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ЛЕКЦИЯ 1. ПОНЯТИЕ ЛИНЕЙНОГО ПРОСТРАНСТВА И ЕГО СВОЙСТВА 

ЛИНЕЙНОЕ ПРОСТРАНСТВО. АКСИОМЫ ВЕКТОРНОГО ПРОСТРАНСТВА 
Под числовым полем будем понимать множество чисел, на котором можно 

выполнить 4 операции: сложение, вычитание, умножение и деление. Пример числовых 
полей: ℚ - рациональные, ℝ - действительные, ℂ - комплексные числа. Все операции 
выполняются на этих множествах и их результаты принадлежат этим множествам.   

Определение. Векторное пространство над числовым полем 𝕂 – это множество 
𝕍,	элементы которого называются векторами, снабженное двумя операциями:	

сложения + : 𝑉 × 𝑉	 → 𝑉, ;

умножение на число ⋅ : 𝕂 × 𝑉	 → 𝑉, ; 

обладающие следующими свойствами (аксиомы векторного пространства): 

1)  (коммутативность); 
2)  (ассоциативность); 

3) (существование нулевого элемента); 

4) (существование обратного элемента); 
5) ;
6) 𝕂	 ; 
7) 𝕂	 ;	(дистрибутивность)
8) ℝ . 

ПРИМЕРЫ ВЕКТОРНЫХ ПРОСТРАНСТВ 
1. 𝕍 , 𝕍 , 𝕍  - геометрически направленные отрезки, лежащие на прямой, на

плоскости и в пространстве соответственно. 

2.  - пространство, элементами которого являются 

столбцы вещественных чисел. 
3. C[a,b] - множество всех непрерывных функций на отрезке от а до b. В качестве

нулевого вектора выступает нулевая функция, которая является непрерывной.
У каждого пространства есть такая характеристика как размерность – это

максимально возможное в пространстве количество линейно независимых
элементов. имеет размерность n, а C[a,b] – бесконечномерное пространство. В
данном курсе будем рассматривать конечномерные пространства.

4. Пространство многочленов ℝ[t] – множество всех многочленов с вещественными
коэффициентами от переменной t.

( , )x y x y+! ! ! !
"

( , )x xa a ×! !
"

, :x y V x y y x" Î + = +
! ! ! ! ! !

, , : ( ) ( )x y z V x y z x y z" Î + + = + +
! ! ! ! ! !! ! !

0: :0x V x x$ " Î + =
! !! ! !

: : 0x V x V x x¢ ¢" Î $ Î + =
!! ! ! !

:1x V x x" Î × =
! ! !

,a b" Î : ( ) ( )x V x xa b ab" Î × = ×
! ! !

,a b" Î : ( )x V x x xa b a b" Î + × = × + ×
! ! ! !

a" Î , : ( )x y V x y x ya a a" Î × + = × + ×
! ! ! ! ! !

1 2 3

1

, , 1,...,n k

n

x
x k n

x

æ ö
ç ÷

= Î =ç ÷
ç ÷
è ø

! " !

n
!
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- множество всех многочленов с вещественными коэффициентами от 
переменной t степень которых ≤ n. Размерность этого пространства равняется n+1. 

5. Пространство тригонометрических многочленов порядка  ≤ n 

, где . 

 

(1.1) 

 Размерность такого пространства равна 2n+1. Тригонометрические многочлены также 
можно задавать как  

, где . 
(1.2) 

6. В качестве множества V возьмем положительные вещественные числа, а в 
качестве 𝕂 – возьмем все вещественные числа. Тогда векторами являются 
положительные вещественные числа, коэффициентами являются любые 
вещественные числа. 

Введем на множестве V две операции:  

• сумму  (операцию над векторами): ; 

• произведение ⊗: . 

Проверим выполняются ли аксиомы векторного пространства. 

1) . 
2) Очевидно. 
3) Должно выполняться . Что такое ? Обозначим нулевой 

элемент как вопросительный знак и получим, что . Значит, это 

число единица: . 
4) Обратным элементом является x’=1/x. 
5)  <=> . 
6) 	перепишем операции слева и справа и получим 

. 
7) Должно выполнятся . Снова выполняем операции 

слева и справа и получаем . 
8) Аналогично. 

Выведем свойства аксиом: единственность нулевого элемента векторного 
пространства, единственность противоположного элемента для каждого элемента из 
векторного пространства, докажем, что противоположный элемент можно всегда 
представить, как произведение данного элемента, умноженного на число -1. 

[ ]nt!

0

1

( ) cos sin
2

n

k k
k

af t a kt b kt
=

= + +å 0 , ,k ka a b Î!

( ) e
n

ikt
k

k n
g t c

=-

= å kc Î!

Å x y x yÅ = ×
! !

x xaa Ä =
!

x y x y y x y xÅ = × = × = Å
! ! ! !

0: :0x V x x$ " Î Å =
! !! ! ! 0

!

0 ?x x xÅ = × =
! !

0 1x x xÅ = × =
! !

1 x xÄ =
! ! 1x x=
( ) ( )x xa b a bÄ Ä = × Ä

! !

( )x xb a ab=
( ) x x xa b a b+ Ä = Ä + Ä

! ! !

x x xa b a b+ = ×
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СВОЙСТВА АКСИОМ ВЕКТОРНОГО ПРОСТРАНСТВА 
1. Теорема. Нулевой элемент векторного пространства единственен. 

Доказательство (от противного). Пусть существуют два нулевых вектора  и 
Третья аксиома векторного пространства гласит, что если нулевой вектор прибавить к 
любому другому, то ничего не изменится. Перепишем ее и в качестве нулевого вектора 
возьмем - , а в качестве х возьмем первый нулевой элемент . Тогда получаем  

 поменяем слагаемые местами: . Теперь наоборот 

рассматриваем  как вектор х, а  как нулевой вектор. Добавление нулевого вектора 

к вектору х дает нулевой вектор =>   => . 

2. Теорема. Обратный элемент для каждого элемента векторного пространства 
единственен. 

Доказательство (от противного). Предположим, что существуют два 
противоположных элемента ’ и ’’. Т.е. это означает, что  и . 
Применив третью аксиому, получаем, что . Вместо нулевого вектора 
напишем  , далее используем свойство коммутативности, а затем свойства 
ассоциативности и получим в итоге: 

  

Т.е. . Что и требовалось доказать. 

3. Произведение числа ноль на вектор дает нулевой вектор. 

4. Противоположный вектор равен произведению -1 на вектор. 

 

ЛИНЕЙНАЯ КОМБИНАЦИЯ И ЛИНЕЙНАЯ ОБОЛОЧКА 
Определение. Линейная комбинация векторов х с коэффициентами α – это 

выражение такого вида: 

 (1.3) 

где   

Определение. Линейная комбинация называется тривиальной, если все 
коэффициенты этой комбинации равны нулю.  

Определение. Линейная комбинация называется нетривиальной в противном 
случае, т.е. хотя бы один из коэффициентов отличен от нуля. 

Определение. Линейная оболочка векторов – это множество всевозможных 
линейных комбинаций, которые можно получить из этих векторов: 

10
!

20
!

20
!

10
!

1210 0 0= +
! ! !

1 210 0 0= +
! ! !

20
!

10
!

1 21 20 0 0 0= + =
! ! ! !

210 0=
! !

x! x! ' 0x x+ =
!! ! " 0x x+ =

!! !

' 0 'x x= +
!! !

" 0x x+ =
!! !

' 0 ' ( ") ' ( " ) ' " ( ') " 0 "x x x x x x x x x x x x x= + = + + = + + = + + = + =
! !! ! ! ! ! ! ! ! ! ! ! ! !

' "x x=! !

1 1 ,... 0nx xa a+ + =
! !

1 .,... na a Î!
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(1.4) 

где  
 

ЛИНЕЙНО ЗАВИСИМЫЕ И ЛИНЕЙНО НЕЗАВИСИМЫЕ ВЕКТОРА. 
Определение. Набор векторов называется линейно зависимым, если 

существует нетривиальная линейная комбинация этих векторов равная нулевому 
вектору. 

Определение. Набор векторов называется линейно независимым, если 
линейная комбинации этих векторов равна нулевому вектору ó эта линейная 
комбинация тривиальная. 

Теорема (свойства линейно зависимых векторов). 

Основные утверждения: 

1. Если среди векторов  имеется нулевой вектор, то этот набор является 

линейно зависимым. 
2. Если в наборе векторы линейно зависимы, то все эти 

векторы тоже линейно зависимы. 
3. Если  линейно зависимы, то какой-либо из них (вектор с ненулевым 

коэффициентом в этой линейной комбинации) можно представить как линейную 
комбинацию остальных.  

Определение. Размерность векторного пространства – это натуральное число n, 
которое обладает следующими свойствами: 

1. В пространстве V существует n линейно независимых векторов. 
2. Любые n+1 векторов дают линейно зависимый набор. 

Т.е. размерность – это максимально возможное количество линейно независимых 
векторов в наборе. Обозначается как dim V. 

 

БАЗИС В ВЕКТОРНОМ ПРОСТРАНСТВЕ 
Определение.  Базис в векторном пространстве V – это упорядоченный набор 

векторов , которые обладают следующими двумя свойствами: 

1.  линейно независимы 

2. Любой другой вектор можно выразить через них, т.е. , 
такой что вектор х представляется линейной комбинацией. 

1
1

. ,( ,. . )
p

p k k
k

L x x xa
=

= =å! ! !

1 .,... na a Î!

1,..., px x! !

1,..., px x! !

1,..., px x! !

1 1,... ., , ,. .p p sx x x x+
! ! ! !

1,..., px x! !

1,..., px x! !

1,..., ne e! !

1,..., ne e! !

1: ,..., nx V x x" Î $ Î
! K
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(1.5) 

Теперь сформулируем две важные теоремы. 

Теорема 1. Разложение по базису единственно. 

Доказательство (от противного). Предположим, что есть два разложения 
 и . Вычтем один вектор из другого и получаем  

 (1.6) 

(1.6) представляет собой линейную комбинацию базисных векторов равную нулевому 
вектору. Т.к. базисные векторы линейно независимы, то получаем, что линейная 
комбинация обязана быть тривиальной, следовательно  

Теорема 2. Все базисы векторного пространства состоят из одного и того же 
количества векторов, которое равно размерности этого пространства. 

Для доказательства этой теоремы будет пользоваться леммой. 

Пусть имеются векторы (они могут быть линейно зависимы или линейно 

независимы) и рассмотрим векторы . 

1) Если s > p, то линейно зависимы; 

2) Если линейно независимы, то s ≤ p. 

1-е утверждение можно доказать, используя теорию линейных систем, 2-е – по 
индукции. Это две формулировки теоремы. Доказательство см. в следующей лекции. 

  

1
1

1

...
n

n
n k k

k k

k

x x e x e x e x e
=

= == + + å! ! ! ! !

1
1 ... n

nx x e x e= + +
! ! ! 1

1 ... n
nx y e y e= + +

! ! !

1 1
10 ( .. () ). n n

nx y e x y e= + -- +
! ! !

1 1 .,..., n nx xy y= =

1,..., px x! !

1 1,..., ( ,..., )s py y L x xÎ
! ! ! !

1,..., sy y! !

1,..., sy y! !



 
 ЛИНЕЙНАЯ АЛГЕБРА 
 ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ,  
 ТОКМАЧЕВ МИХАИЛ ГЕННАДЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

10 
 
 

 

ЛЕКЦИЯ 2. ИЗОМОРФИЗМ. ПРЕОБРАЗОВАНИЕ КООРДИНАТ 
 

ТЕОРЕМА О РАЗМЕРНОСТИ БАЗИСА 
Теорема. Пусть имеются векторы (они могут быть линейно зависимы или 

линейно независимы) и рассмотрим векторы . 

1) Если s > p, то линейно зависимы; 

2) Если линейно независимы, то s ≤ p. 

Доказательство. Доказывать будем 1-е утверждение. 

Т.к. , значит каждый из векторов у можно разложить через 
линейную комбинацию векторов х: 

 

 

(2.1) 

Запишем выражение (2.1) более компактно в виде матриц: 

•  размером 1 × s;  

• размером 1 × p. 

Тогда (2.1) можно переписать как: 

 (2.2) 

где А – матрица размером p × s, обладающая свойством p < s: 

 

 

(2.3) 

 

Рассмотрим однородную систему линейных уравнений:  

AZ = 0, 
 

(2.4) 

у которой матрица А имеет размер p × s, а неизвестная матрица Z – размер s × 1. Это 
однородная система, в которой p < s, здесь p – количество строчек => количество 
уравнений, s – количество неизвестных. Неизвестных больше, чем уравнений, будем 
решать систему уравнения методом Гаусса. У системы существуют нетривиальные 
решения, которые обозначим как : 

 (2.5) 

1,..., px x! !

1 1,..., ( ,..., )s py y L x xÎ
! ! ! !

1,..., sy y! !

1,..., sy y! !

1 1,..., ( ,..., )s py y L x xÎ
! ! ! !

1
1 1 11

1
1

...
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n
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y a x a x

y a x a x
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= + +

!!" " "

!!" " "

1|| ,..., ||sY y y=
! !

1|| ,..., ||pX x x=
! !

,Y AX= ×

1 1
1

1

s

p p
s

a a
A

a a

æ ö…
ç ÷

= ç ÷
ç ÷…è ø
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Здесь  Наша цель – доказать, что вектор у линейно зависим. Нужно 
предъявить какую-нибудь нетривиальную линейную комбинацию этих векторов, 
которая была бы равна нулевому вектору. Утверждается, что линейная комбинация 
векторов у с коэффициентами, которые берутся из решения уравнения (2.5) – это то, что 
нам нужно . 

Рассмотрим нетривиальную линейную комбинацию векторов у с 
коэффициентами из столбца : 

 
 

(2.6) 

Таким образом, вектор у оказался линейно зависимым. Ч.т.д. 

 Теорема. Все базисы векторного пространства V состоят из одного и того же 
числа векторов, причем это число равно размерности нашего пространства. 

 Доказательство. Предположим, что существуют два базиса, состоящие из 
разного числа векторов:  и . Каждый из векторов е разложим через 

векторы f. Можно утверждать, что , про векторы е известно, что они 
линейно независимы, значит (согласно предыдущей теореме), что n ≤ m.  

Но мы можем поступить и наоборот: векторы f разложить по векторам е (т.к. е 
тоже образуют базис), но т.к. f – линейно независимы, на основании предыдущей 
теоремы получаем, что m≤ n.  

Из двух неравенств следует, что n=m. 

 

ИЗОМОРФИЗМ ВЕКТОРНЫХ ПРОСТРАНСТВ 
Изоморфизм – это отображение одного векторного пространства в другое, 

которое сохраняет операцию (т.е. сумма векторов переходит сумму, произведение на 
число переходит в произведение на число) и при этом это отображение должно быть 
взаимно однозначным, т.е. каждому вектору одного пространства должен 
соответствовать вектору в другом пространстве и наоборот. 

Определение. Пусть есть два пространства V, W над одним и тем же числовым полем 
𝕂. Отображение F: V → W называется изоморфизмом, если выполнены такие 
требования: 

1) отображение F взаимно-однозначно => обратимо. 
2) и 𝕂 выполнены свойства линейности: 

a) ; 

б) . 

Свойства линейности можно записать в виде одного выражения: 

0 0.Z ¹

1
0 0 0( ,..., )s TZ z z=

0Z

1
0 1 0 0 0 0... ) 0 0.( ) (s

sz y z y YZ XA Z X A XZ+ = =+ == =
! !

1,..., ne e! !
1,..., mf f
! !

1 1,..., ( ,..., )mne e L f fÎ
! !! !

x V" Î
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( ) ( ) ( )F x y F x F y+ = +
! ! ! !

( ) ( )F x F xa a=! !
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(2.7) 

Линейное отображение – это то отображение, которое коммутирует с линейными 
операциями. 

Теорема. Пусть V – это векторное пространство над числовым полем 𝕂. Тогда 
этот пространство V изоморфно векторному пространству < = > . 

Доказательство. Пусть - базис в пространстве V.  Тогда : 

, где 𝕂,  составим столбец . Рассмотрим отображение F: 

V →  , которое каждому х ставит в соответствие столбец его координат (проверить, 
что действительно F является изоморфизмом). 

Замечание. Изоморфизм, который мы построили, зависит от выбора базиса. При 
решении геометрической задачи мы ставим вектору в соответствие столбец координат и 
получаем алгебраическую задачу. Окончательный ответ нужно формулировать без 
обращения к какому-либо базису (т.е. инвариантные ответы). 

Теорема. Два векторных пространства V и W над одним и тем же числовым полем 
𝕂	изоморфны тогда и только тогда, когда dim V = dim W. 

ПРЕОБРАЗОВАНИЕ КООРДИНАТ ВЕКТОРА 
Пусть дано V над  и в нем есть два базиса: и . 

Каждый вектор в пространстве мы можем разложить в первом и во втором базисах и 
нужно найти взаимосвязь этих двух разложений. Прежде всего должны посмотреть, как 
базисные векторы связаны друг с другом. Назовем «старым» базисом – базис без 
штрихов, а «новым» - со штрихами. Выразим векторы нового базиса через векторы 
старого базиса:  

  

 

 

(2.8) 

Правило суммирования Эйнштейна предполагает, что в (2.8) – идет 
суммирование по k. (2.8) можно записать как: 

 
 

(2.9) 

где k=1,..,n, k'=1,..,n'. 

 Матрица коэффициентов С (размером n × n) будет выглядеть как: 
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(2.10) 

Формула замены базиса в матричной форме: 

 (2.11) 

Заметим, что det C ≠ 0, значит, существует обратная матрица. Умножим 
выражение (2.11) справа на обратную матрицу далее получаем формулу 
обратного перехода: 

 (2.12) 

Формула (2.12) в тензорном виде: 

  (2.13) 

Пример 1. 

Рассмотрим двумерное векторное пространство V над полем вещественных чисел, 
обозначим как V(ℝ), dim V = 2. «Старый» базис - , «новый» базис - 

, формулы связи этих двух векторов:  

• ; 

• . 

Тогда матрица перехода равняется , определитель:  det C= -2, обратная 

матрица: . 

Формулы обратного перехода:  
• ; 

• . 

Пусть разложение по базисам  

 
 

(2.14) 

 (2.15) 

Приравняем две части выражений и получим: 

 (2.16) 
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1 3
2 4

C æ ö
= ç ÷
è ø

2 3 / 2
1 1/ 2

C
-æ ö

= ç ÷-è ø

'1 1 2'2e e e= - +
! ! !

1 22
3 1
2 2

e e e= -
! ! !

x V" Î
!

1
1 ... n

n EXx x e x e == + +
! ! !

1' '
1' '... ''n

nx E Xx e x e= + =+
! ! !

' ' ( ) ' ( ')EX E X EC X E CX= = =
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Т.к. разложение по базису единственно, то из (2.16) получаем формулы замены 
координат вектора при замене базиса: 
 

 

 
 

(2.17) 

 
 

(2.18) 

Также запишем формулы: 

 
 

(2.19) 

 
 

(2.20) 

Факт того, что векторы базиса и координаты образуются по-разному, является 
очень важным.  

КОВАРИАНТНЫЕ И КОНТРВАРИАНТНЫЕ ПРЕОБРАЗОВАНИЯ 
Преобразования, в котором участвует прямая матрица С перехода, называются  

ковариантными, а преобразования, в котором участвуют обратная матрица перехода – 
контравариантными. 

Перепишем формулы (2.17)-(2.20) в тензорных значениях: 

𝑥! = 𝑐!"! 𝑥!! 
 

(2.21) 

𝑥!! = 𝑐!!
!𝑥! 

 
(2.22) 

Вернемся к Примеру 1. Пусть есть вектор его столбец координат в 

старом базисе  запишется как . 

Задача состоит в том, чтобы найти разложение вектора х в новом базисе. Чтобы 
найти новые координаты, должны применить обратную матрицу: 

 

 

(2.23) 

Замечание. Координаты вектора - это контравариантные объекты, которые 
преобразуются при помощи обратной матрицы перехода.  

В результате получаем: 

 
 

(2.24) 

У матрицы перехода перестановка местами индексов (штрихованных с не 
штрихованными) не транспонирование, а обращение. 

'X СХ=

1'X С Х-=

'E EC=

1'E E C-=

1 24 6 ,x e e= - +
! ! !

4
6

X
-æ ö

= ç ÷
è ø

1 17
7

X C X- æ ö¢ = = ç ÷-è ø

1 217 7 .x e e¢ ¢= -
! ! !
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РАЗМЕРНОСТЬ ПРОСТРАНСТВ 
Вернемся теперь к примерам векторного пространства.  

1.  Элементами пространств являются столбцы, состоящие 
из чисел поля К.  

В этом пространстве стандартным базисом является базис, состоящий из столбцов  

, …,                                           (2.25) 

Как найти размерность пространства? - 1-й вариант: найти базис, тогда 
размерность будет равняться количеству векторов в базисе. 2-й вариант: можно найти 
количество произвольных параметров (координат), через которые можно выразить 
любой элемент пространства.  

2.  - элементами этого пространства являются столбцы, состоящие из 
комплексных чисел. Коэффициентами (координатами) могут служить только 
действительные числа. Размерность пространства равна 2n. Базисные векторы 
как в выражении (2.25). 

3. Пространство многочленов степени ≤ n: 𝕂[x]n.	Базисные	векторы: 

 
(2.26) 

Размерность пространства равна n+1. Значит, 𝕂[x]n изоморфно 𝕂. Благодаря 
изоморфизму можем вместо многочлена рассматривать столбец. 

4. Пространство тригонометрических многочленов:  

, где . 

 

(2.27) 

Размерность пространства 2n+1. Базисные векторы состоят из cos kt и sin kt. 

  

( ), ( ), ( ).n n n
! ! " " K K

1

1
0

0

e

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

!

"
2

0
1
,

0

e

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

!

"

0
0
.

1

ne

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

!

"

( )n
! "

0 11, ,..., .nn te e et= = =
! ! !

0

1

( ) cos sin
2

n

k k
k

af t a kt b kt
=

= + +å 0 , ,k ka a b Î!
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ЛЕКЦИЯ 3. ЛИНЕЙНЫЕ ФУНКЦИОНАЛЫ И ЛИНЕЙНЫЙ ОПЕРАТОРЫ 
 

ЛИНЕЙНЫЕ ФУНКЦИОНАЛЫ 
Пусть V(𝕂) - векторное пространство над числовым полем К. Введем следующее 

определение: 

Определение. Линейный функционал f̂  на векторном пространстве V - это 
отображение, областью определения которого является векторное пространство V, а 
множеством значений - поле К, т.е.  f ̂ : другими словами каждому вектору 

пространства ставится в соответствие некоторое число .Отображение должно 
обладать следующими свойствами: 

1.  

2.  

или  

 
(3.1) 

Примеры. 

1. Рассмотрим пространств направленных отрезков. Примером линейного 
функционала на геометрическом пространстве отрезков является проекция на ось. 
Т.е. каждому вектору можно поставить в соответствие число равно величине 
проекции. 

Устройство линейных функционалов на абстрактных пространствах одинаковое. 
Построим как линейный функционал записывается в базисе. 

 

ЗАВИСИМОСТЬ ЛИНЕЙНОГО ФУНКЦИОНАЛА ОТ БАЗИСА 

Пусть имеется базис , разложим вектор х по этому базису:  . 
Посмотрим действия функционала на х:  

 (3.2) 

 

где мы обозначили . Эти числа называются координатами линейного 

функционала f ̂в базисе :   

Теперь вывод координат линейного функционала проведем через сокращенные 
обозначения:  

 (3.3) 

 

,V ®K
ˆ( ( )x f x! !

"

ˆ ˆ ˆ( , ) : ( ) ( ) ( );x y V f x y f x f y" Î + = +
! ! ! ! ! !

ˆ ˆ, : ( ) ( );x V f x f xa a a" Î " Î =
! ! !K

ˆ ˆ ˆ, , , : ( ) ( ) ( ).x y V f x y f x f ya b a b a b" Î " Î + = +
! ! ! ! ! !K

1 1 1
1 1 1

ˆ ˆ ˆ ˆ( ) ( ... ) ( ) ... ( ) ...n n n
n n nf x f x e x e x f e x f e x f x f= + + = + + = + +

! ! ! ! !

ˆ( )k kf e f=!

( )1 .,  ... nF f f=

ˆ ˆ ˆ( ) ( ) ( ) .k k k
k k kf x f x e x f e x f¢= = =

! ! !
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Рассмотрим зависимость координат линейного функционала от базиса. Заменим 
базис:  

𝑒$!"""""⃗ = 𝑐$$
!
𝑒$""""⃗ 			

 
(3.4) 

Значения функционала на новых базисных векторах:  

𝑓!! = 𝑓(𝑒!!GGGGG⃗ ) = 𝑓 I𝑐!"! 𝑒!GGGG⃗ J = 𝑐!"! 𝑓! (3.5) 

 Т.е 

𝑓!! = 𝑐!"! 𝑓!.  (3.6) 

Из равенства (3.5) обнаруживаем, что координаты линейного функционала в 
новом базисе получаются из старых координат при помощи прямой матрицы перехода, 
т.е. по ковариантной формуле. Формула в обратную сторону будет выглядеть как: 

𝑓! = 𝑐!!"𝑓!".  (3.7) 

 

Значение линейного функционала . 

 (3.8) 

,  (3.9) 

 
ПРИМЕРЫ ЛИНЕЙНЫХ ФУНКЦИОНАЛОВ 

1. Координатные функционалы. Если есть и тогда 1-й функционал 
ставит в соответствие первую координату:  

Для двух линейных функционалов  и   их сумма определяется как новый 
функционал  

 (3.8) 

 

 (3.11) 

 

2. Нулевой функционал - функционал, который каждому вектору ставит в 
соответствие число ноль. 

 

ˆ( ) k
kf x x f FX= =

!

,F FC¢ =

1F FC-¢=

,x"!

1 1 2 2ˆ ˆ; ...e x x e x x= =
! !

f̂ ĝ

ˆ ˆˆ ˆ( )( ) ( ) ( )f g x f x g x+ = +
! ! !

ˆ ˆ( )( ) ( ).f x f xa a=! !
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СОПРЯЖЕННОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО 
Если есть какое-то векторное пространство, то множестве всех функционалов, 

действующих на это пространстве само является векторным пространством. Это новое 
векторное пространство называется сопряженным векторным пространством.  

Определение. Для векторного пространства V сопряженным пространством 
называется векторное пространство V* , состоящее из всех линейных функционалов, 
которые заданы на исходном пространстве. 

Если размерность dim V= n, то dim V^{*} = n.  

Эти пространства изоморфны друг с другом (по теореме). 

Зафиксируем базис, возьмем какой-нибудь вектор и возьмем набор его координат. 
Этому вектору поставим линейный функционал, у которого набор координат совпадает 
с набором координат нашего вектора. Этот изоморфизм плох тем, что при замене базиса 
координаты вектора преобразуются по одним формулам, а координаты линейного 
функционала по другим. Вектор преобразуется как контравариантный объект, а 
линейный функционал - как ковариантный. В новом базисе координаты совпадать не 
будут. При появлении скалярного произведения в пространстве можно придумать 
“хороший” изоморфизм между векторами и линейным функционалом, который не будет 
зависеть от выбора базиса.  

 

ВЕКТОРЫ И КОВЕКТОРЫ 
 Линейные функционалы часто называются ковекторами (ковариантный вектор). 

Векторы: радиус-вектор, скорость; ковектор: сила. 

Пример. Обычное определение градиента - это вектор, координатами которого 
являются частные производные. Но на самом деле градиент - это ковектор (линейный 
функционал). 

В итоге, отличие ковектора от вектора состоит в том, что они преобразуются по-
разному при замене базиса. 

Допустим имеем функции  частные производные по каждой 

координате: Сделаем замену координат, т.е. выразим их как: 

𝑥! = 𝑐!"! 𝑥!
! 

 
(3.12) 

𝑥!! = 𝑐!!
!𝑥! 

 

(3.13) 

 
Посчитаем частную производную по новой переменной:  

 
(3.14) 

1( ,... ),ny f x x=

.k
f
x
¶
¶

...
k

k k k

f f x
x x x¢ ¢

¶ ¶ ¶
= × =

¶ ¶ ¶
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Используя выражения (3.12)-(3.13) получаем: 

.  
(3.15) 

 

Т.е. получили, что частные производные по новой переменной выражаются через 
частные производные по старой переменной при помощи прямой матрицы перехода => 
ковектор.  В математическом анализе векторы и ковекторы можно не различать т.к. там 
работают в одном базисе (системе координат). 

 

ОБОЗНАЧЕНИЯ ДИРАКА 
В квантовой теории вектор  записывают как |x>, а ковектор обозначают как - 

<f|. Значение ковектора на векторе (по сути скалярное произведение): 

  
(3.16) 

В этих обозначениях базис будет выглядеть как |1>, … |n>. Тогда разложение 
вектора по базису: 

 (3.17) 

Замечание. Это разложение нельзя записать при помощи соотношения 
Эйнштейна (т.е. без использования знака суммы). 

 

ЛИНЕЙНЫЙ ФУНКЦИОНАЛЫ В БЕСКОНЕЧНОМЕРНОМ ПРОСТРАНСТВЕ 
Пусть V=C[a,b], а элементами пространства являются  непрерывные функции 

 Каждой непрерывной функции поставим в соответствие число: 

 (3.18) 

(3.18) – определяет некоторый линейный функционал (удовлетворяет свойствам 
линейного функционала).  

Замечание. Т.к. любой линейный функционал в конечномерном пространстве 
можно записать как сумму попарных произведений координат функционала и вектора 
(3.3). 

Вопрос: можно ли любой линейный функционал в пространстве функций 
определить с помощью интеграла? 

Ответ: нет. 

Например, рассмотрим пространство , а функционал действует по 
правилу: , т.е. из функции, заданной на промежутке функционал 
изготавливает значение функции в нуле. Этот функционал называется δ – функция 
Дирака и его нельзя представить в виде (3.18). 

k
k k

fc
x

¢ ¶=
¶

x! f̂

ˆ( ) : | k
kf x f x x f< >=
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ДЕЛЬТА-ФУНКЦИЯ ДИРАКА 
Дельта-функция Дирака очень часто используется в физике. Например, чему 

равна плотность массой материальной точки? - Массу точку нужно разделить на ее 
объем, равный нулю  => плотность равна бесконечности. Если предположим, что масс 
это интеграл от плотности, то масса точечной частицы должна равняется интегралу 
плотности этой частицы и должна равняться единице. Плотность самой материальной 
точки везде равна нулю, а там где эта точка есть - равна бесконечности. 

 

 

Рис.3.1.δ -функция Дирака 

 

 (3.19) 

 

Функционалы, которые задаются в виде (3.18), называются регулярными. 

Функционалы, которые задаются другим способом называются обобщенными 
функциями.  

Теория обобщенных функций - это по сути теория линейных функционалов, но на 
бесконечномерных пространствах. 

 

ЛИНЕЙНЫЕ ОПЕРАТОРЫ 
Пусть V и W – два векторных пространства над 𝕂. 

Определение. Отображение 	𝐴L ∶ 		𝑉 → 𝑊 называется линейный оператор, если: 

1) 𝐴L(𝑥⃗ + 𝑦⃗) = 𝐴L(𝑥⃗) + 𝐴L(𝑦⃗) 

 

(3.10) 

2)	𝐴L(𝛼𝑥⃗) = 𝛼𝐴L(𝑥⃗) 
(3.21) 

( ) 1x dxd =ò
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    Можно объединить эти два свойства в одно. 

Разница между линейным функционалом и линейным оператором заключается в 
том, что множество значений у линейного функционала - это поле К, а у линейного 
оператора – какое-то другое векторное пространство W. По сути линейный функционал 
– это разновидность линейного оператора (числовое поле можем считать векторным 
пространством). 

Пусть в пространстве V есть базис   и в пространстве W - . Тогда 

: , где 𝕂, k∈1…n. Будем обозначать греческими 
символами индексы, пробегающие значения от 1 до n, а латинскими – от 1 до m. 
Подействуем оператором на наш базис: 

 (3.22) 

где α ∈	1,…m	и	  

Действие оператора на вектор х в (3.22) обозначим за у и теперь у разложим по 
базису f: 

 
(3.23) 

Сравнивая две части получаем, что 

. (3.24) 

Таким образом, если линейный оператор действует на вектор, то получается 
другой вектор, координаты которого выражаются через координаты исходного вектора 
при помощи матричной формулы (3.24). 

Эту формулу можно переписать в матричном виде как  

. (3.24) 

Здесь А – матрица линейного оператора в паре базисов. 

Определение. Пусть 𝐴L ∶ 		𝑉 → 𝑊, базис   в пространстве V и  - 

базис в пространстве W. Разложим векторы по базису , коэффициенты 
полученного отображения образуют матрицу линейного оператора в указанной паре 
базисов: 

1,..., ne e! !
1,..., mf f
! !

x V" Î
! 1

1 ... k
k

n
nx x e x e x e= + + =

! ! ! ! kx Î

,ˆ ( )ˆ ˆ)( k k k
k k k k

kAx A x e A e ax x x faa a= = = =
!! ! ! !

.k ka Wa fa
a= Î
!!

.

ˆ
k
k

Ax

f f

y

y x aa a
a a

= =>

=

!

! !

k
ky x aa a=

Y AX=

1,..., ne e! !
1,..., mf f
! !

)ˆ(k ka A e=
! !

1,..., mf f
! !
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 (3.25) 

Матрица линейного оператора: 

 (3.26) 

Рассмотрим случай, когда пространство V и W совпадают, т.е. m=n (V=W). Тогда  

( ) = ( ) и матрица линейного оператора найдем как 

 (3.27) 

 (3.28) 

Матрица (3.28) – квадратная. 

  

) ,ˆ(k k kaa A e fa
a= =
!! !

.kA aa=

1,..., ne e! !
1,..., mf f
! !

ˆ )( k k k l
la aA e e= =

! ! !

( )k
lA a=



 
 ЛИНЕЙНАЯ АЛГЕБРА 
 ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ,  
 ТОКМАЧЕВ МИХАИЛ ГЕННАДЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

23 
 
 

 

ЛЕКЦИЯ 4. МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА. ЯДРО И ОБРАЗ 
ЛИНЕЙНОГО ОПЕРАТОРА 
 

МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА 
Пусть V и W – два векторных пространства над 𝕂.  

Линейный оператор 𝐴L ∶ 		𝑉 → 𝑊 =>  

 
 

(4.1) 

Пусть в пространстве V есть базис   и его матрицу обозначим за 

и в пространстве W возьмем базис  и составим матрицу-строку: 

. 

Возьмем вектор и разложим его по базису в пространстве V: 

 (4.2) 

Подействуем оператором А на вектор х и назовем его у: 

 (4.3) 

 

Перепишем все в матричном виде: 

 (4.4) 

Матрица оператора: 

 

 

 

(4.5) 

Рассмотрим строку   

 (4.6) 

 

(4.6) можно обозначить как , в результате получаем: 

 (4.7) 

 

Определение. Пусть V и W – два векторных пространства над 𝕂.  

1 2 1 2,, ,x x Va a" Î " Î
! !K

21 1 2 1 1 2 2) ) )ˆ ˆ ˆ( ( (A x x A x A xa a a a+ = +
! ! ! !

1,..., ne e! !

1 ||| ,. , |.. nE e e=
! ! !

1,..., mf f
! !

1 ||| ,. , |.. mF f f=
! !!

x V" Î
!

1
1 ... n k

knx x e Xx x Ee e= =+ =+
! ! ! !

ˆ) )ˆ ˆ( (k k
k k k

k x xy Ax A x e A e a== = =
! ! ! ! !

ˆ( )k k k kaa A e f FAa
a= = =
! !! !

1 1
1

1

1

.| .. || |
n

n
m m

n

A A
a a

A
a a

æ ö…
ç ÷

= = ç ÷
ç ÷…è ø

! " !

1 1|| ,..., .|| || ,..., ||nna a F F FAAA= =
! ! !! !

ˆ( )A E
!

ˆ( ) .A E FA=
! !
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Пусть 𝐴L ∶ 		𝑉 → 𝑊, в пространстве V зафиксируем базис   и его матрицу 

обозначим за и в пространстве W зафиксируем второй базис . 
Матрицей А линейного оператора 𝐴L в паре базисов, называется матрица, столбцы 
которой состоят из координат векторов  в базисе . 

Пример. В качестве линейного пространства V и W возьмем линейную оболочку 

двух функций: V = W = L(cos t, sin t). Рассмотрим оператор дифференцирования: 

: V →W. В качестве базисов в пространствах возьмем . 
Построим матрицу оператора в базисе е: 

 
(4.8) 

Посчитаем квадрат этой матрицы: 

 
(4.9) 

 Т.е. квадрат объекта равен единичной матрице с обратным знаком. Связано ли это 
с мнимой единицей?  

Рассмотрим комплексную экспоненту вместо косинуса и синуса, продифференцируем 
ее: 

 (4.9) 

Получили, что оператор обладает теми же свойствами, как и мнимая единица. 

 

ПРЕОБРАЗОВАНИЕ МАТРИЦЫ ЛИНЕЙНОГО ОПЕРАТОРА ПРИ ЗАМЕНЕ 
БАЗИСА 

Рассмотрим вектор у, который получили в (4.3): 

 (4.3) 

Этот вектор лежит в пространстве W, базисом в котором является базис f: 

 (4.4) 

Продолжим цепочку равенств: 

 (4.5) 

 Т.к. разложение по базису единственно и из (4.5) получаем, что 

1,..., ne e! !

1 ||| ,. , |.. nE e e=
! ! !

1,..., mf f
! !

ˆ )( kA e! 1,..., mf f
! !

ˆ dA
dt

=

2 21 1,cos sine t f e ft= = = =
! !! !

0 1
1 0

A æ ö
= ç ÷-è ø

2 1 0
0 1

A
-æ ö

= = -ç ÷-è ø
I

(cos sin ) ' sin cos (cos sin )t i t t i t i t i t+ = - + = +

ˆ) )ˆ ˆ( (k k
k k k

k x xy Ax A x e A e a== = =
! ! ! ! !

ˆ( )y f FY A xya a == =
! !! !

ˆ( ) k k k
k k ky FY A x x a Xx xFA FA FA== = == =

! ! ! !! ! !
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 (4.5) 

- это формула выражает координаты вектора у, через координаты исходного вектора х и 
матрицы оператора. Размерность A: m на n. 

 

ЯДРО И ОБРАЗ ЛИНЕЙНОГО ОПЕРАТОРА 
                                                                              A 

 

																																													 																																																																 	

		

																						V																																																																					W	

Рис.4.1. Ядро линейного оператора А 

Нулевой вектор одного пространства переходит в нулевой вектор другого 
пространства. Так же ненулевые векторы могут переходить в нулевой (например, если 
взять оператор дифференцирования, то все константы переходят в нулевой вектор). 

Определение. Множество всех векторов, которые превращаются в ноль при 
действии линейного оператора А, называется ядром линейного оператора и обозначается 
как ker A: 

 (4.6) 

В качестве множества значений может быть только какое-то подмножество 
пространства W.   

Определение. Образом линейного оператором является множество его значений:  

 (4.7) 

Замечание. Ядро линейного оператора является подпространством пространства 
V, а образ линейного оператора – подпространством пространства W. 

Теорема. 

Для линейного оператора 𝐴L ∶ 		𝑉 → 𝑊 

ker 𝐴L ⋐ 𝑉,	 
im𝐴L ⋐ 𝑊 

(4.8) 

Y AX=

va wa

ˆ ˆ{ : ( ) 0 }ker wA x V A x= Î =
!! !

ˆ ˆ{ : , ( )}imA y W x V y A x= Î $ Î =
! ! ! !
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Договоренность: значок двойного включения – только для подпространств. 

Доказательство. 

 Подпространством векторного пространства называется подмножество, которое 
обладает свойством: для любых векторов из этого подпространства и линейная 
комбинация этих векторов так же будет лежат в этом же подпространстве. 

Например, возьмем пространство – множество направленных отрезков. 
Множество единичных векторов не будет подпространством, т.к. их линейная 
комбинация может не оказаться вектором, с длиной равной единице. Множество 
векторов, параллельных данной плоскости, уже будет являться подпространством. 

Т.е. нужно доказать, что если взять два вектора из ядра, то любая их линейная 
комбинация будет лежать в этом ядре. Аналогично для образа. 

1) Для ker A доказать, что: 

 (4.9) 

х1 лежит в ядре, значит: 

 (4.10) 

х2 лежит в ядре, значит: 

 (4.11) 

Подействуем оператором А на линейную комбинацию, используя свойство 
линейности, получаем: 

 (4.12) 

 Это и означает, что линейная комбинация лежит в ядре: 

 (4.13) 

2) Для образа линейного оператора доказательство аналогичное. 

Раз ядро и образ – это подпространства, значит в них можно рассматривать базисы 

и их размерности. 

Теорема.  

1 1 2 1 1 22 2
ˆ ˆker , : ker ., ,x x A x x Aa a a a" Î " Î Î+

! ! ! !
"

1 1
ˆ ˆker : ( ) 0,x A A xÎ =

!! !

2 2
ˆ ˆker : ( ) 0.x A A xÎ =

!! !

1 1 2 1 1 22 2
ˆ ˆ ˆ( ) ( ( ) 0.)A x x A x A xa a a a+ = + =

!! ! ! !

21 1 2
ˆker .x x Aa a Î+

! !
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Пусть 𝐴L ∶ 		𝑉 → 𝑊, тогда 

 (4.14) 

Доказательство. 

Должны убедиться, что базис в ядре, базис в образе и базис в пространстве V 
связаны соотношением (4.14). 

Возьмем базис в ker 𝐴L ∶ 	 𝑒#GGG⃗ , … , 𝑒$GGGG⃗ , dim ker 𝐴L = 𝑝. Добавим векторы  𝑒$%#GGGGGGGG⃗ , … , 𝑒&GGGG⃗ ,  
так, что 𝑒#GGG⃗ , … , 𝑒$GGGG⃗ , 𝑒$%#GGGGGGGG⃗ , … , 𝑒&GGGG⃗  – базис в V. 

Тогда : 

𝑥⃗ = 𝑥!𝑒!GGGG⃗ = 𝑥#𝑒#GGG⃗ + ⋯+ 𝑥$𝑒$GGGG⃗ + 𝑥$%#𝑒$%#GGGGGGGG⃗ + ⋯+ 𝑥&𝑒&GGGG⃗  
 

(4.15) 

В (4.15) видно, что одна группа слагаемых лежит в ядре, а другая – не лежит. 

Подействуем оператором А на вектор х (первая группа слагаемых равна нулевому 
вектору, т.к. лежит в ядре 𝐴L(𝑒#GGG⃗ ) = ⋯ = 𝐴L`𝑒$GGGG⃗ a = 0G⃗ ): 

𝑦⃗ = 𝐴L(𝑥⃗) = 𝑥$%#𝐴L`𝑒$%#GGGGGGGG⃗ a + ⋯+ 𝑥&𝐴L(𝑒&GGGG⃗ ) = 𝑥$%#𝑔$%#GGGGGGGGG⃗ + ⋯+ 𝑥&𝑔&GGGG⃗  (4.16) 

Где мы сделали обозначения: 

𝐴L`𝑒$%#GGGGGGGG⃗ a = 𝑔$%#GGGGGGGGG⃗ , … , 𝐴L(𝑒&GGGG⃗ ) = 𝑔&GGGG⃗  (4.17) 

  Вектор у принадлежит пространству W и образу оператора А: 

 (4.18) 

Любой вектор, лежащий в образе можно представить в виде линейной 
комбинации (4.16) векторов 𝑔$%#GGGGGGGGG⃗ …	𝑔&GGGG⃗ . 

Надо доказать, что 𝑔$%#GGGGGGGGG⃗ …	𝑔&GGGG⃗  – базис в 𝑖𝑚	𝐴L. Т.е. нужно доказать, что они 
линейно независимы и через них можно представить любой вектор в пространстве. 

То, что через них выражается любой вектор мы уже доказали, осталось доказать, 
что  𝑔$%#GGGGGGGGG⃗ …	𝑔&GGGG⃗   линейно независимы. 

Составим линейную комбинацию: 

ˆ ˆdimker dim dimA imA V+ =

x V" Î
!

ˆ ˆ ˆ( ) , ( ) .A x W A x imAÎ Î
! !
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𝛼$%#𝑔$%#GGGGGGGGG⃗ + ⋯+ 𝛼&𝑔&GGGG⃗ = 0G⃗  
(4.19) 

Здесь, вместо векторов g напишем их выражение: 

𝛼$%#𝐴L`𝑒$%#GGGGGGGG⃗ a + ⋯+ 𝛼&𝐴L(𝑒&GGGG⃗ ) = 0G⃗  
(4.20) 

Используя свойство линейности, получаем: 

𝐴L(𝛼$%#`𝑒$%#GGGGGGGG⃗ a + ⋯+ 𝛼&(𝑒&GGGG⃗ )) = 0G⃗  
(4.21) 

Это означает, что 

𝛼$%#`𝑒$%#GGGGGGGG⃗ a + ⋯+ 𝛼&(𝑒&GGGG⃗ ) ∈ 𝑖𝑚	𝐴L 
(4.22) 

Но каждый из векторов 𝑔$%#GGGGGGGGG⃗ , … , 𝑔&GGGG⃗  ∉ im Â, а значит, для выполнения (4.22) все 
коэффициенты должны быть равны нулю. Что и требовалось доказать. 

Посмотрим частный случай теоремы 𝐴L ∶ 		𝑉 → 𝑊: 

 (4.23) 

Пусть .  

Ядро линейного оператора – множество решений однородной системы 
уравнений:  

 (4.24) 

Образ линейного оператора – это множество всех векторов  

 (4.25) 

 Мы можем рассматривать систему уравнений: 

 (4.26) 

Если вектор Y лежит в образе оператора, то система совместна (можно получить 
его через X). 

ˆ ˆdimker dim dimA imA V+ =

,n mV W= =! !

ˆker : 0A AX =

ˆ : .imA Y AX=

AX Y=
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Размерность ядра равна количеству свободных переменных в системе AХ=0, а 
размерность образа – количеству базисных столбцов матрицы АХ, а размерность 
пространства V – количеству всех переменных: 

dimker 𝐴Lghhihhj
размерность	пр3ва
решений	89:;:	

число	свободных	перем.

+ dim 𝑖𝑚	𝐴Lghhihhj

число	баз.		
неизвестных

= dim𝑉gij
число	всех	
неизвестных

 
(4.27) 

 
АЛГЕБРА ЛИНЕЙНЫХ ОПЕРОТОРОВ 

Пусть есть пространства V,W и линейные операторы 𝐴L, 𝐵l , 𝐶L, … 	 ∶ 𝑉 → 𝑊.  

            Определение. Суммой двух линейных операторов называется 

𝐶L ≔ 𝐴L + 𝐵l , если ∀𝑥 ∈ 𝑉			𝐶L(𝑥⃗) = 𝐴L(𝑥⃗) + 𝐵l(𝑥) (4.28) 

            Определение. Произведение оператора на число: 

𝐷q ≔ 𝛼𝐴L, если ∀𝑥⃗		𝐷q(𝑥⃗) ≔ 𝛼𝐴L(𝑥). 
(4.29) 

           Множество всех линейных операторов, действующих из V в W, обозначается как 
L(V, W) или как Hom(L,W) (от слова гомоморфизм – отображение одного множества в 
другое с сохранением операций). Гомеоморфизм – отображение, которое непрерывно в 
обе стороны. 

            Произведение двух операторов. Пусть линейный оператор 𝐴L, 𝐵l , 𝐶L, … 	 ∶ 𝑉 → 𝑉. 
Они сами образуют линейное пространство L(V)=End(V) (от слова эндоморфизм – 
гомоморфизм самого протранства в себя) 

          Действуем оператором А на вектор х и получаем вектор Â(x), который лежит в 
том же самом пространстве V, значит на него снова можно подействовать оператором, 
например B̂ : B̂(Â(x)). 

             Определение. Произведение линейных операторов ∈ L(V) – это оператор  

∀𝑥 ∈ 𝑉:	𝐵l𝐴L(𝑥⃗) = 𝐵l(𝐴L(𝑥)) 
(4.30) 

              Замечание.  

• Hom(V,W) (в этом пространстве операторы можно только складывать и 
умножать на числа) – просто линейные пространства. 
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• End(V) (в этом пространстве можно умножать операторы) – алгебра, т.е. 
линейные пространства с операцией умножения. Например, квадратные 
матрицы образуют алгебру. 

           Теорема. Пусть линейные операторы 𝐴L, 𝐵l:	𝑉 → 𝑊 имеют матрицы А и В в 
заданной паре базисов, тогда оператор 𝐴L + 𝐵l  имеет матрицу А+В,  
оператор	𝛼𝐴L	имеет	матрицу	𝛼𝐴 и если операторы 𝐴L, 𝐵l:	𝑉 → 𝑉, тогда оператор 
произведения 𝐵lАq	имеет	матрицу	𝐵𝐴. 
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ЛЕКЦИЯ 5. СОБСТВЕННЫЕ ЗНАЧЕНИЯ И СОБСТВЕННЫЕ ВЕКТОРЫ 
ЛИНЕЙНОГО ОПЕРАТОРА 
 

ПРЕОБРАЗОВАНИЕ МАТРИЦЫ ЛИНЕЙНОГО ОПЕРАТОРА ПРИ ЗАМЕНЕ 
БАЗИСА 

Пусть , старый базис в пространстве V: , новый базис 

, А, А’ – матрицы линейного оператора в этих базисах соответственно.  

Как связаны А, А’? 

Матрица перехода обозначается как С, связь между базисами: 

 (5.1) 

Если 

 (5.2) 

То (5.1) можно переписать в матричном виде в старом базисе: 

 (5.3) 

в новом базиса: 

 (5.4) 

Свяжем координаты векторов х и у в двух базисах (контравариантность): 

 (5.5) 

Напишем связь новых и старых координат (ковариантность): 

 (5.6) 

Формулы (5.45) и (5.6) вставим в (5.3): 

 (5.7) 

Обе части равенства (5.7) умножаем на обратную матрицу С-1: 

 (5.8) 

ˆ :A V V® 1 ||| ,. , |.. nE e e=
! ! !

1 ||| ,. , |.. mF f f=
! !!

'E EC=
! !

ˆy Ax=
! !

Y AX=

' ' 'Y A X=

'X CX=

'Y CY=

' ( ')CY A CX=

1' 'Y C ACX-=
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Сравнивая (5.8) и (5.4) получаем формулу преобразования матрицы: 

 (5.9) 

Запишем эту формулу в тензорных обозначениях: 

 (5.10) 

В (5.7) происходит произведение чисел, поэтому ее можно переписать: 

 (5.11) 

Замечание. Каждый элемент в новом базисе выражается через все элементы 
старого базиса.  

В преобразовании участвует прямая и обратная матрица перехода. Линейный 
оператор – смешанный тензор (есть ковариантный и ковариантный индекс). 

 

СОБСТВЕННЫЕ ЗНАЧЕНИЯ И СОБСТВЕННЫЕ ВЕКТОРЫ ЛИНЕЙНОГО 
ОПЕРАТОРА 

Рассматривается линейный оператор (принципиально важно, что 
действуют сам в себя) 

Определение. Вектор  называется собственным вектором линейного 
оператора Â, если , что выполняется: 

 (5.12) 

Т.е. действие оператора A сводится к умножению на число. 

Вопросы. Что из себя представляют собственные векторы, отвечающие 
собственному числу равному 0?  

- Если λ =0, то соответствующие собственные векторы образуют ядро оператора. 

Пусть имеется два собственных вектора, отвечающие одному и тому же 
собственному числу. Что представляет из себя линейная комбинация этих векторов? 

- Подействуем линейным оператором на линейную комбинацию: 

 (5.13) 

1'A C AC-=

'k k k j
j k j ja a cc¢
¢ ¢=

'k k j k
j k j ja c ac¢
¢ ¢=

ˆ :A V V®

0x ¹
!!

l$ ÎK

ˆ ( )A x xl=! !

21 1 2 1 1 2 1 1 22 2
ˆ ))ˆ ˆ( ) ( ( ) (A с x x с A x с A x x сс xс l+ += = +
! ! ! ! ! !
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Получаем, что линейная комбинация сама является собственным вектором, 
отвечающим тому же собственному числу. 

Замечание. Множество всех СВ, соответствующих одному и тому же СЗ, 
дополненное нулевым вектором, образует подпространство. 

Определение. Оно называется собственным подпространством. Обозначение: Pλ 

Размерность этого собственного подпространства называется геометрической 
кратностью собственного значения. 

ВЫЧИСЛЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ 

Рассмотрим уравнение на СЗ 

 (5.14) 

Перенесем все в левую сторону: 

 (5.15) 

здесь мы ввели единичный оператор.  

Выносим х за скобку 

 (5.16) 

Теперь вводим базис. Матрица единичного оператора будет единичной в любом 
базисе. Этот оператор переводит вектор сам в себя. 

В матричном виде выражение (5.16) перепишется как 

 (5.17) 

Получили систему уравнений с неизвестными координатами матрицы Х. 

Интересуют нетривиальные решения системы. У квадратной неоднородной 
системы уравнений существуют нетривиальные решения, если определитель матрицы 
равен 0. 

 (5.18) 

Получили равенство нулю многочлена относительно неизвестной лямбда. 
Многочлен степени n будет иметь комплексные решения, но не факт, что вещественные. 

ˆ ( )A x xl=! !

ˆ( ) ( ) 0A x xl- =
!! !"I

ˆ( )( ) 0A xl- =
!!"I

( ) 0A I Xl- =

det( ) 0A Il- =



 
 ЛИНЕЙНАЯ АЛГЕБРА 
 ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ,  
 ТОКМАЧЕВ МИХАИЛ ГЕННАДЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

34 
 
 

 

Уравнение (5.18) называется характеристическим уравнением. Решая его 
находим корни, называемые характеристическими числами: 

 (5.19) 

Эти характеристические значения и будут собственными числами, но не все. 
Когда мы формулировали определения СЗ и СВ, говорили, что СЗ должны лежать в поле 
над которым рассматривается векторное пространство. Соответственно, если мы 
рассматривали оператор, который действовал в вещественном пространстве, то и λ 
должно принадлежать вещественным числам, хотя корни уравнения (5.18) могут быть и 
комплексными.  

Пусть  - CЗ, рассматриваем однородную систему линейных уравнений (ОСЛУ): 

 (5.20) 

У матрицы этой системы определитель конечно равен 0. Значит, у системы (5.20) 

Есть нетривиальные решения , которые, допустим, образуют 
фундаментальную совокупность решений (ФСР). Тогда собственное подпространство, 
отвечающее СЗ : 

 (5.21) 

Т.е. для нашли все СВ, отвечающие этому СЗ. И т.д. решаем для других λ. 

Для => - тоже является решением и будет СВ, если этот 

вектор был ненулевой, т.е. не обращаются в 0 одновременно. 

Полученные корни уравнения (5.18) могут быть кратными. 

Определение. Алгебраическая кратность СЗ – это его кратность как корня 
характеристического уравнения. 

Замечание. Алгебраическая и геометрическая кратность не всегда совпадают. 

Пример.  

Пусть , а линейный оператор задан матрицей: 

1,..., nl l

1l

1( ) 0A I Xl- =

(1) (1)
1 ,..., sX X

1l

1

(1) (1)
1 , ).( .. , sL XP Xl =

1l

1,..., sc c" 1 1 ... s scc X X+ +

1,..., scc

3V = !
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(5.22) 

Решаем характеристическое уравнение: 

 (5.23) 

Получаем, что . Алгебраическая кратность СЗ  равна трём. 

Теперь найдем СВ. Рассматриваем матрицу 

 

(5.24) 

Решаем ОСЛУ с матрицей (5.24). Запишем систему уравнений, отвечающая этой 
матрице: 

 
(5.23) 

Базисные переменные - , свободные переменные этой системы -  

Решения этой системы: 

 

(5.23) 

Соответствующее собственное подпространство: 

 

(5.24) 

Размерность этого собственного подпространства  . Геометрическая 

кратность СЗ  равна единице. 

Теорема. Алгебраическая кратность собственного значения всегда больше или 
равна геометрической кратности собственного значения. 

5 1 0
0 5 1
0 0 5

A
æ ö
ç ÷= ç ÷
ç ÷
è ø

3det( ) (5 )A Il l- = -

1 2 3, 5,l l l = 5l =

1

0 1 0
0 0 1
0 0 0

A Il
æ ö
ç ÷- = ç ÷
ç ÷
è ø

2

3

0
0

x
x
ì =
í

=î

2 3,x x 1.x

1
0
0

X c
æ ö
ç ÷= ç ÷
ç ÷
è ø

1
)

1
0
0

(P Ll

æ ö
ç ÷
ç ÷
ç
ø

=
÷

è

1
dim 1Pl =

5l =
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ВЫБОР БАЗИСА ПРИ ИССЛЕДОВАНИИ ЛИНЕЙНОГО ОПЕРАТОРА 

Не всегда можно выбрать базис, в котором матрица линейного оператора является 
диагональной. Сформулируем теорему. 

Теорема. Матрица линейного оператора является диагональной тогда и только 
тогда, когда базис состоит из собственных векторов. 

Доказательство.  

Будем доказывать в обе стороны: 

1) Если матрица диагональная, то базис состоит из СЗ. 
2) Если базис состоит из СЗ, то матрица диагональная. 

1. Пусть матрица ЛО в базисе диагональная, т.е. устроена как 

 

(5.25) 

Подействуем оператором А на вектор е1: 

 (5.26) 

Значит, е1 – это СВ, соответствующий СЗ . Проделаем то же самое и с другими 
базисными векторами. Доказали, что базис состоит и СЗ. 

2. Пусть базисные векторы состоят из СВ: 
 

 (5.27) 

 Составим матрицу оператора (нужно коэффициенты разложения записать по 
столбцам): 

 

(5.28) 

Если количество СВ достаточно для того, чтобы составить из них базис 
пространства, то в этом базисе матрица ЛО будет диагональный. Если же их меньше, то 
ни в каком базисе матрицу ЛО нельзя сделать диагональной.  

 

1,..., ne e! !

1 0

0 n

A
l

l

…æ ö
ç ÷= ç ÷
ç ÷…è ø

! " !

1 1 1)ˆ(A e el=! !

1l

1 1 1 .ˆ . ˆ) ,. ,( ( )n n nA e e A e el l= =
! ! ! !

1 0

0 n

A
l

l

…æ ö
ç ÷= ç ÷
ç ÷…è ø

! " !
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Вернемся к Примеру 1. Мы убедились, что в этой матрице всего один линейно 
независимый СВ, т.е. базис составить базис, состоящий из СВ мы не можем. Оператор – 
не диагонализируем.  
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ЛЕКЦИЯ 6. КВАДРАТНЫЕ И БИЛИНЕЙНЫЕ ФОРМЫ 
ОБЩИЕ ПОНЯТИЯ 

Будем рассматривать только поле действительных чисел. 

Определение. Квадратичной формой называется следующая функция n 
переменных: 

 
(6.1) 

при условии, что . 

 Компактная форма записи (6.1): 

 
(6.2) 

Отметим, что здесь это верхние индексы, а не степени. 

Каждой квадратичной форме соответствует симметричная единственная матрица, 
которую будем обозначать как А: 

 

(6.3) 

Если Х обозначим как столбец переменных x, то в n-мерном пространстве 
квадратичную форму можно записать в матричном виде: 

 (6.4) 

ИЗМЕНЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ ПРИ ЛИНЕЙНОМ 
ПРЕОБРАЗОВАНИИ ПЕРЕМЕННЫХ 
 

Определение. Линейным преобразованием переменных  называется - 
такое преобразование, которое можно записать следующим образом: 

 (6.5) 

где С – некоторая матрица n × n. 

Если при этом определитель матрицы С не равен 0, другими словами ранг 
матрицы С равен n, то существует обратная матрица к матрице С, обозначаемая . 

Если домножить равенство (6.5) на обратную  матрицу слева, то получаем: 
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 (6.6) 

Такое преобразование называется невырожденным. 

Определение. Если применить последовательно два линейных преобразования 
, где Q,C – матрицы перехода, то получаем тоже линейное 

преобразование, которое может быть описано матрицей как  

 (6.7) 

где матрицей перехода является CQ. 

Отсюда следует, что любое конечное число линейных преобразований есть новое 
линейное преобразование. 

Теорема 1. При невырожденном (det C≠0) линейном преобразовании X=CY 
квадратичная форма 

 (6.9) 

где матрица квадратичной формы B может быть выражена как 

 (6.10) 

Доказательство. Если исходное выражение квадратичной формы подставим в 
уравнение преобразования: 

 (6.11) 

Т.е. получаем, что в этих скобках и стоит матрица B. 

Теперь надо доказать, что полученная матрица является симметричной.  

 (6.12) 

Теорема 2. При линейном невырожденном преобразовании X=CY знак 
определителя матрицы квадратичной формы не меняется 

 (6.13) 

где  

Доказательство. Рассмотрим определитель матрицы B: 

 (6.14) 

det^2(C) всегда больше нуля (т.к. преобразование невырожденное и det C – 
вещественное число). 

Определение. Ранг квадратичной формы – это есть ранг матрицы квадратичной 
формы. 

Теорема 3. При линейном невырожденном преобразовании X=CY ранг матрицы 
квадратичной формы не изменяется. 
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(det ) (det ),sign A sign B=
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Доказательство. Воспользуемся ранее доказанной теоремой о том, что  

 (6.15) 

Если det B ≠ 0, следовательно, rang AB = rang A. Т.к. преобразование 
невырожденное, а значит det С ≠ 0, получаем ранг произведения есть ранг матрицы А: 

 (6.16) 

 

Определение. Путь существует такое невырожденное линейное преобразование 
X=CY, которое переводит квадратичную форму по формуле: 

 
(6.17) 

 

Если такое преобразование существует, то такой вид квадратичной формы 
называется каноническим. Соответствующие коэффициенты bkk – называются 
каноническими коэффициентами квадратичной формы. Матрица КФ в виде (6.2) 
является диагональной. 

Теорема 4. Число ненулевых канонических коэффициентов равно рангу 
квадратичной формы. 

Доказательство. Пусть ранг исходной КФ формы равен r: rang A = r и пусть 
существует невырожденное линейное преобразование X=CY, которое нашу КФ 
приводит к каноническому виду. При этом, пользуясь теоремой 3, получаем, что rang B 
= r, где  

 

(6.18) 

 

Определитель B равен произведению всех диагональных элементов (по правилу 
вычисления определителя диагональной матрицы). Ранг В есть размер максимального 
ненулевого минора. Т.к. ранг равен r (после преобразования он не поменялся) значит, у 
нас r ненулевых канонических коэффициентов на главной диагонали. 

 

МЕТОД ЛАГРАНЖА ПРИВЕДЕНИЯ КВАДРАТИЧНОЙ ФОРМЫ К 
КАНОНИЧЕСКОМУ ВИДУ 
 

Теорема 5. Любую квадратичную форму можно привести некотором линейным 
невырожденным преобразованием к каноническому виду. 

Доказательство (по индукции).  
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1) База. Пусть k=1, тогда 
 (6.19) 

 

Это уже канонический вид КФ, значит искомое преобразование - тождественное 
(единичное) преобразование. 
2) Предположение. Пусть k=n-1, тогда и существует  

такая матрица преобразования  

канонический вид КФ (6.20) 

 
3) Докажем, что это верно при k=n, т.е. существует матрица С (det C ≠ 0): X=CY, 

такая что для любой КФ 

канонический вид КФ (6.21) 

а) У КФ f1 найдется хотя бы один ненулевой коэффициент на главной 
диагонали, т.е.  

Без ограничения общности можно считать, что m=n. Тогда КФ  

 
(6.22) 

Вынесем коэффициент ann≠0 и выделим полный квадрат: 

 
(6.23) 

Используя то, что существует такая матрица преобразования 

канонический вид КФ, запишем преобразование как 

 (6.24) 

  И тогда рассматривая преобразование (6.23) уже n переменных (где 
последний столбец новой матрицы преобразования состоит из нулей, кроме последнего 
cnn=1). Определитель новой матрицы тоже не равен нулю. 

    б) Пусть теперь Т.к. матрица не должна быть нулевой, 
значит, обязательно найдется какой-нибудь элемент, который бы был ненулевым. 

 Без ограничения общности, пусть a12≠0. Тогда применим следующее 
линейное преобразование: 
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(6.25) 

 Тогда 

 (6.26) 

 

Мы свели случай б) к случаю а) и дальше повторяем алгоритм. 

ПРИВЕДЕНИЕ КВАДРАТИНОЙ ФОРМЫ К КАНОНИЧЕСКОМУ ВИДУ 
ОРТОГОНАЛЬНЫМ ПРЕОБРАЗОВАНИЕМ 

 

 Теорема 6. Для всякой квадратичной формы существует такое линейное 
преобразование X=QY, где Q – ортогональная матрица, приводящая квадратичную 
форму f к каноническому виду: 

 
(6.27) 

Доказательство. Пусть есть n-мерное евклидово пространство , в котором есть 
ортонормированные базис e.  

В этом пространстве существует такой линейный оператор Â, матрица которого 
в этом базисе совпадает с матрицей нашей квадратичной формы: А=Ае. Матрица 
квадратичной формы по определению является симметричной, а значит, матрица 
оператора А тоже симметрична, что приводит к тому, что сам оператор является 
симметричным (самосопряженным).  

Для самосопряженных операторов выполняется свойство:  

• все собственные значения самосопряженного оператора действительны; 
• в евклидовом пространстве существует ортонормированный базис из 

собственных векторов самосопряженного оператора. 

Собственный вектор: , где λ – некоторое действительное число. 

 Если существует ортонормированный базис из собственных векторов f, то 
матрица оператора в этом ортонормированном базисе будет выглядеть следующим 
образом: 

 

(6.28) 
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Существует преобразование Q от е к f. Если f=eQ, то матрица оператора А 
преобразуется как 

 (6.29) 

Пользуясь свойствами ортогональной матрицы: 

 (6.30) 

 

Значит, пользуясь результатом теоремы 1, получаем искомое утверждение: 

 (6.31) 

 

Т.е. 

 (6.32) 
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ЛЕКЦИЯ 7. СВЯЗЬ КВАДРАТИЧНЫХ И БИЛИНЕЙНЫХ ФОРМ 
 

БИЛИНЕЙНЫЕ ФОРМЫ 
Определение. Пусть есть некоторое линейное пространство R и в нем 

определена функция u=B(x,y). Говорят, что эта функция называется билинейной формой, 
если   и  выполнены условия: 

а)  (7.1) 

  (7.2) 

б)  (7.3) 

 (7.4) 

а) – линейность по первому аргументу, б) – линейность по второму аргументу. 

Утверждение. Пусть  и пусть , тогда билинейная форма 

B(x,y) будет представлять собой: 

. (7.5) 

Пусть в n-мерном пространстве есть базис e. Тогда любой элемент можем 
разложить по базису: и . Билинейная форму будет представлять собой: 

. (7.6) 

где мы сделали обозначения . 

В матричном виде это можно записать как: 

. (7.7) 

где B – это матрица состоящая из коэффициентов b_ij: . 

Примеры БФ. 

1) Скалярное произведение. 

2)  

Теорема 7. Пусть в линейном пространстве R задана билинейная форма и есть 
будем рассматривать два базиса e и f, то матрица билинейной формы в базисе е будет Be, 

а в базисе f – Bf. Пусть перехода из одного базиса в другой осуществляется путем 
невырожденного линейного преобразования: 

. (7.8) 

Тогда матрицы билинейных форм в двух базисах связаны соотношением: 
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. (7.9) 

Доказательство. Пусть есть билинейная форма B(x,y): 

, (7.10) 

Где элемент x можно описать столбцом элементов Х_e и Х_f в соответствующих базисах 
и элемент у столбцами Y_e и Y_f.  

 Т.к. базисы связаны соотношением (7.8), тогда столбцы координат связаны 
соотношениями: 

, 
(7.11) 

Подставляя в формулу получаем, что 

, (7.12) 

Где 

 (7.13) 

Определение. Билинейная форма В(х,у) называется симметричной, если 
: 

 (7.14) 

Определение. Билинейная форма В(х,у) называется кососимметричной, если 
: 

 (7.15) 

Теорема 8. Для того, чтобы билинейная форма В(х,у) была симметричной 
необходимо и достаточно, чтобы матрица билинейной формы В(х,у) была симметрична. 

Доказательство.  

1) Пусть  билинейная форма В(х,у) симметрична: 

 (7.16) 

Тогда для базиса е в пространстве R верно, что: 

 (7.17) 

Пользуясь представлением БФ в виде 

. (7.18) 

 Получаем, что 

. (7.19) 
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Необходимость доказана. 

2) Пусть матрица билинейной формы В(х,у) симметрична. 
Имеем 

 (7.20) 

где матрица .  Т.к. матрица симметрична, то , а значит, что 

продолжая (7. 

. (7.21) 

 Теорема доказана. 

 

СВЯЗЬ КВАДРАТИЧНЫХ И БИЛИНЕЙНЫХ ФОРМ 
Рассмотрим билинейную форму B(x,y), имеем : 

. (7.22) 

 Возьмем x=y, тогда получим, что 

. (7.23) 

В выражении (7.23) есть подобные слагаемые.  

Введем новые коэффициенты  

. 
(7.24) 

Каждой билинейной форме по правилу (7.24) можно поставить в соответствие 
единственную квадратичную форму. Обратно не верно. 

Каждой квадратичной форме соответствует единственная симметричная 
билинейная форма. 

Определение.  е – канонический базис для билинейной формы, если в базисе е 
матрица билинейной формы имеет диагональный вид, т.е. БФ в базисе е представляет 
собой:  

. 
(7.25) 

Теорема 9. Билинейная форма симметрична тогда и только тогда, когда для нее 
существует канонический базис. 

Доказательство.  

1) Необходимость.  

( , ) i j
ijB bx y x y= =

,)( ij n nbB = ij jib b=
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ji y x B x yb ==

,x y R" Î

( , ) i j
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( , ) i j
ijbB x x x x=
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b
a a
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Пусть билинейная форма симметрична. Ей соответствует единственная 
квадратичная форма A(x,x). Тогда для квадратичной формы существует 
невырожденное преобразование X=CY, приводящее ее к каноническому виду: 

 

(7.26) 

Этому преобразованию соответствует: 

 (7.27) 

- переход между базисами. 

Тогда пользуясь формулой перехода получаем: 

. (7.28) 

Тогда наша БФ переходит: 

 (7.29) 

В связи с тем, что она симметрична, то матрица В равна матрице А и продолжая 
(7.29): 

 (7.30) 

А такое преобразование приводит нашу матрицу к каноническому виду. 

3) Достаточность. 

Если существует канонический базис у БФ, значит в нем матрица БФ имеет 
диагональный вид. Поэтому эта же матрица равна и транспонированной матрице. Тогда 
согласно теореме 8, билинейная форма симметрична. 

 

МЕТОД ЯКОБИ ПРИВЕДЕНИЯ КВАДРАТИЧНОЙ ФОРМЫ К 
КАНОНИЧСКОМУ ВИДУ 

Пусть есть квадратичная форма А(х,х). Рассмотрим преобразование базисов: 

 

(7.31) 

Где с – некоторые числовые множители. 

Заметим, что матрица преобразования имеет треугольный вид.   
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Введем обозначения 

 

(7.32) 

Теорема Якоби. Если , то существует единственное 
преобразование вида (7.31), приводящее квадратичную форму А(х,х) к каноническому 
виду. 

Доказательство. 

Введем обозначения 

 
(7.33) 

Хотим, чтобы при преобразовании (7.31) матрица В имела диагональный вид, 
т.е. 

 (7.34) 

 Рассмотрим, что из себя представляют элементы матрицы: 

 (7.35) 

 (7.36) 

 Т.к. выполнено условие (7.35), значит  

 (7.37) 

 Продолжаем аналогично для других элементов.  

 Теперь рассмотрим для некоторых i,j: 

 (7.38) 

где i=1,…,j-1, а j=1,…n 

 Пользуясь линейностью по второму аргументы получаем, что (7.38) можно 
записать как: 

1 11
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 (7.39) 

Перепишем по-другому: 

 (7.40) 

Рассмотрим (7.40) как уравнения относительно с. Эта система будет имеет 
решение, если определитель соответствующей матрицы из коэффициентов а равен 
нулю. Этот определитель равен минору .  

Система будет иметь единственное решение, которое можно найти по формулам 
Крамера: 

 
(7.41) 

Напомним, что матрица А выглядит как: 

 

(7.42) 

Тогда  

 
(7.43) 

Здесь – j-й минор, в котором вычеркнута последняя строка и и i-й столбец.  

Можно заметить, что  

 в миноре Δj 
(7.44) 

Найдем значения канонических коэффициентов: 

  (7.45) 

  
(7.46) 

  
(7.47) 
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ЗАКОН ИНЕРЦИИ КВАДРАТИЧНЫХ ФОРМ 
 

У нас была теорема: при невырожденном ортогональном преобразовании КФ 
количество ненулевых канонических коэффициентов постоянно. 

Ее можно расширить: 

Теорема. число положительных и число отрицательных канонических 
коэффициентов квадратичной формы постоянно и не зависит от алгоритма приведения 
КФ к каноническому виду. 

Доказательство (от противного). Пусть есть два преобразования, приводящие 
нашу КФ к каноническому виду. 

Пусть первое ортогональное преобразование приводит каноническую форму к 
виду: 

  (7.48) 

Пусть второе преобразование приводит КФ к виду: 

  (7.49) 

Здесь, подразумеваем, что  

  (7.50) 

  (7.51) 

Пусть p < s, т.е. получилось меньшее количество положительных коэффициентов, 
чем во втором преобразовании (для отрицательных коэффициентов доказательство 
аналогичное). 

Есть преобразования: 

  (7.52) 

  (7.53) 

Попытаемся найти такой Х, для которого будут верны следующие уравнения: 

  

(7.54) 

 

Количество соотношений в (7.54) ровно p+n-s<n.  

1 2 2 1 2 2
1 1( ) ... ( ) ( ) ... ( )T p p

p p
n

nX AX y y y ya a a a+
+= + + - - -

1 2 2 1 2 2
1 1( ) ... ( ) ( ) ... ( )s s

s s
T s

sX AX z z z zb b b b+
+= + + - - -

1 1,..., 0; ,..., 0p p na a a a+> ³

1 1,..., 0; ,..., 0ss nb b b b+> ³

Y CX=

Z DX=

1

1

0

0
0

0

p

s

n

y

y
z

z

+

ì =
ï
ï
ï =ï
í

=ï
ï
ï

=ïî

!

!



 
 ЛИНЕЙНАЯ АЛГЕБРА 
 ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ,  
 ТОКМАЧЕВ МИХАИЛ ГЕННАДЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

51 
 
 

 

Т.о. у этой системы существует не одно решение, т.к. преобразования 
невырожденные. 

Предположим, что есть , которые удовлетворяют соотношениям (7.54). 

Тогда значения КФ для этого Х в первом случае будет ≤ 0, а во втором случае 
будет > 0. Получили противоречие. 

 

КЛАССИФИКАЦИЯ КВАДРАТИЧНЫХ ФОРМ 

Определение. КФ 𝑄w(𝑥⃗) называется положительно определенной, если ∀𝑥⃗ ≠
0	𝑄w(𝑥) > 0, 𝑋C𝐴𝑋 > 0. 

Определение. КФ 𝑄w(𝑥⃗) называется отрицательно определенной, если ∀𝑥⃗ ≠
0	𝑄w(𝑥) < 0, 𝑋C𝐴𝑋 < 0. 

Определение. КФ 𝑄w(𝑥⃗) называется квазиположительно определенной, если 
∀𝑥⃗ ≠ 0	𝑄w(𝑥⃗) ≥ 0, 𝑋C𝐴𝑋 ≥ 0. 

Определение. КФ 𝑄w(𝑥⃗) называется квазиотрицательно определенной, если ∀𝑥⃗ ≠
0	𝑄w(𝑥) ≤ 0, 𝑋C𝐴𝑋 ≤ 0. 

Определение. КФ называется знаконеопределенной, если существуют такие х и 
у: 		𝑋C𝐴𝑋 > 0, 𝑌C𝐴𝑌 < 0. 

Теорема. КФ является положительно определенной тогда и только тогда, когда 
ее все канонические коэффициенты больше нуля. 

Доказательство. Пусть есть некоторая форма и есть некий алгоритм, 
приводящий ее к каноническому виду: 

  (7.55) 

Ели преобразование невырожденное, то существует обратное преобразование:  

  (7.56) 

Рассмотрим элемент Y_k (только на k-й строчке стоит 1, на остальных – 0). Ему 
соответствует ненулевой элемент X_k. По условию задачи КФ для любого ненулевого 
элемента положительна. С другой стороны, если подставим такой Y в канонический 
вид КФ, то получаем: 

  
(7.57) 
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  Итого 

  
(7.58) 

 Т.к. k – любое, получаем, что любой канонический коэффициент 
положительный. 

Следствие. Если КФ положительно определен, то всегда существует линейное 
невырожденное преобразование, которое приводит КФ к каноническому виду, все 
канонические коэффициенты которой равны единице.  

Теорема. Критерий Сильвестора. 

Для того, что квадратичная форма была положительно определенной необходимо 
и достаточно, чтобы все угловые миноры матрицы А были больше нуля. 

Для того, что квадратичная форма была положительно определенной необходимо 
и достаточно, чтобы  

Лемма. Если КФ положительно определенная (или отрицательно 
определенна), то все угловые миноры матрицы А:  

Доказательство: от противного. 
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ЛЕКЦИЯ 8. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ В РАЗЛИЧНЫХ ЛИНЕЙНЫХ 
ПРОСТРАНСТВАХ 
 

Будем рассматривать евклидовое, псевдоевклидовое и унитарное пространства 
(дополнены скалярным произведением). 

 Определение.  Скалярное произведение на вещественном векторном 
пространстве – это симметричная билинейная форма: 

  (8.1) 

и выполнено det G ≠ 0. 

Значит, на диагонали матрицы стоят любые ненулевые числа. 

 Если билинейная форма является положительно определенной, то 
соответствующее пространство V называется евклидовым пространством. 

Если билинейная форма является положительно неопределенной, то 
соответствующее пространство V называется псевдоевклидовым пространством. 

Начнем рассматривать евклидовые пространства. 

 

ЕВКЛИДОВО ПРОСТРАНСТВО 
Определение. Векторное пространство над полем вещественных чисел V(ℝ) 

называется евклидовым, если на нем задана функция двух векторных аргументов 
 (  т.е. паре двух векторов ставится в соответствие 

скалярное число) и эта функция удовлетворяет следующим аксиомам: 

1. симметричность: 

  (8.2) 

2. билинейность: 

  (8.3) 

  (8.4) 

3. положительная определенность: 

  (8.5) 

Примеры. 

1) ; 

 2)  Пространство векторов - стандартное скалярное 
произведение. 

,( )G x y! !

,( )G x y! !

,( )G x y! !

:G V V´ ® ! ( ( ), ) ,Gx y x y®
! ! ! !

), : , ,( ) (G Gx y V x y y x" =Î
! ! ! ! ! !

2 2 21 1 1 1 2( ) ( , ) ( , );,xG yGx y x x yGa a a a+ = +
! ! ! ! ! ! !

1 1 2 1 1 22 2( , ) ( , ) ),(G x y y x x yG Gyb b b b+ = +
! ! ! ! ! ! !

0 : ,( ) 0x xG x" >¹
! ! !

1 2 3 |, (, : , | | cos) |V V x y xV G y f=
! ! ! !

( ): ,n TG X Yx y =
! !

"



 
 ЛИНЕЙНАЯ АЛГЕБРА 
 ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ,  
 ТОКМАЧЕВ МИХАИЛ ГЕННАДЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

54 
 
 

 

Если на одном и том же пространстве будем вводить разные скалярные 
произведения, то будут получаться разные способы измерения длин одних и тех же 
векторов. 

3) Пространство матриц  

 4) Множество непрерывных функций C[a,b]:  

  (8.6) 

Обычно опускают символ G для скалярного произведения. 

МЕТРИЧЕСКИЙ ТЕНЗОР 
Пусть в пространстве имеет некий базис , раскладываем по этому базису 

векторы: 

  
(8.7) 

 

Рассмотрим билинейную форму: 

  (8.8) 

где - матрица билинейной формы в базисе е, которая называется матрицей 
Грама или метрическим тензором. Определяет способ измерения расстояния в нашем 
линейном пространстве. 

Если ввести матричные обозначения, то скалярное произведение можно записать 
как: 

  (8.9) 

Как G` будем обозначать функции, а за G – матрицы. 

Определение. Длиной (нормой) вектора является величина: 

  (8.10) 

 

 Определение. Угол между векторами: 

  
(8.11) 

 

Замечание. Область определения функции арккосинуса  - отрезок [-1,1]. 
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"
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b
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НЕРАВЕНСТВО КОШИ-БУНЯКОВСКОГО-ШВАРЦА 

Теорема. 

  (8.12) 

  (8.13) 

Доказательство. Будем доказывать неравенство К-Б-Ш в виде (8.13). 

Рассмотрим вектор , где t – произвольное число, векторы х и у тоже 
произвольные. Его скалярное произведение на себя: 

  (8.14) 

Раскроем это скалярное произведение по свойству билинейности: 

  
(8.15) 

Для выполнения неравенства (8.14) требуется, чтобы дискриминант был меньше 
или равен нулю D ≤ 0: 

  (8.16) 

Если перенести слагаемые, то как раз получаем неравенство: 

  (8.17) 

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ В УНИТАРНОМ ПРОСТРАНСТВЕ 

Пусть теперь имеется векторное пространство над полем комплексных чисел. 
Хотим тоже определить скалярное произведение.  

Рассмотрим некое скалярное произведение вектора х (≠ 0) на себя: 

  (8.18) 

Умножим вектор х на мнимую единицу и снова рассмотрим скалярное 
произведение: 

 - по сути должно выполняться это неравенство  (8.19) 

 Т.к. G – это билинейная функция, то можно вынести i за скобку 

| ( , ) | || || || ||x y x y£ ×
! ! ! !

2( , ) ( , ) ( , )x y x x y y£ ×
! ! ! ! ! !
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! ! ! !
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2 0
(
(
, ) , ,( ) ( ) ( , ) ( )
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,
, ,

tx y tx y t x x x y y x y y
t x x x y y y
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t

+ + ++ + =

³
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= + +

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! !

2 ,4( ) ( )( 0, ),x y xD x y y= - £
! ! ! ! ! !

2( , ) ( , ) ( , )x y x x y y£ ×
! ! ! ! ! !
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! !
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  (8.20) 

Т.е. получаем противоречие. Решение проблемы – отказаться от билинейности 
для того, чтобы скалярное произведение было похоже на скалярном произведение в 
вещественном пространстве. Только по одному аргументу будет линейность. 

УНИТАРНОЕ ПРОСТРАНСТВО 

Определение. Унитарное пространство – это векторное пространство над полем 
комплексных чисел, на котором задана функция двух векторных аргументов  

 ( ), для которой выполнены следующие аксиомы: 

1. комплексное сопряжение при перестановке аргументов: 

  (8.21) 

2. полуторалинейность: 

  (8.22) 

  (8.23) 

3. положительная определенность: 

  (8.24) 

 Определение. - эрмитова форма. 

Посмотрим как записывается эрмитова форма в координатном виде. 

  (8.25) 

- матрица Грама или метрический тензор. 

Если ввести матричные обозначения: 

  (8.26) 

Транспонирование и комплексное сопряжение всё «возвращают на место», это 
называют инвалютивными операциями.  

 Определение. Если имеем матрицу А, то можно рассмотреть операцию , 
которая носит название эрмитовое сопряжение. Обозначения:  

  (8.27) 

2( , ) ( , ) ( , ) 0G x x i G x x G x x= = - <
! ! ! ! ! !

`:G V V´ ®! ( `( ), ) ,x y xG y®
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2 21 1 1 1 2 2`( , ) `( , ) `( ),G G Gx y y x y x yb b b b+ = +
! ! ! ! ! ! !

`( ) 00 : ,x xG x >" ¹
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kjkG x y G x e yey x y G xe e g= ==
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Т.е. скалярное произведение вычисляется по формуле: 

  (8.28) 

  

ПРИМЕРЫ УНИТАРНЫХ ПРОСТРАНСТВ 

1) ℝ&		 

𝑥⃗ = 𝑋 = �
𝑥#
⋮
𝑥&
� 

 
(𝑥⃗, 𝑦⃗) = 𝑋C𝐺𝑌 

2) ℂ&	
(𝑥⃗, 𝑦⃗) = 𝑋%𝐺𝑌 

𝐺C���� = 𝐺 

3) ℝ[𝑡]D& 

(𝑥⃗, 𝑦⃗) = �𝑥(𝑡)𝑦(𝑡)𝐾(𝑡)𝑑𝑡
E

F

 

(𝑥⃗, 𝑦⃗) = �𝑥(𝑡)𝑦(𝑡)𝑑𝑡
E

F

 

4) ℂ[𝑡]D& 

(𝑥⃗, 𝑦⃗) = �𝑥(𝑡)������𝑦(𝑡)𝑑𝑡
E

F

 

 

СВОЙСТВА МАТРИЦЫ ГРАМА 

Элементы матрицы Грама: 

  (8.29) 

Т.е. получаем свойство матрицы Грама для унитарных пространств:  

  (8.30) 

Определение. Матрицы, обладающие свойством 

  (8.31) 

†`( , )G x y X GY=
! !

`( , ) `( , )ik j jk k kjg eG Ge e e g= = =
! ! ! !

†TG GG= =

†G G=



 
 ЛИНЕЙНАЯ АЛГЕБРА 
 ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ,  
 ТОКМАЧЕВ МИХАИЛ ГЕННАДЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

58 
 
 

 

называются эрмитовыми матрицами. 

Пример. 

Эрмитова матрица: 

  

(8.32) 

Неравенство КБШ для комплексного случая: 

  (8.33) 

Доказательство: аналогично как и для вещественного случая. 

Теорема 8.2 (свойства нормы) 

1)Неравенство Минковского (неравенство треугольника): 

  (8.34) 

2)Произведение нормы на число: 

  (8.35) 

3)Если , такие векторы называются ортогональными и выполняется 
теорема Пифагора: 

  (8.36) 

Доказательство неравенства Минковского. 

Проведем доказательство для квадрата нормы: 

  
(8.37) 

Замечание.  

  (8.38) 

C учетом этого получаем неравенство: 

  (8.39) 

1 1 2 3
1 2 5
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 Используя неравенство КБШ 

  (8.40) 

Теперь будем рассматривать понятия для вещественных и комплексных 
пространство совместно. 

Определение. Векторы  , называются ортогональными, если , 
обозначение: . 

Определение. Вектор ортогонален подпространству, если он ортогонален 
каждому вектору из этого подпространства. 

Теорема (свойства ортогональности двух векторов) 

1)Пусть => ; 

2)Если  то . 

3)Если ненулевые векторы попарно ортогонально, то они линейно 
независимы. 

Определение. Базис называется ортогональным, если  

  (8.41) 

при j≠k. 

В ортогональном базисе (ОГБ) матрица Грама будет выглядеть как: 

  

(8.42) 

Причем эти диагональные элементы являются вещественными положительными 
числами. 

Определение. Базис называется ортонормированным, если  

  (8.41) 

- символ Кронекера. 
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В ортонормированном базисе (ОНБ) матрица Грама это просто единичная 
матрица: G = 𝕀. 

Тогда скалярное произведение в ОНБ:  

  
(8.41) 

 

  

( , )
n

i i

i i

x yy x
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=å! !
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ЛЕКЦИЯ 9. ОРТОГОНАЛЬНЫЕ И ОРТОНОРМИРОВАННЫЕ БАЗИСЫ. 
ОРТОГОНАЛИЗАЦИЯ ВЕКТОРОВ 
ОРТОГОНАЛЬНЫЕ И ОРТОНОРМИРОВАННЫЕ БАЗИСЫ 

В ортогональных и ортонормированных базисах легче всего искать разложения. 

Будем рассматривать всё в ортогональных базисах (для ортонормированных 
базисов формулы будут проще). 

Пусть в унитарном пространстве V есть ортонормированный базис , тогда 
для любого вектора х разложение по базису е: 

  (9.1) 

Умножим выражение (9.1) скалярно на вектор базиса e_s. Т.к. числовой 
коэффициент выносится без сопряжения из второго аргумента, то умножаем именно 
слева: 

  (9.2) 

 - это скалярное произведение двух базисных векторов отлично от нуля, 
когда индексы совпадают.  

Тогда 

  (9.3) 

Замечание. В выражении (9.2) – есть сумма по повторяющимся значкам, а в (9.3) 
– уже нет. 

 Формула для координат в ОГБ: 

  
(9.4) 

 

Формула для координат в ОНБ: 

  (9.5) 

Эти формулы называются формулами Гиббса. 

 

ОРТОГОНАЛИЗАЦИЯ ГРАМА-ШМИДТА 

Пусть у нас есть какое-то пространство с заданным скалярным произведением, но 
нет подходящего ортонормированного ортогонального базиса. Опишем процесс с 
помощью которой можно привести базис к ортогональному, ортонормированному виду. 
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Рис.9.1 Поясняющий рисунок к ортогонализации Грама-Шмидта 

 Рассмотрим вектор х и есть подпространство, которое является линейной 
оболочкой некого вектора а, y – это проекция вектора на это подпространство. 

Определение. Ортогональной проекцией вектора на х на линейную оболочку  

  L( ) – это вектор y=𝑝𝑟G(I"JJJJ⃗ ,…,I#JJJJ⃗ 	)𝑥⃗, который обладает следующими свойствами: 

1) вектор у лежит в этой оболочке; 
2) вектор x – y ортогонален этой линейной оболочке. 

Теорема. Если векторы  образуют ортонормированную систему (т.е. 
попарно ортогональны и имеют единичную длину), то проекция вектора х на их 
линейную оболочку: 

  (9.6) 

Заметим, что формула (9.6) похожа на формулу Гиббса. Размерность линейной 
оболочки совсем не обязана совпадать с размерностью пространства. Если размерность 
будут равны, то получится просто разложение по базису данного пространства. 

Доказательство. Проверка определения. 

1) Очевидно. 
2) Вектор  должен быть ортогонален всей линейной оболочке, т.е. 

нужно рассмотреть скалярное умножение: 

  (9.7) 

Учитывая, что  

𝑝𝑟G(I"JJJJ⃗ ,…,I#JJJJ⃗ 	)𝑥⃗ = ∑ `𝑒OGG⃗ , 𝑥⃗a!
P:# 𝑒OGG⃗ .  (9.8) 

 

Получаем, что 

1,..., ne e! !

1,..., ne e! !

1 ),.( .., 1 1Pr ( , ) ... ( , )
k kL e e kx e x e e x e= + +! !
! ! ! ! ! ! !

1 .( ,. . ),Pr
kL e ex x- ! !

! !

1 ,...,( )Pr )( ,
kL e sex x e- ! !

! ! !
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  (9.9) 

Напишем аналог формулы (9.9) для случая, когда базис является не 
ортонормированным, а ортогональным (но не нормированного): 

  
(9.10) 

Ортогонализация Грама-Шмидта. 

Пусть 𝑥#GGG⃗ , … , 𝑥&GGGG⃗  - ∀ базис.      

Требуется построить ОГБ(ОНБ) в 𝐿(𝑥#GGG⃗ , … , 𝑥&GGGG⃗ ). Чтобы получить ОНБ нужно будет 
просто каждый вектор поделить на его длину. 

Шаг 1. В качестве вектора е1 берем вектор: 

𝑒#GGG⃗ =
𝑥#GGG⃗
‖𝑥#GGG⃗ ‖

; 

Шаг 2.  В качестве е2 берем вектор: 

ℎQGGGG⃗ = 𝑥QGGGG⃗ − 𝑝𝑟G(I"JJJJ⃗ )	𝑥QGGGG⃗ 	 ⊥ 𝐿(𝑒#GGG⃗ )	 

𝑒QGGG⃗ =
ℎQGGGG⃗

�ℎQGGGG⃗ �
 

Шаг 3. Рассмотрим теперь третий вектор: 

ℎRGGGG⃗ = 𝑥QGGGG⃗ − 𝑝𝑟G(I"JJJJ⃗ ,I$JJJJ⃗ 	)𝑥QGGGG⃗ 	 ⊥ 𝐿(𝑒#GGG⃗ , 𝑒QGGG⃗ ) 

𝑒RGGG⃗ =
ℎRGGGG⃗

�ℎRGGGG⃗ �
 

Продолжаем аналогичным образом и для других векторов. Проекцию вычисляем 
по формуле (9.10) 

ПРИМЕР  

Рассмотрим подпространство 

𝑉 = ℝR; 	(𝑥, 𝑦⃗) = 𝑋C𝑌	 

 

1 ,...,( )( , ( , 0Pr ) ) ( , )
kL e se s sx x e x e e x= -- =! !

! ! ! ! ! ! !

1
1

,...,( )
( , )Pr
( , )k

l
l

k

L e
l l

e
l

e xx e
e e=

=å! !

! !
! !

! !
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 Даны вектора 

𝑥#GGG⃗ = �
1
1
1
� ;		𝑥QGGGG⃗ = �

0
1
1
� ;		𝑥RGGGG⃗ = �

0
0
1
�. 

 Нужно найти ОНБ. 

Шаг 1.  

𝑒#GGG⃗ =
𝑥#GGG⃗
‖𝑥#GGG⃗ ‖

=
1
√3

�
1
1
1
� ; 

Шаг 2.  

ℎQGGGG⃗ = 𝑥QGGGG⃗ − 𝑝𝑟G(I"JJJJ⃗ )	𝑥QGGGG⃗ = 𝑥QGGGG⃗ − (𝑒#GGG⃗ , 𝑥⃗)𝑒#GGG⃗ = �
0
1
1
� −

1
√3

�
1
1
1
�
C

�
0
1
1
�
1
√3

�
1
1
1
� = �

0
1
1
� −

2
3�

1
1
1
� = 

 

= �
−2/3
1/3
1/3

� → �
−2
1
1
� 

𝑒QGGG⃗ =
1
√6

�
−2
1
1
� ; 

Шаг 3. 

ℎRGGGG⃗ = 𝑥QGGGG⃗ − 𝑝𝑟G(I"JJJJ⃗ ,I$JJJJ⃗ 	)𝑥QGGGG⃗ = 𝑥RGGGG⃗ − (𝑒#GGG⃗ , 𝑥RGGGG⃗ 	)𝑒#GGG⃗ − (𝑒QGGG⃗ , 𝑥RGGGG⃗ 	)𝑒QGGG⃗

= �
0
0
1
� − �

1
√3

�
1
1
1
�
C

�
0
0
1
��

1
√3

�
1
1
1
� − �

1
√6

�
−2
1
1
�
C

�
0
0
1
��

1
√6

�
−2
1
1
�

= �
0
0
1
� −

1
3�

1
1
1
� −

1
6�

−2
1
−1
� 

𝑒RGGG⃗ =
1
√2

�
0
−1
1
�. 
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ОРТОГОНАЛЬНОЕ ДОПОЛНЕНИЕ 

Пусть есть унитарное пространство со скалярным произведением, в котором 
имеет подпространство. 

Определение. Множество всех векторов, ортогональных подпространству Р, 
называется ортогональным дополнением этого самого подпространства Р. 

𝑃S = {𝑥⃗ ∈ 𝑉;	𝑥⃗ ⊥ 𝑃} 

 

(9.11) 

Теорема. Для любого подпространства его ортогональное дополнение тоже 
является под пространством.  

∀𝑃 ⋐ 𝑉 ∶ 	𝑃S ⋐ 𝑉	 
(9.12) 

Доказательство. Пусть  

𝑥, 𝑦⃗ ∈ 𝑃�S ↔ ∀𝑧 ∈ 𝑃			(𝑥, 𝑧) ∙̅ 	 (𝑦⃗, 𝑧) = 0	 
(9.13) 

Т.к. векторы х и у лежат в ортогональном подпространстве, значит 
перпендикулярны любым векторам из Р. 

Рассмотрим ЛК 𝛼�𝑥⃗ + 𝛽𝑦⃗ и скалярное произведение 

(𝛼�𝑥⃗ + 𝛽𝑦⃗, 𝑧) = 𝛼�(𝑥⃗, 𝑧) + 𝛽(𝑦⃗, 𝑧)ghhhhihhhhj
→UVW⃗%XYJ⃗ ∈[%

= 0	 
(9.14) 

Теорема. Пусть 	
ОНБ	в	𝑃 ∶ 	 𝑒#GGG⃗ , … , 𝑒$GGGG⃗ ,					𝑝 = dim𝑃 

и достроим его до ОНБ во всем пространстве V, дополняя его до ортонормированного 
во всем пространстве 𝑒$%#GGGGGGGG⃗ , … , 𝑒&GGGG⃗ .  

 Тогда справедливо представление 

𝑉 = 𝑃⊕ 𝑃S	 
(9.15) 

Здесь значок – это прямая сумма, что означает, что разложение единственно.  
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ЛЕКЦИЯ 10. КОВАРИАНТНЫЕ И КОНТРВАРИАНТНЫЕ ВЕКТОРЫ 
КОВАРИАНТНЫЕ И КОНТРВАРИАНТНЫЕ КООРДИНАТЫ 
МАТРИЦА ГРАМА 

Рассмотрим евклидовое пространство со скалярным произведением. Пусть в нем 
есть произвольный базис , рассмотрим метрический тензор в этом базисе: 

  (10.1) 

Из нее можно составить матрицу Грама: 

  (10.2) 

Замечание. Определитель этой матрицы положителен, значит у матрицы Грама 
существует обратная матрица. 

  (10.3) 

И будем называть контравариантным метрическим тензором. 

Рассмотрим векторы: 

  (10.4) 

Эти векторы будут линейно независимыми, т.к. матрица невырожденная 

Определение. Базис называется взаимным  для базиса . 

 Возьмем произвольный вектор в нашем пространстве, можем рассмотреть 
разложение этого вектора по исходному базису: 

  (10.5) 

 а можно рассмотреть по взаимному базису: 

  (10.6) 

  

КОВАРИАНТНЫЕ И КОНТРВАРИАНТНЫЕ ВЕКТОРЫ 
Определение. Координаты - называются контрвариантными координатами вектора х, 
а координаты - ковариантными координатами. 

Приведем некоторые полезные выражения: 

          1)                               (10.7) 

2) Умножим вектор х на вектор : 

 (10.8) 

 
- аналог формулы Гиббса, но не для ортогонального базиса. 

1,..., ne e! !

, )(jk j kg e e=
! !

jkG g=

1 jkG g- =

k
j

j
kege =

! !

1,..., ne e! !
1,..., ne e! !

k
kx ex=! !

k
kx ex=! !

kx
kx

,( , ) ( )j jk jk k
k ks ss sg ge e e e g d= = =

! ! ! !

je
!

( , ) jj k j
ke x x xd= =

! !
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Замечание. В ОНБ формула Гиббса: 

 (10.9) 

 
Т.е. в ОНБ нет разницы между ковариантным и контрвариантным вектором. 
 
3) Формула Гиббса для ковариантных векторов: 

   (10.10) 

 
 4) Теперь найдем связь между ковариантными и контрвариантными 
координатами. 

 (10.11) 

 

5)Аналогично напишем: 

 (10.12) 

 

(10.11) – операция подъема индекса, (10.12) – операция опускания индекса 
тензора. 

Между векторами и ковекторами существует взаимно однозначное соответствие.  

Теорема. В евклидовом пространстве имеется естественное взаимно однозначное 
соответствие между векторами и линейными функционалами. 

Если рассматриваем конечномерное пространство и двойственное пространство, 
т.е. пространство линейных функционалов, то у них одинаковая размерность, они 
изоморфны, но между ними нельзя придумать естественный изоморфизм.  

Доказательство. Пусть f – линейный функционал и f_k – координаты матрицы 
оператора в каком-то фиксированном базисе  и координаты вектора . 

Рассмотрим действие ЛФ на вектор х: 

 (10.13) 

 Введем символ Кронекера, перепишем его через элементы матрицы Грама и 
получим выражение: 

 (10.14) 

 Заметим, что здесь у нас появились операции поднятия индексов, обозначим 
полученный элементы как , то получаем некоторое скалярное произведение: 

)( ,j
je xx =
! !

( , ) k
j k j je x x xd= =
! !

(, )( , )js js
j j s

jx e x g e x g x= = =
! ! ! !

k
p pkx g x=

1,..., ne e! ! k
kx ex=! !

ˆ( ) k
kf x f x=

!

)ˆ( )() (s k l
skl

s k ls k
s s klf x f g g x f g xf x gd= = =

!

l ls
sf f g=
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 (10.15) 

Т.е. из формы можем получить вектор (из ковариантных координат можно 
получить контрвариантные координаты). 

 

ИЗОМЕТРИЧЕСКИЕ ОПЕРАТОРЫ 

1) Изометрические операторы  
Пусть V, W – 2 ЕП (УП). 

Определение. Оператор  𝐴L ∶ 𝑉 → 𝑊 называется изометрическим, если  

∀	𝑥⃗, 𝑦⃗ 	 ∈ 𝑉 ∶ `𝐴L𝑥⃗, 𝐴L𝑦⃗a
\
= (𝑥, 𝑦⃗)] 

(10.15) 

При действии изометрического оператора на вектор получается вектор, такой же 
длины как исходный. 

При действии изометрического оператора на два каких-то вектора, то угол между 
полученными векторами будет равен углу между исходными векторами. 

Определение.  Если пространство вещественное (евклидовое), то 
изометрический оператор называется ортогональным. Если пространство – комплексное 
(унитарное), то используется термин унитарный оператор. 

Ортогональность: 𝐴L ∶ 𝑉 → 𝑉 

ОРТОГОНАЛЬНАЯ ГРУППА 

Определение.  Группа – это множество G, снабженное операцией  *: 

𝐺	 × 𝐺 → 𝐺 

Которое обладает следующими свойствами: 

1) Ассоциативность, 
2) Существование нейтрального (единичного) элемента, 
3) Существование обратного элемента 

Теорема. Множество всех ортогональных операторов ( с матрицами 𝑛 × 𝑛) 
образует группу, называемую ортогональной группой. Обозначается как 

𝑂(𝑛,ℝ) = 𝑂(𝑛) 
(10.16) 

)ˆ( ,() l k
klg f xf x f x= =

!! !
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Теорема. Множество всех унитарных матриц 𝑛 × 𝑛 образует группу, которая 
называется 𝑈(𝑛) унитарной группой.  

𝑆𝑈(𝑛) = {𝐴 ∈ 𝑈(𝑛), det 𝐴 = 1} 
(10.17) 

Доказательство. 

1) Очевидно 
2) Единичная матрица 
3) Нужно доказать, что изометрический оператор имеет обратную матрицу. 

Пусть	𝑒#GGG⃗ , … , 𝑒&GGGG⃗ − базис	в	𝑉, 𝐴 − матрица	𝐴L, G – матрица Грама. 

По определению изометрического оператора имеем: 

`𝐴L𝑥⃗, 𝐴L𝑦⃗aghhihhj
(89)&^(8_)

= (𝑥, 𝑦⃗)gij
9&^_

 
(10.18) 

Перепишем в координатном виде: 

𝑋C(𝐴C𝐺𝐴)𝑌 = 𝑋C(𝐺)𝑌 
(10.19) 

Учитывая то, что 

𝐴C𝐺𝐴 = 𝐺 − в	∀	базисе 
(10.20) 

Т.к. определитель матрицы G не равно нулю то получаем, что  

𝐴C𝐴 = 𝟙 − в	ОНБ. 

Т.е. определитель матрицы А равен нулю, следовательно, существует обратный 
оператор. 

4) Еще нужно доказать, что если оператора А и В изометрические, то и оператор 
АВ тоже изометрический. 

СВОЙСТВА МАТРИЦ ОПЕРАТОРОВ 

Определение. Матрица А называется ортогональной, если  

𝐴C𝐴 = 𝟙 
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Определение. Матрица А называется ортогональной, если  

𝐴%𝐴 = 𝟙 

Матрица ортогонального оператора будет ортогональной только в 
ортонормированном базисе. 

Свойства ортогональных матриц. 

 

Свойства унитарных матриц: 

1) 𝐴3# = 𝐴C; 
2) 𝐴𝐴C = 𝟙; 
3) ∑ 𝑎�!

P𝑎!`&
!:# = 𝛿P`; 

4) ∑ 𝑎�P!𝑎`!&
!:# = 𝛿P`; 

5) |det 𝐴| = 1; 
6) СЗ:  |𝜆| = 1. 

 

Свойства ортогональных матриц 

1) 𝐴C = 𝐴3#; 
2) 𝐴𝐴C = 𝟙; 
3) ∑ 𝑎!

P𝑎!`&
!:# = 𝛿P`; 

4) ∑ 𝑎P!𝑎`!&
!:# = 𝛿P`; 

5) det 𝐴 = ±1; 
6) СЗ:  𝜆 = ±1 (если есть) 

Пусть 𝜆 = СЗ, 𝑥⃗ = СВ.  
`𝐴L𝑥⃗, 𝐴L𝑥⃗a = (𝑥, 𝑥⃗)
(𝜆𝑥⃗, 𝜆𝑥⃗) = 𝜆Q(𝑥⃗, 𝑥⃗)

³ 𝜆 = ±1. 
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ЛЕКЦИЯ 11. ПСЕВДОЕВКЛИДОВОЕ ПРОСТРАНСТВО. ОПЕРАТОРЫ В 
ЕВКЛИОВЫХ И УНИТАРНЫХ ПРОСТРАНСТВАХ 
ПСЕВДОЕВКЛИДОВОЕ ПРОСТРАНСТВО 

Определение. Псевдоевклидовое пространство – это вещественное векторное 
пространство, в котором задано скалярное произведение с помощью билинейной 
симметричной формы, но она не является положительно определенной. 

Определение. Псевдоортонормированный базис – это базис , в котором 
матрица Грама представляет собой матрицу в виде : 

 

(11.1) 

здесь p количество 1 и q - количество -1 на диагонали. 

Определение. Пространство Минковского — это V(ℝ), размерность которого 
dim𝑉 = 4 и в котором матрица Грама выглядит как 

 

(11.2) 

  В этом случае псевдо ОНБ называется галилеевским базисом (инерциальная 
система отсчета). 

ИЗОМЕТРИЧЕСКИЕ ОПЕРАТОРЫ В ПСЕВДОЕВКЛИДОВОМ 
ПРОСТРАНСТВЕ 

Рассмотрим теперь изометрические операторы в этом пространстве. 

Определение. Оператор 𝐴L ∶ 𝑉 → 𝑉 называется изометрическим, если  

∀	𝑥, 𝑦⃗ 	 ∈ 𝑉 ∶ `𝐴L𝑥, 𝐴L𝑦⃗a = (𝑥, 𝑦⃗) 
(11.3) 

Будем рассматривать пространство V: dim V =2, и	матрица	Грама	задается	как  

1,..., ne e! !

0

1

1

0
G

…æ ö
ç ÷= ç ÷
ç ÷… -è ø

! " !

1
1

1

1

G

æ ö
ç ÷-ç ÷=
ç ÷-
ç ÷

-è ø
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	𝐺 = I 1
−1
J. 

(11.4) 

 Пусть А – матрица изометрического оператора в галилеевом базисе. 

 При помощи матричной записи запишем определение для изометрического 
оператора: 

(𝐴𝑋)C𝐺(𝐴𝑌) = 𝑋C𝐺𝑌 
(11.5) 

Тогда получаем, что 

𝐴C𝐺𝐴 = 𝐺 
(11.6) 

Будем искать матрицу А в виде:  

𝐴 = I𝑎 𝑏
𝑐 𝑑J. 

(11.7) 

Тогда уравнение (11.6) запишется как 

I𝑎 𝑐
𝑏 𝑑J I

1 0
0 −1JI

𝑎 𝑏
𝑐 𝑑J = I1 0

0 −1J 
(11.8) 

Перемножаем и получаем: 

I𝑎 −𝑐
𝑏 −𝑑J I

𝑎 𝑏
𝑐 𝑑J = I𝑎

Q − 𝑐Q 𝑎𝑏 − 𝑐𝑑
𝑎𝑏 − 𝑑𝑐 𝑏Q − 𝑑Q

J 
(11.9) 

В итоге получаем систему уравнений: 

¸
𝑎Q − 𝑐Q = 1
𝑏Q − 𝑑Q = 1
𝑎𝑏 − 𝑐𝑑 = 0

¹

𝑎 = 𝑐ℎ𝜑
𝑐 = sh𝜑
𝑏 = ch𝜓
𝑑 = sh𝜓

 

(11.10) 

Делаем замену переменной: 
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ch𝜑 ch𝜓 + sh𝜑 sh𝜓 = 0 
(11.11) 

sh(𝜑 − 𝜓) = 0 → 𝜑 = 𝜓 

          Получаем матрицу А в виде: 

(11.12) 

𝐴 = ¿𝑐ℎ𝜑	 𝑠ℎ𝜑
𝑠ℎ𝜑 𝑐ℎ𝜑Á , det 𝐴 = 1 

(11.13) 

Сделаем замены:  

𝑥; = 𝑐𝑡,			𝑥;" = 𝑐𝑡"	,
𝑣
𝑐 = 𝑡ℎ	𝜑 

(11.14) 

Продолжаем решать уравнения: 

𝑐ℎQ𝜑 − 𝑠ℎQ𝜑 = 1 

1 − 𝑡ℎQ𝜑 =
1

𝑐ℎQ𝜑 

(11.15) 

Полученное решение: 

𝑐ℎQ𝜑 =
1

1 − 𝑣
Q

𝑐Q
	 , 𝑐ℎ	𝜑 =

1

Ã1 − 𝑣
Q

𝑐Q

	 , 𝑠ℎ	𝜑 =
𝑣/𝑐

Ã1 − 𝑣
Q

𝑐Q

 

(11.16) 

Обратная матрица существует и равна (det A = 1): 

𝐴3# = ¿ 𝑐ℎ𝜑	 −𝑠ℎ𝜑
−𝑠ℎ𝜑 𝑐ℎ𝜑 Á 

(11.17) 

 Посмотрим на преобразование координат под действием оператора А. усть новые 
координаты будут штрихованными: 

𝑋 = I𝑥
;

𝑥#
J			𝑋" = ¿𝑥

;!

𝑥#!
Á 

(11.18) 
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 Уравнения для преобразования координат: 

𝑋" =	𝐴3#𝑋 
(11.19) 

В итоге учетом преобразований получаем преобразования Лоренца: 

𝑐𝑡" =
𝑐𝑡 − 𝑥 𝑣𝑐

Ã1 − 𝑣
Q

𝑐Q

	 , 𝑡" =
𝑡 − 𝑥 𝑣𝑐Q

Ã1 − 𝑣
Q

𝑐Q

	 , 𝑥" =
𝑥 − 𝑣𝑡

Ã1 − 𝑣
Q

𝑐Q

	.	 

(11.20) 

СОПРЯЖЕННЫЕ ОПЕРАТОРЫ 

Пусть имеются V, W – евклидовы (или унитарные) пространства. Размерность 
эти пространств не обязана быть одинаковыми (n ≠ m), скалярные произведения тоже 
могут не совпадать. Рассмотрим оператор 𝐴L ∶ 𝑉 → 𝑉 . Размерность матрицы оператора 
А: m × n. 

Определение. Линейный оператор 𝐴L∗ ∶ 		𝑊 → 𝑉 называется сопряженным к 𝐴L, 
если ∀𝑥⃗ ∈ 𝑉, ∀𝑦⃗ ∈ 𝑊 выполнено 

`𝐴L𝑥⃗, 𝑦⃗a
\
= (𝑥⃗, 𝐴L∗	𝑦⃗)] 

(11.21) 

Теорема (свойства сопряженного оператора) 

1) Если А линейный оператор, то сопряженный оператор 𝐴L∗ - это тоже линейный 
оператор; 

2) ∀𝐴L	∃	𝐴L∗; 
3) Оператор сопряженный к сопряженному `𝐴L∗a∗ = 𝐴L;	 
4) (𝐴L + 𝐵l)∗ = 𝐴L∗ + 𝐵l∗; 
5) `𝛼𝐴La∗ = 𝛼� ∙ 𝐴L∗; 
6) `𝐴L𝐵la∗ = 𝐵l ∗𝐴L∗; 
7) 0l∗ = 0l, 𝟙l∗ = 𝟙. 

Доказательство.  

1) Хотим доказать, что сопряженный оператор – линейный оператор. Для этого 
рассмотрим оператор на сумму элементов 
 

𝐴L∗(𝛼#𝑦#GGGG⃗ + 𝛼Q𝑦QGGGG⃗ ) = 𝛼#𝐴L∗𝑦#GGGG⃗ + 𝛼Q𝐴L∗𝑦QGGGG⃗  
 

(11.21) 
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            Подставляя в формулу (11.21) для сопряженного оператора получаем 

I𝑥⃗, 𝐴L∗(𝛼#𝑦#GGGG⃗ + 𝛼Q𝑦QGGGG⃗ )J = 𝛼#`𝑥, 𝐴L∗𝑦#GGGG⃗ a + 𝛼Q`𝑥, 𝐴L∗𝑦QGGGG⃗ a 

 

(11.22) 

Равенство (11.22) должно выполняться для любых векторов: 
 

I	𝐴L∗(𝛼#𝑦#GGGG⃗ + 𝛼Q𝑦QGGGG⃗ )J = 𝛼#`	𝐴L∗𝑦#GGGG⃗ a + 𝛼Q`	𝐴L∗𝑦QGGGG⃗ a 

 

(11.23) 

Пример  

Пусть есть 

𝕍R; 		𝐴L ∶ 𝕍R → 𝕍R 

𝐴L𝑥⃗ = [𝑎⃗, 𝑥⃗] − векторное	произведение, 𝑎⃗ ≠ 0 − фикс. 

Найти 𝐴L∗: 

`𝐴L𝑥⃗, 𝑦⃗a = (𝑥⃗, 𝐴L∗	𝑦⃗) 

([𝑎⃗, 𝑥⃗]𝑥⃗, 𝑦⃗) = (𝑎⃗, 𝑥⃗, 𝑦⃗) = (𝑥⃗, 𝑦⃗, 𝑎⃗) = (𝑥⃗, [𝑦⃗, 𝑎⃗]) = (𝑥⃗, −	[𝑎⃗, 𝑦⃗]) = (𝑥⃗, −𝐴L	𝑦⃗) 

𝐴L∗ = −𝐴L;		𝐴∗ = −𝐴 − в	ОНБ 

𝐴 = Æ
0 𝑎b −𝑎Y
−𝑎b 0 𝑎W
𝑎Y −𝑎W 0

Ç − в	ОНБ 

 

ТЕОРЕМА ФРЕДГОЛЬМА 

Пусть 𝐴L ∶ 𝑉 → 𝑊 и обратный оператор 𝐴L∗ ∶ 𝑊 → 𝑉, тогда 

ker 𝐴L = `𝑖𝑚𝐴L∗aS 
(11.24) 

ker 𝐴L∗ = `𝑖𝑚𝐴LaS 
(11.25) 
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`	ker 𝐴LaS = 𝑖𝑚𝐴L∗ 

 

(11.26) 

`	ker 𝐴L∗aS = 𝑖𝑚𝐴L 
(11.27) 

Доказательство. 

Будем доказывать первую формулу, т.е. нужно доказать: 
А) dim𝐴L = dim`	ker 𝐴L∗aS ; 

Б) 𝑖𝑚𝐴L ⊂ `	ker 𝐴L∗aS. 
А) Рассмотрим размерность 

dim`	ker 𝐴L∗aS = dim𝑊 − dim`	ker 𝐴L∗aS = −dim𝑊 − [dim𝑊] − dim 𝑖𝑚	𝐴L∗

= dim 𝑖𝑚	𝐴L∗ = 𝑟𝑘𝐴L∗	𝑟𝑘𝐴L = dim 𝑖𝑚𝐴L	 

Б) Теперь докажем второе утверждение: 

∀𝑦⃗ ∈ 𝑖𝑚𝐴L ∶ 	 𝑦⃗ ∈ `	ker 𝐴L∗aS 
(11.28) 

Также имеем, что 

∀𝑥⃗ ∈ 𝑉	𝑦⃗ = 	𝐴L𝑥⃗ ∶ 	 𝑦⃗ ⊥ ker 𝐴L∗ 
(11.29) 

∀𝑧 ∈ ker 𝐴L ∶ 	 𝑦⃗ ⊥ 𝑧 
(11.30) 

 

Другими словами, это можно записать как 

∀𝑧 ∶ 	𝐴L∗𝑧 = 0 ∶ (𝑦⃗, 𝑧) = 0 
(11.31) 
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В итоге получаем, что 

(𝑦⃗, 𝑧) = `𝐴L𝑥⃗, 𝑧a = �𝑥⃗, 𝐴L∗𝑧Ê
;JJ⃗
� = `𝑥⃗, 0G⃗ a = 0 

(11.32) 

 

Остальные формулы можно получить из формулы (11.24), т.е. теорема доказана. 
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ЛЕКЦИЯ 12. ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К КАНОНИЧЕСКОМУ 
ВИДУ ОРТОГОНАЛЬНЫМ ПРЕОБРАЗОВАНИЕМ 
САМОСОПРЯЖЕННЫЕ ОПЕРАТОРЫ 

Пусть V – ЕП (или УП) и оператор 𝐴L ∶ 		𝑉 → 𝑉  

Определение. 𝐴L называется самосопряженным, если  

𝐴L = 𝐴L∗ 
(12.1) 

Т.е. 

∀𝑥⃗, 𝑦⃗ ∶ 		 `𝐴L𝑥, 𝑦⃗a = `𝑥⃗, 𝐴L𝑦⃗a. 
(12.2) 

Имеем, что  

𝐴∗ = 𝐺3#𝐴%𝐺 − в	∀	базисе 
(12.3) 

То, получаем, что в ОНБ базисе 

𝐴∗ = 𝐴% 
(12.4) 

Матрица в ∀ базисе 𝐴 = 𝐺3#𝐴%𝐺. 

𝐺𝐴 = 𝐴%𝐺 =⏟
^:^'

𝐴%𝐺% = (𝐺𝐴)% 

(𝐺𝐴)% = 𝐺𝐴,				𝐺𝐴 − эрмитова 

• В ОНБ : 𝐴% = 𝐴; 
• В ℝ: 𝐴C = 𝐴. 

Самосопряженный оператор в ℝ - симметричный, в ℂ - эрмитов.	

СВОЙСТВА САМОСОПРЯЖЕННЫХ ОПЕРАТОРОВ 

Теорема (свойства ССО) 

1) Все собственные значения ССО ∈ ℝ; 
2) СВ, относящиеся к разным СЗ ортогональны; 
3) В V ∃ ОНБ, состоящий из СВ 𝐴L. 
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Доказательство  

1) Пусть 𝛌 – СЗ, 𝑥⃗ – СВ, тогда по определению 
  

𝐴L𝑥⃗ = λ𝑥⃗			(𝑥⃗ ≠ 0) (12.5) 

Рассмотрим первое скалярное произведение 

`𝐴L𝑥⃗, 𝑥a = (λ𝑥, 𝑥⃗) = 𝜆̅(𝑥⃗, 𝑥⃗) 
(12.6) 

Теперь рассмотрим другое скалярное произведение 

`𝑥⃗, 𝐴L𝑥⃗a = (𝑥⃗, λ𝑥⃗) = λ(𝑥, 𝑥⃗) 
(12.7) 

Т.е. сравнивая два выражения получаем, что 

𝜆̅ = λ	 → 	λ ∈ ℝ 
(12.8) 

 
2) Пусть λ#, λQ − 		СЗ		λ# ≠ λQ,  𝑥#GGG⃗ , 𝑥QGGGG⃗ − СВ. 

Действие оператора А на эти вектора дает: 
𝐴L𝑥#GGG⃗ = λ#𝑥#GGG⃗ ,			𝐴L𝑥QGGGG⃗ = λQ𝑥QGGGG⃗ 	 (12.9) 

Аналогично рассмотрим п.1) скалярные произведения: 
`𝐴L𝑥#GGG⃗ , 𝑥QGGGG⃗ a = (λ#𝑥#GGG⃗ , 𝑥QGGGG⃗ ) = λ#(𝑥#GGG⃗ , 𝑥QGGGG⃗ ) (12.10) 

 
`𝑥#GGG⃗ , 𝐴L	𝑥QGGGG⃗ a = (𝑥#GGG⃗ , λQ𝑥QGGGG⃗ ) = λQ(𝑥#GGG⃗ , 𝑥QGGGG⃗ ) (12.11) 

Сравнивая два выражения получаем: 
 

λ#(𝑥#GGG⃗ , 𝑥QGGGG⃗ ) = λQ(𝑥#GGG⃗ , 𝑥QGGGG⃗ ) (12.12) 

Переносим все в одну сторону: 
 

(λ# − λQ)ghhihhj
c;

(𝑥#GGG⃗ , 𝑥QGGGG⃗ ) = 0 (12.13) 

 
(𝑥#GGG⃗ , 𝑥QGGGG⃗ ) = 0 (12.14) 

 А это и означает, что 
𝑥#GGG⃗ ⊥ 𝑥QGGGG⃗  (12.15) 

3) Предположим, что  
A) ∃	СЗ	𝜆#, СВ −	𝑥#GGG⃗ 	 
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Рассмотрим 𝑃# − 𝐿(𝑥#GGG⃗ ) − ИП	𝐴L, 𝑃#S − ИП	𝐴L∗ =	𝐴L 

Б) Теперь рассмотрим 𝐴L ∶ 	 𝑃#S → 𝑃#S и доказательство сводится к случаю а).	 

ПРИВЕДЕНИЕ КФ К КАНОНИЧЕСКОМУ ВИДУ ПРИ ПОМОЩИ 
ОРТОГОНАЛЬНЫХ ПРЕОБРАЗОВАНИЙ 

Пусть 𝐵w(𝑥⃗, 𝑦⃗) – симметричная БФ 

𝑄(𝑥⃗) = 𝐵w(𝑥⃗, 𝑥⃗) 
(12.16) 

𝐵 = (𝑏dP) – матрица БФ, 𝐵C = 𝐵. Будем считать, что матрица 𝐵 относится к ОНБ. 
Следовательно, можно считать, что она является матрицей самосопряженного оператора 
𝐵l .  

• ЛО ∶ 𝐵" = 𝐶3#𝐵𝐶 
• БФ ∶ 𝐵" = 𝐶C𝐵𝐶 

Построим ОНБ из СВ ЛО 𝐵l . 

Матрица перехода – ортогональна → 𝐶3# = 𝐶C. 

𝐶3#𝐵𝐶 = 𝐶C𝐵𝐶 

      Пусть имеем  𝑄(𝑥⃗) = (𝑥#)Q + (𝑥Q)Q + (𝑥R)Q − 6𝑥#𝑥Q − 6𝑥#𝑥R − 6𝑥Q𝑥R, тогда 

𝐵 = �
1 −3 −3
−3 1 −3
−3 −3 1

� 

(12.17) 

|𝐵 − 𝜆𝟙| = ¹
1 − 𝜆 −3 −3
−3 1 − 𝜆 −3
−3 −3 1 − 𝜆

¹ = ¹
−𝜆 − 5 −𝜆 − 5 −𝜆 − 5
−3 1 − 𝜆 −3
−3 −3 1 − 𝜆

¹ = 

= (−𝜆 − 5) ¹
1 1 1
−3 1 − 𝜆 −3
−3 −3 1 − 𝜆

¹ = (−𝜆 − 5) ¹
1 0 0
−3 4 − 𝜆 0
−3 0 4 − 𝜆

¹ = (−𝜆 − 5)(4 − 𝜆)Q 

𝜆# = −5	(АК = 1)
𝜆Q = 4		(АК = 2)  

• Для 𝜆# = −5 
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𝐵 − 𝜆#𝟙 = Ô
6 −3 −3
−3 6 −3
−3 −3 6

Õ → СВ	𝑥#GGG⃗ = �
1
1
1
�	𝑒#GGG⃗ =

1
√3

�
1
1
1
� 

• Для 𝜆Q = 4		 

𝐵 − 𝜆Q𝟙 = Ô
−3 −3 −3
−3 −3 −3
−3 −3 −3

Õ → 𝑥# + 𝑥Q + 𝑥R = 0 

𝑥QGGGG⃗ = �
−1
1
0
�			𝑥RGGGG⃗ = �

−1
0
1
� 

Теперь ортогонализуем 𝒙𝟐""""⃗ 	и	𝒙𝟑""""⃗ 	

Имеем: 

𝑒QGGG⃗ =
1
√2

�
−1
1
0
� 

𝑔RGGGG⃗ = 𝑥RGGGG⃗ − 𝑃𝑟G(I$JJJJ⃗ )	, 𝑥RGGGG⃗ = 𝑥#GGG⃗ − (𝑥RGGGG⃗ , 𝑒QGGG⃗ )𝑒QGGG⃗  

𝑔RGGGG⃗ = �
−1
0
1
� −

1
√2

�
−1
1
0
�
C

�
−1
0
−1
�
1
√2

�
−1
1
0
� = �

−1/2
−1/2
1

� 

𝑒RGGG⃗ =
1
√6

�
−1
−1
2
� 

МП от исходного базиса к 𝑒#GGG⃗ , 𝑒QGGG⃗ , 𝑒RGGG⃗ 	. 

𝐶 = Ö
1/√3 −1/√2 −1/√6
1/√3 1/√3 −1/√6
1/√3 0 2/√6

×	, 𝐶3# = 𝐶C 

Рассмотрим базис 𝑒#GGG⃗ , 𝑒QGGG⃗ , 𝑒RGGG⃗ .  

Матрица ЛО 𝐵" = 𝐶3#𝐵𝐶 = �
−5

4
4
�. Но матрица БФ 𝐵"" = 𝐶C𝐵𝐶 = 𝐵".  

Канонический вид  𝑄(𝑥⃗) = −5(𝑥#!)Q + 4(𝑥Q!)Q + 4(𝑥R!)Q. 

Запишем все в тензорном виде: 
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𝑎!d → 𝑔Ud𝑔X!𝑎!
P  

(12.18) 

      В матричном виде это выглядит как 

`𝐴L𝑥, 𝑦⃗a = `𝑥⃗, 𝐴L∗𝑦⃗a 
(12.19) 

(𝐴𝑋)C𝐺𝑌 = 𝑋C𝐺(𝐴∗𝑌) 
(12.20) 

𝑋C𝐴C𝐺𝑌 = 𝑋C𝐺𝐴∗𝑌 
(12.21) 

Сравнивая выражения получаем, что 
 

𝐴∗ = 𝐺3#𝐴%𝐺	, 𝐴∗ = 𝐺3#𝐴C𝐺 
(12.22) 

𝑔X!Ê
↓

^("8&

𝑎!
P 𝑔PUØ

↓
8&^

− элемент	𝐴L∗ 
(12.23) 

Теорема. Пусть дана КФ 𝑄(𝑥⃗), 𝐺(𝑥⃗). В ВП ∃ базис, в котором обе формы имеют 
диагональные матрицы. 

Доказательство. 

Пусть в базисе 𝐸 = (𝑒#GGG⃗ , … , 𝑒&GGGG⃗ ) есть Q, G – матрицы КФ. 

1) Можно найти базис 𝐸" = (𝑒#"GGGG⃗ , … , 𝑒&"GGGGG⃗ ), в котором 𝐺(𝑥⃗) имеет канонический вид. 
Тогда  

𝐺" = 𝟙 
(12.24) 

       Пусть 𝐶# – МП от 𝐸 к 𝐸". 𝐸" - ОНБ относительно СП, полярной к КФ 𝐺(𝑥⃗). 

𝐺" = 𝐶#C𝐺𝐶# = 𝟙 
(12.25) 

𝑄" = 𝐶#C𝐺𝐶# 
(12.26) 

2) Найти базис 𝐸"" = (𝑒#""GGGGGG⃗ , … , 𝑒&""GGGGGG⃗ ) (ОНБ), в котором 𝑄′′ будет диагональная. Это 
делается ортогональным преобразованием.  



 
 ЛИНЕЙНАЯ АЛГЕБРА 
 ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ,  
 ТОКМАЧЕВ МИХАИЛ ГЕННАДЬЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

83 
 
 

 

Пусть 𝐶Q – МП от 𝐸"к 𝐸"". Рассмотрим диагональную матрицу 

𝑄"" = 𝐶QC𝑄′		𝐶Q 
(12.27) 

 

𝐺"" = 𝐶QCØ
ортог.

𝐺⏟
𝟙

′ 𝐶Q⏟
ортог.

= 𝐶QC𝐶Q = 𝐶Q3#𝐶Q = 𝟙 
(12.28) 

Тогда в базисе 𝐸"" полчуаем 𝐺"" = 𝟙 и 𝑄"" = 𝑑𝑖𝑎𝑔	(𝜆#…𝜆&) 

ПРИМЕР  

Рассмотрим 

𝐺w(𝑥⃗) = (𝑥#)Q − 2𝑥#𝑥Q + 4(𝑥Q)Q			𝐺 = I 1 −1
−1 4 J 

(12.29) 

𝑄w(𝑥) = −4𝑥#𝑥Q		𝑄 = I 0 −2
−2 0 J 

(12.30) 

Шаг 1.  

Приведем 𝐺w(𝑥⃗) → канонический	вид: 

(𝑥#)Q − 2𝑥#𝑥Q + 4(𝑥Q)Q = ((𝑥#)Q − 2𝑥#𝑥Q + (𝑥Q)Q) + 3(𝑥Q)Q = (𝑥#")Q + (𝑥Q")Q 

𝑥#" = 𝑥# − 𝑥Q
𝑥Q" = √3𝑥Q

 

Обратная и прямая матрицы перехода запишутся в виде: 

𝐶#3# = ¿1 −1
0 √3

Á → 𝐶# =
1
√3

¿√3 1
0 1

Á 
(12.31) 

Определитель det 𝐶#3# = √3 и  матрица Грама 𝐺" = I1 0
0 1J. 

Получаем матрицу: 
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𝑄" = 𝐶#C𝑄𝐶# = �
1 0
1
√3

1
√3
� I 0 −2
−2 0 J

⎝

⎜
⎛1

1
√3

0
1
√3⎠

⎟
⎞
=

⎝

⎜
⎛ 0 −

2
√3

−2
√3

−
4
3 ⎠

⎟
⎞

 

(12.32) 

Шаг 2.  

Приведем 𝑄w(𝑥⃗) к каноническому виду: 

Получаем систему уравнений и решения для СЗ 

det(𝑄" − 	𝜆𝟙) = ää
−	𝜆 −

2
√3

−2
√3

−
4
3
− 	𝜆

ää				
	𝜆# = −2

	𝜆Q =
2
3

 

(12.33) 

• СВ для 	𝜆# = −2	 

𝑄" − 	𝜆𝟙 =

⎝

⎜
⎛ 2 −

2
√3

−2
√3

2
3 ⎠

⎟
⎞
			𝑥#GGG⃗ = ¿ 1

√3
Á 

(12.34) 

• СВ для 	𝜆Q =
Q
R
  

𝑄" − 	𝜆𝟙 =

⎝

⎜
⎛−

2
3 −

2
√3

−2
√3

−2
⎠

⎟
⎞
		𝑥QGGGG⃗ = ¿−√3

1
Á	 

(12.35) 

Тогда  

𝐶Q = å
1/2
√3/2

−√3/2
1/2

æ 

(12.36) 

Шаг 3. Рассмотрим 

𝐸" = 	𝐸𝐶# 
(12.37) 
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𝐸"" = 𝐸"𝐶Q = 𝐸𝐶#𝐶Q 
(12.38) 

Матрица перехода 

𝐶 = 𝐶#𝐶Q = å1 1/√3
0 1/√3

æå 1/2 1/√3
√3/2 1/2

æ = å 1 −1/√2
1/2 1/2√3

æ 

(12.39) 

Координаты вектора: 𝑥# = 𝑥#"" − #
√R
𝑥Q"" и 𝑥Q = #

Q
𝑥#"" + #

Q√R
𝑥Q"". 

Тогда 𝑄w(𝑥) = −2`𝑥#!!a
Q
+ Q

R
`𝑥Q!!a

Q
 и получаем, что 

𝐺w(𝑥⃗) = `𝑥#!!a
Q
+ `𝑥Q!!a

Q
 

(12.40) 

𝑄 = `𝑞P!a		 𝐺⏟
метр.тензор

= (𝑔P!) 
(12.41) 

Т.е. получили ССО: 

𝑞!d = 𝑔dP𝑞P! 
(12.42) 

Находим теперь СЗ 

det`𝑞!d − 𝜆𝛿!d a = 0		 → 		 𝜆#…𝜆& 
(12.43) 

`𝑞!d − 𝜆U𝛿!d a𝑥! = 0 
(12.44) 

Находим ОНБ: 

`𝑔dP𝑞P! − 𝜆U𝑔dP𝑞P!a𝑥! = 0 
(12.45) 

Запишем в матричном виде: 

𝐺3#(𝑄 − 𝜆U𝐺)𝑋 = 0 
(12.46) 
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Т.е. нужно рассмотреть определитель 

det(𝑄 − 𝜆U𝐺) = 0 
(12.47) 

𝐺 = I 1 −1
−1 4 J 			𝑄 = I 0 −2

−2 0 J 

det(𝑄 − 𝜆𝐺) = èI 0 −2
−2 0 J − 𝜆 I

1 −1
−1 4 Jè = èI 𝜆 −2 − 𝜆

2 + 𝜆 −4𝜆 Jè = 3𝜆Q + 4𝜆 − 4 

Найденные СЗ:  

𝜆% = −2

𝜆& =
2
3

 

(12.48) 

• Для 𝜆# = −2 находим, что 𝑥#GGG⃗ = I21J. 

• Для 𝜆Q =
Q
R
	находим, что 𝑥QGGGG⃗ = I−21 J. 

Рассмотрим скалярное произведение (т.к. векторы перпендикулярные): 

(𝑥#GGG⃗ , 𝑥QGGGG⃗ ) = 𝑋#C𝐺𝑋Q = 0 
(12.49) 

Нормы векторов: 

‖𝑥#GGG⃗ ‖Q = 𝑋QC𝐺𝑋# = 4 и ‖𝑥QGGGG⃗ ‖ = 2/√3 
(12.50) 

Значит: 

𝑓#GGG⃗ = �
1
1
2
�			𝑓QGGG⃗ =

⎝

⎜
⎛−

1
√3
1
2√3⎠

⎟
⎞

 

(12.51) 

𝐶é =

⎝

⎜
⎛1 −

1
√3

1
2

1
2√3⎠

⎟
⎞
. 

(12.52) 
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ЛЕКЦИЯ 13. ПОНЯТИЕ ТНЗОРА. СВОЙСТВА И ОПЕРАЦИИ НАД 
ТЕНЗОРАМИ 
ТЕНЗОРЫ. ОCНОВНЫЕ СВОЙСТВА И ОПЕРАЦИИ 

Рассмотрим два базиса 𝑒#GGG⃗ , … , 𝑒&GGGG⃗ 	и	𝑒#!GGGG⃗ , … , 𝑒&!GGGGG⃗ 	, пусть		𝐶 − матрица перехода. 

Тогда разложение по базисам будет выглядеть как 

𝑒!!GGGGG⃗ = 𝑐!!
! 𝑒!GGGG⃗  

(13.1) 

𝑒!GGGG⃗ = 𝑐!!
!𝑒!!GGGGG⃗  

(13.2) 

Теперь запишем основные понятия через тензоры: 
1) Вектор  

𝑥!! = 𝑐!!
!

Ø
обр.

𝑥! 
(13.3) 

2) Линейная форма (ковектор) 

𝑎!! = 𝑐!!
!Ø
пр.

𝑎! 
(13.4) 

3) Линейный оператор  

𝑎!!
P! = 𝑐P

P!
Ø
обр.

𝑐!!
!Ø

прям.

𝑎!
P  

(13.5) 

𝐴" = 𝐶3#𝐴𝐶 
(13.6) 

4) Билинейная форма 

𝑏P!!! = 𝑐P!
P
Ø
прям.

𝑐!!
!Ø

прям.

𝑏P! 
(13.7) 

𝐵 = 𝐶C𝐵𝐶 
(13.8) 

 
Определение. Пусть V(ℝ) – ВП; dim𝑉 = 𝑛. Тензор типа (p,q)  - это 

упорядоченный набор 𝑛$%j чисел, поставленных в соответствие каждому базису и 
преобразующихся при изменении базиса по формуле: 
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𝐴P""…P")
!""…!"* = 𝐶!"…!*

!""…!"*𝐶P""…P")
P"…P) 𝐴P"…P)

!"…!* 
(13.9) 

ДЕЙСТВИЯ НАД ТЕНЗОРАМИ 

1) Сумма двух тензоров  

𝐴!`
P + 𝐵!`

P = 𝐷!`
P  

 

(13.10) 

𝐷!`
P = 𝐴!`

P + 𝐵!`
P  

(13.11) 

𝐷!"`"
P! = 𝐴!"`"

P! + 𝐵!"`"
P! = 𝑐P

P!𝑐!!
! 𝑐`!

` 𝐴!`
P + 𝑐P

P!𝑐!!
! 𝑐`!

` 𝐵!`
P = 𝑐P

P!𝑐!!
! 𝑐`!

` Ö𝐴!`
P + 𝐵!`

P
ghhihhj

k+,
-

× 

(13.12) 

2) Умножение на число 

(𝛼𝐴)!`
P = 𝛼 ∙ 𝐴!`

P  
 

(13.13) 

3) Умножение тензоров 

𝐴!`
P ∙ 𝐵lm = 𝐹!`l

Pm  
 

(13.14) 

Пример. Рассмотрим пространство 𝑉 = ℝQ;	 

Тогда элементы тензора можно записать как: 

𝐹### = 𝐴## ∙ 𝐵#. 
(13.15) 

𝐹##Q = 𝐴## ∙ 𝐵Q; 
(13.16) 

𝐹Q## = 𝐴Q# ∙ 𝐵# 
(13.17) 

4) Свертка  

𝐴!`
Pm → 𝐵`

P = ë𝐴U`
PU

&

U:#

 

 

(13.18) 
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Теорема. Свертка тензоров также является тензором. 

Доказать:  

𝐴!`
Pm → 𝐵`

P = ë𝐴U`
PU

&

U:#

 

 

(13.19) 

Дано: 

𝐴!"`"
d"P" = 𝐴!`

dP 	𝑐dd
!𝑐P
P!𝑐!!

! 𝑐`!
`  

 

(13.20) 

Доказательство. 

Рассмотрим тензор: 

𝐵U"d" = 𝐵`d𝑐dd
!𝑐`!
`  

Распишем компонент как 

(13.21) 

𝐵`"d" = 𝐴!"`"
d"P" = 𝐴!`

dP 	𝑐dd
! 𝑐PU

!𝑐U!
!

gij
:n.!

+ n-
.!:o-

+

𝑐`!
` = 𝐴!`

dP 𝛿P!𝑐dd
!𝑐`!
` = 𝐴P`

dP𝑐dd
!𝑐`!
` = 𝐵`d𝑐dd

!𝑐`!
`  

где мы использовали то, что 

(13.22) 

𝛿!
P𝑥! = 𝑥P 

Разложение (13.20) доказано. 
 

(13.23) 

ТЕНЗОРЫ В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ 

Пусть дан 𝐴P!d  – тензор. 𝐺 = 	 (𝑔!`) – матрица Грама (2 ковариантная (метрический 
тензор)) 

Так определитель не равен нулю, то 

det 𝐺 	≠ 0	 → ∃𝐺3# = (𝑔!`) 

Рассмотрим тензор 

(13.24) 
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𝑔!`𝑔`$ = 𝛿!
$ → 𝑔!` 

(13.25) 

Опускание индекса: 

𝑔$j⏟𝐴P!d
⏞ → 𝑔$U⏟𝐴P!U

⏞ = 𝐴$P!•  
(13.26) 

Подъем индекса: 

𝑔$j⏞𝐴P!⏟d → 𝑔$U⏞𝐴PU⏟d = 𝐴P•
$d 

(13.27) 

Линейная форма: 

𝑓(𝑥⃗) = 𝑓d𝑥d = 𝑓d𝑥!𝛿!d = 𝑓d⏟ 𝑥! 𝑔dUì 𝑔!U = 𝑔U!𝑓U𝑥! = `𝑓, 𝑥⃗a 
(13.19) 

Т.е. получаем 

𝑓d → 𝑓U = 𝑔Ud𝑓d 
(13.27) 

В ОНБ: 

	𝑓U = 𝑓U 
(13.28) 

Теорема. В ЕП ∀ ЛФ 𝑓(𝑥) ∃ вектор 𝑓 ∶	 

𝑓(𝑥) = (𝑓, 𝑥⃗) 
(13.29) 

Рассмотрим БФ  

𝐵w(𝑥⃗, 𝑦⃗) = 𝑏dP𝑥d𝑦P = 𝑏dP𝑥!𝑦P𝛿!d = 𝑔!U𝑔dU𝑏dP𝑥!𝑦P = 𝑔!U𝑏PU𝑥!𝑦P = 𝑔!U𝑥!`𝑏PU𝑦Pa
= `𝑥⃗, 𝐵l𝑦⃗a, 

где 𝐵l  – имеет матрицу 𝑏PU = 𝑔Ud𝑏dP. 

Теорема. ∀ БФ 𝐵w(𝑥, 𝑦⃗) в ЕП ∃ ЛО 𝐵l  : 
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𝐵w(𝑥⃗, 𝑦⃗) = `𝑥, 𝐵l𝑦⃗a 
(13.30) 

Доказать, что 𝐵w  – симметричная БФ.  

𝐵w(𝑥⃗, 𝑦⃗) = `𝑥⃗, 𝐵l 𝑦⃗a = 𝐵w(𝑦⃗, 𝑥⃗) = `𝑦⃗, 𝐵l𝑥⃗a = `𝐵l𝑥⃗, 𝑦⃗a 
(13.31) 

- самосопряженный оператор, если В является симметричным. 
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