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Лекция 1. Введение в теорию сингулярных

возмущений

Основные понятия. Регулярные и сингулярные возмущения

Рассмотрим две задачи.

Первая задача A0 (невозмущенная задача):

L0u“ f0,

где L0 — некий оператор, например, оператор Лапласа, f0 — заданная функция,
u “ upxq — искомая функция. Будем иметь ввиду общий случай: U “ pu1,u2, ...,unq.
Рассмотрим случай когда L0 дифференциальное уравнение. Внесем возмущение.

Вторая задача Aε (возмущенная задача):

L0u` εL1u“ f0` ε f1, 0ă ε ! 1.

εL1u и ε f1 называют возмущениями.

Пусть задача A0 имеет решение: U “ u0pxq, а задача Aε решение: u “ uεpxq, x P

D. Насколько возмущения повлияют на решение u0pxq? Т.е. какова разность между
решением uεpxq и u0pxq?

Тогда норма вектора:

}u} “
b

u2
1` ...`u2

n

Рассмотрим норму разности между возмущенной и невозмущенной задачей:

sup
D
}uεpxq´u0pxq}

Определение 1.1. Сингулярно и регулярно возмущенные задачи

Если supD }uεpxq´u0pxq} Ñ 0, при ε Ñ 0.

То есть, чем меньше возмущение, тем меньше разность между возмущенной
и невозмущенной задач в области D. Тогда задачу Aε будем называть регулярно
возмущенной, в противном случае будем называть сингулярно возмущенной.
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Пример 1.1.

Задача Aε :

du
dx
“´u` εx

рассматривается на отрезке 0ď xď 1, начальное значение uεp0q “ 1

Общее решение: uεpxq “ p1` εqe´x` εpx´1q

Задача A0:

du
dx
“´u

на отрезке 0ď xď 1, с начальным условием u0p0q “ 1

Общее решение: u0pxq “ expp´xq.

sup
r0;1s

}uεpxq´u0pxq} “ ε max
r0;1s

|expp´xq` x´1| “ εCÑ 0, при ε Ñ 0

Замечание. Если 0ď xď
1
ε
, то sup}uε ´u0} Û 0, при ε Ñ 0.

Пример 1.2.

Задача Aε :

ε
du
dx
“´u` x, 0ď xď 1, uεp0q “ 1

Решение:

uεpxq “ p1` εq ¨ expp´
x
ε
q` x´ ε

Задача A0:

0“´u` xñ u0pxq “ x

sup
r0;1s

}uεpxq´u0pxq} “max
r0;1s

|p1` εqexpp´
x
ε
q´ ε | “ 1Û 0, при ε Ñ 0

Значит эта задача сингулярно возмущенная.
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Рис. 1.1. Функции невозмущенной u0pxq и возмущенной uεpxq задачи. r0;δ s – погра-
ничный слой.

Функции невозмущенной и возмущенной задачи (Рис. 1.1).

Система, обобщающая пример (Тихоновская система):

$

’

’

’

’

&

’

’

’

’

%

ε
dz
dx
“ Fpx,y,z,εq

dy
dx
“ f px,y,z,εq

на отрезке 0ď xď X .

С начальными условиями:

$

&

%

zp0,εq “ z0

yp0,εq “ y0

Асимптотическое приближение решения по параметру.

Асимптотический ряд

Задача Aε :
Uεpxq, x P D

Пусть D1 Ă D и Upx,εq, x P D1.
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Upx,εq – асимптотическое приближение по параметру ε для решения Uεpxq в об-
ласти D1, если supD1

}upx,εq´Upx,εq} Ñ 0 при ε Ñ 0.

Если при этом

sup
D1

}Uεpxq´Upx,εq} “ Opεk
q, k ą 0

Функция Upx,εq является асимптотическим приближением для решения Uεpxq

в области D1 с точностью порядка εk.

Символ O означает:

f “ Opεkq при ε Ñ 0:

Dcą 0 и ε0 ą 0, такие, что } f } ď cεk при 0ă ε ă ε0.

В примере 1.1

U “ x “ u0pxq является асимптотическим приближением для решения uεpxq на
отрезке D“ r0;1s с точностью порядка ε .

В примере 1.2

u0pxq “ x на D1 “ rδ ;1s является асимптотическим приближением для решения
uεpxq на отрезке D с точностю порядка ε .

В частности, у решения с внутренними слоями, когда точка x0 в окрестности
которого происходит переход (Рис. 1.2). Трудно найти эту точку решая численно.
Асимптотический метод легко это находит.

Асимптотические ряды.

8
ÿ

k“0

ε
kukpx,εq (1.1)

Определение 1.2. Асимптотический ряд

Ряд (1.1) называется асимптотическим рядом для функции uεpxq (при ε Ñ 0),
если @n“ 0,1,2, ... Dc“ cpnq и ε0 “ ε0 такие, что @x P D:

}uεpxq´Unpx,εq} ď cε
n`1, 0ă ε ă ε0. (1.2)
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Рис. 1.2. Точка x0 в окрестности которого происходит переход

Unpx,εq “
n
ÿ

k“0

ε
kukpx,εq

Асимптотический ряд может не сходиться к функции uεpxq и даже быть расходя-
щимся.

Сходимость ряда (1.1) означает, что

}uεpxq´Unpx,εq} Ñ 0, при nÑ8,@x P D. (1.3)

Пример 1.3.

ε
du
dx
“´

u
x2 ´

1
x

, xą 0 (1.4)

Будем искать решение уравнения в виде ряда.

U “

8
ÿ

k“0

ε
kuk (1.5)

Подставим ряд (1.5) в уравнение (1.4).

ε
`

u10` εu11` ...
˘

“´
1
x2

`

u0` εu1` ε
2u2` ...

˘

´
1
x

Приравняем слева и справа коэффициенты при одинаковых степенях ε :

при ε
0: 0“´

u0

x2 ´
1
x
ñ u0 “´x
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при ε
1: u1 “ x2

при ε
2: u2 “´p2!qx3

ñ uk “ p´1qk`1
pk!qxk`1

Построили ряд:

8
ÿ

k“0

ε
k
p´1qk`1

pk!qxk`1 (1.6)

Общий член ряда:

lim
kÑ8

0ăqă1

qk
pk!q “ 8

Этот ряд расходится для @xą 0.

Докажем, что этот ряд является асимптотическим рядом для некоторого решения
уравнения (1.4) на отрезке r0,as.

Общее решения уравнения (1.4) имеет вид:

u“ c ¨ exp
ˆ

1
εx

˙

´

ˆ
ż x

0

1
εt

exp
ˆ

´
1
εt

˙

dt
˙

exp
ˆ

1
εx

˙

частное решение при c“ 0.

Интегрируя по частям получаем

uεpxq “ ´
ż x

0
td exp

ˆ

1
εt

˙

¨ exp
ˆ

1
εx

˙

“

“´

„

t ¨ expp´
1
εt
q

x

`o
¨ exp

ˆ

1
εx

˙

`

ˆ
ż x

0
exp

ˆ

´
1
εt

˙

dt
˙

exp
ˆ

1
εx

˙

“

“´x`
ˆ
ż x

0
εt2d exp

ˆ

´
1
εt

˙˙

exp
ˆ

1
εx

˙

“
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“´x` εx2
´p2!qε2x3

` ...` ε
n
p´1qn`1

pn!qxn`1
`Opεn`1

q, @x P r0;as

Получили
Uεpxq “Unpx,εq`Opεn`1

q, x P r0;as

Справедливо равенство (1.2) из определения асимптотического ряда.
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Лекция 2. Формальная асимптотика

Рассмотрим понятие асимптотического ряда. Возьмем частичную сумму порядка
N по ряду или ряд по степеням ε , с входящими членами нулевого, первого, второго и
других порядков. Запишем все слагаемые до порядка N и составим частичную сумму
по N этого ряда, тогда сумма даст асимптотическое приближение для решения с
точностью Opεn`1q.

Такой ряд может быть в некоторых случаях расходящимся. Например, ряд рас-
ходится во всех точках, кроме начальной. На определенном отрезке ряд будет асимп-
тотическим для некоторого решения дифференциального уравнения.

Определение. Формальная асимптотика

Рассмотрим уравнение:

Aε : Lεu

где Aε – малый параметр, Lε – дифференциальный оператор, u – функция.

Под оператором будем понимать следующее:

Lεu :“ L0u` εL1u´ f0pxq´ ε f1pxq “ 0

где L0 – невозмущенный оператор, εL1u – возмущение, f0pxq, f1pxq – известные
функции, x – числовая, либо N-мерная переменная, которая входит в область D.
Обозначим решение выше поставленной задачи как uεpxq

В нелинейных задачах часто решение будет нетривиальное или его вообще нет.
Поэтому возможно получить асимптотическое приближенное решение, используя ма-
лый параметр. Оно будет работать при малых значениях ε .

Пусть есть функция Upx,εq, которая удовлетворяет следующему условию: если
подействуем оператором Lε на эту функцию, то получим дельта-функцию

LεUpx,εq “ δ px,εq

δ px,εq Ñ 0 при ε Ñ 0

12
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Таким образом, построили функцию Upx,εq, которая не является точным решени-
ем. При подстановке в уравнение получаем не 0, а малую величину. Дельта-функции
называют невязка. А функцию Upx,εq — формальной асимптотикой или асимпто-
тическим решением задачи Aε по невязке.

Часто асимптотический метод состоит из следующих шагов:

1) Строим решение ряда

Решение
ř8

k“0 εkukpx,εq для ряда будет называться асимптотическим. Если взять
частичную сумму порядка N, то она будет отличаться от точного решения на
всей области D на величину порядка εn`1.

Пусть

Unpx,εq “
n
ÿ

k“0

ε
kukpx,εq :

LεUnpx,εq “ δnpx,εq “ Opεn`1
q

Условие: чем больше членов ряда возьмем, тем с меньшей «невязкой» получа-
ется формальная асимптотика.

2) Доказать, что ряд
ř8

k“0 εkukpx,εq – асимптотический ряд для решения задачи
uεpxq. Это означает

sup
D
||uεpxq´Unpx,εq|| “ Opεn`1

q

Асимптотическое решение по невязке может не быть асимптотическим прибли-
жением для точного решения задачи uεpxq.

Пример Зададим задачу следующим образом

Aε : Lεu :“ ε
du
dx
´u´ ε

n
“ 0

Рассмотрим дифференциальное уравнение на отрезке от 0 до . Зададим начальное
условие:

uεp0q “ 0

13
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Уравнение является линейным с постоянной неоднородностью. Поэтому точное
решение будет иметь вид

uεpxq “ ε
nexpp

x
ε
q´ ε

n

Рассмотрим в качестве функции Upx,εq ” 0. Подставим ее в уравнение.

LεU “´ε
n
“ Opεn

q “ δ px,εq

Получаем, что функция Upx,εq ” 0 – асимптотическое решение по невязке с боль-
шой точностью. Определим отношение полученного решения к точному решению.
Для этого рассмотрим модуль разности

||uεpxq´Upx,εq|| “ ε
n
pexpp

x
ε
q´1q

Чтобы функция стала асимптотическим решением, нужно чтобы разность стре-
милась к 0. Если ε Ñ 0, то при x“ 0 разность будет равна 0, а при xą 0 expp

x
ε
q Ñ8,

а тогда ||uεpxq´Upx,εq|| Ñ `8.

Таким образом, функция uεp0q “ 0 является асимптотическим решением по невяз-
ке. Но точного асимптотического приближения для точного решения она не дает.
Поэтому функцию называют «формальной асимптотикой».

Задача Коши для тихоновской системы

Теорема Тихонова

Рассмотрим тихоновскую систему из двух уравнений

$

’

’

’

’

&

’

’

’

’

%

ε
dz
dx
“ Fpx,y,z,εq

dy
dx
“ f px,y,z,εq

0ď xď X (2.1)

где y,z могут быть вектор-функциями.

Рассмотрим случай, когда y,z — скалярные функции.

14
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Для системы (2.1) ставится начальная задача – задача Коши для тихоновской
системы. При x“ 0 задаются искомые функции y,z следующим образом:

zp0,εq “ z0

yp0,εq “ y0 (2.2)

где z0,y0 – заданные числа.

Предположим, если y,z – скалярные функции, то точного решения задача не име-
ет. Задача состоит в получении асимптотического приближения для решения при
малых значениях ε .

Пусть ε “ 0 и

$

&

%

Fpx,y,z,0q “ 0
dy
dx
“ f px,y,z,0q

Полученная система называется вырожденной по терминологии Тихонова. Изна-
чально была система двух дифференциальных уравнений. Она выродилась при ε “ 0

в систему, где одно – конечное уравнение, а другое – дифференциальное.

Для такой системы для z нельзя задать начальное условие. Для функции y можно
оставить условие (2.2).

При рассмотрении системы дифференциальных уравнений, интересует случай,
когда решение задачи Коши будет единственным. Существуют условия, гарантиру-
ющие локальную единственность в окрестности начальной точки. К ним относят
непрерывные функции и липшицевость по y,z.

Условия Тихонова

1) F и f непрерывно дифференцируемы в некоторой области.

Это означает, что функции имеют по всем аргументам непрерывные частные
производные первого порядка.
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2)
Fpx,y,z,0q “ 0 (2.3)

имеем решение относительно z, которое будем обозначать, как z “ φpx,yq. По-
лучившийся корень должен быть изолированным, то есть не пересекающимся с
другими корнями данного уравнения. Если рассмотреть геометрически φpx,yq,
то это поверхность в трехмерном пространстве с координатами x,y,φpx,yq. По-
верхность не будет пересекаться с другими поверхностями, и в некоторой малой
окрестности корней нет.

3) Произведем подстановку решения в дифференциальное уравнение

dy
dx
“ f px,y,φpx,yq,0q, 0ď xď X

yp0,εq “ y0 (2.4)

Потребуем, чтобы уравнение имело решение на всем промежутке x. В итоге
получается задача более простая, чем исходная. Она состоит из одного скаляр-
ного дифференциального уравнения. Задача будет иметь следующее решение
y“ ȳpxq, 0ď xď X .

Условие непрерывной дифференцируемости гарантирует для задачи, что в ма-
лой окрестности точки 0 будет существовать решение и чтобы решение суще-
ствовало до X .

Таким образом, вырожденная система будет иметь решение

y“ ȳpxq

z“ φpx,yq “ φpx, ȳpxqq “: z̄pxq

Определим, чтобы решение для полной задачи для ε Ñ 0 существовало на про-
межутке 0ď xď X и было близко к решению простой задачи.

4) Рассмотрим производную функции F по аргументу z:

Fzpx, ȳpxq, z̄pxq,0q “: F̄zpxq

Наложим условие: F̄zpxq ă 0,x P r0,Xs.
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5) Связано с присоединенной системой или присоединенным скалярным уравне-
нием. По терминологии Тихонова это такое уравнение, которое можно задать
следующим образом при x“ 0:

dz̃
dτ
“ Fp0,y0, z̃,0q (2.5)

Оно будет рассматриваться, если

τ ě 0

z̃“ z0 (2.6)

Пусть в исходной задаче сделали замену переменных:

x“ ετ

В результате система (2.1) перейдет в следующую систему

$

’

&

’

%

dz
dτ
“ Fpετ,y,z,εq

dy
dτ
“ f pετ,y,z,εq

Рассмотрим систему на конечном промежутке изменения τ :

0ď τ ď τ0

Отсюда следует, что

0ď xď ετ0 “ Opεq

Начальные условия будут сохраняться:

z|τ“0 “ z0

y|τ“0 “ y0

x P r0,ετ0s

Можно предполагать, что на малом промежутке
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ypx,εq “ y0
`Opεq

zpx,εq « z̃pτq

dz̃
dτ
“ Fp0,y0, z̃,0q

z̃p0q “ z0

Таким образом, в малой окрестности начальной точки поведение решения будет
определяться решением системы (2.5). На качественном уровне получаем, что если
начать рассуждение с начальных точек z0,y0, то решения в малой окрестности точки
x “ 0 будут следующими: y почти не меняется или с малыми добавками, а z будет
себя вести как решение присоединенного уравнения.

Уравнение (2.5) является автономным. Это означает, что правая часть не зависит
от независимой переменной. В результате, уравнение интегрируется в квадратурах
и можно получить обратную функцию к решению zpτq. Также уравнение (2.5) будет
иметь точку покоя

z̃“ φp0, ȳpxqq “ φp0,y0
q

Точка покоя – стационарное, независящее от независимой переменной решение.

В силу того, что F̄zpxq ă 0, точка покоя будет асимптотически устойчивой при
τ Ñ8.

Асимптотически устойчивым решением называют такое решение уравнения (2.5),
для которого, если задать достаточно близкое условие к точке покоя, то для всех τ ą 0

решение будет близко к точке покоя и при τ Ñ8 будет к ней стремиться.

Для того, чтобы решение стремилось при τ Ñ8 к точке покоя, нужно, чтобы вы-
полнялось следующее требование: начальная задача (2.5), (2.6) по присоединенному
уравнению с заданным условием имеет решение z̃pτq, которое удовлетворяет условию

lim
τÑ8

z̃pτq “ φp0,y0
q

Записанное требование относится именно к уравнению (2.5). Можно утверждать,
что начальное значение z0 принадлежит области влияния (притяжения) точки покоя
z̃“ φp0,y0q.
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Установим, из какой области решений искомое решение будет притягиваться к
области покоя. В уравнении (2.5) независимая переменная τ меняется от 0 до 8.
Рассмотрим график (Рис. 2.1)

Рис. 2.1. График зависимости z̃ от τ

Точка покоя – некоторое число. Fz, которая на всем вырожденном решении при
каждом x ă 0, в том числе и при x “ 0, будет вести себя по-разному, так как не на-
кладывается ограничения на функцию. Предполагали, что решение уравнения (2.3)
единственное и изолированное в некоторой окрестности, но дальше они могут суще-
ствовать. Возникает решение z2 в положительной области такое, что Fpz2q “ 0, а в
отрицательной – z1 такое, что Fpz1q “ 0.

Пусть начальное решение лежит в окрестности от φp0,y0q до z2 (Рис. 2.2). Про-
изводная в этой точке будет отрицательная. Значит, функция будет убывающая и
стремящаяся к значению в точке φp0,y0q.

Если начальное решение лежит в окрестности от φp0,y0q до z1, то производная в
этой точке будет положительная. А значит, функция будет возрастающая и стремя-
щаяся к значению в точке φp0,y0q.

Таким образом, областью влияния будет интервал от z1 до z2. То есть если на-
чальное решение будет лежать в этом интервале, то оно притянется.

Теорема 2.1 (Тихонова). Если выполнены все условия, то для достаточно малых
значений параметра ε задачи (2.1) и (2.2) имеют единственное решение zpx,εq,
ypx,εq, то справедливы следующие предельные равенства
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Рис. 2.2. График зависимости z̃ от τ с начальным значением

lim
εÑ0

zpx,εq “ z̄pxq :“ φpx, ȳpxqq

0ă xď X

lim
εÑ0

ypx,εq “ ȳpxq

Рассмотрим геометрическую иллюстрацию теоремы Тихонова.

Рис. 2.3. Геометрическая иллюстрация теоремы Тихонова

Рассмотрим две плоскости — в координатах px,yq и в px,zq. То есть изображаем
графики решения вырожденной и полной задач.

Можно наблюдать, что в первой плоскости решение полной задачи выходит из
той же точки, что и для вырожденной, и кривая отличается на малую величину. Для
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второй плоскости начальное значение заданное для z не обязательно будет близко к
вырожденному. В результате, решение будет стремительно приближаться к вырож-
денному состоянию и оставаться вблизи него.

ȳpxq – асимптотическое приближение для точного решения ypx,εq на всем проме-
жутке. Для z̄pxq при малых значениях параметра ε близко будет асимптотическое
приближение для решение исходной задачи на всем интервале, кроме пограничной
окрестности 0.

Различие между решениями – это Opεq.

Метод Васильевой

Метод позволяет определить асимптотическое приближение для z, включая по-
граничный слой, и получить значение с произвольной точностью для Opεnq. Рассмат-
риваем систему (2.1), (2.2) и сохраняем условия 2-5. Но введем изменение в условие
1: функции F и f – достаточно гладкие, то есть они имеют такое количество непре-
рывных производных n-го порядка, сколько нужно.

Следуя методу Васильевой, асимптотику решения задачи (2.1) и (2.2) будем стро-
ить в виде суммы двух рядов:

zpx,εq “ z̄px,εq`Πzpτ,εq (2.7)

где Π – часть асимптотики, которая описывает быстрое изменение решения в
пограничном слое.

ypx,εq “ ȳpx,εq`Πypτ,εq (2.7)

τ “
x
ε

z̄px,εq “
8
ÿ

k“0

ε
kz̄kpxq (2.8)

ȳpx,εq “
8
ÿ

k“0

ε
kȳkpxq (2.8)

Πzpτ,εq “
8
ÿ

k“0

ε
k
Πkzpτq (2.9)

Πypτ,εq “
8
ÿ

k“0

ε
k
Πkypτq (2.9)
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Π-функции экспоненциальны только в области параметра τ , существенны только
в пограничном слое, а дальше будут бесконечно малые. Ряды (2.8) будут существен-
ны вне пограничного слоя.

Определим коэффициенты для рядов (2.8) и (2.9). Подставим выражения (2.7)
для z,y в систему (2.1). Левая часть – производные, которые подставляем в выраже-
ния функций F и f . Правые части преобразуем. В результате, получим функции в
следующем виде:

Fpx, ȳ`Πy, z̄`Πz,εq “ Fpx, ȳpx,εq, z̄px,εq,εq` rFpετ, ȳpετ,εq`Πypτ,εq, z̄pετ,εq`

`Πzpτ,εq,εq´Fpx, ȳpτε,εq, z̄pτε,εq,εqs “: F̄`ΠF

f px̄, ȳ`Πy, z̄`Πz,εq “: f̄ `Π f

Система будет записана в виде

z« z̄px,εq`Πzpτ,εq
$

’

’

’

’

&

’

’

’

’

%

ε
dz̄
dx
`

dΠz
dτ

“ F̄`ΠF

dȳ
dx
`

1
ε

dΠy
dτ

“ f̄ `Π f

В полученных уравнениях приравняем по отдельности члены, зависящие от x и
τ . Получаем следующие системы:

$

’

’

’

’

&

’

’

’

’

%

ε
dz̄
dx
“ F̄

dȳ
dx
“ f̄

(2.10)

$

’

’

’

’

&

’

’

’

’

%

dΠz
dτ

“ΠF

dΠy
dτ

“ εΠ f

(2.11)

Таким образом, производим построение двумя частями. Одна будет зависеть толь-
ко от переменной x, а другая – от τ .
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Знаем, что z̄ и ȳ – ряды по степеням ε . Функции F̄ тоже можно разложить по
степеням ε . В результате, можно в системах (2.10) и (2.11) приравнять слева и справа
коэффициенты при равных степенях ε .

Подставим в (2.10) вместо z̄ и ȳ ряды (2.10), а в (2.11) вместо Πz и Πy ряды (2.9).
Разложим левую и правую части равенств в ряды со степенями ε и приравняем
коэффициенты.

Получаем, что из (2.10) в нулевом приближении образуется следующая система:

z̄px,εq “
8
ÿ

k“0

ε
kz̄kpxq

ȳpx,εq “
8
ÿ

k“0

ε
kȳkpxq

$

’

’

’

&

’

’

’

%

Fpx, ȳ0pxq, z̄0pxq,0q “ 0

dȳ0

dx
“ f px, ȳ0pxq, z̄0pxq,0q

(2.12)

Это вырожденная система. Из (2.11) в нулевом приближении образуется:

Πzpτ,εq “
8
ÿ

k“0

ε
k
Πkzpτq

Πypτ,εq “
8
ÿ

k“0

ε
k
Πkypτq

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dΠ0z
dτ

“ Fp0, ȳ0p0q`Π0y, z̄0p0q`Π0z,0q´Fp0, ȳ0p0q, z̄0p0q,0q “

“ Fp0, ȳ0p0q`Π0y, z̄0p0q`Π0z,0q

dΠ0y
dτ

“ 0

(2.13)

Для главных членов рядов пограничного слоя получаем систему. В результате, в
системе (2.12) присутствует дифференциальное и не дифференциальное уравнения,
а в (2.13) – два дифференциальных. Для определения единственного решения нуж-
но ввести 3 дополнительных условия. Для этого подставим ряды (2.7) в начальное
условие (2.2):
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z̄p0,εq`Πzp0,εq “ z0

ȳp0,εq`Πyp0,εq “ y0

Вместо z̄ и ȳ подставляем ряды (2.8), а вместо Πz и Πy – ряды (2.9). Приравниваем
коэффициенты при одинаковых степенях ε слева и справа. В нулевом приближении
получим:

$

’

’

’

&

’

’

’

%

z̄0p0q`Π0zp0q “ z0

ȳ0p0q`Π0yp0q “ y0 (16)

(2.14)

Данная система задает только два начальных условия. Дифференциальных урав-
нений три в системах (2.12) и (2.13). Добавим в условие (2.14) еще одно уравнение:

Π0yp8q “ 0 (2.15)

Данное уравнение объясняет факт, что пограничная функция затухает с ростом
τ .
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Лекция 3. Теорема Васильевой

Пусть есть тихоновская система:

$

’

’

’

’

&

’

’

’

’

%

ε
dz
dx
“ Fpx,y,z,εq

dy
dx
“ f px,y,z,εq

(3.1)

Рассматриваем простейший случай, когда y,z – скалярные функции. В первом
уравнении стоит малый, положительный параметр ε , который в условиях задачи
можно делать малым.

Система рассматривается на малом отрезке 0 ď x ď X . Для скалярных функций
y,z заданы следующие начальные условия:

zp0,εq “ z0

yp0,εq “ y0 (3.2)

Смысл теоремы Тихонова состоит в следующем: если положим в системе (3.1)
ε “ 0, то получим вырожденную систему. Первое уравнение перестает быть диффе-
ренциальным, а становится конечным. Поэтому для системы достаточно оставить
только начальное условие на y.

В теореме Тихонова рассматривается поведение при ε Ñ 0 решения полной за-
дачи и стремление к решению вырожденной задачи. Если это условие выполняется,
то решение вырожденной задачи можно считать приближением для решения исход-
ной задачи. Поэтому существует предельный переход от решения полной задачи к
вырожденной при ε Ñ 0.

Можно показать геометрически, что для y решение вырожденной задачи является
равномерным на всем интервале 0ď xď X . Для функции z существует пограничный
слой, где решение задачи далеко отстоит от решения вырожденной задачи.

Решение вырожденной задачи дает асимптотическое приближение порядка ε .
Нужно построить для y,z равномерного приближения, включая пограничный слой.
Поэтому, одного решения вырожденной задачи недостаточно. И построить полное
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асимптотическое разложение по малому параметру, которое дает возможность по-
строить асимптотическое приближение для решения с любой заданной точностью.
Для выполнения этих задач используем метод Васильевой.

Метод Васильевой

Смысл метода Васильевой: строим асимптотику задачи (3.1) и (3.2) в следующем
виде

zpx,εq “ z̄px,εq`Πzpτ,εq (3.3)

ypx,εq “ ȳpx,εq`Πypτ,εq (3.3)

τ “
x
ε

z̄px,εq “
8
ÿ

k“0

ε
kz̄kpxq (3.4)

ȳpx,εq “
8
ÿ

k“0

ε
kȳkpxq (3.4)

Πzpτ,εq “
8
ÿ

k“0

ε
k
Πkzpτq (3.5)

Πypτ,εq “
8
ÿ

k“0

ε
k
Πkypτq (3.5)

Метод Васильевой позволяет найти коэффициенты и параметры рядов, входя-
щих в уравнения (3.4), и задает алгоритм их построения. В результате, подставляем
суммы (3.4) в исходную систему и отделяем уравнения с z̄, ȳ от Π-функций.

Fpx, ȳ`Πy, z̄`Πz,εq “ Fpx, ȳpx,εq, z̄px,εq,εq` rFpετ, ȳpετ,εq`Πypτ,εq, z̄pετ,εq`

`Πzpτ,εq,εq´Fpx, ȳpτε,εq, z̄pτε,εq,εqs “: F̄`ΠF

f px̄, ȳ`Πy, z̄`Πz,εq “: f̄ `Π f

$

’

’

’

’

&

’

’

’

’

%

ε
dz̄
dx
“ F̄ :“ Fpx, ȳpx,εq, z̄px,εq,εq

dȳ
dx
“ f̄

(3.6)
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$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dΠz
dτ

“ΠF :“ Fpετ, ȳpετ,εq`Πypτ,εq, z̄pετ,εq`Πzpτ,εq,εq´

´Fpx, ȳpτε,εq, z̄pτε,εq,εq

dΠy
dτ

“ εΠ f

(3.7)

Функции F̄ можно разложить по степеням ε , потому что z̄ и ȳ – ряды по сте-
пеням ε . В результате, можно в системах (3.6) и (3.7) приравнять слева и справа
коэффициенты при равных степенях ε .

Подставим в (3.6) вместо z̄ и ȳ в ряды (3.4), а в (3.7) вместо Πz и Πy ряды (3.5).
Разложим левую и правую части равенств в ряды со степенями ε и приравняем
коэффициенты.

В нулевом приближении из (3.6) получаем следующую систему для главных чле-
нов регулярных рядов:

$

’

’

’

&

’

’

’

%

Fpx, ȳ0pxq, z̄0pxq,0q “ 0

dȳ0

dx
“ f px, ȳ0pxq, z̄0pxq,0q

(3.8)

В нулевом приближении из (3.7) получаем следующую систему для главных чле-
нов рядов пограничного слоя:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dΠ0z
dτ

“Π0F :“ Fp0, ȳ0p0q`Π0y, z̄0p0q`Π0z,0q´Fp0, ȳ0p0q, z̄0p0q,0q “

“ Fp0, ȳ0p0q`Π0y, z̄0p0q`Π0z,0q

dΠ0y
dτ

“ 0

(3.9)

В результате, в системе (3.8) присутствует дифференциальное и недифференци-
альное уравнения, а в (3.9) – два дифференциальных. Для введения дополнительных
условий подставим ряды (3.3) в начальное условие (3.2). Вместо z̄, ȳ – ряды (3.4), а
вместо Πz,Πy – ряды (3.5). Приравниваем коэффициенты при одинаковых степенях
ε слева и справа. В результате:
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$

’

’

’

&

’

’

’

%

z̄0p0q`Π0zp0q “ z0

ȳ0p0q`Π0yp0q “ y0

(3.10)

Добавим в условие (3.10) еще одно уравнение, так как дифференциальных урав-
нений три в системах (3.8) и (3.9)

Π0yp8q “ 0 (3.11)

В результате, из системы (3.8) и (3.9) и дополнительных условий (3.10) и (3.11)
найдем главные члены строящихся рядов z̄0pxq, ȳ0pxq, Π0zpτq и Π0ypτq.

Рассмотрим второе уравнение в системе (3.9) и условия (3.11). Из пары уравнений
следует, что функция y не зависит от τ и является const

Π0ypτq ” 0,τ ě 0

Такой результат можно было ожидать графически, так как функция y для полной
и вырожденной задач выходит из одной точки.

Подставим получившееся значение для Π0ypτq во второе уравнение системы (3.10):

ȳ0p0q “ y0 (3.12)

Рассмотрим систему (3.8) в совокупности с условием (3.12). Получается вырож-
денная задача. Условия Тихонова 2 и 3 гарантируют существование вырожденной
системы.

z̄0pxq “ z̄pxq :“ φpx, ȳpxqq

ȳ0pxq “ ȳpxq

Таким образом, найдены главные члены регулярных рядов (3.4) и они являются
решениями вырожденной задачи. Тогда можно найти z̄0p0q, чтобы определить на-
чальное условие на функцию z:

Π0zp0q “ z0
´ z̄0p0q “ z0

´φp0,y0
q
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Рассмотрим первое уравнение из системы (3.9):

dΠ0z
dτ

“Π0F :“ Fp0, ȳ0p0q`Π0y, z̄0p0q`Π0z,0q´Fp0, ȳ0p0q, z̄0p0q,0q “

“ Fp0, ȳ0p0q`Π0y, z̄0p0q`Π0z,0q

Получаем систему с начальным условием

$

’

’

’

&

’

’

’

%

dΠ0z
dτ

“ Fp0,y0, z̄0p0q`Π0z,0q,τ ě 0

Π0zp0q “ z0´ z̄0p0q

Произведем замену переменных

z̄0p0q`Π0zp0q “ z̃0
pτq

Получаем следующую систему:

$

’

’

’

’

&

’

’

’

’

%

dz̃0pτq

dτ
“ Fp0,y0, z̃0pτq,0q,τ ě 0

z̃0pτq “ z0

Получаем присоединенное по теореме Тихонова уравнение, которое фигурирует
в условии 5 теоремы. Смысл условия состоит в следующем: у уравнения есть точка
покоя, соответствующее φp0,y0q. В силу условия 4 такая точка будет асимптотически
устойчивой, то есть если начальное значение достаточно близко к точке покоя, то при
всех τ ą 0 решение останется близким к точке покоя, а при τ Ñ8 будет стремиться
к точке покоя.

Получаем, что существует решение при τ Ñ8 такое, что

z̃0
pτq Ñ φp0,y0

q

Тем самым, существует решение задачи для Π0zpτq и оно Ñ 0 при τ Ñ8.

Таким образом, определены все члены асимптотики нулевого порядка, главные
члены. Покажем, что стремление для функции z носит экспоненциальный характер,
а Π0zpτq имеет экспоненциальную оценку.
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|Π0zpτq| ď c ˚ expp´κτq,τ ď 0 (3.13)

где c,κ – положительные числа, независящие от ε . В дальнейшем другие подобные
постоянные величины будут обозначаться так же. При различной оценке они могут
различаться, но обладают общим свойством.

Покажем, что все члены рядов пограничного слоя Πypτ,εq и Πzpτ,εq тоже имеют
экспоненциальную оценку.

Если рассмотреть геометрическую иллюстрацию теоремы Тихонова в координа-
тах px,zq

Рис. 3.1. Геометрическая иллюстрация теоремы Тихонова в координатах px,zq

Получаем, что быстро изменяющаяся часть решения будет иметь экспоненциаль-
ную оценку.

Для доказательства факта перепишем выражение

dΠ0z
dτ

“ Fp0,y0, z̄0p0q`Π0z,0q,τ ě 0

Сравним уменьшаемое и вычитаемое в первом уравнении системы (3.9).

dΠ0z
dτ

“Π0F :“ Fp0, ȳ0p0q`Π0y, z̄0p0q`Π0z,0q´Fp0, ȳ0p0q, z̄0p0q,0q

Три аргумента одинаковые, так как Π0y“ 0 и ȳ0p0q “ 0.

Π0zp0q “ z0
´ z̄0p0q “ z0

´φp0,y0
q
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Воспользуемся формулой Лагранжа для конечных приращений. В результате,
выражение можно записать следующем виде:

dΠ0z
dτ

“ Fzp0, ȳ0p0q, z̄0p0q`ΘΠ0z,0q ˚Π0z

0ăΘă 1

Θ не является числом. Π0z меняется и стремиться к 0.

Вспомним условие 4 теоремы Тихонова:

Fzpx, ȳ0pxq, z̄0pxq,0q “: F̄zpxq ă 0

x P r0,Xs

Если x“ 0, то

F̄zp0q ă ´2κ

Так как Π0zpτq Ñ 0 при τ Ñ8, то найдется такое значение τ0 такое что:

Dτ0 ą 0 : при τ ě τ0

Fzpτq :“ Fzp0, ȳ0p0q, z̄0p0q`ΘΠ0z,0q ă ´κ

С ростом Π0z при τ Ñ 8 она стремится к нулю, то добавка ΘΠ0z становиться
меньше и тоже стремиться к нулю.

Тогда уравнение для Π0z рассмотрим для τ ě τ0. Графиком для уравнения будет
монотонная функция, стремящаяся к нуля при τ Ñ8, так как для z̃ - монотонная
функция.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dΠ0z
dτ

“ Fzpτq ˚Π0z

τ ě τ0

Π0z|τ“τ0 “Π0zpτ0q

Из системы можно получить:
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|Π0zpτq| “ |Π0zpτ0q|expp
ż

τ

τ0

Fsdsq ď |Π0zpτ0q|expp´κpτ´ τ0qq “

“ r|Π0zpτ0q|exppκτ0qsexpp´κτq,τ ě τ0 (3.14)

|Π0zpτ0q|exppκτ0q “ c

Тем самым, искомая оценка выражения (3.13) доказана не для всех значений τ ,
начиная с нуля, а только с некоторого значения τ0.

Рассмотрим график для Π0z

Рис. 3.2. График функции Π0z

На промежутке от нуля до τ0 функция будет меняться от z0´ z̄0p0q до Π0zpτ0q.
Можно подобрать большую константу c, чтобы оценка была верна на всем интервале.

0ď τ ď τ0

|Π0zpτq| ď |z0
´ z̄0p0q| ď r|z0

´ z̄0p0q|exppκτ0qsexpp´κτq “

“ c ˚ expp´κτq,0ě τ ě τ0 (3.15)

exppκτ0qsexpp´κτq ě 1

|z0
´ z̄0p0q|exppκτ0q “ c

Получили, что из выражений (3.14) и (3.15) следует (3.13). Все уравнения для
асимптотики нулевого порядка не являются линейными. Но в приближениях они
становятся линейными.
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Пусть определены все члены асимптотики, а именно рядов (3.3) со следующими
номерами: i“ 0,1,2, ...,k´1. Покажем, как определить члены рядом в номером k, то
есть коэффициенты при εk.

Для этого в системах (3.6) и (3.7) приравняем слева и справа коэффициенты при
εk. Это возможно, если определены все коэффициенты до степени ε k´1.

Рассмотрим уравнения (3.6). Если под z̄px,εq подразумеваем ряд (3.4) и разложим
функцию F в ряд Тейлора, то получим следующее выражение

$

’

&

’

%

dz̄k´1

dx
“ F̄ypxq ˚ ȳk` F̄zpxq ˚ z̄k`Fkpxq (3.16)

dȳk

dx
“ f̄ypxq ˚ ȳk` f̄zpxq ˚ z̄k` fkpxq (3.17)

где производные имеют следующий смысл

F̄ypxq “ Fypx, ȳ0pxq, z̄0pxq,0q

правые части - функции Fkpxq и fkpxq выражаются рекуррентно через найденные
члены регулярного ряда ȳ jpxq и z̄ jpxq, где j ď k´1.

Первое уравнение системы не является дифференциальным, так как слева стоит
производная известной функции, и линейное. Второе – дифференциальное, линейное.

Для Π–функций получим следующее при рассмотрении уравнений (3.7). Если под
z̄px,εq подразумеваем ряд (3.5) и разложим функцию F в ряд Тейлора, то получим
следующее выражение

$

’

&

’

%

dΠkz
dτ

“ Fypτq ˚Πky`Fzpτq ˚Πkz`gkpτq (3.18)

dΠky
dτ

“Πk´1 f pτq (3.19)

где Fypτq“Fyp0, ȳ0p0q, z̄0p0q`Π0zpτq,0q и Fzpτq имеет аналогичное значение. А функ-
ции gkpτq и Πk´1 f pτq выражаются рекуррентно через найденные члены регулярного
ряда Π jzpτq и Π jypτq, где j ď k´1.

Как и в нулевом приближении для функций с номером k (3.16)-(3.19) имеем
три дифференциальных уравнения, кроме равенства (3.16). Поэтому нужно ввести
3 условия:
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#

ȳkp0q`Πkyp0q “ 0 (3.20)

z̄kp0q`Πkzp0q “ 0 (3.21)

Πkyp8q “ 0 (3.22)

Система получается линейной. Для системы уравнений (3.16)-(3.22) найдем 4
неизвестные функции.

Рассмотрим уравнения (3.19) и (3.22):

Πkypτq “
ż

τ

8

Πk´1 f psqds

Пусть найдены все члены асимптотики с номерами i “ 0,1,2, ...,k´ 1. С номе-
ром 0 пограничная функция имеет экспоненциальную оценку, что нужно учесть в
предположении. Поэтому, можно судить, что все пограничные функции имеют экс-
поненциальную оценку. Тогда

|gkpτq|, |Πk´1 f pτq| ď c ˚ expp´κτq

Таким образом, интеграл будет сходиться. Получим

|Πkypτq| ď |
ż

τ

8

c ˚ expp´sκqds| “
c
κ

expp´κτq

Тогда функция Πkypτq будет иметь экспоненциальную оценку. Отсюда можно
определить Πkyp0q. Из первого равенства (3.21) получаем начальное условие

ȳkp0q “ ´Πkyp0q “
ż

τ

8

Πk´1 f psqds (3.23)

Рассмотрим систему уравнений (3.16) и (3.17). Для их решения нужно выразить
из первого уравнения (3.16) z̄k через ȳk и подставить во второе (3.17). По теореме
Тихонова F̄zpxq ă 0, поэтому на него можно делить.

z̄k “ F̄´1
z pxqr

dz̄k´1

dx
´ F̄ypxq ˚ ȳk´Fkpxqs

dȳk

dx
“ Apxq ˚ ȳk`hkpxq (3.24)
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где Apxq “ f̄ypxq´ f̄zpxqF̄´1
z pxqF̄ypxq и hkpxq – известные функции.

Уравнение (3.24) – линейное, первого порядка с переменным коэффициентом. В
силу этого, оно имеет единственное решение

ȳkpxq “ Hpxqȳkp0q`Hpxq
ż x

0
H´1

psqhkpsqds

Hpxq “ expp
ż x

0
Apsqdsq

Отсюда можно найти z̄kpxq. Его можно подставить во второе уравнение системы
(3.21) и определить начальное условие для функции Πkzp0q:

Π̄kzp0q “ ´z̄kp0q (3.25)

Рассмотрев уравнение (3.18), можно получить

dΠkz
dτ

“ Fzpτq ˚Πkz` g̃kpτq (3.26)

Это уравнение линейное, дифференциальное, первого порядка с заданным на-
чальным условием.

Задача (3.26) с начальным условием (3.25) будет иметь следующее решение:

Πkzpτq “ ´Φpτqz̄kp0q`Φpτq

ż

τ

0
Φ
´1
psqg̃kpsqds

Φpτq “ expp
ż

τ

0
Fzpsqdsq

Fzpτq “ Fzp0,y0, z̄0p0q`Π0zpτq,0q

В результате получается экспоненциальная оценка:

|Πkzpτq| ď c ˚ expp´κτq

Таким образом, предположили, что функции с номерами i “ 0,1,2, ...,k´ 1, вхо-
дящие в ряды (3.4) и (3.5), определены и все Π–функции для этих номеров имеют
экспоненциальные оценки, то можно определить функции с номерами k. Π–функции
Πkz и Πky имеют экспоненциальные оценки. Тем самым, ряды (3.3) полностью по-
строены.
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Теорема 3.1 (Васильевой). Если выполнены условия 1-5, то построеные ряды (3.3)
являются асимптотическими рядами для решения задачи (3.1) и (3.2) на всем про-
межутке x P r0,Xs. То есть

@n DCn ą 0 и εn ą 0

для которых справедливы следующие неравенства

max
r0,Xs

|zpx,εq´Znpx,εq| ďCnε
n´1

0ă ε ď εn

max
r0,Xs

|ypx,εq´Ynpx,εq| ďCnε
n`1

где Zn и Yn – частичные суммы n-ного порядка рядов (3.3).

В теореме Васильевой те же условия, что и в теореме Тихонова. Усилено условие
1. В теореме Тихонова достаточно было ввести условие непрерывной дифференци-
руемости и липшицевости. В методе Васильевой строятся ряды и раскладываются в
ряды Тейлора бесконечного порядка, и нужно рассмотреть производные всех поряд-
ков. Если построить асимптотику n-го порядка, то достаточно потребовать, чтобы
были непрерывны частные производные pn`1q-го порядка. Если же произвольного,
то требование бесконечной дифференцируемости.
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Лекция 4. Метод дифференциальных неравенств

Метод Васильевой

Рассматривается скалярное дифференциальное уравнение первого порядка

du
dx
“ f px,uq, 0ď xď a, up0q “ u (4.1)

Теорема 4.1. Пусть функция f px,uq определена и непрерывна в прямоугольнике D.

D“ px,uq : 0ď xď a, pu´u0
q ď b

Функция f px,yq удовлетворяет условия Липшица по переменной u.

| f px1,U1q´ f px1,u2q| ď N|u1´u2|

Тогда уравнение (4.1) с заданным начальным условием имеет единственное ре-
шение upxq на отрезке:

l “ r0ď xď minpa,
b
M
qs

M “ max
D
| f px,uq|

Записывается тривиальное уравнение, показывающее, что решение не обязатель-
но существует при 0ď xď a.

du
dx
“ u2, 0ď xď a, up0q “ 1 Ñ upxq “

1
1´ kx

, 0ď xă
1
k

Если aą
1
k
, то задача не имеет решения при 0ď xď a.

Теорема 4.2. Пусть функция f px,uq определена, непрерывна и удовлетворяет усло-
вию Липшица в полосе P.

P“ px,Uq : 0ď xď a, U P R
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Рис. 4.1. Функция f px,uq в полосе P

Тогда уравнение (4.1) имеет единственное решение на отрезке r0,as. Если функ-
ция

f px,uq “ Opuα
q, α ą 1

при |u| Ñ 8, то такая функция не удовлетворяет условиям теоремы (условию
Липшица).

Метод дифференциальных неравенств (метод нижних и верхних решений) при-
меняется при рассмотрении существования решения. Вводится оператор L:

du
dx
“ f px,uq, 0ď xď a; up0q “ u

L u :“
du
dx
´ f px,uq

Определение 4.1.
Upxq PC1

p0;asXCr0;as

C1 — класс функций, имеющий непрерывную первую производную.

Функция Upxq называется нижним решением задачи (4.1), если она удовлетво-
ряет неравенствам.

LU “
dU
dx
´ f px,Uq ă 0; x P p0;as, Up0q ă u0 (4.2)

Upxq PC1
p0;asXCr0;as
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Функция Upxq называется верхним решением задачи (4.1), если она удовлетво-
ряет неравенствам.

LU ą 0, 0ă xď a; Up0q ą u0

Записывается функция, которая не имеет непрерывные производные в точке 0.

upxq “
?

x, 0ď xď a

u1p0q “ lim
xÑ`0

?
x´0
x

“`8

du
dx
“

1
2u

, 0ă xď a;up0q “ 0

Функция upxq является решением выше написанной задачи Коши. Записывается
второе решение задачи Коши:

u2pxq “ ´
?

x

Это означает, что условие Липшица не выполнено.
Рассматривается график функции U “ f pxq, которая непрерывна на отрезке r0;as

и f p0q f paq ă 0. На отрезке существует точка c, которая равна нулю ( f pcq “ 0).

Рис. 4.2. График функции U “ f pxq

Доказательство.

Необходимо доказать следующее:

Upxq ăUpxq, 0ď xď a (4.3)
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Up0q ă u0
ăUp0q, x“ 0

Предполагается, что существует точка x0:

x0 P p0;as : Upxq ăUpxq, 0ď xă x0

Upx0q “Upx0q

Рис. 4.3. Точка x0, где Upxq и Upxq пересекаются

Отсюда следует, что:
dU
dx
px0q ě

dU
dx
px0q

LUpx0q “
dU
dx
px0q´ f px0,Upx0qq ą 0 Ñ

dU
dx
px0q ą f px0,Uppx0qq “ f px0,Upx0qq

dUpxq
dx

px0q´ f px0,Upx0qq ą 0

Это выражение противоречит определению (4.2). Было доказано, что если су-
ществуют нижние и верхние решения, то нижнее решение всегда меньше верхнего
решения. �
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Теорема 4.3. Пусть существуют нижнее решение (Upxq) и верхнее решение (Upxq)
задачи (4.1). Пусть функция f px,uq определена, непрерывна и удовлетворяет усло-
вию Липшица в области D.

| f px1,u1q´ f px1,u2q| ď N|u1´u2|

D“ px,uq : 0ď xď a, Upxq ď uďUpxq

Тогда задача (4.1) имеет единственное решение и справедливо неравенство:

Upxq ă upxq ăUpxq, 0ď xď a

Доказательство.

P“ px,Uq : 0ď xď a, u P R

Рис. 4.4. Область D в полосе P

Вводится функция:

gpx,uq “

$

’

’

’

&

’

’

’

%

f px,Upxqq`pu´Upxqq, px,uq P D;

f px,uq, px,uq P D;

f px,Upxqq`pu´Upxqq, px,uq P D.

N1 “ maxpN;1q

du
dx
“ gpx,uq, 0ď xď a; up0q “ u0
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Задача Коши имеет единственное решение.

upxq ąUpxq, upxq ăUpxq

Upxq ă upxq ăUpxq, 0ď xď a

px,upxqq P D, 0ď xď a

gpx,uq “ f px,uq, px,uq P D

Была доказана теорема Чаплыгина. �

Метод дифференциальных неравенств. Построение решений

Рассматривается сингулярно возмущенное уравнение:

ε
du
dx
“ f px,uq, 0ď xď a (4.4)

up0,εq “ u0 (4.5)

Рис. 4.5. Сингулярно возмущенное уравнение

Пусть выполнены следующие условия:

1) Пусть функция f px,uq определена и имеет непрерывные частные производные
в области D.

D“ px,uq : 0ď xď a, u1 ď uď u2

u0
P pu1,u2q
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2)
f px,uq “ 0 Ñ u“ ϕpxq,0ď xď a

u1 ă ϕpxq ă u2

3) Условие устойчивости

f upxq :“
B f
Bu
px,ϕpxqq ă 0, 0ď xď a (4.6)

4) Рассматривается присоединенное уравнение:

dû
dτ
“ f p0, ûq, τ ě 0, ûp0q “ u0 (4.7)

û“ ϕp0q— точка покоя.

B f
Bu
p0,ϕp0qq ă 0

D ûpτq Ñ ϕp0q, τ Ñ8

Начальное значение u0 принадлежит области притяжения точки покоя.

По методу Васильевой можно построить асимптотику в виде:

upx,εq “Upx,εq`Πpτ,εq “U0pxq` εU1pxq` ...`Π0pτq` εΠ1pτq` ... (4.8)

τ “
x
ε

Определяются первые два члена каждого слагаемого. Уравнение (4.8) подставля-
ется в уравнение (4.4).

ε
d
dx
pU0` εU1` ...q`

d
dτ
pΠ0` εΠ1` ...q “ f px,U `Πq “ f px,Upx,εqq`

`r f pετ,Upετ,εq`Πpτ,εqq´ f pετ,Upετ,εqqs

ε
d
dx
pU0` εU1` ...q “ F “ f px,U0` εU1` ...q “ f px,U0q` fUpxqpεU1` ...q`0pε2

q
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d
dx
pΠ0` εΠ1` ...q “ΠF “ r f p0,U0p0q`Π0q` fxpτqˆ ετ` fUpτqpU

1

0p0qετ` εU1p0q`

`0pε2
q` εΠ1`0pε2

qq`0pε2
qs´ r f p0,U0p0qq` fUp0qpU

1

0p0qετ` εU1p0q`0pε2
qq`0pε2

qs

Up0q` εU1p0q` ...`Π0p0q`Π1p0q` ...“ u0 (4.9)

ε
0 0“ f px,U0q ÑU0pxq “ ϕpxq

ε
1 U 1

0pxq “ f upxqU1 ÑU1pxq “ f´1
u pxqU1

0pxq

ε
0

$

&

%

dΠ0

dτ
“ f p0,U0p0q`Π0q τ ě 0;

Π0p0q “ u0´ϕp0q

ε
1 dΠ1

dτ
“ fupτqΠ1`π1pτq, τ ě 0

fupτq “
d f
du
p0,ϕp0q`Π0pτqq

Π1p0q “ ´U1p0q

fupτq :“ fup0,ϕp0q`Π0pxqq

π1pτq “ r fxpτq´ f xp0qsτ`r fupτq´ f up0qspϕ
1
p0qτ`U1p0qq

Были найдены для регулярной части первые два члена асимптотики.
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Лекция 5. Задача Коши

Метод дифференциальных неравенств. Построение решений

Чтобы доказать существование решения, необходимо построить нижнее и верх-
нее решения. По теореме Чаплыгина существует точное решение задачи, которое в
точности удовлетворяет уравнению. Решение u больше нижнего и меньше верхнего
решения. Этот метод используется для сингулярно возмущенной задачи. Строится
асимптотика первого порядка.

ε
du
dx
“ f px,uq, 0ď xď a, up0,εq “ u0

upx,εq “ upx,εq`Πpτ,εq “ u0pxq` εu1pxq` ...`Π0pτq` εΠ1pτq` ...

τ “
x
ε

u0pxq “ ϕpxq,u1pxq

f upxq :“ fupx,ϕpxqq ă 0

f upxq :“ fupx,ϕpxqq ď ´κ ă 0

Четвертое условие связано с присоединенной системой, где получается точка по-
коя. Требуется, чтобы начальное значение u0 принадлежало области притяжения
точки покоя.

ε
0

$

&

%

dΠ0

dτ
“ f p0,U0p0q`Π0q τ ě 0;

Π0p0q “ u0´ϕp0q

ε
1 dΠ1

dτ
“ fupτqΠ1`π1pτq, τ ě 0 (5.1)

fupτq “
d f
du
p0,ϕp0q`Π0pτqq

Π1p0q “ ´U1p0q

fupτq :“ fup0,ϕp0q`Π0pxqq

π1pτq “ r fxpτq´ f xp0qsτ`r fupτq´ f up0qspϕ
1
p0qτ`U1p0qq
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Необходимо применить метод дифференциальных неравенств, чтобы обосновать
существование решения задачи и доказать, что если взять только члены нулевого
и первого порядка, то получится приближение для точного решения с точностью
порядка ε2. Если сделать замену переменной

ûpτq “ ϕp0q`Π0pτq

то получится присоединенное уравнение:

dû
dτ
“ f p0, ûq, τ ě 0; ûp0q “ u0

Существует следующее решение, которое удовлетворяет условиям:

ûpτq Ñ ϕp0q, τ Ñ8

Π0pτq Ñ 0, τ Ñ8 (5.2)

fupxq ă ´κ, τ ě τ0 (5.3)

|Π0pτq| ď c expp´κτq, τ ě 0 (5.4)

Записывается решение для задачи (5.1):

Π1pτq “ ´ΦpτqU1p0q`

τ
ż

0

ΦpτqΦ
´1psqπ1psqds (5.5)

Φpτq “ exp

¨

˝

τ
ż

0

fupsqds

˛

‚

В силу уравнения (5.3) Φpτq имеет следующую оценку:

0ăΦpτq ď c expp´κτq, τ ě 0

τexpp´κτq “ c1expp´κ1τq

В силу уравнений (5.3) и (5.4) Π1pτq имеет следующую оценку:

|Π1pτq| ď c expp´κτq
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Используя эти оценки, можно получить следующее:

|Π1pτq| ď c expp´κτq,τ ě 0

Таким образом, были определены первые асимптотики, используя алгоритм Ва-
сильевой. Их сумма обозначается следующим образом:

U1px,εq “ u0pxq` εu1pxq`Π0p
x
ε
q` εΠ1p

x
ε
q

LεU1 “ ε
dU1

dx
´ f px,U1q “ Opε2

q, 0ď xď a (5.6)

Если U1 подставить в начальное условие, то получится уравнение, которое в точ-
ности удовлетворяет заданному условию:

U1 “ p0,εq “U0 (5.7)

Это означает, что U1 является решением по невязке с точностью порядка ε2.
Записывается нижнее решение:

Upx,εq “U1px,εq´ ε
2
´

M`P
´ x

ε

¯¯

(5.8)

M “ const ą 0, Ppτq : 0ď Ppτq ď c M expp´xτq

Условия должны быть следующими:

LεU ă 0, 0ď xď a (5.9)

Up0,εq ă u0 (5.10)

Доказывается условие (5.9):

LεU “ ε
dU
dx
´ f px,Uq “ ε

dU1

dx
´ ε

2 dP
dτ
´ f px,U1´ ε

2
pM`Ppτqqq˘ f px,U1q “

“

„

ε
dU1

dx
´ f px,U1q



´ ε
2 dP

dτ
`t f px,U1q´ f px,Uqu

„

ε
dU1

dx
´ f px,U1q



“ Opε2
q
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Opε2q не зависит от M.

U1 “U ´ ε
2
pM`Pq

f px,U1q´ f px,Uq “ f px,U1q´

„

fupx,U1qε
2
pM`Ppτqq`

1
2

f ˚uuε
4
pM`Pq2



“

“ fupx,U1qε
2
pM`Ppτqq`OMpε

4
q

LεU “ Opε2
q´ ε

2 dP
dτ
` fupx,U1qε

2
pM`Ppτqq`OMpε

4
q (5.11)

Производное преобразуется в следующее уравнение:

fupx,U1q “ r fupx,ϕpxq` εU1pxq`Π0pτq` εΠ1pτqq´ fupx,ϕpxqqs` fupx,ϕpxqq ď

ď f ˚uupεU1`Π0` εΠ1q´κ ď´κ0` c1 expp´κ1τq “ kpτq

Получается оценка для производной.

fupx,U1qε
2
pM`Ppτqq ď kpτqε2

pM`Ppτqq “ r´κ0` c1 expp´κ1τqsε
2M` ε

2kpτqPpτq

Выбирается функция P, как решение следующей задачи:

´
dP
dτ
` kpτqP` c1 M expp´κ1τq “ 0, τ ě 0

Начальное условие задается нулевое.

Pp0q “ 0

Записывается решение для функции P:

Ppτq “

τ
ż

0

expp

τ
ż

s

kptqdtqc1 M expp´κ1sqds, τ ě 0

0ď Ppτq ď c1 M

τ
ż

0

expp

τ
ż

s

p´κ0` c1e´κ1,tqdtˆ expp´κ1sqds“

“ c1M

τ
ż

0

expp´κ0pτ´ sq`
c1

κ1
pe´κ1s

´ e´κ1τ
qqe´κ1sdsď c2M

τ
ż

0

e´κ0pτ´sqe´κ1sdsď

48



ОСНОВЫ СИНГУЛЯРНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

ď c2M

τ
ż

0

e´κ2τds“ c2Me´κ2τ
ˆ τ ď cMexpp´κτq, τ ě 0

Отсюда следует, что функция P имеет желаемую оценку.

LεU ď Opε2
q´κ0ε

2M`OMpε
4
q

При достаточно малых ε получается следующее:

OMpε
4
q ă c

LεU ă 0,0ď xď a

Дальше проверяется условие (5.10).

Up0,εq “U1p0,εq´ ε
2M “ u0

´ ε
2M ă u0

Таким образом, функция Upx,εq является нижним решением задачи. Так же про-
веряется, что Upx,εq является верхним решением задачи.

Upx,εq “U1px,εq` ε
2
´

M`P
´ x

ε

¯¯

Следовательно, существует точное решение, которое лежит между верхним и
нижним решениями, для задачи (4.4) и (4.5).

Upx,εq ď upx,εq ďUpx,εq, 0ď xď a

U1px,εq´Opε2
q

U1px,εq`Opε2
q

Upx,εq “U1px,εq`Opε2
q

Была обоснована асимптотика:

Unpx,εq “
n
Σ

i“0
ε

i
pU1pxq`Πi

´ x
ε

¯

q
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Upx,εq “Unpx,εq´ ε
n`1

´

M`P
´ x

ε

¯¯

Upx,εq “Unpx,εq` ε
n`1

´

M`P
´ x

ε

¯¯

ε
du
dx
“ f px,u,εq, up0q “ u0

Функция f px,u,εq имеет изолированное решение, которое было обеспечено усло-
вием устойчивости.

f px,u,0q “ 0Ñ u“ ϕpxq

fupxq “ fupx,ϕpxqq ă 0

f “´hpxqpu´ϕpxqq2` ε f1p...q

´hpxqpu´ϕ1pxqqpu´ϕ2pxq` ε f1q

У вырожденного уравнения есть два корня. Если эти корни изолированы, то по
отношении к каждому можно применять теорему Тихонова и строить асимптотику
по алгоритму Васильевой. Наклон этих корней отвечает за скорость реакции.

Рис. 5.1. Два корня вырожденного уравнения

Задача Коши в случаях пересекающихся и кратных корней

вырожденного уравнения

Рассматривается следующее уравнение с начальным условием:
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ε
du
dx
“ f px,u,εq, up0,εq “ u0 (5.12)

fupxq “ fupx,ϕpxq,0q ă 0, 0ď xď a (5.13)

lim
εÑ0

Upx,εq “ ϕpxq, 0ă xď a

Строится асимптотика:

Upx,εq “ ϕpxq`Π0

´ x
ε

¯

`Opεq (5.14)

Характерные примеры

Рассматриваются следующие примеры:

Рис. 5.2. Точное решение Upx,εq

Пример 5.1.

ε
dU
dx
“´U2

` x2
` ε, ´1ď xď 2; Up´1,εq “ u0 (5.15)

f px,U,0q “ ´U2
` x2

“ 0ÑU “´x“ ϕ1pxq, U “ x“ ϕ2pxq

fu “´2u

f1px,ϕ1pxq,0q “ 2x

$

&

%

ă 0, ´1ď xă 0;

ą 0, 0ă xď 2
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Корень ϕ1pxq устойчив при ´1ď xă 0.

fupx,ϕ2pxq,0q “ ´2x

$

&

%

ă 0, 0ă xď 2;

ą 0, ´1ď xă 0

Образуется составной корень:

Ûpxq “

$

&

%

´x, ´1ď xď 0;

x, 0ď xď 2

lim
εÑ0

px,εq ?
“ Ûpxq

52



ОСНОВЫ СИНГУЛЯРНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Лекция 6. Задача Коши

Задача Коши в случаях пересекающихся и кратных корней

вырожденного уравнения

Рассматривается скалярное уравнение первого порядка и задается начальное усло-
вие. Предполагается, что вырожденное уравнение, которое получается из исходного,
имеет устойчивый корень. Вторым условием было то, чтобы начальное значение при-
надлежало области притяжения корня. При этих условиях теорема Тихонова говорит
о том, что решение задачи (6.1) существует и при ε Ñ 0 стремиться к корню. Метод
Васильевой позволяет получить равномерную на всем сегменте асимптотику.

ε
du
dx
“ f px,u,εq, 0ď xď a, up0,εq “ u0 (6.1)

f px,u,0q “ 0 Ñ u“ ϕpxq

f upxq :“
d f
du
px,ϕpxq,0q ă 0, 0ď xď a (6.2)

dû
dτ
“ f p0, û,0q, τ ě 0, ûp0q “ u0

ûpτq Ñ ϕp0q, τ Ñ8

lim
εÑ0

upx,εq “ ϕpxq, 0ă xď a (6.3)

upx,εq “ ϕpxq`Π0

´ x
ε

¯

`Opεq, 0ď xď a (6.4)

Рассматривается случай, когда условие (6.2) нарушается. Тогда задача имеет 2
корня, которые пересекаются. Либо этот корень кратный. Рассматриваются харак-
терные примеры, которые показывают какие могут быть возможности в случае на-
рушения условия (6.2).

Пример 6.1.

psilon
du
dx
“´u2

` x2
` ε, ´1ď xď 2; up´1,εq “ u0 (6.5)

Вырожденное уравнение получается с двумя корнями, которые пересекаются в
точке 0:

f px,u,0q “ ´u2
` x2

“ 0 Ñ u“´x, u“ x
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fu “´2u

fupx,ϕ1pxq,0q “ 2x

$

&

%

ă 0, ´1ď xă 0;

ą 0, 0ă xď 2

Это показывает устойчивость корня ϕpxq до точки 0.

fupx,ϕ2pxq,0q “ ´2x

$

&

%

ą 0, ´1ď xă 0;

ă 0, 0ă xď 2

Второй корень не устойчив там, где первый корень устойчив. Из этих корней
составляется составной корень.

ûpxq “

$

&

%

´x, ´1ď xď 0;

x, 0ď xď 2
“ |x|

Рис. 6.1. Два корня вырожденного уравнения, которые пересекаются в точке 0

Необходимо найти при каких условиях решение исходной задачи (6.5) будет су-
ществовать и получится следующий предел:

lim
εÑ0

upx,εq “ ûpxq

Для этого записывается присоединенное уравнение:
d
„
u

dτ
“´

„
u

2
`1, τ ě 0;

„
up0q“

u0
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Предполагается, что решение с таким начальным условием притягивается к
корню ϕpxq. У этого уравнения есть две точки покоя:

„
u1 “ 1
„
u2 “´1

Если взять начальное значение
„
u0 ă ´1, то решение будет убывать и уйдет

в ´8. Если начальное значение будет следующим
„
u0 “ ´1, то это будет решение

уравнения. А если взять начальное значение
„
u0 ą´1, то решение будет притяги-

ваться к точке покоя
„
u1 “ 1. Если же начальное значение будет следующим

„
u0 ą 1,

то решение будет убывать и притягиваться к корню
„
u1 “ 1. Это означает, что

область притяжения точки покоя имеет следующее значение:

u0
ą´1

Рис. 6.2. Начальное значение
„
u0

По рисунку поведения решения видно, что решение полной задачи (6.5) быстро
изменяется от начального значения, приближается к корню вырожденного урав-
нения и остается дальше вблизи этого корня. Это означает, что это решение
удовлетворяет теореме Тихонова и существует следующее условие:

lim
εÑ0

upx,εq “ ûpxq

55



ОСНОВЫ СИНГУЛЯРНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

f pu,x,εq ą 0, ´
a

x2` ε ă uă
a

x2` ε

f pu,x,εq ă 0, uă´
a

x2` ε, uą
a

x2` ε

Рис. 6.3. Поведение решения задачи

Имеется качественное отличие от Тихоновско-Васильевского случая. Асимп-
тотика нулевого порядка, построенная по методу Васильевой:

upx,εq “ ϕpxq`Π0

´ x
ε

¯

`Opεq

В окрестности точки пересечения корней отличие точного решение от ϕpxq

является Op
?

εq.
upx,εq “ ûpxq`Op

?
εq

Пример 6.2.

ε
du
dx
“´u2

` x2
´ ε,´1ď xď 2;Up´1;εq “U0 (6.6)

f px,u,0q “ ´u2
` x2

“ 0 Ñ u“´x, u“ x

fu “´2u

fupx,ϕ1pxq,0q “ 2x

$

&

%

ă 0, ´1ď xă 0;

ą 0, 0ă xď 2
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fupx,ϕ2pxq,0q “ ´2x

$

&

%

ą 0, ´1ď xă 0;

ă 0, 0ă xď 2

ûpxq “

$

&

%

´x, ´1ď xď 0;

x, 0ď xď 2
“ |x|

Решение быстро приближается к корню ϕpxq, но не может пересечь его, что до-
казывает единственность решения. Решение остается вблизи неустойчивого кор-
ня до точки 1.Поэтому это явление называется задержкой вблизи неустойчивого
корня. Необходимо доказать, что решение остается вблизи неустойчивого корня
ϕpxq.

Рис. 6.4. Поведение первого решения задачи

ε
d
dx
pu1` xq “ ´pu1´ xqpu1` xq

zpx,εq “ u1px,εq` x

ε
dz
dx
“´pz´2xqz“´z2

`2zx, zą 0

Получается оценка для z:

ε
dz
dx
ă 2zx Ñ ε

dz
z
ă 2xdx Ñ ε

zpx,εq
ż

u0´1

dz
z
ă

x
ż

´1

2xdx Ñ
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Ñ ln
zpx,εq
u0´1

ă
x2´1

ε
Ñ zpx,εq ă pu0

´1qexp
ˆ

x2´1
ε

˙

u1p´1,εq “ u0
ą 1

zp´1,εq “ u0
´1ą 0

Если ´1ă xă 1, то exp
ˆ

x2´1
ε

˙

Ñ 0 при ε Ñ 0.

zpx,εq Ñ 0, ε Ñ 0, @x P p´1;1q Ñ u1px,εq Ñ ´x, ε Ñ 0, @x P p´1;1q

Рис. 6.5. Поведение второго решения задачи

Было доказано, что решение остается вблизи неустойчивого корня ´x.

lim
εÑ0

upx,εq “ ûpxq, ´1ă xă 0, 1ă xď 2

Задача Коши в случаях пересекающихся корней

вырожденного уравнения

Рассматривается задача Коши:
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ε
du
dx
“ f px,u,εq, 0ď xď a (6.7)

Up0,εq “U0 (6.8)

В этой задаче не работает алгоритм Васильевой и нельзя построить асимптотику
произвольного порядка по методу Васильевой.Применяется метод сращивания.

Пусть выполнены следующие условия:

1) f px,u,εq дважды дифференцируема в следующей области:

px,u,εq : 0ď xď a, u P I, 0ď ε ď ε0 “ G

u0
P I

I— интервал

2) вырожденное уравнение имеет два корня, которые пересекаются в точке x0.

Рис. 6.6. Два корня пересекаются в точке x0

f px,u,0q “ 0 Ñ u“ ϕ1pxq, u“ ϕ2pxq

ϕ1pxq ą ϕ2pxq, 0ď xă x0

ϕ2pxq ą ϕ1pxq, 0ă xď x0

ϕ1px0q “ ϕ2px0q

59



ОСНОВЫ СИНГУЛЯРНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

3) Определяется устойчивость корня.

fupx,ϕ1pxq,0q

$

&

%

ă 0, 0ď xă x0;

ą 0, x0 ă xď a.

Корень ϕ1pxq устойчив до точки пересечения.

fupx,ϕ2pxq,0q

$

&

%

ą 0, 0ď xă x0;

ă 0, x0 ă xď a

fupx0,ϕipx0q,0q “ 0

Вводится составной корень:

ûpxq “

$

&

%

ϕ1pxq, 0ď xď x0;

ϕ2pxq, x0 ď xď a

Записывается функция, которая удовлетворяет всем условиям:

f px,u,εq “ ´pu´ϕ1pxqqpu´ϕ2pxqq` ε f1px,x, iq

f px,u,0q “ 0 Ñ u“ ϕ1pxq, u“ ϕ2pxq

fupx,u,0q “ ´2u`ϕ1pxq`ϕ2pxq

fupx,ϕ1pxq,0q “ ´ϕ1pxq`ϕ2pxq “ ´pϕ1pxq´ϕ2pxqq

$

&

%

ă 0, 0ď xă x0;

ą 0, x0 ă x0 ď a

Это показывает устойчивость сотавного корня. Необходимо найти условия, при
которых решение задачи существует и получается следующий предел:

lim
εÑ0

upx,εq “ ûpxq, 0ă xď a

Требуется, чтобы начальное условие принадлежало области притяжения точки
покоя:

„
upxq “ ϕ1p0q

Необходимо ввести 2 дополнительные условия.
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f̂uupx0q “
B2 f
Bu2 px0,Ûpx0q,0q ă 0 (6.9)

û1px0˘0q´ f̂εpx0q ă 0 (6.10)

f̂εpx0q “
B f
Bε
px0, ûpx0q,0q
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Лекция 7. Задача Коши (продолжение)

Задача Коши в случаях пересекающихся корней

вырожденного уравнения (продолжение)

Рассматривается следующая задача:

ε
d u
d x

“ f px, u ,εq, 0ď xď a (7.1)

up0,εq “ u0 (7.2)

Она представляет собой классический тихоновский случай, когда вырожденные
уравнения равны нулю, то есть в уравнениях ε “ 0, имеют изолированный устойчи-
вый корень.

Рассмотрим случай, когда вырожденные уравнения имеют кратные пересекаю-
щиеся корни. Имеется несколько условий:

Условие 1. Гладкость входных данных.

Достаточно двукратной непрерывной дифференцируемости, то есть функ-
ция f имеет непрерывные производные до второго порядка по всем своим
аргументам.

Условие 2. f px,u,0q ÝÑ u“ φ1pxq,u“ φ2pxq

То есть корни пересекаются в некоторой точке, а именно

D0 P p0,aq : φ1px0q “ φ2px0q

Условие 3. Уточнение геометрии.

От 0 до x0 φ1 ą φ2, а от x0 до a φ2 ą φ1. Для определенности указываем,
что

fupx,φ1pxq,0q

$

&

%

ă 0, 0ď xď x0

ą 0, x0 ă xď a

fupx,φ2pxq,0q

$

&

%

ą 0, 0ď xď x0

ă 0, x0 ă xď a
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Рис. 7.1. Иллюстрация корней φ1 и φ2

Далее, что касается задачи (7.1):

f pu,x,εq “ ´pu´φ1pxqqpu ¨φ2pxqq` ε f1px,u,εq

Если главную часть ´pu´ φ1pxqqpu ¨ φ2pxqq приравнять к нулю, то вырожденное
уравнение имеет два корня. Чтобы оставить из этих двух корней устойчивый состав-
ной корень, вводится функция pu:

pupxq “

$

&

%

φ1pxq,0ď xď x0

φ2pxq,x0 ď xď a

pfupxq :“ fupx,pupxq,0q ď 0

pfupx0q “ 0

То есть существует одна точка, которая не удовлетворяет условиям теоремы Ти-
хонова.

Случай, при каких условиях решение задачи (7.1), (7.2) существует.

lim
εÑ0

upx,εq “ pupxq,0ă xď a (7.3)

Обычных условий теоремы Тихонова недостаточно. Для того, чтобы предельный
переход имел место, начальное значение u0 должно принадлежать области притяже-
ния корня φ1.

Возникает следующее условие:
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Рис. 7.2. Начальное значение u0 на области φ1

Условие 4. Принадлежность начального значения u0 к области притяжения корня φ1.

$

&

%

dru
dτ
“ f p0,ru,0q,τ ě 0

rup0q “ u0

Данное уравнение имеет точку покоя

ru“ φ1p0q,ru“ φ2p0q

Необходимо так задать начальное значение u0, чтобы решение задачи было

rupτq Ñ φ1p0q приτ Ñ8

Тогда областью притяжения является

u0
ą φ2p0q

Условие 5.
pfuupx0q

“d2 f
du2 px0,pupx0q,0q ă 0

Условие 6.
pu1px0˘0q´ pfεpx0q ă 0

pfεpx0q “
d f
dε
px0,pupx0q,0q
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Разобьем промежуток от 0 до a на несколько:

1) 0ď xď x1 “ x0´δ pδ ą 0´ не зависит от εq

Рис. 7.3. Промежуток с точкой x1

По теореме Тихонова решение существует

lim
εÑ0

upx,εq “ φ1pxq “ pupxq,0ď xď x1

Таким образом, на данном промежутке предельное равенство (7.3) выполнено.

Построим на этом промежутке асимптотику нулевого порядка по методу Васи-
льевой:

upx,εq “ φ1pxq`П0pτq`Opεq,τ “
x
ε

(7.4)

$

&

%

dП0

dτ
“ f p0,φ1p0q`П0,0q,τ ě 0

П0p0q “ u0´φ1p0q

Так как ruÑ φ1p0q, то П0 Ñ 0 при τ Ñ8. Такое стремление носит экспоненциаль-
ный характер:
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|П0pτq| ď c exp p´κτq

Через c обозначаем подходящие положительные числа, независящие от ε .

Так как в точке x0 условие устойчивости нарушено (f(u) = 0), то теорема Тихонова
в данном случае не позволяет добраться до этой точки.

2) x1 ď xď x2 “ X0`δ

Рис. 7.4. Промежуток с точкой x2

Имеется исходное уравнение (7.1) с начальным условием 5, помимо этого введем
обозначение:

upx1,εq “ u1 (7.5)

В силу уравнения (7.4) получается:

u1´φ1px1q`qpεq (7.6)

Необходимо доказать решение задачи (7.1), (7.5) с помощью метода дифференци-
альных неравенств. Для этого надо построить нижнее и верхнее решения. Нижнее
решение:
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Upx,εq “ pupxq´M ε, (7.7)

где M – положительное число, независящее от ε .

Чтобы данная функция была нижним решением, необходимо выбрать такое M,
чтобы были выполнены следующие два условия:

1. Операторное неравенство:

LεU :“ ε
d U
d x

´ f px,U ,εq ď 0,x P rx1,x2s

2. В начальный момент:
Upx,εq ď u1

Проводим проверку условия 2, сравнивая с (7.6):

Upx1q,εq “ pupx1q´M ε “ φ1px1q´M ε

u1´φ1px1q`qpεq

|Opεq| ď c ε

,

/

/

.

/

/

-

ÑUpx1,εq ă u1

Проводим проверку условия 1:

LεU :“ ε
d pu
d x

´ f px,pupxq´M ε,εq “ εpu1pxq´ r f px,pupxq,0q` pfupxqp´M εq`

`pfεpxq ¨ ε`opεqs ď εrpu1pxq´ pfεpxqs`opεq,

где pfupxq ď 0.

Если в точке x0 выполнено по условию 6 pu1px0˘0q´ pfεpx0q ă 0, то оно будет выпол-
нено в некоторой окрестности точки в силу непрерывности. Таким образом, в силу
условия 6:

pu1pxq´ pfεpxq ď ´c0 ă 0 при x1 “ x0´δ ď xď x0`δ “ x2

В итоге выполнено условие 1:

LεU ď´c0ε`opεq ă 0
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Далее построим верхние решение:

Lεpx,εq “ pupxq`M
?

ε (7.8)

Необходимо проверить два условия, что функция при соответствующем выборе
числа M будет верхним решением:

1. LεU ě 0,x P rx1,x2s

2. Upx1,εq ě u1

Проверка условия 2:

Upx,εq “ pupx1q`M
?

ε “ φ1px1q`M
?

ε

u1 “ φ1px1q`Opεq

+

ÑUpx,εq ą u1

Проверка условия 1:

LεU “ ε
d U
d x

´ f px,U ,εq“ ε
d U
d x

´ f px,pupxq`M
?

ε,ε “ εpupxq´r f px,pupxq,0q` pfupxq¨M
?

ε`

`pfεpxq ¨ ε`
1
2
pfuupxq ¨ pM

?
εq

2
`opεqs ě εrpu1pxq´ pfεpxq´

1
2
pfuupxqM2

s`opεq,

где pfupxq ď 0, f px,pupxq,0q “ 0.

Из условия 5 следует:

pfuupxq ď ´c1 ă 0,x0´δ ď xď x0`δ

Получаем следующее неравенство:

LεU ě εrppu1pxq´ pfεpxqq`
1
2

c1 M2
s`opεq ą 0,

где ppu1pxq´ pfεpxqq ě ´c2.

Из того, что существуют нижнее и верхнее решения, следует, что есть решение
D upx,εq задачи (7.1), (7.5):
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Upx,εq ď upx,εq ďUpx,εq,x P rx1,x2s

Точное решение задачи на отрезке rx1,x2s отличается от составного устойчивого
корня pu на величину, в одну сторону, ε , в другую

?
ε . Таким образом, выполнено

предельное равенство (7.3) на отрезке rx1,x2s.

3) x2 “ x0`δ ď xď a

upx2,εq “ u2 “ pupx2q`Op
a

εq (7.9)

На rx1,x2s : pfupxq “ fupx,φ2pxq,0q ă 0

Решение существует по теореме Тихонова и методу Васильевой:

upx,εq ÝÝÝÑ
εÑ0

pupxq “ φ2pxq на rx2,as

Либо построить верхнее и нижнее решения:

Upx,εq “ pupxq´M
?

ε

U “ pupxq`M
?

ε

Теорема 7.1. Если выполнены условия 1 - 6, то для достаточно малых ε задача
(7.1), (7.2) имеет решение

upx,εq “

$

&

%

φ1pxq` П0p
x
ε
q`Opεq,0ď xď x0´δ

pupxq`Op
a

εq,x0´δ ď xď a

Пример 7.1.

ε
d u
d x

“´u2
` x2

´ ε,´1ď xď 2

pupxq “

$

&

%

´x,´1ď xď 0

x,ď xď 2

lim
εÑ0

upx,εq “ pupxq,´1ď xă 0

pupx0´0q´ pfεpx0q “ 0,

где pupx0´0q “ 1, x0 “ 0, pfεpx0q “ ´1

pupx0`0q´ pfεpx0q “ 2
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Таким образом, видна необходимость условий 5 и 6, так как, если они не выпол-
нены, то предела может уже и не быть.

Задача Коши в случае двукратного корня выраженного

уравнения

ε
d u
d x

“ f px,u,εq,0ď xď a (7.10)

up0,εq “ u0 (7.11)

В случае теоремы Тихонова – когда выраженное уравнение имеет изолированный
и устойчивый корень. В случае пересекающихся корней, из них составляется устой-
чивый составной корень. Но теперь будет рассмотрен случай двукратного корня.
Условия:

Усл. 1. f pu,x,εq “ ´hpxqpu´φpxq2` ε f1pu,x,εq

Усл. 2. h,φ , f1 – достаточно гладкие функции, а также hpxq ą 0,x P r0,as

Тогда выраженное уравнение u“ φpxq – тождественно двукратный корень, то есть
для всех x.

Асимптотика решения:

upx,εq “ upx,εq` П pτ,εq,τ “
x
ε

(7.12)

Каждое из данных слагаемых (регулярная и погранслойная части) будут рядами
разложения по степеням ε . Регулярная часть асимптотики:

upx,εq “ u0pq`
?

εu1pxq` εu2pxq` ¨ ¨ ¨ “
8
ÿ

i“0

ε
i
2 uipxq

Погранслойная часть асимптотики:

Пpτ,εq “
8
ÿ

i“0

ε
i
2 uipτq
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Лекция 8. Задача Коши в случае двукратного корня

выраженного уравнения

Задача Коши в случае двукратного корня выраженного

уравнения

ε
d u
d x

“ f px,u,εq,0ď xď a (8.1)

up0,εq “ u0 (8.2)

Условия задачи Коши:

Усл. 1. f pu,x,εq “ ´hpxqpu´φpxq2` ε f1pu,x,εq

Усл. 2. h,φ , f1 – достаточно гладкие функции, а также hpxq ą 0,x P r0,as

Тогда выраженное уравнение u“ φpxq – тождественно двукратный корень, то есть
для всех x.

Асимптотика решения:

upx,εq “ upx,εq` П pτ,εq,τ “
x
ε

(8.3)

Каждое из данных слагаемых (регулярная и погранслойная части) будут рядами
разложения по степеням ε . Регулярная часть асимптотики:

upx,εq “ u0pxq`
?

εu1pxq` εu2pxq` ¨ ¨ ¨ “
8
ÿ

i“0

ε
i
2 uipxq (8.4)

Погранслойная часть асимптотики:

Пpτ,εq “
8
ÿ

i“0

ε
i
2 Пipτq (8.5)

Алгоритм определения членов данных рядов, где подставляется выражение (8.3)
в уравнение (8.1):
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ε
d u
d x

`
d П
d τ

“ f px,u`П,εq “ f `П f ,

f “ f px,upx,εq,εq

П f “ f pε τ,upε τ,εq`Пpτ,εq,εq´ f pε τ,upε τ,εq,εq

ε
d u
d x

“ f ,
d П
d τ

“П f (8.6)

ε
d u0

d x
`
?

ε
d u1

d x
`¨¨ ¨ “ f “´hpxqpu0`

?
εu1` εu2`¨¨ ¨´φpxqq2` ε f1px,u0` . . . ,εq

В случае ε0:

0“´hpxqpu0´φpxqq2 ÝÑ u0pxq “ φpxq

В случае ε1:

φ
1
pxq “ ´hpxqu1

2, f 1pxq “ f1px,u0pxq,0q

u1
2
“ h´1

pxqr f 1pxq´φ
1
pxqs

Однако данное уравнение имеет решение не всегда.

Усл. 3 Пусть f 1pxqφ
1pxq ą 0,x P r0,as

В предыдущем параграфе было рассмотрено такое же уравнение, но вырожденное
уравнение имело два корня, которые пересекались в точке x0. Сравним условие 6
(u10px0˘0q´ f εpx0q ă 0) из предыдущего параграфа с имеющимся условием 3. Данные
условия идентичны, так как φ “ u0, f “´hpu´φq2`ε f1, f ε “ f1 тогда условие 3 будет

u10pxq´ f εpxq ă 0

Отличие заключается в том, что данное условие для задачи требуется для всех
x P ro,as, а в предыдущей задаче требовалось только для точки, в которой корни
пересекаются.
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По условию 3 для u1 получается два значения: плюс-минус корень из выражения
h´1pxqr f 1pxq´φ 1pxqs.

Для того, чтобы построить асимптотику погранслойного решения и обосновать
ее, необходимо взять положительный корень:

u1pxq “ rh´1
pxqp f 1pxq´φ

1
pxqqs

1
2 ą 0

Возвращаясь к развернутому уравнению, при ε
3
2 :

d u1

d x
“´2hpxqu1pxq ¨u2` f 1upxq

Это линейное уравнение относительно u2, где коэффициент ´2hpxqu1pxq ‰ 0. Далее
можно найти u2pxq как решение тривиального линейного уравнения.

Для следующих коэффициентов функции ui получится уравнение

p2hpxqu1pxqqui “ Fipxq, i“ 3,4, . . .

где Fipxq – это известная функция, которая выражается рекуррентно через u jpxq

с j ă i.

Далее находится uipxq. Таким образом, регулярная часть асимптотики и ряд(8.3)
построены.

Построение погранслойной части

Отличие от регулярной части, которая строилась таким же образом, как ряды в
алгоритме Васильевой, будет в методе построения асимптотики погранслойной части.
Особое отличие будет при нахождении членов ряда (8.5) погранслойного ряда. Будут
извлекаться из второго уравнения (8.6):

d
d τ

pП0`
?

ε П1` . . .q “П f “´hpε τqrpu0`
?

ε u1` . . .q`pП0`
?

ε П1` . . .q´

´φpε τqs
2
`¨¨ ¨`hpε τqr

?
ε u1`¨¨ ¨`П0`

?
ε П1` . . . s2` ε П f1 “ ζ “

x
?

ε
“
?

ε τ “

“´hp
?

ε ζ q rП0`
?

ε П1` . . .q2`2
?

ε u1p
?

ε ζ q` ε u2p
?

ε ζ q` . . .q (8.7)
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pП0`
?

ε П1` . . .qs` ε П f1

´hp
?

ε ζ q “ ´ph0`h1p0q
?

ε ζ ` . . .q

Из равенства (8.7) необходимо извлечь уравнение для П функций. Если действо-
вать стандартным способом, то надо выписать уравнение для главного члена П0 из
равенства (8.7). При ε0:

d П0

d τ
“´h0 П2

0,τ ě 0 (8.8)

Необходимо задать начальные условия для П0. Для этого подставляется ряд (8.3)
в начальное условие (8.2):

u0p0q`
?

ε u1p0q` ¨ ¨ ¨` П0p0q`
?

ε П1p0q` ¨ ¨ ¨ “ u0 (8.9)

Из равенства (8.9) извлекается:

П0p0q “ u0
´u0p0q (8.10)

Таким образом, при стандартном подходе для главного члена погранслойного
ряда П0 получается уравнение (8.8) с начальным условием (8.10). При этом какой
бы в уравнении (8.8) П0 не был производная отрицательна. Исходя из традиционного
требования, что

Пip8q “ 0

необходимо, чтобы начальное число u0´ u0p0q было не отрицательным. Отсюда
вытекает следующее условие:

Усл. 4 u0´u0p0q “ П0 ą 0

При решении задачи (8.8), (8.10) hp0q “ 1. Никакого ограничения нет, так как hp0q

можно убрать в аргумент. Тогда решение имеет следующий вид:

П0
pτq “

П0

П0
τ`1

(8.11)

П0
τ “ Op

1
τ`1

q при τ Ñ8
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По теории Тихонова все П функции имеют такую оценку:

|Пi τ | ď c exp p´κ τq,τ ě 0

Если дальше написать уравнение для П1, определив П0, стандартно, то П1 не бу-
дет стремиться к нулю. Анализ задачи, который будет далее выполнен, показывает,
что П0

τ и прочие коэффициенты ряда П ведут себя иначе. Если в тихиновском слу-
чае оценка была единая для всех τ ě 0 (то есть функции экспоненциально убывают),
то в двукратным корне П функции убывают степенным образом только в первой
зоне от нуля. Помимо этого имеются еще две зоны. Таким образом, пограничный
слой является трехзонным.

Изменим уравнение для П0, и вместо уравнения (8.8) добавим справа еще одно
слагаемое:

d П0

d τ
“´pП2

0`
?

ε k П0q, τ ě 0 (8.12)

k “ 2 u1p0q ą 0

Решение уравнения (8.12) с начальным условием (8.10) выглядит следующим об-
разом:

П0pτq “

?
ε k expp´

?
ε k τ

?
ε k`П0p1´ expp

?
ε k τqq

,τ ě 0 (8.13)

Если τ в числителе растет от нуля и дальше, то экспонента стремится к нулю,
то есть она убывает. П0pτq монотонно стремится к нулю. Промежуток τ ě 0 можно
разбить на три зоны:

1) 0ď τ ď 1
εα ,p0ă α ă 1

2

В данном промежутке

?
ε k τ ď k ε

1
2´α

Ñ 0 при ε Ñ 0

Отсюда следует, что

expp´
?

ε k τq “ 1´
?

ε k τ „ 1
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А знаменатель равен

?
ε k` П0

p1´ expp´
?

ε k τqq „
?

ε kp1`П0
τq

В таком случае

П0
pτq „

1
П0

τ `1

Что и является решением задачи (8.8),(8.10).

2) Переходная зона – 1
εα ď τ ď 1?

ε

3) τ ě 1?
ε
ÝÑ
?

ε k` П0 p1´ expp´
?

ε k τqq ě cą 0

Значит убывание происходит за счет числителя. Отсюда следует

П0
pτq “ Op

?
ε expp´k ζ qq

То есть в третьей зоне пограничная функция П0 убывает экспоненциально по
отношению к переменной ζ . А во второй зоне происходит постепенный переход от
степенного убывания в 1 зоне к экспоненциальному в 3 зоне.

В данном случае «эталонной» функцией в отличие от тихоновского будет

Пκpτq “

?
ε expp´

?
ε κ τq

1`
?

ε expp´
?

ε κ τq
,τ ě 0,0ă κ ď k (8.14)

При сравнении выражения Пκpτq и П0pτq, если заменить k и П0 единицами, то
получится функция Пk. Оценка формулы (8.13) будет

0ăП0pτq ď c Пkpτq,τ ě 0

Для следующих членов погранслойного ряда i “ 1,2 . . . уравнение будет иметь
вид:

d Пi

d τ
“´p2 П0`

?
ε kq Пi`пipτ,εq,τ ě 0 (8.15)

Из формулы (8.9) извлекается начальное условие для Пi:
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Пip0q “ ´uip0q (8.16)

пipτ,εq в уравнении (8.15) формируется нестандартно. Формируются эти функции
так, что они имеют следующую оценку:

|пipτ,εq ď crП2
κpτq`

?
ε П2

κpτqs (8.17)

пipτ,εq выражается через П jpτq, j ă i.

Решение задачи(8.15), (8.16):

Пipτq “ ´Φpτq Φ
´1
p0q uip0q`Φpτq

ż

τ

0
Φ
´1
psq text ips,εqds, (8.18)

Φpτq “
d П0

d τ
pτq “ ´pП2

0pτq`
?

ε k П0pτqq

Это и есть решение соответствующего однородного уравнения, так как

d П0

d τ
“´pП2

0`
?

ε k П0

d
d τ
p
d П0

d τ
q “ ´p2П0`

?
ε kq

d П0

d τ
,

d П0

d τ
“Φ

Так что Φpτq – решение соответствующего однородного уравнения. При этом

Φp0q “ ´ppП0
q

2
`
?

ε k П0q ă 0

Из (8.18) в силу оценки функции (8.17) следует оценка

|Пipτq ď c Пκpτq,τ ě 0, 0ă κ ă k

Таким образом, нестандартно формируется уравнение для П функций, но в ре-
зультате все они имеют вышеуказанную оценку. Тем самым функция (8.14) является
«эталонной» оценочной функцией для всех пограничных функций.
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Обоснования асимптотики

Был построен ряд (8.3), который был суммой рядов (8.4) и (8.5). Частичная сумма
построенного ряда представляет собой

Unpx,εq “
n
ÿ

i“o

ε
i
2 puipxq`Пip

x
ε
qq

Частичная сумма является формальной асимптотикой. Так как определены ко-
эффициенты данной суммы, подставленные в уравнение и приравненные к степени
от 0 до n

2 . Она удовлетворяет условию

$

’

’

’

&

’

’

’

%

LεUn :“ ε
d Un

d x
´ f px,Uqn,εq “ Opε

n`1
2 q

Unpo,εq “ u0

Докажем, что существует решение задачи, которая отличается от частичной сум-

мы на величину Opε
n`1

2 q.

Теорема 8.1. Если выполнены условия 1 - 4, то для достаточно малых ε задача
(8.1), (8.2) имеет решение upx,εq. Справедливо асимптотическое равенство

upx,εq “Unpx,εq`Opε
n`1

2 q, 0ď xď a, pn“ 0,1,2, . . .q (8.19)

Доказательство.

Нижнее решение:

Upx,εq “Unpx,εq´M ε
n
2

Верхнее решение:

Upx,εq “Unpx,εq`M ε
n
2

�
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Лекция 9. Сингулярно возмущенные краевые задачи

Случай с одним двукратным корнем

Начальная задача Коши (9.1), (9.2):

ε
d u
d x

“ f px,u,εq, 0ď xď a (9.1)

up0,εq “ u0 (9.2)

Специфика задачи заключается в том, что если ε “ 0 в уравнение (9.1), то останет-
ся одно слагаемое ´hpxqp´ f pxqq2 “ 0. Относительно u вырожденное уравнение имеет
корень u“ φpxq кратности 2.

Формальная асимптотика задачи (9.1), (9.2) в виде

upx,εq “ upx,εq` Пpτ,εq, τ “
x
ε

(9.3)

В отличие от тихоновского случая и алгоритма Васильевой ряды будут не по
целым степеням ε , а по степеням

?
ε .

Будет рассмотрен случай, когда

Усл. 1. f px,u,εq “ ´hpxqp´ f pxqq2` ε f1px,u,εq,hpxq ą 0

Усл. 4. u0´φp0q ą 0 ÝÑП0pτq ą 0, τ ě 0

|П0pτq| ď c Пκpτq

Усл. 3. ÝÑ u1pxq ą 0

Частичная сумма построенного ряда представляет собой

Unpx,εq “
n
ÿ

i“o

ε
i
2 puipxq`Пip

x
ε
qq

Теорема 9.1. Если выполнены условия 1 - 4, то для достаточно малых ε в задаче
(9.1), (9.2) существует решение upx,εq. Справедливо асимптотическое равенство

upx,εq “Unpx,εq`Opε
n`1

2 q, 0ď xď a, pn“ 0,1,2, . . .q (9.4)
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Доказательство будет производиться с помощью метода дифференциальных нера-
венств.
Доказательство.

Нижнее решение:

Upx,εq “Unpx,εq´M ε
n
2 , M ą 0, ně 2 (9.5)

Необходимо выбрать такое M, что будут выполнены два условия:

1) LεU :“ ε
d U
d x

´ f px,U ,εq ď 0,0ă xď a

2) Up0,εq ď u0

Далее проводится проверка условий. Условие 1 по формуле (9.5):

LεU “ ε
d Un

d x
´ f px,Un´M ε

n
2 ,εq “ pε

d Un

d x
´ f px,UN ,εqq´p f px,Un´M ε

n
2 ,εq´

´ f px,UN ,εqq “ LεUn´p fupx,Un,εqp´M ε
n
2 q`

1
2

f ˚uuM2
ε

n
q

(9.6)

где pε
d Un

d x
´ f px,UN ,εqq “ LεUn, «*» означает, что производная берется в проме-

жуточной точке.

LεUn “ Opε
n`1

2 q

При этом Opε
n`1

2 q никак не зависит от M ε
n
2 . Это означает, что

|LεUn| ď c1 ε
n`1

2 ,0ď xď a

Таким образом, произведена оценка первого слагаемого. Далее оценка производ-
ной fu:

fupx,Un,εq “ ´2hpxqpUn´φpxqq` ε f1upx,Un,εq “ ´hpxqp
?

ε u1pxq` П0pτq`

`
?

ε П1pτqq`Opεq,
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где u1pxq ą 0 и П0pτq ą 0.

fupx,Un,εq ď ´c0
?

ε, 0ď xď a

| f ˚uu| ď c2

Из (9.6) следует

Lε U ď c1 ε
n`1

2 ´ c0 M ε
n`1

2 `
1
2

c2 M2
ε

n
“M ε

n`1
2 p

c1

M
´

c0

2
´

c0

2
`

1
2

c2 M ε
n´1

2 q ă 0,

где ε
n´1

2 ą 0.

То есть необходимо выбрать такое большое M, чтобы
c1

M
ă

c0

2
. Тогда

c1

M
`

c0

2
ă 0.

При этом выбрать ε таким малым, чтобы
1
2

c2 M ε
n´1

2 ă
c0

2
. Тогда

c0

2
`

1
2

c2 M ε
n´1

2 ă 0.

Было выбрано такое нижнее решение (9.5), что

Lε U ă 0, 0ď xď a

Проверка условия 2 для нижнего решения:

Unp0,εq “ u0

П0p0q “ u0
´φp0q “ u0

´u0p0q

Пip0q “ ´uip0q, iě 1

Upo,εq “Unp0,εq´M ε

n
2 “ u0

´M ε

n
2 ă u0

Таким образом, нижнее решение, определенное формулой (9.5), при достаточно
большом M и при достаточно малых ε действительно является решением.

Верхнее решение:

Upx,εq “Unpx,εq`M ε
n
2

При достаточно большом M и при достаточно малых ε действительно является
верхним решением. Проверка сходна с нижним решением, однако неравенства будут
> 0.
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Из существования нижнего и верхнего решений следует, что

D upx,εq : Upx,εq ď upx,εq ďUpx,εq

При этом нижнее и верхнее решения отличаются от частичной суммы на величину

ε

n
2 . Тогда, учитывая вид нижнего и верхнего решений, получается асимптотическое

равенство

upx,εq “Unpx,εq`Opε
n
2 q, ně 2 (9.7)

Равенство (9.7) для n`1:

upx,εq “Un`1px,εq`Opε
n`1

2 q

Un`1px,εq “Unpx,εq` ε

n`1
2 pun`2pxq` Пn`2pτqq,

где ε

n`1
2 pun`2pxq` Пn`2pτqq “ Opε

n`1
2 q.

Тогда из двух неравенств получится (9.7), но для ně 2

upx,εq “Unpx,εq`Opε
n`1

2 q, 0ď xď a

Равенство для n“ 2

upx,εq “U2px,εq`Opε
3
2 q

U2px,εq “U1px,εq`Opεq

upx,εq “U1px,εq`Opεq

Что является искомым равенством (9.4) для n“ 1.

Равенство n“ 0

U1px,εq “U0px,εq`Opε
1
2 q

upx,εq “U0px,εq`Opε
1
2 q

�
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Cингулярно возмущенные краевые задачи

Метод дифференциальных неравенств в двухточечных краевых задачах

Сначала будет рассмотрено дифференциальное уравнение второго порядка без
малого параметра для понимания, при каких условиях краевая задача разрешима.

Теорема существования решения краевой задачи

d2 u
d x2 “ f px,uq, 0ď xď 1 (9.8)

up0q “ u0, up1q “ u1 (9.9)

На одном конце в точке 0 и на другом в точке 1 задаются краевые или граничные
условия. Может быть задана либо сама функция – это условие Дирихле, либо ее
производная – это условие Неймана. На данный момент будет рассмотрено условие
Дирихле.

Существует метод «стрельбы» для решения задачи (9.8), (9.9). Для этого урав-
нение (9.8) рассматривается с начальными условиями:

up0q “ u0,
d u
d x
p0q “ k (9.10)

Необходимо подобрать такое k (произвольное число), чтобы решение задачи (9.8),
(9.10) удовлетворяло условию (9.9) в точке 1.

Пусть решение задачи (9.8), (9.10) при любом k из некоторого интервала суще-
ствует и зависит непрерывно от параметра k. При этом

D k1 : up1,k1q ă u1

D k2 : up1,k2q ą u1

Отсюда следует, что

D k P pk1,k2q : up1,kq “ u1

upx,kq является решением задачи (9.8), (9.9).

83



ОСНОВЫ СИНГУЛЯРНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Теорема 9.2. Пусть f px,uq – непрерывна, ограничена и удовлетворяет условию
Липшица по переменной u в полосе

P“ tpx,uq : 0ď xď 1, u P Ru

Тогда для любых u0 и u1 существует решение задачи (9.8), (9.9).

Рис. 9.1. Функция f px,uq с полосой P

Доказательство.

При условиях теоремы задача (9.8), (9.10) имеет решение (upx,kq) для любого k и
непрерывно зависит от параметра k. Необходимо подставить решение в уравнение и
проинтегрировать от 0 до x:

x
ż

0

d2 u
d x2 px,kqdx“

x
ż

0

f px,upx,kqqdx

d u
d x
px,kq´

d u
d x
p0,kq “

x
ż

0

f pt,upt,kqdt

где
d u
d x
p0,kq “ k , t - переменная интегрирования.

Теперь данное тождество интегрируется от 0 до 1:

up1,kq´u0
´ k “

1
ż

0

dx

x
ż

0

f pt,upt,kqdt
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По условию

| f px,uq| ďM в P

´
1
2

M ď

1
ż

0

dx

x
ż

0

f dt ď
1
2

M

Тогда из равенства и неравенства получится

u0
` k´

1
2

M ď up1,kq ď u0
` k`

1
2

M

k “ k1 : u0
` k1`

1
2

M ă u1
ÝÝÝÑ up1,k1q ă u1

k “ k2 : u0
` k2´

1
2

M ą u1
ÝÝÝÑ up1,k2q ą u1

Из двух условий k следует, что

k P pk1,k2q : up1,kq “ u1

Тогда upx,kq – решение задачи (9.8), (9.9). �

Главный недостаток данной теоремы – это класс функций, который удовлетворяет
этому условию, очень узок.

Метод дифференциальных неравенств в краевых задачах

Определение 9.1. Upxq и Upxq называются нижним и верхним решением задачи
(9.8), (9.9), если они удовлетворяют условиям:

1) Операторное неравенство

LU “
d2U
dx2 ´ f px,Uq ě 0ě LU , 0ă xă 1 (9.11)

2) Неравенство на граничные значения

Up0q ď u0
ďUp0q, Up1q ď u1

ďUp1q (9.12)
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Нижнее и верхнее решения называются упорядоченными, если

U ďUpxq, 0ď xď 1

Пример 9.1. Рассматривается уравнение с краевыми условиями

u2` П2u“ 0, oď xď 1

up0q “ 0, up1q “ 0

Задача вида (9.8), (9.9) на спектре, sinx с произвольным коэффициентом – ее
решение.

Upxq “ 2sinx, Upxq “ sinx

Upxq ěUpxq

Тогда все вышеуказанные неравенства по определению становятся равенствами.
Так что для краевых задач нижние и верхние решения могут быть неупорядочен-
ные.

Теорема 9.3 (Теорема Наума). Пусть существуют упорядоченные Upxq и Upxq ре-
шения, где U ďUpxq. И пусть f px,uq – непрерывна и удовлетворяет условию Лип-
шица по переменной u в области

D“ tpx,uq : 0ď xď 1, Upxq ď uďUpxqu

Тогда задача (9.8), (9.9) имеет решение, удовлетворяющее неравенством

Upxq ď uďUpxq, 0ď xď 1 (9.13)

Доказательство.

Необходимо продолжить функцию f px,uq на всю полосу P для этого вводится
функция
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Рис. 9.2. Функция f px,uq с областью D

gpx,uq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

f px,Upxqq`
u´Upxq

1`u2 , px,uq PDp´q

f px,uq, px,uq PD

f px,Upxqq`
u´Upxq

1`u2 , px,uq PDp`q

gpx,uq – непрерывна во всей полосе P и удовлетворяет условию Липшица, что
необходимо проверить. По условию теоремы в области D : N1, а в областях Dp´q и
Dp`q функция gpx,uq имеет ограниченную производную по u. Например, в Dp´q:

Dp´q :
Bg
Bu
“

1`u2´2upu´Upxqq
p1`u2q2

|
Bg
Bu
| ď N2 в Dp´q, Dp`q

Таким образом, в P gpx,uq удовлетворяет условию Липшицева с N “ maxpN1,N2q,
а значит теорема 3 доказана.

d2u
dx2 “ gpx,uq, 0ď xď 1

Краевые условия(9.2)
(9.14)
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Рис. 9.3. Функция f px,uq с областью D и продолженной полосой P

По теореме 1 существует решение upxq задачи (9.8), (9.2). Теперь требуется дока-
зать, что данное решение лежит на промежутке:

Upxq ď upxq ďUpxq, 0ď xď 1

Пусть x˚ P p0;1q : Upx˚q ą upx˚q. Рассматривается функция Upxq´upxq. Тогда в точ-
ке x0 P p0;1q функция Upxq´upxq имеет положительный максимум. То есть выполнены
два неравенства:

Upx0q´upx0q ą 0

d2U
dx2 px0q´

d2u
dx2 px0q ď 0

�
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Лекция 10. Сингулярно возмущенные краевые

задачи (продолжение)

Метод дифференциальных неравенств в краевых задачах

Продолжение рассмотрения вопроса о существовании решения краевой задачи

d2 u
d x2 “ f px,uq, 0ď xď 1 (10.1)

up0q “ u0, up1q “ u1 (10.2)

Из предыдущей лекции следует теорема Наумана, где необходимо сейчас нера-
венство

Upxq ď uďUpxq, 0ď xď 1 (10.3)

Далее была введена функция

gpx,uq “ f px,Upxqq`
u´Upxq

1`u2

d2u
dx2 “ gpx,uq, 0ď xď 1 (10.4)

Будет рассматриваться функция, которая имеет точку x0 P p0;1q, то есть имеет
положительный максимум:

Upxq´upxq

Тогда в точке x0 выполнено два условия:

Upx0q´upx0q ą 0

d2U
dx2 px0q´

d2u
dx2 px0q ď 0 (10.5)

С неравенством (10.5) получится противоречие. В точке x0 имеется решение за-
дачи (10.1), (10.2)

d2U
dx2 px0q´ f px0,Upx0qq ě 0 (10.6)

d2u
dx2 px0q “ gpx0,upx0qq
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Отсюда следует

d2u
dx2 px0q´ f px0,Upx0qq “

upx0q´Upx0q

1`u2px0q
ă 0 (10.7)

Чтобы получить оценку для (10.5) необходимо из неравенства (10.6) вычесть
(10.7):

d2U
dx2 px0q´

d2u
dx2 px0q ą 0

Таким образом, данное неравенство противоречит (10.5). Доказано, что решение
задачи (10.4), (10.2) удовлетворяет неравенству (10.3), а значит является решением
задачи (10.1), (10.2).

Метод дифференциальных неравенств позволяет установить существование ре-
шения краевой задачи без требования, чтобы функция f во всей полосе была огра-
ничена.

Пусть для системы (10.1) вместо условия (10.2) заданы краевые условия Неймана

du
dx
p0q “ v0,

du
dx
p1q “ 1 (10.8)

Тогда нижнее и верхнее решение для задачи (10.1), (10.8) определяются следую-
щим образом

Upxq и Upxq PC2
p0,1q

č

C1
r0,1s

L U :“
d2 U
dx2 ´ f px,Upxqq ě 0ě L U , 0ă xă 1

Условия, связанные с граничными значениями

d U
dx
p0q ě v0

ě
d U
dx
p0q,

d U
dx
p1q ď v1

ď
d U
dx
p1q

В данном случае теорема будет аналогичная и ее доказательство тоже.
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Сингулярно возмущенные краевые задачи с граничными условиями
Неймана

Рассматривается следующая краевая задача

ε
2 d2 u

d x2 “ f px,u,εq, 0ă xă 1 (10.9)

d u
d x
p0,εq “ v0,

d u
d x
p1,εq “ v1 (10.10)

При условиях:

1. f px,u,εq – достаточно гладкая функция

2. Вырожденное уравнение f px,u,0q “ 0, где корень u“ φpxq, 0ď xď 1

3. Частная производная f upxq :“
B f
B u
px,φpxq,0q ą 0, x P r0,1s

При использовании метода дифференциальных неравенств необходимо доказать,
что при условиях 1-3 существует решение upx,εq задачи (10.9), (10.10). Для решения
справедливо асимптотическое равенство

upx,εq “ φpxq`Opεq, 0ď xď 1

lim
εÑ0

upx,εq “ φpxq, x P r0,1s

Особенность в том, что при граничных условиях Неймана в нулевом приближении
нет пограничного слоя.

Однако вырожденное уравнение по условию 2 может иметь несколько корней, для
которых производные fu ą 0.

По графику видно, что имеются два корня, удовлетворяющие условию 3. Тогда
получается, что для φipxq, где i “ 1;3 существует решение upx,εq, удовлетворяющее
условию

lim
εÑ0

uipx,εq “ φipxq, x P r0,1s

Это и является важным отличием краевых задач от начальной задачи.
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Рис. 10.1. График fu

Будет построено полное асимптотическое разложение решения задачи (10.9), (10.10)
по параметру ε , которое имеет вид

upx,εq “ upx,εq` П pξ ,εq` rПprξ ,εq (10.11)

upx,εq “
8
ÿ

i“0

ε
i uipxq

П pξ ,εq “
8
ÿ

i“0

ε
i Пi pξ q, ξ “

x
ε

rПprξ ,εq “
8
ÿ

i“0

ε
i
rПip

rξ q, rξ “
1´ x

ε

Далее рассматривается алгоритм определения членов вышеуказанных рядов. Необ-
ходимо подставить ряд (10.11) в уравнение (10.9), где будет заменено f px,u` П` rП,εq

на f ` П f ` rП f .

f “ f pupx, εq, εq, П f “ f pεξ , upεξ , εq` Пpξ , εq, εq´ f pεξ , upεξ , εq, εq

rП f “ f p1´ εrξ , up1´ εrξ , εq` rПprξ , εq, εq´ f p1´ εrξ , up1´ εrξ , εq, εq

В результате получается равенство

ε
2 d2u

dx2 `
d2 П
d ξ 2 `

d2
rП

d rξ 2
“ f ` П f ` rП f
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ε
2 d2u

dx2 “ f

d2 П
d ξ 2 “П f

d2
rП

d rξ 2
“ rП f

(10.12)

Подставляя в равенство (10.12) ряды u, П, rП и раскладывая правые части в ряды
по степеням ε , получится

f “
8
ÿ

i“0

ε
i f i, f 0 “ f px,uopxq,0q, f 1 “ f upx,u1q` f εpxq, . . . (10.13)

П0 f “
8
ÿ

i“0

ε
iПi f , П0 f “ f p0,uop0q`П0pξ q,0q´ f p0,uop0q,0q, . . .

rП f “
8
ÿ

i“0

ε
i
rПi f , rП0 f “ f p1,uop1q` rП0 f prξ q,0q´ f p1,uop1q,0q, . . .

(10.14)

Нужно учитывать, что для членов регулярной части асимптотики краевых усло-
вий не будет, а будут конечные уравнения. А для П функции будут дифференци-
альные уравнения, и, чтобы получить краевые условия, необходимо подставить ряд
(10.11) в граничные условия (10.10)

d u
dx
p0,εq`

1
ε

d П
d ξ

p0, εq´

��
�
��

��HH
HHH

HH

1
ε

d rП

d rξ

p
1
ε
, εq “ v0,

d u
dx
p1,εq`

1
ε

d П
d ξ

p
1
ε
, εq´

1
ε

d rП

d rξ

p0,εq “ v1

(10.15)

Слагаемое зачеркнуто, так как это будет порядка e
´

1
ε , что меньше, чем любая

степень ε .

Уравнения для П функций будут второго порядка. Однако одного граничного
условия мало. Так как регулярная часть не удовлетворяет заданному граничному
условию, то П функция необходима для компенсации. Далее они должны стремиться
к нулю. Поэтому традиционным условием для пограничных функций является

Пp8,εq “ 0, rПp8,εq “ 0 (10.16)
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Последовательное определение всех членов рядов. Из первого равенства уравне-
ния (10.12) получается

f 0 :“ f px,u0pxq,0q “ 0 ÝÝÝÑ u0pxq “ φpxq

f 1 :“ f upxqu1` f εpxq “ 0 ÝÝÝÑ u1pxq “ ´ f´1
u pxq f εpxq

f 2 :“ f upxqu2`¨¨ ¨ “
d2 u0

dx2 ÝÝÝÑ u2pxq “ . . .

Таким образом, регулярный ряд построен. Далее из второго равенства уравнения
(10.12)

d2 П0

d ξ 2 “П0 “ f p0,u0p0q` П0,0q´ f p0,u0p0q,0q,ξ ě 0

Краевые условия из равенств (10.15) и (10.16):

d П0

d ξ
p0q “ 0, П0p8q “ 0

Таким образом, решение данной задачи

П0pξ q ” 0

Для П1

f

Необходимо учесть, что главный член вырожденной задачи

d u0

d x
p0q “ φ

1
p0q ‰ v0

То есть П функция должна быть такого порядка, чтобы в сумме с вышеуказанным
слагаемым было получено v0.

d
d x

П p
x
εq
“

1
ε

d П
d ξ

Значит П должен быть порядка ε .

Далее, продолжая, для П1:

d2 П1

d ξ 2 “ П1 f :“ f up0q ¨ П1, ξ ě 0
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d П1

d ξ
“ v0

´
d u0

d x
“: γ0, П1p8q “ 0

Пусть f up0q “ k2, тогда

k “
b

f up0q ą 0

Следовательно, получается главный член погранслойной части

П1pξ q “ ´γ0 k´1 expp´k ξ q

Таким образом, П1 имеет следующую экспоненциальную оценку

|П1pξ q| ď c expp´κ ξ q

Уравнение для iě 2:

d1 Пi

d
ξ

2
“Пi f :“ f up0q Пi` πipξ q, ξ ě 0,

где πipξ q выражается через П jpξ q с j ă i.

πipξ q имеет оценку, если такую оценку имеют П j с j ă i:

|πipξ q| ď c expp´κ ξ q

Краевые условия из равенства (10.15)

d Пi

d ξ
“´

d ui´1

d x
p0q, Пip8q “ 0

Таким образом, погранслойный ряд П построен. Тогда оценка:

|П1pξ q| ď c expp´κ ξ q

|rП1pξ q| ď c expp´κ ξ q

Построена формальная асимптотика.

Обоснование асимптотики.

Unpx,εq “
n
ÿ

i“0

ε
i
puipxq` Пip

x
ε
q` rПip

1´ x
ε
q
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Теорема 10.1. При условиях 1-3 для достаточно малых ε задача (10.9), (10.10)
имеет решение upx,εq, для которого справедливо асимптотическое равенство

upx,εq “Unpx,εq`Opεn`1
q, x P r0;1s

Доказательство.

Доказательство будет с помощью метода дифференциальных неравенств. В ка-
честве нижнего и верхнего решения будут следующие функции

Upx,εq “Unpx,εq´ ε
n`1 zpx,εq

Upx,εq “Unpx,εq` ε
n`1 zpx,εq

zpx,εq “M` e
´k

x
ε ` e

k
x´1

ε ,

где k и M – положительные числа.

Условия нижнего решения:

LεU :“ ε
2 d2 U

d x2 ´ f px,U ,εq ě 0 (10.17)

d U
d x

p0,εq ě v0 (10.18)

d U
d x

p1,εq ď v1

Проверка условия (10.18) нижнего решения

d U
d x

p0,εq “
d Un
d x

p0,εq` ε
n k`Ope

´
k
ε q “ v0

` ε
n d Un

d x
p0q` ε

n k`Ope
´

k
ε q ą v0

Такое неравенство для достаточно большого k. Тогда условие (10.18) выполнено.

Проверка условия (10.17).

LεU “ rε
2 d2 Un

d x2 ´ f px,Un, εqs´ ε
n`1 k2

pexpp´
k x
ε
q` expp

kpx´1q
ε

qq´

´t f px,Un´ ε
n`1
q z, εq´ f px,Un, εqu,

где Un´ εn`1q z“ φpxq`Opεq

rε
2 d2 Un

d x2 ´ f px,Un, εqs “ LεUn “ Opεn`1
q`Opk2

ε
n`1
q` f ˚u pM` expp´

k x
ε
q`
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`expp
kpx´1q

ε
qq ¨ ε

n`1
ě Opεn`1

q`Opk2
ε

n`1
q` k0 M ε

n`1
ą 0

f ˚u “ fupx,φpxq,0q`Opεq “ f upxq ě k0 ą 0

Неравенство больше нуля для достаточно большого M. Таким образом, неравен-
ство (10.15) выполнено. Тогда Upx,εq – нижнее решение.

Upx,εq – верхнее решение. По теореме существует upx,εq:

Upx,εqpx,εq ďUpx,εq

Upx,εq “Un´Opεn`1
q, Upx,εq “Un`Opεn`1

q

upx,εq “Unpx,εq`Opεn`1
q

Таким образом, теорема доказана. �
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Лекция 11. Краевая задача с граничными условиями

Дирихле

Построение асимптотики сингулярно возмущённой краевой

задачи с граничными условиями Дирихле

В данном разделе будет рассматриваться алгоритм построения асимптотики син-
гулярно возмущённой краевой задачи с граничными условиями Дирихле .
В предыдущем разделе уже рассматривалось такая задача, но границы задавались
производными (условие Неймана), в этом случае будут описываться сами функции.

$

&

%

ε
2 d2u

dx2 “ f px,u,εq, где 0ă xă 1 (11.1)

up0,εq “ u0, up1,εq “ u1 (11.2)

Здесь (11.2) — граничные условия (в которых задаётся сама функция u). Рас-
сматривается обычное дифференциальное уравнение (11.1) 2 порядка с граничными
условиями Дирихле.

В этом разделе мы хотим построить асимптотику погранслойного решения и обос-
новать её (то есть доказать, что существует решение с такой асимптотикой). Задача
с условиями Дирихле существенно сложнее, чем задача с условиями Неймана. Срав-
нительный анализ будет приводиться в процессе построения. Условия:

1) f px,u,εq — достаточно гладкая функция.

«Достаточно гладкая» — чем с большей точностью по параметру ε требуется
получить приближённое решение, тем больше производных понадобится при
построении асимптотики. Поскольку будет построена асимптотика произволь-
ного порядка, то считается, что функция будет бесконечно дифференцируема.

2) Про вырожденное уравнение:

f px,u,0q “ 0 имеет корень u“ ϕpxq, где x P r0;1s.

3) Ограничение на производную:

f upxq :“
B f
Bu
px,ϕpxq,0q ą 0 для всех x P r0;1s. Это требование будет обеспечивать

существование погранслойного решения.
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Этих условий было достаточно для того, чтобы построить асимптотику и доказать
существование решения в случае, когда краевые условия (или граничные условия)
(11.2) были условиями Неймана (то есть задавали производные в 0 и 1) (рис. 11.1).
Для решения задачи с условиями Дирихле нужно добавить ещё одно условие (см.
рис. 11.2):

4) Требования для u0 и u1:

v
ż

ϕp0q

f p0,y,0qduą 0@v P pϕp0q;u0
s (11.3)

v
ż

ϕp1q

f p01,y,0qdu@v P pϕp1q;u1
s

Рис. 11.1. Решение уравнения (11.1) с гра-
ничными условиями Неймана

Рис. 11.2. Решение уравнения (11.1) с гра-
ничными условиями Дирихле

Замечание: в неравенстве (11.3) должно выполняться либо v P pϕp0q;u0s, либо
ϕp0q “ u0.

Пример 11.1. Приведём пример функции f , которая удовлетворяет условию (11.3).
Согласно требованию про вырожденное уравнение, значение функции f в точке ϕp0q

будет равно 0. Для функции, изображённой на графике на рис. 11.3, покажем до-
пустимые значения u0, которые удовлетворяли бы условию (11.3) (будем считать,
что u0 ‰ ϕp0q).
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Рис. 11.3. Пример для условия (11.3)

Если принять, что vą ϕp0q, то будем двигаться по графику «вправо». Сначала
интеграл будет увеличиваться (зона голубого цвета на графике), затем убывать
из-за накапливания отрицательной части (зона зелёного цвета), и в какой-то мо-
мент эти зоны сравняются по площади в точке v2. Тогда в качестве u0 можно
взять любую точку от ϕp0q до v2. Аналогично «влево»: сначала интеграл будет
расти (зона жёлтого цвета на графике), затем убывать из-за накапливания от-
рицательной части (зона розового цвета), и в какой-то момент эти зоны сравня-
ются по площади в точке v1.

Как итог, для данной функции допустимые значения для u0 следующие:

v1 ă u0
ă v2

Асимптотика решения данной задачи с условиями Дирихле будет построена в
виде:

upx,εq “ upx,εq`Πpξ ,εq` rΠprξ ,εq, (11.4)

ξ “
x
ε
, rξ “

1´ x
ε

В задаче Неймана ряды Π начинались с членом порядка ε , не было Π0. Было
условие: u1p0,εq “ v1. Но производная ϕ 1p0q необязательно удовлетворяла данному
условию. Задача погранфункции состоит в том, чтобы ликвидировать невязку, а для
этого не нужно Π порядка ε0. Слагаемого y “ εΠ1

´ x
ε

¯

вполне достаточно для того,
чтобы ликвидировать текущую невязку. При дифференцировании функции y появит-
ся ε , тогда маленькой функцией порядка ε будет возможно устранить несоответствие
между ϕ 1 и v.
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Но в задаче Дирихле такого не получится, потому что здесь если сама функ-
ция ϕp0q “ u0, то ничего подправлять не требуется, а если не равна, то в нулевом
приближении появляется Π-функция.

Вернёмся к рассматриваемой задаче. u расписывается как:

upx,εq “
8
ÿ

i“0

ε
iuipxq

Главным членом этого ряда будет являться u0pxq “ ϕpxq. Последующие члены
описываются следующими линейными уравнениями:

f upxqui “ fipxq,

где fipxq находится через уже найденные u, то есть выражается рекуррентно.

Перейдём к погранслойной части. Πpξ ,εq строим в виде ряда:

Πpξ ,εq “
8
ÿ

i“0

ε
i
Πipξ q

Схема получения уравнений для этих функций такая же, как и раньше: представ-
ление u в виде суммы трёх слагаемых подставляется в уравнение (11.1), функция f

заменяется на f `Π f ` rΠ f , где

Π f “ f
`

εξ , upεξ ,εq`Πpξ ,εq, ε
˘

´ f
`

εξ ,upεξ ,εq,ε
˘

Функция rΠ не входит сюда, потому что мы заранее предсказываем, что функции
Πpξ ,εq будут экспоненциально убывать с ростом переменной ξ , а rPiprξ ,εq — с ростом
переменной rξ . То есть Πpξ ,εq будут существенны только в маленькой окрестности
точки 0, а от rPiprξ ,εq до точки 0 практически ничего не дойдёт.

Общее уравнение для всего ряда будет:

d2Π

dξ 2 “Π f

Подставив и разложив обе части и приравняв коэффициенты, получим следующее
уравнение для Π0:
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d2Π0

dξ 2 “ f p0,ϕp0q`Π0,0q´ f p0,ϕp0q,0q, ξ ą 0 (11.5)

Условия для этой функции получаются из подстановки искомого представления
в граничные условия при x“ 0:

up0,εq`Πp0,εq “ u0

Подставив и разложив обе части и приравняв коэффициенты, получим главные
члены:

u0p0q`Π0p0q “ u0

Отсюда получаем граничные условия для Π0:

Π0p0q “ u0
´ϕp0q (11.6)

Так как уравнение второго порядка, то нужно ещё одно условие. Добавим стан-
дартное для пограничных функций условие:

Π0p8q “ 0 (11.7)

Для главного члена погранслойной части имеем задачу (11.5), (11.6), (11.7).

Сопоставляя с предыдущей задачей с условиями Неймана: уравнение (11.5) было
абсолютно такое же, условие (11.7) было такое же, а в нуле задавалась производная,
равная нулю (так как иначе производная по x была бы 1{ε). Нужно будет доказать,
что задача (11.5), (11.6), (11.7) имеет решение и оно экспоненциально убывает. Здесь
будет играть роль условие (11.4).

Докажем, что в силу условия (11.3) задача (11.5), (11.6), (11.7) имеет монотонное
решение, удовлетворяющее экспоненциальной оценке:

|Π0pξ q| ď c ¨ expp´κξ q, ξ ě 0 (11.8)

Уравнение (11.5) — это обыкновенное автономное дифференциальное уравнение 2

порядка. Сведём его к системе двух уравнений первого порядка. Положим
dΠ0

dξ
“Q.

Тогда
d2Π0

dξ 2 “
dQ
dξ

. Значит, уравнение (11.5) можно записать в виде системы:
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$

’

’

’

’

&

’

’

’

’

%

dΠ0

dξ
“ Q

dQ
dξ

“ f p0, ϕp0q`Π0, 0q

(11.9)

Перемножим «крест-накрест», получим

$

&

%

dΠ0 “ Q ¨dξ

dQ“ f p0, ϕp0q`Π0, 0q ¨dξ

Разделим одно уравнение на другое, dξ сократится, получится следующее урав-
нение:

dQ
dΠ0

“
f p0, ϕp0q`Π0, 0q

Q
(11.10)

Определение 11.1. Фазовой плоскостью для системы (11.9) называется плос-
кость с прямоугольной системой координат Π0 и Q.

У системы (11.9) есть точка покоя pΠ0,Qq “ p0;0q. Тип этой точки определяется
посредством рассмотрения соответствующего характеристического уравнения. Рас-
смотрим матрицу линеаризованной системы на этой точке покоя:

˜

0 1

f up0q 0

¸

Характеристическое уравнение:∣∣∣∣∣ ´λ 1

f up0q ´λ

∣∣∣∣∣“ 0 ùñ λ
2
´ f up0q “ 0

Отсюда получаем корни λ1,2 “˘

b

f up0q. Это означает, что точка покоя является
седлом. Следовательно есть такие траектории, которые проходят через точку покоя,
причём по одной траектории мы входим в точку, а по другой — выходим из неё.

Проинтегрируем уравнение (11.10). Перемножив дроби с обеих сторон неравен-
ства крест-накрест, получим уравнение с разделёнными переменными. Интегрируя,
получим уравнение для т. н. фазовых траекторий:
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Q2

2
“

Π0
ż

0

f p0, ϕp0q`S, 0qdS`C

Меняя параметр C можно получить различные симметричные относительно го-
ризонтальной оси кривые. Полагая C “ 0 и извлекая квадратный корень, получим:

Q“˘

»

–2

Π0
ż

0

f p0, ϕp0q`S, 0qdS

fi

fl

1{2

“˘FpΠ0q (11.11)

Рис. 11.4. График подынтегральной
функции f p0, ϕp0q`S, 0q

Рис. 11.5. График QpΠ0q.

График подынтегральной функции f p0, ϕp0q`S, 0q изображён на рис. 11.4. Обо-
значим Π0 :“Π0p0q “ u0´ϕp0q. График всего интеграла изображён на рис. 11.5.

Определение 11.2. Фазовые траектории, проходящие через точку покоя, называ-
ются сепаратрисами.

Если на фазовой траектории взять точку, в которой задаются значения Π0 и Q, то
получится система уравнений первого порядка. Если мы в какой-то момент задали Π0

и Q, то дальше получается кривая (решение этой системы) — и на фазовой плоскости
эта кривая обязательно изображается той фазовой траекторией, на которой взята эта
начальная точка.
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Рис. 11.6. Направление траекторий.

Возьмём точку A на траектории, которой будет соответствовать точка Π0 (см.
рис. 11.6). Здесь Q ą 0. Так как Q — производная dΠ0, то мы будем двигаться по
траектории вправо. Если рассматривать точку A1 (где Q ă 0), то движение пойдёт
влево. Аналогично для левой половины траектории.

Если Π0 ą 0 и v1´ϕp0q ă Π0 ă v2´ϕp0q, то есть два решения этой задачи: одно
начинается в точке A, а другое — в точке A1. Так как требовалось доказать суще-
ствование монотонного решения, то это решение есть и оно начинается в точке A1.
Существует решение и из точки A, но тогда у погранфункции будет т. н. всплеск, что
существенно осложняет задачу. Если Π0 ă 0 (и так же v1´ϕp0q ăΠ0 ă v2´ϕp0q), то
монотонное решение будет начинаться в точке B.

Вывод: в силу условия (11.3) существует монотонное решение задачи (11.5),
(11.6), (11.7).

Можно проверить, что если у функции FpΠ0q взять производную F 1p0q, то она

равна F 1p0q “
b

f up0q ą 0.

Упражнение 11.1. Самостоятельно доказать, что F 1p0q “
b

f up0q ą 0.

Докажем экспоненциальную оценку (11.8) для случая, когда Π0 ą 0, то есть мы
начинаем из точки A1. Но здесь производная Q отрицательна, значит:

dΠ0

dξ
“´FpΠ0q, Π0p0q “Π

0
ą 0

Из графика на рис.11.6 ясно, что Dk ą 0 : f pΠ0q ě kΠ0. Перемножим дроби выше
крест-накрест и проинтегрируем, получим:
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Π0pξ q
ż

Π0

dΠ0

FpΠ0q
dΠ0 “´ξ

Используя оценку f pΠ0q ě kΠ0, получаем следующее:

Π0pξ q
ż

Π0

dΠ0

kΠ0
ď´ξ ùñ lnΠ0pξ q´ lnΠ

0
ď´kξ

Отсюда получаем:

Π0pξ q ďΠ
0
¨ expp´kξ q, ξ ě 0 (11.12)

Экспоненциальная оценка доказана.

Наиболее отличительная черта от задачи с условиями Неймана, которая рассмат-
ривалась в предыдущем параграфе, состоит именно в том, что нужно провести рас-
чёты с главным членом погранслойной части асимптотики — с функцией Π0. Мы
подробно рассмотрели поведение этого главного члена погранслойной части в окрест-
ности точки x“ 0. Такое решение есть, причём есть даже два решения, но подходит
только монотонное, и оно имеет экспоненциальную оценку (11.8).

Для следующих членов погранслойного ряда @ iě 1:

d2Πi

dξ 2 “ fupξ qΠi`πipξ q, ξ ě 0, (11.13)

fupξ q “
d f
du

`

0, ϕp0q`Π0pξ q, 0
˘

Мы будем раскладывать в ряд левую и правую части равенства
d2Π

dξ 2 “Π f , глав-

ный член правой части мы уже выписывали, это (11.5), а следующими будут браться
производные в этих точках. Пока Π0pξ q ещё не мало, функция необязательно поло-
жительная. Но когда Π0pξ q затухает экспоненциально, то получается положительная
производная.

А функция πipξ q выражается через Π jpξ q при jă i. Если мы дошли до номера i и
все предыдущие Π j имели экспоненциальную оценку, то и πi будет иметь экспонен-
циальную оценку, то есть:
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|πipξ q| ď c ¨ expp´κξ q, ξ ě 0

Почти такие же уравнения были в предыдущем разделе в задаче с условиями
Неймана. В итоге имеем:

$

&

%

Πip0q “ ´uip0q

Πip8q “ 0
(11.14)

Уравнение (11.13) решается в точности. Оно линейное и неоднородное и его ре-
шение:

Πipξ q “ ´Φpξ qΦ
´1
p0quip0q`Φpξ q

ξ
ż

0

Φ
´2
psq

s
ż

8

Φptqπiptqdtds,

Φpξ q “
dΠ0

dξ
pξ q “ ´FpΠ0q pесли Π

0
ą 0q

Тогда Φpξ q — это решение соответствующего однородного уравнения, потому что
первое слагаемое — это решение однородного уравнения, удовлетворяющего услови-
ям (11.13), (11.14).

Возьмём

d2Π0

dξ 2 “ f p0, ϕp0q`Π0pξ q,0q

Продифференцируем это уравнение по ξ . Пусть
dΠ0

dξ
“Φ.

d2Φ

dξ 2 “ fupξ q ¨Φ

Используя это выражение, легко доказать, что

|Φpξ q| “ |FpΠ0q| ď c ¨ expp´κξ q

Если использовать эту оценку для Φ и использовать оценку для неоднородности,
то получим:
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|Πipξ q| ď c ¨ expp´κξ q, @ξ ě 0

Погранслойный ряд rΠprξ ,εq строится аналогично:

rΠprξ ,εq “
8
ÿ

i“0

ε
i
rΠip

rξ q

Слагаемые этого ряда определяются аналогично слагаемым ряда Π. Тем самым
мы построили формальную асимптотику.
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Лекция 12. Краевая задача с граничными условиями

Дирихле (продолжение)

В этом разделе будет предоставлено обоснование асимптотики, описанной в преды-
дущем разделе для задачи с граничными условиями Дирихле. Напомним, какая за-
дача рассматривается.

$

&

%

ε
2 d2u

dx2 “ f px,u,εq, где 0ă xă 1 (12.1)

up0,εq “ u0, up1,εq “ u1 (12.2)

Здесь (12.2) — граничные условия (в которых задаётся сама функция u). Рас-
сматривается обычное дифференциальное уравнение (12.1) 2 порядка с граничными
условиями Дирихле. Напомним условия для этой задачи:

1) Функция f достаточно гладкая (то есть у неё должно быть столько производ-
ных, сколько может понадобиться по ходу построения асимптотики). Говорят
так: поскольку строится асимптотика произвольного порядка, то функция f

считается бесконечно дифференцируемой.

2) Вырожденное уравнение f px,u,0q “ 0 имеет корень u“ ϕpxq.

3) Производная на этом корне f upxq :“
B f
Bu
px,ϕpxq,0q ą 0 для всех x P r0;1s.

Такие же условия приводились в прошлом разделе при рассмотрении той же за-
дачи с граничными условиями Неймана (то есть были заданы не функции, а про-
изводные). В задаче Дирихле не при любых заданных условиях получится решение
погранслойного типа, в связи с этим возникло четвёртое условие:

4)
v
ż

ϕp0q

f p0,y,0qduą 0@v P pϕp0q;u0
s (12.3)

В предыдущем разделе была приведена формальная асимптотика:

upx,εq “ upx,εq`Πpξ ,εq` rΠprξ ,εq, (12.4)

109



ОСНОВЫ СИНГУЛЯРНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

БУТУЗОВ ВАЛЕНТИН ФЕДОРОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

ξ “ x{ε

, rξ “ p1´ xq{ε

Каждое из этих слагаемых были построены в виде ряда, например:

upx,εq “
8
ÿ

i“0

ε
iuipxq

Способ построения стандартный: вместо u в уравнении (12.1) подставляем приве-
дённый выше ряд, раскладываем правую часть по степеням ε , приравниваем слева
и справа коэффициенты при одинаковых степенях ε , получаем уравнение последо-
вательно для членов приведённого выше ряда. В частности, u0 “ ϕpxq.

Далее была описана процедура построения погранслойных рядов. Сложность за-
ключается в том, что Πpξ ,εq начинается с членов нулевого порядка (в случае Ней-
мана ряд начинался с членов порядка ε , пограничные функции определялись как
решения линейных дифференциальных уравнений с постоянным коэффициентом).
Четвёртое условие (см. условие (12.3)) как раз позволяло доказать, что задача для
главного члена имела решение и это решение имеет экспоненциальную оценку. Все
члены ряда имеют экспоненциальную оценку:

|Πipξ q| ď c ¨ expp´κξ q, @ξ ě 0,

где c и κ — не зависящие от ε положительные вещественные числа (причём разные
для разных i).

Нужно доказать, что при условиях (12.1) — (12.3) задача (12.1), (12.2) имеет ре-
шение и построенный ряд является асимптотическим рядом для этого решения. Если
взять его частичную сумму n-ого порядка, то решение отличается от этой частичной
суммы на величину порядка εn`1.

Обозначим:

Unpx,εq “
n
ÿ

i“0

ε
i`uipxq`Πipξ q` rΠip

rξ
˘

,

где rΠi имеют аналогичную оценку с заменой ξ на rξ .
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Это формальная асимптотика, то есть если подставить Un вместо u в уравнение
(12.1), то эта частичная сумма удовлетворяет уравнению с точностью εn`1. Оператор
Lε определим следующим образом:

LεUn :“ ε
2 d2Un

dx2 ´ f px,Un,εq “ Opεn`1
q, 0ă xă 1 (12.5)

Для регулярных членов никаких граничных условий не задавалось, они опреде-
лялись из конечных уравнений, а для Π-функций были следующие:

Π0p0q “ u0
´u0p0q @ ią 0 : Πip0q “ ´uip0q

Если взять частичную сумму, описанную выше, то Π и rΠ внесут определённую
невязку. Однако, так как они удовлетворяют экспоненциальной оценке, то если по-
ложить x“ 0, они будут меньше ε в любой степени, поэтому:

Unp0,εq “ u0
`opεN

q, Unp1,εq “ u1
`opεN

q, @N (12.6)

Равенства (12.5) и (12.6) есть те равенства, которые говорят о том, что была по-
строена формальная асимптотика, то есть она удовлетворяет не точно, а с точностью
εn`1 в уравнении и с точностью ε в любой степени в граничных условиях.

Теорема 12.1. Если выполнены условия 1 — 4, то для достаточно малых ε задача
(12.1), (12.2) имеет решение upx,εq, для которого ряд (12.4) является асимптоти-
ческим рядом при ε Ñ 0, то есть:

@n“ 0,1,2, . . . : upx,εq “Unpx,εq`Opεn`1
q, x P r0;1s (12.7)

Для доказательства этой теоремы нужно воспользоваться методом дифференци-
альных неравенств. Для этого нужно построить нижнее и верхнее решения.

Для сингулярно возмущенных задач стандартный приём построений нижнего и
верхнего решения состоит в том, что мы берём частичную сумму n-ого порядка по-
строенного ряда, что-то из неё вычитаем (это будет нижнее решение) или что-то
прибавляем (это будет верхнее решение). Нужно определить, что именно надо от-
нять или прибавить.

Нижнее и верхнее решения:
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Upx,εq “Unpx,εq´ ε
n`1Zpx,εq

Upx,εq “Unpx,εq` ε
n`1Zpx,εq

(12.8)

Когда рассматривались краевые условия Неймана, нижнее и верхнее решения по
внешнему виду были точно такие же, однако функция Z на этот раз будет иной. В
данном случае:

Zpx,εq “M`P
´ x

ε

¯

` rP
ˆ

1´ x
ε

˙

,

где M ą 0, Ppξ q и rPprξ q ě 0 имеют экспоненциальную оценку |Ppξ q| ď ce´κξ .

На верхнее и нижнее решения накладываются 3 условия:

1) Упорядоченность: Upx,εq ďUpx,εq для всех x P r0;1s (следует из положитель-
ности Z).

2) Up0,εq ď u0 ď Up0,εq и Up1,εq ď u1 ď Up1,εq. Сопоставляя эти неравенства с
равенствами (12.6) и (12.8), видно, что эти неравенства выполнены.

3) Остаётся проверить выполнение неравенств:

LεU ě 0ě LεU , 0ă xă 1 (12.9)

То есть надо подобрать константу M и функции P так, чтобы эти неравенства
были выполнены.

Проверим первое неравенство из (12.9) (второе проверяется аналогично). Распи-
шем LεU :

LεU :“ ε
2 d2U

dx2 ´ f px,U ,εq

Подставим сюда нижнее решение:

LεU “

„

ε
2 d2Un

dx2 ´ f px,Un,εq



´ ε
n`1

˜

d2P
dξ 2 `

d2
rP

dξ 2

¸

´

#

f px,U ,εq´ f px,Un,εq

+

(12.10)
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Заметим, что

„

ε
2 d2Un

dx2 ´ f px,Un,εq



“ LεUn “ Opεn`1
q

(см. равенство (12.5)), причём эта величина не зависит от Z.

P-функция имеет экспоненциальную оценку, описанную ранее, значит она суще-
ственна только в малой окрестности точки x“ 0. Если сдвинуться на какую-то малую

величину δ (рис. 12.1), то для xą δ в экспоненциальной оценке будет степень ´κ
δ

ε
, а

это меньше любой степени. Аналогично для rP-функции, если отойти от 1 на величину
δ .

Рис. 12.1. P и rP функции существенны только в малых окрестностях точек x “ 0 и
x“ 1 соответственно.

Чтобы технически упростить выкладку, рассмотрим выражение в фигурных скоб-

ках t f px,U ,εq´ f px,Un,εqu на двух промежутках:
ˆ

0;
1
2
s и r

1
2

;1
˙

, потому что на пер-

вом промежутке можно не учитывать rP, а на втором — функцию P.

Рассмотрим 0 ă x ă
1
2
: здесь rPprξ q,

d2
rP

drξ 2
“ opεNq@N, поэтому функцию можно не

учитывать.

Разложим f px,U ,εq по формуле Тейлора с центром разложения в точке px,Un,εq:

´t f px,U ,εq´ f px,Un,εqu “ ´
 

fupx,Un,εqpU ´Unq`O
`

pU ´Unq
2˘(

“

Заметим, что O
`

pU ´Unq
2
˘

“ Opε2n`2q и Un “ ϕpxq “Π0pξ q`Opεq. Тогда:

“ fupx,ϕpxq`Π0pξ q`Opεq,εqεn`1
pM`Ppξ qq`Opε2n`2

q

Слагаемое fupx,ϕpxq`Π0pξ q`Opεq,εqεn`1pM`Ppξ qq разобъём на два. Преобразим
fu для умножения на M:
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fupx,ϕpxq`Π0pξ q`Opεq,εq “ fupx,ϕpxq`Π0pξ q,0q`Opεq “

“ fupx,ϕpxq,0q` r fupεξ ,ϕpεξ `Π0pξ q,0q´ fupεξ ,ϕpεξ ,0qs`Opεq

Докажем, что справедливо равенство

r fupεξ ,ϕpεξ q`Π0pξ q,0q´ fupεξ ,ϕpεξ q,0qs “

“ fup0,ϕp0q`Π0pξ q,0q´ fup0,ϕp0q,0q`Opεξ qΠ0pξ q

Доказательство.

Выразим левую часть равенства через интеграл:

r fupεξ ,ϕpεξ q`Π0pξ q,0q´ fupεξ ,ϕpεξ q,0qs “Π0pξ q

1
ż

0

fuupεξ ,ϕpεξ q` sΠ0pξ q,0qds

Подынтегральное выражение, умноженное на Π0pξ q, это будет ds fupεξ ,ϕpεξ q `

sΠ0,0q. Продолжим равенство:

“

1
ż

0

r fuup0,ϕp0q` sΠ0,0q`Opεξ qsds ¨Π0 “

1
ż

0

fuup0,ϕp0q` sΠ0,0qds ¨Π0`Opεξ q ¨Π0pξ q “

“ fup0,ϕp0q`Π0,0q´ fup0,ϕp0q,0q`Opεξ q ¨Π0pξ q

�

Замечание 12.1. Представление такой разности в виде интеграла называется
леммой Адамара.

Использовав доказанное равенство и обозначение f upxq “ fupx,ϕpxq,0q, получим:

fupx,ϕpxq`Π0pξ q,εq “ f upxq` r fup0,ϕp0q`Π0pξ q,0q´ fup0,ϕp0q,0qs`Opεq

Слагаемое Opεξ q ¨Π0pξ q не записывалось явно, потому что Π0pξ q имеет экспонен-
циальную оценку, произведение — ограниченная функция, поэтому Opεξ q ¨Π0pξ q “

Opεq.
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Заметим, что fup0,ϕp0q,0q “ f up0q и fup0,ϕp0q`Π0pξ q,0q “ fupξ q. Тогда написанное
выше равенство можно записать как:

fupx,ϕpxq`Π0pξ q,εq “ f upxq`
“

fupξ q´ f up0q
‰

`Opεq

Вернёмся к тому, откуда мы начали:

´
 

fupx,Un,εqpU ´Unq`O
`

pU ´Unq
2˘(

“

“
`

f upxq`
“

fupξ q´ f up0q
‰

`Opεq
˘

Mε
n`1

`r fupξ q`Opεq`Opεξ qsPε
n`1

“

“
`

f upxq`
“

fupξ q´ f up0q
‰

`Opεq
˘

Mε
n`1

` fupξ qP`Opεn`2
q

Докажем корректность разложения fupx,ϕpxq`Π0pξ q`Opεq,εq “ r fupξ q`Opεqs:

fupx,ϕpxq`Π0pξ q`Opεq,εqPpξ q “ r fupεξ ,ϕpεξ q`Π0pξ q,0q`OpεqsPpξ q “

“ r fup0,ϕp0q`Π0pξ q,0q`Opεξ q`OpεqsPpξ q “ fupξ qPpξ q`Opεn`2
q

Конечное выражение для равенства (12.10):

LεU “ Opεn`1q´ εn`1 d2P
dξ 2 ` εn`1 fupξ qP`

`

fupξ q´ f up0q
˘

Mεn`1`

`εn`1 f upxqM`Opεn`2q

(12.11)

причём Opεn`2q зависит от M. Если со второго по четвёртое слагаемое вынести
´εn`1 за скобки, то получим:

´ε
n`1

ˆ

d2P
dξ 2 ´ fupξ qP´

`

fupξ q´ f up0q
˘

M
˙

Определим функцию Ppξ q как решение следующей задачи:

$

&

%

d2P
dξ 2 “ fupξ qP`gpξ q, ξ ą 0 (12.12)

Pp0q “ 0, Pp8q “ 0 (12.13)

Функция gpξ q определяется как:
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gpξ q “
“

fupξ q´ f up0q
‰

M´Ψpξ q,
ˇ

ˇ fupξ q´ f up0q
ˇ

ˇM ďΨpξ q ď ce´κξ

Такая функция Ψpξ q обязательно существует, так как

fupξ q “ fup0,ϕp0`Π0pξ q,0q

f up0q “ fup0,ϕp0q,0q

a их разность (по формуле Лагранжа) — это производная точки на Π0, а Π0

экспоненциально убывает. Тогда

ˇ

ˇ fupξ q´ f up0q
ˇ

ˇM ď c1e´κξ

поэтому такая функция Ψpξ q обязательно существует. Отсюда также следует, что
gpξ q ď 0.

Выпишем точное решение задачи (12.12), (12.13) для Ppξ q:

Ppξ q “

»

—

–

ξ
ż

0

Φ
´2
psq

s
ż

8

Φptqgptqdt

fi

ffi

fl

Φpξ q

Φpξ q “
dΠ0

dξ
pξ q

Эта функция имеет экспоненциальную оценку: |Φpξ q| ď ce´κξ , ξ ě 0. Очевидно,
что Ppξ q ď 0 (так как, во-первых, Φ входит в выражение четыре раза, то есть да-
ёт положительное значение, во-вторых интеграл от 8 до s идёт в отрицательную
сторону, но в его подынтегральное выражение входит не положительная функция g,
следовательно этот интеграл тоже даст положительное значение).

Используя экспоненциальную оценку для Φpξ q, можно доказать, что:

0ď Ppξ q ď ce´κξ ,ξ ě 0

При таком определении P получаем следующее выражение для LεU :
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LεU “ Opεn`1
q` ε

n`1 f upxqM` ε
n`1

Ψpξ q`Opεn`2
q (12.14)

Напомним, что Opεn`1q не зависит от M, а Opεn`2q зависит от M. Нам нужно
так выбрать M, чтобы это было неотрицательным. Определяющим будет слагаемое
εn`1 f upxqM. На отрезке r0;1s функция f upxq положительная. А раз непрерывная на
отрезке функция во всех точках положительна, она достигает своей точной нижней
грани, то можно написать, что f upxq ě c ě 0 для x P r0;1s. Это умножается на M,
значит, выберем M столь большим, чтобы сумма первого и второго слагаемых была
бы больше, чем εn`1, то есть чтобы

Opεn`1
q` ε

n`1 f upxqM ą ε
n`1

У нас осталось слагаемое Opεn`2q неизвестного знака, которое не зависит от M.
Возьмём ε0 такое, что

@ε P p0;ε0q
ˇ

ˇOpεn`2ˇ
ˇă ε

n`1

Тогда слагаемое Opεn`2q будет меньше, чем сумма двух первых слагаемых. В
итоге мы получаем, что:

LεU ě 0, x P
ˆ

0;
1
2



Что и требовалось доказать для нижнего решения на первом промежутке. Ана-
логично доказывается и на втором промежутке, только функции P и rP поменяются
местами.

ñ LεU ě 0, x P p0;1q

Аналогично доказывается неравенство для верхнего решения:

LεU ď 0, x P p0;1q

Таким образом, для достаточно большого M и для достаточно малых ε функ-
ции U и U , определённые формулами (12.8) и (12.9), являются нижним и верхним
решениями.
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Тогда существует решение задачи (12.1), (12.2) upx,εq, удовлетворяющее неравен-
ствам Upx,εq ď upx,εq ďUpx,εq для всех x P r0;1s, где U и U :

Upx,εq “Unpx,εq´Opεn`1, Upx,εq “Unpx,εq`Opεn`1
q

Тогда решение:

upx,εq “Unpx,εq`Opεn`1
q, @x P r0;1s

Теорема доказана.
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