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Лекция 1. Линейное пространство. Определение и свойства 
Зачем физикам линейная алгебра 

 На физическом факультете программу обучения составляют физики, а это значит, 
что линейная алгебра является необходимым предметом для изучения.   
 В 1923 году в Англии вышла книга Дирака «Принципы квантовой механики». Эта 
книга начинается с алгебры, а если точнее – с линейной алгебры. В первых главах Дирак 
образовал некий алгебраический аппарат и с его помощью описал все элементарные 
частицы, которые были известны на момент 1923 года. Кроме того, на основе этого 
аппарата он получил, что могут существовать и другие элементарные частицы, однако 
никто их никогда не видел. Спустя 34 года, выпускник физического факультета Логунов 
Алексей на синхрофазотроне получил все предсказанные Дираком частицы. Тогда Дирак 
прибыл на физический факультет, где прошел семинар физиков-теоретиков. Один из 
аспирантов задал вопрос Дираку о том, как он смог из чистой абстрактной математики 
получить такой изумительный физический результат. В ответ Дирак улыбнулся и 
ответил, что это красиво! Отсюда можно заключить, что физик должен знать линейную 
алгебру досконально, глубоко и по-настоящему для того, чтобы получить какой-либо 
значимый результат в своих исследованиях. 
 
Литература по курсу 

 Для полного освоения линейной алгебры можно посоветовать учебник Б.Л. ван 
дер Вардена «Алгебра». Однако перед изучением данного учебника необходимо как 
минимум прослушать данный курс лекций. 
 Существует другая книга, которая выпущена на факультете – «Линейная алгебра 
и аналитическая геометрия с приложениями» авторов Крутицкой Н.Ч., Тихонравова А.В. 
и Шишкина А.А. Рекомендуется для прочтения первая часть. 
 Также можно использовать учебник С.Б. Кадомцева «Аналитическая геометрия и 
линейная алгебра». 
 Другой фундаментальный труд В.А. Ильина и Э.Г. Позняка «Линейная алгебра». 
Учебник написан в то время, когда физиков интересовали только два поля, в то время 
как в данных лекциях речь пойдет о произвольных полях. Однако для тех, кто работает 
с полями из учебника Ильина и Позняка, книга очень полезная. 
 И, наконец, еще один учебник авторов Бадьина А.В., Левашовой Н.Т. и Шишкина 
А.А. «Знакомство с теорией групп. Основные понятия. Группы преобразований». В 
данной работе очень подробно и понятно описаны понятия групп с примерами.  
 Теперь перейдем к задачнику. «Линейная алгебра в вопросах и задачах» авторов 
Бутузова В.Ф., Крутицкой Н.Ч. и Шишкина А.А. 
  
Числовое поле 

 При изложении материалов лекций будут использоваться разные объекты: 
матрицы, многочлены, функции и др., которые определяются на некотором множестве 
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чисел. Для более общего изложения множества этих чисел будем обозначать буквой 𝐾. 
Над числами, которые принадлежат множеству 𝐾, мы можем производить четыре 
арифметические операции: сложение, вычитание, умножение и деление. 
 
 Определение 
 Числовым полем называется множество чисел 𝐾, на котором однозначно 
выполнимы сложение, вычитание, умножение и деление, причем  

∀𝑥, 𝑦 ∈ 𝐾:							𝑥 + 𝑦, 𝑥 − 𝑦, 𝑥𝑦,
𝑥
𝑦
(𝑦 ≠ 0) ∈ 𝐾 

 То есть иначе – требование корректности.  
 В случае множества натуральных числе мы получаем, что корректность будет 
нарушена (2 − 5 = −3). Также получается и с полем целых чисел (2/3). 
 А вот множества ℚ− рациональных чисел, 𝐾! − вещественный чисел и ℂ − 
комплексных чисел – примеры числовых полей. 
 Кроме того, можно показать, что множество является числовым полем  

∀𝑎, 𝑏 ∈ ℚ:								𝑎 + 𝑏√2 
 
Определение линейного пространства 

 Сразу обговорим, что в случае, когда мы читаем книги по линейной алгебре, 
которые написаны математиками, понятие линейного пространства построено для 
векторов, так как вектор для математиков является удобной абстракцией. Для физиков 
вектор – вполне определенный конкретный объект. Поэтому при построении линейного 
пространства введем термин «элемент». Под элементом мы подразумеваем числа, 
матрицы, тензоры, векторы и другое. 
 
 Определение 
 Множество 𝑅 элементов любой природы 𝑥, 𝑦, 𝑧, … называется линейным 
пространством (ЛП) над числовым полем 𝐾, если  

I. Указано правило, с помощью которого  
∀𝑥, 𝑦 ∈ 𝑅		𝑧 ∈ 𝑅:		𝑧 = 𝑥 + 𝑦 

II. Есть еще одно правило, с помощью которого 
∀𝑥 ∈ 𝑅			∀𝜆 ∈ 𝐾		𝑢 ∈ 𝑅:			𝑢 = 𝜆𝑥 = 𝑥𝜆 

III. Две данные операции удовлетворяют следующим 8 требованиям: 
1. ∀𝑥, 𝑦 ∈ 𝑅			𝑥 + 𝑦 = 𝑦 + 𝑥 
2. ∀𝑥, 𝑦, 𝑧 ∈ 𝑅			(	𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) 
3. ∃𝜃 ∈ 𝑅: ∀𝑥 ∈ 𝑅			𝑥 + 𝜃 = 𝑥 
4. ∀𝑥 ∈ 𝑅	∃𝑥" ∈ 𝑅			𝑥 + 𝑥" = 𝜃 
5. ∀𝑥 ∈ 𝑅			1𝑥 = 𝑥 
6. ∀𝑥 ∈ 𝑅	∀𝜆, 𝜇 ∈ 𝐾			𝜆(𝜇𝑥) = (𝜆𝜇)𝑥 
7. ∀𝑥 ∈ 𝑅	∀𝜆, 𝜇 ∈ 𝐾			(𝜆 + 𝜇)𝑥 = 𝜆𝑥 + 𝜇𝑥 
8. ∀𝑥, 𝑦 ∈ 𝑅	∀𝜆 ∈ 𝐾			𝜆(𝑥 + 𝑦) = 𝜆𝑥 + 𝜆𝑦 
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 Замечание 1. 
 Данные восемь требований называются аксиомами линейного пространства. 
 
 Замечание 2. 
 Как мы отметили 𝑅 − это множество элементов любой природы, но одной. 
 
 Замечание 3. 
 В аксиоме №6 выражение 𝜆𝜇 представлено в смысле операции в числовом поле. 
И в аксиоме №7 выражение (𝜆 + 𝜇) есть сумма обычных чисел. 
 Теперь рассмотрим структуру самого линейного пространства. Это множество, 
которое определено двумя правилами. Только объединение этих трех элементов дает 
понятие линейного пространства. 
 Данное определение сразу дает возможность оценить количество элементов в 
линейных пространствах. Всего на выбор два случая, когда в линейном пространстве 
бесконечно много элементов или элемент всего один (𝜃). 
 В жизненной учебной практике люди уже сталкиваются с понятиями линейного 
пространства со школы. Сначала это пространство рациональных чисел над полем 
рациональных чисел ℚ(ℚ). Далее в старших классах вводится 𝐾!(𝐾!). В университете в 
курсе аналитической геометрии добавляется пространство радиус-векторов 𝐵#. Также 
известно пространство матриц 𝐻$%. Из матанализа можно вспомнить пространство 
непрерывных на сегменте функций 𝐶[',)]. 
 

Простейшие свойства линейного пространства   

 Немного отойдем от основной темы и вспомним определение векторного 
произведения двух векторов. Пусть даны два вектора 𝑎⃗	и	𝑏G⃗ . Тогда векторное 
произведение это вектор 𝑐, удовлетворяющий трем требованиям: 

1. |𝑐| = |𝑎⃗|J𝑏G⃗ J sinN𝑎⃗, 𝑏G⃗ O 
2. Вектор 𝑐 ортогонален векторам 𝑎⃗ и 𝑏G⃗  
3. Векторы 𝑎⃗, 𝑏G⃗ , 𝑐 образуют правую тройку 

 Данное определение работает следующим образом. Первое требование указывает 
длину нового вектора. Потом с помощью второго требования мы выделяем только одно 
направление. И третье требование выделяет только один объект, который образует 
именно правую тройку.  
 
 Теорема 1 
 В линейном пространстве существует единственный нулевой элемент. 
  
 Доказательство: 
 В качестве доказательства выбираем метод «от противного». Предположим, что 
в ЛП 𝑅 существует два нулевых элемента 𝜃+ и 𝜃,. Рассмотрим аксиому №3 сумму этих 
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двух элементов: 𝜃+ + 𝜃, = 𝜃+. Также по аксиоме №1 имеем: 𝜃, + 𝜃+ = 𝜃,. Получаем, что 
𝜃+ = 𝜃,. Что и требовалось доказать. 
  
 Теорема 2 
 У каждого элемента ЛП существует единственный противоположный элемент. 
  
 Доказательство: 
 Пусть в ЛП 𝑅 существует 𝑥, у которого два противоположных элемента 𝑎, 𝑏:  
𝑥 + 𝑎 = 𝜃 и 𝑥 + 𝑏 = 𝜃 и 𝑎 ≠ 𝑏. Тогда рассмотрим комбинацию вида 𝑥 + 𝑎 + 𝑏 =
(𝑥 + 𝑎) + 𝑏 = 𝜃 + 𝑏 = 𝑏 + 𝜃 = 𝑏. Теперь можно сделать так 𝑥 + 𝑎 + 𝑏 = (𝑥 + 𝑎) + 𝑏 =
(𝑎 + 𝑥) + 𝑏 = 𝑎 + (𝑥 + 𝑏) = 𝑎 + 𝜃 = 𝑎. Полученное противоречие доказывает теорему. 
  
 Теорема 3 
 Для любого элемента 𝑥 ∈ 𝑅 имеет место равенство 0𝑥 = 0. 
  
 Доказательство: 
 Будет использован прямой способ доказательства. Согласно аксиоме №5 имеем 
1𝑥 = (1 + 0)𝑥 = аксиома	№7 = 1𝑥 + 0𝑥 = аксиома	№5 = 𝑥 + 0𝑥. И согласно аксиоме 
№3 мы знаем, что такое уравнение выполняется тогда и только тогда, когда это нулевой 
элемент. То есть 0𝑥 = 𝜃. 
  
 Теорема 4 
 Для любого элемента 𝑥 линейного пространства противоположный элемент есть 
элемент (−1)𝑥, то есть 𝑥" = (−1)𝑥. 
  
 Доказательство: 
 𝑥 + (−1)𝑥 = аксиома	№5 = 1𝑥 + (−1)𝑥 = аксиома	№7 = (1 − 1)𝑥 = 0𝑥 = 𝜃. 
И элемент (−1)𝑥 удовлетворяет аксиоме №4, то есть является противоположным.  
 Обозначим (−1)𝑥 = −𝑥. Теперь можно ввести понятие разности элементов 
линейного пространства: 𝑦 − 𝑥 = 𝑦 + (−1)𝑥 = 𝑦 + 𝑥". То есть разность элементов 𝑦 и 𝑥 
есть сумма 𝑦 и противоположного элемента 𝑥. 
 

Линейная зависимость элементов линейного пространства 

 Рассмотрим элементы 𝑥+, 𝑥,, … , 𝑥$ ∈ 𝑅(𝐾). Пусть 𝑐+, 𝑐,, … , 𝑐$ ∈ 𝐾. 
  
 Определение 
 Элемент 𝑦 = 𝑥-𝑐- называется линейной комбинацией элементов 𝑥+, 𝑥,, … , 𝑥$ с 
коэффициентами 𝑐+, 𝑐,, … , 𝑐$. 
 Если 𝑐- = 0, 𝑘 = 1, 𝑛YYYYY, то в силу теоремы 3 и аксиомы №3 получаем 𝑦 = 𝜃. 
  
 Определение 
 Элементы 𝑥+, 𝑥,, … , 𝑥$ ∈ 𝑅(𝐾) называются линейно зависимыми, если некоторая 
их линейная комбинация, не все коэффициенты которой равны нулю, дает элемент 𝜃. 
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 Определение 
 Элементы 𝑥+, 𝑥,, … , 𝑥$ ∈ 𝑅(𝐾) называются линейно независимыми, если  
𝑥-𝑐- = 𝜃 выполняется тогда и только тогда, когда все 𝑐- = 0, 𝑘 = 1, 𝑛YYYYY. 
  
 Теорема 5 
  Для того чтобы элементы 𝑥+, 𝑥,, … , 𝑥$ ∈ 𝑅(𝐾) были линейно зависимы, 
необходимо и достаточно, чтобы один из них был линейной комбинацией остальных. 
 
 Доказательство: 
 Сначала докажем необходимость. Существуют числа 𝑐+, 𝑐,, … , 𝑐$ ∈ 𝐾 не все 
равные нулю, что 𝑐-𝑥- = 𝜃. Выберем элемент 𝑐$ ≠ 0. Тогда существует число − +

.!
. 

Умножим равенство на данное число. Также обозначим через 𝑏- = − ."

.!
. В результате 

получаем 𝑏-𝑥- − 𝑥$ = 𝜃. Далее добавим слева и справа 𝑥$ и получим 𝑏-𝑥- = 𝑥$. Данное 
равенство означает, что один из элементов есть линейная комбинация остальных. 
Необходимость доказана. 
 Докажем достаточность. Заранее известно, что один из элементов является 
линейной комбинацией остальных. Тогда переходим к соотношению 𝑏-𝑥- − 𝑥$ = 𝜃, 
которое означает, что эти элементы линейно зависимы, потому что хотя бы один 
коэффициент при 𝑥$ отличен от нуля. Теорема доказана. 
  
 Теорема 6 
 Если к элементам 𝑥+, 𝑥,, … , 𝑥$ ∈ 𝑅(𝐾) добавить нулевой элемент пространства, то 
совокупность этих элементов всегда линейно зависимо. 
  
 Доказательство: 
 Перед всеми 𝑥- подставляем нули, а перед нулевым элементом единицу. Тогда 
получается линейная зависимость. 
  
 Теорема 7 
 Если элементы  𝑥+, 𝑥,, … , 𝑥$ ∈ 𝑅(𝐾) линейно зависимы, то элементы 
𝑥+, 𝑥,, … , 𝑥$, 𝑥$/+, … , 𝑥0 ∈ 𝑅(𝐾) будут тоже линейно зависимы. 
  
 Доказательство: 
 Если 𝑛 первых элементов линейно зависимы, то по определению существуют 
числа 𝑐+, 𝑐,, … , 𝑐$ ∈ 𝐾 не все равные нулю, которые образуют линейную комбинацию. 
Тогда оставим эти числа, а перед остальными элементами поставим нули. Что и 
требовалось доказать. 
 Далее приведем некоторые примеры. 

1. Рассмотрим пространство столбцов 𝑇%.  
𝑒- = N𝛿-1 O

% 
𝑐-𝑒- = (𝑐-)% = 𝜃 = (0)% 

 Это пример 𝑚 линейно независимых столбцов. 
2. Рассмотрим далее пространство матриц 
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𝐻$%:							𝐸1
2 = N𝛿0

2𝛿10O$
%

 

𝑐21𝐸1
2 = N𝑐21O$

% 

 Получили 𝑚 ∗ 𝑛 линейно независимых матриц. 
3. Линейное пространство непрерывных функций 

𝑒+ = 1, 𝑒, = sin, 𝑥 , 𝑒# = cos, 𝑥 
 В этом пространстве можно указать любое наперед заданное число линейно 
независимых элементов. 

Базис и координаты элементов линейного пространства 
 Определение 
 Упорядоченное множество линейно независимых элементов 𝑒+, 𝑒,, … , 𝑒$ ∈ 𝑅(𝐾) 
называется базисом этого пространства, если  

∀𝑥 ∈ 𝑅			∃𝑥+, … , 𝑥$:			𝑥 = 𝑥-𝑒- , 𝑘 = 1, 𝑛YYYYY 
 Числа 𝑥+, … , 𝑥$ – координаты элемента в заданном базисе.  
  
 Теорема 8 
 Разложение элемента линейного пространства по базису единственно. 
  
 Доказательство: 
 Пусть в ЛП 𝑅 есть элемент 𝑥, у которого в заданном базисе (𝑒-)$ есть два 
разложения 𝑥 = 𝑥-𝑒- и 𝑥 = 𝑦-𝑒- , 𝑘 = 1, 𝑛YYYYY. Далее получим 

𝜃 = (𝑥- − 𝑦-)𝑒- 
 Тогда получается, что это возможно тогда и только тогда, когда 𝑥- − 𝑦- = 0. 
Противоречие доказывает теорему. 
 В пространстве столбцов получим разложение по базису  

(𝑎-)% = N𝑎-𝛿-1 O
% 

 В пространстве матриц аналогично  

N𝑎21O$
% =bb𝑎21𝐸1

2
%

13+

$

23+
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Лекция 2. Подпространства линейных пространств. Линейная 
оболочка 
Продолжение  

 Теорема 9 
 При сложении двух элементов линейного пространства их координаты 
складываются. При умножении элемента на число все его координаты умножаются на 
это число. 
  
 Доказательство: 
 Пусть в ЛП 𝑅(𝐾) есть базис (𝑒-)$. Тогда можно разложить элемент 𝑥 по базису: 
𝑥 = 𝑥-𝑒- , 𝑘 = 1. 𝑛YYYYY. Точно также можно разложить 𝑦 = 𝑦-𝑒-. Далее сложим эти два 
элемента. 𝑥 + 𝑦 = аксиомы = (𝑥- + 𝑦-)𝑒-. Согласно определению, выражение в 
круглых скобках – координаты данного элемента, которые представляют сумму 
координат элементов слагаемых. Теперь умножим первый элемент на число 𝜆. 𝜆𝑥 =
𝜆(𝑥-𝑒-) = (𝜆𝑥-)𝑒- . Снова в строгом соответствии с определением базисов получаем 
разложение элемента по базису. Теорема доказана. 
 Разложение некоторого элемента по базису имеет вид 

𝑥 = 𝑥-𝑒- , 𝑘 = 1, 𝑛YYYYY 
 Также есть строка, составленная из элементов линейного пространства 

𝑒 = (𝑒+, … , 𝑒$) 
 Столбец координат запишем как  

(𝑥-)$ = 𝑋4 
 Тогда разложение элемента можно также переписать в матричной форме 
следующим образом 

𝑥 = 𝑒𝑋4 
 Лемма 1 
 Пусть элементы 𝑥+, 𝑥,, … , 𝑥% ∈ 𝑅 разложены по базису (𝑒-)$: 𝑥- = 𝑒𝑋-4 , 𝑘 = 1,𝑚YYYYYY 
Тогда из линейной зависимости столбцов 𝑋+, … , 𝑋% следует линейная зависимость самих 
элементов. 
  
 Доказательство: 
 Так как столбцы линейно зависимы, то существуют такие числа 𝐶- , 𝑘 = 1,𝑚YYYYYY, что  
𝐶-𝑋-4 = 𝜃 = (0)$. Рассмотрим далее линейную комбинацию с выбранными 
коэффициентами 𝐶- : 𝐶-𝑋- = 𝐶-(𝑒𝑋-4) = 𝑒(𝐶-𝑋-4) = 𝑒𝜃 = 𝜃. Лемма доказана. 
 

Размерность линейного пространства   

 Определение 
 Натуральное число 𝑛 называется размерностью линейного пространства 𝑅, если 
в этом пространстве имеется 𝑛 линейно независимых элементов, а любые 𝑛 + 1 
элементов линейно зависимы. Записывается размерность так: 𝑑𝑖𝑚𝑅 = 𝑛. 
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 Также отметим, что размерность нуль пространства равно нулю 𝑑𝑖𝑚𝜃 = 0. 
 
 Определение 
 Линейное пространство 𝑅 называется бесконечномерным, если в этом 
пространстве можно указать любое наперед заданное число линейно независимых 
элементов. 
 Например, линейное пространство 𝐶[',)] бесконечномерное. 
  
 Теорема 10 
 Если размерность линейного пространства равна 𝑛, то в этом пространстве 
имеется базис из 𝑛 элементов, причем в качестве базиса можно взять любые 𝑛 линейно 
независимых элементов. 
  
 Доказательство:   
 Согласно определению, существует 𝑛 линейно независимых элементов. Тогда 
при добавлении к ним некоторого элемента 𝑥 они в совокупности станут линейно 
зависимыми. То есть ∃𝐶!, … , 𝐶$ ∶ 𝐶!𝑥 + 𝐶-𝑒- = 𝜃. Рассмотрим случай 𝐶! = 0. Тогда 
𝐶-𝑒- должны быть линейно зависимыми, что противоречит условию. Очевидно, что 
𝐶! ≠ 0. По доказательству теоремы 5 получаем, что 𝑥 = 𝑥-𝑒- , 𝑘 = 1, 𝑛YYYYY. Теорема 
доказана. 
  
 Теорема 11 
 Если в линейном пространстве 𝑅 есть базис из 𝑛 элементов, то 𝑑𝑖𝑚𝑅 = 𝑛. 
  
 Доказательство: 
 Пусть (𝑒-)$ – базис. Требуется доказать, что любые 𝑛 + 1 элементов будут 
линейно зависимы. Разложим элемент по базису 𝑥- = 𝑒𝑋-4 , 𝑘 = 1, 𝑛 + 1YYYYYYYYYY. Рассмотрим 
матрицу (𝑋+, … , 𝑋$/+). По Лемме 1 имеем, что из линейной зависимости столбцов 
следует линейная зависимость элементов. Теорема доказана. 
 
Изоморфизм линейных пространств 

 С точки зрения алгебры линейные пространства одной и той же размерности 
неразличимы. 
  
 Определение 
 Соответствие Γ между элементами двух пространств 𝑅, 𝑅" называется взаимно-
однозначным, если  

1. Каждому элементу 𝑥 ∈ 𝑅 соответствует строго определенный элемент 𝑥" ∈ 𝑅". 
2. Каждому элементу 𝑥" ∈ 𝑅" соответствует строго определенный элемент 𝑥 ∈ 𝑅. 

  
 Определение 
 Линейные пространства 𝑅, 𝑅" называются изоморфными, если между элементами 
этих двух пространств устанавливается взаимно-однозначное соответствие такое, что 
если элементам 𝑥, 𝑦 ∈ 𝑅 соответствуют элементы 𝑥", 𝑦" ∈ 𝑅", то  
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1. 𝑥 + 𝑦 ∈ 𝑅 соответствует 𝑥" + 𝑦" ∈ 𝑅" 
2. ∀𝜆 ∈ 𝐾	𝜆𝑥 ∈ 𝑅	~	𝜆𝑥" ∈ 𝑅" 

 Понятие изоморфизма Γ: 𝑅 ↔ 𝑅" 
1. Γ(𝑥 + 𝑦) = Γ(𝑥) + Γ(𝑦) 
2. Γ(𝜆𝑥) = 𝜆Γ(𝑥) 

  
 Лемма 2 
 Изоморфизм переводит нулевой элемент пространства 𝑅 в нулевой элемент 𝑅". 
  
 Доказательство: 
 При 𝜆 = 0 получим, что Γ(0𝑥) = 0Γ(𝑥), где (0𝑥) = 𝜃 ∈ 𝑅, а Γ(𝑥) = 𝜃" ∈ 𝑅". 
  
 Теорема 12 
 Линейные пространства одной и той же размерности изоморфны. 
  
 Доказательство: 
 Для доказательства возьмем два пространства 𝑅$(𝐾) и 𝑇$(𝐾). В пространстве 
размерностью 𝑛 ∃(𝑒-)$. Тогда ∀𝑥 ∈ 𝑅: 𝑥 = 𝑒𝑋4 , 𝑋4 = (𝑥-)$ = 𝑥" ∈ 𝑇$. Устанавливается 
соответствие. Теорема доказана. 
  
 Теорема 13 
 Линейные пространства неравных размерностей не изоморфны. 
  
 Доказательство: 
 Возьмем два пространства 𝑅$ и 𝑅%" , причем 𝑛 > 𝑚. Доказательство проведем «от 
противного». В первом пространстве существует базис (𝑒-)$. Применив изоморфизм, 
получаем (𝑓-)$ ∈ 𝑅%" . Этих элементов 𝑛, а размерность 𝑅%"  равна 𝑚. Значит они линейно 
зависимые. Теперь применим изоморфизм в обратную сторону. Тогда получаем, что 
числа 𝐶+, … , 𝐶$ не все равны нулю, а элементы являются линейно зависимыми. Получаем 
противоречие, которое доказывает теорему. 
 

Преобразование базиса и координат элементов линейного пространства  

 Пусть дано линейное пространство 𝑅$(𝐾), в котором задано два базиса (𝑒-)$ и 
(𝑓-)$. Разложим элементы второго базиса по первому базису 𝑓- = 𝑎-1 𝑒1 , 𝑘 = 1, 𝑛YYYYY, 𝑖 = 1, 𝑛YYYYY. 
Или в матричной форме получим 𝑓 = (𝑓+, … , 𝑓$), 𝑒 = (𝑒+, … , 𝑒$), 𝐴 = N𝑎-1 O$

$ 
𝑓 = 𝑒𝐴 

 Матрица 𝐴 – матрица перехода от одного базиса к другому. Каждый столбец 
матрицы – координаты базисных элементов. То есть определитель отличен от нуля и у 
матрицы 𝐴 есть обратная матрицы 𝐴5+ и можно совершить переход в обратном 
направлении. 

𝑓 = 𝑒𝐴5+ 
 Разложим элемент 𝑥 по первому базису 𝑥 = 𝑥-𝑒- = 𝑒𝑋-4 и по второму  
𝑥 = 𝑥̅-𝑓- = 𝑓𝑋Y-6.  
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 Тогда получим, что  
𝑒𝑋4 = 𝑒𝐴𝑋6 → 𝑋4 = 𝐴𝑋6 

𝑋6 = 𝐴5+𝑋4 

Подпространства линейного пространства 

 Определение 
 Непустое множество 𝑀 ⊂ 𝑅(𝐾) называется подпространством пространства 
𝑅(𝐾), если на этом множестве сохраняются те операции, которые введены в линейном 
пространстве (сложение и умножение на число) и выполнены два условия: 

1. ∀𝑥, 𝑦 ∈ 𝑀								𝑥 + 𝑦 ∈ 𝑀 
2. ∀𝑥 ∈ 𝑀		∀𝜆 ∈ 𝐾						𝜆𝑥 ∈ 𝑀 

  
 Свойство 1 
 Подпространство линейного пространства является линейным пространством. 
  
 Доказательство: 
 Необходимо проверить только аксиомы №3-4, так как другое очевидно из 
определения. Возьмем 𝜆 = 0, так как 𝑥 ∈ 𝑀, то и 0𝑥 = 𝜃 ∈ 𝑀. Во втором случае берем 
𝜆 = −1 и из 𝑥 ∈ 𝑀 имеем (−1)𝑥 ∈ 𝑀. Свойство доказано.  
  
 Примеры: 
 В любом линейном пространстве наименьшим по размерности подпространством 
является нуль пространство. А самым максимальным по размерности является само 
пространство. 
 Также можно рассмотреть пространство 𝑇$. Пусть 𝑘 < 𝑛. 𝑀 – множество всех 
элементов (𝑎7)$ из 𝑇$, для которых 𝑎+ = ⋯ = 𝑎- = 0. 
  
 Свойство 2 
 𝑑𝑖𝑚𝑀 ≤ 𝑑𝑖𝑚𝑅$ = 𝑛 
  
 Доказательство: 
 Возьмем элементы 𝑥+, … 𝑥$/+ ∈ 𝑀. Эти же элементы и принадлежат самому 
пространству 𝑅$. По определению размерности пространства 𝑅$ эти элементы линейно 
зависимы. Свойство доказано. 
  
 Свойство 3 
 Пусть 𝑒+, … , 𝑒0 базис в 𝑀 линейного пространства 𝑅$, где 𝑛 > 𝑠. Тогда можно 
указать такие элементы 𝑒0/+, … , 𝑒$ ∈ 𝑅$ такие, что в совокупности с 𝑠 они дадут базис во 
всем пространстве.  
  
 Доказательство: 
 ∃𝑒0/+	 ∈ 𝑅$ ∶ 𝑒+, 𝑒,, … , 𝑒0, 𝑒0/+	будут линейно независимы. Докажем это «от 
противного». Если они линейно зависимы, то ∃𝐶+, … 𝐶0/+ не все равные нулю, что 
𝐶-𝑒- = 𝜃. Пусть 𝐶0/+ = 0. В таком случае наблюдается противоречие условию теоремы. 
Очевидно отсюда, что 𝐶0/+ ≠ 0. И по теореме 5 получаем, что 𝑒0/+ есть линейная 
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комбинация базисных элементов, то есть 𝑑𝑖𝑚𝑅 = 𝑠, что неверно. Полученные 
противоречия доказывают существование элемента 𝑒0/+. В случае, когда 𝑠 + 1 = 𝑛 
теорема доказана, а когда 𝑠 + 1 < 𝑛 необходимо повторить данную процедуру. Свойство 
доказано. 
 

Линейные оболочки 
 Определение  
 Пусть в линейном пространстве 𝑅$ заданы элементы 𝑥+, 𝑥,, … 𝑥%. Линейной 
оболочкой называется все множество всевозможных линейных комбинаций данной 
системы элементов. 

𝐶1𝑥1 , 𝑖 = 1,𝑚YYYYYY 
 Сама система называется порождающей системой линейно оболочки и 
обозначается 𝐿(𝑥+, 𝑥,, … , 𝑥%).   
 Свойство 1 
 Любая линейная оболочка является подпространством линейного пространства 
  
 Доказательство: 
  Достаточно показать корректность относительно множества 𝐿 операций 
сложения и умножения на число, введенных в пространстве 𝑅$ 

1. 𝑐1𝑥1 + 𝑑1𝑥1 = аксиомы = N𝑐1 + 𝑑1O𝑥1 
2. 𝜆N𝑐1𝑥1O = аксиомы = N𝜆𝑐1O𝑥1 

 Утверждение верно. 
  
 Свойство 2 
 Любая линейная оболочка 𝐿(𝑥+, 𝑥,, … , 𝑥%) является наименьшим 
подпространством, содержащим элементы 𝑥+, … , 𝑥%. 
  
 Доказательство: 
 Очевидно, что 𝑥+, … , 𝑥% ∈ 𝐿(𝑥+, 𝑥,, … , 𝑥%), которая в силу свойства 1 является 
подпространством линейного пространства 𝑅$. С другой стороны, любое 
подпространство пространства 𝑅$, содержащее эти элементы, включает в себя все их 
линейные комбинации, т.е. содержит в себе 𝐿(𝑥+, 𝑥,, … , 𝑥%).    
 Свойство 3 
 Если какой-либо элемент из порождающей системы элементов 𝑥+, 𝑥,, … , 𝑥- есть 
линейная комбинация остальных элементов этой системы, то его можно убрать из 
порождающей системы, не изменив линейной оболочки. 
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Лекция 3. Система линейных уравнений. Евклидовы и унитарные 
пространства 
Критерий совместности неоднородной системы линейных уравнений 

 Рассмотрим систему 𝑛 уравнений с 𝑛 неизвестными вида 
𝐴𝑋 = 𝐵, 

 где 𝐴 = N𝑎-1 O$
%, 𝑋 = (𝑥-)$, 𝐵 = (𝑏-)%. 

 Эту систему можно записать иначе 
𝐴-𝑥- = 𝐵, 𝑘 = 1, 𝑛YYYYY 

 Матрица 𝐴 называется основной матрицей данной системы уравнений, 𝑋 – 
столбец неизвестных, 𝐵 – столбец свободных членов. 
 Кроме того, если к матрице 𝐴 добавить еще один столбец 𝐵, то получим 
расширенную матрицу 𝐴∗ = (𝐴+…𝐴$𝐵).   
 Теорема 1 (Кронекера-Капелли)  
 Для того чтобы система 𝐴𝑋 = 𝐵 была совместной, необходимо и достаточно, 
чтобы 𝑟𝑎𝑛𝑔𝐴 = 𝑟𝑎𝑛𝑔𝐴∗. 
  
 Доказательство: 
 Сначала докажем необходимость. Так как система совместная, то у нее есть 
решения 𝐶+, … , 𝐶$. При подстановке их в систему уравнений получим 𝐴-𝐶- = 𝐵, 𝑘 = 1, 𝑛YYYYY 
Отсюда следует, что столбец 𝐵 является линейной комбинацией столбцов матрицы 𝐴, то 
есть можно вычеркнуть этот столбец из матрицы 𝐴∗, не изменив при этом ранга. Таким 
образом, 𝑟𝑎𝑛𝑔𝐴 = 𝑟𝑎𝑛𝑔𝐴∗. 
 Далее докажем достаточность. Пусть 𝑟𝑎𝑛𝑔𝐴 = 𝑟𝑎𝑛𝑔𝐴∗. Это значит, что базисный 
минор матрицы 𝐴 является базисным минором матрицы 𝐴∗. Следовательно, по теореме 
о базисном миноре столбец свободных членов 𝐵 является линейной комбинацией 
базисных столбцов матрицы 𝐴, а значит и остальных столбцов этой матрицы. Теорема 
доказана. 
 

Однородная система уравнений  

 Однородная система уравнений в матричной форме записывается как: 
𝐴𝑋 = 𝜃, 

 где 𝐴, 𝑋 – те же, что и в прошлом пункте, а 𝜃 – нулевой столбец высоты 𝑚. 
 Множество всех решений этой системы является подмножеством множества 𝑇$. 
Также понятно, что если 𝑥+и 𝑥, – решения данной системы, то их сумма 𝑥+ + 𝑥, – также 
решение данной системы. Можно убедиться, что и 𝜆𝑥+ будет решением системы. Таким 
образом, множество всех решений однородной системы – подпространство пространства 
𝑇$.  
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 Определение 
 Фундаментальной совокупностью решений (ФСР) однородной системы 
уравнений называется базис в пространстве решений. 
 Пусть 𝑟𝑎𝑛𝑔𝐴 = 𝑟. Сделаем допущение, что базисный минор матрицы 𝐴 
расположен в первых 𝑟 строчках и в первых 𝑟 столбцах этой матрицы. Следовательно, 
по теореме о базисном миноре 𝑛 −𝑚 последних строк – линейная комбинация базисных. 
С точки зрения системы уравнений последние 𝑛 −𝑚 уравнений – следствия первых 𝑟, 
то есть их можно исключить из системы. Кроме того, в левой части уравнений оставим 
только те неизвестные, коэффициенты при которых входят в базисный минор, а 
остальные 𝑛 − 𝑟 перенесем в правую часть и зададим их следующим образом  
𝑥:/+ = 𝑐:/+, … , 𝑥$ = 𝑐$. Тогда система будет выглядеть так: 

𝑎-1 𝑥- = −𝑎21𝑐2 , 𝑖, 𝑘 = 1, 𝑟YYYY, 𝑗 = 𝑟 + 1, 𝑛YYYYYYYYYY 
  Запишем первое решение 

𝑋+ = (𝑐++, 𝑐+,, … , 𝑐+: , 1	0…0); 
 Второе решение имеет вид: 

𝑋, = (𝑐,+, 𝑐,,, … , 𝑐,: , 0	1…0); 
 Продолжая такое построение, получим последнее решение 

𝑋$5: = (𝑐$5:+ , 𝑐$5:, , … , 𝑐$5:: , 0	0…1); 
 Если построить матрицу по данным решениям, то ее ранг будет равен 𝑛 − 𝑟. 
 Далее докажем, что решение  

𝑋∗ = (𝑑-)$ 
 можно представить как линейную комбинацию данных линейно независимых 
элементов. Для этого построим следующую линейную оболочку 

𝑋 = 𝑑:/-𝑋- , 𝑘 = 1, 𝑛 − 𝑟YYYYYYYYYY 
 Все 𝑛 − 𝑟 – решения системы 𝑎-1 𝑥- = −𝑎21𝑐2. Кроме того, 𝑋 – тоже решение 
системы. Общее в этих решениях то, что последние 𝑛 − 𝑟 значений совпадают. Итак, мы 
построили базис и можем утверждать, что множество всех решений однородной системы 
уравнений образует подпространство размерности 𝑛 − 𝑟. 
  
 Замечание 
 Фундаментальная совокупность решений, построенная выше, называется 
нормальной ФСР. 
 Таким образом, было получено все множество решений  

𝑋 = 𝑐-𝑋- , 𝑘 = 1, 𝑛 − 𝑟YYYYYYYYYY 
  

Общее решение неоднородной линейной системы уравнений 

 Снова рассмотрим систему 𝐴𝑋 = 𝐵 и будем считать, что она совместна, то есть 
𝑟𝑎𝑛𝑔𝐴∗ = 𝑟𝑎𝑛𝑔𝐴 = 𝑟. Пусть 𝑋! – решение системы (частное решение). Пусть 𝑋+, … , 𝑋$5: 
– ФСР, соответствующая системе 𝐴𝑋 = 𝐵 однородной системы уравнений. Все 
множество решений можно записать в виде 𝑐-𝑋- , 𝑘 = 1, 𝑛 − 𝑟YYYYYYYYYY. 
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 Теорема 2 
 Общее решение совместной неоднородной системы уравнений, ранг матрицы 
которой равен 𝑟 имеет вид: 

𝑋 = 𝑋! + 𝑐-𝑋- , 𝑘 = 1, 𝑛 − 𝑟YYYYYYYYYY 
 Доказательство: 
 Необходимо доказать две вещи: 1) при любых 𝑐- данная формула будет всегда 
решением системы и 2) каждое из решений 𝑋∗ системы при определенном выборе 𝑛 − 𝑟 
постоянных задается данной формулой. 

1) Умножим 𝑋 = 𝑋! + 𝑐-𝑋- на 𝐴 и получим 
𝐴𝑋 = 𝐴𝑋! + 𝐴(𝑐-𝑋-) = 𝐵 + 𝜃 = 𝐵 

2) Рассмотрим решение 𝑋∗. По условию теоремы 𝑋∗ − 𝑋! тоже решение.  
 Умножим эту разность на матрицу 𝐴 

𝐴(𝑋∗ − 𝑋!) = 𝐴𝑋∗ − 𝐴𝑋! = 𝐵 − 𝐵 = 𝜃 
 то есть 𝑋∗ − 𝑋! – решение однородной системы, а значит существуют такие числа 
𝑐+, 𝑐,, … , 𝑐$5:, что 𝑋∗ − 𝑋! = 𝑐-𝑋-. Теорема доказана. 
  
 Замечание   
 Для того чтобы найти какое-нибудь частное решение 𝑋! оставим только те 
уравнения, коэффициенты которого входят в базисный минор, в левой части оставим 
только те неизвестные, коэффициенты при которых входят в базисный минор. 
Остальные неизвестные переносим в правую часть и полагаем их нулями. Тогда остается 
столбец свободных членов 𝐵. Матрица такой системы имеет определитель равный 
базисному минору. Следовательно, система имеет единственное решение. 
  
 Определение 
 Пусть 𝑀 – подпространство пространства 𝑅, 𝑥 – любой элемент из 𝑀, а 𝑥! – 
фиксированный элемент пространства 𝑅. Тогда множество 𝐻 всех элементов вида 𝑥 + 𝑥! 
называется результатом сдвига подпространства 𝑀 вдоль элемента 𝑥! или 
гиперплоскостью. 
 Далее рассмотрим случай, когда 𝑥! ∈ 𝑀 и 𝑥! ∈ 𝑅. Тогда гиперплоскость 𝐻 – 
подпространство той же размерности или просто само подпространство 𝑀. 
  
 Утверждение 
 В случае, когда 𝑥! ≠ 𝑀 и 𝑥! ∈ 𝑅 получаем, что такое образование не является 
линейным пространством, так как там нет нулевого элемента. 
  
 Доказательство: 
 Пусть ∀𝑥 ∈ 𝑀 ∶ 𝑥 + 𝑥! = 𝜃 ∈ 𝑀. Из этого равенства получаем, что 

𝑥! = −𝑥 = (−1)𝑥 
 Тогда по аксиоме №4 противоположный элемент также принадлежит 𝑀. 
Полученное противоречие доказывает утверждение. 
 Таким образом, мы убедились в том, что множество всех решений неоднородной 
линейной системы уравнений не образует линейного пространства, это гиперплоскость.   
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Евклидовы и унитарные пространства 

 Определение 
 Линейное пространство над числовым полем 𝐾! называется евклидовым ℰ, если 
в нем указано правило, ставящее в соответствие каждым двум элементам 𝑥, 𝑦 число, 
которое обозначим (𝑥, 𝑦) и назовем скалярным произведением этих элементов. Это 
правило удовлетворяет следующим аксиомам: 

1) (𝑥, 𝑦) = (𝑦, 𝑥) 
2) (𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧) 
3) ∀𝜆 ∈ 𝐾!		(𝜆𝑥, 𝑦) = 𝜆(𝑥, 𝑦) 
4) (𝑥, 𝑥) > 0	при	𝑥 ≠ 𝜃	и	(𝑥, 𝑥) = 0	при	𝑥 = 𝜃 

  
 Лемма 
 ∀𝑥 ∈ ℰ	(𝑥, 𝜃) = (𝜃, 𝑥) = 0 
  
 Доказательство: 
 Рассмотрим равенство (𝜃, 𝑥) = (0𝑦, 𝑥) = 0(𝑦, 𝑥) = 0. Что и требовалось доказать. 
 Напомним также, как вводится скалярное произведение двух векторов  

N𝑎Y, 𝑏YO = |𝑎Y|J𝑏YJ cosN𝑎Y, 𝑏YO 
 Теперь обратимся к пространству 𝑇$. Введем скалярное произведение 
следующим образом: 

(𝑥, 𝑦) = b𝑥-𝑦-
$

-3+

 

 Далее рассмотрим пространство 𝐶[',)] и функции 𝑥(𝑡), 𝑦(𝑡) ∈ 𝐶[',)]. Для них 
введем скалярное произведение как  

(𝑥, 𝑦) = � 𝑥(𝑡)𝑦(𝑡)𝑑𝑡
)

'
 

 Выполнение первых трех аксиом – свойства определенного интеграла. Четвертую 
аксиому разберем ниже 

(𝑥, 𝑥) = � 𝑥,(𝑡)𝑑𝑡
)

'
 

 Первый случай 𝑥(𝑡) = 0: 

� 0𝑑𝑡
)

'
= 𝐶 − 𝐶 = 0 

 Во втором случае соответственно 𝑥(𝑡) ≠ 0: 
∃𝑡!			𝑥,(𝑡!) = 𝛼 > 0 

∃(𝑡! − 𝛿, 𝑡! + 𝛿)			𝑥,(𝑡) > 0 
 Теперь можно записать, что  

� 𝑥,(𝑡)𝑑𝑡
)

'
≥ � 𝑥,(𝑡)𝑑𝑡

<#/=

<#5=
 

 И по теореме о среднем значении получим 
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∃𝜉 ∈ (𝑡! − 𝛿, 𝑡! + 𝛿):� 𝑥,(𝑡)𝑑𝑡
<#/=

<#5=
= 𝑥,(𝜉)2𝛿 > 0 

	 
 Определение 
 Линейной пространство, определенное над полем комплексных чисел, называется 
унитарным 𝐸, если в этом пространстве введено правило, по которому любым двум 
элементам 𝑥, 𝑦 ∈ 𝐸 ставится в соответствие число из ℂ, называемое скалярным 
произведением и обозначаемое (𝑥, 𝑦), причем выполняется 4 аксиомы: 

1) (𝑥, 𝑦) = (𝑦, 𝑥)YYYYYYY 
2) (𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧) 
3) ∀𝜆 ∈ 𝐾!		(𝜆𝑥, 𝑦) = 𝜆(𝑥, 𝑦) 
4) (𝑥, 𝑥) > 0	при	𝑥 ≠ 𝜃	и	(𝑥, 𝑥) = 0	при	𝑥 = 𝜃 

  
 Свойство 
 ∀𝑥	(𝑥, 𝑥) = (𝑥, 𝑥)YYYYYYY. Это означает, что (𝑥, 𝑥) ∈ 𝐾!. 
 Рассмотрим задачу, где 𝑥, 𝑦 ∈ ℰ	и	𝜆 ∈ 𝐾!: 

(𝑥, 𝜆𝑦) = (𝜆𝑦, 𝑥) = 𝜆(𝑦, 𝑥) = 𝜆(𝑥, 𝑦) 
 А в случае унитарного пространства получим 

(𝑥, 𝜆𝑦) = (𝜆𝑦, 𝑥)YYYYYYYYY = 𝜆̅	(𝑦, 𝑥)YYYYYYY = 𝜆̅	(𝑥, 𝑦)YYYYYYYYYYYYYY = 𝜆̅	(𝑥, 𝑦) 
 В пространстве 𝑇$(ℂ) нельзя ввести скалярное произведение на подобии с 
евклидовым пространством. Необходимо изменить формулу на следующую: 

(𝑥, 𝑦) = b𝑥-𝑦Y-
$

-3+

 

 В пространстве ℰ$ введем базис (𝑒-)$. Тогда любой элемент можно разложить по 
этому базису 

𝑥 = 𝑥-𝑒- = 𝑒𝑋4 
𝑦 = 𝑦1𝑒1 = 𝑒𝑌4 

 Тем самым, скалярное произведение имеет вид 
(𝑥, 𝑦) = N𝑥-𝑒- , 𝑦1𝑒1O = (𝑒- , 𝑒1)𝑥-𝑦1 , 𝑖, 𝑘 = 1, 𝑛YYYYY 

(𝑥, 𝑦) = 𝑏-1𝑥-𝑦1 , 𝑖, 𝑘 = 1, 𝑛YYYYY 
(𝑥, 𝑦) = 𝑋4;𝐵𝑌4 

 Таким образом, мы получили формулы представления скалярного произведения 
в произвольном базисе и матричном виде. 
 

Метрические отношения в евклидовом пространстве 
 Определение 
 Нормой элемента 𝑥 ∈ ℰ называется �(𝑥, 𝑥) = J|𝑥|J. Если норма элемента равна 1, 
то такой элемент называется нормированным.  
 Норма вектора – длина вектора. Нормированный вектор – орт.  
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 Рассмотрим пространство 𝑇$. В нем норма имеет вид 

J|𝑥|J = �b(𝑥-),
$

-3+

 

 В пространстве 𝐶[',)] норма элемента 𝑥 есть 

J|𝑥|J = �� 𝑥,(𝑡)𝑑𝑡
)

'
 

 Определение 
 Углом между ненулевыми элементами 𝑥, 𝑦 ∈ ℰ называется угол 𝜙, который 
определяется условиями: 

�
cos𝜙 =

(𝑥, 𝑦)
J|𝑥|JJ|𝑦|J

0 < 𝜙 < 𝜋
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Лекция 4. Евклидово пространство 
Неравенство Коши-Буняковского 

 В 1821 году Коши доказал это неравенство для пространства столбцов, а в 1869 
году Буняковский доказал выполнимость этого неравенства для пространства 𝐶[',)]. 
Через 24 года немец Шварц повторил результаты Буняковского и во всей иностранной 
литературе данное неравенство называется неравенством Шварца. 
  
 Теорема 1 
 ∀𝑥, 𝑦 ∈ ℰ выполнено неравенство Коши-Буняковского 

|(𝑥, 𝑦)| ≤ |𝑥||𝑦| 
 Доказательство: 
 Возьмем 𝑥, 𝑦 ∈ ℰ, 𝜆 ∈ 𝐾! и рассмотрим элемент 𝜆𝑥 − 𝑦. Применим к нему 
скалярное произведение и умножим его на этот же элемент 

(𝜆𝑥 − 𝑦)(𝜆𝑥 − 𝑦) ≥ 0 
 Применяя первые 3 аксиомы, преобразуем скалярное произведение 

(𝑥, 𝑥)𝜆, − 2(𝑥, 𝑦)𝜆 + (𝑦, 𝑦) ≥ 0 
 Для того чтобы неравенство было верно для любых 𝜆, необходимо и достаточно, 
чтобы  

(𝑥, 𝑦), − (𝑥, 𝑥)(𝑦, 𝑦) ≤ 0 
 Это уже вид неравенства Коши-Буняковского. Теорема доказана. 
  
 Теорема 𝟏∗ 
 Для любых элементов ∀𝑥, 𝑦 ∈ 𝐸 выполняется неравенство Коши-Буняковского 
  
 Доказательство: 
 Возьмем 𝑥, 𝑦 ∈ 𝐸, 𝜆 ∈ ℂ и рассмотрим элемент 𝜆𝑥 − 𝑦. Проведем такие же 
процедуры и получим 

(𝜆𝑥 − 𝑦)(𝜆𝑥 − 𝑦) ≥ 0 
 Применяя вторую и первую аксиомы, имеем 

𝜆(𝑥, 𝜆𝑥 − 𝑦) − (𝑦, 𝜆𝑥 − 𝑦) = 𝜆(𝜆𝑥 − 𝑦, 𝑥)YYYYYYYYYYYYYY − (𝜆𝑥 − 𝑦, 𝑦)YYYYYYYYYYYYYY = 
= 𝜆𝜆̅	(𝑥, 𝑥)YYYYYYY − 𝜆(𝑦, 𝑥)YYYYYYY − 𝜆̅(𝑥, 𝑦)YYYYYYY + (𝑦, 𝑦)YYYYYYY = 
= 𝜆𝜆̅(𝑥, 𝑥) − 𝜆(𝑥, 𝑦) − 𝜆̅(𝑥, 𝑦)YYYYYYY + (𝑦, 𝑦) 

 Мы помним, что в тригонометрической форме скалярное произведение и 
значение вещественного числа имеют вид 

(𝑥, 𝑦) = |(𝑥, 𝑦)|(cos𝜙 + 𝑖 sin𝜙), 𝜆 = 𝑏(cos𝜙 − 𝑖 sin𝜙) 
 При данных условиях получаем 

𝜆𝜆̅ = 𝑏,, 𝜆(𝑥, 𝑦) = 𝜆̅	(𝑥, 𝑦)YYYYYYY = 𝑏|(𝑥, 𝑦)| 
 И подставляя все в исходное равенство, имеем 

(𝑥, 𝑥)𝑏, − 2|(𝑥, 𝑦)|𝑏 + (𝑦, 𝑦) ≥ 0 
 Снова получено квадратичное неравенство относительно 𝑏, которое верно при 
соблюдении неравенства Коши-Буняковского. Теорема доказана. 
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Ортонормированный базис в евклидовом пространстве  

 Определение 
 Два элемента 𝑥, 𝑦 ∈ ℰ называются ортогональными, если их скалярное 
произведение равняется нулю (𝑥, 𝑦) = 0. 
  
 Лемма 2 
 Взаимно ортогональные ненулевые элементы 𝑥+, … , 𝑥% ∈ ℰ$ линейно 
независимы. 
  
 Доказательство: 
 Пусть это не так, то есть ∃𝑐1 не все равные нулю, что 𝑐1𝑥1 = 𝜃, 𝑖 = 1,𝑚YYYYYY. Пусть у 
нас 𝑐+ ≠ 0. Умножим уравнение на 𝑥+:  

N𝑐1𝑥1 , 𝑥+O = (𝜃, 𝑥+) 
𝑐+(𝑥+, 𝑥+) = 0 

 Так как 𝑐+ отличен от нуля, то 𝑥+ должен быть нулевым элементом, что 
противоречит условию. Теорема доказана. 
  
 Определение 
 Базис (𝑒-)$ евклидова пространства ℰ$ называется ортонормированным (ОНБ), 
если выполнено условие (𝑒- , 𝑒1) = 𝛿-1.   
 Теорема 2 
 В евклидовом пространстве размерности 𝑛, 𝑛 ≥ 1, существует ОНБ. 
  
 Доказательство: 
 Докажем при помощи алгоритма Шмидта. Возьмем в ℰ$ базис (𝑓-)$.  
 Шаг 1. Нормируем элемент 𝑒+: 𝑒+ =

6$
>|6$|>

 

 Шаг 2. Будем искать 𝑒, так: 𝑒, = 𝑎𝑓, + 𝑏𝑒+. Причем должны соблюдаться 
следующие условия: 

1) (𝑒+, 𝑒,) = 0 
2) (𝑒,, 𝑒,) = 1  

 Тогда получим следующее выражение 
𝑎(𝑓,, 𝑒+) + 𝑏 = 0 → 𝑏 = −𝑎(𝑓,, 𝑒+) 
𝑒, = 𝑎𝑔,, 𝑔, = 𝑓, − (𝑓,, 𝑒+)𝑒+ 

𝑒, =
1

J|𝑔,|J
𝑔, 

 Шаг 3. Для 𝑒# имеем:  
𝑒# = 𝑎𝑓# + 𝑏𝑒, + 𝑐𝑒+ 

 Причем выполняются следующие три условия: 
1) (𝑒#, 𝑒+) = 0 
2) (𝑒#, 𝑒,) = 0 
3) (𝑒#, 𝑒#) = 1 
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 Тогда по условиям получим следующее: 
𝑎(𝑓#, 𝑒+) + 𝑐 = 0 → 𝑐 = −𝑎(𝑓#, 𝑒+) 
𝑎(𝑓#, 𝑒,) + 𝑏 = 0 → 𝑏 = −𝑎(𝑓#, 𝑒,) 

𝑒# = 𝑎𝑔#, 𝑔# = 𝑓# − (𝑓#, 𝑒,)𝑒, − (𝑓#, 𝑒+)𝑒+ ≠ 0 

𝑒# =
1

J|𝑔#|J
𝑔# 

 По методу полной математической индукции получим следующие выражения. 
 Шаг 𝒌.  

𝑒- =
1

J|𝑔-|J
𝑔- , 𝑔- = 𝑓- −b(𝑓- , 𝑒1)𝑒1

-5+

13+

 

 Шаг 𝒌 + 𝟏. 

𝑒-/+ =
1

J|𝑔-/+|J	
𝑔-/+, 𝑔-/+ = 𝑓-/+ −b(𝑓-/+, 𝑒1)𝑒1

-

13+

 

   В выражении для 𝑔-/+ присутствуют все построенные нами базисные элементы, 
которые представляют собой линейную комбинацию 𝑓+, 𝑓,, … . Также все они 
принадлежат базису. Элемент 𝑓-/+ входит в выражение единственным образом с 
коэффициентом отличным от нуля.  
 Далее докажем, что N𝑔-/+, 𝑒2O, 𝑗 = 1, 𝑘YYYYY равно нулю: 

N𝑔-/+, 𝑒2O = N𝑓-/+, 𝑒2O −b(𝑓-/+, 𝑒1)(𝑒1 , 𝑒2)
-

13+

= N𝑓-/+, 𝑒2O − N𝑓-/+, 𝑒2O = 0 

 Теорема доказана. 
  
 Замечание 
 В любом евклидовом пространстве существует бесконечно много ОНБ. 
  
 Следствие 1 
 Если (𝑒-)$ – ОНБ евклидова пространства и 𝑥 = 𝑥-𝑒- , 𝑦 = 𝑦1𝑒1 , 𝑖, 𝑘 = 1, 𝑛YYYYY, то 
имеет место формула для скалярного произведения: 

(𝑥, 𝑦) = b𝑥-𝑦-
$

-3+

 

(𝑥, 𝑦) = 𝑋4;𝑌4 
 Согласно определению скалярного произведения в произвольном базисе запишем 
формулу  

(𝑥, 𝑦) = N𝑒1 , 𝑒2O𝑥1𝑦2 = 𝛿12𝑥1𝑦2 
(𝑥, 𝑦) = 𝑋4;𝐵𝑌4 

 Следствие 2 
 Если в некотором базисе (𝑒-)$ евклидова пространства ℰ$ скалярное 
произведение имеет вид  
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(𝑥, 𝑦) = b𝑥-𝑦-
$

-3+

 

(𝑥, 𝑦) = 𝑋4;𝑌4 
 то этот базис ортонормированный. 
  
 Доказательство: 
 Если (𝑒-)$ – произвольный базис, то скалярное произведение выглядит так: 

(𝑥, 𝑦) = N𝑒1 , 𝑒2O𝑥1𝑦2 
 В нашем случае оставлены только те слагаемые, когда 𝑖 = 𝑗, то есть  

N𝑒1 , 𝑒2O = 𝛿12 
 Что и требовалось доказать. 
 

Разложение евклидова пространства на прямую сумму его подпространств 

 Определение 
 Пусть 𝑀 – подпространство ℰ. Тогда множество всех элементов 𝑥 ∈ ℰ ⊥ ∀𝑦 ∈ 𝑀 
называется ортогональным дополнением подпространства 𝑀. 
  
 Теорема 3 
 Если 𝑀 – подпространство размерности 𝑚, евклидово пространство ℰ$, то 
ортогональное дополнение тоже является подпространством евклидова пространства 
размерности 𝑛 −𝑚. 
  
 Доказательство: 
 Пусть в 𝑀% задан базис 𝑒+, 𝑒,, … , 𝑒%. Тот факт, что ∀𝑥 ∈ 𝑀@ означает, что 
выполняется соотношение 

(𝑥, 𝑒-) = 0, 𝑘 = 1,𝑚YYYYYY 
 Это означает, что ∀𝑦 ∈ 𝑀% ∶ (𝑦, 𝑥) = 0. Докажем это: 

𝑦 = 𝑦1𝑒1 , (𝑦, 𝑥) = N𝑦1𝑒1 , 𝑥O = 𝑦1(𝑒1 , 𝑥) = 0 
 Также можно сказать, что ортогональное дополнение – это подпространство 
евклидова пространства, так как 

𝑥+, 𝑥, ∈ 𝑀@, 𝑥+ + 𝑥, ∈ 𝑀@, 𝛼𝑥+ ∈ 𝑀@ 
 Далее рассмотрим ОНБ (𝑓-)$. Разложим 𝑥 по этому базису 

𝑥 = 𝑥-𝑓- , 𝑘 = 1, 𝑛YYYYY 
𝑒1 = 𝑎1

2𝑓2 , 𝑖 = 1,𝑚YYYYYY, 𝑗 = 1, 𝑛YYYYY 

(𝑥, 𝑒1) = N𝑥-𝑓- , 𝑎1
2𝑓2O = 𝑎1

2𝑥-N𝑓- , 𝑓2O = b𝑎1-𝑥-
$

-3+

 

b𝑎1-𝑥-
$

-3+

= 0, 𝑖 = 1,𝑚YYYYYY 
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 Ранг матрицы 𝑎 равен 𝑚. То есть пространство всех решений имеет размерность 
𝑛 −𝑚. Что и требовалось доказать. 
 Замечание 
 𝑎1

2 = (𝐴;)1
2. Тогда в матричной форме получаем запись 

𝐴;𝑋 = 𝜃 
 
 Определение 
 Евклидово пространство ℰ$ называется прямой суммой двух подпространств 𝑃 и 
𝑀, если ∀𝑥 ∈ ℰ$ может быть представлен единственным образом 𝑦 ∈ 𝑃, 𝑧 ∈ 𝑀 в виде  
𝑥 = 𝑦 + 𝑧. 
 Символически это записывается так: 𝐸 = 𝑀	⨁	𝑃. 
 Возьмем для примера пространство 𝐵,. Тогда любые две прямые, проходящие 
через начало координат 𝐿+ и 𝐿, являются прямой суммой 𝐵, = 𝐿+⨁𝐿,. 
 Теперь рассмотрим пространство 𝐵#. Возьмем две плоскости, проходящие через 
начало координат 𝑃+ и 𝑃,. Если взять любой вектор 𝑐̅, то его можно разложить как  
𝑐̅ = 𝑎Y + 𝑏Y = N𝑎Y + 𝑑̅O + (𝑏Y − 𝑑̅). Таким образом, мы не можем записать 𝐵# ≠ 𝑃+	⨁	𝑃,. 
  
 Теорема 4 
 Евклидово пространство можно разложить на прямую сумму любого его 
подпространства и ортогонального дополнения. 
  
 Доказательство: 
 Пусть подпространство 𝑀 имеет размерность 𝑚. Тогда в этом подпространстве 
существует ОНБ (𝑒-)%. Теперь воспользуемся тем, что базис любого подпространства 
можно дополнить до базиса всего пространства, причем до ортонормированного базиса. 
 То есть получаем, что (𝑒-)$ – ОНБ в ℰ$. Элементы 𝑒%/+, … , 𝑒$ являются базисом 
в ортогональном дополнении к этому подпространству.  

∀𝑥 ∈ 𝑀@			𝑥 = 𝑐-𝑒- , 𝑘 = 𝑚 + 1, 𝑛YYYYYYYYYYY 
 Таким образом, эти 𝑚 + 1…𝑛 элементов являются линейно независимыми и 
базисом. 

∀𝑥 ∈ ℰ$							𝑥 = 𝑐-𝑒- = 𝑦 + 𝑧 
𝑦 = 𝑐-𝑒- , 𝑘 = 1,𝑚YYYYYY, 𝑦 ∈ 𝑀 

𝑧 = 𝑐-𝑒- , 𝑘 = 𝑚 + 1, 𝑛YYYYYYYYYYY, 𝑧 ∈ 𝑀@ 
 Теорема доказана. 
 Далее введем обозначение 

𝐴𝑋 = 𝐵, 
 где 𝐴 = N𝑎-1 O$

$, 𝑋 = (𝑥-)$, 𝐵 = (𝑏-)$ 
 Кроме того, рассмотрим соответствующую однородную систему уравнений и 
сопряженную систему уравнений. 

𝐴𝑋 = 𝜃 
𝐴;𝑋 = 𝜃 
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 Теорема 5 (Альтернатива Фредгольма) 
 Или однородная система уравнений имеет единственное ненулевое решение, и 
тогда система 𝐴𝑋 = 𝐵 имеет единственное решение для любой правой части. Или 
однородная система уравнений имеет ненулевое решение, и тогда система 𝐴𝑋 = 𝐵 имеет 
решение тогда и только тогда, когда столбец 𝐵 ортогонален ко всем решениями 
сопряженной системы 𝐴;𝐵 = 𝜃. 
  
 Доказательство: 
 Если у системы 𝐴𝑋 = 𝜃 только нулевое решение, а матрица квадратная, то 
определитель матрицы 𝐴 отличен от нуля. Значит система 𝐴𝑋 = 𝐵 имеет единственное 
решение, определяемое формулами Крамера. 
 В случае, когда существует ненулевое решение системы 𝐴𝑋 = 𝜃, то  
𝑟𝑎𝑛𝑔𝐴 = 𝑟 < 𝑛. Более того, множество всех решений системы 𝐴𝑋 = 𝜃 образует 
подпространство пространства 𝑇 размерности 𝑛 − 𝑟. Система 𝐴𝑋 = 𝐵 должна быть 
совместной. Чтобы данная система имела решения необходимо, чтобы ∃𝑥+, … , 𝑥$:  

𝑥1𝐴1 = 𝐵, 𝐵 ⊂ 𝐿A 
 У линейной оболочки есть ортогональное дополнение. Мы доказали теорему, что  

𝑇$ = 𝐿A	⨁𝐿A@		 
 Таким образом, тот факт, что 𝐵 принадлежит линейной оболочке означает, что 𝐵 
ортогонален к любому элементу 𝐿A@. Теорема доказана. 

Ортогональные и унитарные матрицы 

 Определение 
 Матрица 𝑄 = N𝑞21O$

$, где	𝑞21 ∈ 𝐾! называется ортогональной, если выполнено 

соотношение  
𝑄𝑄; = 𝐸, 

 где 𝐸 – единичная матрица. 
 Свойство 1 
 Если 𝑄 – ортогональная матрица, то имеет место соотношение 𝑄; = 𝑄5+. 
 Доказательство: 
 Применим определитель к соотношению 𝑄𝑄; = 𝐸. 

𝑑𝑒𝑡𝑄;𝑑𝑒𝑡𝑄 = 𝑑𝑒𝑡𝑄;𝑄 = 𝑑𝑒𝑡𝐸 = 1 
 Следовательно, 𝑑𝑒𝑡𝑄 ≠ 0. Поэтому матрица 𝑄 имеет обратную матрицу 𝑄5+. 
Теперь умножим выражение на 𝑄5+ 

𝑄5+𝑄𝑄; = 𝑄5+𝐸 → 𝑄; = 𝑄5+ 
 Свойство доказано. 
 Замечание 1 
 Обратные матрицы определяются как 𝑄𝑄5+ = 𝑄5+𝑄 = 𝐸. Поэтому можно 
получить формулу 𝑄;𝑄 = 𝐸. 
 Свойство 2 
 Определитель ортогональной матрицы по модулю равен 1.  
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Лекция 5. Ядро и образ линейного оператора. Собственные значения и 
собственные функции 
Операторы 

 Из алгебры матриц известно, что 𝐴𝐵 ≠ 𝐵𝐴. Пространство операторов изоморфно 
пространству матриц, то есть для операторов получаем 𝐴�𝐵� ≠ 𝐵�𝐴�. 
 Введем оператор коммутатор: 

< 𝐴�, 𝐵� >	= 𝐴�𝐵� − 𝐵�𝐴� 
 Примеры: 
 Если в качестве основного взять тождественный оператор 𝐸� и любой 𝐴�, то 
коммутатор для этих двух операторов есть  

< 𝐴�, 𝐸� >	= 𝜃� 
 Далее рассмотрим пространство радиус-векторов 𝐵,. Возьмем там ОНБ 𝑒+� , 𝑒,� . 
Будем работать с оператором проектирования любого радиус-вектора на направление 𝑒+�  
N𝐴�O и оператором поворота против часовой стрелки на угол B

,
 N𝐵�O.  

𝐴�𝐵� 	𝑒+� = 𝜃̅ 
𝐵�𝐴�	𝑒+� = 𝑒,�  

< 𝐴�, 𝐵� > 	 𝑒+� = −𝑒,�  
    Свойство 1 (сочетательное относительно числового множителя) 
 ∀𝐴�, 𝐵� ∈ 𝑆, ∀𝜆 ∈ 𝐾:																					𝜆N𝐴�𝐵�O = N𝜆𝐴�O𝐵�  
  
 Свойство 2 (сочетательное относительно трех операторов) 
 ∀𝐴�, 𝐵� , 𝐶� ∈ 𝑆:																																𝐴�N𝐵�𝐶�O = N𝐴�𝐵�O𝐶�  
  
 Свойство 3 (распределительное свойство) 
 ∀𝐴�, 𝐵� , 𝐶� ∈ 𝑆:																												N𝐴� + 𝐵�O𝐶� = 𝐴�𝐶� + 𝐵�𝐶�  

𝐴�N𝐵� + 𝐶�O = 𝐴�𝐵� + 𝐴�𝐶� 
 Докажем свойство 1. 
 Операторы равны тогда, когда  

∀𝑥 ∈ 𝑅: �𝜆N𝐴�𝐵�O�𝑥 = �N𝜆𝐴�O𝐵��𝑥 
 Далее используем свойства самих линейных операторов  

N𝐴�𝐵�O𝜆𝑥 = 𝐴� �𝐵�(𝜆𝑥)� 

�N𝜆𝐴�O𝐵��𝑥 = �𝐴�N𝜆𝐵�O�𝑥 = 𝐴� �𝐵�(𝜆𝑥)� 

 Свойство доказано. 
 Замечание 
 При умножении нескольких 𝑛 одинаковых операторов возможна следующая 
запись 

𝐴� … . 𝐴� = 𝐴�$ 
 Определение 
 Линейный оператор 𝐶�  называется обратным к оператору 𝐴�, если  
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𝐴�𝐶� = 𝐶�𝐴� = 𝐸� 
  
 Утверждение 8 
 Если 𝐴� с матрицей 𝐴4 имеет обратный оператор, то в том же самом базисе 𝑒 
обратный оператор имеет такую матрицу 𝐴45+. 
  
 Доказательство: 
 Выберем базис 𝑒 и запишем  

𝐴4𝐶4 = 𝐶4𝐴4 = 𝐸 
 Утверждение доказано. 
  
 Утверждение 9 
 Если в некотором базисе матрица оператора невырожденная, то у этого оператора 
есть обратный оператор. 
  
 Доказательство: 
 Если матрица невырожденная в одном базисе, то она невырожденная в любом 
другом базисе. Тогда если она всегда невырожденная, то для нее существует обратная и 
по теореме 2 для этой матрицы существует оператор, который в силу утверждения 8 
является обратным. 

Ядро и образ линейного оператора 

 Определение 
 Ядром оператора 𝐴� называется множество элементов 𝑥 ∈ 𝑅$ тех и только тех, для 
которых  

𝐴�𝑥 = 𝜃 
 Причем ядро записывается как 𝑘𝑒𝑟𝐴�. 
  
 Определение 
 Образом линейного оператора 𝐴� называется множество элементов 𝑦 ∈ 𝑅$, 
которое задается таким образом 

𝑦 = 𝐴�𝑥 
 Образ обозначается как 𝐼𝑚𝐴� = 𝐴�(𝑅$). 
  
 Определение 
 Рангом оператора 𝐴� называется ранг его матрицы. 

𝑟𝑎𝑛𝑔𝐴� = 𝑟𝑎𝑛𝑔𝐴4 
 Лемма 2 
 Размерность образа линейного оператора равняется рангу оператора. 
  
 Доказательство: 
 Множество (образ) определяется соотношением  

𝑦 = 𝐴�𝑥 = 𝐴�(𝑥-𝑒-) = 𝑥-𝐴- ∈ 𝐿' 
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 Размерность линейной оболочки столбцов матрицы равняется рангу этой 
матрицы. Лемма доказана. 
  
 Лемма 3 
 Если размерность пространства равняется 𝑛, то  

𝑑𝑖𝑚𝑘𝑒𝑟𝐴� + 𝑑𝑖𝑚𝐼𝑚𝐴� = 𝑛 
  
 Доказательство: 
 Ядро определяется как 

𝐴�𝑥 = 𝜃, 𝐴4𝑋4 = 0 
 Получается однородная система уравнений. Ее размерность будет равна  

𝑑𝑖𝑚𝑘𝑒𝑟𝐴� = 𝑛 − 𝑟𝑎𝑛𝑔𝐴4 = 𝑛 − 𝑑𝑖𝑚𝐼𝑚𝐴� 
 Что и требовалось доказать. 
 

Инвариантные подпространства линейного оператора. Собственные значения и 
собственные векторы линейного оператора 

 Пусть в линейном пространстве 𝑅$ действует линейный оператор 𝐴� и существует 
некоторое подпространство 𝑀 данного пространства 𝑅$. 
  
 Определение 
 Подпространство 𝑀 называется инвариантным подпространством относительно 
оператора 𝐴�, если  

∀𝑥 ∈ 𝑀:			𝐴�𝑥 ∈ 𝑀 
 Примеры таких подпространств: 

1) Для нулевого оператора 𝜃� инвариантное подпространство – любое 
подпространство. 

2) Для тождественного оператора 𝐸� рассуждения такие же. 
3) Рассмотрим пространство 𝐶[',)]

+  и оператор дифференцирования 𝐷�. Далее 
рассмотрим линейную оболочку {𝑎𝑠𝑖𝑛𝑥 + 𝑏𝑐𝑜𝑠𝑥}. Продифференцируем ее: 

𝐷�{𝑎𝑠𝑖𝑛𝑥 + 𝑏𝑐𝑜𝑠𝑥} = 𝑎𝑐𝑜𝑠𝑥 − 𝑏𝑠𝑖𝑛𝑥 
Производная будет также элементом линейной оболочки. 

  
 Лемма 4 
 Оператор, примененный к нулевому элементу есть нуль. 
  
 Доказательство: 
 Нулевой элемент – любой элемент пространства, умноженный на нуль. 

𝐴�𝜃 = 𝐴�(0𝑥) = 0𝐴�𝑥 = 𝜃 
 Лемма доказана. 
 Определение 
 Пусть 𝐴� – линейный оператор, действующий в 𝑅$(𝐾). Тогда 𝜆 ∈ 𝐾 называется 
собственным значением (СЗ) оператора 𝐴�, если ∃𝑥 ≠ 0 ∈ 𝑅$: 
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𝐴�𝑥 = 𝜆𝑥 
 при этом 𝑥 – собственный вектор (СВ) оператора 𝐴�, соответствующим данному 
собственному значению 𝜆. 
  
 Замечание 1 
 Возможна запись в виде 𝜆𝑥 = 𝜆𝐸�𝑥. Тогда получается выражение  

N𝐴� − 𝜆𝐸�O𝑥 = 𝜃 
 
 Замечание 2 
 Ранее было доказано, что пространство операторов и матриц изоморфно. Поэтому 
только что введённые понятия собственных значений и векторов имеют право на 
существования и для матриц. 
  
 Утверждение 10 
 Если 𝑥, 𝑦 – СВ 𝐴�, соответствующие 𝜆, то 𝑎𝑥 + 𝑏𝑦 ≠ 𝜃 является СВ 𝐴�, 
соответствующий 𝜆. 
  
 Доказательство: 
 Подействуем оператором 𝐴� на эту линейную комбинацию 

𝐴�(𝑎𝑥 + 𝑏𝑦) = 𝑎𝐴�𝑥 + 𝑏𝐴�𝑦 = 𝑎𝜆𝑥 + 𝑏𝜆𝑦 = 𝜆(𝑎𝑥 + 𝑏𝑦) 
 Строго по определению получаем, что линейная комбинация и есть СВ 𝐴�, 
соответствующий 𝜆. 
  
 Следствие 
 Любому СВ 𝐴� соответствует одномерное инвариантное относительно оператора 
подпространство. 
  
 Доказательство: 
 Пусть 𝑥 – СВ 𝐴�, соответствующий СЗ 𝜆. Рассмотрим линейную оболочку 𝐿 = {𝑏𝑥} 
Так как 𝑥 – СВ, причем 𝑥 ≠ 0, то размерность этого подпространства 1. Теперь покажем 
инвариантность: 

𝐴�(𝑏𝑥) = 𝑏𝐴�𝑥 = 𝑏(𝜆𝑥) = 𝜆(𝑏𝑥) 
 Что и требовалось доказать. 
 Далее рассмотрим, что является СВ для некоторых операторов: 

1) Оператор 𝜃�. Любой 𝑥 ≠ 0 ∈ 𝑅$ является СВ. Это будет соответствовать 
одному и тому же СЗ 𝜆 = 0. 

2) Оператор 𝐸� . Любой 𝑥 ≠ 0 ∈ 𝑅$ является СВ. Это будет соответствовать 
одному и тому же СЗ 𝜆 = 1.  

3) Пространство 𝐵, с оператором поворота на угол 𝛼:	𝐴�C , 0 < 𝛼 < 𝜋. В этом 
случае нет ни СЗ, ни СВ. Однако если в такой задаче взять 𝛼 = 𝜋, то 
коллинеарность будет выполнена, СЗ 𝜆 = −1.     
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4) В случае пространства 𝐶[',)]
,  возьмем функцию 𝑠𝑖𝑛𝑎𝑥. Применим к ней 

оператор 𝐷�,: −𝑎,𝑠𝑖𝑛𝑎𝑥. То есть 𝜆 = −𝑎,. Таким образом, получается 
бесконечно много таких СВ. 

  
 Теорема 4 
 Множество 𝑀D, содержащее 𝜃 и все СВ оператора 𝐴�	~	𝜆, образует инвариантное 
подпространство пространства 𝑅. 
  
 Доказательство: 
 Отметим, что ∀𝑥 ∈ 𝑀D:	𝐴�𝑥 = 𝜆𝑥. Если 𝑥 – нулевой элемент, то мы доказали Лемму 
4. Докажем, что выполнено первое требование определения подпространства. 

𝑥+, 𝑥, ∈ 𝑀D	𝐴�(𝑥+ + 𝑥,) = 𝐴�𝑥+ + 𝐴�𝑥, = 𝜆𝑥+ + 𝜆𝑥, = 𝜆(𝑥+ + 𝑥,) 
 Также получим выполнение с любым числом 𝜇 ∈ 𝐾. Теперь проверим, что это 
подпространство инвариантно: 

𝐴�N𝐴�𝑥O = 𝐴�(𝜆𝑥) = 𝜆N𝐴�𝑥O 
 Теорема доказана. 
  
 Теорема 5 
 СВ оператора 𝐴�, соответствующие различным СЗ, линейно независимы. 
  
 Доказательство: 
 Пусть мы имеем СВ 𝑥+, … 𝑥0, а их СЗ 𝜆+, … , 𝜆0 не равны друг другу. Возьмем 𝑘 =
1: 𝑥+. По определению этот СВ линейно независимый. Мы предполагаем, что у нас 
линейно независимы все вектора 𝑥+, … , 𝑥-. Добавим следующий элемент 𝑘 + 1. 
Рассмотрим линейную комбинацию 𝑐1𝑥1 = 𝜃, 𝑖 = 1, 𝑘 + 1YYYYYYYYYY. Применим к равенству 
оператор 𝐴� и получим: 𝑐1𝜆1𝑥1 = 𝜃. Теперь получим выражение такого типа 

𝑐1(𝜆1 − 𝜆-/+)𝑥1 = 𝜃, 𝑖 = 1, 𝑘YYYYY 
 По предположению индукции элементы линейно независимы. Равенство 
возможно только тогда, когда все 𝑐1 = 0.  

𝑐-/+𝑥-/+ = 𝜃 
 Такое возможно, когда 𝑐-/+ = 0. Теорема доказана. 
  
 Следствие  
 В линейном пространстве размерности 𝑛 не может быть 𝑛 + 1 и больше СВ, 
которым соответствуют не равные СЗ. 
  
 Доказательство: 
 Пусть нашлись 𝑥+, … , 𝑥$/+ СВ, которым соответствуют 𝜆+, … , 𝜆$/+ СЗ. Эти СВ по 
теореме 5 линейно независимы. То есть они либо образуют базис, либо входят в базис, 
где гораздо больше, чем 𝑛 + 1 элементов. Размерность 𝑑𝑖𝑚𝑅% ≥ 𝑛 + 1. Однако такого 
быть не может, так как размерность равна 𝑛. Следствие доказано. 
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 Определение 
 Пусть в 𝑅$ действует линейный оператор 𝐴�, который в некотором базисе 𝑒 имеет 
матрицу 𝐴4. Тогда  

det(𝐴4 − 𝜆𝐸) = 0 
 называется характеристическим уравнением оператора 𝐴�. 
  
 Утверждение 11 
 Характеристическое уравнение не зависит от выбора базиса. 
  
 Доказательство: 
 Выберем еще один базис 𝑓 и получим 

detN𝐴6 − 𝜆𝐸O = 0 
 Переход от одного базиса к другому осуществляется с помощью матрицы 𝐶: 

𝑓 = 𝑒𝐶, 𝐴6 = 𝐶5+𝐴4𝐶 
𝐸 = 𝐶5+𝐸𝐶 

det(𝐶5+𝐴4𝐶 − 𝜆𝐶5+𝐸𝐶) = 𝑑𝑒𝑡𝐶5+(𝐴4 − 𝜆𝐸)𝐶 = det(𝐴4 − 𝜆𝐸) 
 Что и требовалось доказать. 
  
 Теорема 6 
 Для того чтобы число 𝜆 было СЗ оператора 𝐴�, действующим в 𝑅$(𝐾) необходимо 
и достаточно, чтобы 𝜆 являлось решением характеристического уравнения и 
принадлежала числовому полю 𝐾. 
  
 Доказательство: 
 Необходимость. У оператора 𝐴� 𝜆 – СЗ. Выполнено соотношение  

N𝐴� − 𝜆𝐸�O𝑥 = 𝜃 
 Выберем в пространстве какой-нибудь базис и получим  

(𝐴4 − 𝜆𝐸)𝑋4 = 𝜃 
 Однородная система уравнений имеет ненулевые решения тогда и только тогда, 
когда определитель матрицы этой системы равен 0. Необходимость доказана. 
 Достаточность. Теперь мы знаем, что характеристическое уравнение имеет 
решение, принадлежащее полю 𝐾. Это означает, что в некотором базисе равны 
координаты, стоящие слева и справа. Тогда из равенства координат следует равенство 
самих операторов. Что и требовалось доказать.  
  
 Следствие 
 Если характеристическое уравнение имеет различные 𝑛 решений, то существует 
базис, в котором матрица оператора 𝐴� записывается в диагональной форме. 

𝐴�𝑒- = 𝜆-𝑒- , 𝑘 = 1, 𝑛YYYYY 
𝐴4 = N𝜆-𝛿-1 O$

$ 
 Замечание 2 
 Не всякий линейный оператор имеет СЗ. 
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 Рассмотрим пространство 𝑅,(ℚ). Пусть оператор 𝐴� имеет матрицу  

𝐴4 = �−1 2
3 1� 

 Запишем характеристическое уравнение: 

¥−1 − 𝜆 2
3 1 − 𝜆¥ = 0 

𝜆, = 7 → 𝜆+,, = ±√7 ∉ ℚ 
 Алгоритм нахождения СВ и СЗ оператора: 

1) Решаем характеристическое уравнение. 
2) Отбираем те решения, которые принадлежат нужному числовому полю 𝐾. 
3) Затем вместо 𝜆 подставляем найденные значения, решаем уравнения и таким 

образом находим координаты всех СВ. 
4) Составляем по координатам СВ вид самих СВ. 

  
 Примеры: 
 Во всех случаях рассматриваем пространство 𝑅#(ℚ) с выбранным базисом 
𝑒+, 𝑒,, 𝑒#.  
  
 
 Случай 1 

¨
2 −1 −1
0 −1 0
0 2 1

© 

 Получаем решения вида 

𝜆 = ª
−1
1
2
∈ ℚ	 

 Все три решения легко строят ФСР. Так, для 𝜆 = −1 имеем 

¨
0
1
−1
© , 𝑒, − 𝑒# 

𝐶(𝑒, − 𝑒#), 𝐶 ∈ ℚ, 𝐶 ≠ 0 
 Случай 2 

¨
−1 −2 −2
0 1 0
0 0 1

© 

𝜆 = ª
−1
1
1
∈ ℚ 

 Получили кратный корень. Это приводит к тому, что останется только первое 
уравнение  

𝑥+ + 𝑥, + 𝑥# = 0 
 ФСР будет состоять из двух линейно независимых решений 
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¨
−1
1
0
© , ¨

−1
0
1
© 

𝐶+(−𝑒+ + 𝑒,) + 𝐶,(−𝑒+ + 𝑒#), (𝐶+), + (𝐶,), ≠ 0 
 Случай 3 

¨
2 −1 0
0 1 −1
0 1 3

© 

𝜆 = ª
2
2
2
∈ ℚ 

 Кратность равна 3. Размерность инвариантного подпространства равняется 1. И 
решение будет только одно. 

¨
1
0
0
© 

 Вывод 
1) Если 𝜆 – простое СЗ, то инвариантное подпространство одномерно 
2) Если 𝜆 – СЗ, являющееся кратным решением характеристического уравнения 

кратности 𝑠, то соответствующее инвариантное подпространство имеет 
размерность от 1 до 𝑠.  

Жорданова матрица 
 Матрица вида: 

⎝

⎜
⎜
⎛

𝜆-
0
…
…
0
0

1
𝜆-
…
…
0
0

0
1
…
…
0
0

0
0
…
…
0
0

…
…
…
…
…
…

0
0
…
…
0
0

0
0
…
…
𝜆-
0

0
0
…
…
1
𝜆-

	

⎠

⎟
⎟
⎞
= Λ- 

 называется Жордановой клеткой. 
 Матрица 𝐴 имеет Жорданову форму, если она имеет такое строение  

𝐴 = ²

Λ+
0
0
0

0
Λ,
0
0

0
0
…
0

0
0
0
Λ%

	

³ 

 Теорема о Жордановой форме 
 Для любого линейного оператора в 𝑅$(ℂ) существует базис, в котором матрица 
оператора имеет Жорданову форму. 
  
 Замечание 
 Это теорема верна и в случае линейного пространства над полем 𝐾!. 
 Определение 
 Элемент 𝑥-, который удовлетворяет условию  
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N𝐴� − 𝜆𝐸�O-𝑥- ≠ 𝜃 

N𝐴� − 𝜆𝐸�O-/+𝑥- = 𝜃 
 называется присоединенным элементом оператора 𝐴� 𝑘-го порядка, 
соответствующий СЗ 𝐴�.  
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Лекция 6. Линейный оператор в евклидовом и унитарном пространстве 
Линейные операторы в евклидовом пространстве: сопряженный оператор 

 Определение 
 Оператор 𝐴�∗ называется сопряженным с оператором 𝐴� в ℰ, если  

∀𝑥, 𝑦 ∈ ℰ: N𝐴�𝑥, 𝑦O = N𝑥, 𝐴�∗𝑦O 
 Утверждение 12 
 Если в ортонормированном базисе матрица оператора 𝐴� есть 𝐴, то у 
сопряженного оператора в этом же базисе будет 𝐴;. 
  
 Доказательство: 
 Пользуемся только что введённым соотношением 

N𝐴�𝑥, 𝑦O = (𝐴𝑋);𝑌 = 𝑋;𝐴;𝑌 = N𝑥, 𝐴�∗𝑦O = 𝑋;𝐴∗𝑌 
 Отсюда следует, что матрица сопряженного оператора равна 𝐴;. 
  
 Следствие 
 У любого линейного оператора 𝐴� есть сопряженный оператор. 
  
 Доказательство: 
 Любой линейный оператор в базисе ортонормированном имеет матрицу 𝐴, 
которую мы можем транспонировать. Тогда по теореме 2 ей соответствует линейный 
оператор.  
  
 Утверждение 13 
 СЗ сопряженного оператора совпадают с СЗ самого оператора 𝐴�. 
  
 Доказательство: 
 Для оператора СЗ есть решение уравнения  

det(𝐴 − 𝜆𝐸) = 0 
 А для сопряженного – решение такого уравнения  

det(𝐴; − 𝜆𝐸) = 0 
 Докажем, что это одно и тоже. Перепишем последнее уравнение в виде  

det(𝐴; − 𝜆𝐸;) = det(𝐴 − 𝜆𝐸); = det(𝐴 − 𝜆𝐸) = 0 
 Что и требовалось доказать. 
  
 Утверждение 𝟏𝟑∗ 
 СВ, соответствующие одинаковым СЗ этих операторов, будут разными. 
  
 Доказательство:   
 Запишем уравнения системы для координат элементов оператора 

(𝐴 − 𝜆𝐸)𝑋 = 0 
 И для сопряженного имеем систему  

(𝐴; − 𝜆𝐸)𝑋 = 0	 
 А так как 𝐴; ≠ 𝐴, то собственные векторы будут различные. Утверждение 
доказано. 



 

ЛИНЕЙНАЯ АЛГЕБРА 
ШИШКИН АЛЕКСАНДР АЛЕКСАНДРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

38 
 
 

 

 Свойства: 
1) ∀𝐴� ∶ N𝐴�∗O∗ = 𝐴� 
2) ∀𝐴�, 𝐵� ∶ N𝐴� + 𝐵�O∗ = 𝐴�∗ + 𝐵� ∗ 
3) ∀𝐴�	∀𝑏 ∈ 𝐾! ∶ N𝑏𝐴�O

∗ = 𝑏𝐴�∗ 
4) ∀𝐴�, 𝐵� ∶ N𝐴�𝐵�O∗ = 𝐵�∗𝐴�∗ 

5) ∀𝐴�, если	∃𝐴�5+ ∶ N𝐴�∗O5+ = N𝐴�5+O∗ 
  
 Задача 
 Имеем выражение 𝐴�𝑥 = 𝜆𝑥 + 𝑏.  
 По альтернативе Фредгольма получим: или 𝜆 не является СЗ, и тогда это 
уравнение имеет единственное решению для любых 𝑏, или 𝜆 является СЗ оператора 𝐴�, и 
тогда данное уравнение имеет решение тогда и только тогда, когда 𝑏 ортогонален СВ 
оператора 𝐴�, соответствующим именно этому СЗ 𝜆. 
 

Линейные операторы в евклидовом пространстве: симметричный оператор 

 Определение 
 Оператор 𝐴�, действующий в ℰ, называется симметричным, если он совпадает со 
своим сопряженными. Также можно определить его таким образом: 

∀𝑥, 𝑦 ∈ ℰ ∶ N𝐴�𝑥, 𝑦O = N𝑥, 𝐴�𝑦O 
  Утверждение 14 
 В ОНБ матрица симметричного оператора симметричная. 
  
 Доказательство: 
 Применяя формулу представления скалярного произведения в ОНБ, получим 

N𝐴�𝑥, 𝑦O = (𝐴𝑋);𝑌 = 𝑋;𝐴;𝑌 
N𝑥, 𝐴�𝑦O = 𝑋;𝐴𝑌 

 Получаем, что матрица 𝐴; = 𝐴. Утверждение доказано. 
  
 Утверждение 15 
 Если в некотором ОНБ матрица оператора 𝐴� симметричная, то и сам оператор 
симметричный. 
  
 Доказательство: 

N𝐴�𝑥, 𝑦O = (𝐴𝑋);𝑌 = 𝑋;𝐴;𝑌 = 𝑋;𝐴𝑌 = N𝑥, 𝐴�𝑦O 
 Утверждение доказано. 
  
 Утверждение 16 
 Симметричный оператор, действующий в ℰ$ является симметричным в каждом 
инвариантным относительного этого оператора подпространстве пространства ℰ$. 
 Доказательство: 
 По определению инвариантного подпространства имеем  
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ℰ$ > 𝑀	∀𝑥, 𝑦 ∈ 𝑀 ∶ 	𝐴�𝑥, 𝐴�𝑦 ∈ 𝑀 
 Так как соотношение N𝐴�𝑥, 𝑦O = N𝑥, 𝐴�𝑦O выполняется для всех элементов в ℰ$, то 
оно будет выполняться и для всех элементов пространства 𝑀. 
 
 Теорема 7 
 Все решения характеристического уравнения симметричного оператора – это 
вещественные числа (все СЗ симметричного оператора – действительные числа). 
  
 Доказательство: 
 Пусть у 𝐴�	∃𝜆 = 𝑎 + 𝑖𝑏, 𝑎, 𝑏 ∈ 𝐾!, 𝑏 ≠ 0. Это означает, что  

𝐴�(𝑦 + 𝑖𝑧) = (𝑎 + 𝑖𝑏)(𝑦 + 𝑖𝑧) 
𝐴�𝑦 = 𝑎𝑦 − 𝑏𝑧 
𝐴�𝑧 = 𝑏𝑦 + 𝑎𝑧 

0 = 𝑏(𝑦, 𝑦) + 𝑎(𝑧, 𝑦) − 𝑎(𝑦, 𝑧) + 𝑏(𝑧, 𝑧) 
0 = 𝑏 �J|𝑦|J, + J|𝑧|J,� 

 По определению СВ ненулевой, то есть 𝑏 = 0. Пришли к противоречию. Теорема 
доказана. 
  
 Следствие 1 
 Симметричный оператор всегда имеет СВ. 
  
 Замечание 
 Теорема 7 верна в любом инвариантом относительно оператора 𝐴� 
подпространстве евклидова пространства. 
  
 Теорема 8 
 Если 𝑥 – СВ симметричного оператор 𝐴�, соответствующий СЗ 𝜆, то множество 
𝑀	элементов	𝑦 ∈ ℰ$, ортогональных к 𝑥, образует инвариантное относительно оператора 
𝐴� подпространство размерности 𝑛 − 1.  
  
 Доказательство: 
 В следствии утверждения 10 было доказано, что линейная оболочка – 
инвариантное одномерное подпространство пространство ℰ$. Множество 𝑀 элементов, 
ортогональных к 𝑥 – ортогональное дополнение к этой линейной оболочке, которое есть 
подпространство самого пространства размерности 𝑛 − 1. Осталось показать только 
инвариантность.  

∀𝑦 ∈ 𝑀	𝐴�𝑦 ∈ 𝑀 
N𝑥, 𝐴�𝑦O = N𝐴�𝑥, 𝑦O = (𝜆𝑥, 𝑦) = 𝜆(𝑥, 𝑦) 

 Получили множество всех элементов, ортогональных 𝑥. Скалярное произведение 
равно 0. Теорема доказана. 
 Теорема 9 
 Для того чтобы линейный оператор 𝐴�, действующий в ℰ$ был симметричным, 
необходимо и достаточно, чтобы в ℰ$ существовал ОНБ из СВ этого оператора. 
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 Доказательство: 
 Необходимость. У каждого симметричного оператора есть СВ. Возьмем СВ 𝑥+. 
По теореме 8 существует 𝑀$5+ инвариантное относительно оператора 𝐴� и состоящее из 
элементов, которые все ортогональны к 𝑥+. Также здесь существует СВ 𝑥,. К этому СВ 
все множество самого пространство уже будет образовывать подпространство 
инвариантно относительно оператора 𝑀$5,. В нем существует СВ 𝑥#. Продолжая эту 
процедуру, получим ровно 𝑛 СВ, которые взаимно ортогональны. По Лемме получаем, 
что ненулевые взаимно ортогональные элементы линейно независимы. Этих элементов 
ровно столько, какова размерность пространства, то есть это базис. Далее нужно 
привести его к ортонормированному виду.  

𝑒- =
1

J|𝑥-|J
𝑥- 

 Таким образом, базис 𝑒+, … , 𝑒$ – ОНБ из СВ симметричного оператора. 
Необходимость доказана. 
 Достаточность. Базис существует, нужно доказать, что 𝐴� симметричный. Для 
этого построим его матрицу 

𝐴�𝑒- = 𝜆-𝑒- , 𝑘 = 1, 𝑛YYYYY 
𝐴 = N𝜆-𝛿-1 O$

$ 
 Получили диагональную матрицу, которая не изменится при транспонировании. 
То есть оператор симметричный. Теорема доказана. 
  
 Утверждение 17 
 СВ симметричного оператора, соответствующие различным СЗ ортогональны. 
  
 Доказательство: 
 Пусть 𝑥 – СВ 𝐴�, соответствующий СЗ 𝜆, а 𝑦 – СВ 𝐴�, соответствующий СЗ 𝜇, 
причем 𝜆 ≠ 𝜇. 

N𝐴�𝑥, 𝑦O = N𝑥, 𝐴�𝑦O 
(𝜆𝑥, 𝑦) = (𝑥, 𝜇𝑦) 
𝜆(𝑥, 𝑦) = 𝜇(𝑥, 𝑦) 
(𝜆 − 𝜇)(𝑥, 𝑦) = 0 

 Получаем, что (𝑥, 𝑦) = 0, что и требовалось доказать. 
 

Линейные операторы в евклидовом пространстве: ортогональный оператор 

 Определение 
 Оператор 𝐺�, действующий в ℰ называется ортогональным, если ∀𝑥, 𝑦 ∈ ℰ ∶ 

N𝐺�𝑥, 𝐺�𝑦O = (𝑥, 𝑦) 
 Утверждение 18 
 В ОНБ матрица ортогонального оператора ортогональная матрица. 
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 Доказательство: 
N𝐺�𝑥, 𝐺�𝑦O = (𝐺𝑋);𝐺𝑌 = 𝑋;𝐺;𝐺𝑌 

(𝑥, 𝑦) = 𝑋;𝐸𝑌 
 Утверждение доказано. 
  
 Утверждение 19 
 СЗ ортогонального оператора равны ±1.  
 
 Доказательство: 
 Пусть 𝑥 – СВ 𝐺�, соответствующий СЗ 𝜆.  

N𝐺�𝑥, 𝐺�𝑥O = (𝜆𝑥, 𝜆𝑥) = 𝜆,(𝑥, 𝑥) = (𝑥, 𝑥) 
𝜆, = 1 

 Что и требовалось доказать. 
  
 Теорема 10 
 Для того чтобы оператор 𝐺� был ортогональным, необходимо и достаточно, чтобы 
для него существовал обратный 𝐺�5+ и выполнялось соотношение 𝐺�∗ = 𝐺�5+. 
  
 Доказательство: 
 Необходимость. В ОНБ матрица 𝐺� ортогональная 𝐺; = 𝐺5+. Матрицы равны, то 
и сами операторы тоже равны. 
 Достаточность. Из равенства операторов в ОНБ следует равенство их матриц. Это 
фактически определение ортогональной матрицы. Если матрица ортогональная, то и 
оператор ортогонален. Достаточность доказана. 
  
 Замечание 
 Соотношение 𝐺�∗ = 𝐺�5+ можно записать в другой форме: 

𝐺�∗𝐺� = 𝐺�𝐺�∗ = 𝐸� 
 Пример: 
 Рассмотрим пространство 𝐵, с 𝑒+� , 𝑒,�  и матрицей  

𝐺 = �
𝑞++ 𝑞+,
𝑞,+ 𝑞,,�	 

  Для ортогональной матрицы имеем: 

�
𝑞++, + 𝑞,+, = 1
𝑞+,, + 𝑞,,, = 1

𝑞++𝑞+, + 𝑞,+𝑞,, = 0
 

𝑞++ = 𝑐𝑜𝑠𝜙, 𝑞+, = 𝑠𝑖𝑛𝜙	 
𝑞,+ = 𝑐𝑜𝑠𝛼, 𝑞,, = 𝑠𝑖𝑛𝛼 

cos(𝛼 − 𝜙) = 0 

𝛼 = ·
𝜙 +

𝜋
2

𝜙 +
3𝜋
2

 

 В первом случае получаем поворот на угол 𝜙 
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𝑑𝑒𝑡 ¸𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 ¹ = 1 

  Во втором случае имеем симметричную матрицу 

𝑑𝑒𝑡 ¸𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 −𝑐𝑜𝑠𝜙¹ = −1 

 Собственные значения матрицы 𝜆 и 𝜇. В новом базисе 𝑓+� , 𝑓,�  матрица выглядит так: 

¸𝜆 0
0 𝜇¹ 

 В базисе 𝑓 получаем матрицу  

𝐺6 = �1 0
0 −1� 

 Это преобразование симметрии относительно прямой, направление которой 
определяется базисным вектором 𝑓,� . 
  
 Свойства: 

1) Если 𝐺�+ и 𝐺�, – ортогональные операторы, то 𝐺�+𝐺�, – тоже ортогональный 
оператор. 

2) Если 𝐺� – ортогональный оператор, то 𝐺�5+ и 𝐺�∗ – тоже ортогональные 
операторы. 

3) Ортогональный оператор переводит ОНБ в ОНБ. Если некий оператор 𝐺� 
переводит ОНБ в ОНБ, то 𝐺� – ортогональный оператор. 

  
 Докажем 1 свойство: 

N𝐺�+𝐺�,𝑥, 𝐺�+𝐺�,𝑦O = N𝐺�,𝑥, 𝐺�,𝑦O = (𝑥, 𝑦) 
 Подобным образом доказывается 2 свойство. 

Линейные операторы в унитарном пространстве 

 В унитарном пространстве рассмотрим аналоги только что приведенных 
операторов: сопряженный, эрмитов и унитарный операторы. 
  
 Определение 
 Оператор 𝐴�∗ в 𝐸 называется сопряженным к оператору 𝐴�, если выполнено 
соотношение  

∀𝑥, 𝑦 ∈ 𝐸: N𝐴�𝑥, 𝑦O = N𝑥, 𝐴�∗𝑦O 
 Утверждение 𝟏𝟐∗ 
 Повторяет дословно условие и доказательство утверждения 12 за исключением 
одного факта. Матрица 𝐴�∗ = 𝐴;YYYY носит название эрмитово сопряженной к матрице 𝐴. 

(𝑥, 𝑦) = 𝑋;𝑌Y  
 Свойства: 

1) ∀𝐴�	𝑖𝑛	𝐸 ∶ N𝐴�∗O∗ = 𝐴� 
2) ∀𝐴�, 𝐵�	𝑖𝑛	𝐸 ∶ N𝐴� + 𝐵�O∗ = 𝐴�∗ + 𝐵�∗ 
3) ∀𝐴�	𝑖𝑛	𝐸, ∀𝜆 ∈ ℂ ∶ N𝜆𝐴�O∗ = 𝜆̅𝐴�∗ 
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4) ∀𝐴�, 𝐵�	𝑖𝑛	𝐸 ∶ N𝐴�𝐵�O∗ = 𝐵� ∗𝐴�∗ 

5) ∀𝐴�	∃𝐴�5+ ∶ N𝐴�5+O∗ = N𝐴�∗O5+ 
6) 𝜆 – СЗ 𝐴�, то 𝜆̅ – СЗ 𝐴�∗ 

 Для доказательства свойств воспользуемся изоморфизмом пространства 
линейных операторов и матриц. 
 Так как для матриц доказательства уже были приведены, то подобные свойства и 
верны для операторов. 

Эрмитов оператор 

 Определение 
 Оператор 𝐴�, действующий в унитарном пространстве называется эрмитовым, 
если он совпадает со своим сопряженным. 
  
 Свойства: 

1) В ОНБ матрица эрмитова оператора является эрмитовой матрицей. 
𝐴 = 𝐴;YYYY 

 Если в ОНБ матрица оператора удовлетворяет условие выше, то оператор 
эрмитов. 

2) Если 𝐴� – эрмитов оператор, то  
∀𝑥 ∈ 𝐸 ∶ N𝐴�𝑥, 𝑥O ∈ 𝐾! 

3) СЗ эрмитова оператора – вещественные числа. 
4) СВ эрмитова оператора, соответствующие различным СЗ, ортогональны.  
5) Эрмитов оператор, действующий в 𝑛-мерном унитарном пространстве, имеет 

𝑛 линейно независимых попарно ортогональных СВ.  
 Если в 𝑛-мерном унитарном пространстве существует ОНБ из собственных 
векторов оператора 𝐴�, все СЗ которого вещественные числа, то 𝐴� – эрмитов оператор. 
  
 Пример: 
 Рассмотрим 𝐸,(ℂ) с ОНБ 𝑒+� , 𝑒,�  и матрицей  

𝐴 = �𝑖 0
0 0� 

 Построим ОНБ: 

¥𝑖 − 𝜆 0
0 −𝜆¥ = 0, 𝜆 = »0𝑖  

 Выписываем систему для нахождения СВ и получим: 

¸
0
1¹ , ¸

1
0¹ 

 Доказательства свойств: 
 Первое свойство доказывается по схеме утверждений 14-15.  
 Рассмотрим подробнее второе свойство: 

N𝐴�𝑥, 𝑥OYYYYYYYYY = N𝑥, 𝐴�𝑥OYYYYYYYYY = N𝐴�𝑥, 𝑥OYYYYYYYYYYYYYYYYYY = N𝐴�𝑥, 𝑥O 
  Для третьего свойства имеем: 
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N𝐴�𝑥, 𝑥O = (𝜆𝑥, 𝑥) = 𝜆(𝑥, 𝑥) 
N𝑥, 𝐴�𝑥O = (𝑥, 𝜆𝑥) = 𝜆̅(𝑥, 𝑥) 

𝜆 = 𝜆̅ 
 Четвертое свойство совпадает с утверждением 17. 
 Пятое доказывается по аналогии с теоремой 9. 
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Лекция 7. Квадратичные и билинейные формы. Приведение к 
каноническому виду 
Унитарный оператор 

 Определение 
 Линейный оператор 𝑈�, действующий в 𝐸, называется унитарным, если  

∀𝑥, 𝑦 ∈ 𝐸 ∶ N𝑈�𝑥, 𝑈�𝑦O = (𝑥, 𝑦) 
 Свойства: 

1) Матрица 𝑈 унитарного оператора в ОНБ является унитарной, то есть 
удовлетворяет условию 

𝑈𝑈;YYYY = 𝑈;YYYY𝑈 = 𝐸�  
 Если в ОНБ матрица линейного оператора 𝑈� унитарная, то и оператор унитарный. 

2) Если 𝑈� – унитарный оператор, то для него существует обратный оператор 𝑈�5+ 
и выполняется соотношение  

𝑈�5+ = 𝑈�∗ 
𝑈�𝑈�∗ = 𝐸�, 𝑈�∗𝑈� = 𝐸�  

3) Унитарный оператор не меняет норму элемента. 
∀𝑥 ∈ 𝐸 ∶ ¥J𝑈�𝑥J¥ = J|𝑥|J 

4) Если 𝑈�+ и 𝑈�, унитарные, то и 𝑈�+𝑈�, тоже унитарный оператор. 
5) Если 𝑈� – унитарный оператор, то и 𝑈�∗ и 𝑈�5+ тоже унитарные операторы. 
6) Унитарный оператор переводит ОНБ в ОНБ. 

 Если линейный оператор переводит ОНБ в ОНБ, то это унитарный оператор. 
7) Норма СЗ унитарного оператора равняется 1. 

  
 Доказательство свойств: 
 Свойство 4. 

N𝑈�+𝑈�,𝑥, 𝑈�+𝑈�,𝑦O = N𝑈�,𝑥, 𝑈�,𝑦O = (𝑥, 𝑦) 
  

Квадратичные и билинейные формы. Основные понятия 
 Определение 
 Квадратичной формой называется функция 𝑛 переменных вида 

𝑓(𝑥+, … , 𝑥$) = 𝑎1-𝑥1𝑥- , 𝑖, 𝑘 = 1, 𝑛YYYYY 
𝑎1- = 𝑎-1 

 Матрица 𝐴 = (𝑎1-)$,$ называется матрицей квадратичной формы. 
 При записи квадратичной формы стоит учитывать, что  

2𝑎+,𝑥+𝑥, = 𝑎+,𝑥+𝑥, + 𝑎,+𝑥,𝑥+ 
 Для примера возьмем следующую квадратичную форму: 

4(𝑥+), − 6𝑥+𝑥, + 4𝑥,𝑥# − 7(𝑥#), 
 Запишем матрицу для этой квадратичной формы 
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𝐴 = ¨
4 −3 0
−3 0 2
0 2 −7

© 

 Каждой квадратичной форме соответствует единственная симметричная матрица 
этой формы. 
 В матричном виде квадратичная форма записывается как  

𝑋;𝐴𝑋 
 

Изменение квадратичной формы при линейном преобразовании переменных 

 Определение 
 Линейным преобразованием переменных 𝑦+, … , 𝑦$ → 𝑥+, … , 𝑥$ называется 
преобразование вида  

𝑋 = 𝐶𝑌, 
 где 𝐶 = N𝑐-1 O$

$. 
 При этом если 𝐶 невырожденная, то преобразование называется невырожденным, 
а в противном случае – вырожденным. 
 Если преобразование невырожденное, то существует 𝐶5+ и можно совершить 
обратный переход 

𝑌 = 𝐶5+𝑋 
 Существует цепочка преобразований  

𝑍 → 𝑌 → 𝑋 
𝑌 = 𝑄𝑍 

 Также возможно совершить одно преобразование сразу от 𝑍 к 𝑋 
𝑋 = 𝐵𝑍, 𝐵 = 𝐶𝑄 

 Теорема 1 
 Квадратичная форма 𝑋;𝐴𝑋 в результате невырожденного преобразования 
переходит в квадратичную форму 𝑌;𝐵𝑌, где  

𝐵 = 𝐶;𝐴𝐶 
 Доказательство: 
 Берем исходную квадратичную форму и применяем преобразование  

𝑋;𝐴𝑋 = (𝐶𝑌);𝐴𝐶𝑌 = 𝑌;(𝐶;𝐴𝐶)𝑌 = 𝑌;𝐵𝑌 
 Теперь докажем, что 𝐵 – симметричная матрица. Возьмем эту матрицу и найдем  

𝐵; = (𝐶;𝐴𝐶); = 𝐶;𝐴;𝐶;; = 𝐶;𝐴𝐶 = 𝐵 
 Теорема доказана. 
  
 Теорема 2 
 При невырожденном преобразовании переменных определитель матрицы 
квадратичной формы не меняет своего знака. 
 Доказательство: 
 Матрица 𝐴 → 𝐵 в результате невырожденного преобразования, причем  
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𝐵 = 𝐶;𝐴𝐶 
 Требуется доказать, что det(𝐶;𝐴𝐶) не меняет знак. 

det(𝐶;𝐴𝐶) = 𝑑𝑒𝑡𝐶;𝑑𝑒𝑡𝐴	𝑑𝑒𝑡𝐶 = (𝑑𝑒𝑡𝐶),𝑑𝑒𝑡𝐴 
 Так как было применено невырожденное преобразование, то 𝑑𝑒𝑡𝐶 ≠ 0, значит 
знак определителя совпадает со знаком матрицы 𝐶. 
  
 Определение 
 Рангом квадратичной формы называется ранг ее матрицы. 
  
 Теорема 3 
 При невырожденном преобразовании переменных ранг квадратичной формы не 
меняется. 
  
 Доказательство: 

𝑟𝑎𝑛𝑔𝐶;𝐴𝐶 = 𝑟𝑎𝑛𝑔𝐶;𝐴 = 𝑟𝑎𝑛𝑔𝐴 
 Теорема доказана. 
 Далее применим невырожденное преобразование и получим следующую 
квадратичную форму: 

𝑏--(𝑦-), 
 Определение 
 Вышеприведенная запись называется каноническим видом квадратичной формы. 
Коэффициенты 𝑏-- называются каноническими коэффициентами квадратичной формы. 
  
 Теорема 4 
 Число канонических коэффициентов квадратичной формы, отличных от нуля, 
равняется рангу квадратичной формы. 
  
 Доказательство: 
 Пусть ранг матрицы квадратичной формы равен 𝑟. Из теоремы 3 можно сделать 
вывод, что для 𝑏--(𝑦-), это верно. То есть ранг равен 𝑟. Так как матрица такого вида 
является диагональной, то на главной диагонали ровно 𝑟 чисел. Теорема доказана. 
 

Метод Лагранжа приведения квадратичной формы к каноническому виду 

 Теорема 5 
 Любую квадратичную форму невырожденным преобразованием можно привести 
к каноническому виду. 
  
 Доказательство: 
 Доказательство проведем методом полной математической индукции. 

𝑛 = 1 ∶ 𝑎++(𝑥+), 
 Ситуация А:  

∃𝑘	𝑎-- ≠ 0, 𝑎$$ ≠ 0 
 Тогда выделим все слагаемые, которые содержат 𝑥$ 
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𝑎$$(𝑥$), + 2𝑎$-𝑥$𝑥- + 𝑎12𝑥1𝑥2 , 𝑖, 𝑗 = 1, 𝑛 − 1YYYYYYYYYY 
 Дополним до полного квадрата слагаемыми, которые не содержат 𝑥$ 

𝑎$$ À
1
𝑎$$

𝑎$-𝑥-Á
,

+ 𝑓(𝑥+, … , 𝑥$5+) 

 Утверждается, что существует такая матрица 𝐶$5+,$5+, что позволяет замену 
переменных 

Â
𝑥+

𝑥$5+Ã = 𝐶$5+,$5+ Â
𝑦+

𝑦$5+Ã 

𝑏--(𝑦-),, 𝑘 = 1, 𝑛 − 1YYYYYYYYYY 
 Добавим к матрице 𝐶 преобразование  

𝑦$ =
1
𝑎$$

𝑎$-𝑥- 

 Таким образом, мы построили новую матрицу, которая выглядит так 

𝐶$,$ =

⎝

⎜
⎛

𝑐++
…

𝑐$5+,+
𝑎$+
𝑎$$

…
…
…
…

𝑐+$5+
…

𝑐$5+,$5+
𝑎$$5+
𝑎$$

	
0
…
0
1
⎠

⎟
⎞

 

𝑑𝑒𝑡𝐶$,$ = 𝑑𝑒𝑡𝐶$5+,$5+ 
 Для случая А теорема доказана. 
 Случай Б: 

∀𝑘	𝑎-- = 0, 𝑎+, ≠ 0 
𝑥+ = 𝑧+ − 𝑧, 
𝑥, = 𝑧+ + 𝑧, 

𝑥- = 𝑧- , 𝑘 = 3, 𝑛YYYYY 
 Получили следующее: 

2𝑎+,𝑥+𝑥, = 2𝑎+,(𝑧+), − 2𝑎+,(𝑧,), 
 То есть мы свели случай Б к случаю А, который уже был доказан выше. Теорема 
доказана. 
 Способ дополнения до полного квадрата называется методом Лагранжа. 
  
 Пример: 
 Рассмотрим следующую квадратичную форму 

2𝑥+𝑥, + 2𝑥,𝑥# 
 Матрица такой формы будет иметь вид 

𝐴 = ¨
0 1 0
1 0 1
0 1 0

© 

 Если убрать один столбец, который пропорционален другому, то ранг матрицы не 
изменится (𝑟𝑎𝑛𝑔𝐴 = 2).  
 Применим алгоритм случая Б: 

2(𝑧+), − 2(𝑧,), + 2𝑧+𝑧# + 2𝑧,𝑧# 
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 И дополняем до полного квадрата методом Лагранжа 

2Â𝑧+ +
𝑧#

2 Ã
,

− 2Â𝑧, −
𝑧#

2 Ã
,

= 2(𝑦+), − 2(𝑦,), 

 

Приведение квадратичной формы к каноническому виду ортогональным 
преобразованием 

 Теорема 6 
 Существует преобразование 𝑋 = 𝑄𝑌, где 𝑄 – ортогональная матрица, приводящее 
квадратичную форму 𝑋;𝐴𝑋 к каноническому виду. 
  
 Доказательство: 
 Рассмотрим евклидово пространство ℰ$ и выберем ОНБ 𝑒. Зададим линейный 
оператор 𝐴� такой, что 𝐴4 = 𝐴. Тогда по утверждению 15 оператор является 
симметричным. По теореме 9 существует ОНБ 𝑓 = 𝑒𝑄 из СВ данного оператора. Также 
матрица оператора 𝐴6 = N𝜆-𝛿21O$

$ будет диагональной. Переход от 𝑒 к 𝑓 осуществляется 

с помощью ортогональной матрицы. Кроме того, можно записать, что  
𝐴6 = 𝑄5+𝐴4𝑄 = 𝑄;𝐴𝑄 

 По теореме 1 при линейном преобразовании матрица квадратичной формы станет 
именно такого вида. Что и требовалось доказать. 
  
 Замечание 
 Каноническими коэффициентами квадратичной формы являются СЗ матрицы 𝐴.  
 Матрица 𝑄 состоит из координат нормированных СВ.  
  
 Пример: 
 Запишем вид матрицы квадратичной формы 

¨
0 1 0
1 0 1
0 1 0

© 

 Характеристическое уравнение будет иметь вид  

Ä
−𝜆
1
0

1
−𝜆
1

0
1
−𝜆
Ä = 0 

−𝜆# + 2𝜆 = 0 

𝜆 = Å
√2
−√2
0

 

 Канонический вид квадратичной формы запишем следующим образом 
√2(𝑦+), − √2(𝑦,), 

 При 𝜆 = 0 получим 



 

ЛИНЕЙНАЯ АЛГЕБРА 
ШИШКИН АЛЕКСАНДР АЛЕКСАНДРОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

50 
 
 

 

Æ 𝑥, = 0
𝑥+ + 𝑥# = 0

→ 𝑋+ = ¨
−1
0
1
© , J|𝑋+|J = √2 

 Далее поступаем аналогичным образом, ищем решения при оставшихся 𝜆. 
 Довести до конца решение. 
  
 Пример: 
 Рассмотрим следующую квадратичную форму 

2𝑥+𝑥, + 2𝑥+𝑥# + 2𝑥,𝑥# 
  Матрица такой формы имеет вид 

𝐴 = ¨
0 1 1
1 0 1
1 1 0

© 

 Характеристическое уравнение находим из  

Ä
−𝜆
1
1

1
−𝜆
1

1
1
−𝜆
Ä = 0 

−𝜆# + 3𝜆 + 2 = 0 

𝜆 = Ç
−1
−1
2

 

 Получили в таком случае кратные корни. При построении матрицы 
ортогонального преобразования получаем проблему вырождения системы. При 𝜆 = −1: 

𝑥+ + 𝑥, + 𝑥# = 0 

𝑋+ = ¨
−1
1
0
© , 𝑋, = ¨

−1
0
1
© 

  Однако такие вектора не ортогональны. В данном случае необходимо применять 
метод Шмидта. 

𝑒+ =
1

J|𝑋+|J
𝑋+ =

⎝

⎜
⎛
−
1
√2
1
√2
0 ⎠

⎟
⎞

 

𝑒, =
1

J|𝑔,|J
𝑔,, 𝑔, = 𝑋, − (𝑋,, 𝑒+)𝑒+ =

⎝

⎜
⎛
−
1
2

−
1
2
1 ⎠

⎟
⎞

 

J|𝑔,|J = �3
2	 
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Билинейные формы. Связь билинейной формы с квадратичной формой 

 Пусть в линейном пространстве 𝑅 ∀𝑥, 𝑦 ∈ 𝑅 по правилу 𝐵 поставлено в 
соответствие число 𝑢, тогда 𝑢 = 𝐵(𝑥, 𝑦) – числовая функция двух аргументов. 
  
 Определение 
 Числовая функция 𝐵(𝑥, 𝑦) называется билинейной формой, если  
∀𝑥, 𝑦, 𝑧 ∈ 𝑅	∀𝜆 ∈ 𝐾! выполняются следующие условия: 

1) Линейность по первому аргументу при фиксированном втором аргументе  
𝐵(𝑥 + 𝑧, 𝑦) = 𝐵(𝑥, 𝑦) + 𝐵(𝑧, 𝑦) 

𝐵(𝜆𝑥, 𝑦) = 𝜆𝐵(𝑥, 𝑦) 
2) Линейность по второму при фиксированном первом аргументе 

𝐵(𝑥, 𝑦 + 𝑧) = 𝐵(𝑥, 𝑦) + 𝐵(𝑥, 𝑧) 
𝐵(𝑥, 𝜆𝑦) = 𝜆𝐵(𝑥, 𝑦) 

 Из этого определения можно получить следующее соотношение 
𝑥 = 𝑎1𝑢1 , 𝑖 = 1, 𝑘YYYYY 
𝑦 = 𝑏2𝑣2 , 𝑗 = 1, 𝑠YYYY 

𝐵(𝑥, 𝑦) = 𝐵N𝑎1𝑢1 , 𝑏2𝑣2O = 𝑎1𝑏2𝐵N𝑢1 , 𝑣2O 
 Доказать самостоятельно. 
 В линейном пространстве 𝑅 возьмем некий базис 𝑒 

𝑥 = 𝑥1𝑒1 , 𝑦 = 𝑦2𝑒2 , 𝑖, 𝑗 = 1, 𝑛YYYYY 
𝐵N𝑒1 , 𝑒2O = 𝑏12 

𝐵(𝑥, 𝑦) = 𝑏12𝑥1𝑦2 , 𝑖, 𝑗 = 1, 𝑛YYYYY 
 Данная формула называется представлением билинейной формы в заданном 
базисе. 

(𝑥̅, 𝑦Y) = 𝐵(𝑥̅, 𝑦Y) 
𝐵 = N𝑏12O$$ 

 Выше привели запись матрицы билинейной формы в заданном базисе. 
 В математическом анализе выпишем билинейную форму вида 

𝐵(𝑥, 𝑦) = � 𝑥(𝑡)𝑦(𝑡)𝑑𝑡
)

'
 

 В матричной форме можно переписать вышеизложенные соотношения 
следующим образом: 

𝐵(𝑥, 𝑦) = 𝑋4;𝐵4𝑌4 
 Теорема 7 
 Пусть 𝐵4 , 𝐵6 – матрицы билинейной формы 𝐵(𝑥, 𝑦) в двух базисах 𝑒, 𝑓. Переход 
от одного базиса к другому 𝑓 = 𝑒𝐶. Тогда имеет место формула  

𝐵6 = 𝐶;𝐵4𝐶 
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 Доказательство: 
 Пусть в базисе 𝑒 𝑥 имеет координат 𝑋4, а 𝑦 - 𝑌4. В 𝑓 аналогично 𝑋6 , 𝑌6. Если 
переход от одного базиса к другому осуществляется с помощью невырожденной 
матрицы 𝐶, то имеют место формулы  

𝑋4 = 𝐶𝑋6 
𝑌4 = 𝐶𝑌6 

𝐵(𝑥, 𝑦) = 𝑋4;𝐵4𝑌4 = N𝐶𝑋6O
;𝐵4𝐶𝑌6 = 𝑋6;𝐶;𝐵4𝐶𝑌6 = 𝑋6;𝐵6𝑌6 

 Что и требовалось доказать. 
  
 Определение 
 Билинейная форма называется симметричной, если  

∀𝑥, 𝑦 ∶ 𝐵(𝑥, 𝑦) = 𝐵(𝑦, 𝑥) 
 
 Теорема 8 
 Для того чтобы билинейная форма была симметричной, необходимо и 
достаточно, чтобы ее матрица была симметричной. 
  
 Доказательство: 
 Необходимость.  

𝑏12 = 𝐵N𝑒1 , 𝑒2O = 𝐵N𝑒2 , 𝑒1O = 𝑏21 
 Достаточность. 

𝐵(𝑥, 𝑦) = 𝑏12𝑥1𝑦2 = 𝑏21𝑦2𝑥1 = 𝐵(𝑦, 𝑥) 
 Теорема доказана. 
 Далее возьмем билинейную форму 𝐵(𝑥, 𝑦) и положим 𝑦 = 𝑥. Тогда получаем 
квадратичную функцию c коэффициентами 

𝑏12𝑥1𝑥2 	и	𝑏21𝑥2𝑥1 
 Построим для квадратичной функции симметричную матрицу 

𝑎12 =
𝑏12 + 𝑏21

2  

 После данной процедуры получаем, что 𝐵(𝑥, 𝑥) = 𝐴(𝑥, 𝑥). 
 Рассмотрим следующую билинейную форму 
𝐴(𝑥 + 𝑦, 𝑥 + 𝑦) = 𝐴(𝑥, 𝑥 + 𝑦) + 𝐴(𝑦, 𝑥 + 𝑦) = 𝐴(𝑥, 𝑥) + 𝐴(𝑥, 𝑦) + 𝐴(𝑦, 𝑥) + 𝐴(𝑦, 𝑦) 

𝐴(𝑥, 𝑦) =
1
2
[𝐴(𝑥 + 𝑦, 𝑥 + 𝑦) − 𝐴(𝑥, 𝑥) − 𝐴(𝑦, 𝑦)] 

 Определение 
 Базис 𝑒 линейного пространства 𝑅 называется канонический для билинейной 
формы 𝐵(𝑥, 𝑦), если выполнено условие  

𝐵N𝑒1 , 𝑒2O = 0, 𝑖, 𝑗 = 1, 𝑛YYYYY, 𝑖 ≠ 𝑗 
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Лекция 8. Критерий Сильвестра. Тензор и его простейшие свойства 
Билинейные формы. Продолжение 

 Теорема 9 
 Для того чтобы билинейная форма была симметричной, необходимо и 
достаточно, чтобы эта форма имела канонический базис. 
  
 Доказательство: 
 Необходимость. В некотором базисе 𝑒 билинейную форму можно записать в виде 

𝑋;𝐴𝑌 
 Соответствующая ей квадратичная форма будет выглядеть как 

𝑋;𝐴𝑋 
 По теореме 5 данная форма невырожденным преобразованием может быть 
приведена к каноническому виду 

𝐶;𝐴𝐶, 𝑋 = 𝐶𝑍 
𝑓 = 𝑒𝐶, 𝐶;𝐴𝐶 

 Получаем, что матрица билинейной формы диагональная 
𝑋;𝐴𝑌 = 𝑎--𝑥-𝑦- , 𝑎-1 = 0, 𝑘 ≠ 𝑖 

 Достаточность. У билинейной формы есть канонический базис. В нем матрица 
диагональная, которая не меняется при транспонировании. Тогда по теореме 8 
билинейная форма симметрична. Что и требовалось доказать.  

Метод Якоби. Приведение квадратичной формы к каноническому виду 

 Квадратичная форма – частный случай билинейной формы. 
𝑋;𝐴𝑋 = 𝐴(𝑥, 𝑥) 

 Построим новый базис 𝑓 с помощью следующего преобразования: 
𝑓+ = 𝑒+ 

𝑓, = 𝑐,+𝑒+ + 𝑒, 
… 

𝑓$ = 𝑐$+𝑒+ + 𝑐$,𝑒, +⋯+ 𝑒$ 
 У матрицы данного преобразования определитель равен 1. То есть построенные 
нами элементы линейно независимы и их ровно столько, какова размерность 
пространства. Поэтому это базис. Необходимо сделать теперь канонический базис. 
 
 В базисе 𝑒 квадратичная форма имеет матрицу 𝐴. Рассмотрим угловые миноры 
этой матрицы 

detN𝑎12O-- = Δ- 
 В случае, если 𝑘 = 1 и	𝑘 = 𝑛, имеем: 

Δ+ = 𝑎++, Δ$ = 𝑑𝑒𝑡𝐴 
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 Теорема 10 
 Пусть угловые миноры Δ+, Δ,, … , Δ$5+ матрицы 𝐴 квадратичной формы 𝑋;𝐴𝑋 
отличны от нуля, тогда существует единственное преобразование, которое приводит 
квадратичную форму к каноническому виду. 
  
 Доказательство: 

𝑏12 = 𝐴N𝑓1 , 𝑓2O, 𝑎12 = 𝐴N𝑒1 , 𝑒2O 
 Нам нужно построить канонический базис, то есть должно соблюдаться условие 

𝐴N𝑓1 , 𝑓2O = 0, 𝑖 = 1, 𝚥 − 1YYYYYYYYY, 𝑗 = 2, 𝑛YYYYY 
 Рассмотрим следующий случай 

𝐴N𝑓+, 𝑓2O = 𝐴N𝑒1 , 𝑓2O = 0 
𝐴N𝑓,, 𝑓2O = 𝐴N𝑐,+𝑒+ + 𝑒,, 𝑓2O = 𝑐,+𝐴N𝑒+, 𝑓2O + 𝐴N𝑒,, 𝑓2O = 0 

𝐴N𝑒,, 𝑓2O = 0 
 Если продолжать такую цепочку, то можно получить, что  

𝐴N𝑒1 , 𝑓2O = 0 
 Распишем данное соотношение подробнее: 

𝑓2 = 𝑐2+𝑒+ + 𝑐2,𝑒, +⋯+ 𝑐225+𝑒25+ + 𝑒2 
𝑎1+𝑐2+ + 𝑎1,𝑐2, +⋯+ 𝑎1,25+𝑐2,25+ + 𝑎12 = 0 

 Зафиксируем 𝑗, а 𝑖 будем менять 
𝑎++𝑐2+ + 𝑎+,𝑐2, +⋯+ 𝑎+25+𝑐225+ = −𝑎+2 

………… 
𝑎25++𝑐2+ + 𝑎25+,𝑐2, +⋯+ 𝑎25+,25+𝑐225+ = −𝑎25+2 

  Получена система, решение которой полностью определяет нужные 
коэффициенты. Докажем, что система имеет единственное решение 

𝑑𝑒𝑡𝐴 = Δ25+ ≠ 0 
  Отсюда следует, что система имеет единственное решение, представимое по 
формулам Крамера. Теорема доказана. 
 Теперь воспользуемся формулами Крамера и решим данную систему: 

𝑐21 =
Δ25+,2
Δ25+

= (−1)1/2
𝛿2,1
Δ25+

=
𝐴21
𝐴22

 

 Далее выпишем вид канонических коэффициентов 
𝜆+ = 𝑏++ = 𝐴(𝑓+, 𝑓+) = 𝐴(𝑒+, 𝑒+) = Δ+ 

𝜆, = 𝑏,, = 𝐴(𝑓,, 𝑓,) = 𝐴(𝑒,, 𝑓,) = 𝐴(𝑒,, 𝑐,+𝑒+ + 𝑒,) = 𝑎,+𝑐,+ + 𝑎,, = 

= −𝑎,+
𝑎+,
𝑎++

+ 𝑎,, =
𝑎,,𝑎++ − 𝑎+,𝑎,+

𝑎++
=
Δ,
Δ+
	 

𝜆- = 𝑏-- = 𝐴(𝑓- , 𝑓-) = 𝐴(𝑒- , 𝑐-+𝑒+ +⋯+ 𝑐--5+𝑒-5+ + 𝑒-) = 𝑎-+𝑐-+ + 𝑎-,𝑐-, +⋯ 

+𝑎--5+𝑐--5+ + 𝑎-- =
1
𝐴--

[𝑎-+𝐴-+ + 𝑎-,𝐴-, +⋯+ 𝑎--5+𝐴--5+ + 𝑎--𝐴--] 

 В квадратной скобке находится разложение определителя по одной из строк. И 
окончательно получаем  
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𝜆-- =
Δ-/+
Δ-

 

 Пример: 
 Рассмотрим квадратичную форму 

(𝑥+), − 3𝑥+𝑥, + 𝑥,𝑥# 
 Приведем ее к каноническому виду методом Якоби: 

𝐴 =

⎝

⎜
⎜
⎛
1 −

3
2 0

−
3
2 0

1
2

0
1
2 0⎠

⎟
⎟
⎞

 

 Найдем ее угловые миноры. 

Δ+ = 1, Δ, = −
9
4 , Δ# = −

1
4 

 И по ранее полученным формулам запишем канонические коэффициенты: 

𝜆+ = 1, 𝜆, = −
9
4 , 𝜆# =

1
9 

 Тогда квадратичная форма имеет вид 

(𝑦+), −
9
4
(𝑦,), +

1
9
(𝑦#), 

  

Закон инерции квадратичной формы 
 Теорема 11 
 Число положительных и отрицательных канонических коэффициентов не зависит 
от того, каким образом квадратичная форма приведена к каноническому виду.  
  
 Доказательство: 
 Можно найти в рекомендованной литературе. 

Классификация квадратичных форм  

 Определение 
 Квадратичная форма 𝑋;𝐴𝑋 называется положительно (отрицательно) 
определенной, если ∀𝑥 ≠ 0 ∶ 𝑋;𝐴𝑋 > 0	(< 0). Такие формы также называются 
знакоопределенными квадратичными формами. 
  
 Определение 
 Квадратичная форма 𝑋;𝐴𝑋 называется квазиположительно (квазиотрицательно) 
определенной, если ∀𝑥 ≠ 0 ∶ 𝑋;𝐴𝑋 ≥ 0	(≤ 0) 
  
 Определение 
 Квадратичная форма 𝑋;𝐴𝑋 называется знаконеопределенной, если она может 
принимать как положительные, так и отрицательные значения. 
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 Теорема 12 
 Для того чтобы квадратичная форма 𝑋;𝐴𝑋 была положительно (отрицательно) 
определенной, необходимо и достаточно, чтобы ее канонические коэффициенты были 
> 0	(< 0).  
  
 Доказательство: 
 Необходимость. Дана квадратичная форма, удовлетворяющая условию  
𝑋;𝐴𝑋 > 0, ∀𝑥 ≠ 0. По ранее доказанному известно, что ∃	𝑋 = 𝐶𝑌 ∶ 

𝑋;𝐴𝑋 = b𝑎-(𝑦-),
$

-3+

 

   Далее зафиксируем некоторое 𝑘 и потребуем, чтобы 𝑦- = 1, 𝑦1 = 0, 𝑖 ≠ 𝑘. 

𝑌! = ²

0
0
1
0

³ ≠ 𝜃 → 𝑋! ≠ 𝜃 

 Подставим в сумму найденное 𝑋!: 
0 < 𝑋!;𝐴𝑋! = 𝑎- 

 Так как можно выбрать любое 𝑘, то все канонические коэффициенты в данном 
случае положительны.  
 Достаточность. Имеем, что ∀𝑎- > 0. Невырожденным преобразованием можно 
привести форму к каноническому виду 

b𝑎-(𝑦-),
$

-3+

	 

  Так как 𝑋 – любой, но ненулевой элемент, то в силу невырожденного 
преобразования и 𝑌 будет ненулевым. Отсюда получаем, что хотя бы одно 𝑦- отлично 
от нуля и все 𝑎- > 0. Квадратичная форма положительно определена.  
  
 Следствие 
 Если квадратичная форма положительно определенная, то существует 
преобразование, приводящее данную квадратичную форму к виду 

b(𝑧-),
$

-3+

 

  Доказательство: 
 Проведем замену �𝑎-𝑦- = 𝑧- . 
  
 Теорема 13 (Критерий Сильвестра) 
 Для того чтобы квадратичная форма была положительно определенной, 
необходимо и достаточно, чтобы все угловые миноры матрицы квадратичной формы 
были больше нуля. 
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 Для того чтобы квадратичная форма была отрицательно определенной, 
необходимо и достаточно, чтобы знаки угловых миноров матрицы 𝐴 чередовались, 
причем Δ+ = 𝑎++ < 0. 
  
 Доказательство:   
 Необходимость. Пусть найдется такое 𝑘, что Δ- = 0. Рассмотрим систему  

𝑎12𝑥1 = 0, 𝑖, 𝑗 = 1, 𝑘YYYYY 
 Нетривиальное решение системы обозначим как  

𝑥!+, 𝑥!,, … , 𝑥!- 
 Далее подставим решение в систему и получим 

𝑎12𝑥!1𝑥!
2 = 0 

 Это означает, что квадратичная форма на 𝑥! = N𝑥!+, … , 𝑥!- , 0…0O
; обращается в 

ноль. Получили противоречие и доказали следующие: если квадратичная форма 
положительно (отрицательно) определена, то все угловые миноры ее матрицы не равны 
нулю. Тогда воспользуемся теоремой Якоби и получим, что знаки будут чередоваться.  
 Достаточность. Из условия следует, что все угловые миноры не равны нулю. 
Применяем теорему Якоби и получаем, что все миноры положительны, а из теоремы 12 
следует, что и все коэффициенты будут положительными. В случае, если угловые 
миноры меняют знак, то все канонические коэффициенты будут меньше нуля. Теорема 
доказана.  
  

Задача о двух квадратичных формах 

 Теорема 14 
 Пусть даны две квадратичные формы 𝐴+(𝑥, 𝑥) и 𝐴,(𝑥, 𝑥), причем вторая – 
положительно определенная квадратичная форма, тогда существует преобразование, 
приводящее обе квадратичные формы к каноническому виду. 
  
 Доказательство: 
 Шаг 1. Существует преобразование 𝑋 = 𝐶𝑌, которое приведет квадратичную 
форму к 𝐴,(𝑥, 𝑥) = ∑ (𝑦-),$

-3+ .	Матрица первой квадратичной формы преобразуется как  
	𝐴+ → 𝐶;𝐴+𝐶 

 Шаг 2. Применим к первой квадратичной форме ортогональное преобразование  
𝑌 = 𝑄𝑍 

 Тогда первая форма перейдет в каноническую, а матрица второй будет иметь вид 
𝑄;𝐸𝑄 = 𝑄;𝑄 = 𝐸 

 То есть вторая останется канонической.  
 Теорема доказана. 
  
 Замечание 
 В общем случае задача приведения двух квадратичных формах к каноническому 
виду неразрешима.  
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Применение теории квадратичных форм к исследованию кривых второго порядка 

 Глава 11 из книги «Аналитическая геометрия и линейная алгебра с 
приложениями» авторов Крутицкой Н.Ч., Тихонравова А.В. и Шишкина А.А. 
 В самом общем виде уравнение второй степени на плоскости можно записать как  

𝑎++𝑥, + 2𝑎+,𝑥𝑦 + 𝑎,,𝑦, + 2𝑏+𝑥 + 2𝑏,𝑦 + 𝑐 = 0 
 Первые три слагаемых – квадратичная форма. Существует ортогональное 
преобразование, которое переведет эти слагаемые к каноническому виду 

�
𝑥
𝑦� = 𝑄 ¸𝑥

"

𝑦"¹ , 𝜆+(𝑥"), + 𝜆,(𝑦"), 

 У данного уравнения существует три инварианта: 
𝐽+ = 𝑎++ + 𝑎,, 

𝐽, = ¥
𝑎++ 𝑎+,
𝑎,+ 𝑎,,¥ 

𝐽# = Ä
𝑎++
𝑎,+
𝑏+

𝑎+,
𝑎,,
𝑏,

𝑏+
𝑏,
𝑐
Ä 

 Если 𝐽, > 0, а 𝐽+𝐽# имеет определенный знак, то можно сказать, что именно 
описывает данное уравнение: 

𝐽# > 0 − эллипс 
𝐽# = 0 − точка 

𝐽# > 0 − нет	образа 
 Если 𝐽, < 0 и при  

𝐽# ≠ 0 − гипербола 
𝐽# = 0 − пара	пересекающихся	прямых 

 Если 𝐽, = 0 и при  
𝐽# ≠ 0 − парабола 

𝐽# = 0 − пара	параллельных	прямых, мнимых	или	совпадающих	прямых 
 Знания инвариантов позволяет сразу выписать коэффициенты канонического 
уравнения. 
 

Тензоры в конечномерном линейном пространстве 

 Рассмотрим 𝑛 мерное пространство и возьмем в нем два базиса 𝑒 и	𝑓. Переход от 
одного к другому осуществляется с помощью матрицы 𝐶 ∶ 𝑓 = 𝑒𝐶 

𝑓- = 𝐶-1𝑒1 , 𝑖, 𝑘 = 1, 𝑛YYYYY 
 Так как 𝑑𝑒𝑡𝐶 ≠ 0, то  

𝐶5+ = N𝐶̅-1O$
$ 

𝑒- = 𝐶-̅1𝑓1 
 Рассмотрим линейную форму: 

𝐹(𝑥), 𝑥 = 𝑥-𝑒- 
𝐹(𝑥) = 𝐹(𝑥-𝑒-) = 𝐹(𝑒-)𝑥-𝑏-𝑥- 
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 В другом базисе этот же элемент можно разложить как 
𝑥 = 𝑥Ý-𝑓- 

𝐹(𝑥) = 𝐹(𝑥Ý-𝑓-) = 𝐹(𝑓-)𝑥Ý- = 𝑏Þ-𝑥Ý- 
𝑏Þ- = 𝐹(𝑓-) = 𝐹N𝑐-1 𝑒1O = 𝑏1𝑐-1  

 Получили, что координаты преобразуются точно также, как базисные элементы. 
 Возьмем элемент 𝑥 линейного пространства и разложим его по базису 

𝑥 = 𝑥-𝑒- = 𝑥Ý-𝑓- 
𝑋4 = 𝑥Ý- = 𝑐1̅-𝑥1 

 В первом примере преобразование происходит ковариантно с базисными 
элементами и индексы у координат ставят внизу. Во втором примере изменения 
происходят с помощью обратной матрицы или контрвариантно с базисными элементами 
и индексы у координат ставят вверху.  
 Возьмем билинейную форму 𝐵(𝑥, 𝑦) и разложим по базису  

𝐵(𝑥, 𝑦) = 𝐵N𝑥1𝑒1 , 𝑦-𝑒-O = 𝑏1-𝑥1𝑦- 
𝑏1- = 𝐵(𝑒1 , 𝑒-) 

𝑏Þ1- = 𝐵N𝑓1 , 𝑓2O = 𝐵N𝑐1-𝑒- , 𝑐20𝑒0O = 𝑏12𝑐1-𝑐20 
 И, наконец, рассмотрим пример линейного оператора 𝐴�.  

N𝑎-1 O$
$ 

 При переходе к новому базису матрица преобразуется как  
𝐶5+𝐴4𝐶 = 𝐴6 

  

Определение тензора и простейшие свойства тензора 

 Определение 
 Геометрический объект [𝐴]7

E , который в базисе 𝑒 описывается 𝑛7/E чисел вида  

𝑎1$,1%,…,1&
2$,2%,…,2' , 

 где верхние индексы независимо друг от друга изменяются от 1 до 𝑛, называется 
тензором типа 𝑝𝑞, если при переходе к новому базису по формуле  

𝑓 = 𝑒𝐶 
 эти координаты преобразуются как  

𝑎Y1$,…,1&
2$,…,2' = 𝐶1$

G$𝐶1%
G% …𝐶1&

G& …𝐶%$
52$𝐶%%

52% …𝐶%'

52'𝑎G$,…,G&
%$,…,%' 

 Число 𝑟 = 𝑝 + 𝑞 называется рангом тензора. Верхние индексы – 
контравариантные, а нижние – ковариантные.  
 Скаляр тоже можно отнести к тензорам нулевого ранга. 
  
 Примеры: 
 Числа 𝑏+, … , 𝑏$ из линейной формы – координаты ковариантного тензора ранга 1. 
Далее числа 𝑥+, … , 𝑥$ линейного пространства – координаты контравариантного тензора 
ранга 1. Билинейная форма – координаты дважды ковариантного тензора ранга 2.   
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Лекция 9. Операции над тензорами. Группы 
Продолжение о свойствах тензора 

 Определение 
 Тензор, координаты которого не меняют свои значения при перестановке двух 
верхних или двух нижних индексов, называется симметричным по этим индексам. 
  
 Утверждение 1 
 Свойство тензора быть симметричным не зависит от выбора базиса. 
  
 Доказательство: 
 Рассмотрим тензор ранга 3 [𝐵],+. В некотором базисе 𝑒 его координаты имеют вид 
𝑏12- , а свойство симметрии означает, что  

𝑏12- = 𝑏21- 
 Воспользуемся определением и перейдем к новому базису 

𝑏Y12- = 𝐶1C𝐶2
H𝐶̅I-𝑏CH

I = 𝐶1C𝐶2
H𝐶I̅-𝑏HC

I = 𝐶1
H𝐶2C𝐶I̅-𝑏CH

I = 𝐶2C𝐶1
H𝐶̅I-𝑏CH

I = 𝑏Y21- 
 Утверждение доказано. 
  
 Определение 
 Тензор, координаты которого при перестановке двух верхних или двух нижних 
индексов по абсолютной величине не меняются, а меняется только знак, называется 
кососимметричный.  
  
 Утверждение 2 
 Свойство быть кососимметричным тензором не зависит от выбора базиса. 
  
 Доказательство: 
 Провести самостоятельно. 
 

Действие над тензорами    

 Возьмем два тензора [𝐴]7
E , [𝐵]7

E . В некотором базисе 𝑒 они имеют координаты 

𝑎1$,…,1&
2$,…,2' , 𝑏1$,…,1&

2$,…,2' 

 Определение 
 Суммой (разностью) двух тензоров называется новый тензор [𝐷]7

E , координаты 
которого выглядят как  

𝑑1$,…,1&
2$,…,2' = 𝑎1$,…,1&

2$,…,2' ± 𝑏1$,…,1&
2$,…,2' 

 Корректность преобразования координат здесь проверяется достаточно просто. 
 Возьмем два тензора [𝐴]7

E  и [𝐵]%J . В базисе 𝑒 они имеют координаты 

𝑎1$,…,1&
2$,…,2' , 𝑏H$,…,H(

C$,…,C)  

 Перемножим их произвольным образом и получим  
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𝑎1$,…,1&
2$,…,2' 	𝑏H$,…,H(

C$,…,C)  

 Теперь заменим 𝛼+ = 𝑗E/+, … , 𝑎J = 𝑗E/J , 𝛽+ = 𝑖7/+, … , 𝛽% = 𝑖7/%. 
  
 Определение 
 Произведением двух тензоров называется новый тензор [𝐷]7/%

E/J , если в том же 
базисе 𝑒 он будет иметь координаты 

𝑑1$,…,1&*(
2$,…,2'*) = 𝑎1$,…,1&

2$,…,2'𝑏1&*$,…,1&*(
2'*$,…,2'*)  

 Преобразование координат проверить самостоятельно.  
 Далее умножим тензор типа [𝐴]7

E  на константу. Тогда получится тензор исходного 
типа 𝑝𝑞. 
 Легко установить, что при умножении двух тензоров порядок множителей 
должен сохраняться, так как  

[𝐴]7
E 	[𝐵]%J ≠ [𝐵]%J [𝐴]7

E  
 Возьмем тензор [𝐴]7

E  в базисе 𝑒 и выделим среди всех верхних и нижних индексов 
один 𝑗C и 𝑖H. Рассмотрим те координаты, для которых 𝑖C = 𝑖H = 𝑘. Сложим их. 

𝑎1$,…,1+,$,-,1+*$,…,1&
2$,…,2-,$,-,2-*$,…,2' 

 Набор этих чисел есть координаты нового тензора. Данная процедура называется 
свертыванием тензора по указанным индексам. [𝐵]75+

E5+ – новый тензор или свертка 
тензора [𝐴]7

E  по указанным двум индексам.  
  
 Пример: 
 Возьмем тензоры [𝐹]+! и [𝑋]!+ . Произведем свертку. Пусть в базисе 𝑒 они имеют 
координаты  

𝑏1 	и	𝑥2 
𝐹(𝑥) = 𝑏1𝑥1 

 Удобно записывать координаты тензоров ранга 1 и 2 в виде матриц. Если задан 
тензор с 𝑝 = 𝑞 = 1, то ему соответствует оператор.  
  
 Пример: 
 Положение индексов играет важную роль. Рассмотрим тензор [𝐷]++, который в 
базисе 𝑒 имеет координаты  

𝑑21 = 𝛿21 
 Сменим базис и получим 

𝑑̅21 = 𝑐2C𝑐H̅1 𝛿C
H = 𝑐2C𝑐C̅1 = (𝑐5+𝑐)21 = 𝛿21 

 Данный тензор описывает тождественный оператор.  
  
 Пример: 
 Возьмем тензор [𝐷],! и пусть 𝑑12 = 𝛿12 . Снова перейдем к новому базису 
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𝑑̅12 = 𝑐1C𝑐2
H𝛿CH = b𝑐1C𝑐2C

$

C3+

= (𝑐𝑐;)12 

 В данном случае координаты тензора не меняются и описывает он билинейную 
форму.  
  
Тензоры в евклидовом пространстве 

 Пусть в данном пространстве заданы элементы 𝑥, 𝑦 и базис 𝑒. Разложим элементы 
по базису и получим 

𝑥 = 𝑥1𝑒1 , 𝑦 = 𝑦1𝑒1 
(𝑥, 𝑦) = 𝑔12𝑥1𝑦2 , 𝑔12 = N𝑒1 , 𝑒2O 

 Здесь тензор [𝐺],! – метрический тензор евклидова пространства.  
  
 Задача: 
 Рассмотрим свертку метрического тензора и тензора [𝑋]!+. 

𝑥1 = 𝑔12𝑥2 , 𝑖, 𝑗 = 1, 𝑛YYYYY 
 Получается, что тензору 𝑋 поставлен в соответствие набор из 𝑛 чисел. Таким 
образом, если задается контравариантный тензор, то для него получается единственным 
образом строго определенный контравариантный тензор.  
 Ковариантные соотношения  

𝑥1 = N𝑒1 , 𝑒2O𝑥2 = (𝑒1 , 𝑥) 
 В ОНБ 𝑥1 = 𝑥2. 
 Если рассмотреть определитель метрического тензора, то он отличен от нуля. То 
есть у нее есть обратная матрица. Элементы этой матрицы обозначим как 𝑔12. Они 
образуют координаты [𝐺]!,, при этом запишем 

𝑔12𝑔1% = 𝛿%1  
𝑔-1𝑥1 = 𝑔-1𝑔12𝑥2 = 𝛿2-𝑥2 = 𝑥- 

 Произошло поднятие индекса. 
 
Физические примеры использования тензоров 

 Рассмотрим абсолютно твердое тело 𝐺 в системе координат 𝑂𝑥+𝑥,𝑥# с ОНБ 
𝑒̅+, 𝑒̅,, 𝑒̅#. Выделим некоторую точку 𝑀 и найдем значение ее скорости  

𝑣̅ = 𝑉Y + [Ω�, 𝑟̅] 
  Введем также координаты вектора Ω� = {Ω+, Ω,, Ω#}, 𝑟̅ = 𝑂𝑀YYYYY = {𝑥+, 𝑥,, 𝑥#} 
 Запишем кинетическую энергию тела 

𝐸 =
1
2ä𝜌(𝑀) 𝑣̅,𝑑𝜏 

𝑣̅, = 𝑉Y, + 2(𝑉Y, [Ω�, 𝑟̅]) + [Ω�, 𝑟̅], 
(𝑉Y, [Ω�, 𝑟̅]) = ([Ω�, 𝑟̅], 𝑉Y) 
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¸[V�, Ω�],ä𝜌(𝑀) Σ𝑑𝜏¹ = 0	 

 Также рассмотрим и последнее слагаемое 
[Ω�, 𝑟̅], = Ω�,𝑟̅, − (Ω�, 𝑟̅), = NΩ1Ω2𝛿12O𝑟̅, − NΩ1𝑥1ONΩ2𝑥2O = 

= Ω1Ω2�𝛿12𝑟̅, − 𝑥1𝑥2�	 
 Кинетическая энергия вращения имеет вид 

𝑇) =
1
2Ω+Ω,ä𝜌(𝑀) �𝛿12𝑟̅, − 𝑥1𝑥2�	𝑑𝜏 =

1
2Ω+Ω,𝐼 

𝐼++ =ä𝜌(𝑀) [(𝑥,), + (𝑥#),]𝑑𝜏 

 Данный тензор является симметричным. То есть существует такой ОНБ в этом 
пространстве, в котором  

𝐼é12 = 0, 𝑖 ≠ 𝑗 
 В этом случае кинетическая энергия вращательного движения имеет вид 

𝑇) =
1
2Ω1

,𝐼1 

 
Группы 

 Определение 
 Множество 𝐺 элементов любой природы называется группой, если на этом 
множестве задана операция, с помощью которой ∀𝑥, 𝑦 ∈ 𝐺 ∶ 𝑧 ∈ 𝐺 

𝑧 = 𝑥 ∘ 𝑦 
 при условии, что выполняются три аксиомы: 

1) ∀𝑥, 𝑦, 𝑧 ∈ 𝐺 ∶ 𝑥 ∘ (𝑦 ∘ 𝑧) = (𝑥 ∘ 𝑦) ∘ 𝑧 
2) ∃𝑒 ∈ 𝐺	∀𝑥 ∈ 𝐺 ∶ 𝑥 ∘ 𝑒 = 𝑒 ∘ 𝑥 = 𝑥 
3) ∀𝑥 ∈ 𝐺	∃𝑥5+ ∶ 𝑥 ∘ 𝑥5+ = 𝑒  

 Определение 
 Группа называется коммутативной или абелевой группой, если выполнено еще 
одно требование: 

∀𝑥, 𝑦 ∈ 𝐺 ∶ 𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥 
 Число элементов группы – порядок группы. 
 Если операция, с помощью которой вводится группа, называется сложением, то 
принято эту группу называть аддитивной. При этом  

𝑥 ∘ 𝑦 = 𝑥 + 𝑦, 𝑒 = 𝜃, 𝑥5+ = −𝑥 
 Если операция, с помощью которой вводится группа, называется умножением, то 
принято эту группу называть мультипликативной. При этом 

𝑥 ∘ 𝑦 = 𝑥𝑦, 𝑒 = 1, 𝑥5+ = −𝑥 
 Теорема 1 
 В любой группе имеется единственный нейтральный элемент. 
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 Теорема 2 
 Для каждого элемента группы существует единственный обратный элемент.  
  
 Примеры: 
 Пусть 𝐺 – множество всех вещественных чисел, отличных от нуля. Операцию 
возьмем умножения. Тогда получим абелевую группу.   
 Пусть имеется множеств, состоящее из одного элемента {0}. Данное множество с 
операцией сложения является абелевой группой. 
 В случае множества {1} получим группу по операции умножению.  
 Как известно, в линейном пространстве возможно производить операцию 
сложения. Тогда множество всех элементов линейного пространства есть группа по 
сложению.  
  
Группы преобразований  

 Определение 
 Движение – такое преобразование плоскости или пространства, при котором 
расстояние между точками не меняется. 

𝐴 → 𝐴+ 
𝐵 → 𝐵+ 

𝐴𝐵 = 𝐴+𝐵+ 
 Примеры таких преобразований: 
 Симметрия на плоскости относительно какой-либо прямой, симметрия 
относительно точки и т.д.  
 Множество всех преобразований данного типа образует группу, так как 
выполняются все необходимые аксиомы. 
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Лекция 10. Псевдоевклидово пространство. Группа преобразований 
Лоренца 
Подгруппы 

 Определение 
 Подгруппой группы 𝐺 называется множество 𝑃 ⊂ 𝐺, которое само является 
группой с той же самой групповой операцией, что и группа 𝐺.  
 Примером подгруппы является группа параллельных переносов.  

𝑏Y	𝑇): 𝐴 → 𝐶 ∶ 𝐴𝐶YYYY = 𝑏Y	 
𝑇)(𝐴) = 𝐶 
𝑇)(𝐷) = 𝐵 

 Это в свою очередь означает, что  
𝐴𝐶YYYY = 𝑏Y 
𝐷𝐵YYYY = 𝑏Y 

 То есть расстояние между точками не изменяется, поэтому такое преобразование 
есть движение. 
 Теперь покажем, что это группа: 

𝑇) , 𝑇. ∶ 𝑇) ∘ 𝑇. = 𝑇)/. 
 Если совершен перенос на вектор 𝑏Y, то возможно совершить переноси и на вектор 
−𝑏Y. 
 Кроме того, выполняется соотношение 

𝑇)/. = 𝑇./) 
𝑇) ∘ 𝑇. = 𝑇. ∘ 𝑇) 

 Получена абелева подгруппа преобразования на плоскости.  
 
Преобразование линейного пространства 

 Возьмем невырожденный оператор 𝐴�, действующий в 𝑅$. Он образует группу 
относительно операции умножения. Среди всех таких операторов есть 𝐸�, который 
является нейтральным элементом данной группы. 
 Существует международное обозначение группы преобразований конкретного 
линейного пространства размерности 𝑛: 

𝐺𝐿(𝑛) 
    В данной группе есть подгруппа ортогональных операторов.  
  
 Определение 
 Две группы 𝐺 и 𝐺" называются изоморфными, если между элементами этих групп 
существует взаимно-однозначное соответствие 

∀𝑥, 𝑦 ∈ 𝐺	 ∼ 𝑥", 𝑦" ∈ 𝐺" ∶ 
(𝑥 ∘ 𝑦)" = 𝑥" ∘ 𝑦" 

 Такое соответствие называется изоморфизмом.  
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Группа преобразований Лоренца 

 Рассмотрим линейное пространство 𝑅$ размерности 𝑛 и симметричную 
билинейную форму 𝐴(𝑥, 𝑦) такую, что соответствующая ей квадратичная форма 𝐴(𝑥, 𝑥) 
знаконеопределенная. 
 С помощью такой билинейной формы нельзя определить скалярное 
произведение, так как нарушена аксиома №4. Введем скалярное произведение 
следующим образом: 

(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) 
  Определение 
 Линейное пространство 𝑅$ со скалярным произведением, записанным выше, 
называется псевдоевклидовым пространством.  
 Символьное обозначение такого пространства – ℰ$

(7,E). 
 Далее будем работать в пространстве Минковского ℰM

(+,#). 
 Положение точки в этом пространстве описывается координатами  

𝑥!, 𝑥+, 𝑥,, 𝑥# 
𝑥! = 𝑐𝑡 

 Основная система координат – система координат Галилея.  
(𝑥, 𝑦) = 𝑥!𝑦! − 𝑥+𝑦+ − 𝑥,𝑦, − 𝑥#𝑦# 

(𝑥, 𝑥) = 𝑥!, − 𝑥+, − 𝑥,, − 𝑥#, = 𝑆,(𝑥) 
 Матрица билинейной формы имеет структуру  

𝐽 = ²

1
0
0
0

0
−1
0
0

0
0
−1
0

0
0
0
−1

³ 

 Числа, которые образуют данную матрицу, являются координатами дважды 
ковариантного тензора. 

𝑆,(𝑥) = 𝑋;𝐽𝑋 
 Далее совершим преобразование внутри данной системы координат: 

𝑋 = 𝐵𝑋Þ 
𝑆,(𝑥) = N𝐵𝑋ÞO;𝐽𝐵𝑋Þ = 𝑋Þ;𝐵;𝐽𝐵𝑋Þ 

𝑆,(𝑥) = 𝑋Þ;𝐽𝑋Þ	 
 Для такого равенства необходимо соблюдение условия  

𝐵;𝐽𝐵 = 𝐽 
 Определение 
 Преобразование координат в системе Галилея с помощью матрицы 𝐵, 
удовлетворяющее соотношению 𝐵;𝐽𝐵 = 𝐽, называется преобразованием Лоренца. 
 Множество всех таких преобразований образует группу. Покажем, что 
композиция двух преобразований Лоренца снова будет преобразованием Лоренца. 

𝐵+ ∶ 𝐵+;𝐽𝐵+ = 𝐽 
𝐵, ∶ 𝐵,;𝐽𝐵, = 𝐽 
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 Докажем, что композиция есть преобразование Лоренца 
𝐵 = 𝐵+𝐵, 

𝐵;𝐽𝐵 = (𝐵+𝐵,);𝐽𝐵+𝐵, = 𝐵,;𝐵+;𝐽𝐵+𝐵, = 𝐵,;𝐽𝐵, = 𝐽 
 В силу ассоциативности операции умножения матриц данное соотношение будет 
справедливо для преобразований Лоренца. Также выполнено условие нейтрального 
элемента. Теперь покажем существование обратного преобразования Лоренца 

𝐵5+ ∶ (𝐵5+);𝐽𝐵5+ = 𝐽 
(𝐵;)5+𝐵;𝐽𝐵𝐵5+ = (𝐵;)5+𝐽𝐵5+ → 𝐽 = (𝐵5+);𝐽𝐵5+ 

 Полностью доказано, что преобразование Лоренца образует группу. 
  
Подгруппа группы преобразования Лоренца 

 Две переменные 𝑥,, 𝑥# не изменяются в подгруппе. Преобразование Лоренца в 
таком случае записывается в виде 

𝑥Ý! =
𝑥! − 𝛽𝑥+

�1 − 𝛽,	
, 𝑥Ý+ =

𝑥+ − 𝛽𝑥!

�1 − 𝛽,	
 

  При этом −1 < 𝛽 < 1 и 

𝑥! = 𝑐𝑡, 𝑥Ý! = 𝑐𝑡̃, 𝛽 =
𝑣
𝑐 

𝑡̃ =
𝑡 − 𝑣

𝑐, 𝑥
+

í1 − �𝑣𝑐�
,
, 𝑥Ý+ =

𝑥+ − 𝑣𝑡

í1 − �𝑣𝑐�
,
 

 Получены формулы Лоренца преобразования координат.  
 При условии, что 𝑣 ≪ 𝑐 получим, что  

𝑡̃ = 𝑡, 𝑥Ý+ = 𝑥+ − 𝑣𝑡 
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