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Семинар 1. Линейное пространство, линейная зависимость. 
На протяжении всего курса в качестве задачника используется Сборник задач по 

аналитической геометрии и линейной алгебре под ред. Ю.М. Смирнова.   

Начнем с понятия линейного пространства. 

Задача 994. В каком из следующих случаев указанные операции на множестве 𝑋 

определены и задают на нем структуру линейного пространства над полем 𝐾: 

1) 𝐾 = ℝ, 𝑋 – полуплоскость 𝑦 ≥ 0, операции сложения и умножения на числа 

стандартные (т.е. покоординатные). 

Ответ: нет, так как при умножении на отрицательное число мы выходим за 

пределы этого множества. 

2) 𝐾 = ℝ, 𝑋 – множество векторов на плоскости, выходящих из начала координат, 

концы которых лежат на заданной прямой; операции стандартные. 

Ответ: да, если прямая проходит через начало координат, нет в обратном случае. 

3) 𝐾 = ℝ, 𝑋 – множество векторов на плоскости, выходящих из начала координат, 

концы которых лежат на заданной прямой; операции сложения «+̂» и 

умножения на числа «⋅̂» заданы формулами 

𝑢+̂𝑣 = 𝑢 + 𝑣 − 𝑥̃ 

𝜆 ⋅̂ 𝑢 = 𝜆𝑢 + (1 − 𝜆)𝑥̃ 

Решение. 

Пусть 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2),  𝑥̃ = (𝑥0, 𝑦0) и уравнение прямой  

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. 

Так концы векторов лежат на прямой, то  

𝐴𝑢1 + 𝐵𝑢2 + 𝐶 = 0 и 𝐴𝑣1 + 𝐵𝑣2 + 𝐶 = 0. Выясним, лежит ли на этой прямой 

конец вектора, являющегося их суммой:  

𝑢 + 𝑣 = 𝑤 = (𝑤1, 𝑤2) = (𝑢1 + 𝑣1 − 𝑥̃, 𝑢2 + 𝑣2 − 𝑥̃) 

Так как 𝑥̃ = (𝑥0, 𝑦0) лежит на прямой 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, то 

𝐴𝑥0 + 𝐵𝑦0 + 𝐶 = 0 

Получаем систему 

{
𝐴𝑥0 + 𝐵𝑦0 + 𝐶 = 0
𝐴𝑢1 + 𝐵𝑢2 + 𝐶 = 0
𝐴𝑣1 + 𝐵𝑣2 + 𝐶 = 0

 

Складывая первое и второе уравнения системы и вычитая третье, получаем 

𝐴(𝑢1 + 𝑣1 − 𝑥0) + 𝐵(𝑢2 + 𝑣2 − 𝑦0) + 𝐶 = 0 

То есть, конец вектора 𝑤 действительно лежит на прямой 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. 

Проверим умножение на 𝜆: 

Должно быть: 

𝜆 ⋅̂ 𝑢 = 𝜆𝑢 + (1 − 𝜆)𝑥̃ = (𝜆𝑢1 + 𝑥0 − 𝜆𝑥0, 𝜆𝑢2 + 𝑦0 − 𝜆𝑦0) 

Домножим первое уравнение системы на (1 − 𝜆) и сложим со вторым 

уравнением системы, домноженным на 𝜆: 

(1 − 𝜆)(𝐴𝑥0 + 𝐵𝑦0 + 𝐶) + 𝜆(𝐴𝑢1 + 𝐵𝑢2 + 𝐶) = 

https://vk.com/teachinmsu
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𝐴(𝜆𝑢1 + 𝑥0 − 𝜆𝑥0) + 𝐵(𝜆𝑢2 + 𝑦0 − 𝜆𝑦0) + 𝐶 = 0 

Действительно, конец вектора 𝜆 ⋅̂ 𝑢 лежит на прямой 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. 

Таким образом, мы доказали, что операция корректна на этом множестве. 

Теперь проверим, выполняются ли аксиомы линейного пространства: 

Коммутативность и ассоциативность сложения очевидна, 𝑥̃ будет нулевым 

элементом. Проверим дистрибутивность: 

 𝜆 ⋅̂ (𝑢+̂𝑣) = 𝜆 ⋅̂ (𝑢 + 𝑣 − 𝑥̃) = 𝜆(𝑢 + 𝑣 − 𝑥̃) + (1 − 𝜆)𝑥̃ = 𝜆𝑢 + 𝜆𝑣 + (1 − 2𝜆)𝑥̃   

𝜆 ⋅̂ 𝑢+̂𝜆 ⋅̂ 𝑣 = 𝜆𝑢 + (1 − 𝜆)𝑥̃ + 𝜆𝑣 + (1 − 𝜆)𝑥̃ = 𝜆𝑢 + 𝜆𝑣 + (1 − 2𝜆)𝑥̃ 

Таким образом, 𝜆 ⋅̂ (𝑢+̂𝑣) = 𝜆 ⋅̂ 𝑢+̂𝜆 ⋅̂ 𝑣. 

 (𝜆 + 𝜇) ⋅̂ 𝑣 = (𝜆 + 𝜇)𝑣 + (1 − 𝜆 − 𝜇)𝑥̃  

𝜆 ⋅̂ 𝑣 +̂ 𝜇 ⋅̂ 𝑣 = 𝜆𝑣 + (1 − 𝜆)𝑥̃ + 𝜇𝑣 + (1 − 𝜇)𝑥̃ − 𝑥̃ = (𝜆 + 𝜇)𝑣 + (1 − 𝜆 − 𝜇)𝑥̃  

Таким образом, (𝜆 + 𝜇) ⋅̂ 𝑣 = 𝜆 ⋅̂ 𝑣 +̂ 𝜇 ⋅̂ 𝑣, и дистрибутивность доказана. 

            Ответ: да. 

4) 𝐾 = ℝ, 𝑋 – множество всех векторов плоскости, лежащих в первом и третьем 

координатных углах (𝑥𝑦 ≥ 0); операции стандартные. 

Ответ: нет, так как сумма векторов, один из которых лежит в первом, а другой – 

в третьем координатном углу, может лежать во втором и четвертом 

координатном углу. 

5) 𝐾 = ℝ, 𝑋 – все векторы пространства, кроме векторов, параллельных некоторой 

прямой; операции стандартные. 

Решение. 

Пусть 𝑎̅ – направляющий вектор прямой, 𝑏̅ – произвольный вектор. Тогда сумма 

векторов 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ + 𝑎 − 𝑏̅̅ ̅̅ ̅̅ ̅ = 2𝑎̅ принадлежит прямой (которой не должна 

принадлежать). 

Ответ: нет. 

6) 𝐾 = ℝ, 𝑋 = ℚ; операции стандартные. 

Ответ: нет, так как умножение на иррациональное число выводит нас за пределы 

этого множества. 

     10)  𝐾 = ℝ, 𝑋 = ℝ2, операции заданы следующим образом:  

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) 

𝜆 ⋅ (𝑥, 𝑦) = (𝜆𝑥, 0) 

            Ответ: нет, так как 1 ⋅ (𝑥, 𝑦) = (𝑥, 0), то есть, 1 не является нейтральным 

            элементом  по умножению. 

     11)  𝐾 – любое, 𝑋 - множество многочленов над 𝐾 степени ровно 𝑛; операции 

            стандартные. 

            Ответ: нет, так как 0 не принадлежит этому множеству. 

     13)    𝐾 = ℝ, 𝑋 - множество монотонных функций на отрезке; операции стандартные. 
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            Решение. 

            Рассмотрим, например, монотонные функции на отрезке [−1,1]: 

𝑓1 = {
𝑥2, 𝑥 ∈ [0,1]

0, 𝑥 ∈ [−1,0]
 и 𝑓2 = {

0,            𝑥 ∈ [0,1]     

𝑥2,           𝑥 ∈ [−1,0]
 

            Их сумма, равная 𝑥2, не является монотонной функцией на [−1,1]. 

            Ответ: нет. 

     14)  𝐾 = ℝ, 𝑋 - множество всех бесконечных арифметических прогрессий со     

            стандартными операциями. 

            Ответ: да, все аксиомы линейного пространства выполняются. 

     15)  𝐾 = ℝ, 𝑋 - множество всех бесконечных геометрических прогрессий со  

            стандартными операциями. 

            Ответ: нет, например, сумма геометрической прогрессии со знаменателем не 

            равным 1 и геометрической прогрессии со знаменателем равным 1 (постоянной) 

            не является геометрической прогрессией. 

Определение. Система векторов называется линейно зависимой, если существует их 

нетривиальная линейная комбинация, равная нулю, и линейно независимой в 

противном случае. 

Задача 997. Пусть система векторов 𝑎1, ⋯ , 𝑎𝑘 линейно независима, а система векторов 

𝑎1, ⋯ , 𝑎𝑘, 𝑎𝑘+1  линейно зависима. 

Доказать: 𝑎𝑘+1 линейно выражается через 𝑎1, ⋯ , 𝑎𝑘, причем единственным образом. 

Решение. 

Существование: 

Так как 𝑎1,⋯ , 𝑎𝑘, 𝑎𝑘+1 линейно зависимы, то существует нетривиальная линейная 

комбинация (𝜆1, ⋯ , 𝜆𝑘+1) ≠ (0,⋯ , 0) 

𝜆1𝑎1 +⋯+ 𝜆𝑘𝑎𝑘 + 𝜆𝑘+1𝑎𝑘+1 = 0 

Причем 𝜆𝑘+1 ≠ 0 (иначе 𝑎1, ⋯ , 𝑎𝑘 линейно зависимы). Тогда 

𝑎𝑘+1 = −
𝜆1
𝜆𝑘+1

𝑎1 −⋯−
𝜆𝑘
𝜆𝑘+1

𝑎𝑘 = 𝜇1𝑎1 +⋯+ 𝜇𝑘𝑎𝑘 

Единственность: 

Допустим, 𝑎𝑘+1 выражается через 𝑎1, ⋯ , 𝑎𝑘 еще одним способом: 

𝑎𝑘+1 = 𝜈1𝑎1 +⋯+ 𝜈𝑘𝑎𝑘 

Тогда, вычитая второе выражение из первого, получаем: 
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0 = (𝜇1 − 𝜈1)𝑎1 +⋯+ (𝜇𝑘 − 𝜈𝑘)𝑎𝑘 

Тогда, так как 𝑎1,⋯ , 𝑎𝑘 линейно независимы, то 𝜇𝑖 = 𝜈𝑖    ∀ⅈ, то есть, 𝑎𝑘+1 выражается 

через 𝑎1,⋯ , 𝑎𝑘 единственным образом. 

Задача 999. Пусть 𝑎, 𝑏, 𝑐 – линейно независимая система векторов. Будут ли линейно 

зависимы следующие системы векторов: 

1) 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏 + 𝑐  

2) 𝑎 + 𝑏, 𝑏 + 𝑐, 𝑐 + 𝑎 

3) 𝑎 − 𝑏, 𝑏 − 𝑐, 𝑐 − 𝑎 

Решение. 

1) Определим, существует ли нетривиальная линейная комбинация данных 

векторов: 

𝜆1(𝑎 + 𝑏 + 𝑐) + 𝜆2(𝑎 + 𝑏) + 𝜆3𝑎 = (𝜆1 + 𝜆2 + 𝜆3)𝑎 + (𝜆1 + 𝜆2)𝑏 + 𝜆1𝑐 = 0 

Должно выполняться 

{

𝜆1 + 𝜆2 + 𝜆3 = 0
𝜆1 + 𝜆2 = 0         
𝜆1 = 0                  

  

Откуда 𝜆1 = 𝜆2 = 𝜆3 = 0, то есть, система линейно независимая. 

2) Определим, существует ли нетривиальная линейная комбинация данных 

векторов: 

𝜆1(𝑎 + 𝑏) + 𝜆2(𝑏 + 𝑐) + 𝜆3(𝑐 + 𝑎) = (𝜆1 + 𝜆3)𝑎 + (𝜆1 + 𝜆2)𝑏 + (𝜆2 + 𝜆2)𝑐 = 0 

Должно выполняться 

{

𝜆1 + 𝜆3 = 0                  
𝜆1 + 𝜆2 = 0                  
𝜆2 + 𝜆2 = 0                  

  

Откуда 𝜆1 = 𝜆2 = 𝜆3 = 0, то есть, система линейно независимая. 

3) При 𝜆1 = 𝜆2 = 𝜆3 = 1 выполняется 

𝜆1(𝑎 − 𝑏) + 𝜆2(𝑏 − 𝑐) + 𝜆3(𝑐 − 𝑎) = 0 

То есть, система линейно зависимая. 

Ответ: 1) независимая, 2) независимая, 3) зависимая. 

Рассмотрим более общий случай. Пусть 𝑎, 𝑏, 𝑐 линейно независимы. Тогда система 

векторов 𝑝, 𝑞, 𝑟 

{

𝑝 = 𝑝1𝑎 + 𝑝2𝑏 + 𝑝3𝑐
𝑞 = 𝑞1𝑎 + 𝑞2𝑏 + 𝑞3𝑐
𝑟 = 𝑟1𝑎 + 𝑟2𝑏 + 𝑟3𝑐  

 

линейно независима тогда и только тогда, когда 

|

𝑝1 𝑝2 𝑝3
𝑞1 𝑞2 𝑞3
𝑟1 𝑟2 𝑟3

| ≠ 0 
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Задача 1006. Доказать, что в пространстве многочленов всякая конечная система, 

состоящая из многочленов различных степеней и не содержащая нуля, линейно 

независима. 

Решение. 

В пространстве многочленов выберем систему 𝑃1, … , 𝑃𝑛. 

Допустим, существует нетривиальная линейная комбинация данных многочленов, 

равная нулю, тогда коэффициент при старшей степени 𝑥𝑘 равен нулю, значит, и 

коэффициент при многочлене 𝑃𝑘, содержащем старшую степень 𝑥𝑘 равен нулю. 

Получаем нетривиальную линейную комбинацию многочленов меньших степеней, и 

применяем к ним то же самое рассуждение. И так далее, в итоге получаем, что все 

коэффициенты в линейной комбинации данных многочленов должны быть равны 0, то 

есть, они линейно независимы. 

Задача 1005 п. 1,2,6,7. Исследовать на линейную зависимость следующие системы 

функций (𝑛 > 0): 

1) 1, 𝑐𝑜𝑠 𝑥 ,… , 𝑐𝑜𝑠 𝑛𝑥; 

2) 1, 𝑠ⅈ𝑛 𝑥 ,… , 𝑠ⅈ𝑛 𝑛𝑥; 

6) 1, 𝑠ⅈ𝑛 𝑥 , 𝑐𝑜𝑠 𝑥 , 𝑠ⅈ𝑛2 𝑥 , 𝑐𝑜𝑠2 𝑥 ,… , 𝑠ⅈ𝑛𝑛 𝑥 , 𝑐𝑜𝑠𝑛 𝑥; 

7) 1, 𝑙𝑛 𝑥 , 𝑙𝑛 2𝑥 ,… , 𝑙𝑛 𝑛𝑥. 

Решение. 

Пункты 1) и 2):  

Верны следующие равенства (их можно доказать, например, по индукции): 

𝑐𝑜𝑠 𝑛𝑥 = 𝑃𝑛(𝑐𝑜𝑠 𝑥) 

Где 𝑃𝑛 – многочлен, 𝑑𝑒𝑔 𝑃𝑛 = 𝑛 (многочлен Чебышева) 

𝑠ⅈ𝑛 𝑛𝑥 = 𝑠ⅈ𝑛 𝑥 𝑄𝑛−1(𝑐𝑜𝑠 𝑥) 

Где 𝑄𝑛−1 – многочлен, 𝑑𝑒𝑔𝑄𝑛−1 = 𝑛 − 1 

Тогда из задачи 1006 вытекает, что системы из пунктов 1) и 2) линейно независимы. 

Пункт 6): 

Система линейно зависима, так как 1 = 𝑠ⅈ𝑛2 𝑥 + 𝑐𝑜𝑠2 𝑥 

Пункт 7): 

Система линейно зависима, так как 𝑙𝑛 2𝑥 = 1 ⋅ 𝑙𝑛 2 + 1 ⋅ 𝑙𝑛 𝑥. 

Ответ: 1) независима, 2) независима, 6) зависима, 7) зависима. 
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Семинар 2. Ранг, базис, размерность, координаты и матрица перехода. 
Задача 1005 п.3. Исследовать на линейную зависимость систему функций: 

1, 𝑎1 𝑐𝑜𝑠 𝑥 + 𝑏1 𝑠ⅈ𝑛 𝑥 ,… , 𝑎𝑛 𝑐𝑜𝑠 𝑥 + 𝑏𝑛 𝑠ⅈ𝑛 𝑥 

Решение. 

На прошлом семинаре обсуждалось, что синусы и косинусы кратных углов можно 

представить в виде многочленов от 𝑐𝑜𝑠 𝑥: 

𝑠ⅈ𝑛𝑚𝑥 = 𝑠ⅈ𝑛 𝑥 𝑄(𝑐𝑜𝑠 𝑥) 

𝑐𝑜𝑠 𝑚𝑥 = 𝑃(𝑐𝑜𝑠 𝑥) 

Тогда, если исходная система векторов линейно зависима, существует нетривиальная 

линейная комбинация:  

𝜆0 + 𝜆1(𝑎1 𝑐𝑜𝑠 𝑥 + 𝑏1 𝑠ⅈ𝑛 𝑥) + ⋯+ 𝜆𝑛(𝑎𝑛 𝑐𝑜𝑠 𝑛𝑥 + 𝑏𝑛 𝑠ⅈ𝑛 𝑛𝑥) = 

= 𝜇0 + 𝜇1(𝑃(cos 𝑥) + sin 𝑥) + ⋯+ 𝜇𝑛(𝑃𝑛(cos 𝑥) + 𝑠ⅈ𝑛 𝑥 𝑄𝑛(𝑐𝑜𝑠 𝑥)) = 0 

Перепишем последнее равенство в виде: 

𝜇0 + 𝜇1𝑃(cos 𝑥) + ⋯+ 𝜇𝑛𝑃𝑛(cos 𝑥) = −𝑠ⅈ𝑛 𝑥 (𝜇1𝑄1(cos 𝑥) + ⋯+ 𝜇𝑛𝑄𝑛(𝑐𝑜𝑠 𝑥)) 

Слева стоит четная функция, а справа – нечетная, это возможно только тогда, когда обе 

они тождественно равны нулю. 

Таким образом, исходная система векторов линейно независима. 

Ответ: независима. 

Задача 1005 п.8. Исследовать на линейную зависимость систему функций: 

2𝛼1𝑥, 2𝛼2𝑥, … , 2𝛼𝑛𝑥 

где все числа 𝛼1, … , 𝛼𝑛 различны. 

Решение. 

Допустим, существует нетривиальная линейная комбинация этих функций. Тогда среди 

ненулевых выберем наибольшее 𝛼𝑖 – функция 2𝛼𝑖𝑥 растет на бесконечности быстрее 

всех – получаем противоречие. 

Ответ: независима. 

Задача 1004. Доказать линейную независимость всех геометрических прогрессий, 

начинающихся с единицы, в векторном пространстве бесконечных 

последовательностей. 

Решение. 
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Если прогрессии линейно зависимы, значит, существует их нетривиальная линейная 

комбинация, значит, верно равенство (прогрессиям “обрубили хвост”): 

𝜆1(1, 𝑞1, 𝑞1
2, … , 𝑞1

𝑛−1) + ⋯+ 𝜆𝑛(1, 𝑞𝑛, 𝑞𝑛
2, … , 𝑞𝑛

𝑛−1) = 0 

Отсюда получаем систему на 𝜆1, … , 𝜆𝑛: 

{

𝜆1 +⋯+ 𝜆𝑛 = 0                      
𝜆1𝑞1 +⋯+ 𝜆𝑛𝑞𝑛 = 0             

…                          
𝜆1𝑞1

𝑛−1 +⋯+ 𝜆𝑛𝑞𝑛
𝑛−1 = 0

 

Определитель этой системы – определитель Вандермонда: 

|

1 . . . 1
𝑞1 . . . 𝑞𝑛
. . . . . . . . .

𝑞1
𝑛−1 . . . 𝑞𝑛

𝑛−1

| = 𝑉(𝑞1, … , 𝑞𝑛) ≠ 0 

Таким образом, у системы есть только нулевое решение, и исходная система 

геометрических прогрессий линейно независима. 

Задача 1012 п.1. Найти ранг системы векторов:  

(1, −1, 0, 0), (0, 1, −1, 0), (0, 0, 1, −1), (−1, 0, 0, 1) 

Решение. 

Составляем из векторов матрицу и приводим к ступенчатому виду: 

(

1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

)~(

1 −1 0 0
0 −1 0 1
0 1 −1 0
0 0 1 −1

)~(

1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

) 

Ранг матрицы равен 3. 

Ответ: 𝑟𝑘 = 3. 

Задача 1013 п.1. Найти какую-либо базу системы векторов: 

(−1, 4, −3,−2), (3, −7, 5, 3), (3, −2, 1, 0), (−4, 1, 0, 1) 

Решение. 

База системы векторов – это минимальный набор векторов, через который выражаются 

остальные. Для решения этой задачи запишем векторы в матрицу по столбцам и 

приведем ее к ступенчатому виду. При этом при элементарных преобразованиях строк 

матрицы соотношения между столбцами останутся неизменными. 

(

−1 3 3 −4
4 −7 −2 1
−3 5 1 0
−2 3 0 1

)~(

−1 3 3 −4
0 5 10 −15
0 −4 −8 12
0 −3 −6 9

)~(

1 0 3 −5
0 1 2 −3
0 0 0 0
0 0 0 0

) 
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Таким образом, первый и второй вектор системы можно выбрать в качестве базы. 

Ответ: (−1, 4, −3, −2), (3, −7, 5, 3). 

Задача 1016 п.2. Проверить, что данная система векторов образует базис пространства 

ℝ4 и найти координаты вектора 𝑥 в этом базисе: 

𝑒1 = (1, 2, −1, 2), 𝑒2 = (2, 3, 0, −1), 𝑒3 = (1, 2, 1, 4), 𝑒4 = (1, 3, −1, 0), 𝑥 = (7, 14,−1, 2). 

Решение. 

Запишем векторы в матрицу по столбцам и приведем ее к ступенчатому виду: 

(

1 2 1 1 | 7
2 3 2 3 | 14
−1 0 1 −1 | −1
2 −1 4 0 | 2

)~(

1 2 1 1 | 7
0 −1 0 1 | 0
0 2 2 0 | 6
0 −5 2 −2 | −12

)~(

1 2 1 1 | 7
0 −1 0 1 | 0
0 0 2 2 | 6
0 0 2 −7 | −12

)~ 

~(

1 2 1 1 | 7
0 1 0 −1 | 0
0 0 1 1 | 3
0 0 0 1 | 2

) 

Матрица невырождена, значит, 𝑒1, 𝑒2, 𝑒3, 𝑒4 действительно образуют базис. Из 

ступенчатого вида матрицы легко находятся координаты вектора 𝑥 в этом базисе: 

𝑥 = (0, 2, 1, 2) 

То есть, 𝑥 = 0𝑒1 + 2𝑒2 + 𝑒3 + 2𝑒4. 

Ответ: 𝑥 = (0, 2, 1, 2). 

Задача 1021 п.4. Найти координаты многочлена 𝑓 = 𝑡5 − 𝑡4 + 𝑡3 − 𝑡2 − 𝑡 + 1 в базисе 

1, 𝑡 − 1, (𝑡 − 1)2, (𝑡 − 1)3, (𝑡 − 1)4, (𝑡 − 1)5. 

Решение. 

Разложим 𝑓 в ряд Тейлора в окрестности 𝑡 = 1: 

𝑓 = 𝑡5 − 𝑡4 + 𝑡3 − 𝑡2 − 𝑡 + 1       𝑓(1) = 0 

𝑓′ = 5𝑡4 − 4𝑡3 + 3𝑡2 − 2𝑡 − 1           𝑓′(1) = 1 

𝑓′′ = 20𝑡3 − 12𝑡2 + 6𝑡 − 2                   𝑓′′(1) = 12 

𝑓′′′ = 60𝑡2 − 24𝑡 + 6        𝑓′′′(1) = 42 

𝑓(4) = 120𝑡 − 24         𝑓(4)(1) = 96 

𝑓(5) = 120          𝑓(5)(1) = 120 

 𝑓 = 𝑓(1) +
𝑓′(1)

1!
(𝑡 − 1) +

𝑓′′(1)

2!
(𝑡 − 1)2 +

𝑓′′′(1)

3!
(𝑡 − 1)3 +

𝑓(4)(1)

4!
(𝑡 − 1)4 +

𝑓(5)(1)

5!
(𝑡 − 1)5 
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𝑓 = (𝑡 − 1) + 6(𝑡 − 1)2 + 7(𝑡 − 1)3 + 4(𝑡 − 1)4 + (𝑡 − 1)5 

Ответ: 𝑓 = (0, 1, 6, 7, 4, 1). 

Задача 1023. Найти размерность и базис пространства матриц порядка 𝑛: 

1) Матрицы с нулевой последней строкой. 

Данное множество является линейным пространством размерности 𝑛(𝑛 − 1), 

базис состоит из матричных единиц 𝐸𝑖𝑗, ⅈ ≠ 𝑛. 

2) Матрицы с нулевой диагональю. 

Данное множество является линейным пространством размерности 𝑛2 − 𝑛, базис 

состоит из матричных единиц 𝐸𝑖𝑗 , ⅈ ≠ 𝑗. 

3) Диагональные матрицы. 

Данное множество является линейным пространством размерности 𝑛, базис 

состоит из матричных единиц 𝐸𝑖𝑖. 

4) Верхнетреугольные матрицы. 

Данное множество является линейным пространством размерности 
𝑛(𝑛+1)

2
, базис 

состоит из матричных единиц 𝐸𝑖𝑗 , 𝑗 ≥ ⅈ. 

5) Симметричные матрицы. 

Данное множество является линейным пространством размерности 
𝑛(𝑛+1)

2
 (так 

как значения элементов матрицы над главной диагональю однозначно задают 

значения элементов под главной диагональю), базис: 𝐸𝑖𝑗 + 𝐸𝑗𝑖 , 𝑗 ≠ ⅈ, 𝐸𝑖𝑖. 

6) Кососимметричные матрицы. 

Данное множество является линейным пространством размерности 
𝑛(𝑛−1)

2
 (так 

как значения элементов матрицы над главной диагональю однозначно задают 

значения элементов под главной диагональю, на главной диагонали стоят нули), 

базис: 𝐸𝑖𝑗 − 𝐸𝑗𝑖 , 𝑗 ≠ ⅈ. 

Матрица перехода от одного базиса к другому 

Пусть 𝑒1, … , 𝑒𝑛 и 𝑒1
′ , … , 𝑒𝑛

′  - два базиса в линейном пространстве 𝑉. Рассмотрим 

разложение произвольного вектора 𝑥 в первом и втором базисе: 

𝑥 = 𝑥1𝑒1 +⋯+ 𝑥𝑛𝑒𝑛 

𝑥 = 𝑥1
′𝑒1
′ +⋯+ 𝑥𝑛

′ 𝑒𝑛
′  

Тогда 

(

𝑥1
. . .
𝑥𝑛
) = 𝐶 (

𝑥1
′

. . .
𝑥𝑛
′
) 

Где 𝐶 – матрица перехода от 𝑒1, … , 𝑒𝑛 к 𝑒1
′ , … , 𝑒𝑛

′  (по столбцам матрицы 𝐶 стоят 

координаты векторов “нового” базиса 𝑒1
′ , … , 𝑒𝑛

′  в “старом” базисе 𝑒1, … , 𝑒𝑛). 
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Задача 1027. Найти матрицу перехода от 𝑒1
′ , 𝑒2

′ , 𝑒3
′  к 𝑒1

′′, 𝑒2
′′, 𝑒3

′′, где 

𝑒1
′ = (2, 3, −2), 𝑒2

′ = (5, 0, −1), 𝑒3
′ = (2, 1, −1) 

𝑒1
′′ = (1, 1, −1), 𝑒2

′′ = (1,−1, 0), 𝑒3
′′ = (1, 1, 1) 

Решение. 

Рассмотрим стандартный базис 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1). 

С одной стороны,  

(

𝑥1
𝑥2
𝑥3
) = 𝐶1(

𝑥1
′

𝑥2
′

𝑥3
′
) 

С другой стороны,  

(

𝑥1
𝑥2
𝑥3
) = 𝐶2(

𝑥1
′′

𝑥2
′′

𝑥3
′′
) 

Таким образом, 

(

𝑥1
′

𝑥2
′

𝑥3
′
) = 𝐶1

−1𝐶2 (

𝑥1
′′

𝑥2
′′

𝑥3
′′
) 

Найдем 𝐶1
−1: 

(

2 5 2 | 1 0 0
3 0 1 | 0 1 0
−2 −1 −1 | 0 0 1

)~(

2 5 2 | 1 0 0
1 −5 −1 | −1 1 0
0 4 1 | 1 0 1

)~ 

(

1 −5 −1 | −1 1 0
0 15 4 | 3 −2 0
0 4 1 | 1 0 1

)~(

1 −5 −1 | −1 1 0
0 1 0 | 1 2 4
0 4 1 | 1 0 1

)~ 

(

1 −5 0 | −4 −7 −15
0 1 0 | 1 2 4
0 0 1 | −3 −8 −15

)~(

1 0 0 | 1 3 5
0 1 0 | 1 2 4
0 0 1 | −3 −8 −15

) 

Получаем 

𝐶1
−1 = (

1 3 5
1 2 4
−3 −8 −15

) 

Тогда 

𝐶1
−1𝐶2 = (

1 3 5
1 2 4
−3 −8 −15

)(
1 1 1
1 −1 1
−1 0 1

) = (
−1 −2 9
−1 −1 7
4 5 −26

) 
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Ответ: (
−1 −2 9
−1 −1 7
4 5 −26

). 

Другой способ решения задачи 1027: 

(𝐶1|𝐶2)~(𝐸|𝐶1
−1𝐶2) 

- приписать к матрице 𝐶1 матрицу 𝐶2 и элементарными преобразованиями привести 𝐶1 

к единичной матрице, попутно проделывая те же самые элементарные преобразования 

с матрицей 𝐶2. Тогда в итоге справа получится матрица 𝐶1
−1𝐶2. 
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Семинар 3. Линейные подпространства и операции над ними. 
Задача 1024. Найти размерность и базис пространств однородных многочленов от 

четырех переменных степеней 1, 2, 3 и 4. 

Решение. 

1) 𝑃 = 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 

𝑑ⅈ𝑚𝑉 = 4, в качестве базиса выбираем многочлены 𝑥𝑖. 

2) 𝑃 =∑ 𝛼𝑖𝑗𝑥𝑖𝑥𝑗
1≤𝑖≤𝑗≤4

 

𝑑ⅈ𝑚𝑉 = 10 (будет 4 квадрата 𝑥𝑖
2 и 6 пар 𝑥𝑖𝑥𝑗) – любой однородный многочлен 

выражается в виде их линейной комбинации, лишних, очевидно, нет. 

3) Рассуждаем как в случае 2): 𝑑ⅈ𝑚𝑉 =
6!

3!3!
= 20 (выборка с повторениями), базис 

строится аналогично случаю 2)  

4) 𝑑ⅈ𝑚𝑉 = 35 – считаем по формуле выборки с повторениями, или перебором, 

базис строится аналогично случаю 2). 

Задача 1029. Найти матрицу перехода от базиса 1, 𝑡, … , 𝑡𝑛 пространства 𝐾𝑛[𝑡] 

многочленов степени не выше 𝑛 к базису 1, (𝑡 + 𝑎),… , (𝑡 + 𝑎)𝑛. 

Решение. 

Чтобы найти матрицу перехода, нужно по столбцам записать разложение векторов 

нового базиса по старому базису: 

𝑡 + 𝑎 раскладываем по степеням 𝑡, получаем: 

(

1 𝑎 𝑎2 . . . 𝑎𝑘 . . . 𝑎𝑛

0 1 2𝑎 . . . 𝐶𝑘
1𝑎𝑘−1 . . . 𝐶𝑛

1𝑎𝑛−1

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . . . . 1

) 

Подпространство линейного пространства 

Для того, чтобы проверить, является ли линейным пространством некоторое 

подмножество линейного пространства (относительно тех же операций), нужно 

проверить, что: 

 Подмножество замкнуто относительно операции сложения 

 Подмножество замкнуто относительно умножения на скаляр 

Остальные аксиомы линейного пространства будут выполнены автоматически (так как 

подмножество уже лежит в “большом” линейном пространстве). 
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Задача 1033. Является ли линейным подпространством в пространстве 𝑀𝑎𝑡𝑛 матриц 

порядка 𝑛 подмножество: 

1) Матрицы с нулевой последней строкой 

Ответ: да (очевидно). 

2) Матрицы с нулевой диагональю 

Ответ: да (очевидно). 

3) Диагональные матрицы 

Ответ: да (очевидно). 

4) Верхнетреугольные матрицы 

Ответ: да (очевидно). 

5) Симметричные матрицы 

Ответ: да (очевидно). 

6) Кососимметричные матрицы 

Ответ: да (очевидно). 

7) Вырожденные матрицы 

Ответ: нет, так как сумма вырожденных матриц может быть матрицей 

невырожденной. 

8) Невырожденные матрицы 

Ответ: нет, так как сумма невырожденных матриц может быть матрицей 

вырожденной. 

Задача 1034. Найти какой-либо базис и размерность подпространства 𝐿 ⊂ ℝ𝑛, которое 

задается условиям 𝑥1+. . . +𝑥𝑛 = 0. 

Решение. 

Подпространство 𝐿 состоит из всех векторов линейного пространства, сумма координат 

которых равна 0. Очевидно, это линейное подпространство (сумма таких векторов и 

умножение их на число не выведут нас за пределы множества векторов, у которых 

сумма координат равна 0). 

В качестве базиса можно взять, например, векторы: 

(

 
 

−1
1
0
. . .
0 )

 
 
,

(

 
 

−1
0
1
. . .
0 )

 
 
, . . . ,

(

 
 

−1
0
0
. . .
1 )

 
 

 

Можно также сказать, что уравнение 𝑥1+. . . +𝑥𝑛 = 0 в пространстве ℝ𝑛 задает 

гиперплоскость размерности 𝑛 − 1, проходящую через начало координат. 

Если гиперплоскость не проходит через начало координат, то она уже не является 

линейным подпространством (хотя бы потому, что не содержит 0̅) 
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Полезно по данному подпространству уметь находить систему уравнений, которая его 

задает. 

Задача 1049 п.4. Составить систему линейных уравнений, задающую линейную 

оболочку системы векторов: 

(1, 1, 1, 1), (1, 2, 1, 3) 

Решение. 

Составим матрицу из этих векторов, записанных по строкам, и приведем ее к 

ступенчатому виду: 

(
1 1 1 1
1 2 1 3

)~(
1 1 1 1
0 1 0 2

)~ (
1 0 1 −1
0 1 0 2

) 

Запишем фундаментальную систему решений (𝑥1 и 𝑥2 – главные переменные, 𝑥3 и 𝑥4 – 

свободные переменные).  

ФСР: (−1, 0, 1, 0), (1, −2, 0, 1) 

Отсюда получаем систему уравнений, задающую линейную оболочку исходной 

системы векторов: 

{
−𝑥1 + 𝑥3 = 0          
𝑥1 − 2𝑥2 + 𝑥4 = 0

 

(коэффициенты уравнений системы – координаты соответствующих векторов из ФСР). 

Почему это так? 

Дело в том, что если вектор является решением системы уравнений, то его скалярное 

произведение с вектором, составленным из коэффициентов каждого уравнения 

системы, равно 0.  

Таким образом, ФСР – базис пространства, в котором все векторы будут ортогональны 

векторам, составленным из коэффициентов исходной системы. 

Это не единственный способ решения данной задачи. 

Можно записать исходные векторы по столбцам и приписать столбец с 𝑥1, … , 𝑥𝑛. После 

приведения полученной матрицы к ступенчатому виду получим матрицу вида: 

(

1 1 | 𝑥1
1 2 | 𝑥2
1 1 | 𝑥3
1 3 | 𝑥4

) ~(

1 1 | 𝑥1
0 1 | 𝑥2 − 𝑥1
0 0 | 𝑥3 − 𝑥1
0 2 | 𝑥4 − 𝑥1

)~(

1 0 | 2𝑥1 − 𝑥2         
0 1 | 𝑥2 − 𝑥1            
0 0 | 𝑥3 − 𝑥1            
0 0 | 𝑥1 − 2𝑥2 + 𝑥4

) 

Ранг полученной матрицы должен быть равен 2 (ранг расширенной матрицы со 

столбцом 𝑥1, … , 𝑥𝑛 должен быть равен рангу матрицы, составленной из исходных 

векторов). Поэтому должно выполняться 
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{
−𝑥1 + 𝑥3 = 0          
𝑥1 − 2𝑥2 + 𝑥4 = 0

 

Ответ:  

{
−𝑥1 + 𝑥3 = 0          
𝑥1 − 2𝑥2 + 𝑥4 = 0

 

Сумма и пересечение подпространств 

Пусть 𝑉 – линейное пространство, 𝑉1 и 𝑉2 – его подпространства. Их пересечение  

𝑉1 ∩ 𝑉2 тоже будет подпространством 𝑉. 

Объединение 𝑉1 ∪ 𝑉2 вообще говоря, не будет являться подпространством (легко 

понять на примере ℝ3 – в этом случае подпространствами будут только прямые и 

плоскости, проходящие через начало координат. Очевидно, что объединение двух 

прямых не обязано быть подпространством – прямой, или плоскостью). 

Однако, можно исправить эту ситуацию – придумать некое множество (сумму 

подпространств), содержащее 𝑉1 и 𝑉2, и являющееся подпространством. 

𝑉1 + 𝑉2: = {𝑣 ∈ 𝑉:   𝑣 = 𝑣1 + 𝑣2,   𝑣1 ∈ 𝑉1,  𝑣2 ∈ 𝑉2} 

Ясно, что 𝑉1 + 𝑉2 содержит 𝑉1 и 𝑉2, и в нем нет “лишних” элементов – это минимальное 

множество, содержащее 𝑉1 и 𝑉2 и являющееся подпространством. 

Задача 1054 п.1. Найти размерности и базисы суммы и пересечения подпространств  

𝐿1 и 𝐿2: 

𝐿1 = ⟨(4, 2, 1), (−3, 2, 0), (−1, 4, 0)⟩ 

𝐿2 = ⟨(−2, 3, 1), (5, 3, 13), (7, 0, 12)⟩ 

Решение. 

Найдем базис суммы. 

Запишем все вектора по столбцам в матрицу, и приведем ее к ступенчатому виду: 

(
4 −3 −1 −2 5 7
2 2 4 3 3 0
1 0 0 1 13 12

)~(
1 0 0 1 13 12
0 −3 −1 −6 −42 −41
0 2 4 1 −23 −24

)~ 

~(
1 0 0 1 13 12
0 1 7 −4 −93 −98
0 0 −10 9 163 172

) 

Ранг полученной матрицы равен 3, то есть, 𝑑ⅈ𝑚(𝑉1 + 𝑉2) = 3, и в качестве базиса 

𝑉1 + 𝑉2 можно взять любые 3 вектора из ℝ3. 

В качестве базиса выбираем векторы исходной системы векторов, находящихся на тех 

же позициях, что и линейно независимые столбцы получившейся матрицы. 

Базис суммы: (4, 2, 1), (−3, 2, 0), (−1, 4, 0). 
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Найдем базис пересечения. 

В данной задаче это совсем просто, так как 𝐿1 = ℝ3, поэтому 𝐿1 ∩ 𝐿2 = 𝐿2 и любой 

базис в пространстве 𝐿2 будет являться базисом пересечения 𝐿1 ∩ 𝐿2. 

Однако, из методических соображений применим общий способ: найдем систему 

уравнений, задающую 𝐿1 и систему уравнений, задающую 𝐿2. Тогда решение 

объединенной системы будет задавать пересечение 𝐿1 ∩ 𝐿2. 

В нашей задаче 𝐿1 = ℝ3, поэтому его нельзя задать системой уравнений. Найдем 

систему уравнений, задающую 𝐿2: 

(
−2 3 1
5 3 13
7 0 12

)~(
1 9 15
0 21 31
0 −63 −93

)~(
1 9 15
0 21 31
0 0 0

) 

ФСР: (36, 31,−21). 

Получили уравнение 

36𝑥1 + 31𝑥2 − 21𝑥3 = 0 

ФСР этого уравнения будут векторы (1, 9, 15) и (0, 21, 31), полученные ранее. Эти 

векторы и будут базисом 𝐿1 ∩ 𝐿2. 

Ответ: базис 𝐿1 + 𝐿2: (4, 2, 1), (−3, 2, 0), (−1, 4, 0), базис 𝐿1 ∩ 𝐿2: (1, 9, 15), (0, 21, 31). 

Задача 1054 п.10. Найти размерности и базисы суммы и пересечения подпространств  

𝐿1 и 𝐿2: 

𝐿1 :    {
𝑥1 + 𝑥3 + 𝑥4 − 𝑥5 = 0
𝑥2 − 𝑥4 = 0                   

,   𝐿2 :    {
𝑥3 + 2𝑥4 = 0                           
𝑥1 − 𝑥2 − 𝑥5 = 0                   

 

Решение. 

Найдем базис суммы: 

𝐿1:      

(
1 0 1 1 −1
0 1 0 −1 0

) 

ФСР: (−1, 0, 1, 0, 0), (−1, 1, 0. 1, 0), (1, 0, 0, 0, 1). 

𝐿2:      

(
1 −1 0 0 −1
0 0 1 2 0

) 

ФСР: (1, 1, 0, 0, 0), (0, 0, −2, 1, 0), (1, 0, 0, 0, 1). 
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Теперь получившиеся 6 векторов записываем по столбцам в матрицу, и выбираем из 

них линейно независимые: 

(

 
 

−1 −1 1 1 0 1
0 1 0 1 0 0
1 0 0 0 −2 0
0 1 0 0 1 0
0 0 1 0 0 1)

 
 
~

(

 
 

1 0 0 0 −2 0
0 −1 1 1 −2 1
0 1 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1)

 
 
~

(

 
 

1 0 0 0 −2 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 −1 0
0 0 0 0 0 0)

 
 

 

Ранг получившейся матрицы равен 4, в качестве базиса можно взять первые четыре 

вектора исходной матрицы.  

Базис суммы: (−1, 0, 1, 0, 0), (−1, 1, 0. 1, 0), (1, 0, 0, 0, 1), (1, 1, 0, 0, 0). 

Найдем базис пересечения: 

Объединим уравнения, задающие 𝐿1 и 𝐿2, и найдем ФСР получившейся системы: 

{

𝑥1 + 𝑥3 + 𝑥4 − 𝑥5 = 0
𝑥2 − 𝑥4 = 0                    
𝑥3 + 2𝑥4 = 0                 
𝑥1 − 𝑥2 − 𝑥5 = 0         

 

(

1 0 1 1 −1
0 1 0 −1 0
0 0 1 2 0
1 −1 0 0 −1

)~(

1 0 1 1 −1
0 1 0 −1 0
0 −1 −1 −1 0
0 0 1 2 0

)~(

1 0 1 1 −1
0 1 0 −1 0
0 0 1 2 0
0 0 0 0 0

) 

В качестве свободных переменных выбираем 𝑥4 и 𝑥5. 

ФСР: (1, 1, −2, 1, 0), (1, 0, 0, 0, 1) – базис пересечения.  

Ответ: базис 𝐿1 + 𝐿2: (−1, 0, 1, 0, 0), (−1, 1, 0. 1, 0), (1, 0, 0, 0, 1), (1, 1, 0, 0, 0), 

базис 𝐿1 ∩ 𝐿2: (1, 1, −2, 1, 0), (1, 0, 0, 0, 1).  

Обратите внимание, что всегда должно выполняться равенство 

𝑑ⅈ𝑚(𝑉1 + 𝑉2) = 𝑑ⅈ𝑚𝑉1 + 𝑑ⅈ𝑚𝑉2 − 𝑑ⅈ𝑚(𝑉1 ∩ 𝑉2) 
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Семинар 4. Линейные функции и отображения. 

Прямая сумма подпространств 

Определение. Говорят, что пространство 𝑊 – прямая сумма подпространств 𝑉 и 𝑈 

(обозначение 𝑊 = 𝑉⊕𝑈), если любой элемент пространства 𝑤 ∈ 𝑊 можно 

единственным образом представить в виде 𝑤 = 𝑣 + 𝑢, где 𝑣 ∈ 𝑉, 𝑢 ∈ 𝑈. 

Задача: доказать, что линейное пространство квадратных матриц является прямой 

суммой подпространств симметричных и кососимметричных матриц. 

Решение. 

Пусть 𝑈 – подпространство симметричных матриц, 𝑉 – подпространство 

кососимметричных матриц. Очевидно, что 𝑈 ∩ 𝑉 = 0, так как только нулевая матрица 

является одновременно симметричной и кососимметричной. Таким образом, 

𝑑ⅈ𝑚(𝑈 + 𝑉) = 𝑑ⅈ𝑚𝑈 + 𝑑ⅈ𝑚𝑉 − 𝑑ⅈ𝑚(𝑈 ∩ 𝑉) =𝑑ⅈ𝑚𝑈 + 𝑑ⅈ𝑚𝑉 

Осталось показать, что любую матрицу можно представить в виде суммы 

симметричной и кососимметричной. Это так, потому что для любой матрицы 𝐴 верно 

равенство: 

𝐴 =
𝐴 + 𝐴𝑇

2
+
𝐴 − 𝐴𝑇

2
 

Здесь легко видеть, что: 

 
𝐴+𝐴𝑇

2
 – симметричная матрица, так как (𝐴 + 𝐴𝑇)𝑇 = 𝐴 + 𝐴𝑇  

 
𝐴−𝐴𝑇

2
 – кососимметричная матрица, так как (𝐴 − 𝐴𝑇)𝑇 = 𝐴𝑇 − 𝐴 

(конечно, строго говоря, это верно только тогда, когда характеристика поля не равна 2, 

но в нашем курсе мы рассматриваем поля характеристики 0). 

Линейные отображения 

Определение. Пусть 𝑉1 и 𝑉2 – линейные пространства над полем 𝐾. Тогда 𝜑: 𝑉1 → 𝑉2 – 

линейное отображение, если оно “уважает” структуру линейного пространства: 

1) ∀𝑢, 𝑣 𝜖 𝑉1:     𝜑(𝑢 + 𝑣) = 𝜑(𝑢) + 𝜑(𝑣) 

2) ∀𝜆 ∈ 𝐾, ∀𝑣 ∈ 𝑉1:    𝜑(𝜆𝑣) = 𝜆𝜑(𝑣) 

Обратите внимание, что, строго говоря, операции “⋅” и “+” в 𝑉1 и 𝑉2 могут быть 

разными. 

Любое линейное отображение однозначно задается своими значениями на базисных 

векторах: пусть 𝑒1̅, … , 𝑒̅𝑛 – базис в 𝑉1:      

∀𝑣 ∈ 𝑉1:    𝑣 = 𝜆1𝑒̅1 +⋯+ 𝜆𝑛𝑒̅𝑛 

Тогда (по свойствам линейности)  
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𝜑(𝑣) = 𝜆1𝜑(𝑒̅1) + ⋯+ 𝜆𝑛𝜑(𝑒̅𝑛) 

То есть, задание 𝜑(𝑒𝑖̅) ∈ 𝑉2,    ⅈ = 1,… , 𝑛 однозначно задает отображение 𝜑. 

Пусть 𝑓1, … , 𝑓𝑚 – базис в 𝑉2. Линейному отображению 𝜑 можно сопоставить матрицу 

𝐴𝑚×𝑛 (которая называется матрицей линейного отображения), по столбцам которой 

стоят координаты образов базисных векторов пространства 𝑉1 в пространстве 𝑉2. 

Частный случай: 𝑉2 = 𝐾 (одномерное пространство, которое можно отождествить с 

полем). Тогда линейное отображение 𝜑: 𝑉1 → 𝐾 называется линейным функционалом 

(линейной функцией). 

Задача 1055. Какие из следующих отображений пространства ℝ𝑛[𝑥] многочленов 

степени не выше 𝑛 в себя являются линейными: 

Решение. 

1) 𝑃(𝑥) → 𝑃(1) ⋅ 1 

Ответ: да, так как (𝑃 + 𝑄)(1) = 𝑃(1) + 𝑄(1) и 𝑃(𝜆𝑥) = 𝜆𝑃(𝑥). 

2) 𝑃(𝑥) → 𝑃′(𝑥) 

Ответ: да, так как операция дифференцирования линейна. 

3) 𝑃(𝑥) → ∫ 𝑃(𝑡) 𝑑𝑡
1

0
⋅ 𝑥2, 𝑛 ≥ 2 

Ответ: да, так как операция интегрирования линейна. 

4) 𝑃(𝑥) → 𝑃(0)𝑃(1) ⋅ 𝑥, 𝑛 ≥ 1 

Ответ: нет, достаточно рассмотреть, например, 𝑥 + 1 и 𝑥 + 2. 

5) 𝑃(𝑥) →
ⅆ𝑛

ⅆ𝑥𝑛
𝑃(𝑥2) 

Вначале проверим, что данное отображение действительно оставляет нас в 

пространстве многочленов степени не выше n: 

𝑑𝑒𝑔(𝑃(𝑥2)) ≤ 2𝑛 ⇒ deg (
ⅆ𝑛

ⅆ𝑥𝑛
𝑃(𝑥2)) ≤ 𝑛 – верно. 

Теперь рассмотрим случай 𝑛 = 1: 

𝜑(𝑃(𝑥) + 𝑄(𝑥)) = (𝑃(𝑥2) + 𝑄(𝑥2))
′
= (𝑃(𝑥2))

′
+ (𝑄(𝑥2))

′
= 𝜑(𝑃(𝑥)) + 𝜑(𝑄(𝑥)) 

𝜑(𝜆𝑃(𝑥)) = (𝜆𝑃(𝑥2))
′
= 𝜆(𝑃(𝑥2))

′
= 𝜆𝜑(𝑃(𝑥)) 

Как мы видим, это действительно линейное отображение, случаи 𝑛 > 1 

рассматриваются аналогично. 

Ответ: да. 
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6) 𝑃(𝑥) → 𝑥𝑛𝑃 (
1

𝑥
) 

Пусть  

𝑃(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0 

Тогда  

𝑥𝑛𝑃 (
1

𝑥
) = 𝑎𝑛 + 𝑎𝑛−1𝑥 +⋯+ 𝑎0𝑥

𝑛 

Легко проверить, что в этом случае условия линейности выполняются. 

Ответ: да. 

7) 𝑃(𝑥) →
1

𝑥
∫ 𝑃(𝑡) 𝑑𝑡
𝑥

0
 

Ответ: да, так как данное отображение не выводит нас из пространства многочленов 

степени не выше 𝑛 и операция интегрирования линейна. 

Далее в курсе в основном будут рассматриваться линейные отображения пространства 

в себя – линейные операторы. 

Сейчас обсудим множество линейных функций, заданных на линейном пространстве. 

Линейные функционалы 

Пусть 𝑉 – линейное пространство над 𝐾. 

Определение. 𝑉∗ ≔ {𝜑: 𝑉 → 𝐾,     𝜑 −  линейно} называется двойственным 

(сопряженным) к 𝑉. Это – множество линейных функционалов на пространстве 𝑉. 

Пусть 𝜑,𝜓:    𝑉 → 𝐾 – линейные функционалы. Тогда 

(𝜑 + 𝜓)(𝑣) ≔ 𝜑(𝑣) + 𝜓(𝑣) 

(𝜆𝜑)(𝑣) ≔ 𝜆𝜑(𝑣) 

Нетрудно проверить, что 𝑉∗ действительно является линейным пространством. 

Теорема. 𝑑ⅈ𝑚𝑉 = 𝑑ⅈ𝑚𝑉∗. 

Доказательство. 

Построим базис в двойственном пространстве. Пусть 𝑒1̅, … , 𝑒̅𝑛 – базис в 𝑉.  

Введем 𝑒𝑖 ∈ 𝑉∗: 𝑒𝑖(𝑒𝑗) = 𝛿𝑗
𝑖 – символ Кронекера.  

Докажем, что 𝑒𝑖 линейно: 

𝑒𝑖(𝑣) = 𝑒𝑖(𝑣1𝑒̅1 +⋯+ 𝑣𝑛𝑒̅𝑛) = 𝑣1𝑒
𝑖(𝑒̅1) + ⋯+ 𝑣𝑛𝑒

𝑖(𝑒̅𝑛) = 𝑣𝑖 

Попросту говоря, 𝑒𝑖 — это функция взятия ⅈ-ой координаты. 

https://vk.com/teachinmsu
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Докажем, что 𝑒1, … , 𝑒𝑛 – базис в 𝑉∗. 

 линейная независимость: пусть 𝜆1𝑒
1 +⋯+ 𝜆𝑛𝑒

𝑛 = 0.  

Но (𝜆1𝑒
1 +⋯+ 𝜆𝑛𝑒

𝑛)(𝑒𝑖) = 𝜆𝑖 = 0. Значит, 𝑒𝑖 - линейно независимы. 

 можно выразить произвольный 𝜑𝜖𝑉∗ через 𝑒1, … , 𝑒𝑛: 

обозначим 𝜇𝑖 ≔ 𝜑(𝑒𝑖). Тогда для произвольного 𝜑𝜖𝑉∗ и 𝑣 ∈ 𝑉 выполняется:  

[𝜑 − (𝜇1𝑒
1 +⋯+ 𝜇𝑛𝑒

𝑛)](𝑣) = 𝑣1𝜑(𝑒1) + ⋯+ 𝑣𝑛𝜑(𝑒𝑛) − (𝜇1𝑣1 +⋯+ 𝜇𝑛𝑣𝑛) = 0 

Второе двойственное пространство 

Теперь, по аналогии, можно определить второе двойственное пространство (𝑉∗)∗ =

𝑉∗∗. Отметим, что 𝑉 канонически изоморфно 𝑉∗∗ (т.е. между ними можно построить 

изоморфизм, не зависящий от выбора базиса). 

Определим отображение 𝛷:𝑉 → 𝑉∗∗: 

∀𝑣 ∈ 𝑉    𝛷(𝑣):  ∀𝜑 ∈ 𝑉∗  (𝛷(𝑣))[𝜑] ≔ 𝜑(𝑣) 

То есть, 𝛷(𝑣):  𝑉∗ → 𝐾.  

Для корректности определения нужно доказать, что: 

 𝛷(𝑣) линейно 

 𝛷 – изоморфизм, т.е. а) 𝛷 – биекция; б) 𝛷 – линейно. 

Доказательство просто и предоставляется читателю. 

Определение. Пусть 𝜑 ∈ 𝑉∗. Тогда ядро 𝝋: 

𝐾𝑒𝑟 𝜑 = {𝑣 ∈ 𝑉:𝜑(𝑣) = 0} 

То есть, ядро 𝜑 – это все векторы, на которых 𝜑 зануляется. Очевидно, 𝐾𝑒𝑟𝜑 является 

линейным подпространством в 𝑉. 

Для нетривиального линейного функционала его ядро всегда будет (𝑛 − 1)-мерным 

подпространством 𝑉 (гиперплоскостью, проходящей через начало координат). 

Пример: 𝑉 = ℝ4, 𝜑(𝑥) = 2𝑥1 − 3𝑥2 + 𝑥3 − 𝑥4. 

Найти: базис в 𝐾𝑒𝑟 𝜑. 

Решение. 

Найти базис в 𝐾𝑒𝑟 𝜑 – это то же самое, что найти ФСР системы уравнений, состоящей 

из одного уравнения 𝜑(𝑥) = 0. В нашем случае получаем 

𝐾𝑒𝑟 𝜑 =< (

1
0
0
2

) , (

0
1
0
−3

) ,(

0
0
1
1

) > 
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Семинар 5. Аффинные пространства. 
Задача 1058. Доказать, что для произвольной линейной функции 𝑓 на конечномерном 

линейном пространстве 𝑉 можно найти такой базис 𝑒1
′ , … , 𝑒𝑛

′ , что 

𝑓(𝑒1
′) = 1, 𝑓(𝑒2

′) = ⋯ =  𝑓(𝑒𝑛
′ ) = 0. 

Решение. 

Пусть 𝑒1, … , 𝑒𝑛 – некий базис в линейном пространстве и пусть 𝑓(𝑒1) ≠ 0 (иначе 

переименуем вектора, всегда найдется ненулевое значение 𝑓 на каком-то базисном 

векторе). 

В качестве 𝑒1
′  выберем 𝑒1

′ =
𝑒1

𝑓(𝑒1)
. Тогда  

𝑓(𝑒1
′) =

𝑓(𝑒1)

𝑓(𝑒1)
= 1 

В качестве 𝑒2
′ , … , 𝑒𝑛

′  можно выбрать  

𝑒𝑖
′ = 𝑓(𝑒1)𝑒𝑖 − 𝑓(𝑒𝑖)𝑒1 

Или же, в качестве 𝑒2
′ , … , 𝑒𝑛

′  можно выбрать произвольный базис ядра функции 𝑓. 

Задача 1064. Доказать, что 𝑘 линейных функций на 𝑛 – мерном линейном пространстве 

линейно независимы тогда и только тогда, когда пересечение их ядер является (𝑛 − 𝑘) 

– мерным подпространством. 

Решение. 

Линейная независимость 𝑘 функций означает, что матрица соответствующей системы 

(где по строкам стоят коэффициенты соответствующих линейных функций) имеет ранг 

𝑘. Но, если она имеет ранг 𝑘, это означает, что ФСР этой системы состоит из 𝑛 − 𝑘 

линейно независимых векторов. 

А вектор является решением этой системы тогда и только тогда, когда он является 

решением каждого из уравнений системы, то есть, лежит  в ядре каждой линейной 

функции, соответствующей уравнению системы, то есть, лежит в пересечении ядер. 

Задача 1076. В пространстве ℝ𝑛[𝑡] многочленов степени не выше 𝑛 рассмотрим 

линейные функции 𝑙𝑖, ⅈ = 1,… , 𝑛, заданные формулой 𝑙𝑖(𝑃) = 𝑃(𝑡𝑖), где 𝑃(𝑡) ∈ ℝ𝑛[𝑡], а 

𝑡0, 𝑡1, ⋯ , 𝑡𝑛 – различные точки числовой прямой. Доказать, что эти функции образуют 

базис в пространстве линейных функций на ℝ𝑛[𝑡]. Найти двойственный базис в 

пространстве ℝ𝑛[𝑡]. 

Решение. 

Пусть 𝑡𝑖 – точки на прямой. 𝑙0, … , 𝑙𝑛: 

𝑙𝑖(𝑃) = 𝑃(𝑡𝑖) 
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Нам достаточно подобрать такие многочлены 𝑃0, … , 𝑃𝑛: 

𝑙𝑖(𝑃𝑗) = 𝛿𝑗
𝑖 

Этого будет достаточно для того, чтобы доказать, что функции образуют базис в 

двойственном пространстве.  

Это достаточно легко сделать (по аналогии с интерполяционными многочленами 

Лагранжа) 

Например, 

𝑃0(𝑡) =
(𝑡 − 𝑡1)(𝑡 − 𝑡2) ⋅ … ⋅ (𝑡 − 𝑡𝑛)

(𝑡0 − 𝑡1)(𝑡0 − 𝑡2) ⋅ … ⋅ (𝑡0 − 𝑡𝑛)
 

Тогда 𝑃0(𝑡0) = 1,  𝑃0(𝑡𝑖) = 0, ⅈ ≠ 0. 

Аналогично 

𝑃𝑗(𝑡) =
(𝑡 − 𝑡1) ⋅ … ⋅ (𝑡 − 𝑡𝑗−1)(𝑡 − 𝑡𝑗+1) ⋅ … ⋅ (𝑡 − 𝑡𝑛)

(𝑡𝑗 − 𝑡1) ⋅ … ⋅ (𝑡𝑗 − 𝑡𝑗−1)(𝑡𝑗 − 𝑡𝑗+1) ⋅ … ⋅ (𝑡𝑗 − 𝑡𝑛)
 

Эти многочлены образуют базис в пространстве многочленов, значит, линейные 

функции 𝑙𝑗 образуют базис в двойственном пространстве. 

Аффинные пространства. 

В линейном пространстве нет точек, только векторы. Если мы добавим точки, то 

получится новый объект - аффинное пространство. 

Определение. Пусть 𝑉 – линейное пространство над полем  𝐾. Множество 𝑋 называется 

аффинным пространством, связанным с 𝑉, если задано отображение  

+̂: 𝑋 × 𝑉 → 𝑋 

удовлетворяющее свойствам 

 ∀𝐴 ∈ 𝑋, ∀𝑎 ∈ 𝑉    ∃! 𝐵:     𝐴+̂𝑎 = 𝐵 (формализация откладывания от т. A вектора 

𝑎̅ = 𝐴𝐵̅̅ ̅̅ ) 

 ∀𝐴 ∈ 𝑋 и ∀𝑎, 𝑏 ∈ 𝑉:    (𝐴+̂𝑎)+̂𝑏 = 𝐴+̂(𝑎 + 𝑏) – формализация правила сложения 

векторов, условие “согласования” операций “+̂” и “+” – формально, в аффинном 

и линейном пространстве они могут быть различными. 

С каждым линейным пространством связано аффинное пространство точек. 

Определение. Аффинное подпространство – множество точек вида 𝐴 + 𝑈, где 𝑈 – 

подпространство линейного пространства 𝑉. 

Размерность аффинного подпространства – размерность соответствующего линейного 

подпространства. 
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Одномерные аффинные подпространства называются прямыми, в случае больших 

размерностей аффинные подпространства будем называть плоскостями; если 

размерность подпространства на 1 меньше размерности 𝑉, будем называть его 

гиперплоскостью. 

Определение. Аффинная оболочка системы точек – наименьшее аффинное 

подпространство, содержащее эти точки. 

Аффинное подпространство задается решением неоднородной линейной системы 

уравнений. 

Задача 1088. Составить параметрические уравнение плоскости 

{
7𝑥1 + 9𝑥2 − 3𝑥3 + 11𝑥4 + 6𝑥5 = 9
3𝑥1 + 3𝑥2 + 𝑥3 + 3𝑥4 + 2𝑥5 = −3

 

Решение. 

Вначале найдем частное решение неоднородной системы, затем общее решение 

однородной. 

Частное решение неоднородной системы: 

(
7 9 −3 11 6 | 9
3 3 1 3 2 | −3

)~ (
1 3 −1 5 2 | 15
0 3 −1 6 2 | 24

)~ (
1 0 0 −1 0 | −9
0 3 −1 6 2 | 24

) 

Частное решение (0, 0, 0, 9, −15). 

Общее решение однородной системы: 

(
1 0 0 −1 0 | 0
0 3 −1 6 2 | 0

) 

𝑥1, 𝑥2 – главные переменные, 𝑥3, 𝑥4, 𝑥5 – свободные переменные. 

ФСР: (0, −2, 0, 0, 3), (3, −6, 0, 3, 0), (0, 1, 3, 0, 0). 

Ответ: 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

0
0
0
9
−15)

 
 
+ 𝑡1

(

 
 

0
−2
0
0
3 )

 
 
+ 𝑡2

(

 
 

3
−6
0
3
0 )

 
 
+ 𝑡3

(

 
 

0
1
3
0
0)

 
 

 – трехмерная плоскость в 

пятимерном пространстве. 

Задача 1089. Составить параметрическое уравнение двумерной плоскости, проходящей 

через три точки: 𝐴1(0, 1, 0, 1, 5), 𝐴2(3, −1, 3, 1, 0), 𝐴3(2, 2, 7, 6, 1).  Найти систему 

уравнений, задающую эту плоскость. 

Решение. 

https://vk.com/teachinmsu


 

 ЛИНЕЙНАЯ АЛГЕБРА. СЕМИНАРЫ   
 СМИРНОВ СЕРГЕЙ ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

31 

 
 

 

В качестве точки плоскости выбираем 𝐴1.  

Тогда 𝐴1𝐴2̅̅ ̅̅ ̅̅ ̅ = (3,−2, 3, 3, −5),   𝐴1𝐴3̅̅ ̅̅ ̅̅ ̅ =(2, 1, 7, 5, −4).  

Параметрическое уравнение плоскости: 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

0
1
0
1
5)

 
 
+ 𝑡1

(

 
 

3
−2
3
3
−5)

 
 
+ 𝑡2

(

 
 

2
1
7
5
−4)

 
 

 

Найдем систему уравнений, задающую эту плоскость: 

Вначале находим ФСР однородной системы, задаваемой 𝐴1𝐴2̅̅ ̅̅ ̅̅ ̅ и 𝐴1𝐴3̅̅ ̅̅ ̅̅ ̅, а затем 

подставляем в найденные уравнения координаты 𝐴1 и находим правую часть: 

(
3 −2 3 3 −5
2 1 7 5 −4

)~ (
1 −3 −4 −2 −1
0 7 15 9 −2

) 

𝑥1, 𝑥2 – главные переменные, 𝑥3, 𝑥4, 𝑥5 – свободные переменные. 

ФСР: (13, 2, 0, 0, 7), (−13,−9, 0, 7, 0), (17, 15,−7, 0, 0). 

Получаем систему: 

{

13𝑥1 + 2𝑥2 + 7𝑥5 = 37
−13𝑥1 − 9𝑥2 + 7𝑥4 = −2
17𝑥1 + 15𝑥2 − 7𝑥3 = 15

 

Ответ: 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

0
1
0
1
5)

 
 
+ 𝑡1

(

 
 

3
−2
3
3
−5)

 
 
+ 𝑡2

(

 
 

2
1
7
5
−4)

 
 
,     {

13𝑥1 + 2𝑥2 + 7𝑥5 = 37
−13𝑥1 − 9𝑥2 + 7𝑥4 = −2
17𝑥1 + 15𝑥2 − 7𝑥3 = 15

.  

Задача 1090 п.2. Составить параметрические уравнения, а также найти систему 

линейных уравнений, которые задают аффинную оболочку объединения двух 

плоскостей: 

{
 
 

 
 
𝑥1 = 𝑡1 + 𝑡2   
𝑥2 = 1 − 𝑡1     
𝑥3 = 𝑡1 + 2𝑡2
𝑥4 = 𝑡1           
𝑥5 = 𝑡2           

    

{
 
 

 
 
𝑥1 = 𝑡1                          
𝑥2 = 𝑡2                          
𝑥3 = 1 − 𝑡1 − 𝑡2         
𝑥4 = 2𝑡1 + 𝑡2              
𝑥5 = 1 − 2𝑡1                

 

Решение. 

Запишем условие в виде: 

Первая плоскость: 
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(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

0
1
0
0
0)

 
 
+ 𝑡1

(

 
 

1
−1
1
1
0 )

 
 
+ 𝑡2

(

 
 

1
0
2
0
1)

 
 

 

Вторая плоскость: 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

0
0
1
0
1)

 
 
+ 𝑡1

(

 
 

1
0
−1
2
−2)

 
 
+ 𝑡2

(

 
 

0
1
1
−1
0 )

 
 

 

Теперь составляем матрицу (по строчкам) из направляющих векторов плоскостей и 

вектора, соединяющего точку одной плоскости с точкой второй плоскости (в качестве 

этих точек возьмем точки (0, 1, 0, 0, 0) и (0, 0, 1, 0, 1) – получим вектор (0, −1, 1, 0, 1)). 

(

 
 

1 −1 1 1 0
1 0 2 0 1
1 0 −1 2 −2
0 1 1 −1 0
0 −1 1 0 1 )

 
 
~

(

 
 

1 −1 1 1 0
0 1 1 −1 1
0 1 −2 1 −2
0 1 1 −1 0
0 −1 1 0 1 )

 
 
~

(

 
 

1 −1 1 1 0
0 1 1 −1 1
0 0 2 −1 2
0 0 0 1 0
0 0 0 0 1)

 
 

 

Получившаяся матрица невырождена, таким образом, аффинной оболочкой является 

все пространство. Уравнение, которое задает все пространство: 0 = 0. 

Ответ: 0 = 0. 

Взаимное расположение аффинных пространств 

В трехмерном пространстве две прямые либо параллельны, либо совпадают, либо 

скрещиваются. Какое может быть взаимное расположение аффинных подпространств в 

пространствах высшей размерности? 

Они могут совпадать как множества, пересекаться (как множества). Как быть, если у 

двух плоскостей нет общих точек? 

Смотрим на ассоциированные линейные пространства. Если они совпадают, тогда 

говорят, что соответствующие аффинные пространства параллельны. Если они не 

пересекаются, тогда говорят, что соответствующие аффинные пространства 

скрещиваются по точке. Если они пересекаются по прямой, тогда говорят, что они 

скрещиваются по прямой и т.д. 
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Семинар 6. Линейные операторы. 
Задача 1074. В пространстве ℝ𝑛[𝑡] многочленов степени не выше 𝑛 рассмотрим 

линейные функции 𝑙𝑖, ⅈ = 0, 1, … , 𝑛, заданные формулой 

𝑙𝑖(𝑃) = ∫ 𝑃(𝑡) 𝑑𝑡

𝑖+1

0

 

Доказать, что эти функции линейно независимы. 

Решение. 

Предположим обратное – существует нетривиальная линейная комбинация: 

𝛼0𝑙
0 +⋯+ 𝛼𝑛𝑙

𝑛 = 0 ⇔ 𝛼0∫𝑃(𝑡) 𝑑𝑡

1

0

+⋯+ 𝛼𝑛 ∫ 𝑃(𝑡) 𝑑𝑡

𝑛+1

0

= 0 

Перепишем полученное равенство в виде 

∫(𝛼0 +⋯+ 𝛼𝑛)𝑃(𝑡) 𝑑𝑡

1

0

+∫(𝛼1 +⋯+ 𝛼𝑛)𝑃(𝑡) 𝑑𝑡

2

1

+⋯+ ∫ 𝛼𝑛𝑃(𝑡) 𝑑𝑡

𝑛+1

𝑛

= 0 

Данное равенство должно выполняться для любого многочлена 𝑃(𝑡). Рассмотрим 

𝑃0(𝑡) = (𝑡(𝑡 − 1) ⋅ … ⋅ (𝑡 − 𝑛))
′
 

Тогда при 𝑘 < 𝑛 выполнено: 

∫ 𝑃0(𝑡) 𝑑𝑡 = 0

𝑘+1

𝑘

 

В то же время  

∫ 𝑃0(𝑡) 𝑑𝑡 ≠ 0

𝑛+1

𝑛

 

Тогда, чтобы выполнялось равенство 𝛼0𝑙
0 +⋯+ 𝛼𝑛𝑙

𝑛 = 0, должно выполняться 𝛼𝑛 =

0. 

Аналогично рассматриваем многочлен 

𝑃1(𝑡) = (𝑡(𝑡 − 1) ⋅ … ⋅ (𝑡 − 𝑛 + 1))
′
 

Получаем 𝛼𝑛−1 = 0 и так далее. 

Таким образом, получаем, что все 𝛼𝑖 = 0, и исходные функции линейно независимы. 

https://vk.com/teachinmsu
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Взаимное расположение плоскостей в аффинном пространстве 

Рассмотрим несколько примеров взаимного расположения плоскостей в аффинном 

пространстве. Будем классифицировать их в терминах рангов соответствующих систем, 

составленных из векторов, на которых натянуты линейные оболочки, и вектора 𝑃1𝑃2̅̅ ̅̅ ̅̅  .  

Пример 1. 

Рассмотрим одномерную и двумерную плоскость в ℝ4: 

𝑋1 = 𝑃1 + ⟨𝑎1, 𝑎2⟩ 

𝑋2 = 𝑃2 + ⟨𝑏⟩ 

Обозначим 𝑟1 = 𝑟𝑘{𝑎1, 𝑎2,   𝑏},  𝑟2 = 𝑟𝑘{𝑎1, 𝑎2,   𝑏,   𝑃1𝑃2̅̅ ̅̅ ̅̅  }. 

1) 𝑟1 = 2, 𝑟2 = 2 

В этом случае 𝑋1 ∩ 𝑋2 ≠ {0} и 𝑏1 ∈ ⟨𝑎1, 𝑎2⟩ - прямая 𝑋2 полностью содержится в 

𝑋1 

2) 𝑟1 = 2, 𝑟2 = 3 

В этом случае 𝑏1 ∈ ⟨𝑎1, 𝑎2⟩, но общих точек нет – прямая 𝑋2 параллельна 𝑋1 

3) 𝑟1 = 3, 𝑟2 = 3 

В этом случае 𝑏1 ∉ ⟨𝑎1, 𝑎2⟩, 𝑋1 и 𝑋2 имеют общую точку – в этом случае говорят, 

что 𝑋1 и 𝑋2 пересекаются по точке 

4) 𝑟1 = 3, 𝑟2 = 4 

В этом случае 𝑏1 ∉ ⟨𝑎1, 𝑎2⟩, 𝑋1 ∩ 𝑋2 = ∅ - 𝑋1 и 𝑋2 скрещиваются по точке 

Пример 2. 

Рассмотрим две двумерные плоскости в ℝ5: 

𝑋1 = 𝑃1 + ⟨𝑎1, 𝑎2⟩ 

𝑋2 = 𝑃2 + ⟨𝑏1, 𝑏2⟩ 

Обозначим 𝑟1 = 𝑟𝑘{𝑎1, 𝑎2,   𝑏1, 𝑏2},  𝑟2 = 𝑟𝑘{𝑎1, 𝑎2,   𝑏1, 𝑏2,   𝑃1𝑃2̅̅ ̅̅ ̅̅  }. 

1) 𝑟1 = 2, 𝑟2 = 2 

В этом случае 𝑋1 ∩ 𝑋2 ≠ {0} и ⟨𝑏1, 𝑏2⟩ = ⟨𝑎1, 𝑎2⟩ – плоскости 𝑋1 и 𝑋2  совпадают 

2) 𝑟1 = 2, 𝑟2 = 3 

В этом случае ⟨𝑏1, 𝑏2⟩ = ⟨𝑎1, 𝑎2⟩ , но общих точек нет – плоскости 𝑋1 и 𝑋2 

параллельны 

3) 𝑟1 = 3, 𝑟2 = 3 

В этом случае 𝑋1 и 𝑋2 имеют общую прямую – говорят, что 𝑋1 и 𝑋2 

пересекаются по прямой 

4) 𝑟1 = 3, 𝑟2 = 4 

В этом случае нет общих точек, но есть общее направление – говорят, что 𝑋1 и 

𝑋2 скрещиваются по направлению 

https://vk.com/teachinmsu
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5)  𝑟1 = 4, 𝑟2 = 4 

В этом случае 𝑋1 и 𝑋2 пересекаются по точке 

6) 𝑟1 = 4, 𝑟2 = 5 

В этом случае 𝑋1 и 𝑋2 скрещиваются по точке 

Задача 1097 п.1. Определить взаимное расположение плоскостей 

𝑋1 : {
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 2
𝑥3 + 𝑥4 = 0                             

   𝑋2: {

𝑥1 + 2𝑥2 − 𝑥3 + 𝑥5 = 0
𝑥1 + 𝑥2 = 1                      
𝑥2 − 𝑥4 + 𝑥5 = 1            

 

Решение. 

Вначале для каждой из систем найдем частное решение неоднородной системы и ФСР 

однородной системы (перефразируя, можно сказать, что мы находим точку 𝑃1 и базис в 

ассоциированном линейном пространстве). 

𝑋1 : (
1 1 1 1 1 | 2
0 0 1 1 0 | 0

) 

Частное решение: 𝑃1 (1, 1, 0, 0, 0). 

Находим ФСР однородной системы: 

(
1 1 1 1 1
0 0 1 1 0

) 

𝑥1, 𝑥3 – главные неизвестные, 𝑥2, 𝑥4, 𝑥5 - свободные 

ФСР: (1, −1, 0, 0, 0), (0, 0, −1, 1 ,0), (−1, 0, 0, 0, 1). 

𝑋2 : (

1 2 −1 0 1 | 0
1 1 0 0 0 | 1
0 1 0 −1 1 | 1

)~(

1 1 0 0 0 |    1
0 1 −1 0 1 | −1
0 0 1 −1 0 |    2

) 

Частное решение: 𝑃2 (1, 0, 2, 0, 1). 

Находим ФСР однородной системы: 

(
1 1 0 0 0
0 1 −1 0 1
0 0 1 −1 0

) 

𝑥1, 𝑥2, 𝑥3 – главные неизвестные, 𝑥4, 𝑥5 - свободные 

ФСР: (−1, 1, 1, 1, 0), (1, −1, 0, 0 ,1) 

Теперь составляем матрицу из ФСР первой и второй системы, и находим ее ранг и ранг 

расширенной матрицы (добавляем 𝑃1𝑃2̅̅ ̅̅ ̅̅ ): 

https://vk.com/teachinmsu
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(

 
 

1 0 −1 −1 1 | 0
−1 0 0 1 −1 | −1
0 −1 0 1 0 | 2
0 1 0 1 0 | 0
0 0 1 0 1 | 1 )

 
 
~

(

 
 

1 0 −1 −1 1 | 0
0 1 0 −1 0 | −2
0 0 1 0 0 | 1
0 0 0 1 0 | 1
0 0 0 0 1 | 0 )

 
 

 

Получили 𝑟1 = 𝑟2 = 5. Значит, данные плоскости пересекаются по точке. Координаты 

точки найдем, решив объединенную систему (объединяем системы, задающие 𝑋1 и 𝑋2): 

{
 
 

 
 
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 2
𝑥3 + 𝑥4 = 0                              
𝑥1 + 2𝑥2 − 𝑥3 + 𝑥5 = 0       
𝑥1 + 𝑥2 = 1                             
𝑥2 − 𝑥4 + 𝑥5 = 1                   

 

(

 
 

1 1 1 1 1 | 2
0 0 1 1 0 | 0
1 2 −1 0 1 | 0
1 1 0 0 0 | 1
0 1 0 −1 1 | 1)

 
 
~

(

 
 

1 1 1 1 1 | 2
0 1 −2 −1 0 | −2
0 0 1 1 0 | 0
0 0 −1 −1 −1 | −1
0 0 2 0 1 | 3 )

 
 
~ 

(

 
 

1 1 1 1 1 | 2
0 1 −2 −1 0 | −2
0 0 1 1 0 | 0
0 0 0 −2 1 | 3
0 0 0 0 1 | 1 )

 
 

 

Получаем координаты точки (2, −1, 1, −1, 1). 

Ответ: плоскости пересекаются по точке (2, −1, 1, −1, 1). 

Переходим к следующей теме – линейные операторы. 

Определение. Линейный оператор – линейное отображение линейного пространства в 

себя. 

Как и всякое линейное отображение, линейный оператор полностью определяется 

своими значениями на базисных векторах. 

Матрица линейного оператора – матрица, по столбцам которой записаны образы 

базисных векторов после действия на них оператора. 

Нужно различать матрицу оператора и сам оператор. При переходе к другому базису 

матрица оператора преобразуется по правилу 𝐶−1𝐴𝐶, где 𝐶 – матрица перехода к 

другому базису. 

Задача 1099. Рассмотрим пространство 𝑅5[𝑥] многочленов степени не выше 5 и его 

базис 1, 𝑥,  𝑥2,  𝑥3,  𝑥4, 𝑥5. Найти матрицы следующих операторов: 
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Решение. 

Смотрим, как действует оператор на базисные векторы и записываем их образы по 

столбцам: 

1) Оператор дифференцирования 
ⅆ

ⅆ𝑥
  

ⅆ

ⅆ𝑥
1 = 0, 

ⅆ

ⅆ𝑥
𝑥 = 1, 

ⅆ

ⅆ𝑥
𝑥2 = 2𝑥, 

ⅆ

ⅆ𝑥
𝑥3 =  3𝑥2, 

ⅆ

ⅆ𝑥
𝑥4 =  4𝑥3, 

ⅆ

ⅆ𝑥
𝑥5 = 5𝑥4. 

Получаем матрицу оператора 

(

  
 

0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5
0 0 0 0 0 0)

  
 

 

2) 𝑓(𝑥) → 𝑓(𝑥 + 1) 

(

  
 

1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1 )

  
 

 

3) 𝑓(𝑥) → 𝑓(−𝑥) 

(

  
 

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1)

  
 

 

4) 𝑓(𝑥) →
1

𝑥
∫ 𝑓(𝑡) 𝑑𝑡
𝑥

0
 

(

 
 
 
 
 

1 0 0 0 0 0

0 1
2⁄ 0 0 0 0

0 0 1
3⁄ 0 0 0

0 0 0 1
4⁄ 0 0

0 0 0 0 1
5⁄ 0

0 0 0 0 0 1
6⁄ )

 
 
 
 
 

 

Задача 1112. Линейный оператор в некотором базисе 𝑒1, 𝑒2, 𝑒3 имеет матрицу 

(
15 −11 5
20 −15 8
8 −7 6

) 
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Найти его матрицу в новом базисе, если 𝑓1 = 2𝑒1 + 3𝑒2 + 𝑒3, 𝑓2 = 3𝑒1 + 4𝑒2 + 𝑒3, 

𝑓3 = 𝑒1 + 2𝑒2 + 2𝑒3. 

Решение. 

Запишем матрицу перехода: 

𝐶 = (
2 3 1
3 4 2
1 1 2

) 

Найдем 𝐶−1: 

(

2 3 1 | 1 0 0
3 4 2 | 0 1 0
1 1 2 | 0 0 1

)~(

1 1 2 | 0 0 1
0 1 −3 | 1 0 −2
0 1 −4 | 0 1 −3

)~(

1 0 5 | −1 0 3
0 1 −3 | 1 0 −2
0 0 1 | 1 −1 1

)~ 

(

1 0 0 | −6 5 −2
0 1 0 | 4 −3 1
0 0 1 | 1 −1 1

) 

Получаем 𝐶−1 = (
−6 5 −2
4 −3 1
1 −1 1

).  

Тогда матрица оператора в новом базисе: 

𝐶−1𝐴𝐶 = (
−6 5 −2
4 −3 1
1 −1 1

)(
15 −11 5
20 −15 8
8 −7 6

)(
2 3 1
3 4 2
1 1 2

) = (
1 0 0
0 2 0
0 0 3

) 

Ответ: (
1 0 0
0 2 0
0 0 3

). 
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Семинар 7. Ядро и образ линейного оператора. 
Задача. Доказать, что след оператора не меняется при смене базиса. 

Решение. 

Это – следствие из теоремы, утверждающей, что характеристический многочлен 

матрицы оператора 𝜒(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐸) не зависит от выбора базиса. 

Доказательство. 

Пусть 𝐴 – матрица оператора в старом базисе, 𝐴̃ – матрица оператора в новом базисе. 

Тогда  

𝐴̃ = 𝐶−1𝐴𝐶 

где 𝐶 – матрица перехода. Получаем в новом базисе: 

𝜒(𝜆) = 𝑑𝑒𝑡(𝐴̃ − 𝜆𝐸) = 𝑑𝑒𝑡(𝐶−1𝐴𝐶 − 𝜆𝐸) = 𝑑𝑒𝑡(𝐶−1𝐴𝐶 − 𝜆𝐶−1𝐶) = 

= 𝑑𝑒𝑡(𝐶−1(𝐴 − 𝜆𝐸)𝐶) = 𝑑𝑒𝑡 𝐶−1 𝑑𝑒𝑡(𝐴 − 𝜆𝐸) 𝑑𝑒𝑡 𝐶 = 𝑑𝑒𝑡(𝐴 − 𝜆𝐸) 

Таким образом, хотя характеристический многочлен и вычисляется по конкретной 

матрице оператора, это – свойство оператора, а не его матрицы – характеристический 

многочлен не зависит от матрицы оператора. 

𝑑𝑒𝑡(𝐴 − 𝜆𝐸) = (−1)𝑛𝜆𝑛 + (−1)𝑛−1 tr 𝐴𝜆𝑛−1 +⋯+ (−1)𝑛 det 𝐴 

То есть, в частности, tr 𝐴 не зависит от выбора базиса. 

Теперь обсудим два важных класса операторов – оператор проектирования и оператор 

отражения. 

Оператор проектирования 

Пусть 𝑉 = 𝑉1⊕𝑉2. Это означает, что для ∀𝑣 ∈ 𝑉:    𝑣 = 𝑣1 + 𝑣2, где 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2. 

Определим оператор  

𝑃: 𝑉 → 𝑉:   𝑃(𝑣) = 𝑣1 

То есть, каждому вектору ставим в соответствие его компоненту в 𝑉1 при разложении 

по прямой сумме. Такой оператор называется оператором проектирования.  

Линейный оператор 𝑃 – оператор проектирования ⇔ 𝑃2 = 𝑃. 

Пусть 𝑒1, … , 𝑒𝑛 – базис 𝑉,  

𝑉1 = ⟨𝑒1, … , 𝑒𝑘⟩ 

𝑉2 = ⟨𝑒𝑘+1, … , 𝑒𝑛⟩ 

В базисе 𝑒1, … , 𝑒𝑛 матрица оператора 𝑃 имеет вид 

https://vk.com/teachinmsu
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𝐴𝑃 = (
𝐸𝑘 0
0 0

) 

Где 0 – нулевые матрицы, 𝐸𝑘 – единичная матрица размера 𝑘 × 𝑘. 

Оператор отражения 

В тех же обозначениях, оператор отражения  

𝑅: 𝑉 → 𝑉:   𝑅(𝑣) = 𝑣1 − 𝑣2 

То есть, каждому вектору ставим в соответствие его отражение относительно 𝑉2. 

Линейный оператор 𝑅 – оператор отражения ⇔ 𝑅2 = 𝐼𝑑. 

В базисе 𝑒1, … , 𝑒𝑛 матрица оператора 𝑅 имеет вид 

𝐴𝑅 = (
𝐸𝑘 0
0 −𝐸𝑛−𝑘

) 

Где 0 – нулевые матрицы, 𝐸𝑘 – единичная матрица размера 𝑘 × 𝑘, 𝐸𝑛−𝑘 – единичная 

матрица размера (𝑛 − 𝑘) × (𝑛 − 𝑘). 

Задача. Рассмотрим в ℝ4 подпространства  

𝑉1 = ⟨(1,0,−1,2), (0,1,3,1)⟩ 

𝑉2 = ⟨(−1,1,0,2), (1,2,1,0)⟩ 

ℝ4 = 𝑉1⊕𝑉2. Найти матрицу оператора 𝑃 проектирования на 𝑉1 параллельно 𝑉2 в 

стандартном базисе. 

Решение. 

В базисе, составленном из векторов, задающих линейные оболочки 𝑉1 и 𝑉2, матрица 

оператора  𝑃 будет иметь вид: 

𝐴̃ = (

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

) 

Матрица, обратная к матрице перехода к стандартному базису, будет иметь вид (по 

столбцам стоят базисные векторы 𝑉1 и 𝑉2): 

𝐶−1 = (

1 0 −1 1
0 1 1 2
−1 3 0 1
2 1 2 0

) 

Найдем матрицу перехода 𝐶 к стандартному базису: 

https://vk.com/teachinmsu
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(

1 0 −1 1 | 1 0 0 0
0 1 1 2 | 0 1 0 0
−1 3 0 1 | 0 0 1 0
2 1 2 0 | 0 0 0 1

)~(

1 0 −1 1 | 1 0 0 0
0 1 1 2 | 0 1 0 0
0 3 −1 2 | 1 0 1 0
0 1 4 −2 | −2 0 0 1

)~ 

(

 
 

1 0 −1 1 | 1 0 0 0
0 1 1 2 | 0 1 0 0
0 0 1 8 | 1 4 −1 −1

0 0 0 1 | 5
28⁄

13
28⁄

−3
28⁄

−1
7⁄ )

 
 
~ 

(

 
 
 

1 0 0 0 | 11
28⁄

−5
28⁄

−1
28⁄

2
7⁄

0 1 0 0 | 1
14⁄

−3
14⁄

5
14⁄

1
7⁄

0 0 1 0 | −3
7⁄

2
7⁄

−1
7⁄

1
7⁄

0 0 0 1 | 5
28⁄

13
28⁄

−3
28⁄

−1
7⁄ )

 
 
 

 

Итак,  

𝐶−1𝐴̃𝐶 = (

1 0 −1 1
0 1 1 2
−1 3 0 1
2 1 2 0

)(

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)

(

 
 
 

11
28⁄

−5
28⁄

−1
28⁄

2
7⁄

1
14⁄

−3
14⁄

5
14⁄

1
7⁄

−3
7⁄

2
7⁄

−1
7⁄

1
7⁄

5
28⁄

13
28⁄

−3
28⁄

−1
7⁄ )

 
 
 
= 

=

(

 
 
 

11
28⁄

−5
28⁄

−1
28⁄

2
7⁄

1
14⁄

−3
14⁄

5
14⁄

1
7⁄

−5
28⁄

−13
28⁄

31
28⁄

1
7⁄

6
7⁄

−4
7⁄

2
7⁄

5
7⁄ )

 
 
 
=
1

28
(

11 −5 −1 8
2 −6 10 4
−5 −13 31 4
24 −16 8 20

) 

Ответ: 
1

28
(

11 −5 −1 8
2 −6 10 4
−5 −13 31 4
24 −16 8 20

). 

Ядро и образ линейного оператора 

Ядро линейного оператора 𝐾𝑒𝑟𝐴 – всегда линейное подпространство. Если ядро 

тривиально (состоит только из 0̅), то матрица оператора невырождена, т.е. оператор 

переводит всякий базис в базис, или, что равносильно, его образ совпадает  со всем 

пространством.  

Размерность ядра равна 𝑑ⅈ𝑚𝐾𝑒𝑟𝐴 = 𝑛 − 𝑟𝑘𝐴, где 𝑛 – размерность пространства. 

Образ линейного оператора 𝐼𝑚𝐴 также является линейным подпространством, его 

размерность совпадает с рангом матрицы оператора. 

https://vk.com/teachinmsu
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Таким образом,  

𝑑ⅈ𝑚𝐾𝑒𝑟𝐴 + 𝑑ⅈ𝑚 𝐼𝑚𝐴 = 𝑛 

Однако, нужно иметь в виду, что отсюда не следует, что 𝑉 = 𝐾𝑒𝑟𝐴⊕ 𝐼𝑚𝐴 – ядро и 

образ оператора вполне могут пересекаться. 

Рассмотрим, например, оператор дифференцирования в пространстве многочленов 

степени не выше 𝑛. Его ядро – все константы, 𝑑ⅈ𝑚𝐾𝑒𝑟𝐴 = 1. Его образ – многочлены 

степени не выше 𝑛 − 1. Таким образом, ядро лежит в образе. 

Задача 1118. Найти ядро и образ следующих операторов, действующих в пространстве 

ℝ𝑛[𝑥] многочленов степени не выше 𝑛.  

Решение. 

1) 𝑇:   𝑓(𝑥) → 𝑓(𝑥 + 1) 

Очевидно, у оператора 𝑇 есть обратный, поэтому 𝐾𝑒𝑟𝑇 = {0̅}, 𝐼𝑚 𝑇 = ℝ𝑛[𝑥]. 

2) 𝑅:   𝑓(𝑥) → 𝑓(−𝑥) 

Очевидно, у оператора 𝑅 есть обратный, поэтому 𝐾𝑒𝑟𝑅 = {0̅}, 𝐼𝑚 𝑅 = ℝ𝑛[𝑥]. 

3) 𝐷:   𝑓(𝑥) → 𝑥𝑓′(𝑥) 

𝐾𝑒𝑟𝐷 = ⟨1⟩, 𝐼𝑚𝐷 = ⟨𝑥, 𝑥2, … , 𝑥𝑛⟩. 

4) 𝑃:   𝑓(𝑥) → 𝑓(0)𝑥 

𝐾𝑒𝑟𝑃 = ⟨𝑥, 𝑥2, … , 𝑥𝑛⟩, 𝐼𝑚𝑃 = ⟨𝑥⟩. 

Задача. Пусть 𝐴 = (

1 0 2 3
2 1 1 −1
3 2 0 −7
6 3 3 −5

) – матрица оператора. Найти ядро и образ 

оператора. 

Решение. 

Находим ядро: 

Находим ФСР: 

(

1 0 2 3
2 1 1 −1
3 2 0 −7
6 3 3 −5

)~(

1 0 2 3
0 1 −3 −7
0 2 −6 −16
0 3 −9 −8

)~(

1 0 2 3
0 1 −3 −7
0 0 0 1
0 0 0 0

) 

𝑥1,  𝑥2,  𝑥4 – главные переменные, 𝑥3 – свободная переменная. 

ФСР: (−2, 3, 1, 0). 

https://vk.com/teachinmsu
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𝐾𝑒𝑟𝐴 = ⟨(

−2
3
1
0

)⟩ 

Находим образ: 

Образ оператора – это линейная оболочка столбцов матрицы, так как по столбцам 

записаны образы базисных векторов. 

При нахождении ФСР мы привели матрицу оператора к ступенчатому виду, при этом 

линейно независимые столбцы остались линейно независимыми. Таким образом, 1, 2, и 

4 столбцы исходной матрицы линейно независимы, а 3 столбец через них выражается. 

Поэтому 1, 2, и 4 столбец образуют базис в образе. 

𝐼𝑚𝐴 = ⟨(

1
2
3
6

) , (

0
1
2
3

) ,(

3
−1
−7
−5

)⟩ 

Ответ: 𝐾𝑒𝑟𝐴 = ⟨(

−2
3
1
0

)⟩ , 𝐼𝑚𝐴 = ⟨(

1
2
3
6

) ,(

0
1
2
3

) , (

3
−1
−7
−5

)⟩. 

Определение. 𝑣 ≠ 0̅ – собственный вектор для оператора 𝑓: 𝑉 → 𝑉, если ∃𝜆 ∈ 𝐾:  

𝑓(𝑣) = 𝜆𝑣 

𝜆 называется собственным значением, соответствующим собственному вектору 𝑣. 

Геометрически это означает, что под действием оператора 𝑓 вектор 𝑣 не 

поворачивается, а только изменяет свою длину (и направление, если 𝜆 < 0). 

Пусть 𝐴𝑓 – матрица оператора 𝑓. Тогда 

𝐴𝑓𝑣 = 𝜆𝑣 ⇔ (𝐴𝑓 − 𝜆𝐸)𝑣 = 0 

Отсюда следует, что 

𝑑𝑒𝑡(𝐴𝑓 − 𝜆𝐸) = 0 

То есть, 𝜆 – корень характеристического многочлена. 

Задача 1164. п.1. Найти собственные значения, их кратности и собственные 

подпространства линейного оператора 𝐴 = (
0 1 0
−2 −2 1
1 1 −1

). 

Решение. 

Находим собственные значения: 

https://vk.com/teachinmsu
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|
−𝜆 1 0
−2 −2 − 𝜆 1
1 1 −1 − 𝜆

| = 0 ⇔ (𝜆 + 1)3 = 0 

Получаем 𝜆 = −1 – корень кратности 3. Ищем собственные векторы: 

𝐴 − 𝜆𝐸 = (
1 1 0
−2 −1 1
1 1 0

) 

𝑟𝑘(𝐴 − 𝜆𝐸) = 2. Получаем единственный собственный вектор 𝑣 = (
1
−1
1
) . 

Ответ: (
1
−1
1
). 

  

https://vk.com/teachinmsu
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Семинар 8. Жорданова форма. 

Жорданова форма матрицы. 

Нильпотентный оператор. 

Пусть 𝐾 – алгебраически замкнутое поле (например, поле комплексных чисел). Если 

над алгебраически замкнутым полем оператор 𝑓 имеет единственное собственное 

значение 𝜆, тогда 𝑓 − 𝜆ⅈ𝑑 - нильпотентный оператор (ⅈ𝑑 – тождественный оператор). 

Значит, для него существует базис 𝑒1, … , 𝑒𝑛, в котором матрица оператора 𝑓 − 𝜆ⅈ𝑑  

имеет вид: 

𝐴 𝑓−𝜆𝑖ⅆ =

(

 

𝐴1 . . . 0

𝐴2 . . .

. . .
0 . . . 𝐴𝑘)

  

Где 𝐴𝑖 – блоки вида (над главной диагональю - диагональ из 1, остальные элементы 

равны 0): 

𝐴𝑖 = (

0 1 . . . 0
0 0 1 . . .
. . . . . . . . . 1
0 . . . . . . 0

) 

Тогда в этом же базисе матрица оператора 𝑓 имеет вид: 

𝐴 𝑓 = (

𝐴1 . . . 0

𝐴2 . . .
. . . . . . . . . . . .
0 . . . 𝐴𝑘

) 

Где 𝐴𝑖 – блоки вида (на главной диагонали стоят 𝜆, над главной диагональю - диагональ 

из 1, остальные элементы равны 0): 

𝐴𝑖 = (

𝜆 1 . . . 0
0 𝜆 1 . . .
. . . . . . . . . . . .
0 . . . . . . 𝜆

) 

Общий случай. 

Здесь необходимо рассматривать различные корневые подпространства. Ограничиваясь 

на корневое подпространство, соответствующее собственному значению, получаем, что 

оператор 𝑓 − 𝜆ⅈ𝑑 – нильпотентный. Находим базис в корневом подпространстве. 

Объединение этих базисов дает базис всего пространства, так как пространство 

раскладывается в прямую сумму своих корневых подпространств.  

Характеристический многочлен: 

https://vk.com/teachinmsu
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𝜒𝑓(𝜆) = (𝜆 − 𝜆1)
𝑘1 ⋅ … ⋅ (𝜆 − 𝜆𝑚)

𝑘𝑚 

Кратность корней 𝑘𝑖 – суммарная размерность корневых подпространств, отвечающих 

𝑘𝑖 (всех блоков, отвечающих данному 𝜆𝑖). 

Как находить жорданов базис: 

Находим характеристический многочлен, находим его корни, и для каждого корня 

определяем количество клеток, соответствующее данному 𝜆 (находим ранг 𝐴 − 𝜆𝐸). 

Для каждого 𝜆 отдельно возводим в степень жорданову клетку 𝐴 − 𝜆𝐸, определяя таким 

образом размер клеток, соответствующих данному 𝜆. 

Рассмотрим на примерах: 

Задача 1199 п.12. Найти жорданову форму и жорданов базис оператора 

𝐴 =

(

 
 

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 3 2 −2 −3)

 
 

 

Решение. 

Находим собственные значения (раскладываем определитель по 1 строке): 

|
|

−𝜆 1 0 0 0
0 −𝜆 1 0 0
0 0 −𝜆 1 0
0 0 0 −𝜆 1
1 3 2 −2 −3 − 𝜆

|
| = −𝜆5 − 3𝜆4 − 2𝜆3 + 3𝜆 + 1 = −(𝜆 − 1)(𝜆 + 1)4 = 0 

Получаем собственные значения 𝜆1 = 1, 𝜆2 = −1. 

Таким образом, получаем одномерное корневое подпространство, соответствующее  

𝜆1 = 1 и четырехмерное корневое подпространство, соответствующее 𝜆2 = −1.  

𝜆2 = −1: 

Поймем, какие будут жордановы клетки. Найдем ранг матрицы 𝐴 − 𝜆2𝐸: 

𝐴 − 𝜆2𝐸 =

(

 
 

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 3 2 −2 −2)

 
 

 

Очевидно, что 𝑟𝑘(𝐴 − 𝜆2𝐸) ≥ 4 (первые 4 строки матрицы линейно независимы), также 

𝑟𝑘(𝐴 − 𝜆2𝐸) ≤ 4 (т.к. матрица вырождена). Значит, 𝑟𝑘(𝐴 − 𝜆2𝐸) = 4. 

https://vk.com/teachinmsu
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Блочная структура определена однозначно – один блок 4 × 4. 

Таким образом, жорданова форма матрицы: 

𝐽 =

(

 
 

1 0 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1)

 
 

 

Теперь ищем векторы жорданового базиса. Начнем с клетки 4 × 4. Нужно возвести эту 

клетку в 4 степень: 

(𝐴 − 𝜆2𝐸)
2 =

(

 
 

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 3 2 −2 −2)

 
 

(

 
 

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 3 2 −2 −2)

 
 
=

(

 
 

1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 3 2 −1 −1
−1 −2 1 4 2 )

 
 

 

(𝐴 − 𝜆2𝐸)
3 =

(

 
 

1 3 3 1 0
0 1 3 3 1
1 3 3 1 0
0 1 3 3 1
1 3 3 1 0)

 
 
, (𝐴 − 𝜆2𝐸)

4 =

(

 
 

1 4 6 4 1
1 4 6 4 1
1 4 6 4 1
1 4 6 4 1
1 4 6 4 1)

 
 

 

Вектор 𝑒5 должен занулять матрицу (𝐴 − 𝜆2𝐸)
4, но не занулять (𝐴 − 𝜆2𝐸)

3. Легко 

видеть, что в качестве 𝑒5 можно выбрать 

𝑒5 =

(

 
 

1
0
0
0
−1)

 
 

 

Вектор 𝑒4 – результат действия матрицы 𝐴 − 𝜆2𝐸 на 𝑒5: 

𝑒4 =

(

 
 

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 3 2 −2 −2)

 
 

(

 
 

1
0
0
0
−1)

 
 
=

(

 
 

1
0
0
−1
3 )

 
 

 

Вектор 𝑒3:  

𝑒3 = (𝐴 − 𝜆2𝐸)𝑒4 = (𝐴 − 𝜆2𝐸)
2𝑒5 =

(

 
 

1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 3 2 −1 −1
−1 −2 1 4 2 )

 
 

(

 
 

1
0
0
0
−1)

 
 
=

(

 
 

1
0
−1
2
−3)

 
 

 

Вектор 𝑒2:  

https://vk.com/teachinmsu
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𝑒2 = (𝐴 − 𝜆2𝐸)𝑒3 = (𝐴 − 𝜆2𝐸)
3𝑒5 =

(

 
 

1 3 3 1 0
0 1 3 3 1
1 3 3 1 0
0 1 3 3 1
1 3 3 1 0)

 
 

(

 
 

1
0
0
0
−1)

 
 
=

(

 
 

1
−1
1
−1
1 )

 
 

 

𝜆1 = 1: 

Вектор 𝑒1: 

𝐴 − 𝜆1𝐸 =

(

 
 

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
1 3 2 −2 −4)

 
 

 

Находим 𝑒1 из соотношения (𝐴 − 𝜆1𝐸) 𝑒1 = 0̅: 

(

 
 

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
1 3 2 −2 −4)

 
 
𝑒1 =

(

 
 

0
0
0
0
0)

 
 

 

В качестве 𝑒1 подойдет 

𝑒1 =

(

 
 

1
1
1
1
1)

 
 

 

Таким образом, мы построили жорданов базис, соответствующий жордановой форме 

матрицы. 

Ответ: жорданова форма 𝐽 =

(

 
 

1 0 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1)

 
 

, жорданов базис: 

𝑒1 =

(

 
 

1
1
1
1
1)

 
 

, 𝑒2 =

(

 
 

1
−1
1
−1
1 )

 
 

, 𝑒3 =

(

 
 

1
0
−1
2
−3)

 
 

, 𝑒4 =

(

 
 

1
0
0
−1
3 )

 
 

, 𝑒5 =

(

 
 

1
0
0
0
−1)

 
 

. 

https://vk.com/teachinmsu
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Задача. 𝐴 =

(

 
 
 
 
 

0 1 2 −2 2 2 −1 8
0 0 0 −2 1 0 −2 16
0 0 0 1 −1 −2 −1 −14
0 0 0 0 −1 −3 −2 −9
0 0 0 0 1 1 −1 2
0 0 0 0 0 1 1 3
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 )

 
 
 
 
 

. Найти жорданову форму и 

жорданов базис. 

Решение. 

Так как матрица 𝐴 диагональная, и на ее диагонали стоят четыре единицы и четыре 

нуля, то ее характеристический многочлен равен 

𝜒𝐴 (𝜆) = 𝜆4(𝜆 − 1)4 

Его корни 𝜆1 = 0, 𝜆2 = 1. 

𝜆1 = 0: 

В этом случае 𝐴 − 𝜆𝐸 = 𝐴, поэтому 𝑟𝑘(𝐴 − 𝜆𝐸) = 𝑟𝑘𝐴 = 6. 

Значит, 𝜆1 = 0 соответствует две жордановы клетки, осталось выяснить – это клетки 

размера 2 и 2, или 1 и 3. Для этого вычислим 𝑟𝑘𝐴2. 

𝐴2 =

(

 
 
 
 
 

0 0 0 0 3 6 −1 27
0 0 0 0 3 7 1 34
0 0 0 0 −2 −6 −4 −32
0 0 0 0 −1 −4 −4 −22
0 0 0 0 1 2 −1 6
0 0 0 0 0 1 2 7
0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 1 )

 
 
 
 
 

 

Получили 𝑟𝑘𝐴2 = 4. Таким образом, мы при возведении в квадрат занулили корневое 

подпространство, соответствующее 𝜆1 = 0. Значит, 𝜆1 = 0 соответствуют две клетки 

размера 2 × 2. Часть жордановой формы, соответствующая 𝜆1 = 0: 

(

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

) 

Найдем соответствующие собственные векторы – они должны занулять 𝐴2, но не 

занулять 𝐴. Это, например, 𝑒2 = (0, 1,0,0,0,0,0,0) и 𝑒4 = (0, 0,0,1,0,0,0,0). Отсюда 

получаем 𝑒1 и 𝑒3: 

𝑒1 = 𝐴𝑒2 = (1,0,0,0,0,0,0,0) 

https://vk.com/teachinmsu
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𝑒3 = 𝐴𝑒4 = (−2,−2,1,0,0,0,0,0) 

Вторая часть задачи – домашнее задание. 

  

https://vk.com/teachinmsu
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Семинар 9. Приложение жордановой формы – функции от матриц. 
Обсудим приложение жордановой формы – вычисление функции от матриц. Как 

пример рассмотрим возведение матрицы в степень. 

Допустим, нужно вычислить 𝐴100. Приведем 𝐴 к жордановой форме: 𝐽 = 𝐶−1𝐴𝐶. Тогда 

𝐴 = 𝐶𝐽𝐶−1 и 𝐴100 = (𝐶𝐽𝐶−1)(𝐶𝐽𝐶−1). . . (𝐶𝐽𝐶−1) = 𝐶𝐽100𝐶−1. 

Таким образом, достаточно возвести 𝐽 в сотую степень, а сделать это намного проще, 

чем возвести в степень произвольную матрицу. Так как жордановы клетки возводятся в 

степень независимо друг от друга, достаточно понять, как возводится в степень 

жорданова клетка. 

Пусть  

𝐽1 = (

𝜆 1 0 0
0 𝜆 1 0
0 0 𝜆 1
0 0 0 𝜆

) 

Тогда 

𝐽1
2 = (

𝜆 1 0 0
0 𝜆 1 0
0 0 𝜆 1
0 0 0 𝜆

)(

𝜆 1 0 0
0 𝜆 1 0
0 0 𝜆 1
0 0 0 𝜆

) = (

𝜆2 2𝜆 1 0
0 𝜆2 2𝜆 1
0 0 𝜆2 2𝜆
0 0 0 𝜆2

) 

Нетрудно сообразить, что при возведении в степень 𝑛 на главной диагонали будут 

стоять 𝜆𝑛, а справа от 𝜆𝑛 в каждой строке будут члены разложения (𝜆 + 1)𝑛. 

Задача 1206. Вычислить 𝐴101, где 𝐴 = (
−2 −3 −4
−1 0 0
1 1 1

). 

Решение. 

Вначале найдем жорданову форму матрицы 𝐴:  

|
−2 − 𝜆 −3 −4
−1 −𝜆 0
1 1 1 − 𝜆

| = −𝜆3 − 𝜆2 + 𝜆 + 1 = −(𝜆 − 1)(𝜆 + 1)2 

Получаем 𝜆1 = 1, 𝜆2,3 = −1. 

𝜆1 = 1: 

𝐴 − 𝜆1𝐸 = (
−3 −3 −4
−1 −1 0
1 1 0

) 

В качестве собственного вектора выберем 𝑒1 = (−1, 1, 0). 

https://vk.com/teachinmsu
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𝜆2 = −1: 

𝐴 − 𝜆2𝐸 = (
−1 −3 −4
−1 1 0
1 1 2

) 

𝑟𝑘(𝐴 − 𝜆2𝐸) = 2, значит, имеем одну жорданову клетку 2 × 2, соответствующую 

значению 𝜆2 = −1. Возведем 𝐴 − 𝜆2𝐸 в квадрат, и найдем вектор, который зануляет 

(𝐴 − 𝜆2𝐸)
2, но не зануляет 𝐴 − 𝜆2𝐸: 

(𝐴 − 𝜆2𝐸)
2 = (

−1 −3 −4
−1 1 0
1 1 2

)(
−1 −3 −4
−1 1 0
1 1 2

) = (
0 −4 −4
0 4 4
0 0 0

) 

Таким вектором будет 𝑒3 = (0,−1, 1). 

Тогда 𝑒2 = (𝐴 − 𝜆2𝐸)𝑒3 = (
−1 −3 −4
−1 1 0
1 1 2

)(
0
−1
1
) = (

−1
−1
1
) 

Таким образом,  

𝐽 = (
1 0 0
0 −1 1
0 0 −1

) 

Матрица перехода (по столбцам стоят 𝑒1, 𝑒2, 𝑒3): 

𝐶 = (
−1 −1 0
1 −1 −1
0 1 1

) 

Находим 𝐶−1: 

𝐶−1 = (
0 1 1
−1 1 1
1 1 2

) 

Найдем 𝐽101: 

𝐽101 = (
1 0 0
0 −1 101
0 0 −1

) 

Тогда 

𝐴101 = 𝐶𝐽101𝐶−1 = (
−1 −1 0
1 −1 −1
0 1 1

)(
1 0 0
0 −1 101
0 0 −1

)(
0 1 1
−1 1 1
1 1 2

) = 

(
−102 −103 −204
−101 −100 −200
101 101 201

) 

https://vk.com/teachinmsu
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Ответ: 𝐴101 = (
−102 −103 −204
−101 −100 −200
101 101 201

). 

Функции от матриц. 

Мы умеем складывать, вычитать, и умножать матрицы. Следовательно, мы умеем 

находить значение многочлена от матрицы. Но как вычислять другие функции от 

матриц? 

Оказывается, для матриц, как и для чисел, справедливо разложение функций в ряды, 

например, равенство 

𝑒𝑋 = 1 +
𝑋

1!
+
𝑋2

2!
+
𝑋3

3!
+ ⋯ 

справедливо и для матриц. 

Для того, чтобы научиться находить значение произвольной функции 𝑓(𝐴) от матрицы 

𝐴, нужно научиться находить значение функции от жордановой клетки. 

По определению,  

𝑓

(

 
 
(

𝜆 1 . . . 0
0 𝜆 . . . . . .
. . . . . . . . . 1
0 . . . . . . 𝜆

)

)

 
 
=

(

 
 
 
 
𝑓(𝜆)

𝑓′(𝜆)

1!
. . .

𝑓(𝑛)(𝜆)

𝑛!
0 𝑓(𝜆) . . . . . .

. . . . . . . . .
𝑓′(𝜆)

1!
0 . . . . . . 𝑓(𝜆) )

 
 
 
 

 

Тогда 

𝑓(𝐴) = 𝐶𝑓(𝐽)𝐶−1 

Где 𝐽 – жорданова форма матрицы 𝐴. 

Отметим, что не любую функцию можно взять от произвольной матрицы – должны 

быть определены функция и ее производные соответствующих порядков на всех 

собственных значениях матрицы (т.е. на спектре матрицы). 

Например, если у матрицы 𝐴 есть отрицательные собственные значения, то √𝐴 не 

определён.  

Задача 1207 п.2. Вычислить 𝑒𝐴, где: 

𝐴 = (
0 −1 −1
−1 −1 2
0 1 1

). 

Решение. 

https://vk.com/teachinmsu
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Вначале найдем жорданову форму матрицы 𝐴:  

|
−𝜆 −1 −1
−1 −1 − 𝜆 2
0 1 1 − 𝜆

| = −𝜆3 = 0 

Получаем 𝜆1,2,3 = 0. 

𝑟𝑘(𝐴 − 𝜆𝐸) = 𝑟𝑘𝐴 = 2 

Таким образом, собственному значению  𝜆1,2,3 = 0 соответствует одна жорданова 

клетка, и жорданова форма матрицы имеет вид 

𝐽 = (
0 1 0
0 0 1
0 0 0

) 

Тогда 

𝑒𝐽 =

(

 
 
𝑒0

𝑒0

1!

𝑒0

2!

0 𝑒0
𝑒0

1!
0 0 𝑒0)

 
 
= (

1 1 1/2
0 1 1
0 0 1

) 

Найдем жорданов базис: 

(𝐴 − 𝜆𝐸)2 = 𝐴2 = (
0 −1 −1
−1 −1 2
0 1 1

)(
0 −1 −1
−1 −1 2
0 1 1

) = (
1 0 1
1 0 1
−1 0 −1

) 

Тогда 𝑒3 = (
1
0
0
),  

𝑒2 = (𝐴 − 𝜆𝐸)𝑒3 = (
0 −1 −1
−1 −1 2
0 1 1

)(
1
0
0
) = (

0
−1
0
) 

𝑒1 = (𝐴 − 𝜆𝐸)𝑒2 = (
0 −1 −1
−1 −1 2
0 1 1

)(
0
−1
0
) = (

1
1
−1
) 

Получаем 

𝐶 = (
1 0 1
1 −1 0
−1 0 0

) 

Находим 𝐶−1: 
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𝐶−1 = (
0 0 −1
0 −1 −1
1 0 1

) 

Тогда 

𝑒𝐴 = 𝐶𝑒𝐽𝐶−1 = (

3/2 −1 −1/2
−1/2 0 −3/2
−1/2 1 3/2

) 

Ответ: 𝑒𝐴 = (

3/2 −1 −1/2
−1/2 0 −3/2
−1/2 1 3/2

). 

Есть и другой способ вычисления функции от матрицы. На самом деле, всякая функция 

от матрицы 𝐴𝑛×𝑛 – это многочлен от нее: 

𝑓(𝐴) = 𝑃(𝐴), причем 𝑑𝑒𝑔𝑃(𝐴) ≤ 𝑛 − 1 

Этот многочлен должен совпадать с 𝑓(𝐴) на спектре 𝐴. 

Пусть  

𝜆1 – корень характеристического многочлена кратности 𝑘1 

... 

𝜆𝑚 – корень характеристического многочлена кратности 𝑘𝑚 

Тогда должно выполняться 

𝑃(𝜆1) = 𝑓(𝜆1),  𝑃
′(𝜆1) = 𝑓′(𝜆1), ... , 𝑃

(𝑘1−1)(𝜆1) = 𝑓
(𝑘1−1)(𝜆1) 

... 

𝑃(𝜆𝑚) = 𝑓(𝜆𝑚),  𝑃
′(𝜆𝑚) = 𝑓′(𝜆𝑚), ... , 𝑃

(𝑘𝑚−1)(𝜆𝑚) = 𝑓(𝑘𝑚−1)(𝜆𝑚) 

В некоторых случаях этот подход гораздо удобнее, чем приведение матрицы к 

жордановой форме. 

Задача 1207 п.1. Вычислить 𝑒𝐴, где: 

𝐴 = (
0 −3
3 0

). 

Решение. 

Найдем собственные значения: 

|
−𝜆 −3
3 −𝜆

| = 𝜆2 + 9 = 0 

Получаем 𝜆1,2 = ±3ⅈ. 
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Ищем многочлен 1-ой степени 𝑃(𝑥) = 𝑎𝑥 + 𝑏, совпадающий с 𝑒𝐴 на спектре матрицы 

𝐴. 

Должно выполняться: 

𝑃(3ⅈ) = 𝑒3𝑖 

𝑃(−3ⅈ) = 𝑒−3𝑖 

Подставляя в 𝑃(𝑥), получаем систему 

{ 3𝑎ⅈ + 𝑏 = 𝑒3𝑖

−3𝑎ⅈ + 𝑏 = 𝑒−3𝑖
 

Откуда 

𝑎 =
𝑒3𝑖 − 𝑒−3𝑖

6ⅈ
=
1

3
sin 3 

𝑏 =
𝑒3𝑖 + 𝑒−3𝑖

2
= cos 3 

Тогда 

𝑃(𝐴) = 𝑎𝐴 + 𝑏𝐸 =
1

3
sin 3 (

0 −3
3 0

) + cos 3 (
1 0
0 1

) = (
cos 3 −sin 3
sin 3 cos 3

) 

Получили матрицу поворота. 

Ответ: 𝑒𝐴 = (
cos 3 −sin 3
sin 3 cos 3

). 

На самом деле, экспонента от кососимметрической матрицы всегда будет 

ортогональной матрицей. Это - частный случай экспоненциального отображения. 

  

https://vk.com/teachinmsu


 

 ЛИНЕЙНАЯ АЛГЕБРА. СЕМИНАРЫ   
 СМИРНОВ СЕРГЕЙ ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

57 

 
 

 

Семинар 10. Скалярное произведение. 
Введем на линейном пространстве дополнительную структуру – скалярное 

произведение. 

Определение. Скалярное произведение – функция от двух векторов, ставящая им в 

соответствие число (билинейная форма), и обладающая следующими свойствами (над 

полем ℝ): 

 Линейность: (𝛼𝑎1 + 𝛽𝑎2, 𝑏) = 𝛼(𝑎1, 𝑏) + 𝛽(𝑎2, 𝑏) 

 Симметричность: (𝑎, 𝑏) = (𝑏, 𝑎) для ∀𝑎, 𝑏 ∈ 𝐿 

 Положительная определенность: (𝑎, 𝑎) ≥ 0 для ∀𝑎 ∈ 𝐿, (𝑎, 𝑎) = 0 ⇔ 𝑎 = 0̅ 

Если мы рассматриваем линейное пространство над полем ℂ, говорят о т.н. 

полуторалинейной форме – она линейна по первому аргументу и антилинейна по 

второму (или наоборот – зависит от того, как мы определяем операцию), т.е. обладает 

следующими свойствами (над полем ℂ): 

 Линейность по первому аргументу: (𝛼𝑎1 + 𝛽𝑎2, 𝑏) = 𝛼(𝑎1, 𝑏) + 𝛽(𝑎2, 𝑏) 

 Эрмитовость: (𝑎, 𝑏) = (𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅ для ∀𝑎, 𝑏 ∈ 𝐿 

 Положительная определенность: (𝑎, 𝑎) ≥ 0 для ∀𝑎 ∈ 𝐿, (𝑎, 𝑎) = 0 ⇔ 𝑎 = 0̅ 

Скалярное произведение задает некую геометрию на линейном пространстве 𝐿 – введя 

его, можно придать смысл понятию длины вектора, угла между векторами и т.д. Если в 

аналитической геометрии скалярное произведение определялось через расстояние, то 

теперь мы действуем наоборот. 

Длину вектора (норму) можно определить как  

|𝑎| = √(𝑎, 𝑎) 

угол между векторами как 

𝑐𝑜𝑠 𝜑 =
(𝑎, 𝑏)

|𝑎||𝑏|
 

Задача 1273. Даны многочлены 𝑥2 и 𝑥4. Найти их длины и угол 𝜑 между ними в 

евклидовом пространстве многочленов степени не выше 4 со скалярным 

произведением  

(𝑓, 𝑔) = ∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

1

−1

 

Решение. 
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|𝑥2| = √(𝑥2, 𝑥2) = √ ∫𝑥4 𝑑𝑥

1

−1

= √
2

5
 

|𝑥4| = √(𝑥4, 𝑥4) = √ ∫𝑥8 𝑑𝑥

1

−1

=
√2

3
 

𝑐𝑜𝑠 𝜑 =
(𝑥2, 𝑥4)

|𝑥2||𝑥4|
=
∫ 𝑥6 𝑑𝑥
1

−1

|𝑥2||𝑥4|
=
3√5

7
 

Откуда 𝜑 = 𝑎𝑟𝑐𝑐𝑜𝑠
3√5

7
. 

Ответ: |𝑥2| = √
2

5
, |𝑥4| =

√2

3
, 𝜑 = 𝑎𝑟𝑐𝑐𝑜𝑠

3√5

7
. 

Обратите внимание, что условие |𝑐𝑜𝑠 𝜑| ≤ 1 выполняется всегда (это следует из 

неравенства Коши-Буняковского). 

Если ввести в линейном пространстве другое скалярное произведение, мы получим 

другие значения длин векторов и углов между ними. Однако, в конечномерных 

пространствах все нормы эквивалентны между собой (см. определение 

эквивалентности норм), поэтому принципиально новой геометрии мы не получим. 

Задача 1271 п.2. Найти длину вектора (1, 1 + ⅈ, 1 − ⅈ) в эрмитовом пространстве ℂ3. 

Решение. 

Если скалярное произведение явно не задано, имеется в виду стандартное скалярное 

произведение в эрмитовом пространстве: 

|𝑥| = √(𝑥, 𝑥) = √𝑥1 ⋅ 𝑥1̅̅̅ + 𝑥2 ⋅ 𝑥2̅̅ ̅ + 𝑥3 ⋅ 𝑥3̅̅ ̅ 

Получаем 

|(1, 1 + ⅈ, 1 − ⅈ)| = √1 + (1 + ⅈ)(1 − ⅈ) + (1 − ⅈ)(1 + ⅈ) = √5 

Ответ: √5. 

Если в линейном пространстве задано скалярное произведение, возникает матрица 

Грама – матрица, состоящая из скалярных произведений базисных векторов: пусть 

𝑒1, … , 𝑒𝑛 – базис 𝑉, тогда матрица Грама 𝐺 = (𝑔𝑖𝑗), где 𝑔𝑖𝑗 = (𝑒𝑖, 𝑒𝑗). 

Тогда скалярное произведение векторов (в случае поля ℝ) 𝑥 = 𝑥𝑖𝑒𝑖 и 𝑦 = 𝑦𝑗𝑒𝑗 равно 

(𝑥, 𝑦) = 𝑥𝑖𝑦𝑗𝑔𝑖𝑗 
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В матричной форме: 

(𝑥, 𝑦) = (𝑥1, … , 𝑥𝑛)𝐺 (
𝑦1

. . .
𝑦𝑛
) 

В случае поля ℂ: 

(𝑥, 𝑦) = 𝑥̅𝑖𝑦𝑗𝑔𝑖𝑗 

В матричной форме: 

(𝑥, 𝑦) = (𝑥1, … , 𝑥𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐺 (
𝑦1

. . .
𝑦𝑛
) 

В случае стандартного скалярного произведения 𝐺 = 𝐸: 

 в вещественном случае (𝑥, 𝑦) = (𝑥1, … , 𝑥𝑛)𝐸 (
𝑦1

. . .
𝑦𝑛
) = 𝑥1𝑦1 +⋯+ 𝑥𝑛𝑦𝑛 

 в комплексном случае (𝑥, 𝑦) = (𝑥1, … , 𝑥𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐸 (
𝑦1

. . .
𝑦𝑛
) = 𝑥1̅̅ ̅𝑦1 +⋯+ 𝑥𝑛̅̅̅̅ 𝑦𝑛 

Процесс ортогонализации Грама-Шмидта. 

Из всякого базиса линейного пространства можно получить ортогональный, сохраняя 

на каждом шаге линейную оболочку. Пусть 𝑎1, … , 𝑎𝑛 – базис 𝑉. Хотим построить 

ортогональный базис 𝑒1, … , 𝑒𝑛 так, чтобы  

⟨𝑎1, … , 𝑎𝑘⟩ = ⟨𝑒1, … , 𝑒𝑘⟩  ∀𝑘 

В качестве 𝑒1 выбираем 𝑎1. 

Далее строим 𝑒2: 

𝑒2 = 𝑎2 + 𝛼21𝑒1 

Нужно подобрать коэффициент 𝛼21 таким образом, чтобы вектора 𝑒1 и 𝑒2 были 

ортогональны: 

0 = (𝑒1, 𝑒2) = (𝑎1, 𝑎2 + 𝛼21𝑒1) = (𝑎2, 𝑒1) + 𝛼21(𝑎1, 𝑒1) 

Значит,  

𝛼21 = −
(𝑎2, 𝑒1)

(𝑒1, 𝑒1)
 

Таким образом, 

https://vk.com/teachinmsu


 

 ЛИНЕЙНАЯ АЛГЕБРА. СЕМИНАРЫ   
 СМИРНОВ СЕРГЕЙ ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

60 

 
 

 

𝑒2 = 𝑎2 −
(𝑎2, 𝑒1)

(𝑒1, 𝑒1)
𝑒1 

Рассуждая аналогично, можно получить выражение для 𝑒3. Пусть 

𝑒3 = 𝑎3 + 𝛼32𝑒2 + 𝛼31𝑒1 

Домножим скалярно это равенство на 𝑒1, получим  

𝛼31 = −
(𝑎3, 𝑒1)

(𝑒1, 𝑒1)
 

Домножим скалярно это равенство на 𝑒2, получим  

𝛼32 = −
(𝑎3, 𝑒2)

(𝑒2, 𝑒2)
 

Таким образом,  

𝑒3 = 𝑎3 −
(𝑎3, 𝑒2)

(𝑒2, 𝑒2)
𝑒2 −

(𝑎3, 𝑒1)

(𝑒1, 𝑒1)
𝑒1 

Рассуждая аналогично, можем получить выражение для всех векторов 𝑒1, … , 𝑒𝑛. 

Обратите внимание, что процесс ортогонализации Грама-Шмидта корректен – на 

каждом шаге мы получаем ненулевой вектор 𝑒𝑘 (иначе это бы означало линейную 

зависимость базисных векторов 𝑒1, … , 𝑒𝑘−1). 

Для получения ортонормированного базиса нужно после процесса ортогонализации 

Грама-Шмидта каждый вектор разделить на его норму. 

Задача 1291. Относительно евклидова скалярного произведения (𝐴, 𝐵) = 𝑡𝑟(𝐴𝑇𝐵) =

∑ 𝑎𝑖𝑗𝑏𝑖𝑗
𝑛

𝑖,𝑗=1
. проверить ортогональность следующей системы матриц: 

(
1 1
0 1

) , (
1 0
1 −1

) 

и дополнить ее до ортонормированного базиса всего пространства вещественных 

квадратных матриц второго порядка. 

Решение. 

Легко понять, почему скалярное произведение определено корректно: это – 

стандартное скалярное произведение в ℝ𝑛
2
, если рассматривать матрицу как вектор 

длины 𝑛2. 

Пусть (
1 1
0 1

) = 𝑒1, (
1 0
1 −1

) = 𝑒2 

Проверим, что данные матрицы ортогональны: 
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𝑡𝑟 ((
1 0
1 1

) (
1 0
1 −1

)) = 0 

Дополним до ортонормированного базиса. Вначале добавим две матрицы, в 

совокупности с 𝑒1 и 𝑒2 образующие базис всего пространства, потом ортогонализуем 

получившуюся систему. 

Заведомо подойдут матрицы 

𝑎3 = (
0 0
1 0

)  и 𝑎4 = (
0 1
0 0

) 

Ортогонализуем систему: 

𝑒3 = 𝑎3 + 𝛼32𝑒2 + 𝛼31𝑒1 

𝛼31 = −
(𝑎3, 𝑒1)

(𝑒1, 𝑒1)
= −

𝑡𝑟(𝑎3
𝑇𝑒1)

𝑡𝑟(𝑒1𝑇𝑒1)
= 0 

𝛼32 = −
(𝑎3, 𝑒2)

(𝑒2, 𝑒2)
= −

𝑡𝑟(𝑎3
𝑇𝑒2)

𝑡𝑟(𝑒2𝑇𝑒2)
= −

1

3
 

Получаем 

𝑒3 = 𝑎3 −
1

3
𝑒2 = (

0 0
1 0

) −
1

3
(
1 0
1 −1

) = (
−1/3 0
2/3 1/3

) 

Для удобства вычислений возьмем  

𝑒3̃ = 3𝑒3 = (
−1 0
2 1

) 

Найдем 𝑒4: 

𝑒4 = 𝑎4 + 𝛼43𝑒3 + 𝛼42𝑒2 + 𝛼41𝑒1 

𝛼43 = −
(𝑎4, 𝑒3)

(𝑒3, 𝑒3)
= −

𝑡𝑟(𝑎4
𝑇𝑒3)

𝑡𝑟(𝑒3𝑇𝑒3)
= 0 

𝛼42 = −
(𝑎4, 𝑒2)

(𝑒2, 𝑒2)
= −

𝑡𝑟(𝑎4
𝑇𝑒2)

𝑡𝑟(𝑒2𝑇𝑒2)
= 0 

𝛼41 = −
(𝑎4, 𝑒1)

(𝑒1, 𝑒1)
= −

𝑡𝑟(𝑎4
𝑇𝑒1)

𝑡𝑟(𝑒1𝑇𝑒1)
= −

1

3
 

Получаем 

𝑒4 = 𝑎4 −
1

3
𝑒1 = (

0 1
0 0

) −
1

3
(
1 1
0 1

) = (
−1/3 2/3
0 −1/3

) 

Для удобства вычислений возьмем  

https://vk.com/teachinmsu
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𝑒4̃ = 3𝑒4 = (
−1 2
0 −1

) 

Нормируем базисные вектора: 

𝑒1̃̃ =
𝑒1
|𝑒1|

= (
1/√3 1/√3

0 1/√3
) , 𝑒2̃̃ =

𝑒2
|𝑒2|

= (
1/√3 0

1/√3 −1/√3
) 

𝑒3̃̃ =
𝑒3̃
|𝑒3̃|

= (
−1/√6 0

2/√6 1/√6
) , 𝑒4̃̃ =

𝑒4̃
|𝑒4̃|

= (
−1/√6 2/√6

0 −1/√6
) 

Ответ:  

𝑒1̃̃ = (
1/√3 1/√3

0 1/√3
) , 𝑒2̃̃ = (

1/√3 0

1/√3 −1/√3
), 

𝑒3̃̃ = (
−1/√6 0

2/√6 1/√6
) , 𝑒4̃̃ = (

−1/√6 2/√6

0 −1/√6
). 

Задача 1296 п.1. Методом ортогонализации Грама-Шмидта построить ортогональный 

базис подпространства пространства многочленов, порожденного многочленами  

𝑎1 = 𝑥3, 𝑎2 = 𝑥4, 𝑎3 = 𝑥
5, 𝑎4 = 𝑥

6 со скалярным произведением 

(𝑓, 𝑔) = ∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

1

−1

 

Решение. 

𝑒1 = 𝑎1 = 𝑥3  

Так как 𝑎1 – нечётный многочлен, 𝑎2 – чётный многочлен, то (𝑎1 , 𝑎2 ) = 0, и можно 

взять  

𝑒2 = 𝑎2 = 𝑥
4. 

𝑒3 = 𝑎3 −
(𝑎3, 𝑒2)

(𝑒2, 𝑒2)
𝑒2 −

(𝑎3, 𝑒1)

(𝑒1, 𝑒1)
𝑒1 = 𝑎3 −

(𝑎3, 𝑒1)

(𝑒1, 𝑒1)
𝑒1 = 𝑥

5 −

𝑥9

9 |
−1

1

𝑥7

7 |
−1

1 𝑥3 = 𝑥5 −
7

9
𝑥3 

𝑒4 = 𝑎4 −
(𝑎4, 𝑒3)

(𝑒3, 𝑒3)
𝑒3 −

(𝑎4, 𝑒2)

(𝑒2, 𝑒2)
𝑒2 −

(𝑎4, 𝑒1)

(𝑒1, 𝑒1)
𝑒1 = 𝑎4 −

(𝑎4, 𝑒2)

(𝑒2, 𝑒2)
𝑒2 = 𝑥6 −

𝑥11

11 |
−1

1

𝑥9

9 |
−1

1 𝑥4 = 

𝑥6 −
9

11
𝑥4 

https://vk.com/teachinmsu
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Ответ: 𝑒1 = 𝑥3, 𝑒2 = 𝑥
4, 𝑒3 = 𝑥5 −

7

9
𝑥3,  𝑒4 = 𝑥

6 −
9

11
𝑥4.  

  

https://vk.com/teachinmsu
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Семинар 11. Представление матрицы в виде произведения. 

Представление невырожденной матрицы 𝐴 в виде произведения ортогональной и 

верхнетреугольной. 

Еще одно приложение процесса ортогонализации Грама-Шмидта – представление 

невырожденной матрицы 𝐴 в виде произведения ортогональной и верхнетреугольной. 

Можно интерпретировать 𝐴 как матрицу перехода от стандартного базиса 𝑒1, … , 𝑒𝑛 к 

базису 𝑎1, … , 𝑎𝑛, координаты векторов которого в стандартном базисе записаны по 

столбцам матрицы 𝐴. 

Базис 𝑒1, … , 𝑒𝑛 – ортонормированный относительно стандартного скалярного 

произведения, к базису 𝑎1, … , 𝑎𝑛 применяем процесс ортогонализации Грама-Шмидта и 

нормируем. 

При этом матрица перехода 𝑅 от базиса 𝑎1, … , 𝑎𝑛 к ортогональному базису будет 

верхнетреугольной (следует из вида процесса ортогонализации Грама-Шмидта). После 

ортогонализации и нормирования из векторов 𝑎1, … , 𝑎𝑛 получаем вектора 𝑒1
′ , … , 𝑒𝑛

′ . 

Тогда переход от 𝑒1, … , 𝑒𝑛 к 𝑒1
′ , … , 𝑒𝑛

′  будет осуществляться с помощью ортогональной 

матрицы 𝑈 (так как оба базиса ортогональны). 

Таким образом, 𝐴𝑅 = 𝑈, откуда 𝐴 = 𝑈𝑅−1. Так как 𝑅 верхнетреугольная, то и 𝑅−1 

верхнетреугольная – мы получили искомое разложение. 

Задача 1309. Представить матрицу 𝐴 = (
1 −1 5
−2 0 −3
2 −1 −7

) в виде произведения 

ортогональной матрицы 𝑈 на верхнетреугольную 𝑅.  

Решение. 

Базис: 𝑎1 = (1,−2, 2), 𝑎2 = (−1, 0, −1), 𝑎3 = (5,−3,−7). Применим к нему процесс 

ортогонализации Грама-Шмидта.  

𝑒1
′ = 𝑎1 = (1,−2, 2)  

𝑒2
′ = 𝑎2 −

(𝑎2,𝑒1
′)

(𝑒1
′ ,𝑒1

′)
𝑒1
′ = 𝑎2 +

1

3
𝑒1
′ = (−1, 0, −1) +

1

3
(1, −2, 2) = (−

2

3
, −

2

3
, −

1

3
)   

Для удобства вычислений возьмем 𝑒2
′̃ = −3𝑒2

′ = (2, 2, 1) 

𝑒3
′ = 𝑎3 −

(𝑎3,𝑒2
′̃)

(𝑒2
′̃ ,𝑒2

′̃)
𝑒2
′̃ −

(𝑎3,𝑒1
′)

(𝑒1
′ ,𝑒1

′)
𝑒1
′ = 𝑎3 +

1

3
𝑒2
′̃ +

1

3
𝑒1
′ = 𝑎3 − 𝑒2

′ +
1

3
𝑒1
′ =  

= (5, −3,−7) − (−
2

3
, −

2

3
, −

1

3
) +

1

3
(1, −2, 2) = (6,−3,−6)    

Теперь нормируем полученные вектора: 

https://vk.com/teachinmsu
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𝑒1
∗ = (

1

3
,−
2

3
,−
2

3
) 

𝑒2
∗ = (

2

3
,
2

3
,
1

3
) 

𝑒3
∗ = (

2

3
,
1

3
,
2

3
) 

Тогда  

𝑈 = (

1/3 2/3 2/3
−2/3 2/3 1/3
−2/3 1/3 2/3

) 

Теперь находим 𝑅: 

𝑒1
∗ =

1

3
𝑎1 

𝑒2
∗ = −𝑎2 −

1

3
𝑎1 

𝑒3
∗ = 𝑎3 − 𝑒2

′ +
1

3
𝑒1
′ =

1

9
𝑎3 −

1

9
𝑎2 

Тогда 

𝑅 = (

1/3 −1/3 0
0 −1 −1/9
0 0 1/9

) 

Методом присоединенной матрицы находим 𝑅−1: 

𝑅−1 = (
3 −1 −1
0 −1 −1
0 0 9

) 

Окончательно получаем  

𝐴 = 𝑈𝑅−1 = (

1/3 2/3 2/3
−2/3 2/3 1/3
−2/3 1/3 2/3

)(
3 −1 −1
0 −1 −1
0 0 9

) 

Ответ: (
1 −1 5
−2 0 −3
2 −1 −7

) = (

1/3 2/3 2/3
−2/3 2/3 1/3
−2/3 1/3 2/3

)(
3 −1 −1
0 −1 −1
0 0 9

). 

Объем 𝑛-мерного параллелепипеда  

Важный смысл матрицы Грама: объем параллелепипеда, натянутого на базисные 

вектора, равен корню из определителя матрицы Грама (доказательство аналогично 

трехмерному случаю): 

https://vk.com/teachinmsu
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𝑉𝛱𝑛 = √𝑑𝑒𝑡 𝐺 

𝛱𝑛 ⊂ ℝ𝑛 – 𝑛-мерный параллелепипед в ℝ𝑛: 

Пусть 𝑎1, … , 𝑎𝑛 – базис. Тогда  

𝑉 = 𝑥1𝑎1 +⋯+ 𝑥𝑛𝑎𝑛,    0 ≤ 𝑥𝑖 ≤ 1 

- параллелепипед, натянутый на вектора 𝑎1, … , 𝑎𝑛. 

Определим объем параллелепипеда: 

Пусть 𝑈 ⊂ 𝑉 – подпространство. Тогда ортогональное дополнение 𝑈: 

𝑈⊥ = {𝑣 ∈ 𝑉: (𝑢, 𝑣) = 0 ∀𝑢 ∈ 𝑈} 

При этом 

𝑉 = 𝑈⊕𝑈⊥ 

Расстояние от вектора до подпространства 

Определим расстояние от вектора 𝑣 до подпространства. 

Любой вектор 𝑣 ∈ 𝑉 единственным образом можно представить в виде: 

𝑣 = 𝑣‖ + 𝑣⊥, где 𝑣‖ ∈ 𝑈, 𝑣⊥ ∈ 𝑈⊥ 

Тогда расстояние от 𝑣 до 𝑈 равно длине (норме) вектора 𝑣⊥. 

Тогда объем параллелепипеда определяется индуктивно: 

Объем одномерного параллелепипеда – длина вектора. Объем (𝑛 + 1)-мерного 

параллелепипеда равен объему 𝑛-мерного параллелепипеда, натянутого на первые 𝑛 

векторов, умноженного на расстояние от (𝑛 + 1)-го вектора до подпространства, 

натянутого на первые 𝑛 векторов. 

Определенный таким образом объем и равен √𝑑𝑒𝑡 𝐺. 

Задача 1346 п.1. Найти базис ортогонального дополнения 𝐿⊥ подпространства 𝐿, 

натянутого на векторы: 𝑎1 = (1, 2, 0, −1), 𝑎2 = (0,−1, 1, 3), 𝑎3 = (3, 4, 2, 3). 

Решение. 

Так как векторы в ортогональном дополнении будут ортогональны каждому из 

векторов 𝑎1, 𝑎2, 𝑎3, ищем их как решение системы линейных уравнений, коэффициенты 

которой – коэффициенты соответствующих векторов (записываем 𝑎1, 𝑎2, 𝑎3 по 

строкам): 

(
1 2 0 −1
0 −1 1 3
3 4 2 3

)~(
1 2 0 −1
0 −1 1 3
0 −2 2 6

)~(
1 0 2 5
0 1 −1 −3
0 0 0 0

) 

https://vk.com/teachinmsu
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ФСР: (−2, 1, 1, 0), (−5, 3, 0, 1) – эти векторы и будут базисом в ортогональном 

дополнении. 

Ответ: (−2, 1, 1,0), (−5, 3, 0,1). 

Задача 1350. Найти ортогональную проекцию и ортогональную составляющую вектора 

при проекции на подпространство: 

𝑥 = (9, 1, 3, −1), 𝐿 = ⟨(3, 0, 4,1), (1, 1, 1, −1), (3, −3, 5, 5)⟩ 

Решение. 

Вначале найдем базис 𝐿⊥: 

(
1 1 1 −1
3 0 4 1
3 −3 5 5

)~(
1 1 1 −1
0 −3 1 4
0 0 0 0

) 

ФСР: (−1, 4, 0, 3), (−4, 1, 3, 0) – базис 𝐿⊥. 

Так как 𝑉 = 𝐿⊕ 𝐿⊥, составим базис пространства 𝑉 из векторов базиса 𝐿 (берем любые 

два линейно независимых вектора из линейной оболочки 𝐿) и базиса 𝐿⊥. Найдем 

координаты вектора 𝑥 в этом базисе: 

(

1 3 −1 −4 | 9
1 0 4 1 | 1
1 4 0 3 | 3
−1 1 3 0 | −1

)~(

1 3 −1 −4 | 9
0 −3 5 5 | −8
0 1 1 7 | −6
0 4 2 −4 | 8

)~(

1 3 −1 −4 | 9
0 1 1 7 | −6
0 0 4 13 | −13
0 0 1 16 | −16

)~ 

(

1 3 −1 −4 | 9
0 1 1 7 | −6
0 0 1 16 | −16
0 0 0 1 | −1

)~(

1 3 0 0 | 5
0 1 0 0 | 1
0 0 1 0 | 0
0 0 0 1 | −1

)~(

1 0 0 0 | 2
0 1 0 0 | 1
0 0 1 0 | 0
0 0 0 1 | −1

) 

Как упоминалось ранее, при элементарных преобразованиях строк соотношения между 

столбцами не меняются, поэтому  

𝑥 = (

9
1
3
−1

) = 2(

1
1
1
−1

) + (

3
0
4
1

) − (

−4
1
3
0

) 

Таким образом, мы представили вектор 𝑥 в виде 𝑥 = 𝑣‖ + 𝑣⊥, где 𝑣‖ ∈ 𝐿, 𝑣⊥ ∈ 𝐿⊥.  

𝑣‖ = 2(1, 1, 1, −1) + (3, 0, 4, 1) = (5, 2, 6, −1) – ортогональная проекция на 𝐿. 

𝑣⊥ = (4,−1,−3, 0) – ортогональная составляющая при проекции на 𝐿. 

Ответ: (5, 2, 6, −1) – ортогональная проекция на 𝐿, (4, −1,−3, 0) – ортогональная 

составляющая при проекции на 𝐿. 

https://vk.com/teachinmsu
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Замечание: в задаче 1350 ортогональное дополнение получилось двумерным. В случае 

одномерного ортогонального дополнения: 𝐿⊥ = ⟨𝑎⟩ ортогональная проекция вектора 

𝑣 на ⟨𝑎⟩ равна:  

𝑣⊥ =
(𝑎, 𝑣)

(𝑎, 𝑎)
𝑎 

  

https://vk.com/teachinmsu
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Семинар 12. Проектирование вектора на подпространство. 
Пусть 𝑈 ⊂ 𝑉 – подпространство, 𝑎1, … , 𝑎𝑘 – базис 𝑈. Есть еще один способ представить 

произвольный вектор 𝑣 ∈ 𝑉 в виде: 

𝑣 = 𝑣‖ + 𝑣⊥, где 𝑣‖ ∈ 𝑈, 𝑣⊥ ∈ 𝑈⊥. 

Пусть 𝑣‖ = 𝛼1𝑎1 +⋯+ 𝛼𝑘𝑎𝑘. Домножим скалярно это равенство поочередно на 

вектора из базиса 𝑎1, … , 𝑎𝑘, получим: 

(𝑣‖, 𝑎1) = 𝛼1(𝑎1, 𝑎1) + ⋯+ 𝛼𝑘(𝑎𝑘, 𝑎1) 

⋯ 

(𝑣‖, 𝑎𝑘) = 𝛼1(𝑎1, 𝑎𝑘) + ⋯+ 𝛼𝑘(𝑎𝑘, 𝑎𝑘) 

Так как 𝑣 = 𝑣‖ + 𝑣⊥ и (𝑣⊥, 𝑎𝑖) = 0 для ∀ⅈ, то (𝑣‖, 𝑎𝑖) = (𝑣, 𝑎𝑖) для ∀ⅈ. Таким образом, 

получилась система линейных уравнений на коэффициенты 𝛼1, … , 𝛼𝑘, причем матрица 

этой системы – матрица Грама векторов 𝑎1, … , 𝑎𝑘: 

𝐺(𝑎1, … , 𝑎𝑘) (

𝛼1
. . .
𝑎𝑘
) = (

(𝑣1, 𝑎1)
. . .

(𝑣𝑘, 𝑎𝑘)
) 

Таким образом, для нахождения 𝛼1, … , 𝛼𝑘 достаточно найти 𝐺−1(𝑎1, … , 𝑎𝑘): 

(

𝛼1
. . .
𝑎𝑘
) = 𝐺−1 (

(𝑣1, 𝑎1)
. . .

(𝑣𝑘 , 𝑎𝑘)
) 

Если 𝑒1, ⋯ , 𝑒𝑘 – ортогональный базис, то матрица 𝐺 будет диагональной, и: 

𝛼𝑖 =
(𝑣, 𝑎𝑖)

(𝑎𝑖, 𝑎𝑖)
 (коэффициенты Фурье) 

Соответственно, если 𝑒1,⋯ , 𝑒𝑘 – ортонормированный базис, то 

𝛼𝑖 = (𝑣, 𝑎𝑖) 

Задача 1354. Найти расстояние между 𝑣 и 𝐿, где 

𝑣 = (7, 1, 1, 1), 𝐿 = ⟨(1, 0, 1, 2), (3, −1, −1,−4)⟩ 

Решение. 

Спроектируем 𝑣 на 𝐿. Составим матрицу Грама базисных векторов подпространства 𝐿: 

𝑎1 = (1, 0, 1, 2), 𝑎2 = (3,−1,−1, −4) 

𝐺 = (
(𝑎1, 𝑎1) (𝑎1, 𝑎2)

(𝑎2, 𝑎1) (𝑎2, 𝑎2)
) = (

6 −6
−6 27

) 

https://vk.com/teachinmsu
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Теперь найдем скалярные произведения 𝑣 и базисных векторов 𝐿: 

(𝑣, 𝑎1) = 10 

(𝑣, 𝑎2) = 15 

Найдем 𝐺−1 (для матрицы 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) верна формула 𝐴−1 =
1

det𝐴
(
𝑑 −𝑐
−𝑏 𝑎

)): 

𝐺−1 =
1

126
(
27 6
6 6

) =
1

42
(
9 2
2 2

) 

Тогда  

(
𝛼1
𝛼2
) =

1

42
(
9 2
2 2

) (
10
15
) =

1

21
(
60
25
) 

Таким образом,  

𝑣‖ =
60

21
𝑎1 +

25

21
𝑎2 

Тогда проекция 𝑣 на 𝐿 равна 

𝑣⊥ = 𝑣 − 𝑣‖ = 𝑣 −
60

21
𝑎1 −

25

21
𝑎2 =

1

21
(12, 46,−14, 1) 

Тогда  

|𝑣⊥| =
1

21
√122 + 462 + 142 + 12 =

1

7
√819 

Ответ: 
1

7
√819. 

Задача 1355 п.1. Найти расстояние между 𝑣 и 𝐿, где 

𝑣 = (−1, 3, −3, 5), 𝐿: {
𝑥 + 2𝑦 + 𝑧 + 𝑡 = 0     
5𝑥 − 2𝑦 + 𝑧 − 9𝑡 = 0

 

Решение. 

Коэффициенты системы уравнений – базисные векторы 𝐿⊥:  

𝑎1 = (1, 2, 1, 1), 𝑎2 = (5,−2, 1, −9) 

Тогда матрица Грама базисных векторов 𝐿⊥: 

𝐺 = (
(𝑎1, 𝑎1) (𝑎1, 𝑎2)

(𝑎2, 𝑎1) (𝑎2, 𝑎2)
) = (

7 −7
−7 111

) 

Теперь найдем скалярные произведения 𝑣 и базисных векторов 𝐿⊥: 

(𝑣, 𝑎1) = 7 

https://vk.com/teachinmsu
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(𝑣, 𝑎2) = −59 

Найдем 𝐺−1: 

𝐺−1 =
1

728
(
111 7
7 7

) 

Тогда  

(
𝛼1
𝛼2
) =

1

728
(
111 7
7 7

) (
7
−59

) =
1

2
(
1
−1
) 

Тогда 

𝑣⊥ =
1

2
𝑎1 −

1

2
𝑎2 = (−2, 2, 0, 5) 

Расстояние между 𝑣 и 𝐿:  

|𝑣⊥| = √22 + 22 + 52 = √33 

Ответ: √33. 

Угол между вектором и подпространством – это угол между вектором и его проекцией 

на это подпространство.  

Задача 1358 п.4. Найти угол между вектором 𝑥 и подпространством 𝐿, если 

𝑥 = (3, 1, 1, 1), 𝐿 = ⟨(1, 1, −1, 2), (1, −1, 0,1), (1, −1, 0, −3)⟩ 

Решение. 

Вначале выясним размерность 𝐿: 

(
1 1 −1 2
1 −1 0 1
1 −1 0 −3

)~(
1 1 −1 2
0 −2 1 −1
0 −2 1 −5

) 

Ранг равен 3, поэтому 𝑑ⅈ𝑚 𝐿 = 3 и 𝑑ⅈ𝑚 𝐿⊥ = 1 – удобнее проектировать на 𝐿⊥. Сразу 

можно сказать, что 𝑣⊥ = (1, 1, 2, 0) – базис 𝐿⊥ (это – ФСР системы уравнений, 

задаваемой матрицей из векторов, составляющих базис в 𝐿, приведенной выше). 

Теперь найдем проекцию 𝑥 на 𝐿⊥: 

𝛼 =
(𝑣⊥, 𝑥)

(𝑣⊥, 𝑣⊥)
= 1 

Таким образом, ортогональная составляющая 𝑥 равна: 

𝑥⊥ = 𝑣⊥ = (1, 1, 2, 0) 

Тогда (из геометрических соображений) угол 𝜑 между 𝑥 и 𝐿 равен: 

https://vk.com/teachinmsu
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𝜑 = 𝑎𝑟𝑐 sin
|𝑣⊥|

|𝑥|
= 𝑎𝑟𝑐 sin

1

2
=
𝜋

6
. 

Ответ: 
𝜋

6
. 

Еще один способ вычисления расстояния от вектора 𝑣 до подпространства 𝑈: пусть 

𝑎1, … , 𝑎𝑛 – базис 𝑈. Тогда расстояние 𝑑(𝑣, 𝑈) можно вычислить, разделив объем 

параллелепипеда, натянутого на вектора 𝑎1, … , 𝑎𝑛, 𝑣 на площадь основания этого 

параллелепипеда, то есть, на параллелограмм, натянутый на вектора 𝑎1, … , 𝑎𝑛: 

𝑑(𝑣, 𝑈) = √
det 𝐺(𝑎1, … , 𝑎𝑛, 𝑣)

det 𝐺(𝑎1, … , 𝑎𝑛)
 

Теперь поговорим немного об аффинных пространствах. Если в ассоциированном 

линейном пространстве ввести скалярное произведение, тогда в аффинном 

пространстве естественным образом появляется расстояние между точками (длина 

вектора, их соединяющего), углы в треугольнике (угол между соответствующими 

векторами) и т.д. 

Задача 1366. Найти длину и основание перпендикуляра, опущенного из точки 𝑀 на 

плоскость 𝐴𝐵𝐶, где  

𝑀(5, 1, 0, 8), 𝐴(1, 2, 3, 4), 𝐵(2, 3, 4, 5), 𝐶(2, 2, 3, 7) 

Решение. 

Вектора 𝐴𝐵(1, 1, 1, 1) и 𝐴𝐶(1, 0, 0, 3) составляют базис в плоскости 𝐴𝐵𝐶. Найдем 

проекцию вектора, соединяющего точку 𝑀 и какую-либо точку плоскости 𝐴𝐵𝐶 

(например, точку 𝐶): 𝐶𝑀(3,−1,−3, 1) 

Матрица Грама базисных векторов плоскости 𝐴𝐵𝐶: 

𝐺 = (
(𝐴𝐵, 𝐴𝐵) (𝐴𝐵, 𝐴𝐶)
(𝐴𝐶, 𝐴𝐵) (𝐴𝐶, 𝐴𝐶)

) = (
4 4
4 10

) 

Теперь найдем скалярные произведения 𝐶𝑀 и 𝐴𝐵, 𝐶𝑀 и 𝐴𝐶: 

(𝐶𝑀, 𝐴𝐵) = 0 

(𝐶𝑀, 𝐴𝐶) = 6 

Найдем 𝐺−1: 

𝐺−1 =
1

12
(
5 −2
−2 2

) 

Тогда  

https://vk.com/teachinmsu
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(
𝛼1
𝛼2
) =

1

12
(
5 −2
−2 2

) (
0
6
) =

1

2
(
−1
1
) 

Получаем 

𝐶𝑀‖ = 𝐴𝐶 − 𝐴𝐵 = (0,−1,−1, 2) 

Тогда 

𝐶𝑀⊥ = 𝐶𝑀 − 𝐶𝑀‖ = (3, 0, −2,−1) 

Длина перпендикуляра, опущенного из точки 𝑀 на плоскость 𝐴𝐵𝐶: 

|𝐶𝑀⊥| = √32 + 22 + 12 = √14 

Основание перпендикуляра, опущенного из точки 𝑀 на плоскость 𝐴𝐵𝐶: 

𝑀 − 𝐶𝑀⊥ = (5, 1, 0, 8) − (3, 0, −2,−1) = (2, 1, 2, 9) 

Ответ: длина перпендикуляра √14, основание перпендикуляра (2, 1, 2, 9). 

Задача 1368. Найти угол 𝜑 между прямой 𝑥1 = 𝑥2 + 2𝑥3 − 2𝑥4 и плоскостью 

{3𝑥
1 − 2𝑥2 + 𝑥4 = 1

𝑥2 + 𝑥3 = −1           
 

Решение. 

Прямая задается уравнением 𝑥1 − 𝑥2 − 2𝑥3 + 2𝑥4 = 0, вектор (1, −1,−2, 2), 

составленный из коэффициентов этого уравнения, является вектором нормали к этой 

прямой, значит, ее направляющий вектор 𝑣 = (2, 2, 1, 1) (т.к. скалярное произведение 

направляющего вектора и вектора нормали равно 0). 

Так как плоскость задается системой уравнений, удобно искать матрицу Грама не 

плоскости 𝐿, а ее ортогонального дополнения 𝐿⊥. 

Вектора 𝑎1 = (3,−2, 0, 1), 𝑎2 = (0, 1, 1,0) – базис 𝐿⊥. 

Тогда матрица Грама базисных векторов 𝐿⊥: 

𝐺 = (
(𝑎1, 𝑎1) (𝑎1, 𝑎2)

(𝑎2, 𝑎1) (𝑎2, 𝑎2)
) = (

14 −2
−2 2

) 

Теперь найдем скалярные произведения 𝑣 и базисных векторов 𝐿⊥: 

(𝑣, 𝑎1) = 3 

(𝑣, 𝑎2) = 3 

Найдем 𝐺−1: 
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𝐺−1 =
1

12
(
1 1
1 7

) 

Тогда  

(
𝛼1
𝛼2
) =

1

12
(
1 1
1 7

) (
3
3
) =

1

2
(
1
4
) 

Таким образом, ортогональная составляющая 𝑣 равна: 

𝑣⊥ =
1

2
𝑎1 + 2𝑎2 = (

3

2
, 1, 2,

1

2
) 

Тогда 

𝑠ⅈ𝑛 𝜑 =
(𝑣⊥, 𝑣⊥)

|𝑣|
=
√3

2
⇒ 𝜑 =

𝜋

3
 

Ответ: 𝜑 =
𝜋

3
. 
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Семинар 13. Решение задач. 
Задаче 1356. В пространстве многочленов степени не выше 𝑛 рассмотрим три 

различных скалярных произведения: 

(𝑓, 𝑔)0 = ∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

1

0

, (𝑓, 𝑔)1 = ∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

1

−1

, (𝑓, 𝑔)2 = ∫
𝑓(𝑥)𝑔(𝑥)

√1 − 𝑥2
𝑑𝑥

1

−1

 

Относительно каждого скалярного произведения найти расстояние от многочлена 𝑥𝑛 до 

подпространства 𝐿 многочленов степени не выше 𝑛 − 1. 

Комментарий к решению. 

Подпространство 𝐿 многочленов степени не выше 𝑛 − 1 – это гиперплоскость, 

натянутая на вектора 𝑥,… , 𝑥𝑛−1. Нужно ортогонально спроектировать 𝑥𝑛 на эту 

гиперплоскость и найти длину ортогональной составляющей 𝑥𝑛. 

Удобно проектировать на ортогональное дополнение 𝐿 (обратите внимание, что при 

скалярном произведении, заданном в условии, 𝑥𝑛 не является ортогональным 

дополнением 𝐿). 

Таким образом, по сути, задача сводится к нахождению ортонормированного базиса в 𝐿 

(например, в 3 случае это – многочлены Чебышева). Если 𝑒1, … , 𝑒𝑛 – 

ортонормированный базис 𝐿, то расстояние от 𝑥𝑛 до 𝐿 равно |(𝑥𝑛)⊥|, где (𝑥𝑛)⊥ = 𝑥𝑛 −

(𝑥𝑛)‖, 

(𝑥𝑛)‖ = 𝛼1𝑒1 +⋯+ 𝛼𝑛𝑒𝑛,    𝛼𝑖 = (𝑥
𝑛, 𝑒𝑖) 

Задача 1370. Плоскость 𝑃 проходит через три точки 

𝐴(1, 1, 1, 1), 𝐵(2, 2, 0, 0), 𝐶(1, 2, 0, 1), а прямая 𝑙 – через две точки 

𝐷(1, 1, 1, 2), 𝐸(1, 1, 2, 1). Определить взаимное расположение прямой 𝑙 и плоскости 𝑃, 

написать уравнения и найти длину общего перпендикуляра. 

Решение. 

Плоскость 𝑃 натянута на вектора 𝐴𝐵 и 𝐴𝐶, прямая 𝑙 – на вектор 𝐷𝐸. 

𝐴𝐵 = (1, 1, −1,−1), 𝐴𝐶 = (0, 1, −1, 0), 𝐷𝐸 = (0, 0, 1, −1). 

Определим взаимное расположение векторов: ранг матрицы, составленной из векторов 

𝐴𝐵, 𝐴𝐶, 𝐷𝐸 равен 3, значит, 𝑙 и 𝑃 не параллельны – они скрещиваются. 

Пусть 𝑀 ∈ 𝑃 – произвольная точка плоскости 𝑃. Тогда верно равенство: 

𝑀 = 𝐴 + 𝜆𝐴𝐵 + 𝜇𝐴𝐶 = (1 + 𝜆, 1 + 𝜆 + 𝜇, 1 − 𝜆 − 𝜇, 1 − 𝜆) 

Пусть 𝑁 ∈ 𝑙 – произвольная точка прямой 𝑙. Тогда верно равенство: 

𝑁 = 𝐷 + 𝜈𝐷𝐸 = (1, 1, 1 + 𝜈, 2 − 𝜈) 
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Тогда вектор 𝑀𝑁, соединяющий произвольные точки 𝑀 и 𝑁 прямой и плоскости, 

равен: 

𝑀𝑁 = (−𝜆,−𝜆 − 𝜇, 𝜈 + 𝜆 + 𝜇, 1 −  𝜈 + 𝜆) 

Для того, чтобы 𝑀𝑁 являлся общим перпендикуляром к 𝑃 и 𝑙, необходимо и 

достаточно, чтобы он был ортогонален векторам 𝐴𝐵, 𝐴𝐶, 𝐷𝐸. Получаем систему: 

{

(𝑀𝑁, 𝐴𝐵) = 0
(𝑀𝑁, 𝐴𝐶) = 0
(𝑀𝑁,𝐷𝐸) = 0

⇔ {
−4𝜆 − 2𝜇 − 1 = 0
−2𝜆 − 2𝜇 − 𝜈 = 0
𝜇 + 2𝜈 − 1 = 0

 

Откуда  

𝜆 = 1/4, 𝜇 = 0, 𝜈 = 1/2. 

Тогда  

𝑀𝑁 =
1

4
(1, 1, 1, 1), 𝑁 = (1, 1,

3

2
,
3

2
) 

Уравнение общего перпендикуляра: 

(

𝑥1
𝑥2
𝑥3
𝑥4

) = (

1
1
3/2
3/2

) + 𝑡 (

1
1
1
1

) 

Длина общего перпендикуляра – это длина 𝑀𝑁: 

|𝑀𝑁| =
1

2
 

Ответ: |𝑀𝑁| =
1

2
, (

𝑥1
𝑥2
𝑥3
𝑥4

) = (

1
1
3/2
3/2

) + 𝑡 (

1
1
1
1

). 

Задача 1372. Найти расстояние между плоскостями, проходящими через точки: 

𝐴1(4, 5, 3, 2), 𝐵1(5, 7, 5, 4), 𝐶1(6, 3, 4, 4) 

𝐴2(1, −2, 1, −3), 𝐵2(3, −2, 3, −2), 𝐶2(2, −4, 1, −4) 

Решение. 

Найдем порождающие векторы плоскостей: 

𝐴1𝐵1 = (1, 2, 2, 2), 𝐴1𝐶1 = (2,−2, 1, 2) 

𝐴2𝐵2 = (2, 0, 2, 1), 𝐴2𝐶2 = (1,−2, 0, −1) 
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Теперь найдем размерность пространства, натянутого на эти вектора (вектора 

записываем по строкам для нахождения ортогонального дополнения): 

(

1 2 2 2
2 −2 1 2
2 0 2 1
1 −2 0 −1

)~(

1 2 2 2
0 −6 −3 −2
0 −4 −2 −3
0 −4 −2 −3

)~(

1 2 2 2
0 2 1 4
0 0 0 1
0 0 0 0

) 

𝑟𝑘 = 3. ФСР: (−2,−1, 2, 0) – базис в ортогональном дополнении. 

Соединим две произвольные точки, одна из которых лежит в первой, а другая - во 

второй плоскости (например, точки 𝐴1 и 𝐴2), и спроектируем полученный вектор на 

ортогональное дополнение: 

𝐴2𝐴1 = (3, 7, 2, 5) 

𝛼 =
((−2,−1, 2, 0) , (3, 7, 2, 5))

((−2,−1, 2, 0) , (−2,−1, 2, 0) )
= −1 

Получаем (2, 1, −2, 0) – проекция 𝐴2𝐴1 на ортогональное дополнение, |(2, 1, −2, 0)| =

3. Это и будет расстоянием между плоскостями.  

Ответ: 3. 

Задача 1377. Найти расстояние между многочленом 
3

5
𝑥 и аффинным подпространством 

многочленов вида 𝑥3 + 𝑃(𝑥),   𝑑𝑒𝑔 𝑃(𝑥) ≤ 2 в аффинном евклидовом пространстве 

многочленов степени не выше 3 со скалярным произведением, заданным интегралом 

∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

1

−1

 

Решение. 

1, 𝑥, 𝑥2 - базис в аффинном подпространстве. Найдем ортогональное дополнение 𝑃(𝑥) и 

спроектируем на него вектор, соединяющий точку подпространства (например, 𝑥3) и 
3

5
𝑥 (то есть, вектор 𝑥3 −

3

5
𝑥). 

Пусть ортогональное дополнение порождается 𝑄(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑. Тогда 

скалярные произведения 𝑄(𝑥) с базисными векторами 𝑃(𝑥) должны быть равны 0: 

0 = (𝑄(𝑥), 𝑥𝛼) = ∫(𝑎𝑥𝛼+3 + 𝑏𝑥𝛼+2 + 𝑐𝑥𝛼+1 + 𝑑𝑥𝛼) 𝑑𝑥

1

−1

= 

= (
𝑎

𝛼 + 4
𝑥𝛼+4 +

𝑏

𝛼 + 3
𝑥𝛼+3 +

𝑐

𝛼 + 2
𝑥𝛼+2 +

𝑑

𝛼 + 1
𝑥𝛼)|

−1

1
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𝛼 = 0:    
2

3
𝑏 + 2𝑑 = 0 

𝛼 = 1:    
2

5
𝑎 +

2

3
𝑐 = 0 

𝛼 = 2:    
2

5
𝑏 +

2

3
𝑑 = 0 

Получаем 𝑏 = 𝑑 = 0, 3𝑎 = 5𝑐. Тогда  

𝑄(𝑥) = 5𝑥3 − 3𝑥 

задает ортогональное дополнение. 

Получили, что вектор 𝑥3 −
3

5
𝑥 и 𝑄(𝑥) коллинеарны:  

𝑥3 −
3

5
𝑥 =

1

5
𝑄(𝑥) 

Таким образом, проекция 𝑥3 −
3

5
𝑥 на 𝑄(𝑥) равна 

1

5
𝑄(𝑥). Тогда 

 

|
1

5
𝑄(𝑥)| =

1

5
(𝑄(𝑥), 𝑄(𝑥)) =

1

5
∫𝑄2(𝑥) 𝑑𝑥 =

1

5
∫(𝑥3 −

3

5
𝑥)2 𝑑𝑥

1

−1

1

−1

=
2√2

5√7
 

Ответ: 
2√2

5√7
. 
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Семинар 14. Операторы в евклидовых пространствах. 

Задача 1379. Найти расстояние от точки 𝑀(𝑥0
1, … , 𝑥0

𝑛) аффинного евклидова 

пространства ℝ𝑛 до гиперплоскости, заданной уравнением 𝑎1𝑥
1 +⋯+ 𝑎𝑛𝑥

𝑛 + 𝑏 = 0. 

Решение. 

Вектор 𝑣 = (𝑎1, … , 𝑎𝑛) ортогонален гиперплоскости: возьмем две произвольные точки 

гиперплоскости (𝑥1
1, … , 𝑥1

𝑛) и (𝑥2
1, … , 𝑥2

𝑛). Для них выполнены равенства  

𝑎1𝑥1
1 +⋯+ 𝑎𝑛𝑥1

𝑛 + 𝑏 = 0  

𝑎1𝑥2
1 +⋯+ 𝑎𝑛𝑥2

𝑛 + 𝑏 = 0. 

Вычитая второе равенство из первого, получим  

𝑎1(𝑥1
1 − 𝑥2

1) + ⋯+ 𝑎𝑛(𝑥1
𝑛 − 𝑥2

𝑛) = 0 ⇔ ((𝑎1, … , 𝑎𝑛), (𝑥
1 − 𝑥2)) = 0 

для произвольного вектора, лежащего в гиперплоскости. 

Таким образом, (𝑎1, … , 𝑎𝑛) – базис ортогонального дополнения к линейной части 

гиперплоскости. 

Не умаляя общности, можно считать, что 𝑎1 ≠ 0. Точка 𝑂 (−
𝑏

𝑎1
, 0, … ,0) лежит в 

гиперплоскости, 

𝑂𝑀 = (𝑥0
1 +

𝑏

𝑎1
, 𝑥0
2, ⋯ , 𝑥0

𝑛) 

Проектируем вектор 𝑂𝑀 на 𝑣 = (𝑎1, … , 𝑎𝑛): 

𝑝𝑟𝑣𝑂𝑀 =
(𝑂𝑀, 𝑣)

|𝑣|
=
|𝑎1 (𝑥0

1 +
𝑏
𝑎1
) + 𝑎2𝑥0

2 +⋯+ 𝑎𝑛𝑥0
𝑛|

√𝑎12 +⋯+ 𝑎𝑛2
 

Ответ:  
|𝑎1(𝑥0

1+
𝑏

𝑎1
)+𝑎2𝑥0

2+⋯+𝑎𝑛𝑥0
𝑛|

√𝑎12+⋯+𝑎𝑛
2

. 

Правильные многогранники в ℝ𝑛 

В ℝ3 есть 5 правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. 

Какие правильные многогранники существуют в ℝ𝑛 при 𝑛 > 3? В пространстве любой 

размерности можно построить: 

  𝑛-мерный куб. 𝑛-куб в ℝ𝑛 удобно задавать следующим образом: 

Вершины находятся в точках с координатами (±1,… ,±1). У 𝑛-куба 2𝑛 вершин. 

Гиперграни задаются уравнениями 𝑥𝑖 = ±1, ⅈ = 1, … , 𝑛. У 𝑛-куба  2𝑛 гиперграней. 

Непараллельные гиперграни перпендикулярны. 
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Длина диагонали 𝑛-куба (в нашем случае со стороной 2) равна 2√𝑛. 

 гипероктаэдр (правильный многогранник, двойственный кубу, вершинами 

которого являются центры граней куба – строится аналогично октаэдру в ℝ3). 

Вершины гипероктаэдра находятся в точках с координатами 𝑥𝑖 = ±1, 𝑥𝑗 = 0, ⅈ ≠ 𝑗 

(точка пересечения грани с соответствующей осью координат). 

Упражнение: найти уравнения гиперграней гипероктаэдра, найти углы между ними. 

 𝑛-мерный правильный симплекс (аналог правильного тетраэдра в ℝ3). Его 

удобно задавать в ℝ𝑛+1 (по аналогии с правильным треугольником, вершины 

которого в ℝ3 удобно располагать в точках (1, 0, 0), (0, 1, 0), (0, 0, 1)). 

Вершины 𝑛-симплекса находятся в ℝ𝑛+1 в точках с координатами 𝑥𝑖 = 1, 𝑥𝑗 = 0, ⅈ ≠ 𝑗. 

У 𝑛-симплекса 𝑛 + 1 вершина, он лежит в гиперплоскости, задаваемой уравнением 

𝑥1 +⋯+ 𝑥𝑛+1 = 1 

Упражнение: найти угол между гипергранями правильного 𝑛-симплекса. 

Особенность 𝑛-симплекса: любые две его вершины соединены ребром. 

Многоугольником, двойственным 𝑛-симплексу тоже будет 𝑛-симплекс. 

Оказывается, при 𝑛 ≥ 5 других правильных многогранников в ℝ𝑛 не существует. 

При 𝑛 = 4 есть еще 3 правильных многогранника. 

Метод наименьших квадратов 

Можно сказать, что метод наименьших квадратов – решение несовместной системы 

линейных уравнений. Пусть  

𝐴𝑥 = 𝑏,    𝐴 ∈ 𝑀𝑎𝑡𝑚𝑥𝑛(𝑅), 𝑥 ∈ ℝ
𝑚, 𝑏 ∈ ℝ𝑛 

𝑣𝑖- ⅈ-ый столбец матрицы 𝐴. Спроектируем 𝑏 на ⟨𝑣1, … , 𝑣𝑛⟩: 

𝑏 = 𝑏‖ + 𝑏⊥ 

𝑏‖ = 𝑥1𝑣1 +⋯+ 𝑥
𝑚𝑣𝑚 

(𝑥1, … , 𝑥𝑚) – псевдорешение исходной системы. 

Задача 1397 п.3. Методом наименьших квадратов найти псевдорешение несовместной 

системы: {

2𝑥1 − 𝑥3 = 1        
𝑥2 + 𝑥3 = −1       
𝑥1 − 𝑥2 + 𝑥3 = 0
𝑥1 − 𝑥3 = −1       

 

Решение. 
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𝑣1 = (

2
0
1
1

) , 𝑣2 = (

0
1
−1
0

) , 𝑣3 = (

−1
1
1
−1

) 

Найдем ранг столбцов системы: 

(
2 0 1 1
0 1 −1 0
−1 1 1 −1

)~(
1 −1 −1 1
0 1 −1 0
0 2 3 −1

)~(
1 −1 −1 1
0 1 −1 0
0 0 5 −1

) 

ФСР: 𝑢 = (−3, 1, 1, 5) 

𝑟𝑘 = 3, значит, 𝑏 = (

1
−1
0
−1

) удобнее проектировать на 𝑢 – ортогональное дополнение 

⟨𝑣1, 𝑣2, 𝑣3⟩. 

𝑏⊥ =
(𝑏, 𝑢)

(𝑢, 𝑢)
𝑢 = −

1

4
𝑢 = −

1

4
(−3, 1, 1, 5) 

Тогда 

𝑏‖ = 𝑏 − 𝑏⊥ = (1,−1, 0, −1) +
1

4
(−3, 1, 1, 5) =

1

4
(1,−3, 1, 1) 

Теперь ищем псевдорешение системы, то есть, решаем исходную систему со столбцом 

𝑏‖ вместо 𝑏: 

(

2 0 −1 | 1/4
0 1 1 | −3/4
1 −1 1 | 1/4
1 0 −1 | 1/4

)~(

1 −1 1 | 1/4
0 1 1 | −3/4
0 2 −3 | −1/4
0 1 −2 | 0

)~(

1 −1 1 | 1/4
0 1 1 | −3/4
0 0 1 | −1/4
0 0 0 | 0

) 

Получаем псевдорешение:  

𝑥1 = 0, 𝑥2 = −1/2, 𝑥3 = −1/4. 

Ответ: (0, −1/2,−1/4). 

Операторы в евклидовых пространствах. 

Сопряженный оператор 

Пусть 𝑉 – евклидово пространство, 𝑓: 𝑉 → 𝑉 – линейный оператор. Оператор 𝑔: 𝑉 → 𝑉 

называется сопряженным к 𝑓, если ∀𝑢, 𝑣 ∈ 𝑉 выполнено (𝑓(𝑢), 𝑣) = (𝑢, 𝑔(𝑣)). 

Почему это определение корректно (т.е. почему сопряженный оператор существует и 

единственен), обсудим позже. 
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Задача 1409. Найти сопряженный оператор к оператору 𝑓 поворота евклидовой 

плоскости на угол 𝛼. 

Решение.  

Матрица оператора 𝑓 (в стандартном базисе со стандартным скалярным 

произведением): 

𝐴𝑓 = (
𝑐𝑜𝑠 𝛼 − 𝑠ⅈ𝑛 𝛼
𝑠ⅈ𝑛 𝛼 𝑐𝑜𝑠 𝛼

) 

Пусть 𝑣 = (𝑣1, 𝑣2)
𝑇, 𝑢 = (𝑢1, 𝑢2)

𝑇. Тогда 

𝑓(𝑢) = (
𝑢1𝑐𝑜𝑠 𝛼 − 𝑢2 𝑠ⅈ𝑛 𝛼
𝑢1 𝑠ⅈ𝑛 𝛼 + 𝑢2 𝑐𝑜𝑠 𝛼

) 

(𝑓(𝑢), 𝑣) = 𝑣1(𝑢1𝑐𝑜𝑠 𝛼 − 𝑢2 𝑠ⅈ𝑛 𝛼) + 𝑣2(𝑢1 𝑠ⅈ𝑛 𝛼 + 𝑢2 𝑐𝑜𝑠 𝛼) = 

= 𝑢1(𝑣1 𝑐𝑜𝑠 𝛼 + 𝑣2 𝑠ⅈ𝑛 𝛼) + 𝑢2(−𝑣1 𝑠ⅈ𝑛 𝛼 + 𝑣2 𝑐𝑜𝑠 𝛼) 

Таким образом, 

𝑔(𝑣) = (
𝑐𝑜𝑠 𝛼 𝑠ⅈ𝑛 𝛼
−𝑠ⅈ𝑛 𝛼 𝑐𝑜𝑠 𝛼

) (
𝑣1
𝑣2
) 

То есть, сопряженным к оператору поворота на угол 𝛼 против часовой стрелки является 

оператор поворота на угол 𝛼 по часовой стрелке. 

Ответ: оператор поворота на угол −𝛼. 

Задача. Рассмотрим пространство 

𝑉 = {𝑃(𝑥)𝑒−𝑥
2
, 𝑃(𝑥) ∈ ℝ[𝑥]} 

Со скалярным произведением 

(𝑓, 𝑔) = ∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

ℝ

. 

Найти (
ⅆ

ⅆ𝑥
)
∗

 - оператор, сопряженный к оператору дифференцирования 
ⅆ

ⅆ𝑥
: 𝑉 → 𝑉. 

Решение. 

(
𝑑

𝑑𝑥
𝑓, 𝑔) = ∫𝑓′(𝑥)𝑔(𝑥) 𝑑𝑥

ℝ

= ∫𝑔(𝑥) 𝑑𝑓(𝑥) = 𝑔(𝑥)𝑓(𝑥)|−∞
+∞ −

ℝ

∫𝑓(𝑥)𝑔′(𝑥) 𝑑𝑥

ℝ

= 

= −∫𝑓(𝑥)𝑔′(𝑥) 𝑑𝑥

ℝ

= (𝑓,−
𝑑

𝑑𝑥
𝑔) 

Таким образом, (
ⅆ

ⅆ𝑥
)
∗

= −
ⅆ

ⅆ𝑥
 – оператор дифференцирования кососимметричен. 

https://vk.com/teachinmsu
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Ответ: (
ⅆ

ⅆ𝑥
)
∗

= −
ⅆ

ⅆ𝑥
. 

Примеры сопряженных операторов: 

 Оператор, сопряженный к произведению операторов: 

(𝑓1 ∘ 𝑓2)
∗ = 𝑓2

∗ ∘ 𝑓1
∗ 

 Оператор умножения на функцию: 

Пусть, например, 𝜑 ∈ ℝ[𝑥] (𝜑 – многочлен). Рассмотрим оператор  

𝐴: 𝑓 → 𝜑𝑓 

в пространстве 𝑉 со скалярным произведением 

(𝑓, 𝑔) = ∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

ℝ

. 

 

Тогда 𝐴∗ = 𝐴 – это самосопряженный оператор. 

 Линейный дифференциальный оператор: 

Рассмотрим оператор 

𝐿: 𝜓 → 𝜑𝑛𝜓
(𝑛) +⋯+ 𝜑1𝜓

′ + 𝜑0𝜓 

В пространстве 𝑉 со скалярным произведением 

(𝑓, 𝑔) = ∫𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

ℝ

. 

Упражнение: найти 𝐿∗. 

Существование сопряженного оператора 

Поймем, почему сопряженный оператор существует (в конечномерном случае): 

Пусть 𝑓: 𝑉 → 𝑉 – линейный оператор, 𝑒1, … , 𝑒𝑛 – ортонормированный базис 𝑉. Тогда 

∀𝑢, 𝑣 ∈ 𝑉    (𝑓(𝑢), 𝑣) = (𝑢, 𝑔(𝑣)). 

В частности, это равенство выполнено для 𝑒1, … , 𝑒𝑛: 

(𝑓(𝑒𝑖), 𝑒𝑗) = (𝑒𝑖, 𝑔(𝑒𝑗))  ∀ ⅈ, 𝑗 = 1, … , 𝑛 

Пусть 𝐴𝑓 = (𝑎𝑖𝑗), 𝐴𝑔 = (𝑏𝑖𝑗). Так как 𝑓(𝑒𝑖) - ⅈ-ый столбец 𝐴𝑓, 𝑔(𝑒𝑗) - 𝑗-ый столбец 𝐴𝑔, 

получаем: 

https://vk.com/teachinmsu
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(𝑎𝑖
𝑘𝑒𝑘, 𝑒𝑗) = (𝑒𝑖, 𝑏𝑗

𝑙𝑒𝑙) ⇔ 𝑎̅𝑖
𝑘(𝑒𝑘, 𝑒𝑗) = 𝑏𝑗

𝑙(𝑒𝑖 , 𝑒𝑙) ⇔ 𝑎̅𝑖
𝑘𝛿𝑘𝑗 = 𝑏𝑗

𝑙𝛿𝑖𝑙 ⇔ 𝑎̅𝑖
𝑗
= 𝑏𝑗

𝑖 

Таким образом, 

𝐴𝑔 = 𝐴𝑓
𝑇̅̅̅̅  

То есть, мы не только доказали, что самосопряженный оператор существует, но и 

указали в явном виде его матрицу в ортонормированном базисе – это 

транспонированная матрица оператора 𝑓 (в евклидовом пространстве) и сопряженная к 

транспонированной матрице оператора 𝑓 (в унитарном пространстве). 

  

https://vk.com/teachinmsu
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Семинар 15. Самосопряженные операторы. 
Задача 1410. Пусть оператор 𝑓 в некотором базисе евклидова (эрмитова) пространства 

имеет матрицу 𝐴𝑓, а скалярное произведение - матрицу Грама 𝐺. Найти матрицу 

сопряженного оператора в этом базисе. 

Решение. 

Пусть 𝑓: 𝑉 → 𝑉 – линейный оператор, 𝑒1, … , 𝑒𝑛 – базис 𝑉. Тогда 

∀𝑢, 𝑣 ∈ 𝑉    (𝑓(𝑢), 𝑣) = (𝑢, 𝑔(𝑣)). 

В частности, это равенство выполнено для 𝑒1, … , 𝑒𝑛: 

(𝑓(𝑒𝑖), 𝑒𝑗) = (𝑒𝑖, 𝑔(𝑒𝑗))  ∀ ⅈ, 𝑗 = 1, … , 𝑛 

Пусть 𝐴𝑓 = (𝑎𝑖𝑗), 𝐴𝑔 = (𝑏𝑖𝑗). Так как 𝑓(𝑒𝑖) - ⅈ-ый столбец 𝐴𝑓, 𝑔(𝑒𝑗) - 𝑗-ый столбец 𝐴𝑔, 

получаем: 

(𝑎𝑖
𝑘𝑒𝑘, 𝑒𝑗) = (𝑒𝑖, 𝑏𝑗

𝑙𝑒𝑙) ⇔ 𝑎̅𝑖
𝑘(𝑒𝑘, 𝑒𝑗) = 𝑏𝑗

𝑙(𝑒𝑖, 𝑒𝑙) ⇔ 𝑎̅𝑖
𝑘𝑔𝑘𝑗 = 𝑏𝑗

𝑙𝑔𝑖𝑙 ⇔ 𝐴𝑓
𝑇̅̅̅̅ 𝐺 = 𝐺𝐴𝑔 

Таким образом, 

𝐴𝑔 = 𝐺−1𝐴𝑓
𝑇̅̅̅̅ 𝐺 

В евклидовом пространстве 

𝐴𝑔 = 𝐺−1𝐴𝑓
𝑇𝐺 

Обратите внимание – в унитарном пространстве ответ зависит от того, как 

определяется эрмитово скалярное произведение – в нашем случае мы приняли, что оно 

антилинейно по первому аргументу и линейно по второму. 

Ответ: 𝐴𝑔 = 𝐺−1𝐴𝑓
𝑇̅̅̅̅ 𝐺. 

Самосопряженный оператор  

Самосопряженный оператор сопряжен сам себе: 𝑓: 𝑉 → 𝑉 

∀𝑢, 𝑣 ∈ 𝑉    (𝑓(𝑢), 𝑣) = (𝑢, 𝑓(𝑣)). 

Свойства самосопряжённого оператора: 

 Все собственные значения вещественны 

 Собственные вектора, соответствующие различным собственным значениям 

ортогональны 

 𝐾𝑒𝑟𝐴𝑓 ⊕ Im𝐴𝑓 = 𝑉 

 Для любого самосопряженного оператора существует ортонормированный базис 

(который называется каноническим), в котором его матрица диагональна 

https://vk.com/teachinmsu
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Задача 1449 п.3. Найти канонический вид и соответствующий ортонормированный 

базис для самосопряженного оператора, заданного (в некотором ортонормированном 

базисе) матрицей: 

(
6 −2 2
−2 5 0
2 0 7

) 

Решение. 

Находим собственные значения: 

|
6 − 𝜆 −2 2
−2 5 − 𝜆 0
2 0 7 − 𝜆

| = 0 ⇔ −𝜆3 + 18𝜆2 − 99𝜆 + 162 = 0 ⇔ 

−(𝜆 − 3)(𝜆 − 6)(𝜆 − 9) = 0 

Получаем корни: 𝜆1 = 3, 𝜆2 = 6, 𝜆3 = 9. Ищем собственные векторы: 

𝜆1 = 3: 

𝐴 − 𝜆1𝐸 = (
3 −2 2
−2 2 0
2 0 4

)~(
1 0 2
0 1 2
0 0 0

) 

Получаем собственный вектор 𝑣1 = (
−2
−2
1
). Нормируя, получаем 𝑒1 =

1

3
(
−2
−2
1
). 

𝜆2 = 6: 

𝐴 − 𝜆2𝐸 = (
0 −2 2
−2 −1 0
2 0 1

)~(
0 0 0
0 −1 1
2 0 1

) 

Получаем собственный вектор 𝑣2 = (
−1
2
2
). Нормируя, получаем 𝑒2 =

1

3
(
−1
2
2
). 

𝜆3 = 9: 

𝐴 − 𝜆3𝐸 = (
−3 −2 2
−2 −4 0
2 0 −2

)~(
1 2 0
0 2 1
0 0 0

) 

Получаем собственный вектор 𝑣3 = (
2
−1
2
). Нормируя, получаем 𝑒3 =

1

3
(
2
−1
2
). 

Ответ: (
3 0 0
0 6 0
0 0 9

), канонический базис 𝑒1 =
1

3
(
−2
−2
1
), 𝑒2 =

1

3
(
−1
2
2
),  𝑒3 =

1

3
(
2
−1
2
). 

https://vk.com/teachinmsu
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Операторы, сохраняющие скалярное произведение 

Унитарный оператор 

𝑉 – эрмитово пространство. Оператор 𝑓: 𝑉 → 𝑉 – унитарный, если 

∀𝑢, 𝑣 ∈ 𝑉    (𝑓(𝑢), 𝑓(𝑣)) = (𝑢, 𝑣). 

Для матрицы унитарного оператора 𝐴𝑓 выполнено соотношение 𝐴𝑓
𝑇̅̅̅̅ 𝐴𝑓 = 𝐸 

(доказательство аналогично задаче 1410). Отсюда следует, что все собственные 

значения унитарного оператора по модулю равны 1 (пусть 𝑓(𝑣) = 𝜆𝑣, 𝜆 – собственное 

значение, тогда 𝜆𝜆̅(𝑣, 𝑣) = (𝜆𝑣, 𝜆𝑣) = (𝑓(𝑣), 𝑓(𝑣)) = (𝑣, 𝑣), откуда |𝜆| = 1). 

Для любого унитарного оператора существует ортонормированный базис (который 

называется каноническим), в котором его матрица диагональна. 

Задача 1507 п.3. Найти канонический вид и соответствующий ортонормированный 

базис для унитарного оператора, заданного (в некотором ортонормированном базисе) 

матрицей: 

 

𝐴 =
1

3
(
2 1 2
1 2 −2
−2 2 1

) 

Решение. 

Находим собственные значения (для удобства вычислений вначале найдем 

собственные векторы для матрицы 3𝐴, затем разделим полученные значения на 3): 

|3𝐴 − 𝜆𝐸| = |
2 − 𝜆 1 2
1 2 − 𝜆 −2
−2 2 1 − 𝜆

| = 0 ⇔ −𝜆3 + 5𝜆2 − 15𝜆 + 27 = 0 ⇔ 

−(𝜆 − 3)(𝜆2 − 2𝜆 + 9) = 0 

Получаем корни: 𝜆1 = 3, 𝜆2,3 = 1 ± 2√2ⅈ. Тогда собственные значения 𝐴: 

𝜇1 = 1, 𝜇2,3 =
1

3
±
2√2

3
ⅈ 

Канонический вид: 

(

  
 

1 0 0

0  
1 + 2√2ⅈ

3
0

0 0
1 − 2√2ⅈ

3 )

  
 

 

Ищем собственные векторы: 

https://vk.com/teachinmsu
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𝜇1 = 1 (𝜆1 = 3): 

3𝐴 − 𝜆1𝐸 = (
−1 1 2
1 −1 −2
−2 2 −2

)~(
1 −1 2
0 0 1
0 0 0

) 

Получаем собственный вектор 𝑣1 = (
1
1
0
). Нормируя, получаем 𝑒1 =

1

√2
(
1
1
0
). 

При нахождении собственных векторов, соответствующих 𝜇2,3 для удобства 

приведения комплексной матрицы к ступенчатому виду занулим одну из строк (в обеих 

случаях это первая строка, так как она является линейной комбинацией второй и 

третьей строк) 

𝜇2 =
1

3
+
2√2

3
ⅈ (𝜆2 = 1 + 2√2ⅈ): 

3𝐴 − 𝜆2𝐸 = (
1 − 2√2ⅈ 1 2

1 1 − 2√2ⅈ −2

−2 2 −2√2ⅈ

)~(

0 0 0

1 1 − 2√2ⅈ −2

−2 2 −2√2ⅈ

)~ 

~(

0 0 0

1 1 − 2√2ⅈ −2

0 2 − 2√2ⅈ −2 − √2ⅈ

) 

Получаем собственный вектор 𝑣2 = (
−2 − √2ⅈ

2 + √2ⅈ

2 − 2√2ⅈ

). Нормируя, получаем  

𝑒2 =
1

2√6
(
−2 − √2ⅈ

2 + √2ⅈ

2 − 2√2ⅈ

). 

𝜇3 =
1

3
−
2√2

3
ⅈ (𝜆3 = 1 − 2√2ⅈ): 

3𝐴 − 𝜆3𝐸 = (
1 + 2√2ⅈ 1 2

1 1 + 2√2ⅈ −2

−2 2 2√2ⅈ

)~(

0 0 0

1 1 + 2√2ⅈ −2

−2 2 2√2ⅈ

)~ 

~(

0 0 0

1 1 + 2√2ⅈ −2

0 2 + 2√2ⅈ −2 + √2ⅈ

) 

Получаем собственный вектор 𝑣3 = (
−2 + √2ⅈ

2 − √2ⅈ

2 + 2√2ⅈ

). Нормируя, получаем  
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𝑒3 =
1

2√6
(
−2 + √2ⅈ

2 − √2ⅈ

2 + 2√2ⅈ

). 

Ответ: 

(

 

1 0 0

0  
1+2√2𝑖

3
0

0 0
1−2√2𝑖

3 )

 , канонический базис:  

𝑒1 =
1

√2
(
1
1
0
), 𝑒2 =

1

2√6
(
−2 − √2ⅈ

2 + √2ⅈ

2 − 2√2ⅈ

),  𝑒3 =
1

2√6
(
−2 + √2ⅈ

2 − √2ⅈ

2 + 2√2ⅈ

). 

Ортогональный оператор 

𝑉 – евклидово пространство. Оператор 𝑓: 𝑉 → 𝑉 – ортогональный, если 

∀𝑢, 𝑣 ∈ 𝑉    (𝑓(𝑢), 𝑓(𝑣)) = (𝑢, 𝑣). 

Для матрицы ортогонального оператора 𝐴𝑓 выполнено соотношение 𝐴𝑓
𝑇𝐴𝑓 = 𝐸 

(доказательство аналогично задаче 1410). Отсюда следует, что все вещественные 

собственные значения ортогонального оператора равны ±1 (пусть 𝑓(𝑣) = 𝜆𝑣, 𝜆 – 

собственное значение, тогда 𝜆2(𝑣, 𝑣) = (𝜆𝑣, 𝜆𝑣) = (𝑓(𝑣), 𝑓(𝑣)) = (𝑣, 𝑣), откуда 𝜆 =

±1). 

В отличие от унитарного оператора, нельзя утверждать, что существует 

ортонормированный базис, в котором матрица ортогонального оператора диагональна, 

так как собственные значения могут быть комплексными. 

Однако, для любого ортогонального оператора существует ортонормированный базис, 

в котором его матрица имеет блочно-диагональный вид: 

(

 
 
 
 
(
cos𝜑1 −sin𝜑1
sin𝜑1 cos𝜑1

) 0 . . . . . . 0

0 (
cos𝜑2 −sin𝜑2
sin𝜑2 cos 𝜑2

) . . . . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . ±1 0
0 . . . . . . 0 ±1)

 
 
 
 

 

Блоки 2 × 2 – матрицы поворота (
cos𝜑𝑖 −sin𝜑𝑖
sin𝜑𝑖 cos 𝜑𝑖

), блоки 1 × 1 – собственные 

значения ±1. 

Теоретический способ нахождения канонического базиса ортогонального оператора 

Пусть 𝜆 – комплексное собственное значение:  

𝐴𝑓𝑤 = 𝜆𝑤 

https://vk.com/teachinmsu
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Сопрягая это равенство, получаем (т.к. 𝐴𝑓 – вещественнозначная матрица):   

𝐴𝑓𝑤̅ = 𝜆̅𝑤̅ 

Таким образом, если 𝜆 – комплексное собственное значение, то и 𝜆̅– комплексное 

собственное значение, и собственный вектор, соответствующий 𝜆̅ равен 𝑤̅. Пусть 

𝑢:= 𝑅𝑒𝑤,    𝑣 : = 𝐼𝑚𝑤 

Тогда 

𝑓(𝑢 + ⅈ𝑣) = 𝜆(𝑢 + ⅈ𝑣) 

𝑓(𝑢 − ⅈ𝑣) = 𝜆(𝑢 − ⅈ𝑣) 

Складывая эти равенства, получаем: 

𝑓(𝑢) = (
𝜆 + 𝜆̅

2
)𝑢 + ⅈ (

𝜆 − 𝜆̅

2
)𝑣 = (𝑅𝑒 𝜆)𝑢 − (𝐼𝑚𝜆)𝑣 

Аналогично (вычитая), получаем: 

𝑓(𝑣) =  (𝐼𝑚 𝜆)𝑢 + (𝑅𝑒 𝜆)𝑣 

Так как |𝜆| = 1, то ∃𝜑:    𝜆 = 𝑐𝑜𝑠 𝜑 − ⅈ 𝑠ⅈ𝑛 𝜑 

Таким образом, если 𝑤 и 𝑤̅ – базисные векторы соответствующего унитарного 

оператора, то из них можно получить базисные векторы для ортогонального оператора, 

взяв их вещественную и мнимую части 𝑅𝑒𝑤  и 𝐼𝑚𝑤. 
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Семинар 16. Полярное разложение. 
Задача 1452. Доказать, что два самосопряженных оператора в евклидовом или 

эрмитовом пространстве коммутируют тогда и только тогда, когда они имеют общий 

канонический базис. 

Решение. 

Пусть 𝑓, 𝑔: 𝑊 → 𝑊. 

1) Докажем, что: 𝑓𝑔 = 𝑔𝑓 ⇒ есть базис из общих собственных векторов. 

Пусть 𝑉 – собственное подпространство для 𝑓: ∀𝑣 ∈ 𝑉: 𝑓(𝑣) = 𝜆𝑣. Тогда 

𝑓𝑔(𝑣) = 𝑔𝑓(𝑣) = 𝜆𝑔(𝑣) ⇒ 𝑔(𝑣) ∈ 𝑉 

То есть, 𝑉 – инвариантное подпространство для 𝑔. 

Если 𝑉𝑖 – собственное подпространство для 𝑓, то  

𝑊 = 𝑉1⊕⋯⊕𝑉𝑛 

Мы показали, что любое собственное подпространство для 𝑓 инвариантно для 𝑔. 

Рассмотрим ограничение 𝑔|𝑉𝑖 – это будет самосопряженный оператор 𝑉𝑖 → 𝑉𝑖. Значит, 

для него существует канонический базис. Объединим теперь канонические базисы для 

всех пространств 𝑉𝑖, ⅈ = 1, … , 𝑛 – получим базис пространства 𝑊. Таким образом, у 𝑓 и 

𝑔 есть базис, состоящий из общих собственных векторов. 

2) Докажем, что: есть базис из общих собственных векторов ⇒ 𝑓𝑔 = 𝑔𝑓.  

Если у 𝑓 и 𝑔 есть базис из общих собственных векторов, значит, в этом базисе матрицы 

операторов 𝑓 и 𝑔 диагональны, значит, они коммутируют и 𝑓𝑔 = 𝑔𝑓. 

Ортогональный оператор в ℝ3 

Пусть 𝑓: ℝ3 → ℝ3 – ортогональный оператор. Тогда его матрица в каноническом 

базисе: 

1) (
±1 0 0
0 ±1 0
0 0 ±1

) или 2)    (
cos𝜑 −sin𝜑 0
sin𝜑 cos𝜑 0
0 0 ±1

) 

Причем можно считать, что случай 1) – это частный случай 2) при 𝜑 = 0, или 𝜑 = 𝜋. 

Таким образом, достаточно рассмотреть только случай 2). 

Пусть 𝑒1, 𝑒2, 𝑒3 – канонический базис оператора 𝑓. Тогда под действием оператора 𝑓 

происходит поворот на угол 𝜑 в плоскости, натянутой на вектора 𝑒1 и 𝑒2, с отражением 

относительно этой плоскости, если 𝜆3 = −1 и без отражения, если 𝜆3 = 1. 

Таким образом, для нахождения канонического базиса для ортогонального оператора в 

ℝ3 достаточно найти собственный вектор 𝑒3, отвечающий собственному значению 

https://vk.com/teachinmsu
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 𝜆3 = ±1. Тогда векторы 𝑒1 и 𝑒2 - произвольный ортогональный базис в плоскости, 

перпендикулярной 𝑒3. 

Задача 1516 п.2. Найти канонический вид и соответствующий ортонормированный 

базис ортогонального оператора, заданного в некотором ортонормированном базисе 

матрицей: 

 

𝐴 =
1

3
(
2 −1 2
2 2 −1
−1 2 2

) 

Решение. 

Находим собственные значения (для удобства вычислений вначале найдем 

собственные векторы для матрицы 3𝐴, затем разделим полученные значения на 3): 

|3𝐴 − 𝜆𝐸| = |
2 − 𝜆 −1 2
2 2 − 𝜆 −1
−1 2 2 − 𝜆

| = 0 ⇔ −𝜆3 + 6𝜆2 − 18𝜆 + 27 = 0 ⇔ 

−(𝜆 − 3)(𝜆2 − 3𝜆 + 9) = 0 

Получаем корни: 𝜆1,2 =
3±3√3𝑖

2
, 𝜆3 = 3 Тогда собственные значения 𝐴: 

𝜇1,2 =
1

2
±
√3

2
ⅈ, 𝜇3 = 1 

Канонический вид (знаки ± определим чуть позже): 

(

 
 

1

2
±
√3

2
0

±
√3

2
 
1

2
0

0 0 1)

 
 

 

Ищем собственные векторы: 

𝜇3 = 1 (𝜆3 = 3): 

3𝐴 − 𝜆3𝐸 = (
−1 −1 2
2 −1 −1
−1 2 −1

)~(
1 0 −1
0 1 −1
0 0 0

) 

Получаем собственный вектор 𝑣3 = (
1
1
1
). Нормируя, получаем 𝑒3 =

1

√3
(
1
1
1
). 

В качестве 𝑣1 выбираем любой вектор в плоскости, перпендикулярной 𝑒3, например,  
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𝑣1 = (
1
−1
0
). Нормируя, получаем 𝑒1 =

1

√2
(
1
−1
0
). 

В качестве 𝑣2 выбираем векторное произведение векторов 𝑣1 и 𝑣3: 

𝑣2 = |
ⅈ 𝑗 𝑘
1 −1 0
1 1 1

| = (−1,−1, 2). Нормируя, получаем 𝑒2 =
1

√6
(
−1
−1
2
). 

Теперь определим знаки ± в каноническом виде матрицы оператора: должно 

выполняться 

𝑓(𝑒1) =
1

2
𝑒1 ±

√3

2
𝑒2 

𝑓(𝑒1) =
1

√2
(
1
0
−1
) 

1

2
𝑒1 −

√3

2
𝑒2 =

1

2√2
(
1
−1
0
) −

1

2√2
(
−1
−1
2
) =

1

√2
(
1
0
−1
) 

Таким образом,  

𝑓(𝑒1) =
1

2
𝑒1 −

√3

2
𝑒2 

И канонический вид матрицы оператора выглядит следующим образом: 

(

 
 

1

2

√3

2
0

−
√3

2
 
1

2
0

0 0 1)

 
 

 

Ответ: 

(

 

1

2

√3

2
0

−
√3

2
 
1

2
0

0 0 1)

 , 𝑒1 =
1

√2
(
1
−1
0
) , 𝑒2 =

1

√6
(
−1
−1
2
) , 𝑒3 =

1

√3
(
1
1
1
). 

Можно сразу найти канонический вид матрицы 3 × 3 ортогонального оператора, не 

занимаясь поиском собственных значений. 

Пусть 𝐴 – ортогональная матрица 3 × 3. Ее канонический вид  

𝐵 = (
cos𝜑 −sin 𝜑 0
sin𝜑 cos𝜑 0
0 0 ±1

) 
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Знак ±1 равен определителю матрицы 𝐵 (а значит, и матрицы 𝐴, т.к. это инвариант): 

±1 = 𝑑𝑒𝑡 𝐵= 𝑑𝑒𝑡 𝐴 

След матрицы – тоже ее инвариант, а зная след, мы можем найти cos𝜑 и sin𝜑: 

±1 + 2 cos𝜑 = tr𝐵 = tr 𝐴 

Задача 1515 п.1. Не находя канонического базиса, найти канонический вид 

ортогонального оператора, заданного в некотором ортонормированном базисе 

матрицей:  

𝐴 =
1

7
(
6 −2 −3
2 −3 6
3 6 2

) 

Решение. 

𝑑𝑒𝑡 𝐴 = −1 

tr 𝐴 =
5

7
= −1 + 2 cos𝜑 , откуда 

cos𝜑 =
6

7
,  sin𝜑 = ±

√13

7
. 

Ответ: 

(

 

6

7
−
√13

7
0

√13

7
 
6

7
0

0 0 −1)

 . 

Полярное разложение 

Пусть 𝐴 – матрица, 𝑑𝑒𝑡 𝐴 ≠ 0. Тогда 𝐴 можно представить в виде произведения 

симметричной и ортогональной матриц: 

𝐴 = 𝑆1𝑄1 = 𝑄2𝑆2 

где 𝑆𝑖
𝑇 = 𝑆𝑖 – симметричная положительно определенная матрица,  

𝑄𝑖
𝑇𝑄𝑖 = 𝐸 – ортогональная матрица. 

Это является в некотором смысле обобщением представления комплексного числа в 

виде 

𝑎 + 𝑏ⅈ = 𝑅𝑒𝑖𝜑 . 

Допустим, полярное разложение существует. Тогда выполняется 

𝐴𝐴𝑇 = 𝑆1𝑄1𝑄1
𝑇𝑆1

𝑇 = 𝑆1
2 

𝐴𝑇𝐴 = 𝑆2
𝑇𝑄2

𝑇𝑄2𝑆2 = 𝑆2
2 
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Чтобы найти 𝑆1 (𝑆2), нужно извлечь квадратный корень из 𝐴𝐴𝑇 (𝐴𝑇𝐴). Это можно 

сделать, так как 𝐴𝐴𝑇 (𝐴𝑇𝐴) – симметрическая матрица: (𝐴𝐴𝑇)𝑇 = 𝐴𝐴𝑇 ((𝐴𝑇𝐴)𝑇 = 𝐴𝑇𝐴) с 

положительными собственными значениями. 

Тогда 𝑄1 = 𝑆1
−1𝐴 (соответственно, 𝑄2 = 𝐴𝑆2

−1). 

Задача 1550. Представить оператор 𝐴, заданный своей матрицей (
2 −11
5 10

) в некотором 

ортонормированном базисе, в виде произведения положительного самосопряженного и 

ортогонального операторов. 

Решение. 

𝐵 = 𝐴𝐴𝑇 = (
2 −11
5 10

) (
2 5
−11 10

) = (
125 −100
−100 125

) = 25 (
5 −4
−4 5

) 

Находим собственные значения (для удобства вычислений вначале найдем 

собственные векторы для матрицы 
1

25
𝐵, затем умножим полученные значения на 25): 

|
1

25
B − 𝜆𝐸| = |

5 − 𝜆 −4
−4 5 − 𝜆

| = 0 ⇔ 𝜆2 − 10𝜆 + 9 = 0 

Получаем корни: 𝜆1 =  1, 𝜆2 = 9 Тогда собственные значения 𝐵: 

𝜇1 = 25, 𝜇2 = 225 

Канонический вид матрицы 𝐵: 

𝐵̃ = (
25 0
0 225

) 

Тогда  

𝑆̃ = √𝐵̃ = (
5 0
0 15

) 

Собственные векторы матрицы 𝐵: 

𝜇1 = 25 (𝜆1 = 1): 

1

25
B − 𝜆1𝐸 = (

4 −4
−4 4

) 

Получаем собственный вектор 𝑣1 = (
1
1
). Нормируя, получаем 𝑒1 =

1

√2
(
1
1
). 

𝜇2 = 225 (𝜆2 = 9): 

1

25
B − 𝜆2𝐸 = (

−4 −4
−4 −4

) 

Получаем собственный вектор 𝑣2 = (
1
−1
). Нормируя, получаем 𝑒2 =

1

√2
(
1
−1
). 

https://vk.com/teachinmsu
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Тогда матрица перехода: 

𝐶 =
1

√2
(
1 1
1 −1

) 

Обратная к ней: 

𝐶−1 =
1

√2
(
1 1
1 −1

) 

Тогда 

𝑆 = 𝐶𝑆̃𝐶−1 =
1

2
(
1 1
1 −1

) (
5 0
0 15

) (
1 1
1 −1

) = (
10 −5
−5 10

) 

Обратная к ней: 

𝑆−1 =
1

15
(
2 1
1 2

) 

Тогда  

𝑄 = 𝑆−1𝐴 =
1

15
(
2 1
1 2

) (
2 −11
5 10

) =
1

5
(
3 −4
4 3

) 

Ответ: (
2 −11
5 10

) = (
10 −5
−5 10

) (
3/5 −4/5
4/5 3/5

). 

Приведение кососимметрического оператора к каноническому виду 

Данная задача аналогична задаче приведения ортогонального оператора к 

каноническому виду. Для любого кососимметрического оператора существует 

ортонормированный базис, в котором его матрица имеет блочно-диагональный вид: 

(

 
 
 
 
(
0 𝑎1
−𝑎1 0

) 0 . . . . . . 0

0 (
0 𝑎2
−𝑎2 0

) . . . . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . . . . 0
0 . . . . . . 0 0 )

 
 
 
 

 

Блоки 2 × 2 – матрицы вида (
0 𝑎𝑖
−𝑎𝑖 0

), блоки 1 × 1 – нулевые. 

Собственные значения кососимметрического оператора - чисто мнимые ⅈ𝑎𝑘. Базис 

строится так же, как и для ортогонального оператора.  

В случае ℝ3 базис ищем так же, как и для ортогонального оператора: находим 

собственный вектор 𝑒3, соответствующий собственному значению 𝜆 = 0, затем 

выбираем произвольную пару ортогональных векторов в плоскости, перпендикулярной 

𝑒3. 

https://vk.com/teachinmsu
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Семинар 17. Билинейная функция. 
Билинейная функция – функция 𝜑: 𝑉 × 𝑉 → 𝐾, которая линейна по каждому 

аргументу.  

Пусть 𝑥 = 𝑥𝑖𝑒𝑖, 𝑦 = 𝑦𝑗𝑒𝑗. Тогда 𝜑(𝑥, 𝑦) = 𝜑(𝑥𝑖𝑒𝑖, 𝑦
𝑗𝑒𝑗) = 𝑥

𝑖𝑦𝑗𝜑(𝑒𝑖, 𝑒𝑗) – билинейная 

функция полностью определяется своими значениями на базисных векторах. Пусть 

𝜑(𝑒𝑖, 𝑒𝑗) = 𝑏𝑖𝑗. Тогда  

𝜑(𝑥, 𝑦) = 𝑥𝑖𝑏𝑖𝑗𝑒𝑗 = 𝑥
𝑇𝐵𝜑𝑦 

Где 𝐵𝜑 = (𝑏𝑖𝑗) – матрица билинейной функции. 

При переходе к новому базису 𝑒𝑖 → 𝑒̃𝑖 матрица билинейной функции преобразуется по 

закону  

𝐵̃𝜑 = 𝐶
𝑇𝐵𝜑𝐶 

У билинейной функции есть левое и правое ядро: 

𝐿𝐾𝑒𝑟𝜑: {𝑥 ∈ 𝑉: 𝜑(𝑥, 𝑦) = 0 ∀𝑦 ∈ 𝑉} 

𝑅𝐾𝑒𝑟𝜑: {𝑦 ∈ 𝑉: 𝜑(𝑥, 𝑦) = 0 ∀𝑥 ∈ 𝑉} 

Вообще говоря, 𝐿𝐾𝑒𝑟𝜑 ≠ 𝑅𝐾𝑒𝑟𝜑. 

𝐵𝜑𝑦 = 0 ⇒ 𝑦 ∈ 𝑅𝐾𝑒𝑟𝜑. Верно и в другую сторону: 

𝑦 ∈ 𝑅𝐾𝑒𝑟𝜑 ⇒ ∀ⅈ 𝜑(𝑒𝑖, 𝑦) = 0 ⇒ ∀ⅈ  𝑒𝑖𝐵𝜑𝑦 = 0 ⇒ 𝐵𝜑𝑦 = 0̅ 

Таким образом, 

𝑦 ∈ 𝑅𝐾𝑒𝑟𝜑 ⇔ 𝐵𝜑𝑦 = 0 

Аналогично, 

𝑥 ∈ 𝐿𝐾𝑒𝑟𝜑 ⇔ 𝐵𝜑
𝑇𝑥 = 0 

Пример билинейной функции 𝜑 такой, что 𝐿𝐾𝑒𝑟𝜑 ≠ 𝑅𝐾𝑒𝑟𝜑: 

Пусть 𝐵𝜑 = (
0 0
1 0

). Тогда 𝐿𝐾𝑒𝑟𝜑 = ⟨(
0
1
)⟩, 𝑅𝐾𝑒𝑟𝜑 = ⟨(

1
0
)⟩. 

Однако, так как ранги 𝐵𝜑 и 𝐵𝜑
𝑇 совпадают, для всякой билинейной функции верно  

𝑑ⅈ𝑚𝐿𝐾𝑒𝑟𝜑 = 𝑑ⅈ𝑚𝑅𝐾𝑒𝑟𝜑 = 𝑛 − 𝑟𝑘𝐵𝜑 

Для приложений важны два вида билинейных функций: симметричные и 

кососимметричные (в дальнейшем будем рассматривать только их).  

Симметричная билинейная функция:  

https://vk.com/teachinmsu
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∀𝑥, 𝑦 ∈ 𝑉:    𝜑(𝑥, 𝑦) = 𝜑(𝑦, 𝑥) ⇒ 𝐵𝜑 = 𝐵𝜑
𝑇 

Кососимметричная билинейная функция:  

∀𝑥, 𝑦 ∈ 𝑉:    𝜑(𝑥, 𝑦) = −𝜑(𝑦, 𝑥) ⇒ −𝐵𝜑 = 𝐵𝜑
𝑇 

Для симметричных и кососимметричных билинейных функций 𝐿𝐾𝑒𝑟𝜑 = 𝑅𝐾𝑒𝑟𝜑. 

Упражнение: верно ли обратное, т.е. следует ли из 𝐿𝐾𝑒𝑟𝜑 = 𝑅𝐾𝑒𝑟𝜑 симметричность 

или кососимметричность билинейной функции? 

Пусть 𝜑 - симметричная или кососимметричная билинейная функция. Говорят, что 

вектора 𝑥 и 𝑦 ортогональны относительно 𝝋, если 𝜑(𝑥, 𝑦) = 0. 

Пусть 𝑈 ∈ 𝑉 – подпространство. Тогда 𝑈⊥𝜑 = {𝑥 ∈ 𝑉: 𝜑(𝑥, 𝑦) = 0 ∀𝑦 ∈ 𝑈} – 

ортогональное дополнение относительно билинейной функции 𝝋. В случае 

вырожденной билинейной функции 𝑈 ∩ 𝑈⊥𝜑 ≠ {0}. 

Квадратичные формы 

С понятием билинейной функции тесно связано понятие квадратичной формы. 

Подставляя в билинейную функцию вектора 𝑥 и 𝑥, где 𝑥 = 𝑥𝑖𝑒𝑖, получаем 

квадратичную форму 𝝋(𝒙, 𝒙) – однородный многочлен 2 степени относительно 𝑥𝑖. 

Матрица квадратичной формы – матрица соответствующей билинейной функции 

𝜑(𝑥, 𝑥).  

Таким образом, по билинейной функции 𝜑(𝑥, 𝑦) однозначно строится квадратичная 

форма 𝜑(𝑥, 𝑥). И наоборот – по квадратичной форме 𝜑(𝑥, 𝑥) можно восстановить 

билинейную функцию 𝜑(𝑥, 𝑦), если 𝑐ℎ𝑎𝑟𝐾 ≠ 2: 

𝜑(𝑥 + 𝑦, 𝑥 + 𝑦) = 𝜑(𝑥, 𝑥) + 2𝜑(𝑥, 𝑦) + 𝜑(𝑦, 𝑦), откуда 

𝜑(𝑥, 𝑦) =
1

2
(𝜑(𝑥 + 𝑦, 𝑥 + 𝑦) − 𝜑(𝑥, 𝑥) − 𝜑(𝑦, 𝑦)) 

Теорема. Над полем действительных чисел любая симметричная билинейная функция 

может быть приведена к диагональному виду: существует базис, в котором 𝐵𝜑 имеет 

вид:  

𝐵𝜑 =

(

  
 

1 . . . 0 . . . 0 0
0 . . . 0 . . . 0 0
0 . . . −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0 0
0 . . . 0 . . . 0 0 )

  
 

 над ℝ и 𝐵𝜑 =

(

  
 

1 . . . 0 . . . 0 0
0 . . . 0 . . . 0 0
0 . . . 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0 0
0 . . . 0 . . . 0 0 )

  
 

 над ℂ 

Пусть 𝑝 – число “1”, 𝑞 – число “-1”, 𝑟 – число “0” в каноническом виде квадратичной 

формы. Тогда 𝑝 + 𝑞 + 𝑟 = 𝑛. 

https://vk.com/teachinmsu
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Теорема инерции: 𝑝, 𝑞, 𝑟 не зависят от способа приведения квадратичной формы к 

каноническому виду. 

Задача 1258 п.6. Методом Лагранжа привести квадратичную функцию к нормальному 

виду, найти матрицу соответствующего линейного преобразования: 

𝑥1
2 + 2𝑥2

2 + 𝑥4
2 + 4𝑥1𝑥2 + 4𝑥1𝑥3 + 2𝑥1𝑥4 + 4𝑥2𝑥3 + 4𝑥2𝑥4 

Решение. 

𝐵𝜑 = (

1 2 2 1
2 2 2 2
2 2 0 0
1 2 0 1

) 

Приводим квадратичную форму к нормальному виду методом Лагранжа: 

𝑥1
2 + 2𝑥2

2 + 𝑥4
2 + 4𝑥1𝑥2 + 4𝑥1𝑥3 + 2𝑥1𝑥4 + 4𝑥2𝑥3 + 4𝑥2𝑥4 = 

= (𝑥1 + 2𝑥2 + 2𝑥3 + 𝑥4)
2 − 2𝑥2

2 − 4𝑥3
2 − 4𝑥2𝑥3 − 4𝑥3𝑥4 = 

= (𝑥1 + 2𝑥2 + 2𝑥3 + 𝑥4)
2 − 2(𝑥2 + 𝑥3)

2 − 2(𝑥3 + 𝑥4)
2 + 2𝑥4

2 

Замена: 

𝑥̃1 = 𝑥1 + 2𝑥2 + 2𝑥3 + 𝑥4 

𝑥̃2 = √2𝑥4 

𝑥̃3 = √2(𝑥2 + 𝑥3) 

𝑥̃4 = √2(𝑥3 + 𝑥4) 

Нормальный вид: 

𝑥̃1
2 + 𝑥̃2

2 − 𝑥̃3
2 − 𝑥̃4

2 

𝐵̃𝜑 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) , 𝐶−1 = (

1 2 2 1

0 0 0 √2

0 √2 √2 0

0 0 √2 √2

) 

Обратите внимание: координаты базиса 𝑥𝑖̃ в базисе 𝑥𝑖 записаны по строкам. 

Ответ: 𝑥̃1
2 + 𝑥̃2

2 − 𝑥̃3
2 − 𝑥̃4

2. 

Квадратичная форма 𝜑(𝑥, 𝑥) называется положительно определенной, если  

𝜑(𝑥, 𝑥) > 0 ∀𝑥 ≠ 0̅ 

Квадратичная форма 𝜑(𝑥, 𝑥) называется отрицательно определенной, если  

https://vk.com/teachinmsu
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𝜑(𝑥, 𝑥) < 0 ∀𝑥 ≠ 0̅ 

Критерий Сильвестра (положительной определенности квадратичной формы): 

Квадратичная форма 𝜑(𝑥, 𝑥) положительно определена ⇔ все угловые миноры 

матрицы 𝐵𝜑 положительны. 

Квадратичная форма 𝜑(𝑥, 𝑥) отрицательно определена ⇔ угловые миноры четного 

порядка матрицы 𝐵𝜑 положительны, а нечетного порядка – отрицательны. 

Задача 1257 п.1. Для квадратичных функций 𝑓 и 𝑔 выяснить, существует ли линейное 

преобразование, переводящее функцию 𝑓 в функцию 𝑔: 

𝑓 = 2𝑥1
2 + 9𝑥2

2 + 3𝑥3
2 + 8𝑥1𝑥2 − 4𝑥1𝑥3 − 10𝑥2𝑥3 

𝑔 = 5𝑦1
2 + 6𝑦2

2 + 12𝑦1𝑦2 

Решение. 

Такая замена будет существовать тогда и только тогда, когда у форм 𝑓 и 𝑔 будет 

одинаковый канонический вид. Приведем 𝑓 и 𝑔 к каноническому виду: 

𝑓 = 2𝑥1
2 + 9𝑥2

2 + 3𝑥3
2 + 8𝑥1𝑥2 − 4𝑥1𝑥3 − 10𝑥2𝑥3 = 

= 2(𝑥1 + 2𝑥2 − 𝑥3)
2 + 𝑥2

2 + 𝑥3
2 − 2𝑥2𝑥3 = 2(𝑥1 + 2𝑥2 − 𝑥3)

2 + ( 𝑥2 + 𝑥3)
2 = 𝑥̃1

2 + 𝑥̃2
2 

𝑔 = 5𝑦1
2 + 6𝑦2

2 + 12𝑦1𝑦2 = 6(𝑦1 + 𝑦2)
2 − 𝑦1

2 = 𝑦̃1
2 − 𝑦̃2

2 

Канонический вид квадратичных форм 𝑓 и 𝑔 не совпадает, значит, такой замены 

координат не существует. 

Ответ: нет. 

  

https://vk.com/teachinmsu
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Семинар 18. Кососимметрическая билинейная функция. 
Задача 1222. Пусть 𝜑 – невырожденная билинейная функция, 𝑙 – линейная функция. 

Показать, что существует вектор 𝑏 такой, что для всех векторов 𝑎 имеет место 

равенство 𝑙(𝑎) = 𝜑(𝑎, 𝑏). 

Решение. 

Пусть  

𝑙(𝑎) = 𝛼1𝑎
1 +⋯+ 𝛼𝑛𝑎

𝑛 = (𝑎1, … , 𝑎𝑛) (

𝛼1
. . .
𝛼𝑛
) 

𝜑(𝑎, 𝑏) == (𝑎1, … , 𝑎𝑛)𝐵𝜑 (
𝑏1

. . .
𝑏𝑛
) 

Тогда должно выполняться 

𝐵𝜑 (
𝑏1

. . .
𝑏𝑛
) = (

𝛼1
. . .
𝛼𝑛
) 

Так как матрица 𝐵𝜑 невырождена, то для любого столбца (

𝛼1
. . .
𝛼𝑛
) такая система будет 

иметь решение. 

Задача 1265 п.1. Найти все значения параметра 𝑎, при которых данная квадратичная 

форма положительно определена: 

5𝑥1
2 + 𝑥2

2 + 𝑎𝑥3
2 + 4𝑥1𝑥2 − 2𝑥1𝑥3 − 2𝑥2𝑥3 

Решение. 

Матрица квадратичной формы: 

𝐵𝜑 = (
5 2 −1
2 1 −1
−1 −1 𝑎

) 

Воспользуемся критерием Сильвестра: все угловые миноры матрицы 𝐵𝜑 должны быть  

положительны. 

|𝑄1| = 5 > 0, |𝑄2| = |
5 2
2 1

| = 1 > 0, |𝑄3| = |
5 2 −1
2 1 −1
−1 −1 𝑎

| = 𝑎 − 2 > 0 при 𝑎 > 2. 

Ответ: при 𝑎 > 2. 

Задача 1264. В пространстве ℝ1[𝑥] многочленов степени не выше 1 дана квадратичная 

функция 

https://vk.com/teachinmsu
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𝜑(𝑃) = ∫𝑃2(𝑥)(𝑥 − 1) 𝑑𝑥

𝑎

0

 

где𝑎 > 0. В зависимости от значений параметра 𝑎 найти индекс инерции квадратичной 

формы: 

Решение.  

Пусть 𝑃(𝑥) = 𝜆 + 𝜇𝑥. Тогда 𝜑(𝑃) – квадратичная форма от 𝜆 и 𝜇. 

∫(𝜆 + 𝜇𝑥)2(𝑥 − 1) 𝑑𝑥

𝑎

0

= ∫(𝜇2𝑥3 + (2𝜆𝜇 − 𝜇2)𝑥2 + (𝜆2 − 2𝜆𝜇)𝑥 − 𝜆2) 𝑑𝑥

𝑎

0

= 

=
𝜇2

4
𝑎4 +

(2𝜆𝜇 − 𝜇2)

3
𝑎3 +

(𝜆2 − 2𝜆𝜇)

2
𝑎2 − 𝜆2𝑎 = 

= 𝜆2(
𝑎2

2
− 𝑎) + 2𝜆𝜇(

𝑎3

3
−
𝑎3

2
) + 𝜆2(

𝑎4

4
−
𝑎3

3
) 

Тогда 

𝐵𝜑 =

(

 
(
𝑎2

2
− 𝑎) (

𝑎3

3
−
𝑎3

2
)

(
𝑎3

3
−
𝑎3

2
) (

𝑎4

4
−
𝑎3

3
)
)

  

Получаем, что 𝜑(𝑃) положительно определена (учитывая, что по условию , 𝑎 > 0) при:  

{
|𝑄1| =

𝑎2

2
− 𝑎 > 0

|𝑄2| = 𝑑𝑒𝑡𝐵𝜑 > 0
⇔ {

𝑎 ∈ (2,+∞)

𝑎2 − 6𝑎 + 6 > 0 > 0
⇔ {

𝑎 ∈ (2,+∞)

𝑎 ∈ (0, 3 − √3) ∪ (3 + √3,+∞)
⇔ 

𝑎 ∈ (3 + √3,+∞) - при таких значениях 𝑎 получаем сигнатуру (+,+). 

𝜑(𝑃) отрицательно определена при: 

{
|𝑄1| =

𝑎2

2
− 𝑎 < 0

|𝑄2| = 𝑑𝑒𝑡𝐵𝜑 > 0
⇔ {

𝑎 ∈ (0, 2)

𝑎2 − 6𝑎 + 6 > 0 > 0
⇔ {

𝑎 ∈ (2,+∞)

𝑎 ∈ (0, 3 − √3) ∪ (3 + √3,+∞)
⇔ 

𝑎 ∈ (0, 3 − √3) - при таких значениях 𝑎 получаем сигнатуру (−,−). 

Тогда при 𝑎 ∈ (3 − √3, 3 + √3) 𝜑(𝑃) знаконеопределенна – получаем сигнатуру (+,−). 

Из соображений непрерывности получаем, что в точках 𝑎 = 3 − √3 и 𝑎 = 3 + √3  

𝜑(𝑃) имеет сигнатуру (0, −) и (+, 0) соответственно. 

https://vk.com/teachinmsu
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Ответ: при 𝑎 ∈ (0, 3 − √3) сигнатура (−,−), при 𝑎 = 3 − √3 сигнатура (0, −),  

при 𝑎 ∈ (3 − √3, 3 + √3) сигнатура (+,−), при 𝑎 = 3 + √3 сигнатура (+, 0),  

при 𝑎 ∈ (3 + √3,+∞) сигнатура (+,+). 

Приведение кососимметрической билинейной функции к каноническому виду 

Для любой кососимметрической билинейной функции 𝜑 существует базис, в котором 

ее матрица имеет блочно-диагональный вид: 

(

 
 
 

(
0 1
−1 0

) 0 . . . . . . 0

0 (
0 1
−1 0

) . . . . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . . . . 0
0 . . . . . . 0 0 )

 
 
 

 

𝜑(𝑥̃, 𝑦̃) = 𝑥̃1𝑦̃2 − 𝑥̃2𝑦̃1 + 𝑥̃3𝑦̃4 − 𝑥̃4𝑦̃3 +⋯ 

Отсюда, в частности, следует, что кососимметрическая билинейная функция в 

пространствах нечетной размерности всегда вырождена. 

Задача 1261 п.1. Привести кососимметрическую билинейную функцию к 

каноническому виду (с нахождением преобразования): 

𝑥1𝑦2 + 2𝑥1𝑦3 − 𝑥2𝑦1 − 2𝑦1𝑥3 + 𝑥2𝑦3 − 𝑥3𝑦2 

Решение. 

𝑥1𝑦2 + 2𝑥1𝑦3 − 𝑥2𝑦1 − 2𝑦1𝑥3 + 𝑥2𝑦3 − 𝑥3𝑦2 = 

= 𝑥1(𝑦2 + 2𝑦3) − 𝑦1(𝑥2 + 2𝑥3) + 𝑥2𝑦3 − 𝑥3𝑦2 

Сделаем замену 𝑥̃2 = 𝑥2 + 2𝑥3, 𝑦̃2 = 𝑦2 + 2𝑦3, получим 

𝑥1𝑦̃2 − 𝑦1𝑥̃2 + (𝑥̃2 − 2𝑥3)𝑦3 − 𝑥3(𝑦̃2 − 2𝑦3) = (𝑥1 − 𝑥3)𝑦̃2 − (𝑦1 − 𝑦3)𝑥̃2 

Сделаем замену 𝑥̃1 = 𝑥1 − 𝑥3, 𝑦̃1 = 𝑦1 − 𝑦3, получим 

𝑥̃1𝑦̃2 − 𝑦̃1𝑥̃2 

Таким образом, 

𝐵𝜑 = (
0 1 0
−1 0 0
0 0 0

) 

Замена: 

{
𝑥̃1 = 𝑥1 − 𝑥3
𝑥̃2 = 𝑥2 + 𝑥3
𝑥̃3 = 𝑥3          

,  откуда  {
𝑥1 = 𝑥̃1 + 𝑥̃2   
𝑥2 = 𝑥̃1 − 2𝑥̃3
𝑥3 = 𝑥̃3            

  и  матрица перехода 𝐶 = (
1 0 1
0 1 −2
0 0 1

) 

https://vk.com/teachinmsu
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Ответ: 𝑥̃1𝑦̃2 − 𝑦̃1𝑥̃2. 

Приведение пары форм к каноническому виду. 1 способ. 

Пусть 𝜑 и 𝜓 – квадратичные формы, 𝜑 – положительно определенная квадратичная 

форма.  

Задача: одним преобразованием привести матрицу 𝜑 к единичной матрице, матрицу 𝜓 

к диагональному виду.  

Пусть 𝑒1, … , 𝑒𝑛 – базис. 

1) Методом Лагранжа приводим 𝜑 к нормальному виду: 𝐶1: {𝑒1, … , 𝑒𝑛} →

{𝑒̃1, … , 𝑒̃𝑛}: 

𝜑:  𝐵̃𝜑 = 𝐶1
𝑇𝐵𝜑𝐶1 = 𝐸 

𝜓:  𝐵̃𝜓 = 𝐶1
𝑇𝐵𝜓𝐶1 

2) Ортогональной заменой приводим 𝜓 к диагональному виду: 𝐶2: {𝑒̃1, … , 𝑒̃𝑛} →

{𝑒̃1̃, … , 𝑒̃𝑛̃}: 

𝜑:  𝐵̃𝜑
̃ = 𝐶2

𝑇𝐵̃𝜑𝐶2 = 𝐸 (так как 𝐶2  −  ортогональная матрица) 

𝜓:  𝐵̃𝜑
̃ = 𝐶2

𝑇𝐵̃𝜓𝐶2 = diag(𝜆1, … , 𝜆𝑛) 

Почему существует ортогональное преобразование, приводящее билинейную функцию 

к диагональному виду? Дело в том, что при ортогональных преобразованиях матрица 

оператора и матрица билинейной функции преобразуются одинаково: 

Пусть 𝜓 – билинейная функция, 𝐵𝜓 – ее матрица в базисе 𝑒1, … , 𝑒𝑛. В этом же базисе 

рассмотрим линейный оператор  

𝑓: 𝑉 → 𝑉:    𝐴𝑓 = 𝐵𝜓 

𝐴𝑓 = 𝐵𝜓 – симметрическая матрица, значит, 𝑓 – самосопряженный оператор (при 

стандартном скалярном произведении), значит, существует ортонормированный базис 

{𝑒̃1, … , 𝑒̃𝑛}, в котором 𝐴𝑓 = diag(𝜆1, … , 𝜆𝑛). 

Пусть 𝐶 – матрица перехода (𝐶 ортогональна, так как это матрица перехода от одного 

ортогонального базиса к другому). Тогда 

𝐵̃𝜓 = 𝐶
𝑇𝐵𝜓𝐶 = 𝐶𝑇𝐴𝑓𝐶 = 𝐶

−1𝐴𝑓𝐶 = 𝐴̃𝑓 = diag(𝜆1, … , 𝜆𝑛) 

Таким образом, в этом базисе матрица билинейной функции тоже будет ортогональной. 

Значит, для любой симметричной билинейной функции существует ортогональное 

преобразование, с помощью которого она диагонализируется. 

https://vk.com/teachinmsu
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Задача 1661 п.9. Найти ортогональное преобразование, приводящее квадратичную 

форму к каноническому виду и указать канонический вид: 

3𝑥1
2 + 3𝑥2

2 + 3𝑥3
2 + 3𝑥4

2 + 2𝑥1𝑥3 − 4𝑥1𝑥4 − 4𝑥2𝑥3 + 2𝑥2𝑥4 

Решение. 

𝐵𝜑 = (

3 0 1 −2
0 3 −2 1
1 −2 3 0
−2 1 0 3

) 

Находим собственные значения (обратите внимание, что формально мы находим 

собственные значения матрицы соответствующего оператора, а не квадратичной 

формы): 

|

3 − 𝜆 0 1 −2
0 3 − 𝜆 −2 1
1 −2 3 − 𝜆 0
−2 1 0 3 − 𝜆

| = 0 ⇔ (3 − 𝜆)4 − 10(3 − 𝜆)2 + 9 = 0 

Получаем корни: 𝜆1 = 2, 𝜆2 = 4, 𝜆3 = 6, 𝜆4 = 0.   

Находим собственные векторы: 

𝜆1 = 2: 

𝐵𝜑 − 𝜆1𝐸 = (

1 0 1 −2
0 1 −2 1
1 −2 1 0
−2 1 0 1

)~(

1 0 1 −2
0 1 −2 1
0 −2 0 2
0 1 2 −3

)~(

1 0 1 −2
0 1 −2 1
0 0 1 −1
0 0 0 0

) 

Получаем собственный вектор 𝑣1 = (

1
1
1
1

). Нормируя, получаем 𝑒1 =
1

2
(

1
1
1
1

). 

𝜆2 = 4: 

𝐵𝜑 − 𝜆2𝐸 = (

−1 0 1 −2
0 −1 −2 1
1 −2 −1 0
−2 1 0 −1

)~(

1 0 −1 2
0 1 2 −1
0 −2 0 −2
0 1 −2 3

)~(

1 0 −1 2
0 1 2 −1
0 0 1 −1
0 0 0 0

) 

Получаем собственный вектор 𝑣2 = (

−1
−1
1
1

). Нормируя, получаем 𝑒2 =
1

2
(

−1
−1
1
1

). 

𝜆3 = 6: 

https://vk.com/teachinmsu
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𝐵𝜑 − 𝜆3𝐸 = (

−3 0 1 −2
0 −3 −2 1
1 −2 −3 0
−2 1 0 −3

)~(

1 −2 −3 0
0 3 2 −1
0 3 4 1
0 1 2 1

)~(

1 −2 −3 0
0 3 2 −1
0 0 1 1
0 0 0 0

) 

Получаем собственный вектор 𝑣3 = (

1
−1
1
−1

). Нормируя, получаем 𝑒3 =
1

2
(

1
−1
1
−1

). 

𝜆4 = 0: 

𝐵𝜑 − 𝜆4𝐸 = (

3 0 1 −2
0 3 −2 1
1 −2 3 0
−2 1 0 3

)~(

1 −2 3 0
0 1 −2 −1
0 3 −2 1
0 3 −4 −1

)~(

1 −2 3 0
0 1 −2 −1
0 0 1 1
0 0 0 0

) 

Получаем собственный вектор 𝑣4 = (

1
−1
−1
1

). Нормируя, получаем 𝑒4 =
1

2
(

1
−1
−1
1

). 

Получаем 

𝐶 =
1

2
(

1 −1 1 1
1 −1 −1 −1
1 1 1 −1
1 1 −1 1

) 

Ортогональное преобразование: 

(

𝑥1
𝑥2
𝑥3
𝑥4

) = 𝐶 (

𝑥̃1
𝑥̃2
𝑥̃3
𝑥̃4

) 

Канонический вид: 

2𝑥̃1
2 + 4𝑥̃2

2 + 6𝑥̃3
2 

Ответ: 2𝑥̃1
2 + 4𝑥̃2

2 + 6𝑥̃3
2. 
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Семинар 19. Приведение пары форм к каноническому виду. 
Задача 1669 п.4. Для данной пары квадратичных функций выяснить, какая из них 

является положительно определенной, и найти преобразование координат, приводящее 

эту функцию к нормальному, а другую – к каноническому виду; указать этот 

канонический вид: 

𝑓 =  15𝑥2
2 − 15𝑥3

2  − 36𝑥1𝑥2 − 60𝑥1𝑥3 + 16𝑥2𝑥3 

𝑔 = 9𝑥1
2 + 13𝑥2

2 + 14𝑥3
2 − 12𝑥1𝑥2 + 6𝑥1𝑥3 + 8𝑥2𝑥3 

Решение. 

Форма 𝑔 положительно определена (по критерию Сильвестра). Методом Лагранжа 

приведем ее к каноническому виду: 

𝑔 = 9𝑥1
2 + 13𝑥2

2 + 14𝑥3
2 − 12𝑥1𝑥2 + 6𝑥1𝑥3 + 8𝑥2𝑥3 = 

= (3𝑥1 − 2𝑥2 + 𝑥3)
2 + 9𝑥2

2 + 13𝑥3
2 + 12𝑥2𝑥3 = (3𝑥1 − 2𝑥2 + 𝑥3)

2 + (3𝑥2 + 2𝑥3)
2 + 9𝑥3

2 

Замена: 

{

𝑥̃1 = 3𝑥1 − 2𝑥2 + 𝑥3
𝑥̃2 = 3𝑥2 + 2𝑥3          
𝑥̃3 = 3𝑥3                      

,  откуда  

{
 
 

 
 𝑥1 =

1

3
𝑥̃1 +

2

9
𝑥̃2 −

7

27
𝑥̃3   

𝑥2 =
1

3
𝑥̃2 −

2

9
𝑥̃3              

𝑥3 =
1

3
𝑥̃3                          

  и  матрица перехода  

𝐶1 =
1

27
(
9 6 −7
0 9 −6
0 0 9

) 

Тогда 

𝐵̃𝑓 = 𝐶1
𝑇𝐵𝑓𝐶1 =

1

729
(
9 0 0
6 9 0
−7 −6 9

)(
0 −18 −30
−18 15 8
−30 8 −15

)(
9 6 −7
0 9 −6
0 0 9

) = 

= (
0 −2 −2
−2 −1 0
−2 0 1

) 

Теперь ортогональной заменой приводим квадратичную форму 𝑓 к диагональному 

виду. 

Находим собственные значения: 

|𝐵̃𝑓 − 𝜆𝐸| = |
−𝜆 −2 −2
−2 −1 − 𝜆 0
−2 0 1 − 𝜆

| = 0 ⇔ 𝜆(3 − 𝜆)(3 + 𝜆) = 0 

Получаем корни: 𝜆1 = 0, 𝜆2,3 = ±3. 

https://vk.com/teachinmsu
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Ищем собственные векторы: 

𝜆1 = 0: 

𝐵̃𝑓 − 𝜆1𝐸 = (
0 −2 −2
−2 −1 0
−2 0 1

)~(
2 0 −1
0 1 1
0 0 0

) 

Получаем собственный вектор 𝑣1 = (
1
−2
2
). Нормируя, получаем 𝑒1 =

1

3
(
1
−2
2
). 

𝜆2 = 3: 

𝐵̃𝑓 − 𝜆2𝐸 = (
−3 −2 −2
−2 −4 0
−2 0 −2

)~(
1 2 0
0 2 −1
0 0 0

) 

Получаем собственный вектор 𝑣2 = (
−2
1
2
). Нормируя, получаем 𝑒2 =

1

3
(
−2
1
2
). 

𝜆3 = −3: 

𝐵̃𝑓 − 𝜆3𝐸 = (
3 −2 −2
−2 2 0
−2 0 4

)~(
1 0 −2
0 1 −2
0 0 0

) 

Получаем собственный вектор 𝑣3 = (
2
2
1
). Нормируя, получаем 𝑒3 =

1

3
(
2
2
1
). 

Тогда 

𝐶2 =
1

3
(
1 −2 2
−2 1 2
2 2 1

) 

Канонический вид 𝑓: 

3𝑥̃̃2
2 − 3𝑥̃̃3

2 

Замена, приводящая к этому каноническому виду: 

𝐶 = 𝐶1𝐶2 =
1

81
(
9 6 −7
0 9 −6
0 0 9

)(
1 −2 2
−2 1 2
2 2 1

) =
1

81
(
−17 −26 23
−30 −3 12
18 18 9

) 

Ответ: 𝐶 =
1

81
(
−17 −26 23
−30 −3 12
18 18 9

). 

https://vk.com/teachinmsu
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Приведение пары форм к каноническому виду. 2 способ. 

Пусть 𝜑 и 𝜓 – квадратичные формы, 𝜑 – положительно определенная квадратичная 

форма. Обобщенный характеристический многочлен: 

𝑑𝑒𝑡(𝐵𝜓 − 𝜆𝐵𝜑) = 0 

Его корни 𝜆1, … , 𝜆𝑛 – коэффициенты при 𝑥𝑖
2 в каноническом виде 𝜓. 

Обобщенные собственные вектора 𝑒𝑖̃ – нормированные относительно 𝜑 вектора, 

удовлетворяющие условию 

(𝐵𝜓 − 𝜆𝑖𝐵𝜑)𝑒𝑖̃ = 0 

Тогда в базисе 𝑒̃1, … , 𝑒̃𝑛 

𝜑 = 𝑥̃1
2 +⋯+ 𝑥̃𝑛

2 

𝜓 = 𝜆1𝑥̃1
2 +⋯+ 𝜆𝑛𝑥̃𝑛

2 

Задача 1669 п.1. Для данной пары квадратичных функций выяснить, какая из них 

является положительно определенной, и найти преобразование координат, приводящее 

эту функцию к нормальному, а другую – к каноническому виду; указать этот 

канонический вид: 

𝑓 =  𝑥1
2 + 6𝑥2

2 − 2𝑥3
2  + 6𝑥1𝑥2 + 2𝑥2𝑥3 

𝑔 = 𝑥1
2 + 2𝑥2

2 + 2𝑥3
2 + 2𝑥1𝑥2 + 6𝑥1𝑥3 − 2𝑥2𝑥3 

 Решение. 

𝐵𝑓 = (
1 3 0
3 6 1
0 1 −2

) , 𝐵𝑔 = (
1 1 0
1 2 −1
0 −1 2

) 

|𝐵𝑓 − 𝜆𝐵𝑔| = |
1 − 𝜆 3 − 𝜆 0
3 − 𝜆 6 − 2𝜆 1 + 𝜆
0 1 + 𝜆 −2 − 2𝜆

| = 0 ⇔ −(𝜆 + 1)2(𝜆 − 5) = 0 

Получаем корни: 𝜆1,2 = −1, 𝜆3 = 5. 

Матрица канонического вида 𝑓: 

𝐵̃𝑓 = (
−1 0 0
0 −1 0
0 0 5

) 

Ищем собственные векторы: 

𝜆3 = 5: 

https://vk.com/teachinmsu
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𝐵𝑓 − 𝜆3𝐵𝑔 = (
−4 −2 0
−2 −4 6
0 6 −12

)~(
2 1 0
0 1 −2
0 0 0

) 

Получаем собственный вектор 𝑣3 = (
−1
2
1
). Нормируем относительно 𝑔, получаем  

𝑣3
𝑇𝐵𝑔𝑣3 = (−1, 2, 1) (

1 1 0
1 2 −1
0 −1 2

)(
−1
2
1
) = 3. 

Тогда 𝑒3 =
1

√3
(
−1
2
1
). 

𝜆1,2 = −1: 

𝐵𝑓 − 𝜆1𝐵𝑔 = (
2 4 0
4 8 0
0 0 0

)~(
1 2 0
0 0 0
0 0 0

) 

Выберем собственный вектор 𝑣1 = (
0
0
1
). Нормируем относительно 𝑔, получаем  

𝑣1
𝑇𝐵𝑔𝑣1 = (0, 0, 1) (

1 1 0
1 2 −1
0 −1 2

)(
0
0
1
) = 2. 

Тогда 𝑒1 =
1

√2
(
0
0
1
). 

Собственный вектор 𝑣2 = (

𝑥1
𝑥2
𝑥3
) должен занулять матрицу 𝐵𝑓 − 𝜆1𝐵𝑔 и быть 

ортогональным вектору 𝑣1 относительно скалярного произведения, задаваемого 

матрицей 𝐵𝑔, то есть, должно выполняться: 

𝑣1
𝑇𝐵𝑔𝑣2 = 0 ⇔ (0, 0, 1) (

1 1 0
1 2 −1
0 −1 2

)(

𝑥1
𝑥2
𝑥3
) = 0 ⇔ −𝑥2 + 2𝑥3 = 0 

Получаем систему уравнений для определения 𝑥1, 𝑥2, 𝑥3, ее матрица: 

(
1 2 0
0 −1 2

) 

Выберем собственный вектор 𝑣2 = (
−4
2
1
). Нормируем относительно 𝑔, получаем  

https://vk.com/teachinmsu
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𝑣2
𝑇𝐵𝑔𝑣2 = (−4, 2, 1) (

1 1 0
1 2 −1
0 −1 2

)(
−4
2
1
) = 6. 

Тогда 𝑒2 =
1

√6
(
−4
2
1
).  

Замена, приводящая к каноническому виду: 

𝐶 = (

0 −4/√6 −1/√3

0 2/√6 2/√3

1/√2 1/√6 1/√3

). 

Ответ: 𝐶 = (

0 −4/√6 −1/√3

0 2/√6 2/√3

1/√2 1/√6 1/√3

). 

Гиперповерхности второго порядка в ℝ𝑛 

В аналитической геометрии мы приводили к каноническому виду поверхности второго 

порядка в ℝ3. Посмотрим, как обстоят дела в пространствах большей размерности.  

Пусть ℝ𝑛 – аффинное пространство, гиперповерхность 2 порядка задается уравнением  

𝐹(𝑥1, … , 𝑥𝑛) = 0 

𝑑𝑒𝑔𝐹 = 2, 𝐹 = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗
1≤𝑖≤𝑗≤𝑛

+∑𝑏𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝐶 

Приведение к каноническому виду с аффинной точки зрения: методом Лагранжа 

приводим квадратичную часть ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗
1≤𝑖≤𝑗≤𝑛

 к каноническому виду. 

Приведение к каноническому виду ортогональными преобразованиями: приводим 

квадратичную форму ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗
1≤𝑖≤𝑗≤𝑛

 ортогональными преобразованиями к 

диагональному виду 

𝑄 = 𝜆1𝑥̃1
2 +⋯+ 𝜆𝑛𝑥̃𝑛

2 

Рассмотрим случаи: 

 Все 𝜆𝑖 ≠ 0. Избавляемся от линейной части ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1  сдвигом, получаем 

𝜆1𝑥̃1
2 +⋯+ 𝜆𝑛𝑥̃𝑛

2 = 𝜏 

1) 𝜏 ≠ 0. В зависимости от знаков 𝜆𝑖 получаем аналог эллипсоида или 

гиперболоида. 

https://vk.com/teachinmsu
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2) 𝜏 = 0. Получаем аналог конуса. 

 𝜆1, … , 𝜆𝑘 ≠ 0, 𝜆𝑘+1 = ⋯ = 𝜆𝑛 = 0. Избавляемся от линейной части ∑ 𝑏𝑖𝑥𝑖
𝑘
𝑖=1  

сдвигом, делаем замену (ортогональную) 

𝑥𝑘+1̃̃~𝑏̃𝑘+1𝑥̃𝑘+1 +⋯+ 𝑏̃𝑛𝑥̃𝑛 

      Получаем 

𝜆1𝑥1̃̃
2
+⋯+ 𝜆𝑘𝑥𝑘̃̃

2
+ 𝑏𝑥𝑘+1̃̃ + 𝐶̃ = 0 

1) 𝑏 ≠ 0. Сдвигом избавляемся от 𝐶̃, получаем либо аналог параболоида, либо 

цилиндр над параболоидом. 

2) 𝑏 = 0, 𝐶̃ ≠ 0. Получаем цилиндр над эллипсоидом. 

3) 𝑏 = 0, 𝐶̃ = 0. Получаем цилиндр над конусом (что бы это ни значило). 

Таким образом, в ℝ𝑛 при 𝑛 > 3 не появляется принципиально новых 

гиперповерхностей второго порядка, классификация похожа на классификацию в ℝ3. 

  

https://vk.com/teachinmsu
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Семинар 20. Операторы, сохраняющие билинейные функции. 
Задача 1677. Определить аффинный тип сечения поверхности 

𝑥1
2 − 𝑥2

2 − 𝑥3
2 + 𝑥4

2 − 2𝑥1𝑥4 − 2𝑥2𝑥3 + 2𝑥1 − 2𝑥3 − 2𝑥4 + 1 = 0 

плоскостью 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1. 

Решение. 

Выразим из уравнения плоскости 𝑥4 и подставим в уравнение поверхности: 

𝑥4 = 1 − 𝑥1 − 𝑥2 − 𝑥3 

𝑥1
2 − 𝑥2

2 − 𝑥3
2 + (1 − 𝑥1 − 𝑥2 − 𝑥3)

2 − 2𝑥1(1 − 𝑥1 − 𝑥2 − 𝑥3) − 2𝑥2𝑥3 + 2𝑥1 − 2𝑥3 − 

−2(1 − 𝑥1 − 𝑥2 − 𝑥3) + 1 = 0 ⇔ 

4𝑥1
2 + 4𝑥1𝑥2 + 4𝑥1𝑥3 − 4𝑥1 − 4𝑥2 − 6𝑥3 − 1 = 0 ⇔ 

(2𝑥1 + 𝑥2 + 𝑥3)
2 − 𝑥2

2 − 𝑥3
2 − 2𝑥2𝑥3 − 4𝑥1 − 4𝑥2 − 6𝑥3 − 1 = 0 ⇔ 

(2𝑥1 + 𝑥2 + 𝑥3)
2 − (𝑥2 + 𝑥3)

2 − 4𝑥1 − 4𝑥2 − 6𝑥3 − 1 = 0 

Сделаем замену {
𝑥̃1 = 2𝑥1 + 𝑥2 + 𝑥3
𝑥̃2 = 𝑥2 + 𝑥3            
𝑥̃3 = 𝑥3                      

, тогда {
𝑥1 =

1

2
𝑥̃1 −

1

2
𝑥̃2 

𝑥2 = 𝑥̃2 − 𝑥̃3      
𝑥3 = 𝑥̃3               

 . 

Получим: 

𝑥̃1
2 − 𝑥̃2

2 − 2𝑥̃1 − 2𝑥̃2 − 2𝑥̃3 − 1 = 0 ⇔ 

(𝑥̃1 − 1)
2 − (𝑥̃2 + 1)

2 − 2𝑥̃3 − 1 = 0 

Сделаем замену {

𝑥1̃̃ = 𝑥̃1 − 1

𝑥2̃̃ = 𝑥̃2 + 1

𝑥3̃̃ = 𝑥̃3 +
1

2
 

  получим: 

𝑥1̃̃
2
− 𝑥2̃̃

2
= 2𝑥3̃̃ – гиперболический параболоид. 

Ответ: гиперболический параболоид. 

Операторы, сохраняющие билинейные функции 

Пусть 𝜑 – билинейная (полуторалинейная) функция на 𝑉,  𝑓: 𝑉 → 𝑉 – линейный 

оператор. 

𝒇 сохраняет 𝝋 (обобщение класса операторов, сохраняющих скалярное произведение), 

если: 

∀𝑥, 𝑦 ∈ 𝑉    𝜑(𝑓(𝑥), 𝑓(𝑦)) = 𝜑(𝑥, 𝑦) 

https://vk.com/teachinmsu
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Для базисных векторов: 

𝜑 (𝑓(𝑒𝑖), 𝑓(𝑒𝑗)) = 𝜑(𝑒𝑖, 𝑒𝑗) = 𝜑(𝑎𝑖
𝑘𝑒𝑘, 𝑎𝑗

𝑙𝑒𝑙) = 𝑏𝑖𝑗 

Где 𝐵𝜑 = (𝑏𝑖𝑗) – матрица 𝜑 в этом базисе. Получаем необходимое и достаточное 

условие сохранения оператором 𝑓 билинейной функции 𝜑: 

𝑎̅𝑖
𝑘𝑎𝑗

𝑙𝑏𝑘𝑙 = 𝑏𝑖𝑗 

Или, в матричном виде: 

𝐴𝑇̅̅̅̅ 𝐵𝜑𝐴 = 𝐵𝜑 

Операторы, сохраняющие произвольную невырожденную билинейную функцию 𝜑, 

образуют группу. Некоторые примеры: 

Если 𝐵𝜑 = 𝐸, получаем ортогональные и унитарные операторы: 

𝑂(𝑛) = {𝐴 ∈ 𝑀𝑎𝑡𝑛(ℝ): 𝐴
𝑇𝐴 = 𝐸} – ортогональная группа, 𝑑𝑒𝑡 𝐴 = ±1, 

𝑈(𝑛) = {𝐴 ∈ 𝑀𝑎𝑡𝑛(ℂ): 𝐴𝑇̅̅̅̅ 𝐴 = 𝐸} – унитарная группа, |𝑑𝑒𝑡 𝐴| = 1, 

Если 𝐵𝜑 = 𝐸𝑝,𝑞, получаем псевдоортогональные и псевдоунитарные операторы: 

𝐸𝑝,𝑞 = (
𝐸𝑝×𝑝 0

0 −𝐸𝑞×𝑞
), 𝐸𝑝×𝑝 и 𝐸𝑞×𝑞 – единичные матрицы соответствующего размера, 

𝑂(𝑝, 𝑞) = {𝐴 ∈ 𝑀𝑎𝑡𝑛(ℝ): 𝐴
𝑇𝐸𝑝,𝑞𝐴 = 𝐸𝑝,𝑞} – псевдоортогональная группа, 𝑑𝑒𝑡 𝐴 = ±1, 

𝑈(𝑝, 𝑞) = {𝐴 ∈ 𝑀𝑎𝑡𝑛(ℂ): 𝐴𝑇̅̅̅̅ 𝐸𝑝,𝑞𝐴 = 𝐸𝑝,𝑞} – псевдоунитарная группа, |𝑑𝑒𝑡 𝐴| = 1, 

Если 𝐵𝜑 - кососимметрическая матрица, получаем симплектическую группу: 

𝐵𝜑 = 𝛺 = (
0 𝐸𝑛×𝑛

−𝐸𝑛×𝑛 0
) 

𝑆𝑝(2𝑛) = {𝐴 ∈ 𝑀𝑎𝑡2𝑛(ℝ): 𝐴
𝑇𝛺𝐴 = 𝛺} – симплектическая группа, 𝑑𝑒𝑡 𝐴 = 1. 

Некоторые важные частные случаи: 

𝑆𝑂(𝑛) = {𝐴 ∈ 𝑂(𝑛): 𝑑𝑒𝑡 𝐴 = 1} 

𝑆𝑈(𝑛) = {𝐴 ∈ 𝑈(𝑛): 𝑑𝑒𝑡 𝐴 = 1} 

𝑆𝑂(𝑝, 𝑞) = {𝐴 ∈ 𝑂(𝑝, 𝑞): 𝑑𝑒𝑡 𝐴 = 1} 

𝑆𝑈(𝑝, 𝑞) = {𝐴 ∈ 𝑈(𝑝, 𝑞): 𝑑𝑒𝑡 𝐴 = 1} 

Для полноты картины следует еще упомянуть о группах: 

𝐺𝐿(𝑛, 𝐾) = {𝐴 ∈ 𝑀𝑎𝑡𝑛(𝐾): det 𝐴 ≠ 0} 
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𝑆𝐿(𝑛, 𝐾) = {𝐴 ∈ 𝑀𝑎𝑡𝑛(𝐾): 𝑑𝑒𝑡 𝐴 = 1} 

Опишем некоторые из этих групп в случае малой размерности. 

Ортогональные матрицы 

𝑛 = 1 – тривиальный случай: 

𝑂(1) = {1,−1} 

𝑛 = 2 – ортогональные матрицы 2 × 2: 

Пусть 𝐴 = (
𝑎 𝑏
𝑐 𝑑

). Так как должно выполняться  

𝐴𝑇𝐴 = 𝐸 ⇔ (
𝑎 𝑐
𝑏 𝑑

) (
𝑎 𝑏
𝑐 𝑑

) = (𝑎
2 + 𝑐2 𝑎𝑏 + 𝑐𝑑
𝑎𝑏 + 𝑐𝑑 𝑏2 + 𝑑2

) = (
1 0
0 1

) 

получаем 

{
𝑎2 + 𝑐2 = 1
𝑎𝑏 + 𝑐𝑑 = 0
𝑏2 + 𝑑2 = 1

 

Пусть 𝜑 ∈ (0, 𝜋). Тогда из первого уравнения системы следует, что 𝑎 = 𝑐𝑜𝑠 𝜑 , 𝑐 =

±𝑠ⅈ𝑛 𝜑 

Второе уравнение системы – условие ортогональности векторов (𝑎, 𝑐) и (𝑏, 𝑑), вкупе с 

третьим уравнением системы это дает нам два случая:  

 𝑏 = ∓𝑠ⅈ𝑛𝜑, 𝑑 = 𝑐𝑜𝑠 𝜑 – поворот, 𝐴 = (
𝑐𝑜𝑠 𝜑 ± 𝑠ⅈ𝑛𝜑

∓ 𝑠ⅈ𝑛𝜑 𝑐𝑜𝑠 𝜑
) 

 𝑏 = ±𝑠ⅈ𝑛𝜑, 𝑑 = −𝑐𝑜𝑠 𝜑 – поворот с отражением, 𝐴 = (
𝑐𝑜𝑠 𝜑 ± 𝑠ⅈ𝑛𝜑
± 𝑠ⅈ𝑛𝜑 − 𝑐𝑜𝑠 𝜑

) 

Таким образом, 𝑂(2) состоит из двух подмножеств с 𝑑𝑒𝑡 𝐴 = 1 и 𝑑𝑒𝑡 𝐴 = −1. 

Псевдоортогональные матрицы 

Псевдоортогональные матрицы 𝑂(1,1) 

Пусть 𝐴 = (
𝑎 𝑏
𝑐 𝑑

). Так как должно выполняться  

𝐴𝑇𝐸1,1𝐴 = 𝐸1,1 ⇔ (
𝑎 𝑐
𝑏 𝑑

) (
1 0
0 −1

) (
𝑎 𝑏
𝑐 𝑑

) = (𝑎
2 − 𝑐2 𝑎𝑏 − 𝑐𝑑
𝑎𝑏 − 𝑐𝑑 𝑏2 − 𝑑2

) = (
1 0
0 −1

) 

получаем 

{
𝑎2 − 𝑐2 = 1   
𝑎𝑏 − 𝑐𝑑 = 0   
𝑏2 − 𝑑2 = −1

 

Из первого уравнения системы следует, что 𝑎 = ± ch𝜓 , 𝑐 = sh𝜓,  

из третьего уравнения системы следует, что 𝑑 = ± ch𝜃 , 𝑏 = sh 𝜃. 

https://vk.com/teachinmsu


 

 ЛИНЕЙНАЯ АЛГЕБРА. СЕМИНАРЫ   
 СМИРНОВ СЕРГЕЙ ВАЛЕРЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       

ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

116 

 
 

 

Получаем 4 случая: 

1) 𝑎 = ch𝜓 , 𝑑 = ch 𝜃 

Тогда второе уравнение системы: ch𝜓 sh𝜃 − sh𝜓 ch 𝜃 = 0, откуда 𝜃 = 𝜓 и 

𝐴 = (
ch𝜓 sh𝜓
sh𝜓 ch𝜓

) 

2) 𝑎 = ch𝜓 , 𝑑 = −ch𝜃 

Тогда второе уравнение системы: ch𝜓 sh𝜃 + sh𝜓 ch 𝜃 = 0, откуда 𝜃 = −𝜓 и 

𝐴 = (
ch𝜓 −sh𝜓
sh𝜓 −ch𝜓

) 

3) 𝑎 = − ch𝜓 , 𝑑 = ch 𝜃 

Тогда второе уравнение системы: −ch𝜓 sh 𝜃 − sh𝜓 ch 𝜃 = 0, откуда 𝜃 = −𝜓 и 

𝐴 = (
−ch𝜓 −sh𝜓
sh𝜓 ch𝜓

) 

4) 𝑎 = − ch𝜓 , 𝑑 = −ch𝜃 

Тогда второе уравнение системы: −ch𝜓 sh 𝜃 + sh𝜓 ch 𝜃 = 0, откуда 𝜃 = 𝜓 и 

𝐴 = (
−ch𝜓 sh𝜓
sh𝜓 −ch𝜓

) 

Таким образом, данная группа состоит из 4 видов матриц.  

Геометрия матриц 𝑂(1,1). 

В евклидовой геометрии (группа 𝑂(2)) задавая ортогональное преобразование мы 

задаем образы ортогональных базисных векторов, концы которых лежат на единичной 

окружности. Если преобразование меняет ориентацию базиса, то 𝑑𝑒𝑡 𝐴 = −1, если не 

меняет ориентацию, то 𝑑𝑒𝑡 𝐴 = 1. 

Для 𝑂(1,1) аналогом единичной окружности является гипербола (так как вектор 

единичной длины должен удовлетворять уравнению 𝑥2 − 𝑦2 = 1) – образы базисных 

векторов лежат на гиперболе. 

Данная группа состоит из 4 видов матриц, так как кроме смены ориентации базиса 

наше преобразование может поменять ветку гиперболы, на которой лежал конец 

базисного вектора. Эти матрицы иногда называют гиперболическими поворотами. 

Унитарные матрицы 

𝑛 = 1 – тривиальный случай: 

𝑈(1) = {𝑒𝑖𝜑} 
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𝑆𝑈(1) = {ⅈ𝑑} 

𝑛 = 2 – унитарные матрицы 2 × 2: 

Рассмотрим 𝑆𝑈(2) = {𝐴 ∈ 𝑈(2): 𝑑𝑒𝑡 𝐴 = 1} 

Пусть 𝐴 = (
𝑎 𝑏
𝑐 𝑑

). Так как должно выполняться  

𝐴𝑇̅̅̅̅ 𝐴 = 𝐸 ⇔ (𝑎̅ 𝑏̅
𝑐̅ 𝑑̅

) (
𝑎 𝑏
𝑐 𝑑

) = (
|𝑎|2 + |𝑐|2 𝑎̅𝑏 + 𝑐̅𝑑

𝑎𝑏̅ + 𝑐𝑑̅ |𝑏|2 + |𝑑|2
) = (

1 0
0 1

) 

получаем 

{

|𝑎|2 + |𝑐|2 = 1
𝑎̅𝑏 + 𝑐̅𝑑 = 0    
|𝑏|2 + |𝑑|2 = 1
𝑎𝑑 − 𝑏𝑐 = 1    

 

Из второго уравнения системы выражаем 𝑑 и подставляем в третье уравнение системы: 

|𝑏|2 +
|𝑎|2|𝑏|2

|𝑐|2
= 1 ⇔ |𝑏|2 (

|𝑎|2 + |𝑐|2

|𝑐|2
) = 1 

Учитывая первое уравнение системы, получаем |𝑏| = |𝑐|. 

Тогда  

|𝑑| =
|𝑎||𝑏|

|𝑐|
= |𝑎| 

Подставляя в четвертое уравнение системы 𝑑 =
−𝑎̅𝑏

𝑐̅
 получаем 

−
|𝑎|2𝑏

𝑐̅
− 𝑏𝑐 = 1 ⇔

 𝑏

𝑐̅
(|𝑎|2 + |𝑐|2) = −1 

Учитывая первое уравнение системы, получаем 𝑐 = −𝑏̅. 

Тогда 

𝑑 =
−𝑎̅𝑏

−𝑏
= 𝑎̅ 

Получаем 

𝐴 = (
𝑎 𝑏
−𝑏̅ 𝑎̅

) 

где |𝑎|2 + |𝑏|2 = 1. 

Симплектические матрицы 

𝑛 = 2 – симплектические матрицы 2 × 2: 
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𝑆𝑝(2) = {𝐴 ∈ 𝑀𝑎𝑡2(ℝ): 𝐴
𝑇𝛺𝐴 = 𝛺}  

Пусть 𝐴 = (
𝑎 𝑏
𝑐 𝑑

). Так как должно выполняться  

𝐴𝑇𝛺𝐴 = 𝛺 ⇔ (𝑎̅ 𝑏̅
𝑐̅ 𝑑̅

) (
0 1
−1 0

) (
𝑎 𝑏
𝑐 𝑑

) = (
0 𝑎𝑑 − 𝑏𝑐

𝑏𝑐 − 𝑎𝑑 0
) = (

0 1
−1 0

) 

получаем 

𝑎𝑑 − 𝑏𝑐 = 1 

Таким образом, 

𝑆𝑝(2) = 𝑆𝐿(2,ℝ) 

Все рассмотренные примеры – алгебраические многообразия в пространстве ℝ𝑛
2
 (если 

рассматривать матрицу 𝑛 × 𝑛 как вектор длины 𝑛2). 

Например, 𝑆𝑂(2) – окружность в четырехмерном пространстве, 𝑆𝑈(2) – трехмерная 

сфера в восьмимерном пространстве. 
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Семинар 21. Тензоры. 
Задача 1635. Пусть 𝑉ℝ - овеществление некоторого комплексного псевдоэрмитова 

пространства 𝑉. Доказать, что если вещественный оператор 𝐴 в пространстве 𝑉ℝ 

сохраняет псевдоевклидово скалярное произведение 𝑅𝑒(𝑎, 𝑏) и симплектическое 

скалярное произведение 𝐼𝑚(𝑎, 𝑏) (см. задачу 1633), то он является овеществлением 

некоторого псевдоэрмитова оператора в пространстве 𝑉. Таким образом,  

𝑈(𝑝, 𝑞) = 𝑂(2𝑝, 2𝑞) ∩ 𝑆𝑝(2𝑛), в частности, 𝑈(𝑛) = 𝑂(2𝑛) ∩ 𝑆𝑝(2𝑛). 

Решение. 

Вначале проведем доказательство в обратную сторону. 

Пусть 𝑉 - комплексное псевдоэрмитово пространство сигнатуры (𝑝, 𝑞), на нем задано 

( , ) - скалярное произведение. Пусть 𝜑(𝑥, 𝑦) = 𝑅𝑒(𝑥, 𝑦) и 𝜓(𝑥, 𝑦) = 𝐼𝑚(𝑥, 𝑦).  

Тогда 𝜑(𝑥, 𝑦) задает евклидово скалярное произведение на 𝑉ℝ (овеществлении 𝑉), а 

𝜓(𝑥, 𝑦) задает симплектическое скалярное произведение на 𝑉ℝ. 

То есть, 𝜑(𝑥, 𝑦) – симметричная билинейная форма на 𝑉ℝ сигнатуры (2𝑝, 2𝑞), 𝜓(𝑥, 𝑦) – 

невырожденная кососимметричная билинейная форма на 𝑉ℝ. 

𝜑(𝑥, 𝑦) − ⅈ𝜓(𝑥, 𝑦) = (𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅ = (𝑦, 𝑥) = 𝜑(𝑦, 𝑥) + ⅈ𝜓(𝑦, 𝑥) 

Откуда 

𝜑(𝑥, 𝑦) = 𝜑(𝑦, 𝑥) 

𝜓(𝑥, 𝑦) = −𝜓(𝑦, 𝑥) 

Пусть 𝑓 ∈ 𝑈𝑝,𝑞(𝑉) – псевдоунитарный оператор. Тогда 

𝜑(𝑓(𝑥), 𝑓(𝑦)) + ⅈ𝜓(𝑓(𝑥), 𝑓(𝑦)) = (𝑓(𝑥), 𝑓(𝑦)) = (𝑥, 𝑦) = 𝜑(𝑥, 𝑦) + ⅈ𝜓(𝑥, 𝑦) 

Приравнивая вещественные и мнимые части, получаем 

𝜑(𝑥, 𝑦) = 𝜑(𝑓(𝑥), 𝑓(𝑦)) 

𝜓(𝑥, 𝑦) = 𝜓(𝑓(𝑥), 𝑓(𝑦)) 

Таким образом, оператор 𝑓 сохраняет билинейные формы 𝜑(𝑥, 𝑦) и 𝜓(𝑥, 𝑦). Но 

овеществление оператора на все векторы действует так же, как и сам оператор (с 

теоретико-множественной точки зрения 𝑓 и 𝑓ℝ - это один и тот же объект), поэтому, 

если 𝑓 сохраняет билинейную форму 𝜑(𝑥, 𝑦), то 𝑓ℝ ∈ 𝑂2𝑝,2𝑞(𝑉ℝ), а если 𝑓 сохраняет 

билинейную форму 𝜓(𝑥, 𝑦), то 𝑓ℝ ∈ 𝑆𝑝2𝑛(𝑉ℝ). Таким образом, 

𝑈𝑝,𝑞(𝑉) = 𝑂2𝑝,2𝑞(𝑉ℝ) ∩ 𝑆𝑝2𝑛(𝑉ℝ) 
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Для решения задачи нужно двигаться в обратную сторону – по формам 𝜑(𝑥, 𝑦) и 

𝜓(𝑥, 𝑦) можно построить комплексную форму 𝜑(𝑥, 𝑦) + ⅈ𝜓(𝑥, 𝑦), которую будет 

сохранять оператор 𝑓. 

Тензоры 

Определение. Тензор типа (𝒑, 𝒒), 𝑝 > 0, 𝑞 > 0 – полилинейная функция 𝑝 векторных 

и 𝑞 ковекторных аргументов 

𝑇:  𝑉 × …× 𝑉 × 𝑉∗ ×…× 𝑉∗ → ℝ 

Полилинейность – линейность по каждому аргументу при фиксированных остальных 

(обобщение билинейности). 

Примеры: 

Тензоры типа (1,0) – векторы (элементы 𝑉). 

Тензоры типа (0,1) – линейные функционалы (элементы 𝑉∗). 

Тензоры типа (2,0) – билинейные функции. 

Пусть 𝑒1, … , 𝑒𝑛 – базис 𝑉, 𝑣𝑘 ∈ 𝑉, 𝜀1, … , 𝜀𝑛 – двойственный базис 𝑉∗, 𝜉𝑙 ∈ 𝑉∗. Тогда 

(векторы нумеруем нижними, а ковекторы – верхними индексами) 

𝑇(𝑣1, … , 𝑣𝑝, 𝜉
1, … , 𝜉𝑞) = 𝑇 (𝑣1

𝑖1𝑒𝑖1 , … , 𝑣𝑝
𝑖𝑝𝑒𝑖𝑝 , 𝜉𝑗1

1 𝜀𝑗1 , … , 𝜉𝑗𝑞
𝑞 𝜀𝑗𝑞) = 

= 𝑣1
𝑖1⋯𝑣𝑝

𝑖𝑝𝜉𝑗1
1 ⋯𝜉𝑗𝑞

𝑞 𝑇 (𝑒𝑖1 , … , 𝑒𝑖𝑝 , 𝜀
𝑗1 , … , 𝜀𝑗𝑞) = 𝑣1

𝑖1⋯𝑣𝑝
𝑖𝑝𝜉𝑗1

1 ⋯𝜉𝑗𝑞
𝑞 𝑇

𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞
 

Таким образом, полилинейная функция полностью задается своими значениями на 

произвольных наборах базисных векторов.  

𝑇
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞
 – аналог матрицы (𝑝 + 𝑞 – мерный массив чисел). 

Пусть мы перешли от базиса {𝑒1, … , 𝑒𝑛} к базису {𝑒1
′ , … , 𝑒𝑛

′ }, матрица перехода 𝐶. 

Координаты вектора меняются как (
𝑣̃1
…
𝑣̃𝑛

) = 𝐶−1 (

𝑣1
…
𝑣𝑛
),  

координаты ковектора меняются как (𝜉1̃, … , 𝜉𝑛̃) = (𝜉1, … , 𝜉𝑛)𝐶
𝑇 (применим 𝜀𝑗 к вектору 

𝑣: 𝜀𝑗(𝑣) = 𝑣𝑗 = 𝑐𝑙
𝑗
𝑣̃𝑙 = 𝑐𝑙

𝑗
𝜀̃𝑙(𝑣), откуда 𝜀𝑗 = 𝑐𝑙

𝑗
𝜀̃𝑙), матрица билинейной функции 

меняется как 𝐵̃𝜑 = 𝐶
𝑇𝐵𝜑𝐶. 

Пусть 𝐶 = (𝑐𝑗
𝑖), 𝐶−1 = 𝐷 = (𝑑𝑗

𝑖). Закон замены координат при переходе от одного 

базиса к другому: 

𝑣̃𝑙 = 𝑑𝑗
𝑙𝑣𝑗 – вектор, 

https://vk.com/teachinmsu
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𝜉𝑘̃ = 𝑐𝑘
𝑖 𝜉𝑖 – ковектор,  

𝑏̃𝑘1𝑘2 = 𝑐𝑘1
𝑖1 𝑏𝑖1𝑖2𝑐𝑘2

𝑖2  – билинейная функция. 

Каков общий закон преобразования 𝑇? 

𝑇̃𝑘1⋯𝑘𝑝
𝑙1⋯𝑙𝑞 = 𝑇 (𝑒̃𝑘1 , … , 𝑒̃𝑘𝑝 , 𝜀̃

𝑙1 , … , 𝜀̃𝑙𝑞) = 𝑇 (𝑐𝑘1
𝑖1 𝑒𝑖1 , … , 𝑐𝑘𝑝

𝑖𝑝 𝑒𝑖𝑝 , 𝑑𝑗1
𝑙1𝜀𝑗1 , … , 𝑑

𝑗𝑞

𝑙𝑞𝜀𝑗𝑞) = 

= 𝑐𝑘1
𝑖1 …𝑐𝑘𝑝

𝑖𝑝 𝑑𝑗1
𝑙1…𝑑

𝑗𝑞

𝑙𝑞𝑇 (𝑒𝑖1 , … , 𝑒𝑖𝑝 , 𝜀
𝑗1 , … , 𝜀𝑗𝑞) 

Таким образом, получаем тензорный закон преобразования: 

𝑇̃𝑘1⋯𝑘𝑝
𝑙1⋯𝑙𝑞 = 𝑐𝑘1

𝑖1 …𝑐𝑘𝑝
𝑖𝑝 𝑑𝑗1

𝑙1 …𝑑
𝑗𝑞

𝑙𝑞𝑇 (𝑒𝑖1 , … , 𝑒𝑖𝑝 , 𝜀
𝑗1 , … , 𝜀𝑗𝑞) 

Тензоры типа (1,1): 

𝑇̃𝑘
𝑙 = 𝑐𝑘

𝑖𝑑𝑗
𝑙𝑇𝑖

𝑗
= 𝑑𝑗

𝑙𝑇𝑖
𝑗
𝑐𝑘
𝑖  

В матричной форме записи: 

𝐴̃𝑓 = 𝐶−1𝐴𝑓𝐶 

Как мы видим, тензор типа (1,1) преобразуется так же, как и матрица оператора, то 

есть, это один и тот же объект - существует канонический изоморфизм 𝛹 между 

пространством операторов 𝐸𝑛𝑑(𝑉) и пространством 𝛩1
1 тензоров типа (1,1): 

Пусть 𝑓 ∈ 𝐸𝑛𝑑(𝑉), 𝑣 ∈ 𝑉, 𝜉 ∈ 𝑉∗. Тогда 

𝛹(𝑓) = 𝜉(𝑓(𝑣)) 

Упражнение: проверить, что матрица, обратная к матрице билинейной функции, 

преобразуется по тензорному закону, как тензор типа (0,2). 

Введение понятия тензора может показаться излишним, ведь мы и так умеем 

преобразовывать координаты вектора, ковектора, линейного оператора и билинейной 

функции при переходе к другой системе координат. Однако, при 𝑝 + 𝑞 ≥ 3 

проявляются преимущества тензорного подхода. 

Пример: пусть 𝑒1, 𝑒2, 𝑒3 – базис в ℝ3. Разложим векторное произведение базисных 

векторов по базису: 

[𝑒𝑖1 , 𝑒𝑖2] = 𝑎𝑖1𝑖2
𝑗
𝑒𝑗 

Тогда набор {𝑎𝑖1𝑖2
𝑗
} – тензор типа (2,1). Проверим это. Нужно доказать: 

𝑎̃𝑘1𝑘2
𝑙 = 𝑐𝑘1

𝑖1 𝑐𝑘2
𝑖2 𝑑𝑗

𝑙𝑎𝑖1𝑖2
𝑗
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Доказательство: 

𝑎̃𝑘1𝑘2
𝑙 𝑒̃𝑙 = [𝑒̃𝑘1 , 𝑒̃𝑘2] = [𝑐𝑘1

𝑖1 𝑒𝑖1 , 𝑐𝑘2
𝑖2 𝑒𝑖2] = 𝑐𝑘1

𝑖1 𝑐𝑘2
𝑖2 [𝑒𝑖1 , 𝑒𝑖2] = 𝑐𝑘1

𝑖1 𝑐𝑘2
𝑖2 𝑎𝑖1𝑖2

𝑗
𝑒𝑗 = 𝑐𝑘1

𝑖1 𝑐𝑘2
𝑖2 𝑑𝑗

𝑙𝑎𝑖1𝑖2
𝑗
𝑒̃𝑙 

Числа 𝑎𝑖1𝑖2
𝑗

 называются структурными константами – они возникают, если мы введем 

на линейном пространстве операцию умножения векторов: 𝑉 × 𝑉 → 𝑉 (т.е. зададим 

алгебру Ли). Обратите внимание, что в нашем примере мы не использовали 

специфических свойств векторного произведения и фактически доказали, что 

структурные константы произвольной алгебры образуют тензор типа (2,1). 
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Семинар 22. Решение задач, тензорные операции. 

Задача. Выяснить, являются ли тензором символы Кронекера: а) 𝛿𝑖
𝑗
; б) 𝛿𝑖𝑗. 

Решение. 

а) Должно выполняться: 𝛿𝑘
𝑙 = 𝑐𝑘

𝑖 𝛿𝑖
𝑗
𝑑𝑗
𝑙. 

Если ⅈ = 𝑗, получаем 𝛿𝑘
𝑙 = 𝑐𝑘

𝑖𝑑𝑗
𝑙 = (𝐸)𝑘

𝑙 = {
0, 𝑙 ≠ 𝑘
1, 𝑙 = 𝑘

. 

Если ⅈ ≠ 𝑗, получаем 𝛿𝑘
𝑙 = 0. 

Таким образом, при переходе к другой системе координат действительно получили 

символ, который равен 1 при 𝑙 = 𝑘 и 0 при 𝑙 ≠ 𝑘, то есть, 𝛿𝑖
𝑗
 – тензор. 

б) Должно выполняться: 𝛿𝑘1𝑘2 = 𝑐𝑘1
𝑖1 𝛿𝑖1𝑖2𝑐𝑘2

𝑖2 . 

Если ⅈ1 = ⅈ2, получаем 𝛿𝑘1𝑘2 = 𝑐𝑘1
𝑖1 𝑐𝑘2

𝑖2 ≠ 1. 

Чтобы в этом убедиться, достаточно взять замену 𝑒1̃ = 2𝑒1, 𝑒̃𝑖 = 𝑒𝑖  при ⅈ > 1. При такой 

замене 𝑐1
1 = 2, 𝑐𝑖

𝑖 = 1 при ⅈ > 1 и 𝑐𝑗
𝑖 = 0 при ⅈ ≠ 𝑗.  

Тогда 𝛿11 = 𝑐1
𝑖1𝛿𝑖1𝑖2𝑐1

𝑖2 – в этой сумме ровно одно ненулевое слагаемое (𝑐1
1)2𝛿11 = 4 ≠

1. 

Таким образом, 𝛿𝑖𝑗 не является тензором. 

Если переформулировать утверждение задачи на языке матриц: 

а) равенство 𝛿𝑘
𝑙 = 𝑐𝑘

𝑖 𝛿𝑖
𝑗
𝑑𝑗
𝑙 означает следующее: матрица тождественного оператора в 

любом базисе будет единичной: 𝐸 = 𝐶−1𝐸𝐶, 

б) из того, что у билинейной функции единичная матрица в некоторой системе 

координат вовсе не следует, что у нее будет единичная матрица в другой системе 

координат: вообще говоря, 𝐶𝑇𝐸𝐶 ≠ 𝐶. 

Ответ: а) да, б) нет. 

Задача (упражнение с прошлого семинара). Проверить, что матрица, обратная к 

матрице билинейной функции, преобразуется по тензорному закону, как тензор типа 

(0,2). 

Решение. 

Пусть 𝑏𝑖1𝑖2 – матрица билинейной функции, 𝑡𝑘1𝑘2 – матрица, обратная к 𝑏𝑖1𝑖2. Тогда 

𝑏𝑖1𝑖2𝑡
𝑖2𝑗2 = 𝛿𝑖1

𝑗2. Покажем, что при переходе к другой системе координат это равенство 

будет выполнено. 
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При переходе к другому базису матрица билинейной функции меняется как  

𝑏̃𝑘1𝑘2 = 𝑐𝑘1
𝑖1 𝑏𝑖1𝑖2𝑐𝑘2

𝑖2  

Должно быть выполнено: 

𝑏̃𝑘1𝑘2 𝑡̃
𝑘2𝑙2 = 𝛿𝑘1

𝑙2 ⇔ 𝑐𝑘1
𝑖1 𝑏𝑖1𝑖2𝑐𝑘2

𝑖2 𝑡̃𝑘2𝑙2 = 𝛿𝑘1
𝑙2         (∗) 

Покажем, что если  

𝑡̃𝑘2𝑙2 = 𝑑𝑚1

𝑘2 𝑡𝑚1𝑚2𝑑𝑚2

𝑙2  (то есть, матрица, обратная к матрице билинейной функции, 

преобразуется по тензорному закону), то равенство будет выполняться. Подставим в 

(*): 

𝑐𝑘1
𝑖1 𝑏𝑖1𝑖2𝑐𝑘2

𝑖2 𝑑𝑚1

𝑘2 𝑡𝑚1𝑚2𝑑𝑚2

𝑙2 = 𝑐𝑘1
𝑖1 𝑏𝑖1𝑖2𝛿𝑚1

𝑖2 𝑡𝑚1𝑚2𝑑𝑚2

𝑙2 = 𝑐𝑘1
𝑖1 𝑏𝑖1𝑚1

𝑡𝑚1𝑚2𝑑𝑚2

𝑙2 = 𝑐𝑘1
𝑖1 𝛿𝑖1

𝑚2𝑑𝑚2

𝑙2 = 

= 𝑐𝑘1
𝑖1 𝑑𝑖1

𝑙2 = 𝛿𝑘1
𝑙2  

Значит, матрица, обратная к матрице билинейной функции, преобразуется по 

тензорному закону как тензор (0,2). 

Задача. Рассмотрим в ℝ3 тензор 𝑇𝑖𝑗𝑘
𝑚𝑙 = 2(𝑗 − ⅈ), заданный в системе координат 𝑒1, 𝑒2, 𝑒3. 

Найти 𝑇̃123
21  в базисе 𝑒̃1, 𝑒̃2, 𝑒̃3 после замены {

𝑒̃1 = 𝑒1 − 2𝑒2 + 𝑒3
𝑒̃2 = 𝑒2 − 𝑒3            
𝑒̃3 = 𝑒3                     

. 

Решение. 

Матрица перехода 𝐶: 

𝐶 = (
1 0 0
−2 1 0
1 −1 1

) 

Матрица 𝐶−1: 

𝐷 = 𝐶−1 = (
1 0 0
2 1 0
1 1 1

) 

𝑇̃123
21 = 𝑐1

𝑖𝑐2
𝑗
𝑐3
𝑘𝑑𝑚

2 𝑑𝑙
1𝑇𝑖𝑗𝑘

𝑚𝑙 

В этой сумме 35 = 243 слагаемых. Так как у матрицы 𝐶 в третьем столбце только один 

ненулевой элемент, то 𝑐3
𝑘 = 0 при 𝑘 ≠ 3, и можно заменить 𝑐3

𝑘 на 𝑐3
3 = 1. 

Аналогично, у матрицы 𝐷 в первой строке только один ненулевой элемент и можно 

заменить 𝑑𝑙
1 на 𝑑1

1 = 1. Получим 

𝑇̃123
21 = 𝑐1

𝑖𝑐2
𝑗
𝑑𝑚
2 𝑇𝑖𝑗𝑘

𝑚𝑙 

https://vk.com/teachinmsu
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Теперь, учитывая что можно не рассматривать члены суммы с ⅈ = 𝑗 (так как тогда 

𝑇𝑖𝑗𝑘
𝑚𝑙 = 2(𝑗 − ⅈ) = 0), получаем:

ⅈ = 1:    𝑐1
1𝑐2
2𝑑𝑚

2 𝑇123
𝑚1 + 𝑐1

1𝑐2
3𝑑𝑚

2 𝑇133
𝑚1

ⅈ = 2:    𝑐1
2𝑐2
3𝑑𝑚

2 𝑇233
𝑚1

ⅈ = 3:    𝑐1
3𝑐2
2𝑑𝑚

2 𝑇323
𝑚1

В итоге 

𝑇̃123
21 = 𝑐1

1𝑐2
2𝑑𝑚

2 𝑇123
𝑚1 + 𝑐1

1𝑐2
3𝑑𝑚

2 𝑇133
𝑚1 + 𝑐1

2𝑐2
3𝑑𝑚

2 𝑇233
𝑚1 + 𝑐1

3𝑐2
2𝑑𝑚

2 𝑇323
𝑚1 =

= 𝑑𝑚
2 𝑇123

𝑚1 − 𝑑𝑚
2 𝑇133

𝑚1 + 2𝑑𝑚
2 𝑇233

𝑚1 + 𝑑𝑚
2 𝑇323

𝑚1 =

= 𝑑1
2(𝑇123

11 − 𝑇133
11 + 2𝑇233

11 + 𝑇323
11 ) + 𝑑2

2(𝑇123
21 − 𝑇133

21 + 2𝑇233
21 + 𝑇323

21 ) =

= 2(𝑇123
11 − 𝑇133

11 + 2𝑇233
11 + 𝑇323

11 ) + (𝑇123
21 − 𝑇133

21 + 2𝑇233
21 + 𝑇323

21 )

Наконец, подставляя в получившееся выражение 𝑇𝑖𝑗𝑘
𝑚𝑙 = 2(𝑗 − ⅈ), получаем:

𝑇̃123
21 = 2(2 − 4 + 4 − 2) + (2 − 4 + 4 − 2) = 0

Ответ: 0. 

Новые обозначения 

Договоримся далее обозначать 𝑒1, … , 𝑒𝑛 старый базис, 𝑒1′ , … , 𝑒𝑛′ - новый базис.

Тензорный закон в этих обозначениях: 

𝑇
𝑖1
′⋯𝑖𝑝

′

𝑗1
′⋯𝑗𝑞

′

= 𝑐
𝑖1
′
𝑖1 …𝑐

𝑖𝑝
′

𝑖𝑝𝑑𝑗1
𝑗1
′

…𝑑
𝑗𝑞

𝑗𝑞
′

𝑇
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞

Тензорные операции 

1) Тензоры с одинаковым набором индексов можно покоординатно складывать и

умножать на число – множество тензоров (𝑝, 𝑞) образуют линейное

пространство 𝛩𝑝
𝑞
.

Пусть 𝑇, 𝑅 ∈ 𝛩𝑝
𝑞
. Тогда

(𝑇 + 𝑅)
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞 = 𝑇
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞 + 𝑅
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞

(𝜆𝑇)
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞 = 𝜆𝑇
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞

2) Тензорное умножение

Пусть 𝑇 ∈ 𝛩𝑝
𝑞
, 𝑅 ∈ 𝛩𝑟

𝑠. Тогда 𝑇 ⊗ 𝑅 ∈ 𝛩𝑝+𝑟
𝑞+𝑠

(𝑇 ⊗ 𝑅)
𝑖1⋯𝑖𝑝+𝑟

𝑗1⋯𝑗𝑞+𝑠 ≔ 𝑇
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞𝑅
𝑖𝑝+1⋯𝑖𝑝+𝑟

𝑗𝑞+1⋯𝑗𝑞+𝑠

Пример: рассмотрим в ℝ2 тензоры 𝑇, 𝑅 ∈ 𝛩1
0, 𝑇𝑖 = ⅈ, 𝑅𝑖 = 1 − ⅈ. Тогда

https://vk.com/teachinmsu
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(𝑇 ⊗ 𝑅)11 = 𝑇1𝑅1 = 0 

(𝑇 ⊗ 𝑅)12 = 𝑇1𝑅2 = −1 

(𝑇 ⊗ 𝑅)21 = 𝑇2𝑅1 = 0 

(𝑇 ⊗ 𝑅)22 = 𝑇2𝑅2 = −2 

3) Свертка 

Пусть 𝑇 ∈ 𝛩𝑝
𝑞
, 𝑝 > 0, 𝑞 > 0. Сверткой называется отображение 𝛩𝑝

𝑞 → 𝛩𝑝−1
𝑞−1

, 

фиксирующее одинаковые значения одного из верхних и одного из нижних индексов. 

Упражнение: доказать, что свертка – действительно тензорная операция (т.е. что в 

итоге действительно получается тензор). 

Пример: (𝑐𝑇)
𝑖1⋯𝑖𝑝

𝑗1⋯𝑗𝑞 = 𝑇
𝑖𝑖1⋯𝑖𝑝−1

𝑖𝑗1⋯𝑗𝑞−1
 – свертка по первому верхнему и первому нижнему 

индексу. 

Пример: 𝑡𝑟 𝐴 = 𝑎𝑖
𝑖 – след оператора 𝐴. Оператор – это тензор типа (1,1), его свертка 

𝑡𝑟 𝐴 = 𝑎𝑖
𝑖 – это число, то есть, тензор типа (0,0). 

  

https://vk.com/teachinmsu
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Семинар 23. Опускание и поднятие индексов, базис. 
4) Опускание и поднятие индексов 

            Опускание индексов 

Пусть 𝑔𝑖𝑗 – тензор типа (2,0) – билинейная функция. Опускание индексов – 

операция 𝛩𝑞
𝑝 → 𝛩𝑞+1

𝑝−1
: 

𝑆
𝑗𝑗1⋯𝑗𝑞

𝑖2⋯𝑖𝑝 ≔ 𝑔𝑗𝑖1𝑇𝑗1⋯𝑗𝑞
𝑖1⋯𝑖𝑝

 

            Поднятие индексов 

Пусть 𝑔𝑖𝑗 – тензор типа (0,2). Поднятие индексов – операция 𝛩𝑞
𝑝 → 𝛩𝑞−1

𝑝+1
: 

𝑆
𝑗2⋯𝑗𝑞

𝑖𝑖1⋯𝑖𝑝 ≔ 𝑔𝑖𝑗1𝑇
𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝
 

Проверим, что опускание и поднятие индексов – действительно тензорная операция 

(т.е. что в итоге действительно получается тензор). Проверим для опускания индексов, 

для поднятия – аналогично. 

𝑆
𝑗′𝑗1

′⋯𝑗𝑞
′

𝑖2
′⋯𝑖𝑝

′

= 𝑔𝑗′𝑖1′𝑇𝑗1′⋯𝑗𝑞′
𝑖1
′⋯𝑖𝑝

′

= 𝑐
𝑗′
𝑗
𝒄
𝒊𝟏
′
𝒌 𝑐

𝑗1
′
𝑗1 …𝑐

𝑗𝑞
′

𝑗𝑞𝒅𝒊𝟏
𝒊𝟏
′

…𝑑
𝑖𝑝

𝑖𝑝
′

𝑔𝑗𝑘𝑇𝑗𝑗1⋯𝑗𝑞
𝑖1⋯𝑖𝑝 = 

= 𝑐
𝑗′
𝑗
𝛿𝑖1
𝑘 𝑐
𝑗1
′
𝑗1 …𝑐

𝑗𝑞
′

𝑗𝑞𝑑𝑖2
𝑖2
′

…𝑑
𝑖𝑝

𝑖𝑝
′

𝑔𝑗𝑘𝑇𝑗1⋯𝑗𝑞
𝑖1⋯𝑖𝑝 = 𝑐

𝑗′
𝑗
𝑐
𝑗1
′
𝑗1 …𝑐

𝑗𝑞
′

𝑗𝑞𝑑𝑖2
𝑖2
′

…𝑑
𝑖𝑝

𝑖𝑝
′

𝑔𝑗𝑖1𝑇𝑗1⋯𝑗𝑞
𝑖1⋯𝑖𝑝 = 

= 𝑐
𝑗′
𝑗
𝑐
𝑗1
′
𝑗1 …𝑐

𝑗𝑞
′

𝑗𝑞𝑑𝑖2
𝑖2
′

…𝑑
𝑖𝑝

𝑖𝑝
′

𝑆
𝑗𝑗1⋯𝑗𝑞

𝑖2⋯𝑖𝑝
 

Таким образом, опускание индексов – действительно тензорная операция. 

Как мы знаем, если 𝑉 – евклидово пространство, то существует канонический 

изоморфизм между 𝑉 и 𝑉∗: если 𝑔𝑖𝑗 – скалярное произведение, то 𝑣 → (𝑣, ⋅), то есть, 

вектору 𝑣  ставится в соответствие линейная функция, задающаяся скалярным 

произведением с фиксированным первым аргументом 𝑣. Иначе можно сказать, что это 

– опускание индекса: (𝑣, ⋅) = 𝑔𝑖𝑗𝑣
𝑗 . 

Задача. Рассмотрим в ℝ2 тензор 𝑇𝑙𝑚
𝑖𝑗𝑘
= 2(𝑗 − 𝑙). Опусканием индексов получаем тензор 

𝑆𝑟𝑙𝑚
𝑗𝑘

= 𝑔𝑟𝑖𝑇𝑙𝑚
𝑖𝑗𝑘

, с метрикой 𝐺 = (𝑔𝑟𝑖) = (
1 1
1 3

). 

Найти: 𝑆121
12 . 

Решение. 

𝑆121
12 = 𝑔11𝑇21

112 + 𝑔12𝑇21
212 = 𝑇21

112 + 𝑇21
212 = −2 − 2 = −4 

Ответ: 𝑆121
12 = −4. 

https://vk.com/teachinmsu
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На прошлом семинаре мы определили тензорное произведение, не используя понятие 

полилинейной функции, теперь сделаем это через полилинейные функции. 

Пусть 𝑇 ∈ 𝛩𝑞
𝑝 , 𝑅 ∈ 𝛩𝑠

𝑟 – полилинейные функции. Определим полилинейную функцию  

𝑇 ⊗ 𝑅 ∈ 𝛩𝑞+𝑠
𝑝+𝑟

 – для этого достаточно определить, чему равно ее значение на 

произвольном наборе векторов и ковекторов: 

𝑇 ⊗ 𝑅(𝑣1, … , 𝑣𝑞+𝑠, 𝜉
1, … , 𝜉𝑝+𝑟) = 𝑇(𝑣1, … , 𝑣𝑞 , 𝜉

1, … , 𝜉𝑝)𝑅(𝑣𝑞+1, … , 𝑣𝑞+𝑠, 𝜉
𝑝+1, … , 𝜉𝑝+𝑟) 

Это определение согласуется с тем, что мы давали в прошлый раз. На наборе базисных 

векторов и ковекторов: 

𝑇 ⊗ 𝑅 (𝑒𝑗1 , … , 𝑒𝑗𝑞+𝑠 , 𝜀
𝑖1 , … , 𝜀𝑖𝑝+𝑟) = 

= 𝑇 (𝑒𝑗1 , … , 𝑒𝑗𝑞 , 𝜀
𝑖1 , … , 𝜀𝑖𝑝) 𝑅 (𝑒𝑗𝑞+1 , … , 𝑒𝑗𝑞+𝑠 , 𝜀

𝑖𝑝+1 , … , 𝜀𝑖𝑝+𝑟) = 

= 𝑇
𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝𝑅
𝑗𝑞+1⋯𝑗𝑞+𝑠

𝑖𝑝+1⋯𝑖𝑝+𝑟
 

Базис в пространстве тензоров 

Любой тензор 𝑇 ∈ 𝛩𝑞
𝑝
 однозначно задается своими значениями на наборе базисных 

векторов 𝑇
𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝
. Рассмотрим тензор 

𝑇
𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗…⊗ 𝑒𝑖𝑝 ⊗𝜀𝑗1 ⊗𝜀𝑗2 ⊗…⊗ 𝜀𝑗𝑞  

Значение этого тензора на наборе базисных векторов и ковекторов: 

𝑇
𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗…⊗ 𝑒𝑖𝑝 ⊗ 𝜀𝑗1 ⊗ 𝜀𝑗2 ⊗…⊗ 𝜀𝑗𝑞 (𝑒𝑙1 , … , 𝑒𝑙𝑞 , 𝜀
𝑘1 , … , 𝜀𝑘𝑝) = 

= 𝑇
𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝𝑒𝑖1(𝜀
𝑘1)… 𝑒𝑖𝑝(𝜀

𝑘𝑝)𝜀𝑗1(𝑒𝑙1)… 𝜀
𝑗𝑞(𝑒𝑙𝑞) = 𝑇𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝𝛿𝑖1
𝑘1 …𝛿

𝑖𝑝

𝑘𝑝𝛿𝑙1
𝑗1 …𝛿𝑙𝑞

𝑗𝑞 = 𝑇𝑙1⋯𝑙𝑞
𝑘1⋯𝑘𝑝

 

То есть, получили исходный тензор. Таким образом, 

𝑇 = 𝑇
𝑗1⋯𝑗𝑞

𝑖1⋯𝑖𝑝𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗…⊗ 𝑒𝑖𝑝 ⊗𝜀𝑗1 ⊗𝜀𝑗2 ⊗…⊗ 𝜀𝑗𝑞  

Итак, 𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗…⊗ 𝑒𝑖𝑝 ⊗𝜀𝑗1 ⊗𝜀𝑗2 ⊗…⊗ 𝜀𝑗𝑞  – базис 𝜣𝒒
𝒑
 (формально нужно еще 

доказать линейную независимость базовых тензорных произведений, это будет сделано 

на лекциях). 

Задача. Рассмотрим в ℝ3 тензоры 𝑇 ∈ 𝛩1
1 и 𝑅 ∈ 𝛩3

0:  

𝑇 = 𝑒1⊗ 𝜀2 + 𝑒2⊗𝜀3 + 𝑒3⊗𝜀1 

𝑅(𝑣1, 𝑣2, 𝑣3) = 𝑑𝑒𝑡(𝑣𝑗
𝑖) 

Пусть 𝑆 = 𝑇 ⊗ 𝑅 ∈ 𝛩4
1, 𝑄 = 𝑅 ⊗ 𝑇 ∈ 𝛩4

1. 

https://vk.com/teachinmsu
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Найти: 𝑆1213
2  и 𝑄1213

2 . 

Решение. 

𝑆1213
2 = 𝑆(𝑒1, 𝑒2, 𝑒1, 𝑒3, 𝜀

2) = 𝑇(𝑒1, 𝜀
2)𝑅(𝑒2, 𝑒1, 𝑒3) = 

= (𝑒1⊗ 𝜀2 + 𝑒2⊗ 𝜀3 + 𝑒3⊗ 𝜀1)(𝑒1, 𝜀
2) 𝑑𝑒𝑡(𝑒2, 𝑒1, 𝑒3) = 

= (𝑒1(𝜀
2)𝜀2(𝑒1) + 𝑒2(𝜀

2)𝜀3(𝑒1) + 𝑒3(𝜀
2)𝜀1(𝑒1))(−1) = (0 + 0 + 0)(−1) = 0 

𝑄1213
2 = 𝑅(𝑒1, 𝑒2, 𝑒1)𝑇(𝑒3, 𝜀

2) = 𝑑𝑒𝑡(𝑒1, 𝑒2, 𝑒1) 𝑇(𝑒3, 𝜀
2) = 0 ⋅ 𝑇(𝑒3, 𝜀

2) = 0 

Ответ: 𝑆1213
2 = 0, 𝑄1213

2 = 0. 

Задача. Пусть 𝑇 ∈ 𝛩2
2, 𝑇(𝑢, 𝑣, 𝜉, 𝜂) = 𝑑𝑒𝑡 (

𝜉(𝑢) 𝜉(𝑣)

𝜂(𝑢) 𝜂(𝑣)
). Разложить 𝑇 по базису. 

Решение. 

𝑇𝑘𝑙
𝑖𝑗
= 𝑇(𝑒𝑘, 𝑒𝑙, 𝜀

𝑖, 𝜀𝑗) = 𝑑𝑒𝑡 (
𝜀𝑖(𝑒𝑘) 𝜀𝑖(𝑒𝑙)

𝜀𝑗(𝑒𝑘) 𝜀𝑗(𝑒𝑙)
) = 𝑑𝑒𝑡 (

𝛿𝑘
𝑖 𝛿𝑙

𝑖

𝛿𝑘
𝑗

𝛿𝑙
𝑗) = 𝛿𝑘

𝑖𝛿𝑙
𝑗
− 𝛿𝑙

𝑖𝛿𝑘
𝑗
 

Получаем 

𝑇 = 𝑇𝑘𝑙
𝑖𝑗
𝑒𝑖⊗𝑒𝑗⊗ 𝜀𝑘⊗𝜀𝑙 = (𝛿𝑘

𝑖𝛿𝑙
𝑗
− 𝛿𝑙

𝑖𝛿𝑘
𝑗
)𝑒𝑖⊗ 𝑒𝑗⊗ 𝜀𝑘⊗ 𝜀𝑙 

Ответ: 𝑇 = (𝛿𝑘
𝑖𝛿𝑙

𝑗
− 𝛿𝑙

𝑖𝛿𝑘
𝑗
)𝑒𝑖⊗𝑒𝑗 ⊗𝜀𝑘⊗𝜀𝑙. 
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Семинар 24. Симметрирование и альтернирование. 
Задача 1690. Пусть 𝑣 ∈ 𝑉, 𝜑 ∈ 𝑉∗. Найти образ оператора в пространстве 𝑉, 

соответствующего тензору 𝑣 ⊗ 𝜑. 

Решение. 

Как обсуждалось ранее, существует канонический изоморфизм 𝛹 между 

пространством операторов 𝐸𝑛𝑑(𝑉) и пространством 𝛩1
1 тензоров типа (1,1): 

Пусть 𝑓 ∈ 𝐸𝑛𝑑(𝑉), 𝑣 ∈ 𝑉, 𝜑 ∈ 𝑉∗. Тогда 

𝛹(𝑓) = 𝜑(𝑓(𝑣)) 

Рассмотрим действие оператора на базисных векторах: 

𝑣 ⊗ 𝜑(𝜀𝑖, 𝑒𝑗) = 𝑣(𝜀𝑖)𝜑(𝑒𝑗) = 𝜀𝑖(𝛹(𝑣 ⊗ 𝜑)(𝑒𝑗)) 

Так как 𝑣(𝜀𝑖)𝜑(𝑒𝑗) = 𝑣
𝑖𝜑𝑗 и 𝛹(𝑣 ⊗𝜑) = (𝑎)𝑗

𝑖  – матрица оператора, получаем 

𝑣𝑖𝜑𝑗 = 𝜀
𝑖(𝑎𝑗

𝑘𝑒𝑘) = 𝑎𝑗
𝑘𝛿𝑘

𝑖 = 𝑎𝑗
𝑖 

То есть, 𝑣𝑖𝜑𝑗 стоит в матрице оператора на месте (ⅈ, 𝑗). Матрица оператора: 

(
𝑣1𝜑1 . . . 𝑣1𝜑𝑛
. . . . . . . . .
𝑣𝑛𝜑1 . . . 𝑣𝑛𝜑𝑛

) 

Ее ранг равен 1, значит, размерность образа оператора равна 1. Действуя оператором на 

базисные вектора, получаем, что образ равен ⟨𝑣⟩. 

Ответ: ⟨𝑣⟩. 

Определение. Тензор 𝑇 ∈ 𝛩𝑞
0 – симметрический, если 𝑇𝜎(𝑖1)⋯𝜎(𝑖𝑞) = 𝑇𝑖1...𝑖𝑞 для ∀𝜎 ∈ 𝑆𝑞. 

Определение. Тензор 𝑇 ∈ 𝛩𝑞
0 – кососимметрический, если 

𝑇𝜎(𝑖1)⋯𝜎(𝑖𝑞) = (−1)sgn𝜎𝑇𝑖1...𝑖𝑞  

для ∀𝜎 ∈ 𝑆𝑞. 

В определении симметрического и кососимметрического тензора использовался тензор 

с нижними индексами, точно так же можно использовать тензор с верхними индексами. 

Определим операции симметрирования и альтернирования, в результате которых 

произвольный тензор преобразуется в симметрический и кососимметрический 

соответственно. 

Симметрирование 𝑆𝑦𝑚: 𝛩𝑞
0 → 𝛩𝑞

0 
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(𝑆𝑦𝑚(𝑇))𝑖1⋯𝑖𝑞 =
1

𝑞!
∑ 𝑇𝜎(𝑖1)⋯𝜎(𝑖𝑞)
𝜎∈𝑆𝑞

 

Альтернирование 𝐴𝑙𝑡: 𝛩𝑞
0 → 𝛩𝑞

0 

(𝐴𝑙𝑡(𝑇))𝑖1⋯𝑖𝑞 =
1

𝑞!
∑(−1)sgn𝜎𝑇𝜎(𝑖1)⋯𝜎(𝑖𝑞)
𝜎∈𝑆𝑞

 

С помощью операции альтернирования определим операцию внешнего произведения. 

Внешнее произведение  

Пусть 𝑇 ∈ 𝛩𝑞
0, 𝑆 ∈ 𝛩𝑟

0. Внешнее произведение 𝑇 и 𝑆: 

𝑇 ∧ 𝑆 = 𝐴𝑙𝑡(𝑇 ⊗ 𝑆) 

В пространстве кососимметрических тензоров 𝛬𝑞
0   с помощью операции внешнего 

произведения удобно задавать базис: 

{𝑒𝑖1 ∧ …∧ 𝑒𝑖𝑞} , ⅈ1 < ⋯ < ⅈ𝑞  −  базис 𝛬𝑞
0 

Пример: 

𝑒𝑖1 ∧ …∧ 𝑒𝑖𝑞(𝜉
1, … , 𝜉𝑞) =

𝑞!

𝑞!
∑(−1)sgn𝜎𝑒𝜎(𝑖1)
𝜎∈𝑆𝑞

⊗…⊗ 𝑒𝜎(𝑖𝑞)(𝜉
1, … , 𝜉𝑞) = 

= ∑(−1)sgn𝜎𝑒𝜎(𝑖1)
𝜎∈𝑆𝑞

(𝜉1) ⋅ … ⋅ 𝑒𝜎(𝑖𝑞)(𝜉
𝑞) = ∑(−1)sgn𝜎𝜉𝜎(𝑖1)

1

𝜎∈𝑆𝑞

⋅ … ⋅ 𝜉
𝜎(𝑖𝑞)

𝑞
 

Таким образом, получили соответствующий минор матрицы (𝜉𝑗
𝑖). Если 𝑞 = 𝑛, то 

𝑒1 ∧ …∧ 𝑒𝑛(𝜉
1, … , 𝜉𝑛) = 𝑑𝑒𝑡(𝜉𝑗

𝑖) 

Задача. Вычислить (2𝑒1 − 3𝑒2 + 𝑒3) ∧ (𝑒2 − 𝑒3) ∧ (𝑒1 + 3𝑒2) на наборе 𝜉1, 𝜉2, 𝜉3, где 

𝜉1 = (1, 2, 3), 𝜉2 = (−1, 0, 2), 𝜉3 = (1, 1, −1). 

Решение. 

Раскроем скобки – внешнее произведение линейно, в силу косой симметрии 

ненулевыми слагаемыми будут лишь те, где все сомножители различны: 

(2𝑒1 − 3𝑒2 + 𝑒3) ∧ (𝑒2 − 𝑒3) ∧ (𝑒1 + 3𝑒2) = 

= −6𝑒1 ∧ 𝑒3 ∧ 𝑒2 + 3𝑒2 ∧ 𝑒3 ∧ 𝑒1 + 𝑒3 ∧ 𝑒2 ∧ 𝑒1 = 

= 6𝑒1 ∧ 𝑒2 ∧ 𝑒3 + 3𝑒1 ∧ 𝑒2 ∧ 𝑒3 − 𝑒1 ∧ 𝑒2 ∧ 𝑒3 = 8𝑒1 ∧ 𝑒2 ∧ 𝑒3 

Тогда 

https://vk.com/teachinmsu
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(2𝑒1 − 3𝑒2 + 𝑒3) ∧ (𝑒2 − 𝑒3) ∧ (𝑒1 + 3𝑒2)(𝜉
1, 𝜉2, 𝜉3) =

= 8𝑒1 ∧ 𝑒2 ∧ 𝑒3(𝜉
1, 𝜉2, 𝜉3) = 8𝑑𝑒𝑡(𝜉𝑗

𝑖) = 8 |
1 2 3
−1 0 2
1 1 −1

| = −24 

Ответ: −24. 

Как отмечалось выше, {𝑒𝑖1 ∧ …∧ 𝑒𝑖𝑞} , ⅈ1 < ⋯ < ⅈ𝑞 – базис в 𝛬𝑞
0  – пространстве

кососимметрических тензоров. Если 𝑑ⅈ𝑚𝑉 = 𝑛, то в базисе 𝐶𝑛
𝑞
 элементов, то есть, 

𝑑ⅈ𝑚𝛬𝑞
0 = 𝐶𝑛

𝑞

Упражнение: найти размерность пространства симметрических тензоров. 

Естественно возникает вопрос: верно ли, что пространство тензоров с нижними 

индексами можно представить в виде прямой суммы пространства симметрических и 

пространства кососимметрических тензоров? 

Оказывается, ответ отрицательный (это видно хотя бы из того, что сумма размерностей 

пространств симметрических и кососимметрических тензоров не равна размерности 

пространства тензоров с нижними индексами). 
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