pϕ 12ptq`ψ

12
ptqqpdtq2

dl “
b

ϕ 12ptq`ψ 12ptqqdt
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Чтобы получить всю длину кривой, нужно просуммировать элементы dl.

l “
ż

β

α

b

ϕ 12ptq`ψ 12ptqqdt (16.6)

Пусть кривая является графиком функции y“ f pxq.

y“ f pxq, aď xď b

x“ t,y“ f ptq,aď t ď b

Применяя формулу 16.6, получаем

l “
ż b

a

b

1` f 12ptqdt “
ż b

a

b

1` f 12pxqdx

Пример 16.3.

x“ Rt, y“ Rt, 0ď t ď 2π

l “
ż 2π

0

b

p´Rsin tq2`pRcos tq2dt “
ż 2π

0
Rdt “ Rt

ˇ

ˇ

2π

0 “ 2πR

Пример 16.4.

y“ x2, 0ď xď 1

Рис. 16.5. График параболы y“ x2

l “
ż 1

0

a

1`4x2dx
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Рис. 16.6. График непрерывной неотрицательной функции y“ f pxq

2. Площадь плоской фигуры

S “
ż b

a
f pxqdx´´площадь криволинейной трапеции

Рассмотрим полярную систему координат.

Рис. 16.7. Изображение криволинейного сектора в полярных координатах

dS “
1
2

r2
pϕqdϕ

S “
1
2

ż

ϕ2

ϕ1

r2
pϕqdϕ´´площадь криволинейного сектора

3. Объем тела

Рассмотрим некое протяженное тело.

dV “ Spxqdx

V “
ż b

a
Spxqdx
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Рис. 16.8. Изображение протяженного тела

4. Площадь поверхности вращения

Рис. 16.9. График кривой y“ f pxq

При вращении кривой вокруг оси x получим поверхность вращения. В каж-
дом сечении поверхности плоскостью x“ conxt получается окружность, радиус
которой r “ f pxq. Передвинемся вдоль графика функции в такую точку, что
длина кривой будет равна dl. Площадь полученного диска будет

dS “ 2πrdl “ 2π f pxq
b

1` f 12pxqdx

Тогда вся площадь трапеции равна

S “ 2π

ż b

a
f pxq

b

1` f 12pxqdx

Объем тела вращения будет выражен следующим выражением

V “ π

ż b

a
f 2
pxqdx
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Лекция 17. Числовые последовательности. Часть

1.

Числовая последовательность – это функция, определенная на множе-
стве натуральных чисел.

Определение 17.1. Число a называется пределом последовательности xn, ес-
ли для любого ε ą 0 найдется номер N, такой, что для любого nąN |xn´a| ă

ε

a“ lim
nÑ8

xn, если @ε ą 0 DN, @ną N : |xn´a| ă ε

Геометрический смыл определения состоит в том, что все члены последова-
тельности с номерами ną N лежат в ε-окрестности точки a.

Рис. 17.1. Изображение числовой прямой

Было доказано, что монотонная ограниченная последовательность имеет
предел.

Было отмечено, что если все члены xn P ra,bs и D limnÑ8 xn “ c, то c P ra,bs

Теорема о вложенных сегментах

Рассмотрим последовательность сегментов ra1,b1s,ra2,b2s,... ran,bns,..., такую,
что каждый следующий сегмент содержится в предыдущем, т.е

@n : an ď an´1 ă bn`1 ď bn (17.1)

Кроме того
pbn´anq Ñ 0 при nÑ8

Такая последовательность сегментов называется стягивающейся систе-

мой сегментов.
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Рис. 17.2. Изображение вложенного сегмента

Теорема 17.1. Существует единственная точка, принадлежащая всем сег-
ментам стягивающейся системы.

Доказательство.

Из неравенств 17.1 следует, что последовательность an – неубывающая, а
последовательность bn – невозрастающая. Кроме того, обе последовательности
ограничены, так как все их члены лежат на сегменте ra1,b1s. Следовательно,
эти последовательности сходятся, а так как bn´an Ñ 0 при nÑ8, то пределы
последовательностей равны.

lim
nÑ8

an “ lim
nÑ8

bn “ c

Очевидно, что @n : an ď c, bn ě c Т.е.

@n : an ď cď bn

@n : c P ran,bns

Существование точки, принадлежащей всем сегментам стягивающейся си-
стемы доказано. �

Докажем, что такая точка только одна. Допустим, что существует другая
точка d.

Dd P ran,bns, d ą c

Рис. 17.3. Изображение числовой прямой
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Тогда
bn´an ě d´ c

lim
nÑ8

ě d´ cą 0

Но это условие противоречит тому, что bn´an Ñ 0 при nÑ8.

Следовательно, не может быть другой точки, теорема доказана.

Свойство, обоснованное в теореме 17.1 называется непрерывностью мно-

жества вещественных чисел.

При рассмотрении множества рациональных чисел мы видим, что система
может и не стягиваться к рациональной точке.

Предельные точки последовательности

Пусть txnu – любая последовательность.

txnu “ x1,x2, ...,xn

И пусть tknu – возрастающая последовательность, элементами которой яв-
ляются целые положительные числа.

tknu “ k2,k2, ...,kn

Например
tknu “ t2n´1u “ 1,3,5, ...2n´1

Составим последовательность txknu.

txknu “ xk1,xk2, ...,xkn

Данная последовательность называется подпоследовательностью после-

довательности txnu.

Лемма 1.

Если limnÑ8 xn “ a, то любая последовательность txknu Ñ a

Доказательство.
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Для @ε ą 0 при ną N все члены xn P tε´окрестности т. au, следовательно,
все xkn при kn ą N также P tε´окрестности т. a u.

Это означает, что
lim

nÑ8
xkn “ a

�

Может быть так, что последовательность xn расходится, но у неё есть схо-
дящиеся подпоследовательности.

Пример 17.1.

txnu “ 0,1,0,1, ...0,1 расходится

tx2n´1u “ 0,0,0...,0 Ñ 0

tx2nu “ 1,1,1, ...,1 Ñ 1

Теорема 17.2. Больцано-Вейерштрасса Из любой ограниченной последова-
тельности можно выделить сходящуюся подпоследовательность.

Доказательство.

Пусть txnu – ограниченная, т.е. @n : aď xn ď b

Рис. 17.4. Изображение сегмента ra,bs

Разделим сегмент ra,bs пополам. Обозначим через ra1,b1s тот из образо-
вавшихся сегментов, на котором бесконечно много членов последовательности.
Возьмем такой член последовательности, что

xk1 P ra1,b1s, a1 ď xk1 ď b1

Разделим сегмент ra1,b1s пополам. Обозначим через ra2,b2s тот из образо-
вавшихся сегментов, на котором бесконечно много членов последовательности.

xk2 P ra2,b2s, k2 ą k1 a@ ď xk2 ď b2
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Далее разделим сегмент ra2,b2s пополам и т.д. Продолжая неограниченно
этот процесс получим стягивающуюся систему сегментов. ra1,b1s,ra2,b2s, ran,bns,...
И подпоследовательность txknu, удовлетворяющую неравенствам

txknu @n : an ď xkn ď bn

По теореме 17.1 D т. C : limnÑ8 an “ limnÑ8 bn “C

lim
nÑ8

xkn “C

Теорема 17.2 доказана. �

Для неограниченной теоремы утверждение неверно.

Определение 17.2. Последовательность txnu называется неограниченной, ес-
ли @ADxn : |xn| ą A

Пример 17.2.

txnu “ 1,2,3...,n

У данной последовательности нет сходящихся подпоследовательностей.

Определение 17.3. Последовательность txnu называется бесконечно боль-
шой, если @A DN,@ną N : |xn| ą A

Сопоставим определение неограниченной и бесконечно большой. Для неогра-
ниченной последовательности необходимо, чтобы нашелся хотя бы один эле-
мент, в случае бесконечно большой необходимо выполнение условия для всех
элементов больших a.

Заметим, что любая бесконечно большая последовательность является неогра-
ниченной, а обратное неверно.

Пример 17.3.

txnu “ 0,1,0,2,0,3...,n

Данная последовательность неограниченная, но не является бесконечно боль-
шой.

Из любой неограниченной последовательности можно выделить бесконеч-
но большую подпоследовательность.

Если txnu –бесконечно большая, то limnÑ8 xn “8
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Предельные точки последовательности

Определение 17.4. Число a называется предельной точкой последователь-
ности txnu, если Dtxknu Ñ a

Из теоремы Больцано-Вейерштрасса следует, что любая ограниченная по-
следовательность имеет хотя бы одну предельную точку. Также существует вто-
рое определение предельной точки последовательности.

Определение 17.5. Число a называется предельной точкой последователь-
ности txnu, если в любой ε – окрестности т. a содержится бесконечно много
членов последовательности txnu.

Лемма 2.

Определения 17.4 и 17.5 эквивалентны.

Пусть точка a – предельная точка txnu по определению 17.4, т.е. Dtxknu Ñ a.

Докажем, что a удовлетворяет определению 17.5.

В любой ε – окрестности a содержится бесконечно много членов txknu. Т.е.
для точки a выполнено условие определения 17.5. И a является предельной
точкой.

Сколько предельных точек может быть у ограниченной последовательности
? Ответ – несчетное множество.

Множества

Определение 17.6. Два множества называются эквивалентными, если
между их элементами можно установить взаимооднозначное соответствие.

Если два множества эквивалентны, то говорят, что они имеют одинаковую
мощность. Эквивалентное множество натуральных чисел называется счетным.
Значит, все члены этого множества можно пронумеровать с помощью натураль-
ных чисел. Докажем, что множества всех рациональных чисел счетное.

tr : r P r0,1s, где r рациональное u
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Расположим все рациональные числа сегмента в виде следующей последо-
вательности

0,1,
1
2
,
1
3
,
2
3
,
1
4
,
3
4
,
1
5
,
2
5
,
3
5
,
4
5
,
1
6
... (17.2)

Каждый элемент взаимооднозначно сопоставляется натуральному числу.

Множество всех вещественных чисел не является счетным. Любое множе-
ство, эквивалентное множеству всех вещественных чисел r0,1s имеет мощность

континуума.

Пример 17.4.

Если D limnÑ8 xn “ a, то txnu “ a1,a2, ...,ama1a2...am...a1...am

Рассмотрим последовательность 17.2. В любой ε-окрестности точки a со-

Рис. 17.5. Изображение сегмента r0,1s

держится бесконечно много членов последовательности 17.2, следовательно, a

– предельная точка последовательности 17.2. Последовательность 17.2 имеет
континуум предельных точек.

Рассмотрим множество всех предельных точек ограниченной последователь-
ности. Наибольшая из предельных точек ограниченной последовательности на-
зывается ее верхним пределом, а наименьшая из предельных точек нижним.

txnu limnÑ8xn limnÑ8xn

Теорема 17.3. Любая ограниченная последовательность имеет верхний и ниж-
ний пределы.

Доказательство.

Пусть txnu – ограниченная последовательность.

txnu A“ tмножество предельных точекtxnuu
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Очевидно, что A – непустое ограниченное множество.

SupA“ ā, in f A“ a

Докажем, что ā и a предельные точки последовательности txnu. Докажем
это для ā.

@ε ą 0
ε

2
´окрестности ε´окрестности точки ā

Рис. 17.6. Изображение числовой прямой

Так как ā“ SupA, то DC PA : ā´ ε

2 ďCď ā t ε

2 окрестности точки Cu P tε окрестности точки āu

�

По определению 17.5 в t ε

2 - окрестности точки C } содержится бесконечно
много членов txnu ñ tε ´ окрестности точки āu содержится бесконечно много
членов txnu ñ ā – предельная точка.

Если txnu – неограниченная сверху (снизу), то пишут: limnÑ8xn“`8plimnÑ8xn “´8q

Пример 17.5.

txnu “ 0,´1,0,´2,0,´3, ...,0,´n

limnÑ8xn “`8, limnÑ8xn “´8

Критерий Коши сходимости последовательности

Определение 17.7. Последовательность txnu называется фундаменталь-

ной, если @ε ą 0 DN, @ną N и @ натурального p : |xn`p´ xn| ă ε

Так как n` pąN, если nąN, то txnu – фундаментальная, если @ε ą 0DN, @ną

N и @mą N : |xn´ xm| ă ε

Лемма 3.

Фундаментальная последовательность ограничена.
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Теорема 17.4. Для того, чтобы последовательность сходилась необходимо и
достаточно, чтобы она была фундаментальна.
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Лекция 18. Числовые последовательности. Часть

2

Критерий Коши сходимости последовательности

(окончание)

Определение 18.1. Последовательность txnu называется фундаменталь-

ной, если @ε ą 0DN такой, что @ną N и @mą N : |xn´ xm| ă ε.

С ростом номеров все члены последовательности становится ближе друг к
другу. В прошлом разделе была сформулирована лемма:

Лемма 18.1. Фундаментальная последовательность ограничена.

Упражнение 18.1. Сформулировать определение не фундаментальной после-
довательности с помощью кванторов.

Теорема 18.1. (критерий Коши) Для того чтобы последовательность схо-
дилась, необходимо и достаточно, чтобы она была фундаментальной.

Доказательство.

1. Необходимость: последовательность сходится, значит, она

фундаментальная.

Пусть последовательность txnu сходится и lim
nÑ8

“ a. По определению предела
последовательности @ε ą 0DN такое, что @ną 0 : |xn´a| ă ε

2 . Аналогично @mą

N : |xm´a| ă ε

2 . Отсюда следует, что @ną N и @mą N верно, что

|xn´ xm| “ |pxn´aq`pa´ xmq| ď |xn´a|` |xm´a| ă ε

2 `
ε

2 “ ε

Значит, последовательность фундаментальная.

2. Достаточность: последовательность фундаментальная, зна-

чит, она сходится .

Пусть последовательность txnu фундаментальная. По лемме 18.1 следует,
что txnu — ограниченная. По теореме Больцано-Вейерштрасса выделим из
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txnu сходящуюся подпоследовательность. Пусть подпоследовательность txknuÑ

a при nÑ8. Докажем, что txnu Ñ a.

Зададим произвольное ε ą 0. Начиная с некоторого номера N1 все члены
txknu лежат в ε

2 -окрестности точки a (так как эта подпоследовательность схо-
дится). Так как последовательность txnu фундаментальная, то начиная с неко-
торого номера N2 любые два её члена отличаются меньше, чем на ε

2 . Пусть
N “maxpN1,N2q. Тогда начиная с номера N все члены последовательности txnu

будут лежать в ε-окрестности точки a. Это означает, что lim
nÑ8

xn “ a. �

Второе определение предела функции

Напомним, что когда мы даём определение предела функции в точке A, то
точка A должна быть предельной точкой по отношению к области определения
функции.

Пусть функция f pxq определена на области X , а точка a — предельная точка
множества X .

Определение 18.2. a — предельная точка множества X , если в любой окрест-
ности точки a существуют точки из множества X , отличные от a (причём
a может не входить в X).

Отметим, что понятия предельной точки множества и предельной точки
последовательности — это разные понятия.

Пример 18.1. Пусть X “ t0;1u — две точки на числовой прямой. У этого
множества нет предельных точек.

Рассмотрим последовательность txnu“ 0,1,0,1, . . . ,0,1, . . .u. Здесь есть пре-
дельные точки a1 “ 0 и a2 “ 1.

Пусть функция f pxq определена на области X , а точка a — предельная точка
множества X . Вспомним определение предела функции по Коши:

Определение 18.3. (по Коши) Число b называется пределом функции

f pxq при xÑ a, если @ε ą 0Dδ ą 0 такое, что @x P t0ă |x´a| ă δu (проколотой
δ -окрестности точки a) выполняется неравенство | f pxq´b| ă ε.
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Определение 18.4. (по Гейне) Число b называется пределом функции

f pxq при xÑ a, если для любой последовательности значений аргумента txnuÑ

a (и такой, что @n : xn ‰ a) соответствующая последовательность значений
функций t f pxnqu Ñ b.

Упражнение 18.2. Сформулировать по Гейне определение того факта, что
lim
xÑa

‰ b.

Теорема 18.2. Определения 18.3 и 18.4 эквивалентны.

Доказательство.

I. Пусть выполнено
lim
xÑa

f pxq “ b по Коши (18.1)

Требуется доказать, что

lim
xÑa

f pxq “ b по Гейне (18.2)

@txnuÑ a (такой, что xn‰ a) соответствующая последовательность t f pxnquÑ

b.

Рассмотрим произвольную последовательность txnuÑ a (при xn ‰ a) и возь-
мём произвольное ε ą 0. В силу условия (18.1) Dδ ą 0 такое, что:

| f pxq´b| ă ε @x P t0ă |x´a| ă δu (18.3)

Последовательность txnu сходится к a, значит, её элементы с ростом номеров
становится ближе к a, то есть:

DN такое, что @ną N : 0ă |xn´a| ă δ (18.4)

Из условий (18.3) и (18.4) следует, что

@ną N : | f pxnq´b| ă ε

Это означает, что lim
nÑ8

f pxnq “ b, то есть lim
xÑa

f pxq “ b — предел по Гейне, что
и требовалось доказать.
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II. Пусть выполнено условие (18.2) — предел функции равен b по Гейне.
Требуется доказать, что будет выполнено условие (18.1) — предел функции
равен b по Коши.

Предположим противное: lim
xÑa

f pxq ‰ b по Коши. Другими словами:

Dε ą 0 такое, что @δ ą 0Dx P t0ă |x´a| ă δu : | f pxq´b| ě ε (18.5)

Возьмём какую-нибудь последовательность tδnu Ñ 0 (чтобы δn ą 0, напри-
мер, δ “ 1

n). В силу предположения:

@δn Dxn P t0ă |xn´a| ă δnu, для которого | f pxnq´b| ě ε (18.6)

В силу неравенств 0ă |xn´a| ă δn, последовательность txnu Ñ a и при этом
xn ‰ a. Значит, в силу условия (18.2), соответствующая последовательность
t f pxnqu Ñ b при nÑ8. Отсюда следует, что | f pxnq´b| Ñ 0 при nÑ8.

С другой стороны, в силу условия (18.6), предел lim
nÑ8

| f pxnq´b| ě ε ą 0. По-
лученное противоречие доказывает, что наше предположение не верно, следо-
вательно lim

xÑa
f pxq “ b по Коши, что и требовалось доказать. �

Пример 18.2. Доказать, что lim
xÑ0

`

sin 1
x

˘

не существует.

Доказательство.

Заметим, что функция sin 1
x не определена в точке x “ 0 (то есть не входит

в область определения), но 0 является предельной точкой области определе-
ния (в любой окрестности этой точки имеются точки из области определения,
отличные от этой точки). Рассмотрим две последовательности:

txnu “

"

1
πn

*

Ñ 0 (где xn ‰ 0q

tx1nu “

$

&

%

1

2πn` π

2

,

.

-

Ñ 0 (где x1n ‰ 0q

ñ t f pxnqu “ tsinπnu Ñ 0, а t f px1nqu “ tsin
`

2πn` π

2

˘

u Ñ 1

Мы указали две последовательности, сходящиеся к нулю (с не нулевыми
элементами), но для одной последовательности предел функции равен 0, а для
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другой — 1. Значит, предела не существует в соответствие с определением пре-
дела по Гейне. �

Утверждение 18.1. Если txnu — бесконечно большая последовательность и
начиная с некоторого номера все xn ą 0, то lim

nÑ8
xn “ `8 (последователь-

ность txnu сходится к бесконечности).

Определение 18.5. (по Гейне) Число b называется пределом функции

f pxq при xÑ8, если для любой последовательности значений аргумента txnu,
сходящейся к бесконечности, соответствующая последовательность значе-
ний функций t f pxnqu Ñ b.

Упражнение 18.3. Доказать эквивалентность двух определений пределов
функции при xÑ8.

Критерий Коши существования предела функции

Пусть функция f pxq определена на множестве X и точка a является предель-
ной точкой множества X .

Определение 18.6. Будем говорить, что функция f pxq удовлетворяет усло-

вию Коши в точке a, если @ε ą 0Dδ ą 0 такое, что @x1,x2, удовлетворяю-
щих условиям 0ă |x1´a| ă δ и 0ă |x2´a| ă δ , выполняется неравенство

| f px1q´ f px2q| ă ε

Понятия фундаментальности для последовательностей и условия Коши
для функции являются аналогичными.

Теорема 18.3. (критерий Коши) Для того чтобы функция имела предел
в точке a, необходимо и достаточно, чтобы она удовлетворяла в этой точке
условию Коши.

Доказательство.

I. Необходимость.

Пусть D lim
xÑa

f pxq“ b. Иначе говоря, @ε ą 0 найдётся проколотая δ -окрестность
точки a, что для любого значения аргумента x1 в этой окрестности значение
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функции f px1q отличается от b меньше, чем на ε

2 , то есть | f px1q´ b| ă ε

2 (рас-
сматривается определение по Коши). Аналогично для любого аргумента x2 вы-
полняется | f px2q´ b| ă ε

2 . Тогда | f px1q´ f px2q| ă ε , что удовлетворяет условию
Коши по определению, что и требовалось доказать.

II. Достаточность.

Пусть функция f pxq удовлетворяет условию Коши в точке a. Требуется до-
казать, что существует lim

xÑa
f pxq. То есть в соответствие с определением предела

функции по Гейне нужно доказать, что @txnu Ñ a (такой, что xn ‰ a) соответ-
ствующая последовательность t f pxnqu сходится к некоторому числу b, причём
одинаковому для всех последовательностей.

Возьмём произвольную последовательность txnu Ñ a (где xn ‰ a). Докажем,
что соответствующая последовательность t f pxnqu фундаментальная. Зададим
произвольное ε ą 0. Так как функция f pxq удовлетворяет условию Коши в точке
a, то:

Dδ ą 0 : | f px1q´ f px2q| ă ε при 0ă |x1´a| ă δ и 0ă |x2´a| ă δ (18.7)

Поскольку последовательность txnu Ñ a и xn ‰ a, то DN такой, что:
$

&

%

@ną N верно, что 0ă |xn´a| ă δ

@mą N верно, что 0ă |xm´a| ă δ

(18.8)

Из условий (18.7) и (18.8) следует, что @ną N и @mą N выполняется нера-
венство | f pxnq´ f pxmq| ă ε , то есть последовательность t f pxnqu фундаменталь-
ная, и значит, что она сходится. Остаётся доказать, что @txnu Ñ a (такой, что
xn ‰ a) соответствующие последовательности t f pxnqu сходятся к одному и тому
же числу b.

Пусть для последовательности txnu Ñ a (такой, что xn ‰ a) соответствую-
щая последовательность t f pxnquÑ b, а для другой последовательности tx1nuÑ a

(такой, что x1n ‰ a) соответствующая последовательность t f px1nqu Ñ b1. Соста-
вим последовательность tx2nu “ x1,x11,x2,x12, . . . ,xn,x1n, . . .. Очевидно, что tx2nu Ñ a

и при этом x2n ‰ a. Отсюда следует, что соответствующая последовательность
t f px2nquÑ b2. Заметим, что t f pxnqu и t f px1nqu это подпоследовательности последо-
вательности t f pxnqu

2. (У нас была лемма, что если последовательность сходится,
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то любая её подпоследовательность сходится к тому же числу). Следовательно,
последовательности t f pxnqu и t f px1nqu сходятся к числу b2, значит, b2 “ b “ b1,
что и требовалось доказать. �

Упражнение 18.4. Сформулировать условие Коши для функции f pxq при xÑ

8.

Упражнение 18.5. Доказать теорему о критерии Коши существования су-
ществования предела функции при xÑ8.

Основные теоремы о непрерывных и дифференцируемых

функциях. Теоремы об ограниченности непрерывных

функций

Теорема 18.4. (о локальной ограниченности непрерывной функции)

Если функция f pxq непрерывна в точке a, то она ограничена в некоторой
окрестности точки a.

Доказательство.

Зададим ε “ 1. По определению непрерывности, Dδ ą 0 такое, что | f pxq ´
f paq| ă ε для любого x из δ -окрестности точки a, иными словами f paq ´ ε ă

f pxq ă f paq` ε в некоторой окрестности точки a, где f paq´ ε — нижняя грань
m функции, а f paq` ε — верхняя грань M функции. Полученные неравенства
доказывают ограниченность функции в некоторой δ -окрестности точки a. �

Пусть функция f pxq непрерывна на множестве X (то есть непрерывна в каж-
дой точке этого множества). Раз она непрерывна в каждой точке, то у каждой
точки есть некоторая окрестность, в которой эта функция ограничена. Будет
ли f pxq на множестве X?

Пример 18.3. Возьмём функцию f pxq “ 1
x , где x P p0;1q. Функция непрерывна

на заданном множестве, но не ограничена.

Теорема 18.5. (I теорема Вейерштрасса) Непрерывная на сегменте функ-
ция ограничена на этом сегменте.
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Наглядное доказательство представлено на рисунке 18.1. Функция из точки
a могла пойти куда-то вверх, но она должна вернуться в точку b.

Рис. 18.1. I теорема Вейерштрасса

Доказательство.

Пусть f pxq непрерывна на сегменте ra,bs. Предположим, что она не ограни-
чена на этом сегменте. Значит, какое бы большое положительное число мы не
задали, найдётся значение функции, по модулю большее этого числа, то есть:

@n P NDxn P ra,bs такое, что | f pxnq| ą n (18.9)

Рассмотрим последовательность txnu. Она ограничена (поскольку все её чле-
ны лежат на сегменте ra,bs) и значит, что из неё можно выделить сходящуюся
подпоследовательность. Пусть подпоследовательность txknu Ñ c. Так как все
члены xkn P ra,bs, то и точка c P ra,bs. Значит, функция f pxq непрерывна в точке
c. Отсюда следует, что последовательность значений функций t f pxknqu Ñ f pcq

при nÑ8.

С другой стороны, в силу неравенства (18.9), f pknq ą kn. Значит, последова-
тельность t f pxknqu бесконечно большая. Получили противоречие. Значит, наше
предположение не верно, следовательно функция f pxq ограничена на сегменте
ra,bs, что и требовалось доказать. �

Замечание 18.1. Для интервала теорема не верна (смотри пример 18.3).
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Упражнение 18.6. Установить, в каком месте не пройдёт доказательство
теоремы для интервала.
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Лекция 19. Основные теоремы о непрерывных

функциях.

Изучение свойств непрерывно дифференцируемых

функций (продолжение)

Напомним первую теорему Вейерштрасса:

Теорема 19.1. (I теорема Вейерштрасса) Непрерывная на сегменте функ-
ция ограничена на этом сегменте.

Пусть функция f pxq определена на множестве X и ограничена сверху и сни-
зу на этом множестве. Тогда существуют точная верхняя грань функции
sup

X
f pxq “ M и точная нижняя грань функции inf

X
f pxq “ m. Функция f pxq

может принимать значения, равные m или M в каких-то точках, а может не
принимать. Если в какой-то точке x функция f pxq принимает значение M, то
будем говорить, что функция достигает на множестве X свой точной верхней
грани. Если в какой-то точке x функция f pxq принимает значение m, то будем
говорить, что функция достигает на множестве X свой точной нижней гра-
ни.

Пример 19.1. Рассмотрим функцию:

f pxq “

$

’

&

’

%

sinx, 0ď xă
π

2
1
2
, x“

π

2

(19.1)

График этой функции изображён на рис. 19.1.

Функция ограничена, поэтому у неё есть точная верхняя и нижняя грани.

sup
”

0,π2

ı

f pxq “ 1, inf
”

0,π2

ı

f pxq “ 0

В этом случае точная верхняя грань не достигается, а нижняя — дости-
гается.
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Рис. 19.1. График функции (19.1).

Вторая теорема Вейерштрасса

Пусть функция f pxq определена и непрерывна на сегменте ra,bs. Тогда по
первой теореме Вейерштрасса она ограничена на этом сегменте, следовательно,
имеет точные верхнюю и нижнюю грани:

sup
ra,bs

f pxq “M, inf
ra,bs

f pxq “ m

Теорема 19.2. (II теорема Вейерштрасса) Непрерывная на сегменте функ-
ция достигает на этом сегменте своих точных граней.

Доказательство.

Докажем теорему для точной верхней грани. Предположим противное: @x P

ra,bs выполняется неравенство f pxq ăM. Введём вспомогательную функцию:

Fpxq “
1

M´ f pxq

Очевидно, что Fpxq ą 0 на сегменте ra,bs и Fpxq — непрерывная функция
на сегменте ra,bs. Тогда по первой теореме Вейерштрасса Fpxq — ограниченная
функция на сегменте ra,bs, то есть DA ą 0 такое, что @x P ra,bs выполняется
неравенство Fpxq ď A. То есть:

1
M´ f pxq

ď A ñ M´ f pxq ě
1
A

Отсюда следует, что f pxq ďM´ 1
A , причём это выполняется для всех x P ra,bs.

Заметим, что M´ 1
A ă M. Но M — точная верхняя грань, то есть наименьшее
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из всех чисел такое, что значения функции не превосходят это число. У нас
получилось, что функция f pxq имеет верхнюю грань, меньшую M. Полученное
противоречие доказывает теорему. �

Упражнение 19.1. Доказать теорему 19.2 для точной нижней грани.

Заметим, что для не сегмента теорема не выполняется.

Пример 19.2. Рассмотрим функцию f pxq “ sinx на множестве X “
“

0, π

2

˘

.
Функция определена и непрерывна на этом множестве, но не достигает своей
точной верхней грани 1.

Равномерная непрерывность функции

Напомним понятие непрерывности в точке.

Определение 19.1. Функция f pxq непрерывна в точке x0, если lim
xÑx0

f pxq “

f px0q, или другими словами:

@ε ą 0Dδ ą 0 такое, что @x P tx : 0ă |x´ x0| ă δu верно: | f pxq´ f px0q| ă ε

Определение 19.2. Пусть функция f pxq определена на промежутке X . Функ-
ция f pxq называется равномерно непрерывной на этом промежутке X , ес-
ли @ε ą 0Dδ ą 0 такое, что @x1 и x2 из X , удовлетворяющих неравенству
|x1´ x2| ă δ , выполняется неравенство | f px1q´ f px2q| ă ε.

Из определения следует, что если функция f pxq равномерно непрерывна на
промежутке X , то она непрерывна в каждой точке этого промежутка. Главным
моментом в этом определении является то, что для любого заданного ε ą 0

найдётся δ одно и то же для всех x. Обратное необязательно верно: из непре-
рывности в каждой точки не следует равномерная непрерывность функции на
этом промежутке.

Пример 19.3. Рассмотрим функцию f pxq “ 1
x на интервале X “ p0,1q. Функ-

ция непрерывна в каждой точке интервала X . Покажем, что она не является
равномерно непрерывной на это интервале. Нужно показать, что Dε ą 0 та-
кое, что @δ ą 0Dx1 и x2 из X такие, что |x1´x2| ă δ и выполнено | f px2q´ f px1q| ě

ε (отрицание определения равномерной сходимости).
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Возьмём ε “ 1. Тогда @δ ą 0 возьмём такое натуральное число n, что 1
n ă δ .

Положим x1 “ 1
n , x2 “ 1

n`2 . Тогда |x1´ x2| “ 2
npn`2q ă δ . При этом:

| f px2q´ f px1q| “
ˇ

ˇ

ˇ

ˇ

f
ˆ

1
n`2

˙

´ f
ˆ

1
n

˙
ˇ

ˇ

ˇ

ˇ

“ |n`2´n| “ 2ą ε “ 1

В точности выполнилось отрицание определения равномерной сходимости.
Следовательно, равномерной сходимости нет.

Теорема Кантора

Теорема 19.3. (теорема Кантора) Непрерывная на сегменте функция рав-
номерно непрерывна на этом сегменте.

Заметим, что у всех трёх именных теорем, описанных раннее, одно и то же
условие: функция непрерывна на сегменте. И все три теоремы доказываются
методом от противного.

Упражнение 19.2. Доказать теорему 19.3 методом от противного.

Подсказка: предположим, что функция не является равномерно непре-
рывной, выпишем отрицание определения равномерной непрерывности, придём
к противоречию.

Понятие равномерной непрерывности играет большую роль во многих раз-
делах, в частности в теории определённых интегралов.

Возрастание и убывание функции в точке. Локальный

экстремум

Пусть функция f pxq определена на интервале pa,bq. Пусть точка c P pa,bq.

Определение 19.3. Будем говорить, что функция f pxq возрастает в точ-

ке c, если найдётся окрестность точки c, в которой выполнены следующие
неравенства:

f pxq ă f pcq при xă c

f pxq ą f pcq при xą c
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Аналогично определяется убывание функции в точке (в левых неравенствах
нужно поменять знак).

Пример 19.4. Функция, изображённая на графике 19.2, возрастает в точке
c1. В окрестности этой точки (изображённой зелёным цветом) видно, что
при xă c1 значения f pxq ă f pc1q, а при xą c1 значения f pxq ą f pc1q.

Рис. 19.2. Возрастание функции в точке c1 и убывание в точке c2.

Заметим, что при значениях аргумента, больших c1, есть участок, где
функция убывает. Но это не имеет значения, так как в выбранной окрестно-
сти точки c1 условия выполняются.

Теорема 19.4. (о возрастании функции в точке) Если функция f pxq диф-
ференцируема в точке c и её производная в этой точке f 1pcq ą 0 (или f 1pcq ă 0),
то функция f pxq возрастает (или убывает) в точке c.

Доказательство.

Рассмотрим случай, когда f 1pcq ą 0 (случай, когда f 1pcq ă 0, аналогичен). По
определению производной:

f 1pcq “ lim
xÑc

f pxq´ f pcq
x´ c

В свою очередь, по определению предела: @ε ą 0Dδ ą 0 такое, что:
ˇ

ˇ

ˇ

ˇ

f pxq´ f pcq
x´ c

´ f 1pcq
ˇ

ˇ

ˇ

ˇ

ă ε,
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при условии, что 0 ă |x´ c| ă δ (проколотая δ -окрестность точки c). Пере-
пишем данное неравенство:

f 1pcq´ ε ă
f pxq´ f pcq

x´ c
ă f 1pcq` ε

Возьмём ε “ f 1pcq ą 0. Тогда из левого неравенства получим:

f pxq´ f pcq
x´ c

ą 0 в проколотой δ -окрестности точки c

Отсюда следует, что f pxq ă f pcq при x ă c и f pxq ą f pcq при x ą c в δ -
окрестности точки c. Значит, функция f pxq возрастает в точке c по определению,
что и требовалось доказать. �

Упражнение 19.3. Доказать теорему 19.4 для убывания.

Замечание 19.1. Положительность производной является достаточным, но
не необходимым условием возрастания дифференцируемой функции.

Пример 19.5. Рассмотрим функцию f pxq “ x3. Её график изображён на рис.
19.3.

Рис. 19.3. График функции f pxq “ x3.

Функция f pxq очевидно возрастает в точке x “ 0, но при этом f 1p0q “ 0.
Пример показывает, что функция может возрастать в точке, но производ-
ная может не быть положительной.
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Пусть функция f pxq определена на интервале pa,bq и точка c P pa,bq.

Определение 19.4. Говорят, что функция f pxq имеет в точке c локаль-

ный максимум (минимум), если найдётся окрестность точки c, в кото-
рой f pxq ă f pcq ( f pxq ą f pcq) при x‰ c.

Пример 19.6. На рис. 19.4 точка c1 является точкой локального максиму-
ма, а точка c2 — точкой локального минимума. c1 необязательно наибольшая
точка функции, а c2 — необязательно наименьшая.

Рис. 19.4. В точке c1 достигается локальный максимум, в точке c2 — локальный
минимум.

Понятия локального минимума и максимума часто объединяются в понятие
локального экстремума.

Теорема 19.5. (теорема Ферма) Если функция f pxq дифференцируема в
точке c и имеет в ней локальный экстремум, то f 1pcq “ 0.

Доказательство.

Предположим противное: пусть f 1pcq ‰ 0. Пусть f 1pcq ą 0 и пусть в точке c

достигается локальный максимум. Тогда по теореме 19.4 функция f pxq возрас-
тает в точке c, значит, существует окрестность точки c, в которой f pxq ă f pcq

при xă c и f pxq ą f pcq при xą c. Последнее неравенство противоречит тому, что
в точке c достигается локальный максимум. Пришли к противоречию. Анало-
гичным образом доказывается, что не может выполняться неравенство f 1pcq ă 0.
Полученные противоречия доказывают теорему. �
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Замечание 19.2. Условие f 1pcq является необходимым, но не достаточным
условием локального экстремума дифференцируемой функции в точке c.

В примере 19.5 рассматривалась функция, где в точке x “ 0 производная
f 1p0q “ 0, но это не являлось достаточным условием для достижения локального
экстремума в этой точке (см. рис. 19.3).

Теоремы Ролля и Лагранжа

Теорема 19.6. (теорема Ролля) Пусть выполнены следующие условия:

1) Функция f pxq определена и непрерывна на сегменте ra,bs.

2) Функция f pxq дифференцируема на интервале pa,bq.

3) f paq “ f pbq.

Тогда Dc P pa,bq такая, что f 1pcq “ 0.

Доказательство.

Так как f pxq непрерывна на сегменте ra,bs, то по второй теореме Вейер-
штрасса f pxq достигает на этом сегменте своих точных граней и следовательно
имеет на этом сегменте максимальное и минимальное значения. Пусть:

max
ra,bs

f pxq “M, min
ra,bs

f pxq “ m

Возможны два случая:

1. M “m. В этом случае f pxq “M “m“ const на сегменте ra,bs. Следователь-
но для любой точки c P pa,bq верно, что f 1pcq “ 0.

2. M ą m. Возможны три картины (рис. 19.5).

В этом случае хотя бы одно из значений m или M функция принимает во
внутренней точке c сегмента ra,bs (на рис. 19.5 a) и b) либо m, либо M, на c) —
оба).

Пусть c P pa,bq и f pcq “ M. По теореме 19.5: f 1pcq “ 0, что и требовалось
доказать. �
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Рис. 19.5. Экстремумы функций

У теоремы Ролля есть физическая интерпретация. Пусть x — время, а y “

f pxq — координата точки на оси Y в момент времени x. В момент времени a

координата равна f paq. В момент b координата равна f pbq, причём f paq “ f pbq.
Значит, точка прошла какой-то путь, остановилась и вернулась обратно. Когда
точка остановилась, её скорость была равна нулю, то есть и производная f 1pxq “

0 (см. рис. 19.6).

Рис. 19.6. Физическая интерпретация теоремы Ролля.

Теорема 19.7. (теорема Лагранжа) Пусть выполнены условия 1) и 2) тео-
ремы Ролля (то есть функция f pxq определена и непрерывна на сегменте ra,bs
и дифференцируема на интервале pa,bq). Тогда найдётся такая точка c P pa,bq,
что:

f pbq´ f paq “ f 1pcq ¨ pb´aq (19.2)

Доказательство.

Введём вспомогательную функцию:

Fpxq “ f pxq´
f pbq´ f paq

b´a
px´aq
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Функция Fpxq удовлетворяет всем условиям теоремы Ролля: 1) раз f pxq

непрерывна на сегменте ra,bs и от неё отнимается линейная непрерывная функ-
ция, то Fpxq непрерывна на сегменте ra,bs; 2) f pxq дифференцируема на интер-
вале pa,bq и px´ aq — тоже, значит Fpxq дифференцируема на pa,bq; 3) про-
верим равенство Fpaq “ Fpbq. Fpaq “ f paq, аналогично Fpbq “ a, следовательно
Fpaq “ Fpbq. По теореме Ролля Dc P pa,bq такая, что F 1pcq “ 0:

F 1pcq “ f 1pcq´
f pbq´ f paq

b´a
“ 0

Отсюда следует, что f pbq´ f paq “ f 1pcqpb´aq, что и требовалось доказать. �

Следствие 19.7.1. Если функция f pxq дифференцируема на промежутке X и
@x P X верно, что f 1pxq “ 0, то функция f pxq “ const на X .

Доказательство.

На промежутке X возьмём две точки x0 (фиксированную) и x (произволь-
ную). По формуле Лагранжа (19.2), верно, что f pxq´ f px0q “ f 1pξ qpx´ x0q. Но
f 1pξ q “ 0 (по условию). Тогда f pxq “ f px0q для любой x P X , значит f pxq — кон-
стантная функция. �
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Лекция 20. Теоремы о непрерывных и

дифференцируемых функциях.

Формула Коши

Теорема 20.1. (о формуле Коши) Пусть:

1) функции f pxq и gpxq определены и непрерывны на сегменте ra,bs;

2) функции f pxq и gpxq дифференцируемы на интервале pa,bq;

3) производная g1pxq ‰ 0 ни в какой точке x P pa,bq.

Тогда найдётся такая точка c P pa,bq, что справедливо равенство:

f pbq´ f paq
gpbq´gpaq

“
f 1pcq
f 1pcq

(20.1)

Не может ли получиться так, что для какой-то функции gpaq´ gpbq “ 0 и
знаменатель из формулы 20.1 обратится в 0? Нет. Допустим, gpaq “ gpbq. Тогда
функция gpxq удовлетворяет условиям теоремы Ролля, согласно которой най-
дётся такая точка c, в которой производная g1pcq “ 0, что противоречит условию
3 текущей теоремы.

Можно было бы предположить, что для доказательства теоремы можно два-
жды воспользоваться формулой Лагранжа, получить f pbq´ f paq “ f 1pcqpb´ aq

и gpbq´gpaq “ g1pcqpb´aq, сократить pb´aq и получить нужное отношение. Но
так сделать не получится, так как точка c для функции f pxq и точка c для
функции gpxq по формулам Лагранжа не обязаны совпадать.
Доказательство.

Введём вспомогательную функцию:

Fpxq “ f pxq´
f pbq´ f paq
gpbq´gpaq

`

gpxq´gpaq
˘

Функция Fpxq удовлетворяет всем условиям теоремы Ролля: она непрерыв-
на на сегменте ra,bs (так как f pxq и gpxq тоже непрерывны на сегменте); она
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дифференцируема на интервале pa,bq (так как f pxq и gpxq тоже дифференциру-
емы на интервале); значения на концах отрезка равны: Fpaq “ f paq, Fpbq “ f paq

следовательно Fpaq “ Fpbq.

Тогда по теореме Ролля существует такая точка c P pa,bq, что F 1pcq “ 0, то
есть:

F 1pcq “ f 1pcq´
f pbq´ f paq
gpbq´gpaq

g1pcq “ 0

Выразим большую дробь, получим:

f pbq´ f paq
gpbq´gpaq

“
f 1pcq
g1pcq

,

что и требовалось доказать. �

Заметим, что формула Коши (20.1) обобщает формулу Лагранжа (19.2). В
качестве функции gpxq возьмём функцию gpxq “ x: в этом случае g1pcq “ 1, Gpbq´

gpaq “ b´a, тогда:

f pbq´ f paq
b´a

“ f 1pcq ñ f pbq´ f paq “ f 1pcqpb´aq

Правило Лопиталя

Пусть lim
xÑx0

f pxq “ 0 и lim
xÑx0

gpxq “ 0, то есть функции f pxq и gpxq бесконечно

малые в точке x0. Рассмотрим предел: lim
xÑx0

f pxq
gpxq — неопределённость типа 0

0 .
Правило Лопиталя во многих случаях позволяет свести вычисление предела
отношения функций к вычислению предела отношения их производных.

Теорема 20.2. (правило Лопиталя) Пусть:

1) функции f pxq и gpxq определены и дифференцируемы в некоторой проко-
лотой окрестности точки x0;

2) предел lim
xÑx0

f pxq “ lim
xÑx0

gpxq “ 0;

3) производная g1pxq ‰ 0 для всех x из проколотой окрестности точки x0;

4) D lim
xÑx0

f 1pxq
g1pxq .
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Тогда D lim
xÑx0

f pxq
gpxq , причём:

lim
xÑx0

f pxq
gpxq

“ lim
xÑx0

f 1pxq
g1pxq

(20.2)

Доказательство.

Доопределим функции f pxq и gpxq в точке x0 по непрерывности, то есть
положим f px0q “ gpx0q “ 0. Тогда функции f pxq и gpxq будут непрерывны в точке
x0 и следовательно во всей окрестности точки x0.

Зафиксируем значение x‰ x0 из окрестности x0 (рис. 20.1).

Рис. 20.1. Зафиксируем значение x‰ x0 из окрестности x0.

Рассмотрим функции на сегменте rx0,xs: на этом сегменте функции f pxq и
gpxq удовлетворяют всем условиям теоремы 20.1. Следовательно найдётся такая
точка c P px0,xq, что:

f pxq´ f px0q

gpxq´gpx0q
“

f 1pcq
g1pcq

А раз f px0q “ gpx0q “ 0, то получается следующее равенство:

f pxq
gpxq

“
f 1pcq
g1pcq

Перейдём в этом равенстве к пределу при x Ñ x0 (точка c тоже стремится
к x0). В силу условия 4 теоремы существует предел правой части равенства. А
раз правая и левая части равны, то существует предел левой части, то есть :

lim
xÑx0

f pxq
gpxq

“ lim
xÑx0

f 1pxq
g1pxq

,

если принять c“ x. Что и требовалось доказать. �

Пример 20.1. Рассмотрим предел:

lim
xÑ0

tgx´ x
x3
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Проверим, выполнены ли условия теоремы 20.2. Обе функции tgx´ x и x3

определены и дифференцируемы в окрестности точки x “ 0. Пределы обеих
функций при xÑ 0 равны 0. Производная px3q1 “ 3x2 не равна нулю для всех x

из проколотой окрестности точки x “ 0. Теперь надо убедиться, что суще-
ствует предел отношения производных.

lim
xÑ0

tgx´ x
x3 “ lim

xÑ0

cos´2 x´1
3x2

Отношение производных оказалось тоже неопределённостью вида 0
0 . При-

меним правило Лопиталя ещё раз:

lim
xÑ0

cos´2 x´1
3x2 “ lim

xÑ0

2cos´3 xsinx
6x

Отношение производных снова оказалось неопределённостью вида 0
0 . Она

появляется из-за отношения sinx
x , что является первым замечательным пре-

делом, это отношение стремится к 1 при xÑ 0. Тогда:

lim
xÑ0

tgx´ x
x3 “ lim

xÑ0

2cos´3 xsinx
6x

“
1
3

Рассмотрим некое следствие из примера.

lim
xÑ0

tgx´ x
1
3x3

“ 1

Если предел отношения двух бесконечно малых равен 1, то эти две беско-
нечно малые эквивалентны, то есть:

tgx´ x„
x3

3
при xÑ 0

Вспомним свойство o-малого: если две функции эквивалентны, то их раз-
ность есть o-малое от любой из них. Следовательно:

tgx´ x´
x3

3
“ opx3

q

Тогда для tgx получается следующая асимптотическая формула:

tgx“ x`
x3

3
`opx3

q при xÑ 0

Раньше для tgx у нас была более короткая формула:

tgx“ x`opxq при xÑ 0
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Замечание 20.1. 4 условие теоремы 20.2 говорит о существовании предела
отношения производных. Если это условие заменить условием lim

xÑx0

f 1pxq
g1pxq “8,

то и предел отношения функций lim
xÑx0

f pxq
gpxq “8.

Замечание 20.2. 2 условие теоремы 20.2 говорит о том, что обе функции
f pxq и gpxq бесконечно малые в точке x0. Если это условие заменить условием
lim

xÑx0
f pxq “ 8 и lim

xÑx0
gpxq “ 8, то утверждение теоремы остаётся в силе.

Замечание 20.3. Правило Лопиталя применимо также к односторонним
пределам и к пределам при xÑ8.

Пример 20.2. Рассмотрим предел:

lim
xÑ`8

lnx
xα

, где α ą 0

Здесь неопределённость вида 8
8

. Применим правило Лопиталя:

lim
xÑ`8

lnx
xα
“ lim

xÑ`8

1
x

αxα´1 “ lim
xÑ`8

1
αxα

“ 0

Этот пример говорит о том, что lnx стремится к бесконечности медлен-
нее, чем любая положительная степень x. Это можно записать следующим
образом:

lnxăă xα при xÑ`8

Пример 20.3. Рассмотрим предел:

lim
xÑ`8

xn

ax , где n P N, aą 1

Применим правило Лопиталя:

lim
xÑ`8

xn

ax “ lim
xÑ`8

nxn´1

ax lna

Так как снова пришли к неопределённости вида 8
8

(при всех n ą 1), то
применим правило Лопиталя повторно (n´1 раз):

lim
xÑ`8

nxn´1

ax lna
“ . . .“ lim

xÑ`8

n!
axplnaqn

“ 0
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Если взять n не натуральное, а любое положительное, то ситуация не
изменится:

lim
xÑ`8

xα

ax “ 0, если α ą 0, aą 1

Тогда xα ăă ax при xÑ`8.

Если объединить оба примера, то получим:

lnxăă xα
ăă ax

Формула Тейлора

Пусть функция f pxq имеет непрерывную производную n`1-го порядка f pn`1qpxq

в окрестности точки x0. В таком случае говорят, что функция n`1 раз непре-

рывно дифференцируема в окрестности точки x0.

Пусть x — произвольное значение аргумента из заданной окрестности, при-
чём x‰ x0. Воспользуемся следующим равенством (применив формулу Ньютона-
Лейбница):

x
ż

x0

f 1ptqdt “ f ptq
ˇ

ˇ

ˇ

x

x0
“ f pxq´ f px0q

Отсюда следует, что:

f pxq “ f px0q`

x
ż

x0

f 1ptqdt (20.3)

Применим к интегралу формулу интегрирования по частям (заменив dt на
´dpx´ tq):

x
ż

x0

f 1ptqdt “´

x
ż

x0

f 1ptqdpx´ tq “ ´ f 1ptqpx´ tq
ˇ

ˇ

ˇ

x

x0
`

x
ż

x0

px´ tqdp f 1ptqq

Дифференциал dp f 1ptqq “ f 2ptqdt, тогда:

x
ż

x0

f 1ptqdt “ f 1px0qpx´ x0q`

x
ż

x0

f 2ptqpx´ tqdt
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Рассмотрим полученный интеграл (заменив px´ tqdt на ´1
2dpx´ tq2) и при-

меним интегрирование по частям:

x
ż

x0

f 2ptqpx´ tqdt “´
1
2

x
ż

x0

f 2ptqdpx´ tq2 “´
1
2

»

– f 2ptqpx´ tq2
ˇ

ˇ

ˇ

x

x0
´

x
ż

x0

px´ tq2dp f 2ptqq

fi

fl“

“
1
2!

f 2px0qpx´ x0q
2
`

1
2!

x
ż

x0

f3ptqpx´ tq2dt

Используя полученные равенства, запишем равенство (20.3):

f pxq “ f px0q` f 1px0qpx´ x0q`
f 2px0q

2!
px´ x0q

2
`

1
2!

x
ż

x0

f3ptqpx´ tq2dt

Аналогично раскладывается и последний интеграл. Продолжая дальше про-
цедуру интегрирования по частям, через n шагов придём к равенству:

f pxq “ f px0q`
f 1px0q

1!
px´ x0q`

f 2px0q

2!
px´ x0q

2` . . .`
f pnqpx0q

n!
px´ x0q

n`

`
1
n!

x
ş

x0

f pn`1qptqpx´ tqndt

Слагаемое 1
n!

x
ş

x0

f pn`1qptqpx´ tqndt обозначим как Rn`1pxq. Запишем сумму пер-

вых n слагаемых в виде ряда и получим:

f pxq “
n
ÿ

k“0

f pkqpx0q

k!
px´ x0q

k
`Rn`1pxq

Здесь предполагается, что f p0qpx0q “ f px0q и 0!“ 1. Многочлен, который сто-
ит в виде суммы, можно обозначить как Pnpxq и тогда получим:

f pxq “ Pnpxq`Rn`1pxq (20.4)

Формула (20.4) называется формулой Тейлора для функции f pxq с цен-
тром разложения в точке x0. Многочлен Pnpxq:

Pnpxq “
n
ÿ

k“0

f pkqpx0q

k!
px´ x0q

k
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называется многочленом Тейлора функции f pxq, а функция Rn`1pxq:

Rn`1pxq “
1
n!

x
ż

x0

f pn`1q
ptqpx´ tqndt (20.5)

называется остаточным членом формулой Тейлора . Rn`1pxq, получен-
ная в форме (20.5), так же называется остаточным членом в интеграль-

ной форме .

Теорема 20.3. Если функция f pxq n` 1 раз непрерывно дифференцируема в
окрестности точки x0, то для любого x из этой окрестности функцию f pxq

можно представить в виде формулы Тейлора (20.4), где Pnpxq — многочлен
Тейлора, Rn`1pxq — остаточный член в интегральной форме.

Следствие 20.3.1. Применяя к интегралу (20.5) формулу среднего значения,
получим:

Rn`1pxq“
1
n!

f pn`1q
pξ q

x
ż

x0

px´tqndt “
1
n!

f pn`1q
pξ q

ˆ

px´ tqn`1

n`1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

x

x0

“
f pn`1qpξ q

pn`1q!
px´x0q

n`1,

где ξ P px0,xq. Получим остаточный член в форме Лагранжа:

Rn`1pxq “
f pn`1qpξ q

pn`1q!
px´ x0q

n`1 (20.6)

Остаточный член в такой форме удобнее, чем в интегральной, так как
он похож на слагаемые многочлена Тейлора. Точку ξ часто записывают как
ξ “ x0`pξ ´ x0q “ x0`Θpx´ x0q, где Θ P p0,1q (см. рис. 20.2).

Рис. 20.2. Формула среднего значения.

Следствие 20.3.2. По условию, функция имеет непрерывную n`1-ую произ-
водную в точке x0. Тогда предел lim

xÑx0
f pn`1qpξ q “ f pn`1qpx0q. Отсюда следует,
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что производную n`1-го порядка в точке ξ можно представить следующим
образом: f pn`1qpξ q “ f pn`1qpx0q`αpxq, где αpxqÑ 0 при xÑ x0. Поэтому формулу
(20.5) можно записать как:

Rn`1pxq “
f pn`1qpx0q

pn`1q!
px´ x0q

n`1
`

αpxqpx´ x0q
n`1

pn`1q!

Произведение двух бесконечно малых есть бесконечно малая более высокого
порядка, чем любая из них. Последний член можно записать как o

`

px´ x0q
n`1

˘

.
Тогда получим остаточный многочлен вида:

Rn`1pxq “
f pn`1qpx0q

pn`1q!
px´ x0q

n`1
`o

`

px´ x0q
n`1˘ (20.7)

Если подставим этот член в формулу (20.4), то получим:

f pxq “ Pn`1pxq`o
`

px´ x0q
n`1˘ (20.8)

Эта формула была получена при условии, что функция f pxq n`1 раз непре-
рывно дифференцируема в окрестности точки x0. Если функция f pxq n раз
непрерывно дифференцируема в окрестности точки x0, то справедливо равен-
ство:

f pxq “ Pnpxq`oppx´ x0q
n
q (20.9)

Получили формулу Тейлора с остаточным членом в форме Пеано.

Теорема 20.4. Если функция f pxq n раз непрерывно дифференцируема в окрест-
ности точки x0, то для f pxq справедливо равенство (20.9) — формула Тейлора
с остаточным членом в форме Пеано.

Для интегральной формы остаточного члена и формы Лагранжа можно не
требовать, чтобы функция имела непрерывную производную n` 1-го порядка
— достаточно просто производной n`1-го порядка.

Теперь формулу Тейлора применим к элементарным функциям: экспоненте,
тригонометрическим функциям и т. д.
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Формула Маклорена (начало)

Формула Тейлора с разложением в точке x0 “ 0 называется формулой Ма-

клорена .

f pxq “ f p0q`
f 1p0q
1!

x` . . .`
f pnqp0q

n!
xn
`Rn`1pxq, (20.10)

где Rn`1pxq:

Rn`1pxq “
f pn`1qpΘxq
pn`1q!

xn`1, где 0ăΘă 1

Или в другой форме:
Rn`1pxq “ opxn

q
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Лекция 21. Исследование поведения функций.

Часть 1.

Формула Маклорена

Формула Маклорена для произвольной функции f pxq имеет вид:

f pxq “ f p0q`
f 1p0q
1!

x`
f 2p0q

2!
x2` . . .`

f pnqp0q
n!

xn`Rn`1pxq

“ Pnpxq`Rn`1pxq

Для остаточного члена Rn`1pxq существует несколько форм. В форме Пеано:

Rn`1pxq “ opxn
q при xÑ 0

Эта форма удобна при рассмотрении некоторых пределов, которые вычис-
ляются с помощью формулы Маклорена. Остаточный член в форме Лагранжа:

Rn`1pxq “
1

pn`1q!
f pn`1q

pΘxqxn`1, где Θ P p0,1q

Пример 21.1. Рассмотрим функцию f pxq “ ex.

Мы знаем, что для любого n верно, что f pnqpxq “ ex. Тогда f pnqp0q “ 1. По
формуле Маклорена мы получаем:

ex
“ 1`

x
1!
`

x2

2!
` . . .

xn

n!
`Rn`1pxq (21.1)

Остаточный член в форме Пеано: Rn`1pxq “ opxnq. Остаточный член в форме
Лагранжа:

Rn`1pxq “
eΘx

pn`1q!
xn`1

Для любого фиксированного x верно, что:

|Rn`1pxq| ď
e|x|

pn`1q!
|xn`1

|

Вспомним, что число e ă 3, тогда |Rn`1pxq| ď 3
pn`1q! |x

n`1|. Если устремить n

к бесконечности, то будет два случая. Если |x| ą 1, то модуль |xn`1| Ñ 8 как
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показательная функция. Тогда 3|xn`1|
pn`1q! Ñ 0 при n Ñ8. Тогда остаточный член

|Rn`1pxq Ñ 0 при nÑ8. Чем больше n, тем меньше функция ex отличается от
многочлена Тейлора, поскольку остаточный член стремится к нулю. Это позво-
ляет вычислять ex с любой наперёд заданной точностью с помощью многочлена
Тейлора, если взять достаточно большое n.

Пример 21.2. Вычислим число e с точностью 10´6. Полагаем x “ 1 и полу-
чаем:

e« 1`1`
1
2!
`

1
3!
` . . .`

1
n!

Оценка для остаточного члена Rn`1p1q ď 3
pn`1q! ă 10´6. Если взять n “ 9,

то неравенство выполняется: R10p1q ă 10´6. Получается:

e« 1`1`
1
2!
`

1
3!
` . . .`

1
9!

с точностью 10´6

Пример 21.3. Рассмотрим функцию f pxq “ sinpxq.

Производная f pnqpxq “ sin
`

x`nπ

2

˘

. Производная в нуле:

f pnqp0q “ sin
´

n
π

2

¯

“

$

&

%

0, n“ 2k

p´1qk, n“ 2k`1

Общий член формулы Маклорена для данной функции:

f pnqp0q
n!

xn
“

$

’

&

’

%

0, n“ 2k
p´1qk

p2k`1q!
x2k`1, n“ 2k`1

Запишем формулу Маклорена для данной функции:

sinpxq “ x´
x3

3!
`

x5

5!
´ . . .`

p´1qn´1x2n´1

p2n´1q!
`R2n`1pxq (21.2)

Остаточный член по Пеано: R2n`1pxq “ opx2nq, по Лагранжу:

R2n`1pxq “
sin

`

Θx`p2n`1qπ

2

˘

p2n`1q!
x2n`1

194



МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ 1.
БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Проведём оценку остаточного члена. Для любого фиксированного x верно,
что:

|R2n`1pxq| ď
|x|2n`1

p2n`1q!
Ñ 0 при xÑ8,

так как факториал растёт быстрее показательной функции. Это даёт воз-
можность вычислять sinpxq приближённо с любой наперёд заданной точностью
с помощью многочлена Тейлора, если взять достаточно большое n.

Пример 21.4. Рассмотрим 0 ď x ď π

4 . Вычислим sinpxq с точностью 10´4.
Можно записать, что:

|R2n`1pxq| ď

`

π

4

˘2n`1

p2n`1q!
ă 10´4

Достаточно взять n“ 3. Тогда многочлен Тейлора:

sinpxq « x´
x3

6
`

x5

120
с точностью 10´4

@x P
”

0,
π

4

ı

Пример 21.5. Рассмотрим функцию f pxq “ cospxq.

Известно, что f pnqpxq “ cos
`

x`nπ

2

˘

. Тогда в нуле:

f pnqp0q “ cos
nπ

2
“

$

&

%

0, n“ 2k´1

p´1qk, n“ 2k

Запишем формулу Маклорена для данной функции:

cospxq “ 1´
x2

2!
`

x4

4!
´ . . .`

p´1qn

p2nq!
x2n
`R2n`2pxq (21.3)

Остаточный член в форме Пеано R2n`2pxq “ opx2n`1q при x Ñ 8, в форме
Лагранжа:

R2n`2pxq “
cos

`

Θx`p2n`2qπ

2

˘

p2n`2q!
x2n`2

Оценим остаточный член: для любого фиксированного x верно, что

|R2n`2pxq| ď
|x|2n`2

p2n`2q!
Ñ 0 при nÑ8

Это даёт возможность вычислять cospxq приближённо с любой наперёд за-
данной точностью с помощью многочлена Тейлора, если взять достаточно боль-
шое n.
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Связь между ex, sinpxq и cospxq

Перепишем формулы Маклорена для ex, sinpxq и cospxq.

ex “ 1 `
x

1!
`

x2

2!
`

x3

3!
`

x4

4!
`

x5

5!
` . . .

sinpxq “
x

1!
´

x3

3!
`

x5

5!
´ . . .

cospxq “ 1 ´
x2

2!
`

x4

4!
´ . . .

Связь между ex, sinpxq и cospxq стоит в области комплексных чисел. Рассмот-
рим eix, где i — мнимая единица. Будем считать, что для любого показателя
степени формула Маклорена верна. Тогда:

eix
“ 1`

ix
1!
´

x2

2!
´

ix3

3!
`

x4

4!
`

ix5

5!
´ . . .“

ˆ

1´
x2

2!
`

x4

4!
´ . . .

˙

` i
ˆ

x´
x3

3!
`

x5

5!
´ . . .

˙

Тем самым получаем:
eix
“ cospxq` isinpxq (21.4)

Записанная формула так же называется формулой Эйлера .

Для sinpxq мы написали формулу Маклорена и сказали, что отбрасывая оста-
точный член, мы получаем многочлен Тейлора, который даёт приближённое
значение для синуса. Рассмотрим, как это будет выглядеть на графике.

Изобразим на графике функцию f pxq “ sinpxq и многочлены P1pxq “ x, P3pxq “

x´ x3

6 , P5pxq “ x´ x3

6 `
x5

120 (рис. 21.1).

По этому графику видно, что с ростом номера многочлена Тейлора не толь-
ко его близость к функции увеличивается, но и промежуток, на котором этот
многочлен близок к синусу. Такой же график для косинуса изображён на рис.
21.2.

Пример 21.6. Рассмотрим функцию f pxq “ lnp1` xq, где xą´1.

Вычислим последовательно несколько производных.

f 1pxq“ p1`xq´1, f 2pxq“ p´1qp1`xq´2, f3pxq“ p´1qp´2qp1`xq´3
“p´1q22!p1`xq´3
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Рис. 21.1. Графики sinpxq (оранжевый цвет), P1pxq (зелёный цвет), P3pxq (фио-
летовый цвет) и P5pxq (чёрный цвет).

Рис. 21.2. Графики cospxq (оранжевый цвет), P0pxq (зелёный цвет), P2pxq (фио-
летовый цвет) и P4pxq (чёрный цвет).

Когда мы продифференцируем ещё раз, то выйдет множитель p´1q33!. То-
гда производная f pnqpxq “ p´1qn´1pn´ 1q!p1` xqn. Производная в нуле f pnqp0q “

p´1qn´1pn´1q!.

Тогда общий член формулы Маклорена:

f pnqp0q
n!

xn
“
p´1qn´1

n
xn

Тогда формула Маклорена для данной функции:

lnp1` xq “ x´
x2

2
`

x3

3
´ . . .`

p´1qn´1

n
xn
`Rn`1pxq (21.5)

Остаточный член в форме Пеано Rn`1pxq “ opxnq при nÑ8.
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Упражнение 21.1. Выписать остаточный член Rn`1pxq для функции f pxq “

lnp1` xq в форме Лагранжа.

Можно доказать, что Rn`1pxq Ñ 0 при n Ñ 8 для любого x P p´1,1s. Это
доказывается в теории функций комплексной переменной. В частности, если
положить x“ 1, то:

ln2« 1´
1
2
`

1
3
´ . . .`

p´1qn´1

n

Пример 21.7. Рассмотрим функцию f pxq “ p1` xqα , где x ą ´1 и α — любое
действительное число.

Распишем производные.

f 1pxq “ αp1` xqα´1

. . .

f pnqpxq “ αpα´1q . . .pα´n`1qp1` xqα´n

Производная в нуле f pnqp0q “ αpα ´1q . . .pα ´n`1q. Запишем формулу Ма-
клорена для данной функции:

p1` xqα “ 1`
α

1!
x`

αpα´1q
2!

x2
` . . .`

αpα´1q . . .pα´n`1q
n!

xn
`Rn`1pxq (21.6)

Остаточный член в форме Пеано Rn`1pxq “ opxnq при nÑ8.

Упражнение 21.2. Выписать остаточный член Rn`1pxq для функции f pxq “

p1` xqα в форме Лагранжа.

Можно доказать, что остаточный член Rn`1pxq Ñ 0 при nÑ8 для любого
x P p´1,1q. Отметим один частный случай: если α “ n P N, то:

p1` xqn “ 1`nx`
npn´1q

2!
x2
` . . .` xn, Rn`1pxq ” 0

Пример 21.8. Рассмотрим функцию f pxq “ tgpxq.

Мы уже знаем, что tgpxq “ x` opxq. Нетрудно заметить, что в разложении
тангенса будут присутствовать только нечётные степени x, так как эта функция
нечётная.

tgpxq “ x`
x3

3
`

2
15

x3
` . . . (21.7)
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Вывести эти коэффициенты можно прямым способом, вычисляя производ-
ные в нуле. Но есть другой способ.

sinpxq “ cospxq ¨ tgpxq

x´
x3

6
`

x5

120
` . . .“

ˆ

1´
x2

2
`

x4

24
´ . . .

˙

¨

´

x` k3x3
` k5x5

` . . .
¯

Приравняем соответствующие коэффициенты:

x : 1“ 1, k1 “ 1

x3 : ´
1
6
“ k3´

1
2
, k3 “

1
3

x5 :
1

120
“ k5´

1
6
`

1
24

, k5 “
2

15
. . .

Этот способ намного удобнее, чем просчитывать все производные.

Формулы (21.1), (21.2), (21.3), (21.5) и (21.6) называются основными 5 раз-

ложениями .

Пример 21.9. Вычислить предел:

lim
xÑ0

p1` xqsinpxq´ cospxq
x2

Доказательство. Дробь имеет неопределённость вида 0
0 при x Ñ 0. Правило

Лопиталя здесь применять неудобно, найдём предел с помощью формул Ма-
клорена. Разложим числитель по формулам Маклорена.

p1` xqsinpxq
“ esinpxq lnp1`xq

“ epx`opxqq¨px`opxqq
“ ex2`opx2q

Запишем разложение для полученной экспоненты:

ex2`opx2q
“ 1` x2

`opx2
q

Разложение второго слагаемого числителя:

cospxq “ 1´
x2

2
`opx2

q
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Находим искомый предел:

lim
xÑ0

p1` xqsinpxq´ cospxq
x2 “ lim

xÑ0

1` x2`opx2q´1´ x2

2 `opx2q

x2 “
3
2

Пример 21.10. Рассмотрим функцию f pxq“
a

1` tgpxq. Разложить эту функ-
цию по формуле Маклорена с остаточным членом opx3q.

Доказательство. Запишем разложение для тангенса:

f pxq “
ˆ

1` x`
x3

3
`opx3

q

˙

1
2

Получили выражение типа p1` xqα . Тогда можно разложить по формуле
(21.6):

f pxq “ 1`
1
2

ˆ

x`
x3

3
`opx3

q

˙

´
1
8

ˆ

x`
x3

3
`opx3

q

˙2

`
1

16

ˆ

x`
x3

3
`opx3

q

˙3

`opx3
q

f pxq “ 1`
1
2

ˆ

x`
x3

3

˙

´
1
8

x2
`

1
16

x3
`opx3

q “ 1`
1
2

x´
1
8

x2
`

11
48

x3
`opx3

q

Исследование поведения функций и построение графиков.

Точки локального экстремума и промежутки

монотонности

Определение 21.1. Говорят, что функция f pxq имеет локальный макси-

мум (минимум) в точке c, если существует окрестность точки c, в кото-
рой f pxq ă f pcq ( f pxq ą f pcq) при x‰ c.

Раннее была доказана теорема Ферма:

Теорема 21.1. (теорема Ферма) Если функция f pxq дифференцируема в
точке c и имеет в точке c локальный экстремум, то f 1pcq “ 0.

Замечание 21.1. Условие f 1pcq “ 0 только необходимое, но не достаточное
условие локального экстремума дифференцируемой в точке c функции.
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Рис. 21.3. График функции f pxq “ x3.

Пример 21.11. У функции f pxq “ x3 производная f 1p0q “ 0, но в точке x “ 0

функция f pxq не имеет локального экстремума (см. рис. 21.3).

Замечание 21.2. Функция f pxq может иметь экстремум в точке c, но при
этом не быть дифференцируемой в этой точке, тем самым условие f 1p0q “ 0

не будет выполнено.

Пример 21.12. Функция f pxq “ |x| имеет локальный минимум в точке x“ 0,
но функция в этой точке не дифференцируема (см. рис. 21.4).

Рис. 21.4. График функции f pxq “ |x|.

Определение 21.2. Будем называть точками возможного экстремума

функции f pxq точки двух типов:

1) такие точки c, в которых f 1pcq “ 0;

2) такие точки c, в которых f 1pcq не существует, но сама функция в этой
точке непрерывна.

При нахождении точек возможного экстремума, чтобы ответить на вопрос,
являются ли они точками локального экстремума, необходимо проверить до-
статочные условия.

Теорема 21.2. (I достаточное условие экстремума) Пусть точка c —
точка возможного экстремума функции f pxq и пусть функция f pxq дифферен-
цируема в проколотой окрестности точки c. Тогда:

201



МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧАСТЬ 1.
БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

1) если f 1pxq ą 0 при x ă c и f 1pxq ă 0 при x ą c, то в точке c функция f pxq

имеет локальный максимум;

2) если f 1pxq ă 0 при x ă c и f 1pxq ą 0 при x ą c, то в точке c функция f pxq

имеет локальный минимум;

3) если справа и слева от точки c производная f 1pxq имеет один и тот же
знак, то в точке c локального экстремума нет.
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Лекция 22. Исследование поведения функций.

Часть 2.

Точки локального экстремума и промежутки

монотонности функции (окончание)

В прошлом разделе была разобрана теорема:

Теорема 22.1. (I достаточное условие экстремума) Пусть точка c —
точка возможного экстремума функции f pxq и пусть функция f pxq дифферен-
цируема в проколотой окрестности точки c. Тогда:

1) если f 1pxq ą 0 при x ă c и f 1pxq ă 0 при x ą c, то в точке c функция f pxq

имеет локальный максимум;

2) если f 1pxq ă 0 при x ă c и f 1pxq ą 0 при x ą c, то в точке c функция f pxq

имеет локальный минимум;

3) если справа и слева от точки c производная f 1pxq имеет один и тот же
знак, то в точке c локального экстремума нет.

Замечание 22.1. Условие теоремы 22.1 является только достаточным, но
не необходимым условием экстремума функции в точке c.

Пример 22.1. Рассмотрим функцию:

f pxq “

$

’

&

’

%

x2
ˆ

2´ sin
1
x

˙

, x‰ 0

0, x“ 0

Если x‰ 0, то значение функции f pxq ą 0 в любой точке. Поэтому в точке
x“ 0 функция достигает минимум. Однако, не существует такой окрестно-
сти точки x“ 0, в которой f 1pxq ă 0 при xă 0 и f 1pxq ą 0 при xą 0. Рассмотрим
выражение для производной.

f 1pxq “

$

&

%

4x´2xsin
1
x
` cos

1
x
, x‰ 0

0, x“ 0
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Необходимое условие экстремума выполнено. Какую бы малую окрестность
точки x“ 0 мы ни взяли, найдутся точки слева от неё, где производная боль-
ше нуля, и точки справа от неё, где производная меньше нуля, за счёт беско-
нечных колебаний косинуса.

Теорема 22.2. (II достаточное условие экстремума) Пусть функция
y “ f pxq дважды дифференцируема в точке c (то есть имеет в этой точке
первую и вторую производные) и пусть первая производная f 1pcq “ 0, а вторая
производная f 2pcq ‰ 0. Тогда в точке c функция y “ f pxq имеет локальный
экстремум, причём:

1) если f 2pcq ą 0, то локальный минимум;

2) если f 2pcq ă 0, то локальный максимум.

Доказательство. Рассмотрим случай, когда f 2pcq ą 0. Вторая производная это
производная от первой производной. Мы знаем. что если производная какой-то
функции в точке c положительна, то функция в этой точке возрастает. Зна-
чит, если вторая производная положительна, то возрастает первая производная
f 1pcq, то есть существует окрестность точки c, в которой f 1pxq ă f 1pcq “ 0 при
x ă c и f 1pxq ą f 1pcq “ 0 при x ą c. Отсюда по теореме 22.1 следует, что в точке
c функция f pxq имеет локальный минимум, что и требовалось доказать. Для
случая f 2pcq ă 0 всё аналогично.

Пример 22.2. Рассмотрим функцию y“ x3´3x2. Первая производная f 1pxq “

3x2´6x“ 3xpx´2q. Знаки f 1pxq изображены на рис. 22.1.

Рис. 22.1. Знаки производной f 1pxq

Вычислим вторую производную: f 2pxq “ 6x´6. В точках 0 и 2 вторая про-
изводная: f 2p0q “ ´6ă 0, то есть в точке x“ 0 достигается локальный мак-
симум; f 2p2q “ 6ą 0, то есть в точке x“ 2 достигается локальный минимум
(по теореме 22.2).
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В предыдущем разделе была сформулирована теорема:

Теорема 22.3. Для того чтобы дифференцируемая на промежутке X функ-
ция f pxq не убывала (не возрастала) на этом промежутке, необходимо и до-
статочно, чтобы @x P X выполнялось неравенство f 1pxq ě 0 ( f 1pxq ď 0).

Замечание 22.2. Для строго возрастания (убывания) достаточно, но не необ-
ходимо, чтобы @x P X выполнялось неравенство f 1pxq ą 0 ( f 1pxq ă 0).

Пример 22.3. Рассмотрим функцию f pxq “ x3. Её график изображён на рис.
22.2.

Рис. 22.2. График функции f pxq “ x3

Наглядно видно, что эта функция возрастает на всей числовой прямой. Но
её производная f 1pxq “ 3x2 не строго положительна во всех точках, в частно-
сти f 1p0q “ 0.

Следовательно, для отыскания промежутков монотонности функции нужно
найти промежутки знакопостоянства производной f 1pxq.

Пример 22.4. Рассмотрим функцию y “ x3´3x2. Знаки f 1pxq изображены на
рис. 22.1. При x ă 0 функция возрастает, при 0 ă x ă 2 убывает, при x ą 2

возрастает.

Направление выпуклости и точки перегиба графика

функции

Рассмотрим понятие выпуклости функции. В качестве примера рассмотрим
две функции y“ f1pxq и y“ f2pxq, их графики изображены на рис. 22.3.
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Рис. 22.3. Графики функций y “ f1pxq

и y“ f2pxq.
Рис. 22.4. Касательные к y“ f1pxq и y“

f2pxq

График первой функции направлен выпуклостью вверх, а второй функции
— выпуклостью вниз. Проведём произвольную касательную к первому графику:
график функции f1pxq расположен не выше касательной на промежутке ra1,b1s.
Если мы проведём произвольную касательную ко второму графику, то график
функции f2pxq расположен не ниже касательной на промежутке ra2,b2s (см. рис.
22.4).

Определение 22.1. Пусть функция y “ f pxq имеет производную в каждой
точке интервала pa,bq. Тогда в каждой точке Mpx, f pxqq существует каса-
тельная к графику функции. Говорят, что график функции y“ f pxq направлен

выпуклостью вверх (вниз) на интервале pa,bq, если в пределах интервала
pa,bq график функции лежит не выше (не ниже) любой своей касательной.

Теорема 22.4. Пусть функция y “ f pxq дважды дифференцируема на интер-
вале pa,bq. Тогда если @x P pa,bq выполняется неравенство f 2pxq ě 0 ( f 2pxq ď 0),
то на интервале pa,bq график функции направлен выпуклостью вниз (выпук-
лостью вверх).

Доказательство. Рассмотрим случай, когда f 2pxq ě 0@x P pa,bq. Рассмотрим
функцию y“ f pxq, её график изображён на рис. 22.5.

Возьмём какую-нибудь точку Mpc, f pcqq на интервале pa,bq. Проведём каса-
тельную к графику функции в точке M. Требуется доказать, что на интервале
pa,bq график функции лежит не ниже этой касательной.

Уравнение касательной имеет вид Y ´ f pcq “ f 1pcqpx´ cq или:

Y “ f pcq` f 1pcqpx´ cq (22.1)
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Рис. 22.5. График функции y“ f pxq.

Требуется доказать, что @x P pa,bq верно, что Y pxq ď f pxq. По формуле Тей-
лора с остаточным членом в форме Лагранжа и центром разложения в точке
c:

f pxq “ f pcq` f 1pcqpx´ cq`
1
2

f 2pξ qpx´ cq2, (22.2)

где точка ξ P pc,xq. Вычитая (22.1) из (22.2), получим:

f pxq´Y pxq “
1
2

f 2pξ qpx´ cq2

По условию, вторая производная во всех точках неотрицательна. Значит,
правая часть равенства тоже неотрицательна. Отсюда следует, что f pxq ěY pxq,
что и требовалось доказать.

Пример 22.5. Рассмотрим функцию y“ x3´3x2. Первая производная f 1pxq “

3x2 ´ 6x. Знаки производной изображены на рис. 22.1. Вторая производная
f 2pxq “ 6x´6“ 6px´1q. Знаки второй производной изображены на рис. 22.6.

Тогда для x ă 1 выпуклость вверх, а для x ą 1 выпуклость вниз. Можно
построить график функции, опираясь на эти данные, он изображён на рис.
22.7.

Заметим, что в точке Mp1,´2q произошло изменение направления выпук-
лости графика функции y “ x3´3x2. Такая точка называется точкой пере-

гиба графика функции.

Определение 22.2. Точка Mpa, f paqq называется точкой перегиба графика
функции y“ f pxq, если выполнены два условия:
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Рис. 22.6. Знаки второй производной
f 2pxq “ 6x´6“ 6px´1q.

Рис. 22.7. График функции y“ x3´3x2.

1) в точке Mpa, f paqq существует касательная к графику;

2) в некоторой окрестности точки a слева и справа от точки a график
функций имеет разные направления выпуклости.

Теорема 22.5. (необходимое условие точки перегиба) Пусть функция
y“ f pxq имеет в точке a непрерывную вторую производную и пусть в точке
Mpa, f paqq график функции имеет перегиб. Тогда f 2paq “ 0.

Доказательство. Предположим противное: пусть f 2paqą 0. Тогда, в силу устой-
чивости знака непрерывной функции, f 2pxq ą 0 в некоторой окрестности точки
a слева и справа от этой точки. Тогда по теореме 22.4 в пределах этой окрестно-
сти график функции направлен выпуклостью вниз слева и справа от точки a.
Это противоречит тому, что в точке Mpa, f paqq график функции имеет перегиб.
Аналогично для предположения f 2paq ă 0. Полученное противоречие доказы-
вает теорему.

Определение 22.3. Назовём точками возможного перегиба графика функ-
ции y “ f pxq такие точки Mpa, f paqq, для которых либо f 2paq “ 0, либо f 2paq

не существует, но существует касательная к графику функции в точке M.

Упражнение 22.1. Рассмотрим функцию:

f pxq “

$

&

%

x2, xě 0

´x2, xď 0
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Доказать, что в точке Mp0,0q график функции имеет перегиб, но f 2p0q не
существует. (Для этого нужно доказать, что в точке M есть касательная
и что справа и слева разные направления выпуклости).

Отметим, что условие f 2paq “ 0 только необходимое, но не достаточное усло-
вие перегиба функции в точке Mpa, f paqq.

Пример 22.6. Рассмотрим функцию y“ x4, её график изображён на рис. 22.8.

Рис. 22.8. График функции y“ x4.

Весь график функции направлен выпуклостью вниз. Вторая производная
f 2p0q “ 0, но в точке Mp0,0q перегиба графика нет.

Теорема 22.6. (I достаточное условие перегиба) Пусть точка Mpa, f paqq

— точка возможного перегиба графика функции y“ f pxq и пусть в некоторой
проколотой окрестности точки a функция f pxq имеет вторую производную,
причём знак второй производной различен справа и слева от точки a. Тогда в
точке Mpa, f paqq график функции имеет перегиб.

Доказательство. Если точка Mpa, f paqq — точка возможного перегиба и знак
второй производной различен справа и слева от точки a, значит слева и справа
разные направления выпуклости, то есть в точке Mpa, f paqq график функции
имеет перегиб.

Теорема 22.7. (II достаточное условие перегиба) Пусть функция y “

f pxq трижды дифференцируема в точке a и пусть f 2paq “ 0, а f3paq ‰ 0. Тогда
в точке Mpa, f paqq график функции имеет перегиб.

Доказательство аналогично доказательству теоремы 22.2.
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Асимптоты графика функции

Определение 22.4. Прямая x “ a называется вертикальной асимпто-

той графика функции y“ f pxq, если хотя бы один из односторонних пределов
lim

xÑa`0
f pxq и lim

xÑa´0
f pxq равен `8 или ´8.

Пример 22.7. Рассмотрим график функции y “ 1
x . Предел lim

xÑ`0
1
x “ `8. Зна-

чит, x“ 0 — вертикальная асимптота.

Определение 22.5. Прямая Y “ kx`b называется наклонной асимптотой

графика функции y “ f pxq при xÑ`8, если функцию можно представить в
виде f pxq “ kx`b`αpxq, где αpxq — бесконечно малая функция при xÑ`8, то
есть lim

xÑ`8
αpxq “ 0.

Пример 22.8. Рассмотрим функцию y “
x2` sinpxq

x
. Её так же можно за-

писать как f pxq “ x` sinpxq
x . Второе слагаемое стремится к нулю при xÑ˘8,

поэтому прямая Y “ x является наклонной асимптотой графика данной функ-
ции при при xÑ˘8. График функции и асимптота изображены на рис. 22.9.

Рис. 22.9. График функции f pxq“ x` sinpxq
x (красный цвет) и её наклонная асимп-

тота Y “ x (синий цвет).

Теорема 22.8. Для того чтобы прямая Y “ kx`b была наклонной асимпто-
той графика функции y“ f pxq при xÑ`8, необходимо и достаточно, чтобы
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существовали два предела:

lim
xÑ`8

f pxq
x
“ k (22.3)

lim
xÑ`8

p f pxq´ kxq “ b (22.4)

Доказательство. 1. Необходимость. Пусть прямая Y “ kx` b — наклонная
асимптота графика функции y“ f pxq при xÑ`8. Тогда по определению функ-
цию можно представить в виде f pxq “ kx` b`αpxq, где αpxq ÝÝÝÝÑ

xÑ`8
0. Отсюда

следует, что выполняются равенства (22.3) и (22.4):

lim
xÑ`8

f pxq
x
“ lim

xÑ`8

ˆ

k`
b
x
`

αpxq
x

˙

“ k

lim
xÑ`8

p f pxq´ kxq “ lim
xÑ`8

pb`αpxqq “ b

Упражнение 22.2. Доказать достаточность теоремы 22.8.

Рис. 22.10. График функции y“ x3e´x.

Схема построения графика функции

Дана функция y“ f pxq. Надо построить её график. Нужно определить:

1) область определения;

2) асимптоты;

3) промежутки монотонности и точки локального экстремума (с помощью
первых производных);
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4) направления выпуклости и точки перегиба (с помощью вторых производ-
ных);

5) другие особенности графика (пересечение графиком оси координат, чёт-
ность и ось симметрии и т. д.).

Упражнение 22.3. Рассмотрим функцию y“ x3e´x. Её график изображён на
рис. 22.10. Обосновать по пунктам построение графика.
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