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Лекция 1. Абсолютно черное тело 

Общие слова о становлении квантовой физики 

 Данный курс отличается от тех курсов по физике, которые вы слушали до этого 
(механики, электродинамики, молекулярной физики, оптики), - эти курсы общей физики 
основаны на классических представлениях о физике, которые доминировали до начала 
XX века (начала эпохи квантовой физики). XX век был временем, развития квантовой 
физики, успехи которого можно ощущать сейчас. 

Абсолютно черное тело. Функция Кирхгофа. Излучение АЧТ 

 Дату рождения квантовой физики можно записать совершенно конкретно: 14 
декабря 1990, когда М. Планк выложил на физическом германском обществе доклад, из 
которого следовало, что он получил теоретическую формулу для расчета спектральной 
плотности энергии абсолютно черного тела. 

 Нагретые тела излучают в разных спектральных диапазонах («раскален 
докрасна/добела»). Так, при нагреве тела спектральный состав излучения, которое 
излучает тело, будет меняться в зависимости от температуры. Абсолютно черное тело – 
тело, не отражающее, поглощающее все приходящие на него лучи. 

 
Рис. 1.1. Модель абсолютно черного тела. 

Коэффициент поглощения будем определять следующим образом: 

𝛼 = Фпоглащенная
Фпадающая

      (1.1) 

В то же время, нагретые тела излучают в некотором спектральном диапазоне. 
Спектральной плотности такого излучения соответствует некая характеристика 
испускательной способности – спектральная плотность испускательной способности: 
если взять интегральную энергию, испускаемую в единицу времени и с единицы 
поверхности по всем длинам волн/по всем частотам, излучаемым этим телом, то это и 
будет интегральная испускательная способность или энергетическая светимость: 

𝑅э = ∫𝑟#(𝑇) 𝑑𝜔 = ∫𝑟$(𝑇) 𝑑𝜆    (1.2) 

𝜔 = %&
'
, 𝜆 = 𝑐 ∗ 𝑇     (1.3) 

В 1859 году Кирхгофом из термодинамических соображений было установлено, что если 
тела находятся в термодинамическом равновесии, то отношение энергии, которую они 
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поглощают в единицу времени (поглощательная способность), и энергии, которую они 
излучают за это же время (испускательная способность), не зависит ни от формы, ни от 
природы тела и является некой константой: 

(,-

),-
= ⋯ (,--

),--
= 𝑟#∗(𝑇)     (1.4) 

Эта величина является универсальной функцией Кирхгофа, поскольку, зная эту 
величину и коэффициент поглощения для некого тела, можно найти спектральную 
плотность или испускательные способности этого тела.  

Так, становится понятным интерес к экспериментальным исследованиям на эту тему. 
Если нагреть муфельную печь до некоторой температуры 𝑇, – она будет сначала желтеть, 
затем краснеть, разогреваться добела, и у нее будет изменяться спектральный состав. 
Если посмотреть на полученные экспериментальные результаты, то их можно 
представить следующим образом:  

 
Рис. 1.2. Сравнение закона распределения энергии по длинам волн 𝑟(𝜆, 𝑇) в 

излучении абсолютно черного тела с формулой Рэлея при 𝑇	 = 	1600	К. 

Из рис (1.2) видно, что теоретическая кривая, полученная из классических соображений 
(формула Рэлея-Джинса), резко расходится с экспериментом, точки которого 
представлены на красной кривой.  

Энергия гармонического осциллятора в классическом представлении 
Открытие в квантовой физике 14.12.1990, представленное М. Планком, нашел 

формулу, описывающую экспериментальные результаты. При этом ему пришлось 
отказаться от классических представлений (он рассматривал систему осцилляторов). 

 
Рис. 1.3. Графическое изображение гармонического осциллятора. 
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Если рассматривать осциллятор как классический объект, то простое уравнение 
гармонического осциллятора для заряженной частицы с массой 𝑚, заряда 𝑞, 
движущегося с ускорением, будет выглядеть следующим образом: 

𝑥̈ = 𝜔%𝑥 = 0      (1.5) 

𝐹 = −𝑘𝑥      (1.6) 

𝑚𝑥̈ = −𝑘𝑥      (1.7) 

𝜔% = +
,

      (1.8) 

Энергия такого осциллятора с классической точки зрения определяется начальными 
условиями: 

𝑊п =
+..

%
      (1.9) 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑)    (1.10) 
〈𝐹〉 = 𝑘𝑇      (1.11) 

Законы Вина. Закон Стефана-Больцмана 
Закон Вина: 

 
Рис. 1.4. Графическое изображение распределения энергии по длинам в излучении 

абсолютно черного тела. 

𝜆,/0 ∗ 𝑇 = 𝑏      (1.12) 

𝑏 = 2,9 ∗ 1012	м ∗ К,     (1.13) 

где 𝑏 – константа Вина. 

Закон Стефана-Больцмана: 

𝑅э = 𝜎 ∗ 𝑇3,       (1.14) 

где 𝜎 – постоянная Стефана-Больцмана, 𝑇 – абсолютная температура тела. 

𝜎 = 5,67 ∗ 1014 Вт
м.К/

     (1.15) 
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Эти два закона были установлены экспериментально и обоснованы теоретически, но 
константы 𝑏 и 𝜎 не могли быть рассчитаны из тех фундаментальных постоянных, 
которые были известны в классической физике. 

Вывод формулы Рэлея-Джинса 

Поскольку спектральный состав излучения однороден и не зависит от формы и 
природы тела, будем предполагать, что излучение сосредоточено в кубе. Тогда согласно 
классической электродинамике, в кубе установятся стоячие волны. Формы этой волны 
будут определяться решением соответствующего волнового уравнения, которое 
является следствием уравнений Максвелла. Так, выражение для стоячей волны выглядит 
следующим образом: 

𝐸 = 𝐸9 sin 𝑘0𝑥 sin 𝑘:𝑦 sin 𝑘;𝑧 cos(𝜔𝑡 + 𝜑)  (1.16) 

𝑘0𝐿 = 𝑛0𝜋, 𝑘:𝐿 = 𝑛:𝜋, 𝑘;𝐿 = 𝑛;𝜋   (1.17) 

 
Рис. 1.5. Графическое изображение излучения внутри куба. 

𝑘 = %&
$
= %&

<∗'
= #

<
= X𝑘0% + 𝑘:% + 𝑘;%    (1.18) 

𝑛0 , 𝑛: , 𝑛; = 1,2, …      (1.19) 

𝜔 = 𝑐𝑘     (1.20) 

Для того, чтобы найти спектральную плотность числа этих мод, необходимо найти число 
таких нормальных колебаний 𝑑𝑁, которые имеют частоту (𝜔,𝜔 + 𝑑𝜔). 
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Рис. 1.6. Графическое изображение нормальных колебаний. 

𝑑𝑁 = =
4
2 ∗ 4𝜋𝑛%𝑑𝑛 = =

3
4𝜋 #0>0

<0&0
𝑑𝑛    (1.21) 

𝑘 = X𝑘0% + 𝑘:% + 𝑘;%
&
>
     (1.22) 

𝜔 = 𝑐𝑘 = <&
>
𝑛     (1.23) 

Спектральная плотность мод: 

𝑛# =
?@
?A
= #0>0

<0&.
     (1.24) 

Формула Рэлея-Джинса. Ультрафиолетовая катастрофа 

Получим классическую формулу для спектральной плотности излучения единицы 
объема (формулу Рэлея-Джинса): 

𝜌#(𝑇) = 𝑛#𝑘𝑇 =
#.

&.<0
𝑘𝑇     (1.25) 

𝑅э = ∫𝜌# 𝑑𝜔 → ∞, 𝜔 → ∞     (1.26) 

Вывод формулы Планка. Постоянная Планка 

 Так, Планк был вынужден отказаться от классических представлений для того, 
чтобы получить формулу, правильно описывающую экспериментальные результаты. 
Для этого он сделать существенное допущение: Планк считал, что энергия осцилляторов, 
квантуется (меняется не непрерывным образом, как у классического осциллятора, а 
квантами). 

 
Рис. 1.7. Виды изменения излучения осциллятора. 

Используя выводы классической теории, посчитаем распределение уровней и 
вероятности соответствующего уровня. 

𝒫A = 𝐴 ∗ 𝑒1
12
34 = B5

12
34

∑ B5
12
346

278

    (1.27) 

〈E〉
G
= ∑ 𝐸A ∗ 𝒫AH

AI9 = ∑ AB5
12
346

278

∑ B5
29
346

278

= − ?
?0
ln∑ 𝑒1A0H

AI9 = − ?
?0
ln =

(=1B5:)
=  (1.28) 

= ?
?0
(1 − 𝑒10) = B5:

=1B5:
= =

B:1=
,  
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где 𝑥 = G
+'

. 

〈𝐸〉 = G

B
9
3;1=

      (1.29) 

𝜌#(𝑇) =
#.

&.<0
G

B
9
34

     (1.30) 

Планк предположил, что 𝜀 = ℏ𝜔, тогда (1.30) можно записать как 

𝜌#(𝑇) =
#.

&.<0
ℏ#

B
ℏ,
341=

     (1.31) 

ℏ = 1,05 ∗ 10123	Дж ∗ с     (1.32) 

𝑟#(𝑇) =
<
3
𝜌#(𝑇)     (1.33) 

Спектральная плотность. Испускательная способность 

 
Рис. 1.8. Излучение абсолютно черного тела. 

𝑟# =
M,∗∆O∗с∗Q

∆O∗Q
      (1.34) 

Посчитаем закон смещения Вина и закон Стефана-Больцмана. Оба закона 
формулируются в терминах длины волны, поэтому необходимо перейти 𝜔 → 𝜆: 

𝜔 = %&<
$

      (1.35) 

|𝑑𝜔| = %&<
$.
𝑑𝜆      (1.36) 

Переведем 𝜌# → 𝜌$: 

∫ 𝜌#(𝑡)
H
9 𝑑𝜔 = ∫𝜌$(𝑡) 𝑑𝜆     (1.37) 

𝜌$ ∗ 𝑑𝜆 =
(%&<)/

&.<0$=
ℏ

B
ℏ.>?
@34 1=

− 𝑑𝜆    (1.38) 

𝜌$(𝑇) =
ℏ(%&<)/

$=&.<0
= ℏ=R&.<

$=SB
ℏ.>?
@34 1=T

    (1.39) 

Вывод закона смещения Вина 

𝑟$(𝑇) =
<
3
𝜌$(𝑇)     (1.40) 

?(@(')
?$

= 0      (1.41) 

?M@
?$

= − UM@
$
+ M@B:0

$(B:1=)
= 0,      (1.42) 
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где 𝑥 = ℏ%&<
$+'

= 0. 

𝑥 = 5(1 − 𝑒10) ⟹ 𝑥 = =
9,%9=3

    (1.43) 

𝜆,/0𝑇 =
%&ℏ<
+
0,2014,      (1.44) 

где %&ℏ<
+
0,2014 = 𝑏. Так, мы получили выражение для постоянной Вина, которая 

позволяет оценивать температуру максимума функции спектральной плотности 
излучения. 

Вывод закона Стефана-Больцмана 

𝑅э =
<
3∫𝜌$(𝑇) 𝑑𝜆 =

<
3∫

ℏ#0

&.<0
=

SB
ℏ,
341=T

𝑑𝜔   (1.45) 

Заменим ℏ#
+'
= 𝑥, тогда 

∫ 001$0
B:1=

= &/

=U
      (1.46) 

𝑅э =
&/

=U
+/

ℏ/
ℏ

&.<0
<
3
𝑇3, &

/

=U
+/

ℏ/
ℏ

&.<0
<
3
= 𝜎 = 5,671014 Вт

м.W/
  (1.47) 

Таким образом, подход, используемый Планком, приводит к правильным 
результатам, которые невозможно добиться в рамках классического подхода. 
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Лекция 2. Становление квантовой физики 

Обзор предыдущей лекции 

 На прошлой лекции мы получили формулу Планка, которая описывает 
спектральную плотность теплового излучения, и законы теплового излучения (закон 
смещения Вина и закон Стефана-Больцмана), причем для получения этих формул мы 
исходили их немыслимой для классической физики гипотезы о том, что энергия 
излучающего осциллятора меняется не непрерывно, а дискретными порциями. Размер 
этой дискретности составляет 

𝜀 = ℏ𝜔      (2.1) 

ℏ = 1,05 ∗ 10123	Дж ∗ с    (2.2) 

 
Рис. 2.1. Сравнение изменения энергии излучающего осциллятора в классическом и 

неклассическом случаях.  

Предположив следующее дискретное изменение излучения осциллятора, Планк смог 
получить соответствующую эксперименту величину 𝜌#(𝑡). 

 
Рис. 2.2. Распределение энергии по длинам в излучении абсолютно черного тела. 
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Рис. 2.3. Графическое изображение излучения энергии абсолютно черным телом. 

𝑟# =
<
3
𝜌#     (2.3) 

𝜌#(𝑇) =
#.ℏ#

&.<0B
ℏ,
341=

     (2.4) 

Если ℏ𝜔 ≪ 𝑘𝑇, то 𝑒0 = 1 + 𝑥. Тогда  

𝜌#(𝑇) =
#.

&.<0
𝑘𝑇     (2.5) 

Формула, описывающая это приближение – формула Рэлея-Джинса. 

Если ℏ𝜔 ≫ 𝑘𝑇, то 

~#0B5
ℏ,
34

#0XY,4Z
     (2.6) 

Из такого вида функции для спектральной плотности можно получить закон смещения 
Вина и закон Стефана-Больцмана, что и сделал Вин, и в 1911 году ему была присуждена 
Нобелевская премия за теоретическое получение законов излучения равновесного 
теплового излучения. 

История становления квантовой физики 
 Идея Планка о дискретности энергии не особо нравилась как самому Планку, так 
и остальным физикам, воспитанным на классической физике, поэтому признание 
необходимости введения дискретности для осциллятора, для энергии электромагнитного 
поля была для многих неочевидна. Признание результатов заняло достаточно большое 
время. 

 Основы квантовой механики были заложены в период 1900-1927, в результате 
блестящей плеяды ученых разных стран. За более чем вековую историю развития 
квантовая физика не только глубоко продвинула наше понимание природы, но и стала 
основой для многочисленных современных технологий. Тем не менее, некоторые 
фундаментальные загадки остаются нерешенными. 

Если рассматривать историю развития квантовой физики, то статья Scientific 
American февраля 2001 (100 лет от рождения квантовой физики) года выделяет 
следующие ключевые точки развития: работы Макса Планка (1990), установление 
законов фотоэффекта Альбертом Эйнштейном (1905), закономерности, связанные с 
существованием и дискретным излучением атомов Нильса Бора (1913).  
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Также особо отмечен Луи Де Бройль (1924), – в своей докторской диссертации он 
предполагал, что не только волны фотона обладают корпускулярными свойствами, но и 
частицы (например, электрон, протон) обладают волновыми свойствами. Это 
предположение привело к тому, что стал развиваться принцип дуализма – 
предположение считалось спорным до 1927 года, когда были установлены 
экспериментальные факты дифракции электрона на кристаллической решетке. 

 Эрвин Шредингер – его уравнение основной квантовой механики для 
нерелятивистской теории мы будем изучать достаточно подробно. Из уравнения 
Шредингера следовало, что состояние частицы описывается некой волновой функцией 
и нельзя описывать, определяя точное положение координат и импульса, что в квантовой 
механике невозможно. На это указал и разработал соответствующую теорию Вернер 
Гейзенберг (соотношение неопределенности Гейзенберга), а Макс Борн 
интерпретировал эту волновую функцию. 
Фотоэффект. Законы фотоэффекта 

 Рассмотрим следующий шаг, который определяет дискретность осцилляторов, 
хоть он и относится к электромагнитному полю. Планк предполагал, что энергия, 
которую излучают дискретно, – это энергия, случаемая осциллятором. Однако, ряд 
экспериментальных фактов был необъясним. В частности, Генрих Герц (он занимался 
разрядниками и получал электромагнитные волны с помощью вибраторов Герца) в 1887 
году обнаружил, что длина искры между металлическими электродами увеличивалась, 
если это пространство освещать ультрафиолетовым светом. Далее это явление 
исследовали Гальвас, Александр Столетов (он установил закон Столетова – первый 
закон фотоэффекта), Ленард и другие, и установили количественные характеристики 
фотоэффекта. 

 У нас есть дуговая лампа (она должна быть достаточно мощной и давать 
достаточно высокочастотное излучение – излучение, обладающее достаточно большой 
энергией). ℏ𝜔 – квант дискретности для осциллятора и квант энергии, который должен 
иметь свет, чтобы вызывать явление фотоэффекта. 

Представим металлическую пластинку (фотокатод), помещенную в вакуумную 
область (в лучшем случае, это кварцевое окошко, пропускающее ультрафиолет). Тогда 
если поступает некоторое электромагнитное излучение, то оказывается, что это 
излучение выбивает электроны. Тогда если подвести второй электрод и подать 
напряжение между этими электродами, то можно вывести следующие законы 
фотоэффекта (именно в такой установке Столетов исследовал законы фотоэффекта). 
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Рис.2.4. Установка для выведения законов фотоэффекта. 

Для начала изобразим вольтамперную характеристику (зависимость тока от напряжения) 
такого фотоэлемента. 

1) Есть некий ток (ток насыщения): при положительном напряжении (плюс по 
отношению к фотокатоду) электроны, выбивающиеся из этого фотокатода, будут 
достигать анода и при определенной интенсивности (например, 𝐼=) этот ток 
достигнет насыщения. 

Если поменять полярность, то уже не все электроны смогут достичь анода, а только те, 
кинетическая энергия которых больше задерживающего потенциала. При некотором 
потенциале будем называть напряжение задерживающим, если ток обращается в ноль. 

С классической точки зрения кажется понятным, почему электроны вылетают с 
поверхности металла: действует электромагнитное поле, оно раскачивает заряд, и заряд 
начинает двигаться, набирает необходимую кинетическую энергию и вылетает. Но в 
этом случае, кинетическая энергия, набирающая электрон, должна зависеть от 
интенсивности электромагнитного поля 

 
Рис.2.5. Вольтамперная характеристика. 

Кинетическая энергия, которую набирает электрон, должна зависеть от интенсивности 
электромагнитного поля, а интенсивность, как мы до этого говорили, пропорциональна 
квадрату напряженности электрического поля: 

𝐼~ℰ9%,       (2.7) 

где ℰ9 – амплитуда электрического поля 𝐸o⃗ . Тогда задерживающий потенциал должен 
будет зависеть от интенсивности электромагнитного поля, падающего на фотокатод. 
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Так, первый закон звучит следующим образом: при неизменной частоте 
падающего света (𝜔 − 𝑐𝑜𝑛𝑠𝑡), ток фотокатода будет пропорционален интенсивности 
падающего света. 

 
Рис. 2.6. Графическое изображение первого закона Столетова. 

2) Задерживающий потенциал связан с максимальной кинетической энергией 
следующим образом: 

,[AB:
.

%
= 𝑒𝑈2     (2.8) 

Согласно классической точке зрения, эта величина будет зависеть от интенсивности 
электрического поля, но эксперимент показывает, что этого не происходить, что 
совершенно необъяснимо с классической точки зрения. 

3) Красная граница фотоэффекта 

Оказалось, что при некоторой минимальной частоте фотоэффект вообще 
перестает наблюдаться при любой интенсивности падающего излучения. Усиление 
интенсивности и увеличение напряженности электрического поля (согласно 
классической точки зрения) никак не действует на электрон – электроны не вылетают. 

4) Фотоэффект происходит за очень маленькие времена. 

Согласно классической точке зрения, при подаче электромагнитного поля 
необходимо подождать, пока электрон наберет кинетическую энергию (если посчитать, 
эти времена могут достигать нескольких секунд), а фотоэффект практически 
безынерционен: его временные характеристики составляют 

𝜏~101\	с     (2.9) 

Так, все законы фотоэффекта (кроме первого) не поддаются объяснению в рамках 
классической теории. Для объяснения фотоэффекта, Альберт Эйнштейн в 1905 году 
предложил идею, похожую на идею Макса Планка, о том, что не только осциллятор 
квантуется по энергии, но и само электромагнитное поле также квантуется и, по сути, 
представляет некую совокупность квантов света с энергией	ℏ𝜔. Для объяснения 
эффекта, Альберт Эйнштейн записал соотношение, которое называется уравнением 
Эйнштейна: 

ℏ𝜔 = 𝐴 + ,[AB:
.

%
,      (2.10) 
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где 𝐴 – работа выхода: работа, которую необходимо совершить для того, чтобы выдавить 
электрон с поверхности металла. Электроны находятся в некой потенциальной яме. 
Забегая вперед, отметим, что для них действует принцип запрета Паули – согласно ему, 
два электрона не могут находиться в одном и том же состоянии, поэтому два электрона, 
соответствующие спину вверх и спину вниз, будут занимать нижний уровень, 
следующие два – следующий уровень, – и так далее. 

 
Рис. 2.7. Потенциальная яма и электроны. 

,[AB:
.

%
= ℏ𝜔 − 𝐴     (2.11) 

 
Рис. 2.8. График максимально кинетической энергии. 

𝜔,]A =
%&<
'<
= %&<

$AB:
     (2.12) 

Так, рис. (2.8) соответствует эксперименту и объясняется уравнением Эйнштейна (2.10). 

О работах Эйнштейна 

 Рассматривая гипотезу Эйнштейна следует понимать, что дело не в объяснении 
законов фотоэффекта, а в совершенно другом понимании природы. Оказывается, что 
электромагнитное поле – это фотоны, причем их энергия зависит не от квадрата 
напряженности электромагнитного поля, а от частоты этого фотона (ситуация, схожая с 
планковскими осцилляторами). 

Эти идеи были революционными, достаточно чуждыми классической физике и 
плохо воспринимались целым рядом ученых того времени. 
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Устройство ФЭУ. Оценка количества фотонов в лазерной указке 

 Приведенные уравнение требовало экспериментальной проверки, что было не так 
просто и требовало определенное экспериментальное мастерство. Эти измерения были 
проведены Робертом Милликеном в 1916 году, желавшим опровергнуть эту теорию. 

 
Рис. 2. 9. Процесс работы ФЭУ. 

Оценим число фотонов, излучаемых указкой: 

𝑊 = 1	мВт      (2.13) 

𝐸 = 𝑊∆𝑡 = 𝑁ℏ𝜔     (2.14) 

𝜆 = 650	нм      (2.15) 

𝑁 = ^∗=	с
ℏ#

= ^∗=	с$
ℏ.>?

= =950∗=∗RU9∗=95C

=950/∗R,%4∗2∗2∗=9D
≈ 3 ∗ 10=U   (2.16) 

ПЗС матрица 

 Прибор с зарядовой связью основан на внутреннем фотоэффекте, – до этого мы 
исследовали внешний фотоэффект, так как электрон выходил за пределы фотокатода. 
Если взять полупроводник, – у него будет некая валентная зона и зона проводимости, а 
между ними – запрещенная зона. Если энергия фотона будет превышать энергию 
запрещенной зоны, то электроны из валентной зоны могут быть переведены в зону 
проводимости. Там они могут заряжать некие «островки» (пиксели на фотокамере), а 
затем электронное устройство считывает этот заряд. Так, мы получаем матрицу, что и 
находится в телефонах и фотоаппаратах и дает цветное изображение, если каждому 
пикселю сопоставлять цвет RGB. 
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Рис. 2.10. ПЗС матрица. 

Электронный анализатор кинетической энергии 

 Электронный анализатор кинетической энергии устроен в виде сферического 
конденсатора. Если электрон имеет определенную энергию, то он может пройти, не 
задевая вкладки этого конденсатора. 

 Таким образом, мы осуществляем селекцию электронов по энергии и можем 
получить соответствующее распределение электронов по энергии. 

Рентгеновское излучение. Коротковолновая граница рентгеновского излучения 

 Эффект коротковолновой границы рентгеновского излучения обусловлен 
квантовой природой электромагнитного излучения. Рентгеновское излучение было 
открыто Вильгельмом Конрадом Рентгеном в 1895 году. 

Сами рентгеновские лучи получаются следующим образом: катод подогревается 
и тогда электроны, находящиеся в этом металле, за счет термоэлектронной эмиссии 
подхватываются большим прикладываемым к аноду потенциалом. 

 
Рис. 2.11. Рентгеновская трубка. 

Оценка для приближения ℏ𝜔 ≪ 𝑘𝑇: 
=
39
	эВ ≪ 300	𝐾     (2.17) 

Если электрон набирает энергию десятки кэВ, то он испытывает «тормозное излучение» 
– электрон ускорился и имеет достаточно большую энергию. В аноде он тормозится, и 
возникает некий сплошной спектр, так как частица движется ускоренно. 
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Рис. 2.12. Спектр рентгеновского излучения для платины, палладия и никеля. 

Коротковолновая граница определяется следующим образом: 

𝑒∆𝑉 = ℎ𝑣,/0 −
`<
$AE2

      (2.18) 

𝜆,]A =
`<
B∆a

≈ =%23U
B∆a[эВ]

[𝐴]     (2.19) 
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Лекция 3. Корпускулярно-волновой дуализм 

Регистрация одиночных фотонов 

 В прошлый раз мы закончили на том, что неудачно пытались расщепить фотон 
(что удачно для квантовой механики и неудачно – для классической). С классической 
точки зрения плотность энергии  𝜌~𝐸o⃗ 9%. Теперь величины пропорциональны не энергии, 
а вероятности найти фотон в некоторой области. Поэтому описание квантовых частиц 
носит вероятностный характер. 

 Например, хорошо известное понятие сферической волны. Но что она 
представляет с точки зрения квантовой физики, с точки зрения представления о фотоне? 
Если бы фотон делился, и мы наблюдали интенсивность электромагнитного излучения 
от некоторой далекой звезды, а атом излучения находится на расстоянии нескольких 
световых лет от нас и излучает какой-то поток электромагнитного излучения (излучение 
распределяется на некоторую поверхность), то энергия излучения будет равна 𝑊𝑑𝑡 (при 
мощности излучения 𝑊). Задача – посчитать скорость счета: 

?@
?O
= ^?O

ℏ#?O
∆Q

3&d.
      (3.1) 

 
Рис.3.1. Графическое изображение рассматриваемой ситуации. 

Вероятностное описание явлений для фотона. Средняя концентрация фотонов 

 Для того, чтобы сопоставить классические представления с квантовыми, удобно 
ввести понятие концентрации фотонов. Тогда объемная плотность энергии может быть 
записана следующим образом: 

𝜌 = 𝑛ℏ𝜔     (3.2) 

Интенсивность: 

𝐼 = M∗<∗∆O∗∆Q
∆O∗∆Q

= 𝑐 ∗ 𝜌 = 𝑐 ∗ 𝑛 ∗ ℏ𝜔    (3.3) 

 
Рис.3.2. Плотность энергии с n количеством фотонов.  
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В квантовой ситуации меняется концентрация фотонов. Мы знаем, что спектральная 
плотность объемной энергии равновесного излучения определяется формулой Планка: 

𝜌# =
#.

&.<0
ℏ#

B
ℏ,
341=

     (3.4) 

𝑛# =
M,
ℏ#
= #.

&.<0
=

B
ℏ,
341=

     (3.5) 

Эту величину можно использовать для расчета средней по спектру концентрации 
фотонов при некоторой температуре: 

〈𝑛〉 = ∫ 𝑛#
H
9 𝑑𝜔 = =

&.<0 ∫
#.

B
ℏ,
341=

H
9 𝑑𝜔 = �+'

ℏ<
�
2 =
&. ∫

0.

B:1=
H
9 𝑑𝑥 =   (3.6) 

= �+'
ℏ<
�
2 =
&.
2,4 ≈ 5,5 ∗ 10=3	м12  

ℏ#
+'
= 𝑥, 𝜔 = +'

ℏ
𝑥     (3.7) 

𝑇 = 300	𝐾     (3.8) 

Почему мы ничего не видим в темной комнате несмотря на достаточное количество 
фотонов? Это связано с распределением спектральной плотности. 

𝜆,/0𝑇 = 2,9 ∗ 1012	м ∗ 𝐾 ≈ 101U	м = 10	мкм   (3.9) 

 
Рис. 3.3. Распределение спектральной плотности. 

𝜌# =
#.

&.<0
𝑒1

ℏ,
34 ∫ 𝑑𝜔#AB:

#AE2
≈ 101e	м12, ℏ𝜔 ≫ 𝑘𝑇   (3.10) 

Энергия и импульс фотона. Соотношение неопределенности Гейзенберга. Правило 
квантования Бора 

�
𝐸ф = ℏ𝜔

𝑝 = ℏ𝑘 = ℏ%&
$

     (3.11) 

В классической физике энергия пропорциональна квадрату амплитуды электрического 
поля. Например, необходимо разрешить какой-то объект: мы бросаем на него свет и 
смотрим отраженный свет. Для того, чтобы увидеть объект, длина света, бросаемого на 
объект, должна быть не больше размера этого объекта. 



 

 ВВЕДЕНИЕ В КВАНТОВУЮ ФИЗИКУ 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

25 
 
 

 

  В классическом случае энергия не зависит от длины волны, поэтому можно 
одновременно уменьшать длину волны (тем самым повышая разрешение 
экспериментальной установки/эксперимента) и интенсивность, уменьшая 
напряженность электрического поля. Так, можно зондировать системы, не вызывая 
возмущение в этих системах. 

 Что происходит при принятии концепции фотона: для него импульс обратно 
пропорционален длине волны, поэтому если необходимо разрешить достаточно 
маленький объект (например, ∆𝑥 ≈ 𝜆), то при уменьшении 𝜆 будет увеличиваться 
импульс и энергия, с ним связанная. Поэтому, желая увидеть маленькие объекты, мы 
будем вызывать возмущение и не сможем выполнить это так, как планируется в 
классической физике, не нарушая саму систему. Будет нарушаться импульс системы: 
так, если взять минимальный импульс, равный нулю, то 

∆𝑝0 ∗ ∆𝑥 ≈ ℏ2𝜋     (3.12) 

Так, невозможно сделать квантовое воздействие бесконечно маленьким. Для 
макроскопических объектов соотношение не будет играть какой-то роли, и в 
классической физике существует возможность одновременного определения импульса 
или скорости и координаты. Так, в классической физике траектория четко определена. В 
квантовой физике ситуация меняется – мы не может одновременно точно определить 
координату и импульс, поэтому понятие траектории теряет смысл. 

Правило квантования Бора: 

𝑝 ∗ 𝑟= = ℏ     (3.13) 

Если брать соответствующий фотон для того, чтобы увидеть атом, имеющий размер 𝑎9 
(боровский радиус), будет вноситься возмущение (в том числе, в энергию), 
соответствующее энергии электрона, который находится на боровской орбите (орбите 
атома водорода в основном состоянии). Воздействие фотона, используемого для того, 
чтобы увидеть атом, приведет к тому, что атом будет ионизован и перестанет 
существовать. Так, для объектов микромира, для квантовых объектов такое возмущение 
может изменить сам объект радикальным образом. 

Корпускулярно-волновой дуализм. Гипотеза де Бройля 
 Утверждение, что фотон – это частица подтверждают эффект Комптона, 
фотоэффект, коротковолновая граница рентгеновского излучения. В то же время мы 
знаем, что электромагнитное поле имеет такую специфику, что наблюдается явление 
дифракции и явление интерференции – именно дифракция и интерференция являются 
определителем того, волна перед нами или частица. С классической точки зрения 
существует два типа материи: волна (некое электромагнитное поле, подчиняющееся 
уравнению Максвелла) и частица (подчиняющаяся некой механике, например, 
Ньютоновской, Гамильтоновой или механике Лагранжа). 

 Эти два объекта довольно просто отличаются: если бросать частицы (даже 
достаточно маленькие) на какие-то периодические структуры, они не будут испытывать 
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дифракции и будут рассеиваться так, что интенсивности будут складываться. Волна же 
будет дифрагировать или интерферировать, и мы будем наблюдать дифракцию или 
интерференцию. 
 Так, пока мы заключили, что фотон – квантовый объект, рассмотрим кусочек CD-
диска. Как мы знаем, он устроен следующим образом: на нем записаны дорожки, идущие 
достаточно часто, поэтому здесь возникает периодическая структура. 

 
Рис. 3.4. Строение CD-диска. 

Так, получается, что фотон одновременно обладает и свойствами волны (дает 
дифракцию на периодической структуре), и свойствами частицы. Это так называемый 
корпускулярно-волновой дуализм, что присуще квантовым объектам.  

Волновая функция частицы. Длина волны де Бройля 
Тема сегодняшней лекции – волновые свойства частиц, и оказалось, что такими 

объектами являются все частицы, имеющие некий импульс 𝜌.  Согласно гипотезе Де 
Бройля, высказанной в докторской диссертации в 1923 году, было сделано 
предположение, что не только фотон имеет следующие энергию и импульс 

𝐸 = ℏ𝜔     (3.14) 

𝑝⃗ = ℏ𝑘o⃗ ,      (3.15) 

но и любая частица, имеющая импульс 𝑝: 

𝑝 = ℏ %&
$

     (3.16) 

𝜆дБ =
%&ℏ
i

     (3.17) 

Волновая функция свободной частицы: 

Ψ(𝑥, 𝑡) = 𝐴𝑒]Y
F
ℏ01

1
ℏOZ = 𝐴𝑒](+01#O)    (3.18) 

𝐸% = 𝑐%𝑝% +𝑚%𝑐3     (3.19) 

𝑝 = =
<
X(𝐸 −𝑚𝑐%)(𝐸 + 𝑚𝑐%), 𝐸 − 𝑚𝑐% = 𝑇, 𝐸 + 𝑚𝑐% = 𝑇 + 2𝑚𝑐%,  (3.20) 

где 𝑇 – кинетическая энергия. 

𝜆 = %&ℏ
i
= %&ℏ<

j'('k%,<.)
= %&ℏ

√%,'	m G
.A?.	

('k%,<.)
= %&ℏ

√%,'
=

m=k 4
.A?.

 (3.21) 

Тогда для нерелятивистской частицы: 
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𝜆 = %&ℏ
√%,'

     (3.22) 

𝑇 = i.

%,
     (3.23) 

𝜆дБ = � =,U
'[эВ]

[нм]     (3.24) 

Так, для 𝑇~100	эВ получим, что 𝜆 ≈ 1,5	Å. 

Свойства волн де Бройля. Фазовая и групповая скорости. Волновой пакет. 
Расплывание волнового пакета 

Фазовая скорость: 

𝑣ф =
#
+
= ℏ#

ℏ+
= E

i
= i.

%,
|: 𝑝 = i

%,
~ℏ𝑘   (3.25) 

Групповая скорость: 

𝑣гр =
?#
?+
= ?E

?i
= i

,
= 𝑣 − скорость	частицы  (3.26) 

Волна де Бройля: 

𝜓(𝑥, 𝑡) = 𝐴𝑒](+01#O)     (3.27) 
|𝜓|% = 𝜓∗𝜓     (3.28) 

𝑑𝒫(𝑥, 𝑥 + 𝑑𝑥) = |𝜓|%𝑑𝑥    (3.29) 
Если зафиксировать некий момент времени, то плотность вероятности волны де Бройля 
будет равна 

|𝜓|% = |𝐴|%𝑒1]+0𝑒]+0     (3.30) 

 
Рис. 3.5. Плотность вероятности волны де Бройля. 

Для того, чтобы локализовать частицу, следует использовать не одну 
монохроматическую волну, а несколько, и собрать пакет из волн. 

 
Рис. 3.6. Вектор 𝐴 в комплексной плоскости. 
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Далее возможна ситуация, когда векторы займут следующее положение: 

 
Рис. 3.7. Предельное положение векторов.  

∆𝑘 = 𝑘% − 𝑘=     (3.31) 

∆𝑘∆𝑥 = 2𝜋     (3.32) 

  
Рис. 3.8. Волновой пакет. 

Если начальная ширина волнового пакета составляет 𝑥9, то можно оценить начальный 
разброс по скоростям, используя соотношение неопределенности Гейзенберга. 

𝑚∆𝑣 ∗ ∆𝑥9 ≈ 2𝜋ℏ     (3.33) 

Отсюда можно оценить время, за которое пакет будет расплываться вдвое: 

∆	𝑣𝜏 = ∆𝑥9     (3.34) 

𝑚 ∆08
p
≈ 2𝜋ℏ     (3.35) 

𝜏 = ,(∆08).

%&ℏ
     (3.36) 

Опыт Дэвиссона-Джермера.  

 Убедимся, что электрон также является волной: если вертикально бросать 
электроны, то дифрагированный свет будет определяться следующим образом: 

∆= 𝑑 sin 𝜃 = 𝑚𝜆     (3.37) 

𝜌 = 𝑛ℏ𝜔      (3.38) 
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Рис. 3.9. Дифрагированный свет. 

Опыт Дж. П. Томсона 

 
Рис. 3.10. Схема опыта Дж. П. Томпсона. 

Аналогичные опыты были сделаны Джорджем Паджетом Томсоном – сыном 
Джозефа Джона Томсона, открывшего электрон в 1897 г. (отец – Нобелевская премия 
1906 г., сын – Нобелевская премия 1937 г.). 

 
Рис. 3.11. Брэгговское отражение на поликристаллическом образце. 
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Дифракция электронов 

   
а       б 

Рис. 3.12. Дифракция а) рентгеновских лучей на алюминиевой фольге б) электронов на 
алюминиевой фольге. 

В газете The New York Times была опубликована статья сотрудника 
философского факультета университета Нью-Йорка Роберта Криза и историка 
Брукхевенской Национальной Лаборатории. Стони Брук, которые провели опрос среди 
американских физиков, чтобы определить десять красивейших экспериментов за всю 
историю этой науки. 

 
Рис. 3.13. Экспериментальная установка: эскиз аппарата FIB/SEM с 

детектором вторичных электронов. 

1 место: проведенный в 1961 году эксперимент немецкого физика Клауса 
Йонссона, в котором он доказал, что законы интерференции и дифракции действуют для 
пучков элементарных частиц также, как для световых волн.  
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Рис. 3.14. Сравнение профилей интенсивности, извлеченных из линейных 

сканирований. 

Эксперимент Йонссона практически повторял эксперимент Томаса Юнга 
двухвековой давности, только вместо луча света был использован пучок электронов. 
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Лекция 4. Постулаты Бора. Модель атома Резерфорда 

Содержание лекции. Обзор предыдущей лекции 

 Мы продолжаем рассматривать серию экспериментов, которые в начале 
прошлого века привели к развитию неклассической физики и к становлению квантовой 
механики. В прошлый раз мы рассмотрели результат, принципиально отличающийся от 
классической физики. Согласно классическим представлениям, существует два типа 
материи: частицы и волна, - и классическая картина – это движущаяся по законам 
Ньютона частица и электромагнитные волны, которые подчиняются уравнению 
Максвелла. Если частицы заряжены, они также могут излучать. Таким. Образом, 
радужная картина движения частицы в электромагнитном поле наблюдается в 
классической физике. 

 Как мы видели, такая картина не соответствует экспериментальным результатам, 
и это привело к тому, что концепции (в частности, спектральная плотность излучения 
абсолютно черного тела, фотоэффект, коротковолновая граница рентгеновского 
излучения, эффект Комптона) должны были быть пересмотрены. 

Волновой пакет функции 

Согласно квантовым представлениям, частица обладает волновыми свойствами, 
они определяются соотношениями де Бройля., которые аналогичны соотношениям для 
фотона: 

𝐸 = ℏ𝜔      (4.1) 

𝑝 = ℏ𝑘     (4.2) 

𝜆 = %&ℏ
i

     (4.3) 

Соответствующая волна была записана следующим образом: 

𝜓(𝑥, 𝑡) = 𝐴𝑒](i01#O) = 𝐴𝑒
E
ℏ(+01#O)    (4.4) 

𝜓(𝑥, 0) = 𝐴𝑒]+0     (4.5) 
Запись в виде комплексных чисел позволяет видеть, куда движется волна 

 
Рис. 4.1. Фаза для волны (4.5). 
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Мы получили соотношение неопределенностей Гейзенберга: его смысл 
заключается в том, что если мы признаем, что частица может обладать волновыми 
свойствами, то возникает проблема, отсутствовавшая в классической физике – если взять 
волну (4.5) и утверждать, что она соответствует частице, то такая волна будет выглядеть 
следующим образом: 

 
Рис. 4.2. Графическое изображение волны (4.5). 

Так, если волне соответствует определенный импульс, то изображение волны должно 
продолжаться на промежутке (−∞,+∞), а значит частица оказывается никак не 
локализована. 

∆𝑥∆𝑝 ≥ ℏ     (4.6) 

Реализуем другую ситуацию – ограничим волну в пространстве:  

 
Рис. 4.3. Графическое изображение волны (4.5), ограниченной в пространстве. 

Теперь, «обрезав» бесконечную волну де Бройля, нельзя считать 𝜆 – длиной волны, так 
как теперь в волновой пакет уже входят различные длины волн. Там, где они гасят друг 
друга, наблюдается деструктивная интерференция, а там, где усиливают – 
конструктивная. 

 Локализуем частицу до предельного размера – в этом случае длину волны 
определить невозможно. 

 
Рис. 4.4. Графическое изображение частицы, локализованной до предельного размера. 

Из курса оптики нам известно, что любую функцию можно разложить по плоским 
волнам.  
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𝜓(𝑥) = =
√%&

∫ 𝜓�(𝑘)𝑒]+0H
1H 𝑑𝑘    (4.7) 

𝜓�(𝑘) = =
√%&

∫ 𝜓(𝑥)𝑒1]+0H
1H 𝑑𝑥    (4.8) 

Эти формулы – следствие того, что частица обладает волновыми свойствами. 

Дифракция электронов на двух щелях: обзор экспериментов 
 В прошлый раз мы обсудили некоторые интересные эксперименты, в частности 
эксперименты, связанные с дифракцией и интерференцией электронов на двух или 
нескольких щелях. Эксперимент, проведенный Клаусом Йенсен в 1961 г, получил первое 
место на конкурсе самых интересных физических экспериментов. 

   
а       б 

Рис. 4.5. Электронная дифракционная картина Фраунгофера, показывающая a) две 
щелевые интерференционные полосы, наложенные на интенсивность, передаваемую 

каждой щелью б) типичную однощелевую дифракционную картину. 

 
а    б    в 

Рис. 4.6. Дифракция электронов а) в наблюдениях Йенсена б) при двух открытых щелях 
в) при одной открытой щели. 

Дифракция молекул: обзор экспериментов 

Такие же эксперименты проводились и с нейтронами (как с быстрыми, так и с 
медленными тепловыми нейтронами). В зависимости от энергии частицы меняется 
соответствующая длина волны, и необходимо подбирать соответствующие объекты, на 
которых эти волны частицы могут деформировать. 
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Рис. 4.7. Эксперимент с дифракцией фуллерена. 

Одним их таких интересных и трудных в экспериментальном отношении опытов 
является дифракция фуллерена. 

 
Рис. 4.8. Результаты эксперимента. 

Суперпозиция состояний 

В опытах с двумя щелями каждая частица проходит через обе щели: т.е. частица 
находится в суперпозиции состояний прохождения через одну щель и другую, – это один 
из основополагающих принципов квантовой механики. Если одна волновая функция 
является решением волнового уравнения, то, если мы получаем две волновые функции 
𝜓= и 𝜓%, то суммарная волновая функция 

𝜓 = 𝜓= + 𝜓%      (4.9) 

также является решением такого уравнения. 
Дифракция одиночных электронов: опыт В.А. Фабриканта 

 Получим некоторые математические формулы, которые позволят 
интерпретировать эти результаты. На прошлой лекции мы рассматривали дифракцию от 
указки, она излучает 101=U фотонов в секунду. Эффекты, которые мы наблюдаем, 
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связаны с кумулятивным действием/действием целого коллектива таких квантовых 
частиц, что возможно приводит к интерференции. 
 Дифракцию одиночных электронов наблюдал советский физик В. Фабрикант в 
1947 году. Этот опыт аналогичен опыту Томпсона о рассеянии электронов на поле 
кристалликов фольги. Заметно, что только при большом количестве электронов начинает 
проявляться структура, которая отвечала бы распределению интенсивности волны, если 
бы вместо электронов использовали электромагнитную волну. 

 
Рис. 4.9. Результаты дифракции одиночных электронов в опытах Фабриканта. 

 Подобные опыты чрезвычайно интересны, например, для дифракции отдельных 
фотонов такие опыты проводились Тейлором в 1909 году: он использовал очень малые 
интенсивности света, которые падали на дифракционные щели с помощью отражения 
лучей света от иголочки. При этом фотонов было так мало, что для того, чтобы набрать 
необходимую статистику, экспозиция на фотопленке (регистрация полос, которые он 
наблюдал) составляла около трех месяцев. В каждом отдельном эксперименте, в каждом 
отдельном случае фотон дифрагировал на первой и на второй щели, и когда набиралась 
статистика, проявлялась некая картина, которая была бы характерна для интерференции 
и дифракции электромагнитной волны. 

Интерференция одиночных электронов 

 Такие же опыты были поставлены Акирой Тономура и его группой в Hitachi. Они 
целенаправленно проводили эксперименты по интерференции электронов в очень 
слабых потоках (наблюдались единичные электроны). Так, на рис. (4.11) представлен 
электронный микроскоп. Есть некий электрод, на который подается положительный 
потенциал, поэтому электроны изменяют свое направление и движутся иначе. С другой 
стороны электрода волна будет отклоняться в другую сторону. В результате сложения 
амплитуд таких волн можно увидеть, что, если сложить эти волны, - получится картина, 
соответствующая интерференционной картине в оптике. Самым интересным в этих 
опытах был чрезвычайно малый размер интенсивностей электрона, поэтому статистику 
было необходимо накапливать. 



 

 ВВЕДЕНИЕ В КВАНТОВУЮ ФИЗИКУ 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

37 
 
 

 

 
Рис. 4.10. Отклонение электронных волн бипризмой-случай падения плоской волны. 

Так, состояние квантовой частицы, которая может находиться в суперпозиции 
состояний, приводит к тому, что мы наблюдаем интерференцию от единичных 
электронов. 

Расчет распределения вероятности дифрагирующих электронов 

 Используем математику для расчета кривых, приведенных на графике. Первый 
эксперимент: дифракция на щели. 

 
Рис. 4.11. Графическое изображение дифракции на щели. 

Поскольку электрон заведомо находится на щели, можно определить амплитуду этой 
волновой функции, используя следующее свойство: 

∫ |𝜓|%
I
.

1I.
𝑑𝑥 = 1 ⟹ 𝜓 = =

√q
    (4.10) 
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Используем (4.8): 

𝜓(𝑘0) =
=

√%&
∫ =

√q
𝑒1]+:0

I
.

1I.
𝑑𝑥 = =

√%&q
=

(1]+:)
�𝑒1]+:

I
. − 𝑒]+:

I
.� (4.11) 

 
По формуле Эйлера: 

𝑒]) = cos 𝛼 + 𝑖 sin 𝛼     (4.12) 

Тогда продолжим (4.11): 

𝜓(𝑘0) = −
1%] rstY3:I. Z

j%&q(1]+:)
= √q

√%&
−

rst3:I.
3:I
.

   (4.13) 

𝜓∗(𝑘0)𝜓(𝑘0)~�
rst3:I.
3:I
.

�
%

    (4.14) 

 
 Рис. 4.12. Графическое изображение дифракции на щели. 

𝑘0 = 𝑘 sin 𝜃     (4.15) 

Разрешающая способность приборов. Человеческий глаз 

 Распределение плотности вероятности попадания электрона на экран выглядит 
следующим образом: 

�
rst.>@.q rst u
>
@q rst u

�
%

     (4.16) 

Рассмотрим ширину максимума: 
&q
$
sin 𝜃 = 𝜋 ⟹ sin 𝜃 = $

q
    (4.17) 

Эта формула ограничивает дифракционной расходимостью разрешающую способность 
оптических приборов (в том числе, электронного микроскопа, поскольку он также 
работает на волновых принципах). Если посылать пучок света или пучок электронов на 
какую-то диафрагму, которая ограничивает размер 𝑥 пространства, то мы будем 
наблюдать угловую расходимость. Если для случаев геометрической оптики можно было 
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сфокусировать фокус линзы в точку (этот параллельный пучок), то теперь пучок будет 
уже не параллельный. Значит вместо точки мы будем наблюдать размытие. 

 
Рис. 4.13. Графическое изображение рассматриваемого случая. 

Размытие 𝐷 будет выражаться следующим образом: 

𝐷 = 𝐹 $
q
     (4.18) 

Человеческий глаз также является оптическим прибором, тогда если рассматривать 
линзу в качестве зрачка, то фокусное расстояние будет являться диаметром глазного 
яблока. Тогда можно вычислить дифракционный предел глаза, ограничиваемый 
дифракционной расходимостью. 

3 ∗ 101% U99∗=9
5C

2∗=950
≈ 5 ∗ 101R ≈ 5	мкм   (4.19) 

Дискретность атомных спектров. Серия Бальмера. Постоянная Ридберга 

 
Рис. 4.14. Спектральные закономерности, характеризующие дискретность атомных 

спектров для различных атомов. 

Если рассмотреть спектр водорода для излучения и поглощения, то видно, что линии 
излучения и поглощения совпадают по длинам волн. Закономерность (формула 
Бальмера) была получена в 1885 году: 

=
$
= 𝑅 � =

%.
− =

A.
� , 𝑛 = 3,4, …    (4.20) 

Величина, описывающая такое распределение, называется постоянной Ридберга: 

𝑅 ≈ 109737	см1= 
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Рис. 4.15. Спектр излучения (нижний спектр) и поглощения (верхний спектр) 

атомарного водорода в видимой области. 

Постулаты Бора. Модель атома Резерфорда. Принцип соответствия. Правило  
квантования Бора 

Резерфордом была предложена модель, которая была прототипом модели нашей 
планетарной системы. Как вокруг солнца вращается Земля, так и вокруг протона 
движется электрон. Центростремительно ускорение создается кулоновской силой, и 
такой атом оказывается неустойчивым, поскольку электрон должен излучать, а в 
классической физике стабильность мы не получаем, и электрон, как таковой, не 
существует. Тем более невозможно объяснить природу таких спектральных 
закономерностей, которые мы наблюдали, имея ввиду формулу Бальмера. 

В 1913 году Бор, пытаясь объяснить модель водорода, предложенную Резерфордом, 
сделал два предположения: 

1) Атом может находиться в определенных стационарных состояниях, которые 
характеризуются дискретными уровнями 𝐸=, 𝐸%, …	. В этих состояниях атом не 
излучает и не поглощает энергию. 

2) При переходе атома из одного стационарного состояния в другое он излучает 
(поглощает) квант света (фотон) с энергией. 

 
Рис. 4.16. Графическое изображение постулатов Бора. 

Вывод правила квантования Бора из волновых свойств частиц 

Этих постулатов оказалось недостаточно для того, чтобы построить теорию, и 
тогда Бор вывел следующий Принцип соответствия: каждая следующая теория должна 
наследовать предыдущую, и классическая теория должна получаться из квантовой в 
некотором предельном переходе. Такой предельный переход Бор рассмотрел для случая 
электрона, вращающего с угловой частотой 𝜔. Тогда, как известно из классической 
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физики, этот электрон, вращающийся с ускорением заряженной частицы, должен 
излучать на частоте 𝜔. Бор воспользовался правилом квантования, полученным Планком 
для осцилляторов. Мы знаем, что энергия таких излучателей квантуется. Поэтому Бор 
предположил, что энергия электрона на орбите: 

|𝐸| = �,[
.

%
− B.

(
� = �− B.

%(
� = =

%
𝑚𝑣% = =

%
𝑚(𝜔𝑟)%  (4.21) 

По Планку: 

𝐸A = 𝛼𝑛ℏ𝜔     (4.22) 

Если предположить, что 𝛼 = =
%
, то правило квантования Бора: 

𝐿 = 𝑟𝑚𝑣 = 𝑛ℏ    (4.23) 

Момент импульса определяется целым числом постоянной планка, целым числом кванта 
действия. Этот принцип можно объяснить исходя из волновых свойств электрона. 
Введем длину волны: 

𝜆 = %&ℏ
i

     (4.24) 

Если электрон движется на орбите, то движется плоская волна 𝑒]+0. Тогда из условия 
периодичности на такой орбите,  

𝑒]+0 = 𝑒]+(0k%&()    (4.25) 

То есть волна должна приходить туда, откуда она вышла, и тогда не будет деструктивной 
интерференции. Отсюда следует условие 

𝑘 ∗ 2𝜋𝑟 = 9𝜋𝑛    (4.26) 

ℏ𝑘 = 𝑝     (4.27) 
%&
$
𝑟 = 𝑛     (4.28) 

%&i(
%&ℏ

= 𝑛     (4.29) 

Окончательная формула имеет вид: 

𝑟𝑝 = 𝑛ℏ     (4.30) 

Вывод радиуса n-ой орбиты атома водорода. Радиус Бора 
 Запишем уравнения, используемые Бором для того, чтобы получить 
соответствующие спектральные закономерности. Пусть электрон в такой планетарной 
модели атома испытывает центростремительное ускорение.  
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Рис. 4.17. Планетарная модель атома. 

Мы будем работать в системе СИ, поэтому в дальнейшем будем производить 
следующую замену: 

𝑒% → =
3&G8

𝑒%     (4.31) 

Запишем уравнения движения: 

	�
,[.

(
= B.

(.

𝑟𝑚𝑣 = 𝑛ℏ
     (4.32) 

,[.

%
= =

%
B.

(
= =

%
|𝑈(𝑟)|     (4.33) 

Тогда полная энергия: 

𝐸 = 𝐸к + 𝑈 =
=
%
𝑈 = − =

%
B.

(
    (4.34) 

𝑚𝑣% = B.

(
= B.,[

Aℏ
     (4.35) 

𝑣 = B.

ℏ
𝑛 = B.<

ℏ<
𝑛,      (4.36) 

где B
.

ℏ<
 – постоянная тонкая структура 𝛼, характеризующая величину электромагнитного 

взаимодействия. 

𝛼 = =
=2e

     (4.37) 

𝑟 = B.

,[.
= B.ℏ.

,B/
𝑛%     (4.38) 

𝑟A =
ℏ.

,B.
𝑛%     (4.39) 

Если 𝑛 = 1, 

𝑟= = 𝑎9 =
(=,9U).=95JD

9,\∗=9508∗%,UR∗=950D∗\∗=9C
= 0,53 ∗ 101=9	н = 0,5Å,  (4.40) 

где 𝑎9 – боровский радиус. Энергия электрона на 𝑛-ной орбите: 

𝐸A = − =
%
,B/

ℏ.
=
A.

,      (4.41) 
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где − =
%
,B/

ℏ.
 – Ридберг (𝑅𝑦). 

𝑅𝑦 = 13,6	эВ     (4.42) 

Далее можно использовать эту формулу для получения спектральных закономерностей, 
которые мы наблюдали ранее. 

Спектральные серии атома водорода. Константа Ридберга 

Далее можно использовать эту формулу для получения спектральных 
закономерностей, которые мы наблюдали ранее. При переходе с одного уровня на другой 
излучается квант света ℏ𝜔: 

ℏ𝜔 = 𝑅𝑦 � =
+.
− =

A.
� , 𝑛 = 1,2,3, …

𝑘 = 1,2,3, …    (4.43) 

=
+.
= 𝜓X ,

=
+.
= 𝜓] , 〈𝜓X|𝜓]〉    (4.44) 

Перейдем к формуле Бальмера: 

ℏ𝜔 = ℏ %&<
'<
= ℏ%&<

$
     (4.45) 

=
$
ℏ2𝜋𝑐 = 𝑅𝑦 � =

+.
− =

A.
� ⟹ =

$
= d:

ℏ%&<
� =
+.
− =

A.
�,    (4.46) 

где d:
ℏ%&<

 – константа Ридберга 𝑅H. 

𝜇 = ,G,.
,Gk,.

     (4.47) 

𝑅 = =
%
,w/

ℏ.
     (4.48) 

Постоянная Ридберга для водорода: 

𝑅x = 𝑅H
yK
,
= 𝑅H

zF
,kzF

= 𝑅H
=

=k A
LF

    (4.49) 

𝑒% → 𝑧𝑒%     (4.50) 
Серия Лаймана. Серия Бальмера. Серия Пашена. Головная линия. Обозначения 

 Рассмотрим различные переходы (серии): 

- Серия Лаймана: 𝐿𝑦 

- Серия Бельмера: 𝐻 

- Серия Пашена: 𝑃 

Головной линией называется линия, ближайшая к тому уровню, на который идет 
переход. Обозначение линий, начиная с головной: 𝛼, 𝛽, 𝛾, … . 
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Рис. 4.18. Графическое изображение серий Лаймана, Бальмера и Пашена. 

Заключение о теории Бора 

 Так, Бор не только получил соответствующие спектральные закономерности и 
объяснил их, но также получил формулы, использующие микроскопические постоянные 
и значения констант. Тем не менее, теория Бора неправильна: эксперимент показывает, 
что момент количества движения в основном состоянии (момент импульса) равен нулю. 
Кроме того, плоские боровские орбиты означают, что электрон локализован по оси 𝑧, 
значит, ∆𝑧 = 0, а импульс по 𝑧 равен ∞, и мы получаем бесконечную энергию. Так, эта 
теория была колоссальным шагом вперед, но была и не классической, и не квантовой, 
поэтому в дальнейшем была заменена на более совершенную. 
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Лекция 5. Основы квантовой механики 

Обзор предыдущей лекции 

 На прошлой лекции мы закончили исторический экскурс, в результате которого 
были рассмотрены основополагающие эксперименты, приведшие к развитию квантовой 
механики и являвшиеся экспериментальным фундаментом для развития 
соответствующей теории. Вспомним некоторые основные моменты, которые пригодятся 
нам сегодня, так как сегодня мы сформируем некие принципы, которыми стоит уметь 
пользоваться для того, чтобы овладеть основами формализма квантовой механики. 
Опыт: дифрагирование одиночных электронов. Суперпозиция состояний 
электрона. Распределение плотности вероятности в интерференционной картине 
электрона 
 Вернемся к эксперименту, показывающему, что электрон дифрагирует даже когда 
он один. Идея эксперимента фирмы Hitache заключается в том, что система из рис. (5.1) 
позволяет получить два пучка, у которых волновые векторы находятся под некоторым 
углом. Эта ситуация напоминает электронную бипризму. 

 
Рис. 5.1. Электронный микроскоп из опытов Hitache. 

𝜓= = 𝐴𝑒]+{⃗ G(⃗ = 𝐴𝑒]+M;]+:0     (5.1) 

𝜓% = 𝐴𝑒]+{⃗ .(⃗ = 𝐴𝑒]+M;𝑒1]+:0    (5.2) 

На пересечении волн мы наблюдаем интерференционную картину, которая описывается 
плотностью вероятности, которую можно получить в виде суперпозиции этих двух волн: 

𝜓 = 𝜓= + 𝜓%     (5.3) 

|𝜓|% = (𝜓= + 𝜓%∗)(𝜓= + 𝜓%) = |𝐴|% + |𝐴|% + 𝜓=∗𝜓% + 𝜓%∗𝜓= =  (5.4) 

= 2|𝐴|%(1 + cos 2𝑘0𝑥) = 4𝐴% cos% 𝑘0𝑥, 

где 𝜓=∗𝜓% + 𝜓%∗𝜓= = 𝑒1]%+:0 + 𝑒]%+:0. 
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Рис. 5.2. Интерференционные полосы. 

Мы видимо, что помимо суперпозиции, изменяющейся во времени, также наблюдается 
скачкообразное изменение волновой функции, называемое редукцией или коллапсом 
волновой функции. При этом электрон остается в состоянии волновой функцией, 
отвечающей определенному значению 𝑥. 

Волновая функция. Уравнение Шредингера. Вывод основных положений 

 Рассматриваемая функция (рис. 5.2) меняется определенным образом, однако 
возникает вопрос о том, как именно она меняется. Сегодня мы говорим о какой-то 
волновой функции: 

𝜓(𝑥, 𝑡) = 𝐴𝑒]Y
FNN⃗
ℏ01

1
ℏOZ     (5.5) 

Производная по времени: 
?}(0,O)
?O

= −𝑖 E
ℏ
𝜓(𝑥, 𝑡)     (5.6) 

𝑖ℏ ?}(0,O)
?O

= 𝐸𝜓(𝑥, 𝑡)     (5.7) 

Производная по 𝑥: 
?}
?0
= 𝑖 i

ℏ
𝜓(𝑥, 𝑡)     (5.8) 

−𝑖ℏ ?}(0,O)
?0

= 𝑝𝜓(𝑥, 𝑡)    (5.9) 

𝐸 = i.

%,
     (5.10) 

?.}(0,O)
?0.

= �𝑖 i
ℏ
�
%
𝜓(𝑥, 𝑡)    (5.11) 

− ℏ.

%,
?.}(0,O)
?0.

= i.

%,
𝜓(𝑥, 𝑡)    (5.12) 

Уравнение Шредингера для свободной частицы: 

𝑖ℏ ?}(0,O)
?O

= − ℏ.

%,
?.}(0,O)
?0.

    (5.13) 

Тогда уравнение Шредингера для несвободной частицы: 

𝑖ℏ ?}(0,O)
?O

= − ℏ.

%,
?.}(0,O)
?0.

+ 𝑈(𝑥)𝜓(𝑥, 𝑡),    (5.14) 

где £− ℏ.

%,
?.

?0.
+ 𝑈(𝑥)¤ – гамильтониан. Так, общее уравнение Шредингера: 

𝑖ℏ ?}(0,O)
?O

= 𝐻¥𝜓(𝑥, 𝑡)     (5.15) 
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?}(0,O)
?O

= }(Ok∆O)1}(O)
∆O

	     (5.16) 

𝜓(𝑥 + ∆𝑡) = 𝜓(𝑡) + =
]ℏ
𝐻¥𝜓(𝑥, 𝑡)∆𝑡    (5.17) 

Так, волновая функция в момент времени 𝑥 + ∆𝑡 определяется значением волновой 
функции в момент времени 𝑡, что есть детерминизм. В то же время, работают 
вероятностные законы, обсужденные ранее. 

Постулаты квантовой механики. Операторы 

1) Наблюдаемой величине 𝐴 ставится в соответствие оператор 𝐴¦, причем 
измеряемые значения этой величины определяются уравнением на собственные 
значения. 

𝐴¦𝜑/ = 𝑎𝜑/      (5.18) 
2) Если измерение наблюдаемой величины дает значение 𝑎, то состояние системы 

сразу после измерения определяется собственной функцией, соответствующей 
этому собственному значению. 

𝐴¦𝜑/ = 𝑎𝜑/      (5.19) 
3) Состояние квантовой системы описывается волновой функцией  Ψ(𝑥, 𝑡) , причем 

средние значения любой наблюдаемой 𝐴 вычисляются по формуле: 
〈𝐴〉 = ∫Ψ∗𝐴Ψ𝑑𝑥     (5.20) 

4) Волновая функция Ψ(𝑥, 𝑡) находится из уравнения Шредингера: 

𝑖ℎ ?~(0,O)
?O

= 𝐻¥Ψ(𝑥, 𝑡)     (5.21) 

Примеры операторов. Оператор координаты. Дельта функция Дирака и ее 
свойства 
 В соответствии с первым постулатом рассмотрим собственные функции и 
собственные значения оператора координат. Возьмем одномерный случай.  

 
Рис. 5.3. Волновая функция электрона. 

Оператором координаты является координата частицы: 

𝑥§ = 𝑥      (5.22) 

𝑥§𝜑0-(𝑥) = 𝑥𝜑0-(𝑥) = 𝑥�𝜑0-(𝑥)    (5.23) 

Уравнение будет выполнено, если 

𝜑0-(𝑥) = 𝛿(𝑥 − 𝑥�)     (5.24) 

𝛿(𝑥 − 𝑥�)-функцию можно представить следующим образом: 
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Рис. 5.4. Графическое изображение функции	 𝛿(𝑥 − 𝑥�). 

Функция (𝛿- функция Дирака) обладает следующими свойствами: 

∫ 𝛿(𝑥 − 𝑥�)H
1H 𝑑𝑥 = 1    (5.25) 

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑥�)H
1H 𝑑𝑥 = 𝑓(𝑥�)    (5.26) 

 
Рис. 5.5. Графическое изображение второго свойства 𝛿- функции Дирака. 

Суперпозиция состояний. Обозначения Дирака 

 Зафиксируем второе положение частицы в точке 𝑥��. Очевидно, что функции 
должны быть ортогональны (проекция одной функции на другую должна давать ноль). 

 
Рис. 5.6. Графическое изображение рассматриваемого случая. 

Проекция одной функции на другую (сколько в одной функции содержится другой) 
определяется как 

∫ 𝜑0∗(𝑥)𝜑0--(𝑥)
H
1H 𝑑𝑥     (5.27) 

Если две функции совпадают, то мы получим величину, отличную от нуля. Если 
функции не совпадают, то мы получим отсутствие такого перекрытия/пересечения этих 
функций. 
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∫𝜑∗(𝑥)𝜒(𝑥) 𝑑𝑥 = 〈𝜓|𝜒〉    (5.28) 

Эту величину в дальнейшем будем называть амплитудой вероятностей. Продолжим 
(5.27): 

∫ 𝛿(𝑥 − 𝑥�)𝛿(𝑥 − 𝑥��)H
1H 𝑑𝑥 = 𝛿(𝑥� − 𝑥��)    (5.29) 

∫ 𝑒]+0kH
1H 𝑑𝑘 = 2𝜋𝛿(𝑘)    (5.30) 

∫ 𝑒]+0kH
1H 𝑑𝑥 = 2𝜋𝛿(𝑥)    (5.31) 

Оператор импульса. Суперпозиция состояний. Дельта функция Дирака 

 Рассмотрим собственные значения оператора импульса 𝑝̂: 

𝑝̂ = −𝑖ℏ ?
?0

      (5.32) 

 В трехмерном случае: 

𝑝̂ = −𝑖ℏ∇, ∇= 𝚤 ?
?0
+ 𝚥 ?

?:
+ 𝑘o⃗ ?

?;
    (5.33) 

−𝑖ℏ ?
?0
𝜑i-(𝑥) = 𝑝�𝜑i-(𝑥)     (5.34) 

𝜑i-(𝑥) = 𝐴𝑒]
F-

ℏ 0     (5.35) 

Найдем константу 𝐴 нормировки: 

∫𝜑i-
∗ 𝜑i-- 𝑑𝑥 = 𝐴% ∫ 𝑒]

5F-PF--

ℏ
H
1H 𝑑𝑥 = 𝛿(𝑝� − 𝑝��)   (5.36) 

∫ 𝑒]
5F-PF--

ℏ
H
1H 𝑑𝑥 = 2𝜋𝛿	 �i

--1i-

ℏ
�    (5.37) 

Используем свойство 𝛿	 �0
/
� = 𝑞𝛿(𝑥):⟹ 2𝜋ℏ𝛿	(𝑝�� − 𝑝�). 

|𝐴|%2𝜋ℏ𝛿(𝑝�� − 𝑝�) = 𝛿(𝑝� − 𝑝��)    (5.38) 

Тогда нормировочный коэффициент равен 

𝐴 = =
√%&ℏ

     (5.39) 

Собственная функция оператора 𝑝: 

𝜑i(𝑥) =
=

√%&ℏ
𝑒]

F
ℏ0     (5.40) 

Ранее мы записали, что 𝑝 = ℏ𝑘. Тогда 

𝜑+(𝑥) =
=

√%&
𝑒]+0     (5.41) 

Стационарное уравнение Шредингера. Состояния 

 Вспомним, что волновая функция зависит от времени, и рассмотрим 
стационарное состояние (когда потенциальная энергия не зависит от времени). Тогда, 
помня курс аналитической механики, известно, что энергия должна сохраняться. 
Представим следующую волновую функцию: 
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Ψ(𝑥, 𝑡) = 𝑇(𝑡)𝜑(𝑥)     (5.42) 

Подставим в уравнение Шредингера: 

𝑖ℏ ?'(O)
Q;
4(;)

x��(0)
�(0)

= 𝐸     (5.43) 

𝑖ℏ ?'(O)
?O

= 𝐸𝑇(𝑡)     (5.44) 

𝑇(𝑡) = 𝑒1]
1
ℏO      (5.45) 

На одной из первых лекций мы обсуждали запись волны де Бройля в следующем виде: 

𝑒](+01#O), 𝜔𝑡 ≡ E
ℏ
     (5.46) 

Стационарное уравнение Шредингера (уравнение на собственные функции и 
собственные значения оператора Гамильтона): 

𝐻¥𝜑E(𝑥) = 𝐸𝜑E(𝑥)     (5.47) 

Тогда полная функция для стационарного состояния 

Ψ(𝑥, 𝑡) = 𝐴𝜑E(𝑥)𝑒
1]1ℏO    (5.48) 

Примеры. Частица в потенциальной яме 

 Рассмотрим частицу в бесконечной яме: 

 
Рис. 5.7. Графическое изображение примера. 

Так, стационарное уравнение Шредингера: 

𝐻¥𝜑E(𝑥) = 𝐸𝜑(𝑥)     (5.49) 

− ℏ.

%,
?.

?0.
𝜑(𝑥) = 𝐸𝜑(𝑥)    (5.50) 

𝜑��(𝑥) + 𝑘%𝜑(𝑥) = 0     (5.51) 

𝑘% = %,E
ℏ.

      (5.52) 

𝜑(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥     (5.53) 

𝜑(0) = 0, 𝜑(𝑎) = 0      (5.54) 

sin 𝑘𝑎 = 0 ⟹ 𝑘A𝑎 = 𝜋𝑛, 𝑛 = 1,2,3, …     (5.55) 

𝑘A =
&
/
𝑛 ⟹ 𝐸A =

ℏ.&.

%,/.
𝑛%     (5.56) 
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∫𝜑∗(𝑥)𝜑(𝑥) 𝑑𝑥 = 𝐴% ∫ sin% 𝑘A𝑥
/
9 𝑑𝑥    (5.57) 

⟹ 𝐴 = �%
/
      (5.58) 

Тогда волновая функция с учетом временной зависимости: 

𝜓(𝑥, 𝑡) = �%
/
sin �&

/
𝑛𝑥� 𝑒1]

12
ℏ O    (5.59) 

𝜌(𝑥) = 𝜓∗(𝑥, 𝑡)𝜓(𝑥, 𝑡) = 𝜑∗(𝑥)𝜑(𝑥)	не	зависит	от	𝑡  (5.60) 

Так, стационарное состояние зависит от времени, а среднее значение от любой 
переменной, наблюдаемой по стационарному состоянию, зависеть от времени не будет. 

𝐸A = 𝐸=     (5.61) 

 
Рис. 5.8. Расположение дискретных уровней. 

Демонстрация: стационарные состояния частицы в потенциальной яме с 
бесконечными стенками 

 Рассмотрим изображения стационарных состояний частицы в бесконечной 
потенциальной яме. 

 
Рис. 5.9. Графическое изображение основного состояния. 

Плотность вероятности стационарных состояний не зависит от времени. 
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Рис. 5.10. Плотности вероятности стационарных состояний. 

Подведение итогов 

 Так, мы применили идеологию, заключающуюся в нахождении собственных 
значений операторов, которые сопоставлены физическим величинам, и решили задачу 
для нахождения собственной функции собственного значения гамильтониана (энергии и 
функций, соответствующих этому гамильтониану) для простейшего случая частицы в 
бесконечном потенциале в ящике. 
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Лекция 6. Постулаты квантовой механики. 

Итоги прошлой лекции 

 Ранее мы обсудили постулаты квантовой механики.  Мы рассмотрели следующие 
операторы: 

𝑥§ → 𝑥𝜑0-(𝑥) = 𝑥�𝜑0-(𝑥)     (6.1) 

𝜑0-(𝑥) = 𝛿(𝑥 − 𝑥�)     (6.2) 

𝑝̂ → −𝑖ℏ∇      (6.3) 

−𝑖ℏ ?
?0
𝜑i-(𝑥) = 𝑝�𝜑i-(𝑥)     (6.4) 

𝜑i-(𝑥) =
=

√%&ℏ
𝑒]

F-

ℏ 0     (6.5) 

𝐻¥ = i�.

%,
+ 𝑈(𝑥)     (6.6) 

Мы также рассмотрели случай, когда частица находилась в потенциальной яме с 
бесконечно высокими стенками. Когда частица оказывается в некоторой финитной 
области, спектр будет дискретным. 

𝐻¥𝜑A(𝑥) = 𝐸A𝜑A(𝑥)     (6.7) 

 
Рис. 6.1. Графическое изображение волновых функций в потенциальной яме с 

бесконечно высокими стенками. 

𝜑A(𝑥) = �%
/
sin(𝑘A𝑥) , 𝑘A =

&
/
𝑛, 𝑛 = 1,2, …    (6.8) 

Эрмитовы операторы 

Рассматривая волновые функции (рис. 6.1), можно заметить, что они обладают 
некими свойствами, характерными для векторов. Так, если рассматривать некое 
векторное линейное пространство, то сумма двух векторов в этом пространстве дает 
третий вектор этого пространства. Если рассматривать пространство в поле реальных 
чисел, то соответствующие векторы можно умножать на реальное число, и для линейных 
операторов, действующих на эти векторы, можно написать условие линейности. Далее 
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мы запишем его для комплексных функций. Так, мы будем задавать некое линейное 
пространство, образующее эти функции, на поле комплексных чисел.  

𝜓 = 𝑧=𝜓= + 𝑧%𝜓%      (6.9) 

Условие линейности: 

𝐴¦𝜓 = 𝑧=𝐴¦𝜓= + 𝑧%𝐴𝜓%     (6.10) 

Скалярное произведение функций: 
(𝜓, 𝜑) = ∫𝜓∗(𝑥)𝜑(𝑥) 𝑑𝑥     (6.11) 

Из курса линейной алгебры нам известно, что операторы, имеющие собственное 
вещественное значения, называются симметрическими или эрмитовыми. Они 
определяются следующим образом: 

´𝜓, 𝐴¦𝜑µ = ∫𝜓∗(𝑥)𝐴𝜑(𝑥) 𝑑𝑥    (6.12) 

´𝐴¦𝜓, 𝜑µ = ∫(𝐴𝜓)∗(𝑥)𝜑(𝑥) 𝑑𝑥    (6.13) 

Для симметрического оператора величины (6.12) и (6.13) должны быть равны. 
Попробуем определить, является ли оператор ?

?0
 эрмитовым. Тогда 

∫𝜓∗(𝑥) ?�(0)
?0

= −∫𝜑(𝑥) ?}
∗	

?0
    (6.14) 

Вспомним правило интегрирования по частям: 

∫ 𝑑(𝑢𝑣)H
1H 𝑢𝑣|1HH = ∫ 𝑢 ∗ 𝑑𝑣H

1H + ∫ 𝑣 ∗ 𝑑𝑢H
1H    (6.15) 

∫ 𝑢 ∗ 𝑑𝑣H
1H = 𝑢𝑣|1HH − ∫ 𝑣 ∗ 𝑑𝑢H

1H     (6.16) 

Дополним (6.14): 

∫𝜓∗(𝑥) ?�(0)
?0

= −∫𝜑(𝑥) ?}
∗	

?0
   (6.17) 

Оператор не эрмитов. Аналогичные операции можно выполнить для −𝑖ℏ ?
?0

 – оператор 
будет эрмитовым. Собственные значения эрмитовых операторов – вещественные числа. 
Также есть теорема, где говорится, что собственные функции, отвечающие собственным 
значениям, ортогональны друг другу. Пусть 

𝐴¦𝜑A = 𝑎A𝜑A      (6.18) 

´𝐴¦𝜑,µ
∗ = 𝑎,∗ 𝜑,∗      (6.19) 

∫𝜑,∗ 𝐴𝜑A 𝑑𝑥 = 𝑎A∗ ∫𝜑,∗ 𝜑A 𝑑𝑥    (6.20) 

∫(𝐴𝜑,)∗𝜑A = 𝑎,∗ ∫𝜑,∗ 𝜑A 𝑑𝑥    (6.21) 

𝐴 – эрмитов оператор, тогда 

𝑎A ∫𝜑,∗ 𝜑A 𝑑𝑥 = 𝑎,∗ ∫𝜑,∗ 𝜑𝑑𝑥    (6.22) 

(𝑎A − 𝑎,∗ ) ∫𝜑,∗ 𝜑A 𝑑𝑥 = 0     (6.23) 

Если 𝑛 ≠ 𝑚, то 



 

 ВВЕДЕНИЕ В КВАНТОВУЮ ФИЗИКУ 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

55 
 
 

 

∫𝜑,∗ 𝜑A 𝑑𝑥 ≡ 0     (6.24) 

Если 𝑛 = 𝑚, то 
(𝑎A − 𝑎,∗ ) = 0     (6.25) 

𝑎A = 𝑎A∗ , 𝑎A ∈ 𝑅     (6.26) 

В общем виде можно записать следующим образом, 

∫𝜑,∗ 𝜑A 𝑑𝑥 = 𝛿A,, 𝛿A, = ¹0: 𝑛 ≠ 𝑚
1: 𝑛 = 𝑚   (6.27) 

Так, мы доказали теорему о собственных значениях эрмитова оператора и 
ортогональности его собственных функций. 

Теорема полноты 

Собственные функции эрмитова оператора образуют ортонормированный базис. 
Тогда любую функцию можно разложить по ортонормированному базису: 

𝜓(𝑥) = ∑ 𝑐A𝜑A(𝑥)A − условие	полноты   (6.28) 

𝜓(𝑥) = 𝑐=𝜑= + 𝑐%𝜑% +⋯+ 𝑐A𝜑A +⋯   (6.29) 

∫𝜑A∗𝜓(𝑥) 𝑑𝑥 = 𝑐=𝜑= + 𝑐%𝜑% +⋯+ 𝑐A𝜑A +⋯   (6.30) 

𝑐A = ∫𝜑A∗𝜓(𝑥) 𝑑𝑥     (6.31) 

 
Рис. 6.2. Графическое изображение рассматриваемого случая. 

Тогда разложение 𝑉o⃗  по базису: 

𝑉o⃗ = ∑ ´𝑉o⃗ 𝑒Aµ𝑒AA     (6.32) 

Рассмотрим физический смысл коэффициентов. 

𝐻¥𝜑A = 𝐸A𝜑A     (6.33) 

Система (частица) находится в состоянии 𝜓(𝑥). 

〈𝐸〉 = ∫𝜓∗(𝑥)𝐻¥𝜓(𝑥)𝑑𝑥 = ∫∑ 𝑐,∗, 𝜑A∗(𝑥)𝐻¥ ∑ 𝑐AA 𝜑A(𝑥) =  (6.34) 

= ∫∑ 𝑐,∗, 𝜑A∗(𝑥)∑ 𝑐AA 𝐸A𝜑A(𝑥) 𝑑𝑥 =  

= ∑ 𝑐,∗ 𝑐A𝐸A,,A ∫𝜑,∗ (𝑥)𝜑A(𝑥) 𝑑(𝑥) = ∑ 𝑐A∗𝑐A𝐸AA , 

где 𝜑,∗ (𝑥)𝜑A(𝑥)𝑑(𝑥) = 𝛿A,. 
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〈𝐸〉 = ∑ |𝑐A|%𝐸AA      (6.35) 
〈𝐸〉 = ∑ 𝒫(𝑛)𝐸AA      (6.36) 

Проверим, что |𝑐A|% ⟺𝒫(𝑛). Тогда ∑ 𝒫(𝑛)A = 1. Будем считать, что 

∫𝜓∗(𝑥)𝜓(𝑥) 𝑑𝑥 = 1     (6.37) 

∫∑ 𝑐,∗ 𝜑,∗, ∑ 𝑐A𝜑AA = ∑ 𝑐,∗ 𝑐AA,, ∫𝜑,∗ (𝑥)𝜑A 𝑑𝑥 = ∑ 𝑐A∗𝑐AA = ∑|𝑐A|% = 1 (6.38) 

𝑐A = ∫𝜑A∗𝜓(𝑥, 0) 𝑑𝑥 − амплитуда	вероятности   (6.39) 

Разложение спектров 
Если в классической физике мы абсолютно точно задали начальное условие, то 

никаких разбросов параметров быть не может. В квантовой механике абсолютно точно 
заданные начальные условия определяют амплитуду вероятности, которая определяет 
вероятность исхода |𝑐A|%, т.е. 𝒫(𝑛). Так, несмотря на точно заданные начальные условия, 
результат измерения будет недетерминированным. 

 
Рис. 6.3. Графическое изображение волновых функций в потенциальной яме с 

бесконечно высокими стенками.  

𝜑= = �%
/
sin �&

/
𝑥�     (6.40) 

𝜑% = �%
/
sin �%&

/
𝑥�     (6.41) 

𝜓(𝑥) = 3
√%U

𝜑= +
2]
√%U

𝜑%    (6.42) 

𝒫A = |𝑐A|% = 𝑐∗𝑐     (6.43) 

𝒫(1) = с=% = � 3
√%U
�
%
= =R

%U
, 𝒫(2) = с%% = � 2]

√%U
�
%
= \

%U
  (6.44) 

Средняя энергия: 
〈𝐸〉 = 𝒫(1)𝐸= + 𝒫(2)𝐸%    (6.45) 

𝜎E% = 〈𝐸%〉 − 〈𝐸〉%     (6.46) 
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∆𝐸 = 𝜎E = √𝜎%     (6.47) 

〈𝐸〉 = =R
%U
𝐸= +

\
%U
4𝐸= =

U%
%U
𝐸=    (6.48) 

〈𝐸%〉 = 𝒫(1)𝐸=% + 𝒫(2)𝐸%% =
=R
%U
𝐸=% +

\
%U
(4𝐸=)% = �=R

%U
+ \∗=R

%U
�𝐸=%  (6.49) 

Мы писали разложение для дискретного спектра, напишем соответствующее разложение 
для непрерывного спектра. Так, для дискретного спектра условия полноты базисных 
функций записывались следующим образом: 

𝜓(𝑥) = ∑ 𝑐A𝜑A(𝑥)A      (6.50) 

Так как мы переходим к непрерывному спектру, то 𝑛 → 𝜉: 

𝑐A → 𝑐(𝜉)     (6.51) 

∑ →A ∫ 𝑑𝜉	
�      (6.52) 

𝜓(𝑥) = ∫ 𝑐(𝜉)𝜑�(𝑥)
	
� 𝑑𝜉    (6.53) 

𝑐(𝜉) = ∫𝜑�
∗(𝑥)𝜓(𝑥) 𝑑𝑥    (6.54) 

𝑐A = ∫𝜑A∗𝜓𝑑𝑥     (6.55) 

Допустим 𝜉 → 𝑥: 

𝜑0-(𝑥) = 𝛿(𝑥 − 𝑥�)     (6.56) 

𝜓(𝑥) = ∫ 𝑐(𝑥�)𝛿(𝑥 − 𝑥�) 𝑑𝑥�   (6.57) 

𝑐(𝑥�) = ∫ 𝛿(𝑥 − 𝑥�)𝜓(𝑥) 𝑑𝑥 = 𝜓(𝑥�)   (6.58) 

𝜓(𝑥) = ∫𝜓(𝑥�)𝛿(𝑥 − 𝑥�) 𝑑𝑥� ≡ 𝜓(𝑥)   (6.59) 

Рассмотрим 𝜉 → 𝑘: 

𝑝 = ℏ𝑘     (6.60) 

𝜑+-(𝑥) =
=

√%&
𝑒]+0     (6.61) 

Допустим мы определили, что координата равна 𝑥�. Тогда 

𝜓(𝑥) = 𝛿(𝑥 − 𝑥�)     (6.62) 

𝜓(𝑥) = ∫ 𝑐(𝑘�)𝑒]+
-0 𝑑𝑘�    (6.63) 

 
Рис. 6.4. Графическое изображение рассматриваемого случая. 
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𝜓�(𝑘) ≡ 𝑐(𝑘) = ∫ =
√%&

𝑒1]+0𝛿(𝑥 − 𝑥�) 𝑑𝑥 = =
√%&

𝑒1]+0- = 𝜓(𝑘)  (6.64) 

Тогда плотность вероятности равна 𝜓∗(𝑘)𝜓(𝑘) 

 
Рис. 6.5. Волновая функция рассматриваемого случая. 

𝜓�(𝑘) = 𝛿(𝑘� − 𝑘)     (6.65) 
[𝑥§, 𝑝̂0] = 𝑥§𝑝̂0 − 𝑝̂0𝑥 ≠ 0    (6.66) 

Если у 𝐴¦𝜓 = 𝑎𝜓, 𝐵Â𝜓 = 𝑏𝜓 общие волновые функции, то 

𝐵Â𝐴¦𝜓 = 𝑎𝐵𝜓 = 𝑎𝑏𝜓     (6.67) 

𝐴¦𝐵Â𝜓 = 𝑏𝐴𝜓 = 𝑏𝑎𝜓     (6.68) 

Ã𝐴,¥ 𝐵ÂÄ = 0     (6.69) 

[𝑥§, 𝑝̂]𝑓(𝑥) = (𝑥§𝑝̂ − 𝑝̂𝑥§)𝑓(𝑥) = 𝑥 �−𝑖ℏ ?
?0
𝑓� − �−𝑖ℏ ?

?0
´𝑥𝑓(𝑥)µ� = (6.70) 

= 𝑥 �−𝑖ℏ ?X
?0
� + 𝑖ℏ𝑓 − �−𝑖ℏ𝑥 ?X

?0
𝑓� = 𝑖ℏ𝑓  

[𝑥§𝑝̂0] = 𝑖ℏ ≠ 0    (6.71) 

∆𝑥∆𝑝0 ≥
ℏ
%
     (6.72) 

Лекция 7. Основные определения, бра-кет формализм 

Основные определения 

Мы решили оторваться от всех базисов, поэтому состояние частицы будем 
представлять неким абстрактным вектором, который совершенно не привязан к базису, 
но после может быть на них спроецирован. Такой вектор обозначается следующим 
образом: 

|𝜓⟩	𝑘𝑒𝑡      (7.1) 

Вектор образует то самое линейное пространство, заданное на поле комплексных чисел, 
а значит его можно складывать, умножать на комплексное число, и снова получать 
вектор 𝑘𝑒𝑡. Например, 

𝑧|𝜓⟩ = |𝜑⟩     (7.2) 
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Такой вектор находится в абстрактном линейном пространстве (оно должно быть 
линейным, чтобы удовлетворять принципу суперпозиций – одному из основных 
принципов квантовой механики), в этом пространстве будут действовать некие 
операторы, например 

𝐴¦|𝑎⟩ = |𝑏⟩     (7.3) 

𝐴¦(𝑧=|𝑎=⟩ + 𝑧%|𝑎%⟩) = 𝑧=𝐴¦|𝑎=⟩ + 𝑧%𝐴¦|𝑎%⟩   (7.4) 

Простейшим примером такого кета может являться просто комплексное число, 
размерность такого вектора равна единице. Нам известно, что комплексному числу 
соответствует сопряженное ему комплексное число. Если есть такое 𝐴¦|𝑎⟩ = |𝑏⟩,  то 
вектору будет соответствовать сопряженный ему вектор 𝑏𝑟𝑎 (⟨𝑎|): 

⟨𝑎|𝐴k⟨𝑎| = ⟨𝑏|    (7.5) 

Для того, чтобы легче воспринимать эти значения, представим кет как столбец, а бра – 
как строку: 

|𝑎⟩ = �
𝑎=
𝑎%�     (7.6) 

⟨𝑎| = (𝑎=∗𝑎%∗)     (7.7) 

Тогда можно определить скалярное произведение и ввести норму вектора 𝑎: 
〈𝑎|𝑎〉 = 𝑎=∗𝑎= + 𝑎%∗𝑎% ≥ 0, ∈ ℛ    (7.8) 

〈𝑏|𝑎〉 = 𝑏=∗𝑎= + 𝑏%∗𝑎%     (7.9) 
〈𝑎|𝑏〉 = 〈𝑏|𝑎〉∗     (7.10) 

Также как и для волновой функции, эрмитово сопряженным оператором 𝐴 называется 
следующий оператор: 

𝐴¦ = 𝐴¦k     (7.11) 

Для того, чтобы получить 𝐴¦k, необходимо транспонировать оператор 𝐴 и поменять его 
матричные элементы на комплексно-сопряженные.  

Свойства эрмитовых операторов 

Свойства эрмитовых операторов совпадают с эрмитовыми операторами, 
действующими на волновые функции (здесь операторы действуют на векторы бра и кет): 

〈𝑚|𝐴¦|𝑛〉 = 𝐴,A    (7.12) 

𝐴,Ak = 𝐴A,∗      (7.13) 

Если 𝑚 = 𝑛, то 

𝐴AA∗ = 𝐴AA     (7.14) 

Если 𝑚 ≠ 𝑛, то 

𝐴,A = 𝐴A,∗      (7.15) 

По виду матрицы можно сразу определить, является ли оператор эрмитовым. Так,  
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�0 −𝑖
𝑖 0 � ; �

0 𝑖
𝑖 0�     (7.16) 

Представляет эрмитов и не эрмитов оператор соответственно. Получим соотношения, 
показывающие, что собственные значения оператора являются вещественными числами: 

〈𝑚|𝐴¦|𝑛〉 = 𝑎A〈𝑚|𝑛〉     (7.17) 

⟨𝑚||𝐴¦|𝑛⟩ = 𝑎,∗ 〈𝑚|𝑛〉     (7.18) 

(𝑎,∗ − 𝑎A)〈𝑚|𝑛〉 = 0     (7.19) 

Если 𝑚 = 𝑛, то 

𝑎A = 𝑎A∗      (7.20) 

Если 𝑚 ≠ 𝑛, то 
〈𝑚|𝑛〉 = 𝛿A,     (7.21) 

Рассмотрим, как связать волновую и матричную механики: 

|𝜓⟩ = ∑ 𝑐A|𝑛⟩A      (7.22) 

𝑐A = 〈𝑛|𝜓〉     (7.23) 

Тогда подставим в (7.22): 

|𝜓⟩ = ∑ |𝑛⟩⟨𝑛|𝜓⟩A      (7.24) 

∑ |𝑛⟩⟨𝑛|A = 𝐼¦     (7.25) 

Перейдем к непрерывному случаю: 

|𝜓⟩ = ∫ 𝑑𝜉|𝜉⟩⟨𝜉|𝜓⟩	
� ,      (7.26) 

где ⟨𝜉|𝜓⟩ ≡ 𝜓(𝜉). Если 𝜉 ⟷ 𝑥, то 

⟨𝑥|𝜓⟩ ≡ 𝜓(𝑥) = ∫𝑑𝑥�𝜑0(𝑥�)𝜓(𝑥�),    (7.27) 

где 𝑑𝑥�𝜑0(𝑥�) = 𝛿(𝑥 − 𝑥�). 

𝜓�(𝑝) = 〈𝑝|𝜓〉     (7.28) 

∫𝑑𝜉|𝜉⟩⟨𝜉| = 1Â    (7.29) 

Рассмотрим следующую конструкцию: 

〈𝜒|𝜓〉 = ∫ 𝑑𝑥〈𝜒|𝑥〉〈𝑥|𝜓〉 = ∫ 𝜒∗(𝑥)𝜓(𝑥)H
1H 𝑑𝑥  (7.30) 

〈𝜒|𝑥〉 = 〈𝑥|𝜒∗〉 = 𝜒∗(𝑥), 〈𝑥|𝜓〉 = 𝜓(𝑥)   (7.31) 

Часто в учебниках можно увидеть следующее соотношение: 

〈𝜒|𝜓〉 = ∫ 𝜒∗(𝑥)𝜓(𝑥)H
1H 𝑑𝑥,     (7.32) 

– это называется обозначением Дирака/дираковскими скобками. 
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Обобщенное соотношение неопределенностей (соотношение Робертсона-
Шредингера) 
 В прошлый раз мы остановились на довольно интересном вопросе совместности 
измерений. Так, мы меряем одну величину, - можем ли мы одновременно измерить 
вторую, чтобы получать какие-то точные значения? Воспользуемся представлениями о 
состоянии как вектор и получим обобщенное соотношение неопределенностей. 

 
Рис.7.1. Треугольник для 3D векторов. 

Неравенство треугольника: 
(∗)		|𝑥| + |𝑦| ≥ |𝑥 + 𝑦|    (7.33) 

Запишем аналогичное неравенство для векторов в векторном пространстве: 

|𝑥| = X〈𝑥|𝑥〉, |𝑦| = X〈𝑦|𝑦〉    (7.34) 

|𝑥 + 𝑦| = X(⟨𝑥| + 𝑦|)(|𝑥⟩ + |𝑦⟩) = X〈𝑥|𝑥〉 + 〈𝑦|𝑥〉 + 〈𝑥|𝑦〉 + 〈𝑦|𝑦〉 (7.35) 

|𝑥|% + 2|𝑥||𝑦| + |𝑦|% ≥ |𝑥|% + 〈𝑦|𝑥〉 + 〈𝑥|𝑦〉 + |𝑦|%  (7.36) 

|𝑥||𝑦| ≥ =
%
|〈𝑦|𝑥〉 + 〈𝑥|𝑦〉|    (7.37) 

Возьмем произвольное состояние 𝜓 и определим вектора: 

|𝑥⟩ = 𝐴¦|𝜓⟩, |𝑦⟩ = 𝑖𝐵Â|𝜓⟩    (7.38) 

Неопределенность величины 𝐴, которой сопоставлен оператор 𝐴: 

∆𝐴 = 𝜎. = X〈𝜓|𝐴¦%|𝜓〉 − 〈𝜓|𝐴¦|𝜓〉% = 〈𝐴%〉 − 〈𝐴〉%   (7.39) 

Подставим в (7.37): 

X〈𝜓|𝐴¦%|𝜓〉X〈𝜓|𝐵Â%|𝜓〉 ≥ =
%
ÊË𝜓Ê𝐴¦𝐵Â − 𝐵𝐴Ê𝜓ÌÊ   (7.40) 

⟨𝑦|𝑥⟩ + ⟨𝑥|𝑦⟩ = −𝑖Ë𝜓Ê𝐵Â𝐴¦Ê𝜓Ì + 𝑖Ë𝜓Ê𝐴¦𝐵ÂÊ𝜓Ì    (7.41) 

Представим ящик с молекулами: есть некое распределение молекул по проекции 
скоростей. Распределение характеризуется некой шириной: чем шире кривая – тем 
больше стандартное отклонение. 
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Рис.7.2. Графическое изображение рассматриваемого случая. 

Обобщенное соотношение неопределенностей: 

∆𝐴∆𝐵 ≥ =
%
Ê〈Ã𝐴¦𝐵ÂÄ〉Ê     (7.42) 

На прошлой лекции мы определили, что 
[𝑥§𝑝̂0] = 𝑖ℏ     (7.43) 

Подставим в (7.42): 

∆𝑥∆𝑝0 ≥
=
%
|〈𝑖ℏ〉| = ℏ

%
     (7.44) 

∆𝑥∆𝑝0 ≥
ℏ
%
     (7.45) 

Изменение волновой функции во времени 
Ранее мы обсуждали, что уравнение Шредингера определяет эволюцию волновой 

функции: 

𝑖ℏ ?}(0,:)
?O

= 𝐻¥𝜓(𝑥, 𝑡)     (7.46) 

Рассмотрим зависимость средних значений измеряемой величины некоторых величин от 
времени: 

?〈.〉
?O

= ?〈.〉
?O

      (7.47) 

〈𝐴〉 = ∫𝜓∗𝐴¦𝜓 𝑑𝑥 = Ë𝜓Ê𝐴¦Ê𝜓Ì    (7.48) 

Будем считать, что 𝐴¦ не зависит от времени. 
?
?O
〈𝐴〉 = Ë𝜓̇Ê𝐴¦Ê𝜓̇Ì     (7.49) 

|𝜓̇Ì = =
sℏ
𝐻¥|𝜓⟩,									Ë𝜓̇| = − =

]ℏ
⟨𝜓|𝐻¥    (7.50) 

?
?O
〈𝐴〉 = =

]ℏ
Î−Ë𝜓Ê𝐻¥𝐴¦ + 𝐴¦𝐻Ê𝜓ÌÏ    (7.51) 

?
?O
〈𝐴〉} =

=
]ℏ
〈Ã𝐻¥𝐴¦Ä〉}     (7.52) 

Интеграл движения (изменение переменной во времени равно нулю): 
?〈0〉
?O

= =
ℏ
〈Ã𝐻¥𝑥Ä〉     (7.53) 



 

 ВВЕДЕНИЕ В КВАНТОВУЮ ФИЗИКУ 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

63 
 
 

 

𝐻¥ = i.

%,
+ 𝑈(𝑥)     (7.54) 

Ã𝐻¥𝑥§Ä = £i
.

%,
𝑥¤ = =

%,
[𝑝𝑝; 𝑥] = =

%
{𝑝̂[𝑝̂𝑥§] + [𝑝̂𝑥§]𝑝̂}   (7.55) 

Ã𝐴¦𝐵Â𝐶¦Ä = 𝐴¦Ã𝐵Â𝐶¦Ä + Ã𝐴¦𝐶¦Ä𝐵Â      (7.56) 

Дополним (7.53): 
?〈0〉
?O

= =
ℏ
〈Ã𝐻¥𝑥Ä〉 = 〈i〉

,
     (7.57) 

Это называется теоремой Эренфеста. Для состояний, удовлетворяющих уравнению 
Шредингера, средние значения могут быть записаны по аналогии с классической 
физикой в рассмотренном нами виде. 
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Лекция 8. Основные понятия квантовой механики 

Обзор предыдущей лекции. Обозначения Дирака 

 Прошлая лекция была посвящена одному из самых важных вопросов в квантовой 
механике – представлению состояния как вектора в абстрактном линейном пространстве, 
определенном на поле комплексных чисел. 

|𝜓⟩ − кет      (8.1) 

Соответствующим ему сопряженный вектор: 
⟨𝜓| − бра     (8.2) 

Скалярное произведение самого вектора на себя: 

|𝜓|% = ⟨𝜓|𝜓⟩ ≥ 0     (8.3) 
Мы показали, что произвольное состояние (вектор) может быть разложено по базисным 
векторам: 

|𝜓⟩ = ∑ |𝑛⟩⟨𝑛|𝜓⟩A      (8.4) 

Отсюда мы также получили следующее свойство оператора: 

∑ |𝑛⟩⟨𝑛|A = 1Â       (8.5) 

Базисы. Эквивалентность матричного и волнового подхода 
В качестве базиса можно выбирать любой ортонормированный базис, но в 

квантовой механике часто используют базис, определяемый собственными эрмитовыми 
функциями (собственными функциями эрмитового оператора). Мы показали, что 
эрмитов оператор – оператор, собственные значения которого являются вещественными 
числами; собственные функции представляют ортонормированный базис (по нему 
можно разложить любое состояние). 

Такой подход характерен для матричной механики, он развивался в работах 
Гейзенберга, Борна, Иордана. Параллельно этому, подход, который мы рассматривали в 
начале и который использовал волновую функцию (волновая механика), был развит в 
работах Шредингера. Позже было показано, что эти два подхода (матричный и волновой) 
эквивалентны. 

𝜓(𝑥) = ⟨𝑥|𝜓⟩      (8.6) 

𝜓�(𝑝) = ⟨𝑝|𝜓⟩      (8.7) 

Если рассматривать состояние системы в векторном пространстве, некой наблюдаемой 
величине 𝐴 ставится в соответствие: 

𝐴 → 𝐴¦|𝜓⟩ = |𝜓⟩     (8.8) 

⟨𝜓|𝐴¦k = ⟨𝜓|      (8.9) 
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Эрмитовы операторы. Доказательство эквивалентности матричного и волнового 
подхода 
 Для нас интересен класс операторов, являющихся эрмитовыми – это 
самосопряженные операторы. 

𝐴¦k = 𝐴     (8.10) 

Как совместить матричный и волновой подходы, и доказать, что они эквивалентны друг 
другу? 

(𝑎=∗𝑎%∗) ← �
𝑎=
𝑎%�    (8.11) 

𝐴,A = 𝐴A,∗      (8.12) 

По матрице всегда можно понять, эрмитов оператор или нет. Так, (8.13) представляет 
эрмитов оператор. 

�1 −𝑖
𝑖 2 �     (8.13) 

Установим соответствие между двумя представлениями:  
⟨𝜑|𝜓⟩ = ⟨𝜑|𝜓⟩∗    (8.14) 

⟨𝜑|𝜓⟩ = ∫ 𝑑𝑥⟨𝜑|𝑥⟩⟨𝑥|𝜓⟩H
1H = ∫ 𝑑𝑥𝜑∗(𝑥)𝜓(𝑥)H

1H    (8.15) 

Условие эрмитовости через волновые функции 

 Запишем условие эрмитовости, используя волновые функции: 

Ë𝜓Ê𝐴¦Ê𝜓Ì = ⟨𝜓|𝐴|𝜓⟩     (8.16) 

𝐴¦ = 𝐴¦k     (8.17) 

Примеры. Проверка операторов импульса и производной на эрмитовость 
 Рассмотрим, как использовать это условие, и проверим, действительно ли 
оператор, с которым мы имеем дело (например, оператор импульса) эрмитов. 

Ë𝜓Ê𝐴¦Ê𝜑Ì = ⟨𝜓|𝐴|𝜑⟩     (8.18) 

∫𝜓∗(𝑥)𝐴¦𝜑(𝑥) 𝑑𝑥 = ∫𝜑(𝑥) �𝐴¦𝜓(𝑥)�
∗
𝑑𝑥    (8.19) 

𝐷¥ = ?
?0 ∫ 𝜓∗(𝑥) ?

?0
𝜑(𝑥)H

1H 𝑑𝑥    (8.20) 

∫ 𝑑(𝑢𝑣)H
1H = 𝑢𝑣|1HH = ∫ 𝑣 ∗ 𝑑𝑢H

1H + ∫ 𝑢 ∗ 𝑑𝑣H
1H    (8.21) 

Отсюда получим простое соотношение для интегрирования: 

∫ 𝑣 ∗ 𝑑𝑢H
1H = −∫𝑢 ∗ 𝑑𝑣    (8.22) 

Дополним (8.20): 

𝐷¥ = −∫𝜑(𝑥) �?}?0�
∗
𝑑𝑥    (8.23) 
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Так, условие эрмитовости не выполняется и оператор дифференцирования не является 
эрмитовым. Если же преобразовать этот оператор в импульсный, то мы увидим, что он 
является эрмитовым. Условие, когда появляется минус (8.23), называется условием 
антиэрмитовости. 

Коммутатор. Куммутирующие и некоммутирующие операторы 

 Мы говорили, что существуют некие операторы (например, 𝑝̂0	и	𝑥§), для которых 
мы получили соотношение, что волновые функции 𝑝̂0 не совпадают с волновыми 
функциями 𝑥§. Волновые функции первого оператора: 𝐴𝑒]+0. 

 
Рис. 8.1. Волновые функции 𝑝̂0. 

Волновые функции 𝑥§ – есть ´𝛿(𝑥 − 𝑥�)µ. 

 
Рис. 8.2. Волновые функции 𝑥§. 

Возьмем оператор 𝐴𝑒]+0. Тогда импульс и соответствующая ему энергия: 

𝑝 = ℏ𝑘, 𝐸 = i.

%,
     (8.24) 

Необходимо определить критерий: 

Ã𝐴¦𝐵ÂÄ = 𝐴¦𝐵Â − 𝐵Â𝐴¦,      (8.25) 

что есть коммутатор операторов 𝐴¦	и	𝐵Â . Покажем, что если оператор 𝐴¦	и	𝐵Â  имеют общие 
волновые функции, то их коммутатор равен нулю: 

𝐴¦𝜑 = 𝑎𝜑     (8.26) 

𝐵Â𝜑 = 𝑏𝜑     (8.27) 

𝐴¦𝐵Â𝜑 = 𝐴¦𝑏𝜑 = 𝑏𝑎𝜑     (8.28) 

𝐵Â𝐴¦𝜑 = 𝐵Â𝑎𝜑 = 𝑎𝑏𝜑     (8.29) 

Ã𝐴¦𝐵ÂÄ = 0     (8.30) 
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Теорема: если коммутатор двух операторов равен нулю, то они имеют общие 
собственные функции (Ã𝐴¦𝐵ÂÄ = 0): 

𝐴¦𝜑/ = 𝑎𝜑/     (8.31) 

𝐵Â𝐴¦𝜑/ = 𝐵Â𝑎𝜑/    (8.32) 

𝐴¦´𝐵Â𝜑/µ = 𝑎´𝐵Â𝜑/µ    (8.33) 

𝐵Â𝜑/ = 𝑏𝜑/     (8.34) 

Свойства коммутаторов 

1) Ã𝐴¦𝐴¦Ä = 0 
2) Ã𝐴¦𝐴¦AÄ = 0 ⟹ Ã𝐴¦𝑓´𝐴¦µÄ = 0 
3) Ã𝐴¦𝐵Â, 𝐶¦Ä = 𝐴¦Ã𝐵Â𝐶¦Ä + Ã𝐴¦𝐶¦Ä𝐵Â  

Вычисление коммутатора операторов координаты и импульса 

[𝑥§𝑝̂]𝑓(𝑥) = 𝑥 �−𝑖ℏ ?
?0
𝑓(𝑥)� − �−𝑖ℏ ?

?0
� 𝑥𝑓(𝑥) = 𝑖ℏ ?

?0
  (8.35) 

�−𝑖ℏ ?
?0
� 𝑥𝑓(𝑥) = −𝑖ℏ𝑓(𝑥)    (8.36) 

[𝑥§𝑝̂] = 𝑖ℏ     (8.37) 

Неопределенность измерения величины 

 Допустим есть некая измеряемая величина 𝐴, оператор 𝐴¦ и его волновые функции 
𝜑/. Есть оператор 𝐵Â , не коммутирующий с оператором 𝐴¦, а значит, не имеет общих 
собственных функций. Его собственная функция, отвечающая измеряемой переменной 
величине 𝐵 будет 𝜑q. 

 Так, если мы измеряем 𝜑/, то находимся в состоянии 𝜑/. Теперь измеряем 
величину 𝐵 и наблюдаем одно из собственных значений оператора 𝐵Â , согласно 
постулатам. При этом волновая функция перейдет в одну из собственных функций 
оператора 𝐵Â :	𝜑q. Это означает, что 𝜑/ содержит несколько 𝜑q и можно разложить 
функцию 𝜑/ по функциям 𝜑q. Так, появляется неопределенность: мы будем наблюдать 
одну из этих функций и наоборот: после измерения получим 𝜑q и измеряем 𝜑/ 
(суперпозицию). 

 Таким образом, когда общая функция отсутствует, мы постоянно переходим от 
одной функции к нескольким, - и получается разброс значений. Величина 
неопределенностей определяется величиной коммутатора, поскольку если коммутатор 
равен нулю, то неопределенности нет. 
Неравенство треугольника. Неравенство Коши-Шварца 

 Получим соотношение неопределенности, рассматривая неравенство 
треугольника (которое будет переведено в неравенство Коши-Шварца): 

|𝑥⃗| + |𝑦⃗| ≥ |𝑥⃗ + 𝑦⃗|    (8.38) 
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|𝑥| = X⟨𝑥|𝑥⟩, |𝑦| = X⟨𝑦|𝑦⟩    (8.39) 

 
Рис. 8.3. Графическое изображение рассматриваемого случая. 

|𝑥 + 𝑦| = X⟨𝑥 + 𝑦|𝑥 + 𝑦⟩    (8.40) 

Неравенство Коши-Шварца: 

2|𝑥||𝑦| ≥ |⟨𝑥|𝑦⟩ + ⟨𝑦|𝑥⟩|    (8.41) 

|𝑥⟩ = 𝐴¦|𝜓⟩, |𝑦⟩ = 𝑖𝐵Â|𝜓⟩    (8.42) 

Формула Робертсона-Шредингера 

 Подставим (8.42) в неравенство: 

2X〈𝐴%〉〈𝐵%〉 ≥ ÊË𝜓Ê𝐴¦𝐵ÂÊ𝜓Ì − 〈𝜓|𝐵Â𝐴¦〉Ê   (8.43) 

(∆𝐴)% = 𝜎.% = 〈𝐴%〉 = 〈𝐴〉%    (8.44) 

 
Рис. 8.4. Графическое изображения распределения при 〈𝐴〉 = 0 и 〈𝐴〉 ≠ 0. 

Формула Робертсона-Шредингера. 

∆𝐴∆𝐵 ≥ =
%
Ê〈Ã𝐴¦𝐵ÂÄ〉Ê     (8.45) 

Неопределенность Гейзенберга 

 С помощью формулы Робертсона-Шредингера получим значения для 
соотношения неопределенности Гейзенберга, которое мы получали ранее. 

Ã𝐴¦𝐵ÂÄ = [𝑥§𝑝̂0] = 𝑖ℏ    (8.46) 

∆𝑥∆𝑝0 ≥
ℏ
%
    (8.47) 
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Среднее значение энергии для суперпозиции волновых функций в стационарном 
состоянии 
 Каким образом посчитать изменение волновой функции, если мы знаем ее в 
начальный момент. Допустим, мы определили волновую функцию общего вида и 
решили уравнение Шредингера.  

𝜓(𝑥, 0) = ∑𝑐A𝜑A(𝑥) 𝑑𝑥    (8.48) 

𝑐A = ∫𝜑A∗(𝑥)𝜓(𝑥, 0) 𝑑𝑥    (8.49) 

Проекция в дираковских обозначениях: 

𝑐A = ⟨𝜑A|𝜓(𝑥, 0)⟩    (8.50) 

|𝑐A|% = 𝒫(𝑛) ⟹ ∑ 𝒫(𝑛)A = 1   (8.51) 

Будем считать, что 𝜓(𝑥) ≡ 𝜓(𝑥, 0): 

∫ 𝜓∗(𝑥)𝜓(𝑥)H
1H 𝑑𝑥 = 1    (8.52) 

𝜓∗(𝑥) = ∑ 𝑐,∗ 𝜑,∗ (𝑥),     (8.53) 

𝜓(𝑥) = ∑ 𝑐A𝜑A(𝑥)A      (8.54) 

Используем условие нормированности: 

∫ 𝜑,∗ 𝜑A
H
1H 𝑑𝑥 = 𝛿A,    (8.55) 

Тогда перепишем (8.52): 

∑ 𝑐,∗ 𝑐AA,, ∫ 𝜑,∗ 𝜑A
H
1H 𝑑𝑥 = ∑ |𝑐A|%A = 1,    (8.56) 

где 𝜑,∗ 𝜑A = 𝛿A,. Вычислим среднее значение энергии для этого состояния: 

〈𝐸〉 = ∫𝜓∗(𝑥)𝐻¥𝜓(𝑥) 𝑑𝑥    (8.57) 

𝐻¥𝜑A = 𝐸A𝜑A     (8.58) 

∫∑ 𝑐,∗ 𝜑,∗ (𝑥), ∑ 𝑐A𝜑A(𝑥)A 𝑑𝑥 = ∑ |𝑐A|%A 𝐸A = ∑ 𝒫(𝑛)𝐸AH
AI=   (8.59) 

Тогда 𝑐A – амплитуда вероятности: 

|𝑐A|% = 𝒫(𝑛)     (8.60) 

Рассмотрим следующую суперпозицию двух функций: 

𝜓(𝑥, 0) = 1]
√U
𝜑= +

%
√U
𝜑%    (8.61) 
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Рис. 8.5. Графическое изображение рассматриваемого случая. 

𝐸= =
ℏ.&.

%,/.
     (8.62) 

𝐸A = 𝐸=𝑛%     (8.63) 
Такое состояние является нестационарным. 

〈𝐸〉 = ∑ 𝒫A𝐸AA = %
U
𝐸= +

3
U
4𝐸= =

=e
U
𝐸=   (8.64) 

Среднее значение энергии для суперпозиции волновых функций в нестационарном 
состоянии 

 Рассмотрим, как эта волновая функция будет меняться во времени. 

𝜓A(𝑥, 𝑡) = 𝜑A(𝑥)𝑒
112ℏ O    (8.65) 

𝜓(𝑥, 𝑡) = ∑ 𝑐A𝜑A(𝑥)H
AI= 𝑒1

12
ℏ O    (8.66) 

Среднее значение суперпозиции в стационарном состоянии: 
〈𝐸〉O = 〈𝐸〉OI9     (8.67) 

Среднее значение других величин в нестационарном состоянии 
 Докажем, что утверждение о том, что любое среднее значение наблюдаемой не 
будет зависеть от времени, неверно. Рассмотрим 

𝜓∗(𝑥, 𝑡)𝜓(𝑥, 𝑡)    (8.68) 

𝜓(𝑥, 𝑡) = =
√%
𝜑=(𝑥)𝑒

11Gℏ O + =
√%
𝜑%(𝑥)𝑒

11.ℏ O   (8.69) 

𝜓∗(𝑥, 𝑡) = =
√%
𝜑=∗(𝑥)𝑒

1G
ℏ O + =

√%
𝜑%∗(𝑥)𝑒

1.
ℏ O   (8.70) 

𝜓∗(𝑥, 𝑡)𝜓(𝑥, 𝑡) = =
%
|𝜑=|% +

=
%
|𝜑%|% +

=
%
(𝜑=𝜑%∗ + 𝜑%𝜑=∗)  (8.71) 

𝜑=𝜑%∗ + 𝜑%𝜑=∗ = 𝑒1]#O + 𝑒]#O~cos𝜔𝑡 , 𝜔 = E.1EG
ℏ

  (8.72) 



 

 ВВЕДЕНИЕ В КВАНТОВУЮ ФИЗИКУ 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

71 
 
 

 

 
Рис. 8.6. Суперпозиция двух нижних состояний электрона в прямоугольной яме. 
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Лекция 9. Нестационарные состояния 

Повторение суперпозиции двух стационарных состояний 

 Прошлый раз мы остановились на вопросе эволюции волновой функции и ее 
изменении во времени. Мы рассмотрели нестационарные состояния, в которых, в 
отличие от стационарных, плотность вероятности начинает зависеть от времени. 

Принцип суперпозиции состояний: 

𝜓(𝑥, 𝑡) = с=𝜓=(𝑥, 𝑡) + с%𝜓%(𝑥, 𝑡)     (9.1) 

Пример: суперпозиция двух состояний для частицы в яме: 

𝜓(𝑥, 𝑡) = =
√%
𝜑=(𝑥) exp �−

]
ℏ
𝐸=𝑡� +

=
√%
𝜓%(𝑥, 𝑡) exp �−

]
ℏ
𝐸%𝑡�  (9.2) 

Плотность вероятности осциллирует с разностью частотой: 

 𝜔 = E.1EG
ℏ

     (9.3) 

〈𝑥〉 = ∫ 𝑥 =
%
|𝜑=(𝑥)|% + 𝑥

=
%
|𝜑%(𝑥)|% + 𝜑=(𝑥)𝑥𝜑%(𝑥) cos(𝜔𝑡)

B
.
1B.

𝑑𝑥 = (9.4) 

= ∫ 𝜑=∗(𝑥)𝑥𝜑%(𝑥) cos(𝜔𝑡)
B
.
1B.

𝑑𝑥 = ⟨𝜑=|𝑥|𝜑%⟩ = 𝑥=% − матричный	элемент	𝑥  

Хоть волновая функция стационарного состояния меняется во времени и для 
основного, и для возбужденного состояния, плотность вероятности стационарного 
состояния от времени не зависит. Если же взять суперпозицию от этих двух состояний, 
то мы будем наблюдать зависимость плотности вероятности от времени на разностной 
частоте, и, соответственно, среднего значения 𝑥. Так, с классической точки зрения 
заряженная частица движется с ускорением и должна излучать. Возникает вопрос, все ли 
наблюдаемые будут зависеть от времени: в прошлый раз мы посчитали энергию для 
нестационарного состояния, и она оказалась независимой от времени. Так, какие-то 
наблюдаемые в нестационарном состоянии зависят от времени, а какие-то – нет. 
Возникает вопрос критерия (как определять, будет ли среднее значение по такому 
нестационарному состоянию зависеть от различных наблюдаемых). 

Рассмотрение нестационарного состояния  
 Рассмотрим этот вопрос в общем виде и получим формулу для изменения 
среднего значения наблюдаемой величины 𝐴: 

𝐴 → 𝐴¦       (9.5) 

Тогда среднее значение: 

〈𝐴〉} = Ë𝜓Ê𝐴¦Ê𝜓Ì = ∫𝜓∗(𝑥)𝐴¦ 𝜓(𝑥)𝑑𝑥   (9.6) 
?
?O
〈𝐴〉} =

?
?O
Ë𝜓Ê𝐴¦Ê𝜓Ì     (9.7) 

Будем предполагать, что оператор явным образом не зависит от времени. 
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?〈.〉
?O

= ?
?O
Ë𝜓Ê𝐴¦Ê𝜓Ì    (9.8) 

?
?O
Ë𝜓Ê𝐴¦Ê𝜓Ì = Ë𝜓̇Ê𝐴¦Ê𝜓Ì + Ë𝜓Ê𝐴¦Ê𝜓̇Ì    (9.9) 

𝑖ℏ ?
?O
|𝜓⟩ = 𝐻¥|𝜓Ì    (9.10) 

|𝜓̇Ì = =
]ℏ
𝐻¥|𝜓Ì, Ë𝜓̇| = − =

]ℏ
⟨𝜓|𝐻¥    (9.11) 

?〈.〉
?O

= =
]ℏ
´−Ë𝜓Ê𝐻¥𝐴¦Ê𝜓Ì + Ë𝜓Ê𝐴¦𝐻¥Ê𝜓Ìµ = ]

ℏ
´Ë𝜓Ê𝐻¥𝐴¦Ê𝜓Ì − Ë𝜓Ê𝐴¦𝐻¥Ê𝜓Ìµ  (9.12) 

?〈.〉U
?O

= ]
ℏ
Ë𝜓ÊÃ𝐻¥𝐴¦ÄÊ𝜓Ì     (9.13) 

Рассмотрение случая 𝒅𝑯
𝒅𝒕

 

 В прошлый раз мы видели, что средняя энергия даже для нестационарного 
состояния сохраняется. 

?〈x〉
?O

= ]
ℏ
Ë𝜓ÊÃ𝐻¥𝐻¥ÄÊ𝜓Ì = 0    (9.14) 

Рассмотрение случая 𝒅𝒙
𝒅𝒕

 

Рассмотрим следующий случай: 
?〈0〉
?O

= ]
ℏ
〈Ã𝐻¥𝑥§Ä〉     (9.15) 

𝐻¥ = i�.

%,
+ 𝑈(𝑥)     (9.16) 

£i�
.

%,
𝑥§¤ = =

%,
(𝑝̂[𝑝̂𝑥§] + [𝑝̂𝑥§]𝑝) = − %i�

%,
𝑖ℏ   (9.17) 

?〈0〉
?O

= 1]
ℏ
𝑖ℏ 〈i�〉

,
= 〈i〉

,
     (9.18) 

Вычисление 𝒅𝒑
𝒅𝒕

. Теорема Эренфеста 

 Рассмотрим, насколько квантовая динамика будет соответствовать классической 
(изучаемой нами в курсе механики): 

?〈i〉
?O

= ]
ℏ
〈Ã𝐻¥𝑝̂Ä〉     (9.19) 

Ã𝐻¥, 𝑝̂Ä = Ã𝑈¥(𝑥)𝑝̂Ä     (9.20) 

Возьмем пробную функцию и подставим к коммутатору: 

𝑈(𝑥) �ℏ
]
?
?0
𝑓(𝑥)� − ℏ

]
?
?0
�𝑈¥𝑓(𝑥)� = 𝑈(𝑥) �− ℏ

]
?
?0
𝑓� �− ℏ

]
?�
?0
� 𝑓(𝑥) (9.21) 

?〈i〉
?O

= ]
ℏ
ℏ
]
〈− ?�(0)

?0
〉}     (9.22) 

Так, мы получили второй закон Ньютона. Однако стоит понимать, что 

− 〈?�(0)
?0

〉 ≠ ?�(〈0〉)
?〈0〉

     (9.23) 
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Такое соответствие будет справедливо (мы будем близки к классическому случаю) когда 
функция будет меняться медленно 

   
Рис. 9.1. Графическое изображение рассматриваемого случая. 

Полученное соотношение носит название теоремы Эренфеста: квантовые уравнения 
движения соответствуют классическим условиям, если волновая функция, по которой 
производится усреднение, удовлетворяет уравнению Шредингера. 

?〈i〉
?O

= 〈− ?�(0)
?0

〉} − для	импульса    (9.24) 

Оператор четности 
 Программа по вычислению зависящей от времени волновой функции понятна: 
необходимо иметь волновую функцию в нулевой момент времени, затем разложить 
волновую функцию по базисным функциям (например, оператора энергии) и собираем 
эту сумму (в этой сумме будут члены, включающие зависимость от времени). Так, если 
есть некоторая функция 𝜓(𝑥, 0), то  

𝜓(𝑥, 𝑡) = ∑ 𝑐A𝜑A(𝑥)𝑒
112ℏ OA     (9.25) 

𝑐A = ∫𝜑A∗(𝑥)𝜓(𝑥, 0) 𝑑𝑥    (9.26) 

|𝑐A|% = 𝒫(𝑛)     (9.27) 
Рассмотрим пример на среднее значение для величины, не фигурировавшей в 
классической физике, - величины, определяющейся оператором четности (четность): 
возникает вопрос, зависит она от времени или нет. Получим формулу для оператора 
четности (𝑃Â): 

𝑃Â𝑓(𝑥) = 𝑓(−𝑥)     (9.28) 

Уравнение на собственные значения оператора: 

𝑃Â𝑓(𝑥) = 𝜆𝑓(𝑥) = 𝑓(−𝑥)    (9.29) 

𝑃Â%𝑓(𝑥) = 𝜆%𝑓(𝑥) = 𝑓(𝑥)    (9.30) 

Тогда собственные значения оператора четности: 

𝜆 = ±1     (9.31) 

Отсюда следует, что все функции, являющиеся либо четными, либо нечетными, 
являются собственными функциями оператора четности, причем четным функциям 
отвечает 

𝜆 = +1 − 𝑓(−𝑥) = 𝑓(𝑥),     (9.32) 
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а нечетным: 

𝜆 = −1 − 𝑓(−𝑥) = −𝑓(𝑥)    (9.33) 

Сохранение четности во времени 

 Теперь проверим, коммутирует ли он с гамильтонианом, и сделаем вывод, 
сохраняется четность во времени или нет. Тогда, если четность сохраняется, то, также 
как и с энергией, можно будет вычислять четность в нулевой момент времени зная, что 
она не будет меняться (не будет зависеть от времен).  

?〈�〉
?0

= ]
ℏ
〈Ã𝐻¥𝑃ÂÄ〉}     (9.34) 

Ã𝐻¥𝑃ÂÄ = Ã𝑈¥(𝑥)𝑃ÂÄ     (9.35) 

[𝑈𝑃]𝑓(𝑥) = 𝑈𝑃𝑓(𝑥) − 𝑃´𝑈𝑓(𝑥)µ    (9.36) 

𝑈𝑓(−𝑥) − 𝑈(−𝑥)𝑓(−𝑥)     (9.37) 

Так, если 𝑈(𝑥) = 𝑈(−𝑥), то ?〈�〉
?O

= 0. 

Задача с конечным потенциалом 

 Рассмотрим задачу, аналогичную задаче с частицей, находящейся в яме, но 
потенциал возьмем конечный. Глубина ямы равна V9. Найдем связанное решение – 
решение, при которых решение будет находиться не выше V9. 

 
Рис. 9.2. Яма с конечным потенциалом. 

Решим стационарное уравнение Шредингера: 

𝐻¥𝜑(𝑥) = 𝐸𝜑(𝑥)     (9.38) 

− ℏ.

%,
𝜑�� + 𝑈(𝑥)𝜑 = 𝐸𝜑(𝑥)     (9.39) 

Преобразуем и запишем в следующем виде: 

𝜑�� + 𝑘%𝜑 = 0     (9.40) 
Вспомним, что для четного (симметричного) потенциала функции могут быть либо 
четные, либо нечетные. 
Область 2: 

𝑘% = %,E
ℏ.

≥ 0      (9.41) 
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Область 1,3: 

𝜑�� + 𝑘�%𝜑 = 0     (9.42) 

𝑘�% = %,(E1�8)
ℏ.

≤ 0     (9.43) 

Введем величину: 

𝑘� = 𝑖𝛼, 𝛼% = %,(�81E)
ℏ.

    (9.44) 

Тогда общее решение: 

𝐴𝑒]+0 + 𝐵𝑒1]+0    (9.45) 

Так, для области 2: 

𝐴 cos(𝑘𝑥) + 𝐵 sin(𝑘𝑥)    (9.46) 

Для области 1,3: 

𝑐𝑒]+� 0 + 𝑑𝑒1]+� 0 = 𝑐𝑒)0 + 𝑑𝑒1)0    (9.47) 

Для области 3: если 𝑥 ≥ /
%
, то решение: 𝐷𝑒1)0. Для области 1: если 𝑥 ≤ − /

%
, то решение: 

𝐷𝑒)0. Запишем решение: 

1) Четное: 

 
Рис. 9.3. Решение для четного случая. 

Ü
𝐴 cos 𝑘 /

%
= 𝐷𝑒1)

B
.

−𝐴𝑘 sin 𝑘 /
%
= −𝛼𝐷𝑒1)

B
.
     (9.48) 

𝑘 /
%
	𝑡𝑔 �𝑘 /

%
� = 𝛼 /

%
     (9.49) 

Введем переменные: 

𝑘 /
%
= 𝜉, 𝛼 /

%
= 𝜂     (9.50) 

𝜉% + 𝜂% = 𝑅% = /.

3
%,E
ℏ.

+ /.

3
%,(�81E)

ℏ.
   (9.51) 

𝑅% = /.

3
%,�8
ℏ.

     (9.52) 

𝜉	𝑡𝑔𝜉=	𝜂     (9.53) 

Так, одновременно должны выполняться (9.52) и (9.53). Проще всего такую систему 
решать графически: 
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Рис. 9.4. Графическое изображение четного решения. 

𝜉% = %,E
ℏ.

     (9.54) 

𝜑�� + +�,(E1�8)
ℏ.

≤ 0     (9.55) 

 
Рис. 9.5. Волновая функция основного состояния. 

𝐸= = ℏ%𝜋%/2𝑚𝑎%     (9.56) 

2) Для нечетного случая необходимо произвести некоторые изменения: так, вместо 
𝑐𝑜𝑠 будет 𝑠𝑖𝑛. Тогда 𝑡𝑔 перейдет в 𝑐𝑡𝑔. Нечетное решение графически будет 
выглядеть следующим образом (рис 9.6). 

 
Рис. 9.6. Графическое изображение четного и нечетного решения. 
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Задача о гармоническом осцилляторе 

 Гармонический осциллятор (ГО) визуально напоминает рассмотренные ямы. 
Потенциальная энергия будет иметь следующую зависимость (рис. 9.7). 

 
Рис. 9.7.  Гармонический осциллятор. 

Частота ГО: 

𝜔% = +
,

     (9.57) 

Уравнение ГО для классического случая: 

𝑥̈ + 𝜔%𝑥 = 0     (9.58) 
Решение: 

𝑥(𝑡) = 𝑥9 cos(𝜔𝑡 + 𝜑9)     (9.59) 

Уравнение на собственные значения оператора Гамильтона: 

𝐻¥𝜑 = �i
.

%,
+ ,#.0.

%
�𝜑(𝑥) = 𝐸𝜑(𝑥)    (9.60) 

Найдем асимптотику для того, чтобы понять, какие решения возможны: 

𝑥 → ∞, 𝜑�� +
%,�E1A,.:.

. �

ℏ.
𝜑 = 0    (9.61) 

𝑥 → ∞, 𝜑�� − ,#.0.

ℏ.
𝜑 = 0     (9.62) 

𝑎[м] = � ℏ
,#

кг∗м/с∗м
кг∗с5G

     (9.63) 

𝜑�� − 0.

//
𝜑 = 0    (9.64) 

𝜑 = 𝑒1
:.

.B.     (9.65) 

𝜑� = 𝜑 �− 0
/.
�     (9.66) 

𝜑�� = 𝜑 �− 0
/.
� �− 0

/.
� + 𝜑 �− =

/.
�    (9.67) 

𝜑 �− 0.

//
� + 𝜑 0.

//
≡ 0     (9.68) 
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Рис. 9.8. Пробная волновая функция. 

Попробуем использовать пробную волновую функцию (𝜑 = 𝐴𝑒1
:.

.B.) для нахождения 
решения основного состояния: для этого подставим функцию в основное уравнение и 
посмотрим, найдется ли такая энергия, для которой это уравнение удовлетворяется: 

𝜑�� +
%,�E1A,.:.

. �

ℏ.
𝑒1

:.

.B. = 0    (9.69) 

Такое уравнение имеет решение только если энергия равна 

𝐸9 =
ℏ#
%

     (9.70) 

Тогда волновая функция основного состояния: 

𝜑(𝑥) = 𝐴𝑒1
:.

.B.    (9.71) 
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Лекция 10. Гармонический осциллятор 

Решение уравнения Шредингера в стационарном случае для гармонического 
осциллятора 

 Продолжим решение стационарного уравнения Шредингера ГО через задачу на 
собственные значения оператора Гамильтона: 

𝐻¥𝜑(𝑥) = 𝐸𝜑(𝑥)     (10.1) 

𝜑�� +
%,�E1A,.:.

. �

ℏ
𝜑 = 0    (10.2) 

𝜑9(𝑥) = 𝐴𝑒1
:.

.B. , 𝑎 = � ℏ
,#

    (10.3) 

Оказалось, что асимптотика удовлетворяет полному уравнению при любых 𝑥. Волновая 
функция удовлетворяет уравнению Шредингера в случае, если 

𝐸 = 𝐸9 =
ℏ#
%
, 𝜔% = +

,
    (10.4) 

Найдем константу 𝐴: 

∫ 𝐴%𝑒1
:.

B.
H
1H 𝑑𝑥 = 1    (10.5) 

∫ 𝑒10.H
1H = √𝜋    (10.6) 

𝑎𝐴%√𝜋 = 1     (10.7) 

𝐴9 =
=

j/√&
     (10.8) 

Физической смысл постоянной (а) 

 Найдем физический смысл константы 𝐴. Раз мы знаем энергию основного 
состояния, запишем энергию для классического осциллятора: 

,#.08.

%
= ℏ#

%
     (10.9) 

𝑥(𝑡) = 𝑥9 cos𝜔𝑡    (10.10) 

𝑥9% =
ℏ
,#

= 𝑎%    (10.11) 

		𝑎 = 𝑥9     (10.12) 

Волновая функция для n-го состояния гармонического осциллятора 

 Основное состояние не имеет узлов, поэтому, зная структуру волновой функции, 
следует образовать узлы и некую волновую функцию, которая будет убывать как 
асимптотическая экспонента. 

 Волновая функция первого возбужденного состояния: 

𝜑=~𝑥𝑒
1 :.

.B.     (10.13) 
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𝜑A(𝑥) = 𝐴A𝐻A �
0
/
� 𝑒1

:.

.B.    (10.14) 

Если подставить функцию в уравнение Шредингера, то получится уравнение для 
полиномов Эрмита. Они являются решениями для случаев, когда 

𝐸A = ℏ𝜔 �𝑛 + =
%
� , 𝑛 = 0,1,2, …     (10.15) 

Формула Родригеса и ее использование 

 Для записи полиномов Эрмита существует формула Родригеса: 

𝐻A(𝜉) = (−1)A𝑒�. ?2

?�2
𝑒1�. , 𝜉 = 0

/
    (10.16) 

𝐴A =
=

j%2∗A!∗/√&
     (10.17) 

𝜑A(𝑥) = 𝐴A𝐻A(𝜉)𝑒
1V. = 𝐴A𝐻A �

0
/
� 𝑒1

:.

.B.   (10.18) 

Проверим, что найденная формула дает константу: 

𝐻9 = 1 ∗ 𝑒�. ∗ 𝑒1�. = 1	    (10.19) 

𝐻= = (−1)=𝑒�. ?
?�
𝑒1� = −𝑒�.𝑒1�.(−2𝜉) = 2𝜉 = 2 0

/
  (10.20) 

Операторный метод 

 Мы не будем доказывать формулу и решать уравнение Шредингера для ГО, а 
применим операторный метод, использующий некие операторы: операторы рождения и 
уничтожения. 

𝑎§𝜑A = 𝜑A1=     (10.21) 

𝑎§k𝜑A = 𝜑Ak=     (10.22) 

𝑎§ = =
√%
�𝜉 + ?

?�
�    (10.23) 

𝑎§k = =
√%
�𝜉 − ?

?�
�    (10.24) 

Так как 𝜉 = 0
/
= 0

m ℏ
A,

, то 

𝑎§
𝑎§ká =

=
√%
â 0�

m ℏ
A,

± ]i�
√,#ℏ

ã    (10.25) 

ä
𝑥§ ]
√%
� ℏ
,#

(𝑎§ + 𝑎§k)

𝑝 = − ]
√%
√𝑚𝜔ℏ(𝑎§ − 𝑎§k)

    (10.26) 

Свойства операторов(коммутаторы) 

 Установим свойства этих операторов: 
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1) [𝑎𝑎k] = 1 

[𝑎§𝑎§k] = å=
%
â 0�

m ℏ
A,

+ ]i�
√,#ℏ

ãâ 0�

m ℏ
A,

− ]i�
√,#ℏ

ãæ =  (10.27) 

= =
%
�− ]

ℏ
[𝑥§𝑝̂] + ]

ℏ
[𝑝̂𝑥§]� = 1  

2) Ã𝑎§k𝑁¥Ä = −𝑎§k 
𝑁¥ = 𝑎§k𝑎§     (10.28) 

Ã𝑎§k𝑁¥Ä = 𝑎§k𝑎§k𝑎§ − 𝑎k𝑎§𝑎§k = 𝑎k(−1) = −𝑎§k  (10.29) 

[𝑎𝑎k] = 1 ⟹ 𝑎𝑎k − 𝑎k𝑎 = 1 ⟹ 𝑎𝑎k = 1 + 𝑎k𝑎  (10.30) 

3) Ã𝑎§𝑁¥Ä = 𝑎§ 

Выражение для гамильтониана 

𝐻¥ = i�.

%,
+ ,#.

%
𝑥§% = ℏ𝜔 �𝑁¥ + =

%
�    (10.31) 

Доказательство для понижающего оператора 

 Покажем, что оператор 𝑎§ является понижающим: 

𝑁¥𝜑A = 𝑛𝜑A     (10.32) 

𝑁¥(𝑎§𝜑A) = ´𝑎§𝑁¥ − 𝑎§𝑁 + 𝑁𝑎µ𝜑A = 𝑎§´𝑁¥ − 1µ𝜑A = 𝑎§(𝑛 − 1)𝜑A = (10.33) 

= (𝑛 − 1)(𝑎𝜑A)  

𝑁𝑎 − 𝑎§𝑁 = Ã𝑁¥𝑎§Ä = −𝑎    (10.34) 

𝑎𝜑A = 𝜑A1=     (10.35) 

Так, действие оператора на 𝜑A приводит к дискретному понижению собственного 
значения оператора 𝑛 на единицу. 

Нахождение минимального собственного значения гамильтониана для 
гармонического осциллятора 

 Найдем минимальное значение 𝑛: 

𝑎§𝜑9 = 0     (10.36) 

𝑁¥𝜑9 = 𝑎k𝑎𝜑9 = 0 = 𝑛,]A𝜑9    (10.37) 

𝑛,]A = 0     (10.38) 

𝐻¥ = ℏ𝜔´𝑁¥ + 1µ     (10.39) 

𝐸A = ℏ𝜔 �𝑛 + =
%
� , 𝑛 = 0,1,2    (10.40) 

Выражение для волновых функций через операторы 

𝑎§𝜑9 = 0     (10.41) 
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𝑎 = =
√%
�𝜉 + ?

?�
�     (10.42) 

𝜉𝜑9 +
?�8
?�

= 0     (10.43) 

𝜑9 = 𝑒1
V.

.      (10.44) 

𝜑A = (𝑎k)A𝜑9     (10.45) 
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Лекция 11. Потенциальный барьер 

Повторение материала с предыдущей лекции 

 Продолжим рассмотрение ГО с помощью операторного метода. В прошлый раз 
мы вывели несколько полезных формул: 

𝑎§𝜑A = 𝜑A1=      (11.1) 

𝑎§k𝜑A = 𝜑Ak=     (11.2) 

𝑎§k𝑎§ = 𝑁¥     (11.3) 

𝑁¥𝜑A = 𝑛𝜑A     (11.4) 
[𝑎𝑎k] = 1      (11.5) 

Средние значения удобно вычислять следующим образом: 

𝑥§ =
m ℏ
A,

√%
(𝑎§ + 𝑎§k)     (11.6) 

𝑝̂ = 𝑖 √ℏ,#
√%

(𝑎§ − 𝑎§k)     (11.7) 

Нахождение среднего и среднеквадратичного отклонения для координаты и 
импульса 

〈𝑥〉�2 = ⟨𝜑A|𝑥§|𝜑A⟩ =
m ℏ
A,

√%
⟨𝜑A|𝑎§ + 𝑎§|𝜑A⟩ =   (11.8) 

= ⟨𝜑A|𝜑A1=⟩ + ⟨𝜑A|𝜑Ak=⟩ = 0 

⟨𝜑A|𝜑,⟩ = 𝛿A,     (11.9) 

〈𝑝̂〉 = ⟨𝜑A|𝑝̂|𝜑A⟩ = −𝑖 √ℏ,#
√%

⟨𝜑A|𝑎§ + 𝑎§|𝜑A⟩ = 0   (11.10) 

Вычисление среднего от квадратов координаты и импульса, и стандартного 
отклонения 

〈𝑥%〉 =
ℏ
A,
%
Ë𝜑AÊ𝑎% + 𝑎𝑎k + 𝑎k𝑎 + 𝑎k

%Ê𝜑AÌ =   (11.11) 

=
ℏ
A,
%
Ë𝜑AÊ2𝑁¥ + 1Ê𝜑AÌ =

ℏ
,#

�𝑛 + =
%
�  

𝑎𝑎k + 𝑎k𝑎 = 𝑁¥     (11.12) 
[𝑎𝑎k] = 1     (11.13) 

𝑎𝑎k = 𝑎k𝑎 + 1     (11.14) 

X〈∆𝑥%〉 = � ℏ
,#

�𝑛 + =
%
�    (11.15) 

〈𝑝̂%〉 = − ℏ,#
%

= Ë𝜑AÊ𝑎§% − 𝑎§𝑎§k − 𝑎§k𝑎§ + 𝑎§k
%Ê𝜑AÌ = ℏ𝑚𝜔�𝑛 + =

%
� (11.16) 
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∆𝑝 = X〈𝑝̂%〉 = �ℏ𝑚𝜔 �𝑛 + =
%
�   (11.17) 

∆𝑝∆𝑥 = ℏ �𝑛 + =
%
�    (11.18) 

Получение средней энергии 

 Средняя кинетическая энергия: 

〈𝑇〉 = 〈i.〉
%,

= ℏ#
%
�𝑛 + =

%
� = 〈E〉

%
   (11.19) 

Потенциальная энергия: 

〈𝑈〉 = ,#.〈0.〉
%

= ℏ#
%
�𝑛 + =

%
� = 〈E〉

%
   (11.20) 

Очевидно, что средняя кинетическая энергия равна средней потенциальной, а в сумме 
они дают полную энергию. 

Принцип соответствия между классическим гармоническим осциллятором и 
квантовым 

 Квантовая плотность вероятности: 

𝜌квант(𝑥) = |𝜑A(𝑛)|%     (11.21) 

Классическая плотность вероятности: 

𝑑𝑃класс(𝑥, 𝑥 + 𝑑𝑥) =
?O
'
= ?0

0'
    (11.22) 

 
Рис. 11.1. Основное состояние ГО и классическая плотность вероятности. 

𝑥 = 𝐴 cos𝜔𝑡     (11.23) 

𝑥 = −𝐴𝜔 sin𝜔𝑡    (11.24) 
?�
?0
= 𝜌класс(𝑥) =

=
%&√..10.

    (11.25) 

При больших  𝑛 квантовая плотность вероятности соответствует классической. 
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Рис. 11.2. Плотность вероятности квантового ГО. 

 Нестационарные состояния гармонического осциллятора 

 Рассмотрим еще один важный момент, связанный с нестационарными 
состояниями ГО. Ранее мы рассматривали нестационарные состояния, когда брали два 
состояния – основное и возбужденное – в квантовой яме. Тогда мы показали, что 
суперпозиция для двух состояний ГО: 

𝜓(𝑥, 𝑡) = =
√%
𝜑A(𝑥) exp �−

]
ℏ
𝐸A𝑡� +

=
√%
𝜑,(𝑥) exp �−

]
ℏ
𝐸,𝑡� (11.26) 

|𝜓(𝑥, 𝑡)|% = =
%
|𝜓A(𝑥)|% +

=
%
|𝜓,(𝑥)|% + 𝜑A(𝑥)𝜑,(𝑥) cos(𝜔A,𝑡)  (11.27) 

Плотность вероятности осциллирует с разной частотой. 

𝜔A, = �E21EA
ℏ

�    (11.28) 

〈𝑥〉 = ∫ ¹𝑥 =
%
|𝜑A(𝑥)|% + 𝑥

=
%
|𝜑,(𝑥)|% + 𝜑A(𝑥)𝑥𝜑,(𝑥) cos(𝜔A,𝑡)á

H
1H 𝑑𝑥 =  (11.29) 

= ∫ 𝜑A∗(𝑥)𝑥𝜑,(𝑥) cos(𝜔A,)
H
1H 𝑑𝑥 = ⟨𝜑A|𝑥|𝜑,⟩~⟨𝜑A|𝑎§ + 𝑎§k|𝜑,⟩ ≠ 0, 𝑚 = 𝑛 ± 1  

 
Рис. 11.3. Переходы между уровнями для ГО. 

 Рассмотрим нестационарные состояния ГО, образованные суперпозицией 
нескольких стационарных состояний. 
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Рис. 11.4. Нестационарные состояния ГО. 

 Нестационарные состояния получаются в результате суммирования 
(суперпозиции) стационарных состояний с некоторыми коэффициентами. Квадраты 
коэффициентов равны вероятности соответствующих состояний. Если вероятности 
подчиняются распределению Пуассона, то реализуется Глауберовское когерентное 
состояние квантового осциллятора – состояние, при котором произведение 
неопределенностей координаты и импульса принимает минимально возможное 
значение. В этом состоянии волновой пакет не расплывается, и его центр движется по 
классической траектории. Модель ГО лежит в основе многих физических моделей. 
Рассмотрение рассеяния частицы на потенциальном барьере 

 До этого мы рассматривали связанные состояния (ГО, модель бесконечной и 
конечной ямы), - все наблюдаемые энергии были дискретными. Рассмотрим 
распространение частицы (или волны, исходя из корпускулярно-волнового дуализма) и 
ее рассеяние на некотором потенциальном центре. 

 Простейшая задача: падение частицы на ступеньку. Коэффициент отражения: 

𝑅 = �отр
�пад

      (11.30) 

Коэффициент пропускания: 

𝑇 = �прош
�пад

     (11.31) 

 
Рис. 11.5. Графическое изображение ступеньки. 



 

 ВВЕДЕНИЕ В КВАНТОВУЮ ФИЗИКУ 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

88 
 
 

 

Нам потребуется величина, аналогичная интенсивности (средней плотности потока 
энергии). 

 
Рис. 11.6. Заряд 𝑞. 

?�
?O
= ? ∫MZ?[

?O
= −∮ 𝚥�ooo⃗ 𝑠,     (11.32) 

где 𝑗� – плотность электрического тока. 

𝜌� = 𝑞|𝜓|% = 𝑞𝜌    (11.33) 

Уравнение непрерывности для плотности вероятности: 
?
?O
𝜌 = −∫ 𝚥�ooo⃗ 𝑠,     (11.34) 

где 𝚥 - плотность тока вероятности. Воспользуемся временным значением Шредингера: 

𝑖ℏ ?}
?O
= − ℏ.

%,
∇%𝜓 + 𝑈(𝑥)𝜓    (11.35) 

Сопряженное уравнение: 

−𝑖ℏ ?}∗

?O
= − ℏ.

%,
∇%𝜓∗ + 𝑈(𝑥)𝜓∗   (11.36) 

Так как 𝜌 = 𝜓∗𝜓 , домножим (11.35) на 𝜓∗ и вычтем одно из другого: 

𝑖ℏ ?
?O
(𝜓∗𝜓) = − ℏ.

%,
(𝜓∗∇%𝜓 + 𝜓∇%𝜓∗)   (11.37) 

?
?O
(𝜓∗𝜓) = − ℏ

%,]
(∇[𝜓∗∇𝜓 − 𝜓∆𝜓∗])   (11.38) 

Пусть £ ℏ
%,]

𝜓∗∇𝜓 − 𝜓∆𝜓∗¤ = 𝚥. Тогда 

?M
?O
= −∇oo⃗ 𝚥, 𝚥 = ℏ

%,]
(𝜓∗∇𝜓 − 𝜓∇𝜓∗)   (11.39) 

Определим коэффициенты: 

𝑅 = �отр
�пад

     (11.40) 

𝑇 = �прош
�пад

     (11.41) 

Напишем, чему равно 𝑗 для следующей волны: 

𝜓(𝑥) = 𝐴𝑒]+0     (11.42) 

𝑗 = ℏ.∗.
%,]

´𝑒1]+0(𝑖𝑘)𝑒]+0 − 𝑒]+0(−𝑖𝑘)𝑒1]+0µ = |𝐴|% ℏ+
{⃗

,
= |𝐴|%𝑣⃗ (11.43) 
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Так, выражение совпадает с классическим, для плоской волны: 

𝐼 = 𝑐 G8E
{⃗8.

%
     (11.44) 

Задача (о частице и потенциальном барьере) 

 Рассмотрим первый случай, когда 𝐸 > 𝑈9. Тогда выражение Шредингера в обеих 
областях будет одинаковым, различаться будут только константы. 

𝜓�� + 𝑘%𝜓 = 0    (11.45) 
Первая область: 

𝑘=% =
%,E
ℏ.

     (11.46) 

Вторая область: 

𝑘%% =
%,(E1�8)

ℏ.
     (11.47) 

 
Рис. 11.7. Графическое изображение рассматриваемой задачи. 

Общее решение в первой области: 

𝜓=(𝑥) = 𝐴=𝑒]+G0 + 𝐵=𝑒1]+G0   (11.48) 

Общее решение во второй области: 

𝜓%(𝑥) = 𝐴%𝑒]+.0 + 𝐵𝑒1]+.0    (11.49) 

𝜓=(0) = 𝜓%(0)     (11.50) 

𝜓=� (0) = 𝜓%� (0)     (11.51) 

ê 𝐴= + 𝐵= = 𝐴%
𝐴=𝑘= − 𝐵=𝑘= = 𝐴%𝑘%

    (11.52) 

𝑗 = |𝐴|% ℏ+
,

     (11.53) 

Найдем коэффициенты отражения и пропускания: 

𝑅 = ë�G	отр
.G	пад

ë
%
, 𝑇 = �..

.G
�
%
	+.
+G

    (11.54) 

𝑅 = �+G1+.
+Gk+.

�
%
, 𝑇 = 3+G+.

(+Gk+.).
    (11.55) 

𝑅 + 𝑇 = 1     (11.56) 
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Задача (рассмотрение второго случая) 

 Рассмотрим следующий результат, который можно получить из тех же формул, 
но используя соотношение для частицы с энергией 𝐸 < 𝑈9. 

 
Рис. 11.8. Графическое изображение рассматриваемой задачи. 

𝑘=% =
%,E
ℏ.

     (11.57) 

𝑘% = 𝑖𝑞, 𝑞% = %,(�81E)
ℏ.

    (11.58) 

Коэффициенты отражения и пропускания: 

𝑅 = �+G1]�
+Gk]�

�
%
= 1    (11.59) 

𝑇 = 0      (11.60) 

Оценим, на какую глубину волновая функция будет заходить в область ступеньки: 

𝜌(𝑥) = 𝜌(0)𝑒1%�0    (11.61) 

𝑒1%�w = 𝑒1=     (11.62) 

Так, глубина: 

𝑙 = =
%�

      (11.63) 

Выполним оценку: 

𝑞 = j%∗=95083∗=,R∗=95GC

=950/
= 10=9	м1=   (11.64) 

Рассмотрение потенциала-ступеньки 

 В случае с барьером-ступенькой можно рассматривать два случая: когда больше 
или меньше высоты барьера. 

 
Рис. 11.9. Барьер-ступенька. 

Для решения необходимо будет написать волновые функции для трех областей (первая 
и третья области одинаковы). Так, для первой и третьей областей: 
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𝜓=,2�� + 𝑘=%𝜓=,2 = 0, 𝑘= =
√%,E
ℏ

     (11.65) 

𝜓=(𝑥) = 𝑒]+G0 + 𝐴отр𝑒1]+G0     (11.66) 

𝜓2(𝑥) = 𝐴прош𝑒]+G0     (11.67) 

Для второй области: 

𝜓%�� + 𝑘%%𝜓% = 0     (11.68) 

𝜓%(𝑥) = 𝐵𝑒]+.0 + 𝐶𝑒1]+.0     (11.69) 

Если 𝐸 > 𝑈9, то 

𝑘% =
j%,(E1�8)

ℏ
     (11.70) 

Если 𝐸 < 𝑈9, то 

𝑘% → 𝑖𝑞, 𝑞 = j%,(�81E)
ℏ

     (11.71) 

𝐴прош, 𝐴отр, 𝐵	и	𝐶 находятся из условий непрерывности функции и ее первой 
производной в точках 𝑥 = 0, 𝑥 = 𝑎. 

 Коэффициент пропускания определяется двумя формулами: 

𝑇 = ä

3+G.+..

3+G.+..k�+G.1+..�
.
rst.(+./)

, при	𝐸 ≥ 𝑈9
3+G.�.

3+G.�.k�+G.k�.�
.
	�`.(�/)

, при	0 < 𝐸 < 𝑈9
   (11.72) 

Если барьер является достаточно высоким (𝑞 ≫ 𝑘=) и широким (𝑞𝑎 ≫ 1), то формула 
может быть упрощена до следующего выражения: 

𝑇 ≈ =R+G.

�.
𝑒1%�/ = =RE

�81E
exp �− %

ℏ
X2𝑚(𝑈9 − 𝐸) ∗ 𝑎�  (11.73) 

Если использовать этот коэффициент, то коэффициент пропускания может быть записан 
в следующем виде: 

𝑇 = �.0
.G
�
%
≈ 𝑇9 exp �−2𝑎�

%,(�81E)
ℏ.

�   (11.74) 

𝑇9 =
=RE(�81E)

�8.
≈ 1     (11.75) 

𝑈 − 𝐸 ≈ 1	эв     (11.76) 

Если a ≈ 101=9м, то 𝑇 ≈ 0,3, если a ≈ 101\м, то 𝑇 ≈ 1014. Эти значения используются 
в соответствующем устройстве (сканирующем туннельном микроскопе), 
чувствительность которого будет определяться высокой чувствительностью к толщине 
барьера. 

Сканирующий туннельный микроскоп 

 Микроскоп устроен следующим образом (рис. 11.10): 
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Рис. 11.10. Сканирующий туннельный микроскоп. 

𝛼 = j%,(�81E)
ℏ.

    (11.77) 

Относительное изменение коэффициента пропускания: 

𝑇~exp(−2𝛼𝑎)    (11.78) 

∆𝑇 = −2𝛼 exp(−2𝛼𝑎)    (11.79) 
∆'
'
= −2𝛼∆𝑎     (11.80) 

Таким микроскопом можно цеплять отдельные атомы и раскладывать по некой 
поверхности (рис. 11.11): 

     
Рис. 11.11. Процесс сборки атомов железа на поверхности из меди. 

Рассмотрение барьера конечной ширины 

 Если же барьер имеет конечную ширину, то его следует разбить на тонкие слои 
(рис. 11.12). 
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Рис. 11.12. Барьер конечной ширины. 

Тогда интегральное пропускание всего слоя будет происходить от 𝑥=(точка возврата) до 
𝑥% (вторая точка возврата). Далее все барьеры суммируются, а их коэффициенты 
пропускания складываются. 

𝑇 ≈ exp�−2𝑎	�%,(�81E)
ℏ.

�    (11.81) 

𝑇 ≈ 𝑇= ∗ 𝑇% ∗ 𝑇2 ∗ 𝑇3 ∗ …    (11.82) 

ln 𝑇 = ln 𝑇= + ln𝑇% + ln𝑇2 + ln𝑇3 +⋯   (11.83) 

ln 𝑇A ≈ −2�%,(�(02)1E)
ℏ.

𝑑𝑥A    (11.84) 

ln 𝑇 ≈ −2∫ 𝑑𝑥0.
0G

�%,(�(0)1E)
ℏ.

    (11.85) 

𝑇 ≈ exp�−2∫ 𝑑𝑥0.
0G

	�%,(�(0)1E)
ℏ.

�    (11.86) 
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Лекция 12. Альфа-распад. Оператор момента импульса 

Повторение коэффициента пропускания 

 Ранее мы получили формулу, определяющую коэффициент пропускания барьера 
произвольной формы (𝑈0).  

 
Рис. 12.1. Барьер произвольной формы (𝑈0). 

Частица падает на барьер с энергией 𝐸. Тогда коэффициент пропускания равен 

𝑇 ≈ exp ¹− %
ℏ∫ 𝑑𝑥0.

0G
X2𝑚(𝑈(𝑥) − 𝐸)á   (12.1) 

Задача (протон-протонный цикл на солнце) 

 Мы получаем энергию от солнца, а оно, в свою очередь черпает энергию в 
результате ядерной реакции. 

 
Рис. 12.2. Протон-протонный цикл. 

4𝐻= → 𝐻𝑒3     (12.2) 

𝑝 + 𝑝 → 𝐻	% + 𝑒k + 𝑣B + 0,4	МэВ    (12.3) 

С классической точки зрения такое соединение двух протонов невозможно. 
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Рис. 12.3. Кулоновский барьер. 

Оценим коэффициент пропускания и посчитаем ширину барьера (рис. 12.3): 

𝑇 ≈ exp �− %
ℏ ∫ 𝑑𝑟(?

([
�2𝑚�B

.

(
− 𝐸�ð = exp ¹− %

ℏ∫ 𝑑𝑟(?
([

√2𝑚𝑒%𝑟1
G
.á = (12.4) 

= exp ê− 3
ℏ
X2𝑚𝑒%𝑟< �1 − �

([
(?
�ñ = exp �− 3

ℏ
�%,B/

E
ð =  

= exp �−�E\
E
�
G
.ð ≈ exp�−�E\

E
� ≈ 𝑒1%% ≈ 3 ∗ 101=9  

𝑒% → B.

3&G8
     (12.5) 

𝐸 = B.

(?
      (12.6) 

𝐸� =
=R
ℏ.

,FB/

%
%
%
= 32,F

,]
𝑅𝑦 ≈ 800	кэВ	(≈ 500	кэВ)   (12.7) 

𝑅𝑦 = ,]B/

%ℏ.
= 13,6	эВ     (12.8) 

𝑀солнца = 2 ∗ 1029	кг    (12.9) 

Проблема альфа-распада 
 Радиоактивный распад был открыт Антуаном Анри Беккерелем вместе с Кюри в 
1986 году, в 1903 они получили Нобелевскую премию по физике «В знак признания 
выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности». 
Проблема заключается в том, что период полураспада меняется от 101R секунды до 10=9 
лет при изменении энергии 𝛼-частиц всего от 8 до 4 МэВ. 
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Рис. 12.4. Периоды полураспада. 

Теория альфа-радиоактивности 

 Одна из теорий, объясняющих этот эффект, основана на расчете коэффициента 
пропускания приблизительно как для протон-протонного цикла. 

  
Рис. 12.5. Туннельный барьер. 

𝐸) = 𝑈(𝑟=) =
=

3&G8

%B.(;1%)
(G

     (12.10) 

𝑅𝑎44
	 %2R, 𝑅 ≈ 7,3 ∗ 101=U	м     (12.11) 

𝐸) = 4,78	Мэв, 𝑟= = 50 ∗ 101=U	м    (12.12) 

Получим связь коэффициента пропускания с периодом полураспада: 

𝑑𝑁 = −𝑁𝜆𝑑𝑡,      (12.13) 

где 𝜆 – вероятность распада в единицу времени. 

𝑁 = 𝑁9𝑒1$O     (12.14) 
@8
%
= 𝑁9𝑒1$O     (12.15) 
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𝜏 =  t %
$

     (12.16) 

Свяжем 𝜆 с коэффициентом пропускания. Будем считать, что частица в ядре делает 
попытки пройти барьер, имеющий ширину от размера ядра до 𝑟=. Тогда 

𝜆 = 𝑇 =
d/[

= ℏ
d.,^

     (12.17) 

𝑅@𝑚)𝑣 ≈ ℏ     (12.18) 

 
Рис. 12.6. Графическое изображение рассматриваемого случая. 

𝜏 =  t %d.,^
'ℏ

     (12.19) 

Так, теория 𝛼-радиоактивности может быть объяснена на основании эффекта 
туннелирования, отсутствующего в классической физике (поэтому, она не была бы 
способна объяснить 𝛼-распад). Туннулированием объясняются многие другие эффекты, 
в частности, проводимость электронов в металле (так как электрон переходит из одного 
кулоновского потенциала, определяемого ионом, в другой). 

Оператор момента импульса 

 Ранее мы рассматривали оператор координаты и оператор импульса. 
Существенным, особенно для трехмерного движения, является оператор момента 
импульса. Рассмотрим, каким образом можно его ввести, и к каким соотношениям это 
рассмотрение приводит. В классической физике, момент импульса: 

𝐿o⃗ = [𝑟𝑝⃗]     (12.20) 

Переход к квантовой физике происходит таким образом, что соответствующие величины 
формулы заменяются на операторы. Так, 

𝐿Â = õ
𝚤 𝚥 𝑘o⃗
𝑥 𝑦 𝑧
ℏ
]
?
?0

ℏ
]
?
?:

ℏ
]
?
?;

õ,     (12.21) 

где  ℏ
]
?
?0
= 𝑝̂0 , 

ℏ
]
?
?:
= 𝑝̂: ,

ℏ
]
?
?;
= 𝑝̂;. 

𝐿Â0 = 𝑦𝑝̂; − 𝑧𝑝̂:     (12.22) 

Аналогичным образом можно получить 𝐿Â:	и	𝐿Â;. Операторы (𝐿Â0 , 𝐿Â: , 𝐿Â;) не коммутируют 
друг с другом. 

Ã𝐿Â0𝐿Â:Ä = 𝑖ℏ𝐿Â;     (12.23) 
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Ã𝐿Â;𝐿Â:Ä = 𝑖ℏ𝐿Â0     (12.24) 

Ã𝐿Â0𝐿Â;Ä = 𝑖ℏ𝐿Â:     (12.25) 

Соотношения говорят о том, что мы не можем одновременно точно знать проекции 
углового момента. Так, направление углового момента/момента импульса в квантовой 
механике неопределенно. Рассмотрим величину 𝐿Â%: 

𝐿Â% = 𝐿Â0% + 𝐿Â:% + 𝐿Â;%      (12.26) 

Используя коммутационные соотношения получим, что 𝐿Â% коммутирует с любой 
проекцией: 

Ã𝐿Â%𝐿Â;Ä = 0      (12.27) 

Ã𝐿Â%𝐿Â0Ä = 0      (12.28) 

Ã𝐿Â%𝐿Â:Ä = 0      (12.29) 

Это означает, что мы не можем точно измерить проекции, но можем одновременно точно 
измерить величину 𝐿Â%  и одну из проекций. В дальнейшем в качестве системы 
коммутирующих операторов выбираем операторы 𝐿Â%	и	𝐿Â;. Перейдем к сферическим 
координатам и рассмотрим собственные значения и собственные функции оператора 𝐿Â;: 

 
Рис. 12.7.  Сферические координаты оператора. 

𝑥 = 𝑟 sin 𝜃 cos𝜑     (12.30) 

𝑦 = 𝑟 sin 𝜃 sin𝜑     (12.31) 

𝑧 = 𝑟 cos 𝜃      (12.32) 

Для оператора 𝑧 можно использовать некие сферические соображения: 

𝑥 → 𝜑       (12.33) 

𝑝0 → 𝐿0      (12.34) 

𝑣0 → 𝜔      (12.35) 

𝑇 = �#.

%
, ?'
?�̇
= 𝐼𝜔 = 𝐿;     (12.36) 
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𝑝0 = −𝑖ℏ ?
?0
⟹ 𝐿0 = −𝑖ℏ ?

?�
    (12.37) 

Собственные функции и собственные значения оператора 𝑳𝒛 
 Решим задачу на собственные функции и собственные значения оператора: 

−𝑖ℏ ?
?�
𝜓>M = 𝐿Â;𝜓>M = 𝐿;𝜓>M    (12.38) 

𝜓>M = 𝐴𝑒]
_M
ℏ �      (12.39) 

Получим нормировочную константу: 

∫ 𝜓>M
∗ 𝜓>M

%&
9 𝑑𝜑 = ∫ |𝐴|%%&

9 𝑑𝜑    (12.40) 

𝜓>M =
=

√%&
𝑒]

_M
ℏ �     (12.41) 

𝜓>M(𝜑 + 2𝜋) − 𝜓>M(𝜑) ⟹
>M
ℏ
2𝜋 = 2𝜋𝑚, 𝑚 = 0,±1,±2,…   (12.42) 

𝐿; = 𝑚ℏ      (12.43) 

 
Рис. 12.8. Графическое изображение рассматриваемого случая (пространственное 

квантование). 

� 𝐿Â;𝜓w, = 𝑚ℏ𝜓w,
𝐿Â%𝜓w, = ℏ%𝑙(𝑙 + 1)𝜓w,

    (12.44) 

〈𝐿%〉 = 〈𝐿0% 〉 + 〈𝐿:% 〉 + 〈𝐿;%〉 = 3〈𝐿;%〉    (12.45) 

〈𝐿;%〉 = ℏ%〈𝑚%〉 = ℏ% %∑ ,.`
A7G
%wk=

= ℏ% %w(wk=)(%wk=)
%wk=∗R

   (12.46) 

〈𝐿%〉 = 𝐿% = ℏ%3 w(wkA)
2

= ℏ%𝑙(𝑙 + 1)    (12.47) 

𝐿%𝜓w, = ℏ%𝑙(𝑙 + 1)     (12.48) 

|𝐿| = ℏX𝑙(𝑙 + 1)     (12.49) 
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Так, пространственное квантование можно представлять в виде (рис. 12.8), собственные 
значения оператора 𝐿% равно целым числам, число 𝑚 называется магнитным (так как оно 
связано с магнитным моментом, присущим орбитальному движению частицы), а 𝑙 – 
орбитальным квантовым числом. 

Магнитный момент 
 Рассмотрим движение электрона: 

 
Рис. 12.9. Движение электрона. 

Магнитный момент, связанный с движением частицы, – это некий ток. Сам магнитный 
момент определяется следующим образом. 

𝜇⃗ = 𝐼 ∑𝑛o⃗ = − B[
%&(

𝜋𝑟% = − B
%,
𝐿o⃗ = − Bℏ

%,
>{⃗

ℏ
= −𝜇�

>{⃗

ℏ
  (12.50) 

По условию боровского квантования: 

𝑚𝑣𝑟 = ℏ = 𝐿      (12.51) 

𝑣 = >
,(

       (12.52) 

𝜇� = 0,927 ∗ 101%2	[Дж/Тл]    (12.53) 

𝐸 = −´𝜇 ∗ 𝐵o⃗ µ      (12.54) 

Опыт Штерна-Герлаха 

 Так, можно сделать прибор, который будет регистрировать и измерять магнитные 
моменты. Такой прибор называется магнитом Штерна-Герлаха, и такие эксперименты по 
измерению магнитного момента были проведены в 1922 году (в частности, в 
классических опытах Штерна-Герлаха). Магнит создает неоднородное поле за счет того, 
что один наконечник острый, а другой – более плавный. 
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Рис. 12.10. Сечение магнита Штерна-Герлаха. 

Известно, что в неоднородном магнитном поле возникает сила, действующая на 
магнитный момент. 

𝐹 = 𝜇; =
?�
?;

     (12.55) 

2𝑠 + 1 = 2     (12.56) 

 
Рис. 12.11. Схема установки для опыта Штерна-Герлаха. 

Так, если посылать из некоторой печки/нагревателя атомы (рис. 12.11), и они будут 
иметь электроны, обладающие орбитальным моментом, то мы должны иметь несколько 
пучков (на которые будет разделяться исходный пучок). К удивлению 
экспериментаторов, что есть ситуации, когда наблюдается не нечетное число, а четное. 
Тогда, по классической теории, никакого расщепления быть не должно. 

 Гаудсмитом и Уленбеком была выдвинута гипотеза, согласно которой электрон 
обладает собственным механическим моментом – спином (s). Поскольку компоненты 
две, то  

2𝑠 + 1 = 2, 𝑠 = =
%
     (12.57) 

Также в эксперименте было установлено следующее: 

𝜇>M = −𝑔𝜇�𝑚w , 𝑔 = 1    (12.58) 

𝜇�M = −𝑔�𝜇�𝑚� = ±𝜇� , 𝑔� = 2    (12.59) 
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Рис. 12. 12. Пространственное квантование для спина. 

Ã𝑆¦0𝑆¦:Ä = 𝑖ℏ𝑆¦;     (12.60) 

Ã𝑆¦;𝑆¦0Ä = 𝑖ℏ𝑆¦:     (12.61) 

Ã𝑆¦:𝑆¦;Ä = 𝑖ℏ𝑆¦0     (12.62) 

Ã𝑆¦%, 𝑆]Ä = 0, 𝑖 = 𝑥, 𝑦, 𝑧    (12.63) 

Для описания спина можно ввести следующие базисные векторы: 

𝜒k ≡ |↑⟩ ≡ |+𝑧⟩	и	|−𝑧⟩    (12.64) 

|+𝑧⟩ = �10� , |−𝑧
⟩ = �01�    (12.65) 

Векторы ортогональны: 

⟨−𝑧|+𝑧⟩ = (01) �10� = 0	1 + 1	0 = 0   (12.66) 

По этому базису можно разложить любое состояние спина. 

𝜒 = 𝑎=𝜒k + 𝑎%𝜒1    (12.67) 

Найдем оператор 𝑆¦;: 

𝑆¦;|+𝑧⟩ =
ℏ
%
|+𝑧⟩    (12.68) 

𝑆¦;|−𝑧⟩ = − ℏ
%
|−𝑧⟩    (12.69) 

�
´𝑆¦;µ== (𝑆;)=%
(𝑆;)%= (𝑆;)%%

� �10� =
ℏ
%
�10�   (12.70) 

𝑆¦; =
ℏ
%
�1 0
0 −1�    (12.71) 

Такая матрица имеет название 𝜎;. Аналогичные матрицы можно выписать для 𝑆¦0	и	𝑆¦:. 

Лекция 13. Квантовое описание системы многих частиц 

Повторение предыдущего материала (оператор 𝑺𝒛) 
 Ранее мы выбрали базис для оператора спина в виде векторов 
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𝑆¦; �
1
0� =

ℏ
%
�10�      (13.1) 

𝑆¦; �
0
1� = − ℏ

%
�01�     (13.2) 

и показали, что эти векторы являются собственными векторами оператора 𝑆¦;, который 
представляет собой 

𝑆¦; = 𝜎§;,      (13.3) 

где 𝜎§; = �1 0
0 −1�. 

Получение матриц для оператора 𝑺𝒙 

 Рассмотрим получения матриц, соответствующих оператору 𝑆¦0: 

|+𝑥⟩ = =
√%
|+𝑧⟩ + =

√%
|−𝑧⟩ = =

√%
�11�    (13.4) 

Запишем уравнения на собственные векторы и собственные значения оператора. Так, для 
|+𝑥⟩: 

𝑆¦0
=
√%
�11� =

ℏ
%
=
√%
�11�     (13.5) 

|−𝑥⟩ = =
√%
|+𝑧⟩ − =

√%
|−𝑧⟩     (13.6) 

⟨−𝑥|+𝑥⟩ = 0      (13.7) 

Запишем второе уравнение (для |−𝑥⟩): 

𝑆¦0
=
√%
� 1−1� = − ℏ

%
� 1−1�

=
√%

    (13.8) 

Тогда уравнения в матричном виде: 

�
(𝑆0)== (𝑆0)=%
(𝑆0)%= (𝑆0)%%

� � 1−1� = − ℏ
%
�11�    (13.9) 

Матричное уравнение для (|−𝑥⟩) записывается следующим образом: 

´𝑆¦0µ== ∗ 1 − (𝑆0)=% ∗ 1 = − ℏ
%
∗ 1    (13.10) 

Для |+𝑥⟩: 

(𝑆0)== ∗ 1 − (𝑆0)=% ∗ 1 =
ℏ
%
∗ 1    (13.11) 

𝑆== = 0     (13.12) 

(𝑆0)=% = 1 ∗ ℏ
%
      (13.13) 

𝑆0	%% = 0      (13.14) 

𝑆0	%= = 1 ∗ ℏ
%
      (13.15) 

Так, матрица 𝑆¦0 будет выглядеть так: 
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𝑆¦0 =
ℏ
%
�0 1
1 0� =

ℏ
%
𝜎§0,     (13.16) 

где 𝜎§0 – матрица Паули. 

Рассмотрение спина по y и матриц для оператора 𝑺𝒚 

 Выполним аналогичные операции для 𝑆¦:: 

|+𝑦⟩ = =
√%
|+𝑧⟩ + ]

√%
|−𝑧⟩    (13.17) 

|−𝑦⟩ = =
√%
|+𝑧⟩ − ]

√%
|−𝑧⟩    (13.18) 

Получим соответствующие векторы: 

|+𝑦⟩ = =
√%
�𝑖1�      (13.19) 

|−𝑦⟩ = =
√%
�−𝑖1 �     (13.20) 

Матричные уравнения: 

𝑆¦:|+𝑦⟩ =
ℏ
%
|+𝑦⟩     (13.21) 

𝑆¦:|−𝑦⟩ = − ℏ
%
|−𝑦⟩     (13.22) 

Так, матрица 𝑆¦:: 

𝑆¦: =
ℏ
%
�0 −𝑖
𝑖 0 � =

ℏ
%
𝜎§:    (13.23) 

Запись матриц Паули 
 Так, мы получили все три матрицы Паули: 

𝜎§0 = �0 1
1 0� , 𝜎§: = �0 −𝑖

𝑖 0 � , 𝜎§; = �1 0
0 −1�  (13.24) 

С их помощью можно записывать гамильтониан для частицы со спином. 
Рассмотрение изменения гамильтониана при внесении частицы в магнитное поле 

 Вспомним, как будет меняться гамильтониан, если внести спин в магнитное поле. 
Если не вносить его в магнитное поле, то частицу, движущуюся в положительном 
направлении 𝑥 и имеющую волновое число 𝑘 и некую энергию 𝐸, можно записать 
следующим образом (пусть частица-электрон поляризована так, что ее проекция на ось 
𝑧 равна ℏ

%
): 

𝜓+P(𝑥, +) =
=

√%&
𝑒]+0 �10�    (13.25) 

Энергия для такой волновой функции будет соответствовать энергии свободной 
частицы: 

𝐸 = ℏ.+.

%,
     (13.26) 
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Посмотрим, что произойдет, если поместить такую частицу в магнитное поле. Для этого 
запишем гамильтониан с учетом магнитного поля: 

𝐻¥� = −´𝜇⃗𝐵o⃗ µ     (13.27) 

𝜇̂ = −𝑔�𝜇�
Q⃗
ℏ
= −𝜇�𝜎⃗, 𝑔� = 2   (13.28) 

𝐻� = 𝜇�´𝜎⃗𝐵o⃗ µ = 𝜇�´𝜎⃗0 ∗ 𝐵0 + 𝜎⃗:𝐵: + 𝐵;µ   (13.29) 

Выберем магнитное поле по оси 𝑧 и преобразуем (13.29): 

𝐵o⃗ = (0,0, 𝐵)     (13.30) 

𝐻¥� = 𝜇�𝐵𝜎⃗;     (13.31) 

𝐸� = 𝜇�𝐵 �
1 0
0 −1� �

1
0� = 𝜇�𝐵 �

1
0�    (13.32) 

𝐻¥ = 𝐻9 + 𝐻�     (13.33) 

𝐻¥𝜓 = 𝐸𝜓     (13.34) 

𝐸 = 𝐸9 + 𝐸�     (13.35) 

𝐸� = 𝜇�𝐵     (13.36) 

Видно, что энергия для спина «вверх» увеличилась.  Если бы волновая функция для 
частицы была поляризована по  |−𝑧⟩, то  

𝐸� = 𝜇�𝐵 �
1 0
0 −1� �

0
1� = −𝜇�𝐵    (13.37) 

Получение формулы для вычисления вероятности наблюдения спина при 
произвольной ориентации магнита 

 Если спин поляризован следующим образом (рис. 13.1), то среднее значение 
спина равно 

〈𝑆;-〉 = 〈𝑆;〉 cos 𝜃 =
ℏ
%
𝑎=% −

ℏ
%
𝑎%% =

ℏ
%
cos 𝜃   (13.38) 

 
Рис. 13.1. Графическое изображение рассматриваемого случая. 

𝑎=% + 𝑎%% = 1     (13.39) 

2𝑎=% = cos 𝜃 + 1    (13.40) 
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𝑎=% = cos% u
%
= 𝒫|k;-¥     (13.41) 

(cos 30°)% = 2
3
    (13.42) 

Тождественность квантовых частиц 

 Если проводить эксперимент по рассеянию классических и квантовых частиц 
(совершенно одинаковых, например, два электрона или протона), то в классическом 
случае всегда можно проследить и за первым протоном, и за вторым, - поэтому они 
нетождественны и различимы. 
 Для квантовых частиц ситуация меняется радикальным образом: если волновые 
функции первой/второй частицы перекрываются, - нельзя определить, где какая частица: 
они тождественны и неразличимы (понятие траектории в квантовой физике отсутствует). 

     
а      б 

Рис. 13.2. Рассеяние а) классических частиц б) квантовых частиц. 

Имеется волновая функция, зависящая от координат первой и второй частицы, введем 
оператор перестановки частиц:  

𝑝̂𝜓(𝑥=, 𝑥%) = 𝜓(𝑥%, 𝑥=)     (13.43) 

𝑝%𝜓(𝑥=, 𝑥%) = 𝜓(𝑥=, 𝑥%)    (13.44) 

𝜆=,% = ±1     (13.45) 

Тогда собственными значениями оператора будут 

𝜓Q(𝑥=, 𝑥%) = 𝜓Q(𝑥%, 𝑥=)    (13.46) 

𝜓.(𝑥=, 𝑥%) = 𝜓.(𝑥%, 𝑥=)    (13.47) 

Так, для квантовых систем тождественных частиц допустимы лишь симметричные или 
антисимметричные волновые функции (принцип тождественных частиц). 

Квантовое описание системы многих частиц 

 Так, если есть гамильтониан для двух частиц, то стационарное уравнение 
Шредингера: 

𝐻¥𝜓(𝑥=, 𝑥%) = 𝐸𝜓(𝑥=, 𝑥%)    (13.48) 
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Гамильтониан: 

𝐻¥ = 𝐻¥= + 𝐻¥% + 𝑈(𝑥=, 𝑥%)    (13.49) 

𝐻¥= = − ℏ.

%,
?.

?0G.
+ 𝑈(𝑥=)    (13.50) 

𝐻¥% = − ℏ.

%,
?.

?0..
+ 𝑈(𝑥%)    (13.51) 

Энергия взаимодействия: 

U(𝑥=, 𝑥%)     (13.52) 

Рассмотрим невзаимодействующие частицы: 

U(𝑥=, 𝑥%) = 0     (13.53) 

В таком случае, нельзя записать, что 𝜓(𝑥=, 𝑥%) = 𝜓/𝜓q(𝑥%). 

𝜓(𝑥%, 𝑥=) = 𝜓/(𝑥%)𝜓q(𝑥=) ≠ 𝜓(𝑥=, 𝑥%)   (13.54) 

Вместо этого: 

𝜓Q(𝑥=, 𝑥%) =
=
√%
{𝜓/(𝑥=)𝜓q(𝑥%) + 𝜓/(𝑥%) + 𝜓q(𝑥=)}  (13.55) 

Такими функциями (симметричными волновыми) обладает целый класс частиц: бозоны 
(𝑆 = 0,1,2, …): фотон, пионы, 𝐻𝑒%

3 , … 

 Другой класс частиц: фермионы (𝑆 = =
%
, 2
%
, …), который входят 𝑒, 𝑝, 𝑛, 𝐻𝑒%

2  и др., 
описывается антисимметричной волновой функцией: 

𝜓. =
=
√%
= {𝜓/(𝑥=)𝜓q(𝑥%) − 𝜓/(𝑥%)𝜓q(𝑥=)}  (13.56) 

Так, есть два класса частиц, обладающих совершенно разными свойствами. Рассмотрим 
антисимметричную волновую функцию. 

𝜓. =
=
√%
´𝜓/(𝑥=)𝜓q(𝑥%) − 𝜓/(𝑥%)𝜓q(𝑥=)µ   (13.57) 

Если волновые функции 𝜓/ и 𝜓q совпадают, то 

𝜓. =
=
√%
´𝜓/(𝑥=)𝜓/(𝑥%) − 𝜓/(𝑥%)𝜓/(𝑥=)µ ≡ 0   (13.58) 

Так, частицам с антисимметричной волновой функцией невозможно находиться в одном 
состоянии (принцип запрета Паули), такой принцип действует на фермионы. 

 Рассмотрим аналогичную функцию для бозонов: 

𝜓Q =
%
√%
´𝜓/(𝑥=)𝜓/(𝑥%)µ    (13.59) 

В этом случае, вероятность двум бозонам находиться в одном состоянии увеличивается. 
Рассмотрим 

𝜓Q =
=
√%
´𝜓/(𝑥=)𝜓q(𝑥%) + 𝜓/(𝑥%)𝜓q(𝑥=)µ   (13.60) 
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𝜓/ = �%
/
sin &

/
𝑥 , 𝜓q = �%

/
sin %&

/
𝑥    (13.61) 

 
Рис. 13.3. График состояний 𝜓/ и 𝜓q частицы. 

Затем образуются две функции: симметричная и антисимметричная, и берется квадрат 
соответствующей волновой функции:|𝜓.|% и |𝜓Q|%. 
Следствия неразличимости квантовых частиц. Обменное взаимодействие 

 Даже в отсутствии взаимодействия между друг другом распределение плотности 
вероятности совершенно различное для симметричной и антисимметричной волновой 
функции. 

1) Бозоны (симметричная волновая функция) – тенденция к объединению. 
Плотность вероятности максимальна, когда частицы находятся рядом. 

 
Рис. 13.4. Графическое изображение квадратов волновой функции для бозонов. 

Согласно современным представлениям квантовой электродинамики взаимодействие 
передается с помощью частиц. Частицами, с помощью которых передают 
взаимодействие между какими- то двумя частицами, являются бозоны. Они могут 
находиться в одном состоянии и тем самым образуют некое поле. 

2) Фермионы (ассиметричная волновая функция) – тенденция к разъединению. 
Плотность вероятности максимальна, когда частицы удалены друг от друга. 
Вероятность найти частицы в одной и той же области равна нулю – принцип 
запрета Паули. Фермионы образуют частицы, образующие материю. 
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Рис. 13.5. Графическое изображение квадратов волновой функции для 

фермионов. 
Статистика частиц бозонов и фермионов 

 Статистика частиц бозонов и фермионов отличается как от классической, так и 
друг от друга. Возьмем три ячейки и попробуем разместить частицы: 

       
а    б    в 

Рис. 13.6. Статистика a) Больцмана б) Бозе-Эйншейна в) Ферми-Дирака. 

Фазовое пространство 
 Если рассматривать фазовое пространство, то можно ввести понятие квантового 
состояния частицы и фазовой ячейки и найти объем этой ячейки.  
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Рис. 13.7. Фазовое пространство. 

В фазовом пространстве с координатами ´𝑥, 𝑦, 𝑧, 𝑝0 , 𝑝: , 𝑝;µ квантовому состоянию 
частицы соответствует фазовая ячейка объемом 

𝛿Φ = 𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑝0𝛿𝑝:𝛿𝑝; = ℎ2 = (2𝜋ℏ)2   (13.62) 

Число квантовых состояний 𝑑𝑍 в объеме фазового пространства 

𝑑Φ = 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝0𝑑𝑝:𝑑𝑝;    (13.63) 

𝑑𝑍 = (2𝑆 + 1) ?0?:?;?i:?ia?iM
(%&ℏ)0

,    (13.64) 

где (2𝑆 + 1) – кратность вырождения по спину. 

Рассмотрим одномерный случай: возьмем свободную частицу, движущуюся по оси 𝑥. 
Для того, чтобы не было влияния границ, объединим концы следующим образом (рис. 
13.8) 

 
Рис. 13.8. Графическое изображение рассматриваемого случая. 

Волновая функция свободной частицы: 

𝜓(𝑥) = 𝐴𝑒]+0 = 𝐴𝑒]+(0k>)    (13.65) 

Условие периодичности: 
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𝜓(𝑥) = 𝜓(𝑥 + 𝐿)     (13.66) 

𝑒]+> = 1, 𝑘𝐿 = 2𝜋𝑛     (13.67) 

𝑛 = 1,2,3, …      (13.68) 

𝑘A =
%&
>
𝑛     (13.69) 

В импульсном пространстве: 

𝑝A =
%&ℏ
>
𝑛     (13.70) 

Так, 𝑝 представляет некий дистантный ряд значений, объем в импульсном пространстве 
на одно измерение равно %&ℏ

>
. В трехмерном импульсном пространстве объем фазовой 

ячейки для импульса будет равен �%&ℏ
>
�
2
. 

   
а       б  

Рис. 12.9. Графическое изображение рассматриваемого случая а) для одной оси б) в 
трехмерном пространстве. 

Распределение частиц по фазовым ячейкам 

 Распределение частиц по фазовым ячейкам определяется функцией заполнения, 
равной среднему числу частиц в фазовой ячейке с энергией 𝐸]. 
 Частицы с полуцелым спином (фермионы) подчиняются статистике Ферми-
Дирака с распределением 

〈𝑛]〉 =
=

B
b1E5cd
34 k=

, 0 ≤ 〈𝑛]〉 ≤ 1, 𝜇 > 0   (13.71) 

 Частицы с целым спином (бозоны) подчиняются статистике Бозе-Эйнштейна с 
распределением 

〈𝑛]〉 =
=

B
b1E5cd
34 1=

, 0 ≤ 〈𝑛]〉, 𝜇 ≤ 0,     (13.72) 

где 𝜇 – химический потенциал, находится из условия нормировки: 

∫𝑑𝑁(𝐸) = 𝑁,     (13.73) 

где 𝑁 – полное целое число частиц (берем интеграл, т.к. уровни 𝐸] распределены 
квазинепрерывно); или 
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∫ ?@
@
= ∫ ?@

@?E
𝑑𝐸 = ∫𝐹(𝐸) 𝑑𝐸 = 1,     (13.74) 

где 𝐹(𝐸) – функция плотности вероятности распределения частиц по энергиям. 
Квантовые распределения переходят в классические при малых числах заполнения. 

Рассмотрение распределения Ферми-Дирака 

 Возьмем температуру, равную нулю (𝑇 = 0). Тогда на нижний уровень 
(например, электрона) «сядут» два электрона: со спином вверх и спином вниз. 
Следующие два электрона должны будут сесть на следующий уровень. Так, 
распределение энергии будет иметь вид ступеньки 

 
Рис. 13.10. Распределение Ферми-Дирака. 

К чему это приводит и каким образом изменяются свойства в зависимости от 
используемого распределения рассмотрим в следующей лекции. 
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Лекция 14. Ферми газ. Фотонный газ 

Замечание к эксперименту Штерна-Герлаха 

Ранее мы рассматривали магнит Штерна-Герлаха: поступающий пучок 
электронов разделялся в магнитном поле. Если поставить в магните закрывашку, которая 
не будет пропускать пучок со спином вверх или вниз, то такой магнит будет работать 
оптическому поляризатору (МШГ). Возникает вопрос, почему не учитывается сила 
Лоренса (она также действует на движущийся электрон, и, если ее посчитать, окажется 
гораздо сильнее разделения пучков, производящегося в неоднородном магнитном поле). 

 
Рис. 14.1. Магнит Гтерна-Герлаха. 

Если вспомнить, эксперимент Штерна-Герлаха проводился не с пучком 
электронов, а с атомами серебра, находящихся в основном состоянии. Это означало, что 
все спины в атоме серебра были попарно связаны, и суммарный спин определялся только 
внешним электроном. Такой атом нейтрален, и сила Лоуренса на него не действует. 

 Также, если использовать пучок электродов, то необходимо также учесть 
расплывание электрона (так как он обладает небольшой массой, и соответствующий 
волновой пакет будет достаточно быстро расплываться). Кроме того, нужно учитывать, 
что магнитное поле не потенциальное, поэтому нет потенциальной функции, которую 
можно было бы включить в гамильтониан (и тем самым учесть магнитное поле). В этому 
случае учет магнитного поля проходит за счет того, что  

𝑝̂ → −𝑖ℏ∇oo⃗ − 𝑞𝐴      (14.1) 

Повтор распределений квантовых частиц 

 Продолжим рассмотрение, начатое в прошлый раз. Вспомним, что распределение 
квантовых частиц будет определяться числами заполнения: 

〈𝑛]〉 = − =

B
1E5c
34 ±=

,      (14.2) 

где +1 – распределение Ферми-Дирака, −1 – распределение Бозе-Эйнштейна. Числа 
заполнения не характеризуют распределение частиц по энергии. 

Получение функции плотности вероятности для распределения частиц по энергиям 

 Учтем, что, помимо среднего числа заполнения фазовых ячеек, необходимо 
рассмотреть, сколько ячеек приходится на энергию от 𝐸 до 𝐸 + 𝑑𝐸. 

 Рассмотрим в импульсном пространстве шаровой слой. Тогда все ячейки, 
попадающие в этот слой, обладают энергией, находящейся в пределах от 𝐸 до 𝐸 + 𝑑𝐸.  
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𝑑𝑧(𝐸, 𝐸 + 𝑑𝐸) = (2𝑆 + 1) 3&i
.?i

Y.>ℏ_ Z
0     (14.3) 

 
Рис. 14.1. Шаровой слой в импульсном пространстве. 

Перейдем к энергии, для этого понадобится соотношение между энергией и импульсом. 
Рассмотрим фермионы (гас свободных электронов), будем считать, что электроны 
нерелятивистские. Тогда дисперсионные соотношения: 

𝐸 = i.

%,
     (14.4) 

𝑑𝐸 = i?i
,

     (14.5) 

Продолжим (14.3): 

𝑑𝑧(𝐸, 𝐸 + 𝑑𝐸) = 2 3&√%,,a
(%&ℏ)0 √𝐸𝑑𝐸 = √%,0a

&.ℏ0 √𝐸𝑑𝐸, 𝑉 = 𝐿2  (14.6) 

Будем рассматривать 𝑑𝑧 для единицы объема. Тогда введем величину 

𝑔(𝐸) = ?;
?Ea

= √%,0

&.ℏ0 √𝐸    (14.7) 

Функция плотности вероятности распределения по энергиям: 

𝑓(𝐸) = ?i(E,Ek?E)
?E

= ?A
A?E

= =
A
𝑔(𝐸)〈𝑛E〉   (14.8) 

𝑑𝑛 = 𝑔(𝐸)〈𝑛E〉𝑑𝐸     (14.9) 

Условия нормировки функции: 

∫ 𝑓(𝐸)H
9 𝑑𝐸 = 1     (14.10) 

Энергия Ферми 

 Получим важные оценки и энергию Ферми. Вспомним, что при нулевой 
температуре фермионы будут занимать все нижние уровни (в соответствии с принципом 
Паули). 
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Рис. 14.2. Распределение уровней фермионов при нулевой температуре. 

Такому распределению (рис. 14.2) соответствует график, описывающий распределение 
Ферми-Дирака (формула для него была записана выше). 

 
Рис. 14.3. Распределение Ферми-Дирака. 

〈𝑛〉 = =

B
1E5c
34 k=

= 〈𝑛E〉     (14.11) 

При 𝑇 ≠ 0 ступенька (рис. 14.3) будет размываться. Вычислим энергию Ферми через 
условие нормировки:  

∫ 𝑓(𝐸)Ee
9 𝑑𝐸 = 1     (14.12) 

Можно также использовать соображение (рис. 14.2) и вид функции при нулевой 
температуре (рис. 14.3). 

 
Рис. 14.4. Распределение ферми в импульсном пространстве. 

Исходя из (рис.14.4) посчитаем количество состояний, соответствующих максимальной 
энергии 𝐸¨: 

2
/
0&ie

0

(%&ℏ)0
= 𝑛, 𝑝¨ = ℏ𝑘¨    (14.13) 
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𝑘¨2
=
2&.

= 𝑛, 𝑘¨ = (3𝜋%𝑛)
G
0    (14.14) 

𝐸¨ =
ℏ.+e

.

%,
= ℏ.

%,
(3𝜋%𝑛)

.
0    (14.15) 

Оценим величину: 

𝑛 ≈ 10%%	см12    (14.16) 

𝐸¨ ≈ 5	эВ     (14.17) 

Оценка температуры вырождения 

 Газ, подчиняющийся квантовой статистике, называется вырожденным. В 
прошлый раз мы обсудили, что, если числа заполнения в ячейке много меньше единицы, 
то работает классическое распределение (распределение Больцмана). Тогда температура 
вырождения (температура, при которой газ становится квантовым): 

𝑇∗ = Ee
+

     (14.18) 

При 𝑇 ≈ 300	𝐾, 𝑘𝑇 ≈ 0,025	эВ. Тогда рассмотрим пропорцию: 
300 − 0,025
𝑇∗ − 5      (14.19) 

𝑇∗ = 299∗U
9,9%U

≈ 60000	𝐾    (14.20) 

Так, газ остается квантовым вплоть до его разрушения и металлы являются квантовыми 
объектами вплоть до температуры плавления. 

Оценка средней энергии, которой обладает электрон при 𝑻 = 𝟎 

 Оценим среднюю энергию, которой обладает электрон: 

 𝑓(𝐸)~√𝐸     (14.21) 

〈𝐸〉 = ∫ E∗X(E)1e
8 ?E

∫ X(E)1e
8 ?E

= ∫ E√E1e
8 ?E

∫ √E1e
8 ?E

=
.
=Ee

=
.

.
0Ee

0
.
= 2

U
𝐸¨ , 𝑘𝑇 ≈ 3600	𝐾 (14.22) 

Оценка скорости Ферми длины волны электрона при 𝑻 = 𝟎 

𝑣,/0 ≡ 𝑣¨ = �%Ee
,
= 1,3 ∗ 102	км/сек	 ≠ 0  (14.23) 

Вклад в теплоемкость будут давать только электроны Ферми (электроны на границе 
сферы). 
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Рис. 14.5. Распределение Ферми-Дирака. 

Толщина этого верхнего слоя электронов, которые могут участвовать в подобных 
процессах, составляет 2𝑘𝑇. 

 
Рис. 14.6. Распределение ферми в импульсном пространстве. 

ℏ𝑘¨ = 𝑝¨ , ℏ
%&
$e
= 𝑣¨𝑚    (14.24) 

⟹ 𝜆¨ =
`

[eA
= R,R2∗=950/	Дж∗<

=9,2∗=9J(м/с)9,\∗=9508	кг
= 5,5 ∗ 101=9	м = 5,5	𝐴9  (14.25) 

Именно электронами Ферми обусловлена электронная теплоемкость. 

Оценка доли электронов, которую нужно учитывать при рассмотрении 
теплоемкости электронного газа 

 Рассмотрим, какую долю электронов мы должны учитывать при рассмотрении 
теплоемкости электронного газа. 

 
Рис. 14.7. Шаровой слой в импульсном пространстве. 

?A
A
= 3&ie

.?ie
/
0&ie

0 = 3,?E
ie
. = 3 %	+'

.Fe
.

.A

= 3 +'
Ee

   (14.26) 
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𝐸 = i.

%,
     (14.27) 

𝑑𝐸 = i∗?i
,

     (14.28) 

Так, всего 1% электронов может принимать участие в теплоемкости и определять ее. 
Энергия такого электрона равна 

𝑈 = 2
%
	𝑘𝑇     (14.29) 

𝑐aG =
?«
?O
= 2

%
     (14.30) 

Вклад электронов в 𝑐a: 

𝑐a =
2
%
𝑅 2	+'

Ee
= \

%
𝑅 +'
Ee

     (14.31) 

При низких температурах закон Дюлонга-Пти не выполняется. 

Получение спектральной плотности энергии для фотонного газа 
 Получим аналогичные формулы для второго класса частиц: 

𝐸 = 𝑐𝑝     (14.32) 

𝑑𝐹a,' = −𝑠 ∗ 𝑑𝑇 − 𝑝𝑑𝑉 + 𝜇 ∗ 𝑑𝑁 = 0   (14.33) 

𝜇 = 0      (14.34) 

〈𝑛ℏ#〉 =
=

B
ℏ,
341=

     (14.35) 

𝑑𝑍 = 2 3&i
.?i

(%&ℏ)0
= E.∗?E

&.ℏ0<0
= #.?#

&.<0
    (14.36) 

𝐸 = 𝑐𝑝 = ℏ𝜔      (14.37) 

𝑔(𝜔) = ?¬
?#

= #.

&.<0
	     (14.38) 

Объемная плотность энергии/ спектральная плотность энергии фотонов, находящихся в 
равновесии, для единицы объема (формула Планка): 

𝜌(𝜔) = #.

&.<0
ℏ#

B
ℏ,
341=

     (14.39) 

Колебания одноатомной цепочки 

Обсудим некоторые физические явления, необходимые к рассмотрению при 
колебаниях решетки и покажем, что решеточная теплоемкость твердого тела не 
соответствует классической, определяемой законом Дюлонга-Пти. 

Впервые квантовый подход для определения решеточной теплоемкости 
использовал Эйнштейн. Рассмотрим задачу движения ионов решетки и решим 
соответствующие динамические задачи. 

 Так, цепочка представляет решетку с периодом 𝑎. 
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Рис. 14.8. Смещение атомов для фотонов на границе зоны Бриллюэна. 

Нетрудно написать уравнение в приближении ближайших соседей. При 𝑛-ном 
количестве атомов задача является довольно сложной. Ее можно упросить, считая, что 
есть бесконечное число атомов. Так мы получаем приближение непрерывной среды 
(струну), в струне будут возникать стоячие моды (нормальные колебания).  

 
Рис. 14.9. Колебания стоячих мод в струне. 

Длина волны таких колебаний будет определяться простым условием: на длине волны 
должно укладываться целое число полуволн: 

$
%
𝑛 = 𝐿     (14.40) 

Для конечного числа частиц 𝑛 должна существовать некая максимальная частота 
колебаний или минимальная длина волны. 

 
Рис. 14.10. Графическое изображение рассматриваемого случая. 

𝜆,]A = 2𝑎     (14.41) 

𝑘,/0 =
%&
$AE2

= &
/
     (14.42) 
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Рис. 14.11. Зависимость групповой скорости фотонов от волнового вектора. 

Запишем соответствующие уравнения для колебаний одноатомной цепочки. Пусть 
смещение равно 𝜉, тогда 

𝑀𝜉̈ = 𝛽(𝜉Ak= − 𝜉A) − 𝛽(𝜉A − 𝜉A1=),    (14.43) 

где 𝛽 – коэффициент жесткости. Решение уравнения найдем в виде плоской волны. 

𝑥 = 𝑛𝑎     (14.44) 

𝜉A = 𝐴𝑒](1#Ok�∗A/)     (14.45) 

−𝑀𝜔%𝑒]�A/ = 𝛽𝑒]�A/´𝑒]�/ − 1µ − 𝛽𝑒]�A/(1 − 𝑒1]�/) = 2𝛽𝑒]�A/(cos 𝑞𝑎 − 1) (14.46) 

𝜔 = ±�­
z
sin �/

%
    (14.47) 

 
Рис. 14.12. Частоты колебаний линейной цепочки. 

Все физически различные состояния такой колебательной цепочки соответствуют 
значению 𝑞, лежащему в области от − &

/
 до &

/
  (рис. 14.12). Такая область называется 

первой зоной Бриллюэна и соответствует физически различным состояниям системы. 
Колебания двухатомной цепочки 

 Рассмотрим пример с пружинками жесткостью 𝑘 и массами 𝑚 (рис. 14.13). 

 
Рис. 14 .13. Графическое изображение рассматриваемого случая. 
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Частота моды: 

𝜔% = +0
,0

     (14.48) 

Для того, чтобы найти частоты колебаний необходимо найти такие колебания, при 
которых возвращающая сила на единицу массы, единицу смещения для каждой частицы 
будет одна и та же. Это и будет являться нормальным колебанием/модой. 

𝜔=% =
+
,
, 𝜔%% =

2+
,

     (14.49) 

    
а       б 

Рис. 14 .14. Колебания двухатомной цепочки а) акустические б) оптические. 
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Лекция 15. Теплоёмкость твёрдых тел 

Теплоемкость кристаллической решетки 

 В прошлый раз мы остановились на рассмотрении простейших моделей твердого 
тела: линейной цепочки, состоящей из одного типа атомов, и такой же линейной 
цепочки, состоящей из двух атомов, и увидели, что дисперсионные кривые даже для 
простых объектов имеют достаточно сложный характер.  

Повторение классической модели 

 Расчет колебательных структур реальных твердых тел значительно сложнее 
использованных нами моделей. Такие расчеты были выполнены в 1912 году Борном и 
Карманом (условия периодичности Борна-Кармана). Расчеты, основанные на 
классической теории динамики решетки, позволили Дебаю в том же году рассмотреть 
теплоемкость твердых тел с позиции динамики решетки. Для вычисления теплоемкости 
необходимо вычислить внутреннюю энергию: 

𝑐 = ?�
?'

      (15.1) 

 Согласно классической теории теплоемкости, есть совокупность независимых 
атомов и по три колебательной степени свободы на каждый атом, что соответствует двум 
поперечным и одной продольной волне. Согласно теореме о равном распределении, на 
каждую колебательную степень приходится средняя тепловая энергия 𝑘𝑇. 

𝑈(𝑇) = 3𝑁.2
+'
%

     (15.2) 

𝑐(𝑇) = 3𝑅     (15.3) 

 
Рис. 15.1. Зависимость теплоемкости кристаллической решетки от температуры. 

Модель Эйнштейна 

Рассмотрим первую квантовую модель теплоемкости твердого тела, которая была 
предложена Эйнштейном в 1907 году. Эйнштейн воспользовался результатами работ 
Планка (Планк вычислил среднюю энергию осциллятора с частотой 𝜔), и изменил 

среднее значение энергии не на 𝑘𝑇, а на среднее значение осциллятора � ℏ#

B
ℏ,
341=

�: 

〈𝐸〉 = 3𝑁.
ℏ#

B
ℏ,
341=

     (15.4) 
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Найдем теплоемкость такой системы (формула Эйнштейна): 

𝑐[ =
?〈E〉
?'

= 3𝑘�𝑁.
(ℏ#).

(+f').
B
ℏ,
34

SB
ℏ,
341=T

.    (15.5) 

Рассмотрим предельные соотношения, получаемые из этой формулы: 

1) 𝑘𝑇 ≫ ℏ𝜔 
𝑐[ → 3𝑅     (15.6) 

2) 𝑘𝑇 ≪ ℏ𝜔 

𝑐[ = 3𝑅 �ℏ#
+'
�
%
𝑒1

ℏ,
34 → 0    (15.7) 

Модель Дебая 

 Дебай, основываясь на работах Борна-Кармана, сделал следующие 
предположения, существенно упрощающие расчет (вместо расчета сложных 
дисперсионных кривых). 

1) Будем рассматривать только акустические ветви, так как они заполняются при 
низких температурах (в то время как оптические ветви обладают большой 
энергией). 

 
Рис. 15.2. Акустические ветви. 

Также будем считать, что акустическая ветвь все время соответствует линейному 
участку дисперсионной кривой:  

𝜔 = 𝑐𝑘, 𝑐 ≡ скорость	звука    (15.8) 

2) Для того, чтобы определить, где необходимо закончить интегрирование по всем 
колебательным состояниям, Дебай сделал предположение, что существует 
максимальная частота (мы также видели это на колебаниях цепочки): 

ℏ𝜔,/0 = 𝑘�𝑇®,      (15.9) 

где 𝑇® – температура Дебая.  

𝑝 = ℏ𝑘      (15.10) 

(∆𝑝)2 = (2𝜋ℏ)2     (15.11) 
(∆𝑘)2 = (2𝜋)2     (15.12) 
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Рис. 15.3. Состояния 𝑘-пространства в шаре, радиусом 𝑘,/0. 

Найдем число состояний в 𝑘-пространстве, учитывая, что за счет поляризации упругих 
волн, число состояний увеличивается в три раза: 

2∗/0&+AB:
0

(%&)0
= 3𝑛, 𝑛 = @

a
    (15.13) 

𝑘,/0 = (6𝜋%𝑛)
G
0     (15.14) 

Выразим температуру Дебая: 

𝑇® =
ℏ<
+f
(6𝜋%𝑛)

G
0     (15.15) 

Проведем оценку для свинца (Pb): 

𝜌 = 11,3	г/см2     (15.16) 

𝑀 = 207,2	г/моль     (15.17) 

𝐶 = 1320	м/с     (15.18) 

𝑛 = M@B
z
= 3,310%4	м12    (15.19) 

𝑇® = 126	𝐾	(более	точное	значение: 88	𝐾)    (15.20) 

Фононы 
 Введем кванты колебаний решетки: фононы. Он обладает следующими 
свойствами: 

ℰ = ℏ𝜔      (15.21) 

𝑝⃗ = ℏ𝑘o⃗       (15.22) 

𝑆 = 0      (15.23) 

Для фонона справедливо распределение Бозе-Эйнштейна. Тогда средняя энергия в 
пересчете на один атом: 

〈𝐸〉 = =
A ∫ ℏ𝜔𝑔(𝐸)〈𝑛E〉

#AB:
9 𝑑𝐸    (15.24) 

Функция плотности состояний: 

𝑔(𝑘)𝑑𝑘 = 2∗3&+.?+
(%&)0

= 2∗3&#.?#
<0(%&)0

, 𝜔 = 𝑐𝑘   (15.25) 
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Средняя скорость звука: 
2
<0
= =

<∥
+ %

<h
     (15.26) 

Тогда средняя энергия: 

〈𝐸〉 = =
A ∫

ℏ#
<0

2
%&.

#.

B
ℏ,
3f41=

#AB:
9 𝑑𝜔	    (15.27) 

𝜔 = 0+f'
ℏ

      (15.28) 

Введем переменную ℏ#
+f'

= 𝑥 и продолжим (15.27): 

〈𝐸〉 = =∗2∗2
A∗R&.<0

�+f'
ℏ
�
3
∫ 00?0

B:1=
0AB:
9 = 9𝑘�

'/

'i
0 ∫

00?0
B:1=

   (15.29) 

Тогда энергия для 1 моля будет равна 

〈𝐸〉 = 9𝑅 �'/
'i
� ∫ 00?0

B:1=
     (15.30) 

Получим теплоемкость: 

𝑐[ = 9𝑅 '/

'0 ∫
00B: ℏ,

34.

(B:1=).
0AB:
9 𝑑𝑥 = 9𝑅 � '

'i
�
2
∫ 0/B:

(B:1=).

4i
4
9 𝑑𝑥, 𝑥 = ℏ#

+fO
= +'i

+'
,  (15.31) 

где 9𝑅 � '
'i
�
2
∫ 0/B:

(B:1=).

4i
4
9 𝑑𝑥 – формула Дебая. Рассмотрим приближения для 

теплоемкости: 

1) ℏ𝜔 ≪ 𝑘𝑇 
𝑐[ = 3𝑅     (15.32) 

2) ℏ𝜔 ≫ 𝑘𝑇 

𝑐[~�
'
'i
�
2
     (15.33) 

Рассмотрение общностей между тремя температурами 

 Так, мы теперь знаем о трех температурах: температуре вырождения (𝑇∗ = Ee
+f

), 

температуре Бозе-конденсации (𝑇9) и температуре Дебая (𝑇®). 

 Все три показывают, что при температуре меньше этих температур проявляются 
квантовые свойства объектов, что приводит к необходимости использования квантовой 
статистики. Квантовые свойства проявляются, когда длина волны де Бройля частиц 
становится сопоставима с размерами между этими частицами, а соответствующие 
волновые функции перекрываются. 

Оценка среднего расстояние между частицами для гелия и длины волны де Бройля 

 Найдем среднее расстояние между частицами гелия при нормальных условиях 
( 𝐻𝑒	
3 ): 

𝑙 = (𝑛)1
G
0, 𝑝 = 𝑛𝑘𝑇     (15.34) 
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𝑛 = 3,5 ∗ 101\	м     (15.35) 

𝑙 ≈ 35Å     (15.36) 

Тогда длина волны де Бройля: 

𝜆дБ =
%&ℏ
√%,E

= !
=,U

AK]
A]

E[эВ]
	нм = 0,089	нм = 0,89Å   (15.37) 

При нормальных условиях квантовые свойства гелия учитывать не нужно. 

Оценка температуры Бозе-конденсации 

Получим 𝑇9 для 𝐻𝑒	
3  при низкой температуре: 

𝜆дБ =
%&ℏ

j%,K]+'8
= 𝑛1

G
0    (15.38) 

Температура конденсации: 

𝑇9 =
%&.ℏ.A

.
0

,K]+f
≈ 3,14	𝐾    (15.39) 

Рассмотрение переходов 3-х типов в двухуровневой системе и получение 
соотношения коэффициентов Эйнштейна 

 Если 〈𝑛E〉 ≪ 1, то предельный случай квантовых статистик как для бозонов, так 
и для фермионов, - распределение Больцмана. 

 
Рис. 15.4. Три вида переходов в рассматриваемой двухуровневой системе. 

 Допустим, имеется некая двухуровневая система (рис. 15.4), тогда возможны различные 
типы переходов (поглощение – вынужденный процесс перехода с первого уровня, и 
спонтанные и вынужденные излучения с второго уровня). 

− ∆@G
∆O
= 𝐵=%𝑁=𝜌(𝜔)     (15.40) 

− ∆@.
∆O
= 𝐵%=𝑁%𝜌(𝜔) + 𝐴%=𝑁%   (15.41) 

При термодинамическом равновесии число переходов вверх и вниз должны быть равны 
друг другу, поэтому 

𝐵=%𝑁=𝜌(𝜔) = 𝐵%=𝑁%𝜌(𝜔) + 𝐴%𝑁%   (15.42) 

Функция спектральной плотности излучения: 
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𝜌(𝜔) = ..G@.
�G.@G1�.G@.

=
j.G
f.G

fG.[G
f.G[.

1=
= ℏ#0

&.<0SB
ℏ,
341=T

  (15.43) 

@G
@.
= 𝑒

1.51G
34      (15.44) 

Соотношение между коэффициентами для спонтанного и вынужденного излучения: 
..G
�.G

= ℏ#0

&.<0
     (15.45) 

𝐵=% = 𝐵%=     (15.46) 

Резонансное усиление света 

 Теперь можно вычислить, каким образом происходит резонансное усиление 
света. Рассмотрим взаимодействие света с резонансной частотой 𝜔 с системой 
двухуровневых атомов. Электромагнитное излучение проходит через некий объем (рис. 
15.5) 

 
Рис. 15.5. Графическое изображение рассматриваемого уровня. 

𝑑𝑉 = 𝑑𝑧𝑆     (15.47) 

Пусть 𝑛=,% – концентрация атомов на нижнем (1) и верхнем (2) уровнях. 

	𝑛 = 𝑛= + 𝑛%     (15.48) 

Число атомов в объеме 𝑑𝑉 в 𝑖-ом состоянии: 

𝑑𝑁] = 𝑛]𝑑𝑉     (15.49) 

Испускаемая (спонтанное излучение) и поглощаемая (вынужденное поглощение) 
мощность излучения в объеме 𝑑𝑉: 

𝑑𝑃%=сп = ℏ𝜔𝐴𝑑𝑁%     (15.50) 

𝑑𝑃%=вын = ℏ𝜔𝐵𝜌𝑑𝑁%     (15.51) 

𝑑𝑃=%вын = ℏ𝜔𝐵𝜌𝑑𝑁=     (15.52) 

Полная мощность, излучаемая/поглощаемая в объеме 𝑑𝑉: 

𝑑𝑃 = 𝑑𝑃%=сп + 𝑑𝑃%=вын − 𝑑𝑃=%вын   (15.53) 

Пусть 𝜌 имеет следующий вид: 
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Рис. 15.6. Графическое изображение спектральной плотности. 

Найдем связь 𝜌 с интенсивностью 𝐼. Энергия, прошедшая через 𝑆 за время ∆𝑡: 𝐼∆𝑡𝑆. 

𝜌 = �∆OQ
∆a∆#

|∆aI<∆OQ =
�

<∆#
    (15.54) 

Подставим в (15.53): 

𝑑𝑃 = £𝐴𝑛% + 𝐵(𝑛% − 𝑛=)
�

<∆#
¤ ℏ𝜔𝑆𝑑𝑧   (15.55) 

Пусть 𝐼9 достаточно велико, чтобы пренебречь спонтанным излучением, тогда 
?�
Q
= 𝑑𝐼 = 𝐵(𝑛% − 𝑛=)

�
<∆#

ℏ𝜔𝑑𝑧    (15.56) 

𝑑𝐼 = −𝛼𝐼𝑑𝑧, 𝛼 = −𝐵(𝑛% − 𝑛=)
ℏ#
<∆#

   (15.57) 

Закон Бугера: 

𝐼 = 𝐼9𝑒1);     (15.58) 
A.
AG
= @.

@G
= 𝑒

ℏ,
34      (15.59) 

ℏ#
+'
~ =950/=9G=

=95.0=9.
= =95GC

=95.G
= 10%    (15.60) 

⟹ 𝑛% ≪ 𝑛=     (15.61) 

⟹ 𝛼 = −𝐵∆𝑛 ℏ#
+'
> 0 − коэффициент	поглощения  (15.62) 

В законе Бугера наблюдается ослабление интенсивности, но можно создать 
инверсную заселенность уровней (𝑛% > 𝑛=), и тогда величина 𝛼 станет отрицательной (в 
отличие от обычного случая), а интенсивность будет увеличиваться, и в 
инвертированной среде будет происходить усиление света. Это представляет собой 
принцип действия лазерных приборов, основанный на вынужденном излучении. Так, 
laser – это light amplification by stimulated emission radiation.  
Получение инверсной заселенности с помощью трехуровневой схемы 

 Для того, чтобы создать инверсную заселенность, необходимо применять 
устройства, ее обеспечивающие (накачки), например, лампа или электронные удары в 
газе. Так, импульсный лазер на рубине можно возбудить при помощи следующей 
импульсной лампы (рис. 15.7): 
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Рис. 15.7. Импульсная лампа. 

Кратковременным разрядом тока происходит переход с уровня один на уровень два, 
обратный переход с которого запрещен. Далее идет переход на некий промежуточный 
метастабильный уровень, где происходит накопление электронов, а их переход на 
нижний уровень приводит к излучению (излучение совпадает по фазе, по частоте, по 
направлению и поляризации с излучением, его вызвавшим). 

 
Рис. 15.8. Получение инверсной заселенности с помощью трехуровневой схемы 

для лазера на рубине. 

Аналогичная ситуация – получение инверсной заселенности с помощью 
трехуровневой схемы для гелий-неонового лазера.  

 
Рис. 15.9. 𝐻𝑒 − 𝑁𝑒 лазер непрерывного действия. 

Здесь накачка идет за счет соударения гелия с неоном, происходит переход на 
квазистационарный уровень, а затем на уровень два, один. 
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Рис. 15.10. Получение инверсной заселенности с помощью трехуровневой схемы 

для гелий-неонового лазера. 
Вопрос об интерпретации квантовой механики 

Ранее на курсе мы рассматривали эффект дифракции и интерференции на двух 
щелях. Есть волновая функция следующего вида (рис. 15.11) и электрон, где он 
находился до этого? Согласно квантовой механике, диапазон его нахождения равен 
(−∞;+∞) в соответствии с распределением и вероятностью, определяемой квадратом 
волновой функции. Реалистический же подход полагает, что при таком перемещении 
электрона происходит коллапс волновой функции, и такой переход не понятен.  

 
Рис. 15.11. Рассматриваемая волновая функция. 

Против использованного нами подхода (копенгагенская интерпретация волновой 
функции) активно выступал Эйнштейн, а в 1935 году вместе с Подольским и Розаном 
написал статью, где показал неполноту квантовой механики (статистический результат, 
получаемый в квантовой механике, приводит к парадоксальным результатам). Если 
рассматривать их парадокс в современной интерпретации (например, интерпретации 
Бома), при распадении частицы на два фотона, они должны иметь противоположно 
направленные импульсы, соответствующие спины/поляризации также должны быть 
противоположны. Но эти частицы связаны (запутанное состояние) и, если они, будучи 
еще не измеренными, разлетаются на очень большое расстояние, а затем 𝐴 измеряется и 
становится известно, что спин фотона/частицы направлен вверх, мгновенным образом 
становится понятно, что у 𝐵 частица направлена вниз. 
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Рис. 15.12. Графическое изображение рассматриваемого случая. 

Такое действие на расстоянии не нравилось Эйнштейну, и это означало, что квантовая 
механика не обладает одним из основных принципов, которые защищал Эйнштейн: 
принципом локальности (воздействие должно постепенно передаваться от одной точки 
к другой). 

В 1965 году Беллом было написано неравенство, позволившее отличать состояния 
со скрытыми параметрами. Нарушение этого неравенства было экспериментально 
проверено – это позволило убедиться в том, что, несмотря на теории (в частности, теории 
скрытых параметров, которые могут быть описаны с помощью условных вероятностей), 
квантовая механика работает. 



ФИЗИЧЕСКИЙ 
ФАКУЛЬТЕТ  
МГУ ИМЕНИ 
М.В. ЛОМОНОСОВА




