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Лекция 1

Введение

Речь в курсе пойдет о некоторых связях между геометрией и квантовой механи-
кой. Обычно математический аппарат нужен, чтобы развивать или обосновывать
физическую теорию. В данном курсе ситуация обратная: есть геометрическая, то-
пологическая задача, которую можно развивать методами квантовой физики.

Раздел топологии, о котором пойдет речь, – начальная часть теории Морса.1
Приведем самый простой пример.

ПустьM – гладкая компактная ориентируемая двумерная поверхность. Известно,
что она гомеоморфна поверхности, обозначаемой

Mg, g ≥ 0.

Рис. 1.1. g = 0, сфера Рис. 1.2. g = 1, тор Рис. 1.3. g = 2, крендель

На Mg рассмотрим гладкую функцию

f : M → R.

Критические точки f определяются как

∂f

∂x1

=
∂f

∂x2

= 0,

или, в более инвариантом виде, p – критическая, если

d(p)f = 0.

Будем считать, что критических точек конечное число и они невырожденные, т.е.
матрица (

∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂2x2

)
невырождена, или, по-другому, d2(p)f невырожден.
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Рис. 1.4. локальный ми-
нимум

Рис. 1.5. локальный мак-
симум Рис. 1.6. седло

Существует 3 типа невырожденных критических точек (рис.1.4-1.6).
Оказывается, что количество критических точек определяется числом g. Про-

стейшая связь такая:

Число локальных максимумов ≥ 1;

Число локальных минимумов ≥ 1;

Число седел ≥ 2g.

Это простейший случай неравенства Морса.

Краткий план курса

У теоремы Морса есть чисто топологические доказательства. Как оказалось,
есть и другие доказательства, основанные на соображениях квантовой механики.
Мы будем пользоваться квантовым аналогом того, что в классической механике
называется теорией малых колебаний.

Пару слов про науку о малых колебаниях. Частица движется в поле каких-то сил
с потенциальной энергией V (x). Пусть у системы одна степень свободы.

Поместим частицу в точку x0, в которой потенциальная энергия V (x) имеет мини-
мум, так, чтобы полная энергия часты была равна потенциальной. Частица никуда
не сможет сместиться по ЗСЭ (закону сохранения энергии).

Если сообщить частице чуть больше энергии, она будет двигаться, но далеко уйти
не сможет (рис. 1.7). Т.к. энергия мало отличается от значения в x0, разложим V (x)
по формуле Тейлора:

V (x) ∼ V (x0) +
1

2
V ′′(x0)(x− x0)2.

В многомерном случае разложение будет выглядеть как

V (x) ∼ V (x0) +
1

2
(x− x0, V

′′(x0)(x− x0))2,

1Теория Морса – большая область геометрии и топологии, которая изучает связь между харак-
теристиками многообразий и поведением типичных гладких функций на них.
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Рис. 1.7. Потенциальная энергия
V (x).

где V ′′(x0) – матрица вторых производных в т. x0.
Оказывается, что те же самые соображения можем применять и в случае, когда

имеем дело с квантовой частицей (осцилляторное приближение).
Речь в курсе пойдет о том, как применить эти соображения квантовой механики

к задачам топологии. Курс будет состоять из двух частей:
1. Сведения из математического аппарата квантовой механики, схема квантова-

ния, базовые задачи об описании квантовых спектров.
2. Геометрическая часть:
а) Первоначальные сведения из теории Морса;
б) Начальные сведения из теории Ходжа;
в) Конструкция, позволяющая применять к теории Морса технику из квантовой

механики.

Начальные сведения из квантовой механики

Считается, что начало квантовой механики положила работа Планка, изданная в
1900 г. К концу XIX в. в физике были противоречия и в теории, и в экспериментах.
Планк пытался устранить теоретический парадокс.

Два примера ситуаций, которые нельзя было объяснить до возникновения кван-
товой механики:

1. Фотоэффект (экспериментальный парадокс).
Есть пластинка из металла (серебра), ее облучают светом. Фотоэффект состо-

ит в том, что под действием света из пластинки вылетают электроны. В XIX в.
господствовала волновая теория света.

У света можно менять частоту ω и интенсивность I; также можем посчитать
кинетическую энергию E.

С точки зрения классической физики зависимость от характеристик волны сле-
дующая. От амплитуды колебаний световой волны явление зависит напрямую, от
ω не очень сильно. Если частота ω маленькая, электроны вылетать будут, но пона-
добится больше времени.
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Когда изучали закономерности, оказалось, что ситуация противоположная:
1) E не зависит от I.
2) E растет линейно с ростом частоты.
3) Явление красной границы, т.е. если ω < ω0, электроны не вылетают.
С точки зрения классической механики эти противоречия объяснить не удалось.

2. Теория чёрного излучения (теоретический парадокс).
Есть некоторое тело, которое поддерживается при какой-то температуре. Маг-

нитными лучами облучаем тело, часть лучей поглощается. Из-за ненулевой темпе-
ратуры происходит некоторое излучение.

У нас есть две характеристики: поглощательная способность (доля энергии, ко-
торую тело поглощает) и излучательная способность (то, сколько энергии излучаем
в бесконечно малом интервале частот от ω до ω + ∆).

В этой теории были обнаружены некоторые закономерности, одной из которых
является закон Кирхгофа. Он говорит о том, что отношение излучательной к погло-
щательной способности зависит только от температуры, но не от тела. Как след-
ствие, если тело поглощает весь свет (черное тело), то излучательная способность
такого черного тела ε(ω) зависит только от температуры (и от частоты ω света).
Теория черного излучения изучает свойства ε(ω).

Базовые результаты, которые были известны:
1) Закон Стеффана–Больцмана.

E =

∫ ∞
0

ε(ω)dω = CT 4,

где T – температура.
2) Закон Вина. Этот закон говорит о том, что

ε(ω) = T 3f(ω/T ).

Рис. 1.8. Поведение функции f(x).

Функция f должна вести себя так, как на рис.1.8.
3) Теория Рэлея-Джинса.
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Мысль следующая. По закону Кирхгофа, структура черного тела не имеет значе-
ния, поэтому можем придумать удобный механизм. Будем считать, что тело состоит
из маленьких заряженных осцилляторов. Если маленький заряд излучает энергию
u, то все тело излучает энергию

e−βu, β = 1/kT.

Излучательная способность
ε(ω) = Cω2u,

u =

∫∞
0
ue−βudu∫∞

0
e−βudu

.

Заметим, что

u = − ∂

∂β
ln

∫ ∞
0

e−βudu =

= − ∂

∂β
ln

1

β
=

1

β
= kT.

Тогда
ε(ω) = C1ω

2T.

Формально согласуется с законом Вина, если перегруппировать

ε(ω) = C1T
3(ω/T )2.

При значениях, близких к нулю, поведение ε(ω) совпадает с законом Вина. При
больших поведение совершенно отличается, и интеграл E полной энергии излучения
расходится. Это получило название ультрафиолетовой катастрофы.

Планк предложил в схеме, аналогичной схеме в теории Рэлея-Джинса, предполо-
жить, что частицы могут излучать энергию, кратную какой-то минимальной пор-
ции:

u = nu0, n ≥ 0.

Так как теперь энергия принимает дискретные значения,

u =

∑∞
n=0 nu0e

−βnu0∑∞
n=0 e

−βnu0
= − ∂

∂β
ln
∞∑
n=0

e−βu0n =

=
∂

∂β
ln
(
1− e−βu0

)
=

u0e
−βu0

1− e−βu0
=

u0

eβu0 − 1
.

Тогда

ε(ω) =
Cω2u0

eu0/(kT ) − 1
.

Чтобы эта формула не противоречила з-ну Вина, возьмем u0 = hω. Получим

ε(ω) =
C1ω

3

ehω/(kT ) − 1
.
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Эта функция ведет себя так, как нужно.
Положение об излучении энергии порциями спасло теорию Рэлея-Джинса. Отсю-

да и название квантовая физика (из-за порций энергии).
Два замечания по поводу рассуждений, приведённых выше.
Первое замечание. В вычислении u в теории Планка принципиально важным

является u0 = hω (в теории Рэлея–Джинса не зависело от ω).
Второе замечание. Аналогичные рассуждения можно применить для объясне-

ния фотоэффекта. Каждый квант может отдать свою энергию

u0 = hω,

которая зависит от ω. Формула, приводимая Энштейном, выглядела так:

Eэл = hω − A,

где A – минимальная энергия, которую нужно сообщить электрону, чтобы выбить
его.

Эта формула объясняет зависимость энергии электронов от ω и красную грани-
цу.

Обратная ситуация

В работе де Бройля был предложен обратный подход, то есть в некоторых
ситуациях рассматривать частицу как волну.

Рассмотрим гармоническое колебание, которое описывается функцией

ψ0(x, t) = ei(kx−ωt). (1)

Де Бройль предположил, что если есть квантовая частица, движущаяся, напри-
мер, слева направо, то с ней нужно связать волну (1). Частота ω должна быть
связана с энергией частицы как

E = hω,

а импульс частицы
p = hk.

Можно записать
ψ0(x, t) = ei(kx−ωt) = e

i
h

(px−Et).

Не совсем понятно, что нужно делать, если хотим исследовать более сложные
волны ψ(x, t), в которых импульс и координаты могут меняться со временем. Де
Бройль предложил, учитывая, что

−ih∂ψ0

∂x
= pψ0,

ih
∂ψ0

∂t
= Eψ0,
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заменить p и E на операторы

p̂ = −ih ∂
∂x
,

Ê = ih
∂

∂t
.

Идея состоит в следующем. При переходе к квантовой системе состояния считаем
функциями, а наблюдаемые величины – операторами.

Теперь надо придумать, как записать уравнение движения.
В системе классической механики функция Гамильтона выглядит как

H(x, p) =
p2

2
+ V (x).

Полная энергия системы приравнивается к H(x, p):

E = H(x, p) =
p2

2
+ V (x).

Перейдя к квантовой системе и заменив наблюдаемые величины операторами,
получим для волны ψ уравнение

ih
∂

∂t
ψ =

(
h2 ∂

2

∂x2
+ V (x)

)
ψ. (2)

Уравнение (2) называется уравнением Шрёдингера.
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Лекция 2

Описание движения в классической системе

Сформулируем теперь формальную схему квантования, которая сопоставляет си-
стеме классической механики систему квантовой физики.

Вспомним сначала, как устроена классическая система.
1. Пространство состояний.

R2n, x = (x1, ..., xn); p = (p1, ..., pn), y = (x, p) ∈ R2n

2. Пространство наблюдаемых.
Это пространство гладких функций

f : R2n → R.
В дальнейшем наложим на них некоторые ограничения.
3. Динамика.
Фиксируем H(x, p) – функцию полной энергии, или функцию Гамильтона. Урав-

нение Гамильтона задается следующим образом:{
ẋj = ∂H

∂pj
,

ṗj = − ∂H
∂xj
.

Скажем два слова о инвариантной форме записи.
Рассмотрим в пространстве состояний

ω =
n∑
j=1

dpjdxj

– стандартную симплектическую форму.
Эта форма невырожденная, так как в базисе (x, p) имеет матрицу(

0 E
−E 0

)
Если зафиксируем такую форму, то обнаружим, что функции f порождают век-

торные поля vf .
Для P ∈ R2n, ξ ∈ TPR2n, где TPR2n – пространство касательных в точке P ,

ω(ξ, vf ) = df(ξ). (3)

vf называется гамильтоновым полем, соответствующим функции f . 
Рассмотрим

ξ = (ξx, ξp) ∈ R2n.

Запишем равенство (3)
n∑
j=1

(ξpjvxj − vpjξxj) =
n∑
j=1

(
∂f

∂xj
ξxj +

∂f

∂pj
ξpj),
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где у vfy пропускаем индекс f для сокращения записи.
Получается, что

vf = (
∂f

∂p
,
∂f

∂x
).

Таким образом, уравнения Гамильтона можем записать так:

ẏ = vH(y).

На функциях можем определить следующую операцию.

Определение 1. Для гладких функций f , g из пространства наблюдаемых скобка
Пуассона определяется как

{f, g} = ω(vf , vg) = dy(vf ) = ∂vf (g) = −∂vg(f).

Запишем в координатах (x, p):

{f, g} =
n∑
j=1

(
∂f

∂pj

∂g

∂xj
− ∂f

∂xj

∂g

∂pj
).

Из формулы (и определения) вытекает, что скобка Пуассона обладает свойствами:
1. Билинейна;
2. Кососимметрична

{f, g} = −{g, f};
3. Для ∀ f , g, w

{{f, g}, w}+ {{g, w}, f}+ {{w, f}, g} = 0.

Кроме того, в пространстве наблюдаемых у нас есть и операция поточечного
умножения функций.

Замечание В дальнейшем будем рассматривать наблюдаемые, которые явля-
ются многочленами по p, то есть

f =
∑
m

fm(x)pm,

где m = (m1, . . . ,mn), а pm = pm1 . . . pmn (моном).

Описание движения в квантовой системе

Перейдем теперь к квантовой системе.
1. Пространство состояний.
Это пространство L2(Rn) функций ψ(x).
2. Пространство наблюдаемых.
На прошлой лекции обсуждали, что если есть классическая наблюдаемая f(x, p),

в квантовой системе нам нужно сделать переход

pj → −ih
∂

∂xj
.

13

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

В общем случае, когда f – произвольные функции, непонятно, как делать такой
переход. Поэтому мы и ввели ограничение, чтобы f были полиномами по p. В этом
случае, обозначив функцию после подстановки f+, получим

f+v =
∑
m

fm(x)

(
−ih ∂

∂x

)m
v,

где (
−ih ∂

∂x

)m
=

(
−ih ∂

∂x1

)m1

. . .

(
−ih ∂

∂xn

)mn
.

Заметим, что f могли бы записать и так:

f =
∑
m

pmfm(x).

Тогда обозначим функцию после замены как f− и получим

f−v =
∑
m

(
−ih ∂

∂x

)m
(fm(x)v) .

Нам удобно выбрать не какую-либо из этих функций, а некоторую их симметри-
зацию.

Запишем

f+v =
∑
m

(
−ih ∂

∂x

)m
(fm(y)v(x))

∣∣∣∣∣
y=x

,

f−v =
∑
m

(
−ih ∂

∂x

)m
(fm(x)v(x))

∣∣∣∣∣
y=x

.

Во втором случае, конечно, это совсем формальная запись, т.к. нет зависимости
от y.

Определение 2. Пусть f =
∑

m fm(x)pm. Вейлевский дифференциальный оператор
f̂ , соответствующий f , это

f̂v =
∑
m

(
−ih ∂

∂x

)m(
fm

(
x+ y

2

)
v(x)

)∣∣∣∣∣
y=x

.

Замечание. Вейлевские дифференциальные операторы будем рассматривать в
качестве наблюдаемых.

3. Динамика.
Фиксируем вейлевский оператор Ĥ. Тогда изменения состояния ψ описываются

уравнением Шрёдингера

ih
∂ψ

∂t
= Ĥψ.
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Самый стандартный выбор функции Гамильтона – сумма потенциальной и кине-
тической энергий

H =
p2

2
+ V (x).

Тогда вейлевский оператр

Ĥ = −h
2

2
∆ + V (x),

где ∆ – сумма вторых производных.
Это и есть формальная схема квантования.

Свойства вейлевских дифференциальных операторов

Напомним, что у классических наблюдаемых f и g введены две операции: пото-
чечное умножение fg и скобка Пуассона {f, g}.

Для вейлевских операторов f̂ и ĝ можно ввести композицию f̂ ĝ. Аналогом скобки
Пуассона будет коммутатор

[f̂ , ĝ] = f̂ ĝ − ĝf̂ .

Эти две операции оказываются тесно связаны с операциями для класссических
наблюдаемых, а именно переходят в них, если h→ 0. 2

Нам будет удобно рассматривать квантовую скобку Пуассона

{f̂ , ĝ}q =
i

h
[f̂ , ĝ].

Утверждение 1. В квазиклассическом пределе при h→ 0

f̂ ĝ = f̂ g +O(h), {f̂ , ĝ}q = {f, g}+O(h).3

Доказательство. Все формулы линейны по f и g, значит, достаточно доказать,
когда f(x, p), g(x, p) – это мономы. Будем применять индукцию по степени монома
f .

Установим перед этим, что такое формула, которая описывает композицию мо-
номов. Рассмотрим

p̂j = −i ∂
∂xj

F̂ ,

где F̂ – произвольный вейлевский оператор. Тогда можно утверждать, что

p̂jF̂ = p̂jF −
ih

2

∂̂F

∂xj
,

2Предел при h→ 0 называется квазиклассическим пределом.
3Имеется в виду следующая формальная вещь. f и g – многочлены по перепенной p, а их коэф-
фиценты fm(x, h) и gm(x, p) – это гладкие по x функции, возможно, многочлены по h. Тогда
f̂ и ĝ тоже будут многочленами по h. Считаем, что O(h) многочлен, у которого нет нулевого
коэффецента.
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F̂ p̂j = p̂jF +
ih

2

∂̂F

∂xj
.

Обе эти формулы проверяются прямым дифференциированием. Проверим первую
из них.

Пусть F (x, p) = a(x)pm. Тогда

p̂jF̂ v =

(
−ih ∂

∂xj

)((
−ih ∂

∂x

)m
a

(
x+ y

2

)
v(x)

∣∣∣∣
y=x

)
=

=

(
−ih ∂

∂xj

(
−ih ∂

∂x

)m
a

(
x+ y

2

)
v(x)

)∣∣∣∣
y=x

−

−
(
−ih ∂

∂yj

(
−ih ∂

∂x

)m
a

(
x+ y

2

)
v(x)

)∣∣∣∣
y=x

.

Верхняя строчка – просто вейлевский оператор, снизу дифференциирование толь-
ко только a:

p̂jF̂ v = p̂jF −
ih

2

(
−ih ∂

∂xj

)m
∂a

∂xj

(
x+ y

2

)
v(x)

∣∣∣∣
y=x

,

значит, снизу тоже вейлевский оператор.
Вернемся к доказательству равенств.
1. Докажем, что

f̂ ĝ = f̂ g +O(h).

База индукции следует из наших формул.
Проверим шаг индукции. Допустим, равенство доказано для всех мономов, кото-

рые не превосходят k. Тогда

f = pjf0, f̂ ĝ = p̂jf0ĝ =

= p̂j f̂0ĝ +
ih

2

∂̂f0

∂xj
ĝ.

Второе слагаемое уже O(h), в первом есть формула для монома степени k, которая
нам известна. Получаем

f̂ ĝ = p̂j f̂0g +O(h) = p̂f0g +O(h).

2. Доказываем
{f̂ , ĝ}q = {f, g}+O(h).

Базу индукции, аналогично, проверять не будем.
Шаг индукции. Берем моном нужного вида. Тогда

{f̂ , ĝ}q =
i

h
(p̂jf0ĝ − ĝp̂jf0) =
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=
i

h

(
p̂j f̂0ĝ +

ih

2

∂̂f0

∂xj
ĝ − ĝp̂j f̂0 −

ih

2
ĝ
∂̂f0

∂xj

)
.

Вычитая из верхнего нижнее, получим

{f̂ , ĝ}q =
i

h
(p̂j f̂0ĝ − p̂j ĝf̂0 − ih

∂̂g

∂xj
f̂0) +

ih

2

{
∂̂f0

∂xj
, ĝ

}
q

.

Это мономы порядка k и O(h).

{f̂ , ĝ}q = p̂j{f̂0, ĝ}q +
∂̂g

∂xj
f̂0 +O(h),

первое слагаемое – моном порядка k. Перепишем, объединив с первой формулой:

{f̂ , ĝ}q = ̂pj{f0, g}+
∂̂g

∂xj
f0 +O(h) =

=
̂(

pj{f0g}+
∂g

∂xj
f0

)
+O(h).

Осталось убедиться, что вот эта классическая наблюдаемая функция и есть скобка
Пуассона.

{fg} = {pjf0, g} =
n∑
k=1

(
∂

∂pk
(f0pj)

∂g

∂xk
− ∂

∂xk
(f0pj)

∂g

∂pk

)
,

дифференциируя, получим, что

{fg} = pj

n∑
k=1

(
∂f0

∂pk

∂g

∂xk
− ∂g

∂pk

∂f0

∂xk

)
+ f0

∂g

∂xj
,

а это и есть нужное выражение.
Утверждение доказано.

Квантовые задачи

Итак, у нас есть какая-то классическая система, из нее получили квантовую.
Хотим решать задачи.

Найти эволюцию состояния – значит решить уравнение Шрёдингера

ih
∂ψ

∂t
= Ĥψ,

где Ĥ – вейлевский оператор.
Среди всех состояний квантовой системы принято выделять стационарные со-

стояния, в которых энергия не меняется со временем.
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Рассмотрим простейшую ситуацию

ψ0 = ei(px−Et)/h,

энергия не меняется со временем, принимает значение E.
Если к этой функции применить квантовый оператор

ih
∂

∂t
ψ0 = Eψ0,

то, очевидно, ψ0 – собственная функция оператора.
Рассмотрим равенства вида

ih
∂

∂t
ψ0 = Eψ0.

Получим, что
H∗ψ = Eψ

– это станционарное уравнение Шрёдингера.
Стандартная ситуация, как мы говорили,

H(x, p) =
p2

2
+ V (x),

Ĥ = −h
2

2
∆ + V (x). (4)

Нужно изучить спектр оператора (4). Вычислить его точно – дело безнадежное
даже в одномерном случае, в котором уравнение Шрёдингера выглядит так:

− h2

2
ψ′′ + V (x)ψ = Eψ (5)

Это линейное дифференциальное уравнение второго порядка. Известно, что если
V (x) – произвольная функция, невозможно написать явную формулу для решения
и найти явным образом спектр.

Есть два возможных пути, которых можно придерживаться. Во-первых, изучать
качественные свойства спектра (как устроены значения энергии, их множества, со-
ответствующие состояния). Во-вторых, можно их искать приближенно. Теорема об
осцилляторном приближении использует оба варианта.

Прежде, чем перейти к этой теореме, обсудим пример.

Постановка задачи для классической системы

Одномерный пример.
Будем рассматривать одномерное уравнение. Относительно V (x) предположим

следующее (рис.2.1):
V (x) = 0 вне [x1, x2].

Хочется понять, как ведет себя квантовая система в такой ситуации. Вспомним
сначала, как ведет себя система классическая.
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Рис. 2.1. V (x).

С точки зрения физической интерпретации, V (x) – потенциальная энергия сил,
действующих в системе. Вся она локализована на некотором отрезке, вне отрезка
сил нет и за его пределами частица движется абсолютно свободно.

Естественная физическая задача выглядит так. Некоторая частица попадает в
область, ограниченную отрезком, где сосредоточены силы. Нужно понять, что мо-
жет произойти с частицей.

В классической ситуации нужно рассмотреть функцию Гамильтона:

H(x, p) =
1

2
p2 + V (x)

и решить уравнения Гамильона: {
ẋ = ∂H

∂p
,

ṗ = −∂H
∂x
.

Решения уравнений и будут траекториями нашей системы.
Если мы нарисуем пространство состояний классической системы (двумерную

плоскость с координатами x и p), то траектории системы Гамильтона являются
линиями уровня H, заданного уравнением

H(x, p) = E,

где E – полная энергия системы.
Рассмотрим возможные случаи:
1) Частица налетает с достаточно большой энергией:

E > maxV (x).

Тогда из вышенаписанного:
p2 = 2(E − V (x)).

Так как правая часть строго положительная, можно извлечь корень. Уравнение
задает две кривых.
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Рис. 2.2. Траектории частицы.

Частица налетает на систему и, поскольку у нее большая собственная энергия,
пролетает через нее. Верхняя линия иллюстрирует случай для частицы, которая
летит слева направо, нижняя – в обратную сторону (рис. 2.2, черные линии).

2) Не очень большая энергия:

E < maxV (X).

Возможны три случая. Частица летела слева и повернула, летела справа и по-
вернула или изначально находилась внутри системы и движется внутри нее (рис.
2.2, красные линии).
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Лекция 3

Постановка задачи для квантовой системы

Теперь рассмотрим соответствующую квантовую систему.
Если мы ищем состояние с постоянной энергией, квантовая система описывается

следующим уравнением Шрёдингера 4:

− h2

2
ψ′′ + V (x)ψ = Eψ. (6)

Чтобы изучить возможных значения энергии системы, нужно рассмотреть спектр
дифференциального оператора второго порядка в левой части (6). Нас интересует,
как ведут себя сами состояния (решения уравнения).

Будем рассматривать E > 0.

Оператор мондромии

Обозначим через L пространство решений (6). Это двумерное линейное про-
странство, состоящее из гладких функций.

Если E > 0, функции из L ограничены со всеми производными.
При x /∈ [x1, x2] уравнение (6) превращается в

−h
2

2
ψ′′ = Eψ.

У этого уравнения два линейно независимых решения:

cos kx и sin kx, где k2 = 2E/h2.

Обозначим пространство решений этого уравнения через L0 (линейная комбинация
cos kx и sin kx).

Определим два оператора B± : L→ L0 :

B−u(x) = u0(x), если u = u0 при x < x1,

B+u(x) = u0(x), если u = u0 при x > x2.

Это линейные операторы и изоморфизмы линейных пространств.

Определение 3. Оператором мондромии уравнения Шрёдингера (6) называется
оператор

M = B+B
−1
− : L0 → L0.

Этот оператор описывает преобразование некоторого вектора из L0 в другой век-
тор из L0 под действием уравнения Шрёдингера. Он зависит от параметра E.

Фиксируем в L0 базис:
e1 = cos kx, e2 = sin kx.

4V (x) – гладкая функция, равная 0 вне отрезка (см. предыдущую лекцию).
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Любой ξ ∈ L0 разложим по этому базису. Зафиксируем еще кососимметричную
невырожденную форму

[ξ, η] = ξ1η2 − ξ2η1.

Ее принято называть кососкалярным произведением5.

Утверждение 2. M сохраняет кососкалярное произведение, то есть

[Mξ,Mη] = [ξ, η], ∀ξ, η ∈ L0.

Доказательство. Определим в L кососимметричную билинейную форму

{ψ, φ} = ψ′φ− ψφ′.

Убедимся, что функция в правой части является числом. Для этого перепишем (6):

ψ′′ +
2 (E − V )

h2
ψ = 0,

φ′′ +
2 (E − V )

h2
φ = 0.

Домножая первое из уравнений на φ, второе на ψ и вычитая одно из второго:

ψ′′φ− φ′′ψ = 0 = {ψ, φ}′.

Теперь убедимся, что B− и B+ переводят {ψ, φ} в [ξ, η]. Для этого рассмотрим
решения ψ и φ уравнения (6).
B− сопоставляет этим решениям такие линейные комбинации cos kx и sin kx, что

эти решения совпадают с ними при x < x1:

ψ = ξ1 cos kx+ ξ2 sin kx, φ = η1 cos kx+ η2 sin kx, x < x1.

Вычислим 6:

{ψ, φ} = (−ξ1k sin kx+ ξ2k cos kx) (η1 cos kx+ η2 sin kx)−

− (−η1k sin kx+ η2k cos kx) (ξ1 cos kx+ ξ2 sin kx) =

= k (−ξ1η2 + ξ2η1) = −k[B−ψ,B−φ].

Аналогично для B+ получим

{ψ, φ} = −k[B+ψ,B+φ].

Воспользовавшись полученными результатами, для ξ, η ∈ L0 получим:

[Mξ,Mη] = [B+B
−1
− (ξ), B+B

−1
− (η)] =

= −1

k
{B−1
− (ξ), B−1

− (η)} = [ξ, η].

Утверждение доказано.
Следствие.

detM = 1.

Заметим, что в базисе (e1, e2) оператор M задается как матрица размера 2× 2.
5Фактически это площадь параллелограмма, построенного на данных векторах.
6Поскольку результат не зависит от x, мы можем работать только с x < x1.
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Комплексификация пространства L

Вспомним физический смысл задачи.

Рис. 3.1. Движение частицы че-
рез поле сил.

Есть потенциал, сосредоточенный на каком-то отрезке [x1, x2]. Мы изучаем ча-
стицу, которая налетает на эту область (рис.3.1).

Свободная частица, летящая слева направо, описывается волной де Бройля:

ψ0 = ei(kx−ωt) ∼ eikx.

Физический смысл такой функции следующий: частица летит слева направо и про-
летает область.

В случае, когда частица меняет свое направление и начинает лететь в обратную
сторону, функция меняется на

e−ikx−iωt ∼ e−ikx.

Для того, чтобы делать выводы о том, в какую сторону направлена частица,
удобнее работать с комплексным базисом.

Рассмотрим пространство L0 и его комплексификацию CL0. Рассмотрим базис
этой комплексификации:

f1 = eikx = e1 + ie2, f2 = e−ikx = e1 − ie2.

1. В CL0 можно продолжить кососимметричную форму [., .].
2. Кроме этого, рассмотрим еще эрмитову форму

< ξ, η >=
1

2i
[ξ, η].

Убедимся, что базис (f1, f2) является эрмитово ортонормированным относительно
данной эрмитовой формы:

< f1, f1 >=
1

2i
[e1 + ie2, e1 − ie2] =

i

2i
([e2, e1]− [e1, e2]) = −[e1, e2] = −1;
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< f1, f2 >=
1

2i
[e1 + ie2, e1 + ie2] = 0;

< f1, f2 >= 1.

Данная эрмитова форма не положительно определенная, имеет сигнатуру (1, 1).
3. Кроме того, в CL0 есть структура комплексного сопряжения, то есть действи-

тельная структура.
Соответственно, имеются группы невырожденных операторов, сохраняющих каж-

дую из структур 1-3. Пусть
A :C L0 →C L0.

Если A сохраняет [., .], то группа таких операторов обозначается Sp(1,C) 7 или
SL(2,C)8.

Если оператор сохраняет < ., . >, группа таких операторов обозначается U(1, 1)9.
Группа операторов, сохраняющих действительную форму (т.е. Aξ = Aξ), обозна-

чается GL(2,R)10.

Утверждение 3.
Sp(1,C) ∩ U(1, 1) ∈ GL(2,R);

Sp(1,C) ∩GL(2,R) ∈ U(1, 1);

U(1, 1) ∩GL(2,R) ∈ Sp(1,C).

Рис. 3.2. Взаимное расположение
GL(2,R, U(1, 1) и Sp(1,C).

Замечание. На рис.3.2 показано, как располагаются группы операторов.
Доказательство. Второе и третье утверждение доказываются одинаково. Дока-

жем второе.

7S, потому что симплектический, т.е. сохраняющий кососкалярное произведение.
8То есть группа 2× 2-матриц комплексных с определителем 1.
9Унитарные операторы, которые сохраняют эрмитову форму с такой сигнатурой.

10Группа вещественных невырожденных 2× 2-матриц.
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Известно, что оператор сохраняет кососкалярное произведение и коммутирует с
комплексным сопряжением. Нужно доказать, что он сохраняет эрмитово произве-
дение.

< Aξ,Aη >=
1

2i
[Aξ,Aη] = {коммутирует с комплекным сопряжением} =

=
1

2i
[Aξ,Aη] = {сохраняет кососкалярное произведение} =

1

2i
[ξ, η] =< ξ, η > .

Доказательство третьего утверждения аналогично.
Докажем первое утверждение. Пусть есть оператор A, сохраняющий кососкаляр-

ное произведение и эрмитову форму. Рассмотрим следующее выражение:

< Aη,Aξ − Aξ >=< Aη,Aξ > − < Aη,Aξ >=

=< η, ξ > −2i[Aη,Aξ] =< η, ξ > −2i[η, ξ] = 0.

Утверждение доказано.

Группа, которая является пересечением групп Sp(1,C), U(1, 1) и GL(2,R), назы-
вается группой SL(2,R) или SU(1, 1). Матрицы в вещественном базисе операторов
из этой группы являются вещественной 2 × 2-матрицей с определителем 1, (1, 1)-
унитарная.

Матрица оператора M

Матрица эрмитовой формы (ссылка) в эрмитово-ортонормированном базисе вы-
глядит следующим образом: (

−1 0
0 1

)
= I

Матрица оператора мондромииM в эрмитово-ортонормированном базисе удовле-
творяет соотношению

M∗IM = I, или M∗I = IM−1,

M =

(
α γ
β δ

)
, M−1 =

(
δ −β
−γ α

)
, M∗ =

(
α β

γ δ

)
.

Запишем теперь это соотношение:(
−α β

−γ δ

)
=

(
−δ γ

−β α

)
,

откуда δ = α, γ = β. Значит, в этом базисе матрица оператора M выглядит так:

M =

(
α β
β α

)
,

detM = 1 ⇒ |α|2 − |β|2 = 1.

Вернемся к физической интерпретации (рис.3.3).
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Рис. 3.3. Коэффиценты
движения частицы.

Утверждение 4. ∃! решение уравнения Шрёдингера такое, что

ψ =

{
f1 + rf2, x < x1,

τf1, x > x2

,

где τ и r – некоторые комплексные коэффиценты.

Доказательство. Мы должны доказать, что существуют единственным образом
определенные τ и r такие, что

M

(
1
r

)
=

(
τ
0

)
.

С учетом представления M для базиса получим, что{
α + rβ = τ

β + rα = 0

Очевидно, что r = −β/α, τ = α− |β|2/α = (|α|2 − |β|2)/α = 1/α.
Утверждение доказано.

Это единственное решение описывает нашу ситуацию.
Обозначим T = |τ |2, R = |r|2.

T +R =
|β|2

|α|2
+

1

|α|2
=

1 + |β|2

|α|2
= 1.

Определение 4. Число T называется коэффицентом прохождения, а R – коэффи-
центом отражения.

Поскольку в сумме T и R дают 1, их можно интерпретировать как вероятности
(T – это вероятность того, что частица пролетела через область, R – вероятность
того, что повернула назад).

Получается совершенно отличная от решения классической механики ситуация:
какое бы значение не принимала энергия, всегда существует ненулевая вероятность,
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что частица пролетит слева направо. Это явление называется туннельным эффек-
том.

Обратный эффект, когда при больших значениях энергии частица может отра-
зиться с ненулевой 11, называется надбарьерным отражением.

Рассмотрим два примера, имеющих отношение к туннельному эффекту.

Радиоактивный распад

Будем рассматривать α-распад. Были выявлены следующие закономерности:
1) Предположим, имеется N(t) ядер. Это количество меняется с течением време-

ни.
N(t) = N0e

−t/t0 ,

где N0 – изначальное количество ядер, t0 – период полураспада;
2) t0 очень велико;
3) t0 сильно зависит от энергии.
В основе теории α-распада лежал туннельный эффект. Идея состоит в следую-

щем.
В нашей ситуации T – вероятность распада атома. Тогда она обладает следую-

щими свойствами:
1) T – очень мала;
2) (∂T/∂E)/T – велика.
Квазиклассический предел:

lim
h→0

T = 0;

lim
h→0

∂

∂E
lnT =∞.

11При некоторых значениях энергии R может равняться нулю, но вообще говоря его значение
отлично от нуля.
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Лекция 4

Радиоактивный распад (продолжение)

Будем рассматривать простейшую модель.
Уравнение Шрёдингера:

−h
2

2
ψ′′ + V (x)ψ = Eψ.

Предположим, что V (x) имеет следующий вид 12:

V (x) =


0, x < 0,

V0, x ∈ [0, a],

0, x > a.

Будем считать, что E < V0.
Когда обсуждалось решение уравнения Шрёдингера, мы говорили о бесконечно

дифференциируемой функции V (x). Решить уравнение с описанной выше функци-
ей, которая имеет разрывы первого рода, мы тоже можем.

Обсудим, как должна выглядеть ψ. Эта функция не может быть гладкой. Чтобы
левая часть уравнения скомпенсировалась, нужно, чтобы ψ и ψ′ были непрерывны,
а ψ′′ тоже имела разрыв первого рода в точках 0 и a.

Рассмотрим решение уравнения:

ψ = eikx, x < 0,

ψ = αeikx + βe−ikx, x > a.

Если найдем коэффицент α, то сможем вычислить

T =
1

|α|2
.

Будем искать α. Рассмотрим уравнение в трех областях.
I. x < 0. Решение уравнения в этой области:

ψ = eikx, k2 = 2E/h2.

II. x ∈ [0, a]. В этой области уравнение выглядит так:

−h
2

2
ψ′′ + V0ψ = Eψ,

ψ′′ = κ2ψ, κ2 =
2(V0 − E)

h2
.

12В физике такую ситуацию принято называть потенциальным прямоугольным барьером
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Решение уравнения в этой области:

ψ = A chκx+B shκx.

Функция в точке 0 непрерывна:

lim
x→0−0

eikx = lim
x→0+0

A chκx+B shκx,

1 = A.

Первая производная непрерывна тоже:

lim
x→0−0

(
eikx
)′

= lim
x→0+0

(A chκx+B shκx)′ ,

ik = κB.

Значит, в этой области

ψ = chκx+
ik

κ
shκx.

III. x > a. Решение уравнения в это области:

ψ = αeikx + βe−ikx.

Ограничение на непрерывность функции в точке a:

lim
x→a−0

chκx+
ik

κ
shκx = lim

x→a−0
αeikx + βe−ikx,

chκa+
ik

κ
shκa = αeika + βe−ika.

Аналогично для производных:

κ

(
shκa+

ik

κ
chκa

)
= ik

(
αeika − βe−ika

)
.

Поделим нижнее из уравнений на ik и прибавим к верхнему:

2αeika = 2 chκa+

(
ik

κ
+
κ

ik

)
shκa.

Таким образом, нашли α и теперь можем посчитать T :

T =
1

| chκa+
(
ik
κ

+ κ
ik

)
shκa|2

=
1

ch2 κa+
(

(κ2−k2)2

4k2κ2

)
sh2 κa

.

Проверим, верно ли, что коэффицент прохождения T обладает свойствами 1-2
(см. предыдущую лекцию). Перед применением квазиклассического предела вспом-
ним, что

k =

√
2E

h
, κ =

√
2(V0 − E)

h
.
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При h→ 0

T ∼ 4

1 + (κ2−k2)2

4k2κ2

e−2a
√

2(V0−E)/h → 0, h→ 0.

Заметим, что при h→ 0 T ведет себя следующим образом:

T = b(E)e−
σ(E)
h ,

∂T

∂E
=

(
b′(E)− 1

h
σ′(E)b

)
e−

σ
h ,

∂T/∂E

T
=
b′

b
− 1

h
σ′(E)→∞, h→ 0.

Итак, это очень грубая модель, но она использовалась в физических работах.
Ее можно уточнить, если развить науку о том, как вычислять квазикласический
предел для коэффицентов прохождения и отражения. Это не очень просто, надо
изучать решения уравнений в комплексной области. Как правило, свойства 1-2 бу-
дут выполняться 13.

Резонансное тунелирование

Второй эффект, который мы рассмотрим, называется резонансным тунелирова-
нием.

Вернемся к общей ситуации. У нас есть потенциал, который характеризуется
коэффицентами прохождения и отражения T и R.

В прошлый раз мы отмечали, что T 6= 0. А вот R при некоторых значениях
энергии E может равняться нулю, причем это может происходить даже тогда, когда
E меньше, чем максимум потенциала.

Получается пародоксальная ситуация: в классической системе значения E, мень-
шие максимума потенциала, означают, что частица повернет обратно. Тут же при
некоторых таких E R = 0 и частица с вероятность 1 пролетит через область.

Этот эффект и называется эффектом резонансного тунелирования. Можно скон-
струировать потенциал, для которого будет выполняться.

Рассмотрим начала потенциал, устроенный следующим образом (рис.4.1).
У потенциала V0(x) один максимум.
Прибавим к нему ровно такой же потенциал, но сдвинутый на некоторое рассто-

яние b, достаточно большое, чтобы они не пересекались между собой (рис.4.2).
Итоговый потенциал будет выглядеть так:

V (x) = V0(x) + V0(x− b).

В такой системе можно добиться того, чтобы R = 0.
Посмотрим, как устроен для такой системы оператор мондромии M . Обозначим

за M0 оператор мондромии, который отвечает потенциалу V0, а за Mb – оператор
мондромии сдвинутой части потенциала.

13Вообще говоря, не всегда – зависит от конфигурации потенциалов.
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Рис. 4.1. Потенциал V0(x).

Рис. 4.2. Потенциал V (x).

Тогда
M = MbM0.

Посмотрим, как устроено такое произведение.

M0 =

(
α β
β α

)
Это означает, что для решения ψ уравнения

−h
2

2
ψ′′ + V0(x)ψ = Eψ

слева и справа от области с потенциалом выполняется

eikx ← ψ → αeikx + βe−ikx.

Пусть матрица

Mb =

(
α1 β1

β1 α1

)
,

то есть для решения решения ψ уравнения

− h2

2
ψ′′ + V0(x− b)ψ = Eψ. (7)
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выполняется
eikx ← ψ → α1e

ikx + β1e
−ikx.

Запишем (7), сделав замену y = x− b:

−h
2

2
ψyy + V0(y)ψ = Eψ,

eikyeikb ← ψ → α1e
ikyeikb + β1e

−ikye−ikb.

Домножим решение на e−ikb:

eiky ← ψ1 → α1e
iky + β1e

−ikye−2ikb.

Сравнивая формулы, получим, что

α1 = α, β1 = βe2ikb,

Mb =

(
α βe−2ikb

βe2ikb α

)
.

Мы хотим добиться того, чтобы коэффицент отражения R = 0.

R =
|β̂|2

|α̂|2

Достаточно вычислить не все произведение матриц, а только β̂:

β̂ = αβe2ikb + βα = βeikb
(
αeikb + αe−ikb

)
=

= 2βeikb Re
(
αeikb

)
.

Возможно два случая, когда R = 0:
1. β = 0. Это значит, что в ситуации с потенциалом V0(x) коэффицент отражения

тоже равен 0. Это бывает достаточно редко.
2. Re

(
αeikb

)
= 0.14

В природе такая ситуация встречается редко, но используются на практике, на-
пример, для того, чтобы производить отбор частиц с определенной энергией. Такие
конфигурации называются туннельными контактами.

Квантовый гармонический осцилятор

Рассмотрим систему, которая получается квантованием классического гармони-
ческого маятника. Для классического одномерного маятника функция Гамильтона
выглядит как

H(x, p) =
1

2
p2 +

1

2
ω2x2.

Можно нарисовать тракетории, то есть решения уравнения H = E:

p2 + ω2x2 = 2E.
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Рис. 4.3. Траектории системы.

Все траектории являются элипсами (см. рис.).
Можно в явном виде решить уравнения Гамильтона:{

ẋ = ∂H
∂p

= p,

ṗ = −∂H
∂x

= −ω2x,

ẍ+ ω2x = 0,

откуда {
x = A cosωt+B sinωt,

p = −A sinωt+B cosωt.

Перейдем теперь к квантовой системе.

Определение 5. Квантовый гармонический осцилятор (одномерный) – это кван-
товая система с

Ĥ = −h
2

2

d2

dx2
+
ω2x2

2
.

Для того, чтобы изучать возможные значения энергии, с аналитической точки
зрения мы должны изучать уравнение

−h
2

2
ψ′′ +

1

2
ω2x2ψ = Eψ,

а со спектральной точки зрения – должны изучать спектр оператора Ĥ.
Рассмотрим Ĥ. Он является дифференциальным оператором второго порядка.

Кроме этого, будем рассматривать дифференциальный оператор первого порядка

â = ωx+ h
d

dx

14В качестве упражнения можно убедиться, что уравнение из второго случая имеет решение для
прямоугольника, рассмотренного в первой части лекции. Получится, что для одного прямо-
угольника R→ 1, но в случае, когда их два, частица может проскочить область с вероятностью
1.
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и формально сопряженный к нему оператор

â∗ = ωx− h d
dx
.

Определение 6. â называется оператором уничтожения, а â∗ – оператором рож-
дения.

Установим коммутационные соотношения между Ĥ, â и â∗.

Утверждение 5. 1. ââ∗ = 2Ĥ + hω;
2. â∗â = 2Ĥ − hω;
3. [â, â∗] = 2hω;
4. [Ĥ, â] = −hωâ;
5. [Ĥ, â∗] = hωâ∗.

Доказательство. Представляет собой простую проверку. Для пункта 1:

ââ∗u =

(
ωx+ h

d

dx

)
(ωxu− hu′) =

= ω2x2u− ωxhu′ + ωxhu′ + hωu− h2u′′ = 2Ĥu+ hωu.

Пункт 2 доказывается аналогично.
Для доказательства пункта 3 достаточно из пункта 1 вычесть пункт 2.
Докажем пункт 4. Равенство 1 умножим на â справа, а равенство 2 – слева и

вычтем второе из первого. Получится, что

0 = 2Ĥâ+ hωâ− 2âĤ + hωa = 0,

[Ĥ, â] + hωâ = 0.

Пункт 5 доказывается аналогично. Утверждение доказано.

С помощью этих соотношений вычислим в явном виде Ĥ. Пусть E – спектр Ĥ.

Утверждение 6. E ограничено снизу числом hω/2;

(E0 = hω/2 ∈ E) ⇐⇒

⇐⇒ (∃ решение уравнения âψ0 = 0, быстро убывающее на бесконечности)15.

Доказательство. Представим Ĥ в виде

Ĥ =
1

2
hω +

1

2
â∗â.

Предположим, ∃ некоторое число E ∈ E . Пусть ψ – соответствующая собственная
функция.

Eψ = Ĥψ =
1

2
hωψ +

1

2
â∗âψ.

15На самом деле быстрее любой степени x.
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Через

(u, v) =

∫
R
uvdx

обозначим L2-скалярное произведение.

E(ψ, ψ) =
1

2
hω(ψ, ψ) +

1

2
(â∗âψ, ψ) =

1

2
hω(ψ, ψ) +

1

2
(âψ, âψ),

E‖ψ‖2 =
1

2
hω‖ψ‖2 +

1

2
‖âψ‖2,

E =
1

2
hω +

‖âψ‖2

2‖ψ‖2
,

откуда и следует утверждение.
Заметим, что âψ0 = 0 означает, что hψ′0 + ωxψ0 = 0, т.е.

ψ0 = e−ωx
2/2h,

которая отвечает минимальному собственному значению E0 = hω/2.

Утверждение 7.
∀m ∈ Z+Em = hω(m+ 1/2) ∈ E .

Соответствующая Em собственная функция ψm = (â∗)mψ0.

Доказательство. Докажем сначала следующий факт.
Пусть E – собственное значение Ĥ с собственной функцией ψ.
Тогда â∗ψ – либо 0, либо собственная функция Ĥ, соответствующая с.зн. E+hω.

Доказательство вспомогательного факта следует из пункта 5 утверждения 5:

[Ĥ, â∗] = Ĥâ∗ − â∗Ĥ = hωâ∗,

Ĥâ∗ψ − â∗Eψ = hωâ∗ψ,

Ĥâ∗ψ = (E + hω) â∗ψ,

что и нужно было получить.
Отсюда сразу следует верхнее утверждение. Пусть

ψ0 = e−ωx
2/2h, то E0 = hω/2,

â∗ψ0 =

(
ωx− h d

dx

)
ψ0 = 2ωxe−ωx

2/2h,

ненулевая функция, которой соответствует E1 = hω(1 + 1/2).
Повторяем эту процедуру:

(â∗)2ψ0 =

(
ωx− h d

dx

)
2ωxe−ωx

2/2h =
(
4ω2x2 − 2hω

)
e−ωx

2/2h.

Это собственная функция, соответствующая значению E2 = hω(2 + 1/2).
Далее можно индуктивно доказать утверждение.
Легко проверить, что

(â∗)mψ0 = pm(x)e−ωx
2/2h,

где pm – многочлен степени m.
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Лекция 5

Квантовый гармонический осцилятор (продолжение)

Продолжим обсуждать тему прошлой лекции.
Нам осталось убедиться, что, кроме E0 = hω/2 и Em = hω(m+ 1/2), в спектре E

нет других точек.

Утверждение 8.
E = {Em, m ≥ 0}.

Доказательство. Докажем вспомогательное утверждение.
Пусть E ∈ E , ψ – собственная функция, которая ему соответствует.
Тогда â∗ψ – либо 0, либо собственная функция Ĥ, соответствующая с.зн. E−hω.

Для доказательства воспользуемся пунктом 6 утверждения 5:

[Ĥ, â] = Ĥâ− âĤ = −hωâ.

Применим выражение к функции ψ:

Ĥâψ − Eâψ = −hωâψ,

Ĥâψ = (E − hω) âψ,

откуда следует вспомогательное утверждение.
Теперь предположим, что имеется некоторое E ∈ E и ему соответствует функция

ψ.
Подействуем на функцию оператором уничтожения â. Согласно вспомогательно-

му утверждению, âψ – либо 0, либо собственная функция, соответствующая значе-
нию E − hω.

Повторим операцию еще раз. Если (â)2ψ – ненулевая, то она является собственной
функцией, соответствующей собственному значению −2hω.

Применяя оператор уничтожения некоторое конечное число раз (т.к. E ограни-
чены снизу E0 = hω/2, см. прошлую лекцию), получим

∃m : (â)mψ 6= 0, (â)m+1 = 0.

Обозначим u = (â)mψ. Единственным решением уравнения âu = 0 будет

u = ψ0 = e−ωx
2/(2h),

которому соответствует
E −mhω = hω/2.

Утверждение доказано.

Несколько слов о доказательстве.
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Обсудим, какие качественные выводы можно сделать для формул собственных
функций. Для случая классического маятника энергия, как мы помним, может при-
нимать любые неотрицательные значения.

В квантовой системе энергия может принимать только дискретные значения вида
Em. Правда, в квазиклассическом приделе при h → 0, во-первых, Em → 0, а во-
вторых, расстояние между Em → 0. Таким образом, в квазиклассическом пределе
система становится похожа на классическую.

Обсудим собственные функции

ψm = (â∗)me−ωx
2/2h.

Каждая из этих функций является многочленом степени m, умноженным на экс-
поненту.

Рассмотрим, как устроены эти функции в квазиклассическом пределе. Экспонен-
ту можем записать как

e−ω(x/
√
h)

2
/2 = e−ωξ

2/2, ξ = x/h.

Оператор рождения представим в виде

â∗ =
√
h

(
ω
x√
h
− d

d(x/
√
h)

)
=
√
hωξ − d

dξ
.

Значит,
ψm = cmpm(ξ)e−ωξ

2/2 = cmfm(ξ),

причем fm(ξ) = pm(ξ)e−ωξ
2/2 убывает при ξ →∞ быстрее любой степени.

При этом

‖ψm‖2 = c2
m

∫ ∞
−∞

f 2
m(x/

√
h)dx = c2

m

√
h

∫ ∞
−∞

f 2
m(ξ)dξ.

Если мы хотим, чтобы ‖ψm‖2 = O(1), h→ 0, мы должны выбрать cm = h1/4.
Таким образом, можем представить

ψm = h1/4fm(x/
√
h).

С.в. ψ0 →∞, h→ 0, ψ0 → 0, h→ ±∞.
Попытаемся понять, как выглядят ψm, m 6= 0.(

ωξ − d

dξ

)
e−ωξ

2/2 = 2ωξe−ωξ
2/2

ψ0 выглядит, как на (рис.5.1). Остальные собственные функции устроены так же,
как (рис.5.2), но каждая следующая имеет на один 0 больше.
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Рис. 5.1. График ψ0. Рис. 5.2. График ψ1.

Многомерный квантовый гармонический осцилятор

Как и в одномерном случае, рассмотрим сначала классическую систему с маят-
ником.

У нас есть пространство R2n. Функция Гамильтона выглядит так:

H(x, p) =
1

2
|p|2 +

1

2
(x,Ω2x),

где Ω2 – симметричная положительная матрица.
Запишем уравнение Гамильтона:{

ẋ = p,

ṗ = −Ω2x.
(8)

Пусть e1, . . . , en – базис главных осей Ω2. Собственные числа формы обозначим
как ω2

1, . . . , ω
2
n.

Разложим решение (8) по главным осям:

x =
n∑
j=1

yjej, p =
n∑
j=1

qjej.

Тогда само уравнение выглядит так:{
ẏj = qj,

q̇j = −ω2
j yj.

Его решение выглядит следующим образом:

yj = aj cosωjt+ bj sinωjt,

qj = ωj (−aj sinωjt+ bj cosωjt) .

Проекции траекторий, как и в одномерном случае, будут эллипсами. Сами тра-
ектории лежат на n-мерном торе – произведении этих окружностей. Как сами тра-
ектории ведут себя на этом торе, зависит от соотношения ωj.
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Заметим еще, что положение равновесия у этой систему только одно – x = 0.

Теперь рассмотрим соответствующую квантовую систему.
Она задается оператором Гамильтона

Ĥ = −h
2

2
∆ +

1

2

(
x,Ω2x

)
,

где ∆ – оператор Лапласа.
Выясним, как устроен спектр этого оператора. Для этого можно снова перейти в

базис главных осей.

Ĥ = −h
2

2

n∑
j=1

∂2

∂y2
j

+
1

2

n∑
j=1

ω2
j y

2
j =

n∑
j=1

Ĥj,

где Ĥj = −(h2/2)(∂2/∂y2
j ) + (1/2)ω2

j y
2
j . Это операторы одномерного гармонического

осцилятора, поэтому спектр каждого Ĥj мы знаем.
Рассмотрим 16 L2(R2) = L2(Ry1)⊗ · · · ⊗ L2(Ryn):

Ĥ = Ĥ1 ⊗ 1⊗ · · · ⊗ 1 + 1⊗ Ĥ2 ⊗ 1 · · · ⊗ 1+

+ · · ·+ 1⊗ · · · ⊗ Ĥn.

У каждого Ĥj спектр состоит из чисел E = hωj(mj + 1/2).
Пусть m = (m1, . . . ,mn) – целочисленный вектор, то

Em =
n∑
j=1

hωj(mj + 1/2),

а собственная функция, отвечающая этому собственному значению, будет тензор-
ным произведением собственных функций операторов Ĥj.

Возьмем оператор рождения

â∗j =

(
ωjyj + h

∂

∂yj

)
.

Собственная функция

ψm = (â∗1)m1 e
−ω1y21/2h . . . (â∗n)mn e

−ω1y2n/2h =

= (â∗1)m1 . . . (â
∗
n)mn e

−1/2h
∑n
j=1 ωjy

2
j .

Конечно, можно было и повторить все рассуждения для одномерного случая.
Заметим, что в одномерном случае каждому собственному значению отвечала

одна собственная функция. Здесь, вообще говоря, это не так. Возможно, одно и то
же Em будет получаться с помощью разных комбинаций wj и mj.
16Пространство функций от n переменных разложим в тензорное произведение пространств функ-

ций от одной переменной.
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Пару слов о структуре собственных функция. Запишем в переменных x

â∗j = ωjyj − h
∂

∂yj
= ωj(x, ej)− h

(
ej,

∂

∂x

)
Тогда

ψm = cmpm(x/
√
h)e−(x/

√
h,Ωx/

√
h)/2 = cmfm

(
x√
h

)
,

аналогично рассуждениям из прошлой лекции выберем cm = h−n/4. Значит, соб-
ственные функции выглядят как

ψm = h−n/4fn

(
x√
h

)
.

Локальная теорема об осциляторном приближении

Рассмотрим теперь оператор, который выглядит так:

Ĥ = −h
2

2
∆ + V (x),

где V (x) – гладкая функция, x ∈ Rn.
Вспомним, что теория малых колебаний основана на следующем соображении.

Так как частица совершает малые колебания около минимума потенциальной энер-
гии V (x), можем воспользоваться формулой Тейлора:

V (x) ∼ V (x0) +
1

2
(x− x0, V

′′(x− x0)) ,

где

V ′′ij =
∂2V

∂xi∂xj
(x0).

Наряду с Ĥ рассмотрим

Ĥ0 = −h
2

2
∆ + V (x0) +

1

2
(x− x0, V

′′(x− x0)) .

Предположим, что x0 – точка невырожденного минимума. Тогда V ′′ – положительно
определенная матрица.

Такое находить мы уже умеем. У этого оператора спектр выглядит следующим
образом:

Em = V (x0) +
n∑
j=1

hωj(mj + 1/2),

а собственные функции

ψm = h−n/4fm

(
x− x0√

h

)
,

где fm(ξ) – гладкая фукнция, на бесконечности убывающая быстрее любой степени.
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Лемма 1. Пусть W (x) – гладкая функция, растущая при |x| → ∞ не быстрее
многочлена 17 и такая, что W (x) = O(|x− x0|s), т.е. имеет 0 порядка s в точке
x0.
Тогда

‖W (x)ψm‖ = O
(
hs/2

)
.

Доказательство. Запишем

‖W (x)ψm‖2 = h−n/2
∫
Rn
W 2(x)f 2

m

(
x− x0√

h

)
dx.

Во всех точках |x− x0| ≥ δ > 0 функция fm стремится к нулю при h→ 0 быстрее,
чем любая степень h. Поэтому

‖W (x)ψm‖2 = h−n/2
∫
|x−x0|<δ

W 2(x)f 2
m

(
x− x0√

h

)
dx+ o(hN), ∀N.

Т.к. W (x) имеет в x0 ноль порядка s, можем записать

W (x) = |x− x0|sW0(x),

где W0(x) ≤ C на |x− x0| < δ.

‖Wψm‖2 ≤ h−n/2C

∫
|x−x0|<δ

|x− x0|2sf 2
m

(
x− x0√

h

)
dx ≤

≤
{
Сделаем замену x− x0 = ξ

√
h
}
≤

≤ Ch−n/2
∫
Rn
hs|ξ|2sf 2

m(ξ)hn/2dξ =

= hsC

∫
Rn
|ξ|2sf 2

mξdξ = hsC1

Утверждение доказано.

Теорема 1. (Локальная теорема об осциляторном приближении)
Пусть x0 – невырожденный минимум функции V (x) и пусть V (x) растет при
|x| → ∞ не быстрее многочлена.
Тогда

Ĥψm = Emψm + f, ‖f‖ = O(h3/2).

Доказательство. Разложим V (x) по Тейлору в x0:

V (x) = V (x0) +
1

2
(x− x0, V

′′(x− x0)) +W,

где за W обозначили остаток, W = O (|x− x0|3).

Ĥ = Ĥ0 +W,

Ĥψm = Ĥ0ψm +Wψm = Emψm + f,

где f = Wψm = O
(
h3/2

)
.

Теорема доказана.
17Имеется в виду, что и функция, и все ее производные растут не быстрее многочлена.
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Следствие 1. Пусть оператор Ĥ – самосопряжен. Тогда

∀m∃λ ∈ σ
(
Ĥ
)
, т.ч. |λ− Em| = O

(
h3/2

)
,

где σ
(
Ĥ
)
– спектр оператора Ĥ. 18

Доказательство. Утверждение теоремы можно записать так:(
Ĥ − Em

)
ψm = f.

У нас возможно два варианта. Если Em ∈ σ
(
Ĥ
)
, все доказано. Если Em /∈ σ

(
Ĥ
)
,

то
ψm =

(
Ĥ − Em

)−1

f,

1 = ‖ψm‖ ≤ ‖
(
Ĥ − Em

)−1

‖‖f‖ ≤ 1

d(Em
‖f‖.

Здесь мы воспользовались фактом из функционального анализа, говорящий о том,
что если у нас есть самосопряженный оператор, то норма его резольвенты равна
1/(расстояние до его спектра).

Получим, что
d(Em) ≤ ‖f‖,

где d(Em) – расстояние до спектра.
Следствие доказано.

Числа, приближенно удовлетворяющие спектральному уравнению, называются
точками псевдоспектра. Из следствия следует, что приближение работает, когда Ĥ
самосопряженный. В общем случае псевдоспектр может довольно сильно от спектра
отличаться.

Глобальная теорема об осциляторном приближении

Напомним, что

Ĥ = −h
2

2
+ V (x),

где V (x) – гладкая функция, имеющая N точек глобального минимума

x(1), . . . , x(N)

причем все x(j) невырожденные.
Для каждой x(j) можем построить свой оператор гармонического осцилятора

Ĥ(j) = −h
2

2
∆ + V0 +

1

2

(
x− x(j), V ′′j (x− x(j))

)
,

18Это означает, что найдется настоящее собственное значение оператора Ĥ, которое мало отли-
чается от приближения Em.
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где V0 – значение V (x) на всех xj.
Для каждого такого оператора с.в. имеют вид

E(j)
m = V (x0) +

n∑
k=1

hω
(j)
k (mk + 1/2).

Обозначим Es все с.в. Em, упорядоченные по возрастанию с учетом кратности.
Следующая теорема приводится без доказательства.

Теорема 2. (Глобальная теорема об осциляторном приближении)
Пусть V (x) удовлетворяет сформулированным выше условиями и, кроме того,

вне некоторого компакта |V (x)− V0| ≥ δ > 0.
Тогда ∀M ∈ N при достаточно малых h ∃M с.в. оператора Ĥ, причем если λs –

это с.в., упорядоченные по возрастанию, то

λs = E (s) +O(h3/2).
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Лекция 6

Первоначальные сведения из теории Морса

Пусть M – гладкое n-мерное многообразие. Главной его особенностью является
то, что в окрестности каждой его точки мы можем ввести локальные координаты
x = (x1, . . . , xn).

Рассмотрим функцию
f : M → R,

причем f(x1, . . . , xn) – гладкая.

Определение 7. P ∈M – критическая точка функции f , если dpf = 0.

Замечание. Имеется в виду

dpf : TpM → R,

где TpM – касательное пространство многообразия M . В координатах это опреде-
ление означает, что

∂f

∂xj
(p) = 0, ∀j.

Теория Морса изучает связь между поведением функций в критических точках
и глобальной геометрией многообразия.

Определение 8. Критическая точка P – невырожденная, если d2
Pf – невырожден-

ная квадратичная форма.

Замечание. Вообще говоря, второй дифференциал f в произвольной точке M
не пределен корректно, но в критических точках все в порядке.

В координатах это означает, что

∂2f

∂xi∂xj
(P )

является невырожденной матрицей.

Определение 9. Пусть P – невырожденная критическая точка. Индексом точки
P называется число отрицательных собственных значений d2

Pf .

Лемма 2. (Лемма Морса) Пусть P – невырожденная критическая точка функции
f . В некоторой окрестности точки P ∃ локальные координаты (y1, . . . , yn) такие,
что

f(y) = f(P ) +
n∑
j=1

εjy
2
j , εj = ±1.

19

19Это утверждение можно рассматривать как некоторое обобщение теоремы о нейявной функции.
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Доказательство. Будем доказывать лемму по индукции. Без потери общности
будем считать, что f(P ) = 0.

Покажем, что ∀k ≤ n ∃ локальные координаты (y1, . . . , yn) такие, что

f(y) =
k∑
j=1

εjy
2
j +

n∑
j=k+1

Qijyiyj, (9)

где Qij(y) – гладкая невырожденная матричная функция.
1. База индукции. Проверим, что (9) верно при k = 0.
Будем считать, что для любых координат xj(P ) = 0. Рассмотрим

f(x) =

∫ 1

0

d

dx
f(xt)dt =

∫ 1

0

n∑
j=1

∂f

∂xj
(tx)xjdt =

=
n∑
j=1

xjhj(x),

где hj(x) =
∫ 1

0
(∂f/∂xj) (tx)dt.

Функции hj(x) – гладкие, кроме того, hj(0) = 0.
Значит, можем записать в таком же виде сами hj:

hj(x) =
n∑
i=1

xiQij(x).

Значит,

f(x) =
n∑
j=1

xixjQij(x).

Осталось показать, что матрица Qij невырожденная. Для этого посчитаем Qij в
нуле. Для этого достаточно посчитать значения в нуле вторых производных f :

∂2f

∂xi∂xj
(0) = 2Qij(0)

2. Шаг индукции. Пусть (9) верно для некоторого k. Хотим доказать, что это
верно и для k + 1.

Заметим, что раз Qij – симметричная невырожденная матрица, то матрицу Qij(0)
можно привести к диагональному виду. Поэтому будем предполагать, что Qij(0) –
диагональная.

Запишем f в следующем виде:

f(y) =
k∑
j=1

εjy
2
j +Qk+1,k+1(y)y2

k+1 + 2
n∑

j=k+2

Qk+1,jyk+1yj+

+
n∑

i,j=k+2

Qij(y)yiyj.
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Представим
Qk+1,k+1 = |Qk+1,k+1|εk+1.

Тогда

f(y) =
k∑
j=1

εjy
2
j + εk+1

[(√
|Qk+1,k+1|yk+1

)2

+

+2yk+1

√
|Qk+1,k+1|

n∑
j=k+2

Qk+1,jεk+1√
|Qk+1,k+1|

yj+

+

(
n∑

j=k+2

Qk+1,jεk+1√
|Qk+1,k+1|

yj

)2
+

n∑
i,j=k+2

Q̃ij(y)yiyj.

Теперь сделаем замену координат

xj = yj, j 6= k + 1, zk+1 =
√
|Qk+1,k+1|yk+1 +

n∑
j=k+2

Qk+1,jεk+1√
|Qk+1,k+1|

yj.

В новых координатах

f =
n∑
j+1

εjz
2
j +

n∑
i,j=1

Q̃ij(z)zizj.

Осталось проверить две вещи. Во-первых, что формулы для z определяют глад-
кую замену координат, то есть что z(y) – гладкие функции и что якобиан dz/dy не
обращается в 0. Во-вторых, что Q̃ij – невырожденная в окрестности начала коор-
динат.

То, что функции z гладкие, очевидно из формул, т.к. |Qk+1,k+1| гладкая функция,
которая не обращается в 0 в начале координат.

Вычислим якобиан.

∂zi
∂yj

(0) =




1 0 . . . ∂zk+1

∂y1
. 0

0 1 . . .
... . 0

... 0 . . .
√
Qk+1,k+1(0) . 0

...
... . . . ...

... 0
0 0 . . . 1

k + 1

Определитель равен
√
Qk+1,k+1(0), и, стало быть, 6= 0 в точке 0, а значит, и в неко-

торой ее окрестности.
Вычислим теперь

∂2f

∂zi∂zj
(0) =


2ε1 . . . 0
... . . . ...
0 . . . 2εk+1

2Q̃ij(0)


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Определитель этой матрицы тоже не вырожден в 0, а значит, и в некоторой
окрестности. Лемма доказана.

Когомологии де Рама

Определение 10. f – функция Морса, если у нее конченое число критических
точек, и все эти точки невырожденные.

Пусть mk – число критических точек функции f индекса k.
Пусть M – гладкое многообразие. Для каждого k ≥ 0 можем рассматривать на

нем дифференциальные k-формы.
То есть, если мы зафиксируем P ∈M и рассмотрим TPM – касательное простран-

ство к M в точке P , в нем имеется α – внешняя форма степени k, т.е. α(ξ1, . . . , ξk)
– линейная и кососимметричная,

α(ξ1, . . . , ξk) = signσα(ξσ(1), . . . , ξσ(k)).

Вот если рассмотрим такое поле внешних k-форм, оно и называется дифференци-
альной k-формой.

Рассмотрим локальные координаты x = (x1, . . . , xn). Обозначим

∂

∂x1

, . . . ,
∂

∂xn

– базис координатных линий.
В каждой системе локальных координат

α =
∑

i1<···<ik

ai1...ik(x)dxi1 ∧ · · · ∧ dxik ,

где ai1...ik – некоторые коэффиценты, ∧ – внешнее умножение форм, a dx1 , . . . , dxn –
двойственный базис, то есть

dxi

(
∂

∂xj

)
= σij.

Остановимся подробнее на внешнем умножении форм.
Если имеются α1, . . . , αk – 1-формы, то

α1 ∧ · · · ∧ αk (ξ1, . . . , ξn) = det(αi(ξj)).

Операция внешнего умножения билинейная и косокоммутативная, т.е. если α –
k-форма, а β – m-форма, то

α ∧ β = (−1)kmβ ∧ α.

Операция внешнего дифференциирования:

dα =
∑

i1<···<ik

n∑
j+1

∂ai1...ik
∂xj

dxi1 ∧ · · · ∧ dxik .
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Эта операция обладает следующими тремя свойствами:
1. d(cα + c̃α̃) = cdα + c̃dα̃;
2. Если α – k-форма, β – m-форма, то

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ;

3. d(dα) = 0.

Рассмотрим теперь α – k-форму.

Определение 11. Форма α – замкнута, если dα = 0, и точна, если ∃β : α = dβ.

Обозначим Zk(M) – пространство замкнутых k-форм, Bk(M) – пространство точ-
ных. В силу свойства 3 Bk ⊂ Zk.

Определение 12. Zk/Bk = Hk(M) – пространство k-мерных когомологий де Рама
многообразия M .

Если это пространство конечномерное, bk = dimHk – k-мерное число Бетта.
Пусть Ω – пространство диф. k-форм. С каждым многообразием связано n штук

таких пространств20:

Ω0 → Ω1 → Ω2 → . . .→ Ωk−1
dk−1→ Ωk

dk→ Ωk+1 → . . .→ Ωn.

Рассмотрим Ωk. В этом пространстве имеются два подпространства:

ker dk = Zk, Im dk−1 = Bk.

Hk = ker dk/ Im dk−1.

Геометрический смысл

Рассмотрим b0 = dimH0 (это 0-формы – гладкие функции на M).

Z0 = {f : df = 0}

b0 – число компонент связности M (k-мерное число Бетти).

f(Q)− f(P ) =

∫
γ

df = 0.

Теперь рассмотрим b1 = dimh1(M). Пусть α – 1-формы, dα = 0 (замкнута).
Замечание. Замкнутая 1-форма на связном многообразии точна ⇐⇒ ∀ за-

мкнутой кривой γ
∫
γ
α = 0.

Доказательство. → Если α = df , то∫
γ

α =

∫
γ

df =

∫
∂γ

f = 0.
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Рис. 6.1. Иллюстрация к доказа-
тельству.

← (см. рис.6.1)

f(P ) =

∫
γP

α.

Замечание доказано.
Из него сразу следует
Замечание. Если ∀ замкнутой кривой γ ⊂ M ∃ двумерная D, т.ч. ∂D = γ, то

H1(M) = 0. ∫
γ

α =

∫
∂D
α = ∂Ddα = 0.

Неформально можем заметить, что b1 – количество независимых друг от друга
замкнутых кривых многообразия M такие, что они не ограничивают никакой дву-
мерный кусок. Это конечно требует аккуратной переформулировки. Точно такой
же смысл у всех bk = dimHk. В дальнейшем нам это не понадобится, но можно за-
метить, что хотя они и определены аналитически, это глобальные геометрические
характеристики M .

Теорема Морса

Теорема 3. Пусть M – гладкое компактное n-мерное ориентируемое многообра-
зие и пусть f : M → R – функция Морса. Тогда:
1. mk ≥ bk (слабое неравенство Морса);
2.
∑k

j=0(−1)k−jmj ≥
∑k

j=0(−1)k−jbj (сильные неравенства Морса);
3.
∑n

j=0(−1)kmj =
∑n

j=0(−1)kbj (теорема Морса об индексе).

20Вообще говоря, если имеется такая цепочка пространств и dkdk−1 = 0, имеется цепной комплекс.
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Лекция 7

Евклидова структура в пространстве внешних форм

Пусть L – n-мерное линейное пространство.
k-форма – функция21 ω(ξ1, . . . , ξn), линейная и кососимметричная, т.е.

ω(ξσ(1), . . . , ξσ(n)) = sign(σ)ω(ξ1, . . . , ξn).

Λk – пространство внешних k-форм, dim Λk = Ck
n.

Пусть α ∈ Λk, β ∈ Λm.
Внешним умножением называется операция

α ∧ β(ξ1, . . . , ξn) =
∑

i1<···<ik;j1<···<jm

sign(σ)α(ξi1 , . . . , ξin)β(ξj1 , . . . , ξjn),

где σ – перестановка (i1, . . . , ik, j1, . . . , jm).
Операция внешнего умножения билинейна, ассоциативна, коссомутитивна, т.е.

α ∧ β = (−1)kmβ ∧ α

.
Рассмотрим α1, . . . , αk – 1-формы. Тогда

α1 ∧ αn(ξ1, . . . , ξn) = det(αi(ξj))
22.

Фиксируем в L базис e1, . . . , en. Рассмотрим двойственный ему базис в сопряжен-
ном пространстве (то же самое, что пространство 1-форм) e1, . . . , en. Формы вида

ei1 ∧ · · · ∧ eik , i1 < · · · < ik

образуют базис в пространстве всех k-форм. То есть

ω =
∑

i1<···<ik

ωi1,...,ike
i1 ∧ eik ,

где ωi1,...,ik – коэффиценты разложения. Пусть теперь L – евклидово пространство.
Скалярное произведение стандартно обозначим (, ).

G : L→ L∗ = Λ123

Для ξ ∈ L
G(ξ)(η) = (ξ, η)24.

Пусть α, β ∈ Λ1. Тогда
(α, β) =

(
G−1(α), G−1β

)
. (10)

210 ≤ k ≤ n
22Такое произведение иногда называют разложимой формой или внешним многочленом.
23В тензорной алгебре эта операция называется операцией опускания индекса
24Можно проверить, что эта формула определяет изоморфизм линейных пространств, убедив-

шись, что ker нулевое.
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Замечание. 1. Пусть e1, . . . , en – базис в L, gij = (ei, ej), а e1, . . . , en – двойствен-
ный базис, то

(ei, ej) = gij– обратная к gij.

2. Пусть e1, . . . , en – ОНБ25, то e1, . . . , en – тоже ОНБ 26.
Определим теперь скалярное произведение (обозначим его (, )k) на k-формах.
Пусть

α, β ∈ Λk, α = α1 ∧ · · · ∧ αk, beta = β1 ∧ · · · ∧ βk.

Тогда
(α, β)k = det(αi, βj)1.

Свойства оператора Ходжа

Теперь поговорим об операторе ∗.
Пусть L – евклидово ориентированное пространство. Будем обозначать через Ω

форму объема – n-форму, т.ч.
1. (Ω,Ω)n = 1;
2. Если ξ1, . . . , ξn – правильно ориентированный базис, то Ω(ξ1, . . . , ξn) > 0.
Эти два условия однозначно определяют свойство объема, т.к.

dim Λn = Cn
n = 1,

и для любого ω0 ∈ Λn, ω0 6= 0, то Ω = cω0.
Заметим, что dimλk = dim Λn−k.

Рассмотрим ∗ : Λk → Λn−k, α ∈ Λk.

Определение 13. Форма ∗α – (n− k)-форма, для которой

∀β ∈ Λn−k (∗α, β)n−k = (α ∧ β,Ω)n. (11)

Оператор ∗ называют оператором Ходжа.

Утверждение 9. (Свойства оператора Ходжа).
1. Пусть e1, . . . , en – ОН правильно ориентированный базис. Тогда

∗ei1 ∧ · · · ∧ eik = signσej1 ∧ · · · ∧ en−k,

где (j1, . . . , jn) = (1, . . . , n)\(i1, . . . , ik), а σ = (i1, . . . , ik, j1, . . . , in−k).
2. (∗α, ∗β) = (α, β).
3. Если α ∈ Λk, то

∗ ∗ α = (−1)k(n−k)α.

4. (∗α, β)n−k = (−1)k(nk)(α, ∗β).
5. Пусть α, β ∈ Λk, то

α ∧ ∗β = (α, β)kΩ.

25Ортонормированный базис.
26При условии, что скалярное произведение оперделяется формулой (10).
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6. Рассмотрим L и L∗ = Λ1 – ортонормированные, ориентированные. Если M ⊂
L∗ – k-мерное ориентированное пр-во, то M⊥ – (n− k)-мерное ориентированное.
Выберем в M ортонормированный правильно ориентированный базис α1, . . . , αk

(αi – 1-формы). Возьмем
α = α1 ∧ · · · ∧ αk27.

Аналогично в M⊥ построим (n− k)-форму β.
Тогда

β = ∗α.

Доказательство. 1. Заметим, что ei1 ∧ · · · ∧ eik – тоже ОНБ, так как

(ei1 ∧ · · · ∧ ejk , ej1 ∧ · · · ∧ eik) = det(eis , ejm),

– либо 0, либо 1.
Заметим, что т.к. у нас правильно ориентированный базис,

Ω = e1 ∧ · · · ∧ en.

Т.к. формула (11) линейна по β, рассмотрим β = em1∧· · ·∧emn−k . Запишем левую
часть определения (11):

(∗α, β) = sign σ(ej1 ∧ · · · ∧ ejn−k , em1 ∧ · · · ∧ emn−k) = sign σδjm.

Теперь запишем правую часть:

(α ∧ β,Ω) = (ei1 ∧ · · · ∧ eik ∧ em1 ∧ · · · ∧ emn−k , e1 ∧ · · · ∧ en) =

=

{
0, j 6= m,

signσ, j = m.

2. Вытекает из первого свойства (т.к. ОНБ под действием ∗ переходит в другой
ОНБ).

3. Так как доказываемое утверждение линейно по α, в качестве α достаточно
взять форму ОНБ из пункта 1. Вычислим

∗ ∗ ei1 ∧ · · · ∧ eik = signσ sign ρei1 ∧ · · · ∧ eik .

Т.к. ρ = (j1, . . . , jn−k, i1, . . . , ik), signσ sign ρ = (−1)k(n−k).
4. Воспользуемся пунктом 2 и 3.

(∗α, β)n−k = (∗ ∗ α, ∗β)k = (−1)k(n−k)(α, ∗β)k

5. Т.к. α ∧ ∗β – n-форма, α ∧ ∗β = cΩ.

(α ∧ ∗β,Ω) = c(Ω,Ω) = c

27Это внешнее произведение зависит только от M , но не от базиса. Если возьмем другой ОНБ
ориентированный базис, произведение умножится на определитель матрицы перехода, который
равен 1.
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Заметим теперь, что α ∧ ∗β совпадает с правой частью (11), где вместо β взят ∗β.
Тогда

(α ∧ ∗β,Ω) = (∗α, ∗β) = (α, β).

6. Выберем в M ОНБ e1, . . . , ek, в M⊥ ОНБ ek+1, . . . , en. Вместе эти векторы об-
разуют правильно ориентированный ОНБ базис во всем пространстве Λ1. Запишем

α = e1 ∧ · · · ∧ ek, β = ek+1 ∧ · · · ∧ en

и воспользуемся пунктом 1.
Утверждение доказано.

Оператор Лапласа–Бельтрами

Пусть Mn – гладкое компактное n-мерное многообразие.
Обозначим Ωk – пространство диф. k-форм.
Пусть теперь M – риманово 28 и ориентированное.
Обозначим еще Ω – диф. n-форма – форма объема.

Определение 14. Пусть α, β ∈ Ωk. Скалярное произведение определяется как

(α, β) =

∫
M

(α, β)MΩ.

Вспомним, что у нас определена оперция внешнего дифференциирования:

d : Ωk → Ωk+1.

Рассмотрим
d∗ : Ωk → Ωk−1,

d∗ – k-форма,
d∗α = (−1)n+nk+1 ∗ d ∗ α.

Утверждение 10. d∗ сопряжен с d:

(dα, β) = (α, d∗β).

Доказательство. Считаем, что α – k-форма, β – (k + 1)-форма. Значит, ∗β∗ –
(n− k − 1)-форма.

(Так как операция удовлетворяет правилу Лейбница + пояснения):

d(α ∧ ∗β) = dα ∧ ∗β + (−1)kα ∧ d ∗ β.

0 =

∫
M

d(α ∧ ∗β) =

∫
M

dα ∧ ∗β + (−1)k
∫
M

α ∧ d ∗ β.

28Для каждой точки P ∈ M имеется скалярное произведение в касательной плоскости TPM . В
произвольной системе локальных координат x1, . . . , xk это скалярное произведение задается
матрицей gij(x).
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Воспользуемся свойствами оператора ∗.

0 =

∫
M

(α, β)PΩ + (−1)k
∫
M

α ∗ ∗d ∗ β(−1)k(n−k)

0 = (dα, β) + (−1)k+k(n−k)(α, ∗d ∗ β) =

= (aα, β) + (−1)k+k(n−k)+n+n(k+1)+1(α, d ∗ β.

Утверждение доказано.
Пусть M – гладкое компактное n-мерное ориентированное многообразие.

Определение 15. Оператор Лапласа-Бельтрами – оператор D : Ωk → Ωk такой,
что

Dα = (dd∗ + d∗d)α.
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Лекция 8

Свойства оператора Лапласа–Бельтрами

Теорема 4. (Свойства оператора D)
1. (Dα, β) = (α,Dβ);
2. (Dα, α) ≥ 0;

3. Dα = 0 ⇐⇒

{
dα = 0,

d∗α = 0;

4. kerD ∼= Hk(M);
5. D∗ = ∗D;
6. Если x – евклидовы координаты, то есть метрический тензор (?) gij(x) = δij,

то
Da(x)dxi1 ∧ · · · ∧ dxik = −∆adxi1 ∧ · · · ∧ dxik ,

где ∆a =
∑n

k=1
∂2a
∂x2k

.

Д о к а з а т е л ь с т в о. 1. Запишем скалярное произведение

((dd∗ + d∗d)α, β) = (d∗α, d∗β) + (dα, dβ).

2.
(Dα, α) = (d∗α, d∗α) + (dα, dα) ≥ 0.

3. ← очевидно.
→ Пусть Dα = 0.

0 = (Dα, α) = (d∗α, d∗α) + (dα, dα) ⇒

⇒

{
dα = 0,

d∗α = 0.

4. Т.к. по свойству 1 D – самосопряженный оператор,

Ωk = kerD ⊕ ImD.29

Обозначим kerD = H0(M).
Тогда произвольная k-форма

ω = ω0 + dα, где ω′ = 0.

Вспомним, что Hk = Zk/Bk. Построим отображение

Φ : Zk → H0, Φ(ω) = ω0.

29Этот факт хорошо известен для операторов в конечномерных пространствах. Вообще говоря,
для бесконечномерных пространств это неверно. Чтобы это было верно, во-первых, вместо
Ωk взять его пополнение, а во-вторых, если доказать, что у неограниченного оператора D
резольвента (?) компактная. Тогда формула будет верна для пополнения Ωk, т.е. гильбертова
пространства. Чтобы перейти обратно к гладкому пространству, нужно доказать еще одно
свойство D – его эллиптичность.
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Нам нужно доказать, что H0 – образ (очевидно, т.к. Dα = 0), а Bk – ядро отобра-
жения Φ.

Убедимся, что Bk – ядро отображения Φ. Пусть ω – замкнутая форма, то есть
dω = 0. Тогда

0 = d(dd∗α + d∗dα) = d(d∗dα).

В этом случае
ω = ω0 + dβ, где β = d∗dα.

Выясним, как выглядит ядро Φ.

ω ∈ ker Φ⇒ ω0 = 0⇒ ω ∈ Zk,

т.е. ω – точная форма. Обратно, пусть ω ∈ Zk, тогда

ω = dγ, гдеdγ = ω0 + dβ,

тогда ω0 = d(γ − β) – точная, причем ω0 = dφ и d∗ω0 = 0. Значит,

d∗dφ = 0,

(φ, d∗dφ) = 0,

(dφ, dφ) = 0⇒ dφ = 0 = ω0.

Определение 16. k-форма ω – гармоническая, если Dω = 0.

5. Запишем
∗Dα = ∗(d∗d+ dd∗)α =

=
(
∗ ∗ d ∗ d(−1)n+n(k+1)+1 + ∗d ∗ d ∗ (−1)n+nk+1

)
α =

=
(
(−1)k(n−k)+n+n)k+1)+1d ∗ d+ (−1)n+nk+1 ∗ d ∗ d∗

)
α =

=
(
(−1)k+1d ∗ d+ (−1)n+nk+1 ∗ d ∗ d∗

)
α;

Тогда
D ∗ α = (d∗d8α + dd∗ ∗ α)α = ∗d ∗ d ∗ α(−1)n+n(n−k+1)+1+

+d ∗ d ∗ ∗α(−1)n+n(n−k)+1 =

= ∗d ∗ d ∗ α(−1)n+n(n−k+1)+1 + d ∗ dα(−1)k(n−k)+n+n(n−k)+1.

Сокращая по модулю степени у (−1), убедимся, что слагаемые совпадают.
6. Занумеруем координаты так, чтобы индексы i1, . . . , ik совпадали с первыми

индексами 1, . . . , k.

Da(x)dx1 ∧ · · · ∧ dxk = dd∗a(x)dx1 ∧ · · · ∧ dxk + d∗da(x)dx1 ∧ · · · ∧ dxk.

Вычислим по отдельности

∗a(x)dx1 ∧ · · · ∧ dxk = d ∗ d ∗ (−1)n+nk+1a(x)dx1 ∧ · · · ∧ dxk =

56

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

= (−1)n+nk+1d∗da(x)dxk+1∧· · ·∧dxn = (−1)n+nk+1d∗
k∑
j=1

∂a

∂xj
dxj ∧dxk+1∧· · ·∧dxn =

= (−1)n+nk+1d

k∑
j=1

∂a

∂xj
dxj ∧ dx1 ∧ · · · ∧ x̂j ∧ · · · ∧ dxk(−1)n+j−1+nk =

= d

k∑
j=1

∂a

∂xj
dxj ∧ dx1 ∧ · · · ∧ x̂j ∧ · · · ∧ dxk(−1)j =

= −
k∑
j=1

∂2a

∂x2
j

dxj∧dx1∧· · ·∧dxk+
k∑
j=1

n∑
i=k+1

∂2a

∂xi∂xj
dx1∧· · ·∧x̂j∧· · ·∧dxk∧dxi(−1)j+k−1.

Теперь

d∗da(x)dx1 ∧ · · · ∧ dxk = d∗
n∑

i=k+1

∂a

∂xi
(−1)kdx1 ∧ · · · ∧ dxk ∧ dxi =

= ∗d ∗ (−1)n+n(k+1)+1

n∑
i=k+1

∂a

∂xi
(−1)kdx1 ∧ · · · ∧ dxk ∧ dxi =

= (−1)nk ∗ d
n∑

i=k+1

∂a

∂xi
dxk+1 ∧ . . . d̂xi ∧ · · · ∧ dxn(−1)i =

= (−1)nk ∗
n∑

i=k+1

∂2a

∂x2
i

dxk+1 ∧ · · · ∧ dxn(−1)k+1+

+s(−1)nk
k∑
j=1

n∑
i=k+1

∂2a

∂xj∂xi
dxj ∧ dxk+1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn(−1)i =

= (−1)k(n−k)(−1)+nk(−1)k+1

n∑
i=k+1

∂2a

∂x2
i

dx1 ∧ · · · ∧ dxk+

+(−1)nk
k∑
j=1

n∑
i=k+1

(−1)i
∂2a

∂xj∂xi
dx1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxk ∧ dxi(−1)j−ik(n−k) =

= −
n∑

i=k+1

∂2a

∂x2
i

dx1 ∧ · · · ∧ dxk +
k∑
j=1

n∑
i=k+1

∂2a

∂xj∂xi
dx1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxk ∧ dxi(−1)j+k.

Теперь складываем

Da(x)dx1 ∧ · · · ∧ dxn = −∆adx1 ∧ · · · ∧ dxk.

Теорема доказана.
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Оператор Виттена

Вспомним, о чем шла речь. Пусть M – гладкое компактное ориентированное
n-мерное многообразие. f : M → R – гладка функция.

Рассмотрим
df = e−f/hdef/h,

df = ef/hd∗e−f/h.

Обсудим свойства этих операторов. Во-первых,

df : Ωk → Ωk+1,

d∗f : Ωk → Ωk−1,

и эти операторы сопряжены относительно скалярного произведения. Кроме того,

dfdf = 0, d∗fd
∗
f = 0.

Рассмотрим
ker df : ω : e−f/hdef/hω = 0,

d(ef/hω) = 0,

то
ker df = e−f/hZk.

Рассмотрим теперь
Im df : ω = dfα = e−f/hd(ef/hα),

то
Im df = e−f/hBk.

Из этого (?) следует, что

ker df/ Im df = ker d/ Im d = Hk(M).

Таким образом, мы как бы "подправили"операторы d и d∗ нужным нам образом.
Теперь "подправим"оператор D.

Определение 17. Оператор Виттена

Ĥ =
h2

2

(
dfd

∗
f + d∗fdf

)
.

Обсудим свойства этого оператора.

Утверждение 11. (Свойства оператора Виттена)
1. (Ĥα, β) = (α, Ĥβ);
2. (Ĥα, α) ≥ 0;

3. Ĥα = 0 ⇐⇒

{
dfα = 0,

d∗f = 0;

4. ker Ĥ ∼= Hk(M).

Доказательство. Доказательство пунктов 1-3 осуществляется совершенно ана-
логично предыдущему утверждению. Проведя аналогичные же действия для дока-
зательства пункта 4, получим, что ker Ĥ изоморфно ker df/ Im df .
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Лекция 9

Представление оператора Виттена

Утверждение 12.

Ĥ =
h2

2
D +

1

2
(df, df)P + hR,

где R – тензорное поле.

Доказательство. Распишем

dfα = e−f/hd(eh/fα) =
1

h
df ∧ α + dα.

Обозначим
kfα = df ∧ α,

тогда
df =

1

h
kf + d,

d∗f =
1

h
k∗f + d∗.

Теперь распишем

Ĥ =
h2

2

((
d+

1

h
kf

)(
d∗ +

1

h
k∗f

)
+

+

(
d∗ +

1

h
k∗f

)(
d+

1

h
kf

))
=

=
h2

2
D +

1

2

(
kfk

∗
f + k∗fkf

)
+
h

2

(
dk∗f + kfd

∗ + d ∗ kf + k∗fd
)
.

Обозначим kiα = dxi ∧ α. Тогда

kf =
n∑
i=1

∂d

∂xi
ki,

kf =
n∑
i=1

k∗i
∂d

∂xi
.

Подставим в верхнее и получим

1

2

(
kfk

∗
f + k∗fkf

)
=

1

2

n∑
i,j=1

∂d

∂xi

∂f

∂xj

(
kik
∗
j + k∗jki

)
.

Выясним, как действует k∗j на форму α = dxi1 ∧ · · · ∧ dxik .
Убедимся, что верно

k∗jα =
k∑
s=1

(−1)s−1gjisdxi1 ∧ · · · ∧ ˆdxis ∧ · · · ∧ dxik .
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Для этого докажем, что
(k∗jα, β) = (α, kjβ),

где возьмем α = dxi1 ∧ · · · ∧ dxik , β = dxm1 ∧ · · · ∧ dxmk−1
.

Запишем
k∑
s=1

(−1)s−1gjis
(
dxi1 ∧ · · · ∧ ˆdxis ∧ · · · ∧ dxik , dxm1 ∧ · · · ∧ dxmk−1

)
=

=
(
dxi1 ∧ · · · ∧ dxik , dxj ∧ dxm1 ∧ · · · ∧ dxmk−1

)
.

Заметим, что(
dxi1 ∧ · · · ∧ dxik , dxj ∧ dxm1 ∧ · · · ∧ dxmk−1

)
= det

(
gil,(j,mp)

)
,

где dij = (dxi, dxj), а индексы вверху – это просто условное обозначение для номе-
ров, которые там могут быть.

Слева же записано разложение этой же матрицы
(
gil,(j,mp)

)
по строке/столбцу.

Убедились в справедливости выражения для k∗j .
Вернемся к основному доказательству. Посчитаем(

kik
∗
j + k∗jki

)
dxi1 ∧ · · · ∧ dxik =

=
k∑
s=1

(−1)s−1gjisdxi ∧ dxi1 ∧ · · · ∧ ˆdxis ∧ · · · ∧ dxik+

gjidxi1 ∧ · · · ∧ dxik +
k∑
s=1

gjisdxi ∧ dxi1 ∧ · · · ∧ ˆdxis ∧ · · · ∧ dxik(−1)s =

gjidxi1 ∧ · · · ∧ dxik .
Таким образом, (

kik
∗
j + k∗jki

)
= gij.

Значит,
1

2

n∑
i,j=1

∂d

∂xi

∂f

∂xj

(
kik
∗
j + k∗jki

)
=

1

2

n∑
i,j=1

gij
∂d

∂xi

∂f

∂xj
= (df , df )P .

Теперь проверим, что

R =
1

2

(
dk∗f + kfd

∗ + d ∗ kf + k∗fd
)
.

Убедимся, что это оператор нулевого порядка. Введем оператор дифференцирова-
ния по локальной координате:

∂ja(x)dxi1 ∧ · · · ∧ dxik =
∂a

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

Вспомним, что
d(a(x)dxi1 ∧ · · · ∧ dxik) =
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n∑
j=1

∂a

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik ,

тогда

d =
n∑
j=1

kj∂j, d∗ =
n∑
j=1

∂∗j k
∗
j .

Подставим:
1

2

(
dk∗f + kfd

∗ + d ∗ kf + k∗fd
)

=

=
1

2

n∑
i,j=1

(
∂f

∂xi
ki∂
∗
j k
∗
j +

∂f

∂xi
k∗i kj∂j + ∂∗j k

∗
j

∂f

∂xi
ki + kj∂j

∂f

∂xi
k∗i

)
.

Убедимся, что все слагаемые сократятся. Вспомним, что если

α = a(x)dxi1 ∧ · · · ∧ dxik ,

β = b(x)dxj1 ∧ · · · ∧ dxjk ,
то

(α, β) =

∫
M

(α, β)PΩ =

∫
Rn
a(x)b(x) det

(
gip,jq

)√
gdx.

Обозначим коэффицент
det
(
gip,jq

)√
g = F (x).

Теперь вычислим

(∂jα, β) =

∫
Rn
b(x)

∂a

∂xj
F (x)dx =

= −
∫
Rn

∂b

∂xj
aFdx−

∫
Rn
ab
∂F

∂xj
dx =

= −(α, ∂jβ)− (α,Aβ),

гдеA – алгебраический оператор. Таким образом, ∂∗j = ∂j+оператор нулевого порядка.
Из-за первого порядка форм можем поменять k и ∂ в выражении.

R =
1

2

n∑
i,j=1

∂f

∂xj

(
−kik∗j + k∗i kj − kj ∗ ji

)
∂j = 0.

Итак, утверждение доказано.

Нам понадобится явная форма для R в частном случае. Предположим, что в
некоторой карте M метрика евклидова. Введем в этой карте

(x1, . . . , xn) – евклидовы координаты,

то gij = δij.
В таком случае

R =
1

2

n∑
i,j=1

(
− ∂2f

∂xi∂xj
k∗jki +

∂2f

∂xi∂xj
kjk

∗
i

)
=
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= {переобозначим коэффиценты} =
1

2

n∑
i,j=1

∂2f

∂xi∂xj

(
kjk

∗
i + k∗jki

)
.

Локальная теорема об осцилляторном приближении

M – гладкое компактное ориентированное n-мерное многообразие;

f : M → R

– функция Морса;
Соорудим на M риманову метрику.
В окр. каждой кр.т. имеются локальные координаты (x1, . . . , xn), т.ч. в окрестно-

сти точки

f = f(Ps) +
n∑
i=1

εix
2
i .

Введем метрику для каждой окрестности. Есть Us – карта, введем метрику как

ĝij(x) = δij.

Теперь продолжим на все многообразие.
Пусть помимо Us, связанных с крит.т., есть еще карты Vp, в которых нет кр.т.

Введем разбиение 1, которое связано с таким атласом:∑
s

es +
∑
p

ep = 1.

На M введем какую-то риманову метрику g̃ij. И построим интересующую нас
риманову метрику как

gij =
∑
s

esĝij +
∑
p

epg̃ij.

Пусть U – окрестность кр.т. P . В окрестности U

f = f(P ) +
n∑
j=1

εjx
2
j ,

метрика gij = δij.
Возьмем α = a(x)dxi1 ∧ · · · ∧ dxik . Заметим, что

∂f

∂xj
= 2εjxj,

∂2f

∂xi∂xj
= 2εjδij.

В U оператор Виттена

Ĥ = −h
2

2
∆ +

1

2

(
4|x|2

)
+ h

n∑
j=1

εj
(
kjk

∗
j − k∗jkj

)
. (12)
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Обсудим возможность применения осциляторного приближения к оператору (12).
Для каждой кр.т. можем рассмотреть оператор −h2/2∆ + 1/2(4|x|2).
Собственные функции этого оператора имеют вид

h−n/4fn(x/
√
h), f(y)→ 0, |y| → ∞,

а собственные значения

Em =
n∑
j=1

hω0(mj + 1/2),

где m = (m1, . . . ,mn).
Рассмотрим формы, для которых

R(P )α = µα.

Соорудим форму

ω = h−n/4fm

(
x√
h

)
e(x)α,

где

e(x) =

{
1, |x| ≤ δ1,

0, |x| ≥ δ2.

Утверждение 13. (Локальная теорема об осциляторном приближении)

Ĥω = (Em + hµ)ω + o(h).

Доказательство. Рассмотрим в малой окрестности кр.т.

Ĥω =

(
−h

2

2
∆ +

1

2
(4|x|2) + hR

)
h−n/2fm

(
x√
h

)
α =

= Emh
−n/2fm

(
x√
h

)
α + h (R(0) +R(x)−R(0))ω =

= Emω + hµω + h (R(x)−R(0))h−n/4fm

(
x√
h

)
α.

Вспомним, что если некоторая ф-я q = |x|sq̃(x), то

qh−n/2fm(x/
√
h) = O(hs/2).

В нашем случае это R(x)−R(0).
Таким образом,

Ĥω = (Em + hµ)ω +O(h3/2).

Утверждение доказано.
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Глобальная теорема об осциляторном
приближении

В окрестности каждой кр.т. запишем с.зн.

E(s)
m =

n∑
j=1

hω
(s)
0 (m

(s)
j + 1/2),

где s – номер критической точки. Упорядочим их по возрастанию с учетом кратно-
сти и обозначим E (j).

Теорема 5. (Глобальная теорема об осциляторном приближении)
Пусть λj – с.зн. Ĥ, упорядоченные по возрастанию с учетом кратности.
Тогда

∀M ∈ N λj = E)j + o(h), j = 1, . . . ,M.
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Лекция 10

Доказательство слабого неравенства Морса

M - гладкое компактное ориентированное n-мерное многообразие;
f : M → R – функция Морса;
gij – метрика.
Построили оператор Ĥ, причем

ker Ĥ на Ωk ∼= Hk(M).

Доказали локальную теорему об осциляторном приближении. Она говорит о том,
что в окрестность ∀ кр.т. P есть

Ĥ0 =
h2

2
D +

1

2
(df, df) + hR(P ).

Соответствующая запись в координатах

Ĥ0 =
h2

2
∆ +

1

2
(4|x|2) + hR(P ),

а ω2
0 = 4 – собственные числа матрицы (4|x|2). Собственные значения оператора

имеют вид
n∑
j=1

hωj(mj + 1/2) + hµ =
n∑
j=1

hωj(1 + 2mj) + hµ.

Обозначим их через E (j).
Для ∀M ∈ N

λj − E (j) = o(h).

Нам осталось посчитать µ – с.зн. оператор R(P ). В евклидовых координатах

R =
1

2

n∑
i,j=1

∂2f

∂xi∂xj

(
kik
∗
j − k∗jki

)
.

Вспомним, что

f = f(P ) +
n∑
j=1

εjx
2
j .

Матрица вторых производных диагональная с элементами 2εj. Значит,

R =
n∑
j=1

εj
(
kik
∗
j − k∗jki

)
.

Перенумеруем слагаемые так, чтобы

εj =

{
−1, j = 1, . . . ,m,

1, j = m+ 1, . . . , n.
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Нам нужно посчитать с.зн. R(0).
Посмотрим, как R действует на базисную форму

α = xi1 ∧ · · · ∧ dxik .

Вспомним, что
kjα = dxj ∧ α,

k∗j =
k∑
s=1

(−1)s−1gjisxi1 ∧ · · · ∧ ˆdxis ∧ · · · ∧ dxik .

Т.к. метрика евклидова,

k∗jα

{
0, j /∈ I = (i1, . . . , ik),

(−1)s−1gjisxi1 ∧ · · · ∧ ˆdxis ∧ · · · ∧ dxik , j = is.

Вычислим (
kik
∗
j − k∗jki

)
α =

{
−α, j /∈ (i1, . . . , ik),

α, j /∈ (i1, . . . , ik).

Вторая строчка следует из того, что при j = is

kjk
∗
jα = dxis ∧ xi1 ∧ · · · ∧ ˆdxis ∧ · · · ∧ dxik(−1)s−1 =

= xi1 ∧ · · · ∧ dxik
Значит, R диагональный (любая базисная форма умножается на 1 или −1).
Обозначим, помимо I, J = (1, . . . ,m).

Rα = µα,

µ = −#I ∩ J −#I ∩ J + #I ∩ J + #I ∩ J.

Вернемся к

E =
n∑
j=1

h(1 + 2mj) + hµ.

Эти с.ч. будут минимальны, когда 1) все mj = 0, 2) I = J . В этом случае

E = hn− hn = 0.

Таких с.ч. столько, сколько критических точек индекса k.
Так, мы доказали слабое неравенство Морса о том, что

mk ≥ bk.
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Доказательство теоремы Морса об индексах

Само неравенство, напомним, выглядит как

k∑
j=0

(−1)k=jmj ≥
k∑
j−0

(−1)k−jbj,

а теорема Морса об индексе

n∑
k=0

(−1)kmk =
n∑
k=0

(−1)kbk.

Нам понадобится дополнительное соображение. Обозначим

Ω = ⊕nk=0Ωk.

Рассмотрим оператор

T : Ω→ Ω, T =
h√
2

(
df + d∗f

)
.

Если возведем в квадрат,

T 2 =
h2

2
(df + d∗f )(df + d∗f ) =

h2

2
(dfd

∗
f + d∗fdf ) = Ĥ.

Отсюда следует, что
[T, Ĥ] = 0.

Обозначим
Ω+ = ⊕nk=четныеΩ

k,

Ω− = ⊕nk=нечетныеΩ
k.

Из определения T очевидно, что

T : Ω+ → Ω−, T : Ω− → Ω+.

В пространстве k-форм у Ĥ
bk нулевых с.з,

mk – число с.з. = o(h),

mk − bk – число с.з. (малых) > 0, o(h).

Обозначим Mk – собственное подпространство, отвечающее малым числам 30.

T : Mk →Mk−1 ⊕Mk+1.

Обозначим
M+ = ⊕nk=четныеM

k,

M− = ⊕nk=нечетныеM
k.

30Заметим, что на них Ĥ не имеет ядра.
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Тогда
T : M+ →M−, T : M− →M+.

Отсюда следует, что эти два пространства изоморфны,

dimM+ = dimM−.

dimM+ = m0 − b0 +m2 − b2 + . . . ,

dimM+ = m1 − b1 +m3 − b3 + . . . .

Отсюда и следует теорема Морса об индексе.

Доказательство сильного неравенства Морса

Осталось доказать сильное неравенство Морса.
Пусть k – четное. Рассмотрим

M+
k = M0 ⊕M1 ⊕ · · · ⊕Mk,

M−
k = M1 ⊕M3 ⊕ · · · ⊕Mk+1.

Очевидно, что
T : M+

k →M−
k .

Так как на этих подпространствах у T нет ядра,

m0 − b0 +m2 − b2 + · · ·+mk − bl ≤

≤ m1 − b1 +m3 − b3 + · · ·+mk+1 − bk+1.

mk+1 −mk + · · ·+m1 −m0 ≥ bk+1 − bk + · · ·+ b1 − b0,

а это строгое неравенство Морса для k+ 1, то есть для нечетных номеров. Дока-
зательство для четных номеров аналогично. Теоремы доказаны.

Заключение

Вспомним, на чем основано осциляторное приближение. Есть оператор Шрёдин-
гера

Ĥ = −h
2

2
∆ + V (x),

а x0 – точка минимума V (x).
Тогда каждой такой x0 можем поставить в соответствие некоторую серию с.з.

оператора Ĥ.

Em =
n∑
j=1

hωj(mj + 1/2).
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Что такое точка минимума с точки зрения классической динамики? Классическая
ф-я Гамильтона

H(x, p) =
1

2
|p|2 + V (x).

Система Гамильтона {
ẍ = p,

p̈ = −∂V
∂x
.

(x0, p) – точка равновесия этой системы.
Теорема об осциляторном приближении – это что каждому x0 можем сопоставить

собственные числа Ĥ, т.е. Em.
В квантовой физике имеется техника, довольно далеко обобщающая эти простые

соображения об осциляторном приближении.
Рассмотрим вместо положения равновесия

γ – периодическую траекторию системы Гамильтона.

Это замкнутая кривая в фазовом пространстве.
Можно модифицировать теорему об осциляторном приближении так, чтобы со-

поставлять наборы собственных чисел Ĥ траектории γ. Они будут сосредотачиться
вдоль проекции этой кривой на x.
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