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Лекция 1 

Виды взаимодействий в природе 

 
радиус действия величина 

степень 

завершенности 

теории 

гравитационное ∞ ~10-39 ± 

электромагнитное ∞ 
1

137
 + 

сильное (ядерное) 10-15 м ≈14 ? 

слабое 10-18 м ~10-5 + 

 

                                      – постоянная тонкой структуры (в единицах СГС) 

 

                                                          – константа гравитационного взаимодействия 

𝛼гр

𝛼эм
≈ 10−37 

𝐹гр

𝐹эм
=

𝐺
𝑚2

𝑟2

1
4𝜋𝜀0

∙  
𝑒2

𝑟2

≈ 10−37 ≈
𝛼гр

𝛼эм
 

Простейшие элементарные частицы: e‾, p+. 

Заряд электрона: 𝑒 = 1,6 ∙ 10−19 Кл 

Свойства электрического заряда 

1. Дискретность. 

2. Существует два вида зарядов: «+» и «-». 

3. Инвариантность (независимость от скорости носителей заряда). 

𝛼гр =
𝐺𝑚2

ћ𝑐
= 0,5 ∙ 10−38 

𝛼эм =
𝑒2

ћ𝑐
=

1

137
 

https://vk.com/teachinmsu


 

 

 

10 

 
 

 

4. Закон сохранения заряда: в изолированной системе полный заряд сохраняется 

⇒ локальность сохранения заряда (заряд перераспределяется не мгновенно, а за 

конечное время). 

 

Δ𝑡 ≥
𝑠

𝑐
≠ 0 

 

                           – уравнение непрерывности. 

Милликен доказал дискретность заряда и смог сделать оценку минимального 

возможного заряда 𝑒. 

 

Электростатика и ее основные законы 

1. Закон сохранения заряда 

2. Закон Кулона 

3. Принцип суперпозиции 

Закон Кулона 

В инерциальной системе отсчета сила взаимодействия между точечными зарядами 

равна: 

𝐹 =
1

4𝜋𝜀0
 
𝑞1𝑞2
𝑟2

 

div 𝑗 = −
𝜕𝜌

𝜕𝑡
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𝐹⃗2 =
1

4𝜋𝜀0
 
𝑞1𝑞2

𝑟12
3 𝑟12, 𝐹⃗1 =

1

4𝜋𝜀0
 
𝑞1𝑞2

𝑟21
3 𝑟21 

|𝐹⃗2| = |𝐹⃗1| = 𝐹  ⇒   𝑟21 = −𝑟12 

Некоторые замечания: 

 Точечный заряд – заряженная материальная точка. 

 Одноименные заряды отталкиваются, разноименные – притягиваются. 

 Закон Кулона можно применять для движущихся зарядов, если 𝑣 ≪ 𝑐. 

 Закон Кулона справедлив для поляризационных зарядов в диэлектрике с 

диэлектрической проницаемостью 𝜀: 

𝐹 =
1

4𝜋𝜀0
 
𝑞1𝑞2
𝜀𝑟2

 

Принцип суперпозиции 

 

𝐹⃗21 =
1

4𝜋𝜀0
 
𝑞1𝑞2

𝑟12
3 𝑟12 

𝐹⃗23 =
1

4𝜋𝜀0
 
𝑞3𝑞2

𝑟32
3 𝑟32 
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Сила, действующая на второй заряд: 

𝐹⃗ = 𝐹⃗21 + 𝐹⃗23 

Электрическое поле – это вид материи, который создается зарядами и действует на 

помещенные в него заряды. 

Напряженность – его силовая характеристика. 

𝐸⃗⃗(𝑟) ≡
𝐹⃗

𝑞
, [𝐸] =

В

м
 

𝑞 – пробный заряд 

Силовые линии поля 

 

Касательная к силовой линии совпадает с направлением вектора 𝐸⃗⃗ в данной точке. 

1. Силовые линии начинаются на «+» и заканчиваются на «-», либо уходят на 

бесконечность. При этом друг с другом они не пересекаются. 

2. Густота линий отражает величину поля |𝐸⃗⃗| 

 

𝐸⃗⃗ =
1

4𝜋𝜀0

𝑞

𝑟3
𝑟 

Для 𝐸⃗⃗ так же выполняется принцип суперпозиции. 

https://vk.com/teachinmsu


 

 

 

13 

 
 

 

 

Прямая задача электростатики: найти поле 𝐸⃗⃗ в любой точке пространства по известным 

𝑟𝑖 и 𝑞𝑖. 

Непрерывное распределение зарядов 

Если большое число точечных зарядов локализовано на малой площадке ∆𝑆, то заряд 

этой площадки можно рассматривать как непрерывный. 

                 – поверхностная плотность заряда, 𝛿𝑄 = 𝜎𝑑𝑆 

 

            – линейная плотность заряда, 𝛿𝑄 = 𝜏𝑑𝑙 

                 – объемная плотность заряда, 𝛿𝑄 = 𝜌𝑑𝑉 

𝐸⃗⃗ =
1

4𝜋𝜀0
∫
𝛿𝑄𝑟

𝑟3

 

𝐿,𝑆,𝑉

 

  

𝜎 =
∆𝑄

∆𝑆
 

𝜏 =
∆𝑄

∆𝑙
 

𝜌 =
∆𝑄

∆𝑉
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Лекция 2 

Прямая задача электростатики 

Методы решения: 

1. Закон Кулона + принцип суперпозиции. 

2. Теорема Остроградского – Гаусса. 

Пример 1. Заряженная нить. 

 

𝜏 =
𝑄

𝑙
, {

𝛼1 < 0 
𝛼2 > 0

, 𝑧 = ℎ tg 𝛼, 𝑟 = ℎ cos𝛼 , 𝑑𝐸𝑦 = 0  

𝑑𝑧 =
ℎ𝑑𝛼

cos2 𝛼 
, 𝛿𝑄 = 𝜏𝑑𝑧 =

𝜏ℎ𝑑𝛼

cos2 𝛼 
 

|𝑑𝐸⃗⃗| =
𝛿𝑄

4𝜋𝜀0𝑟
2
=

𝛿𝑄

4𝜋𝜀0ℎ
2
cos2 𝛼 = 

𝜏𝑑𝛼

4𝜋𝜀0ℎ
  

𝑑𝐸𝑥 = |𝑑𝐸⃗⃗| cos 𝛼 =
𝜏 cos𝛼 𝑑𝛼

4𝜋𝜀0ℎ
 

𝐸𝑥 = ∫ 𝑑𝐸𝑥 =
𝜏

4𝜋𝜀0ℎ
∫ cos𝛼 𝑑𝛼 =

𝜏

4𝜋𝜀0ℎ
(sin 𝛼1 − sin𝛼2)

𝛼2

𝛼1

𝛼2

𝛼1
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Частные случаи: 

1. 𝛼2 →
𝜋

2
,   𝛼1 → −

𝜋

2
 

𝐸𝑥 =
𝜏

2𝜋𝜀0ℎ
 

2. 𝛼2 → 0,   𝛼1 → 0 

𝐸𝑥 =
𝜏

4𝜋𝜀0ℎ
(𝛼2 + | 𝛼1|) ≅

𝜏𝑙

4𝜋𝜀0ℎ
2
=

𝑄

4𝜋𝜀0ℎ
2
 

𝑑𝐸𝑧 = −|𝑑𝐸⃗⃗| 𝑠𝑖𝑛 𝛼 = −
𝜏 sin 𝛼 𝑑𝛼

4𝜋𝜀0ℎ
 

𝐸𝑧 = ∫ 𝑑𝐸𝑧 = −

  𝛼2

  𝛼1

𝜏

4𝜋𝜀0ℎ
∫ sin𝛼 𝑑𝛼

  𝛼2

  𝛼1

=
𝜏

4𝜋𝜀0ℎ
(cos   𝛼2 − cos   𝛼1) 

Частный случай:     𝛼2 = −𝛼1    ⇒    𝐸𝑧 = 0 

Пример 2. Заряженное кольцо (ищем поле в точке на оси симметрии). 

 

𝜏 =
𝑄

2𝜋𝑅0
, 𝑟 =

ℎ

cos 𝜃
, 𝑑𝐸⃗⃗ = 𝑑𝐸⃗⃗∥ + 𝑑𝐸⃗⃗⊥      

При данной симметрии системы: 
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𝐸гор = ∑|𝑑𝐸⃗⃗∥| = 0, 𝐸верт = ∑|𝐸⃗⃗⊥| = ∑|𝑑𝐸⃗⃗| cos 𝜃 

|𝑑𝐸⃗⃗| =
𝛿𝑄

4𝜋𝜀0𝑟
2
=
𝜏𝑑𝑙𝑐𝑜𝑠2𝜃

4𝜋𝜀0ℎ
2

 

𝐸верт =
𝜏 cos3 𝜃

4𝜋𝜀0ℎ
2
∮ 𝑑𝑙

𝐿

=
𝜏𝑅0 cos

3 𝜃

2𝜀0ℎ
2

=
𝑄 cos3 θ

4𝜋𝜀0ℎ
2

 

Частный случай:       ℎ →∞, 𝜃 → 0 

𝐸верт
ℎ→∞
→    

𝑄

4𝜋𝜀0ℎ
2

 

Пример 3. Однородно заряженный диск (ищем поле в точке на оси симметрии). 

 

𝛿𝑄 = 𝜏 ∙ 2𝜋𝑅𝑑𝑅, 𝑅 = ℎtg 𝛼, 𝑑𝑅 =
ℎ𝑑𝜃

cos2 𝜃
 

|𝑑𝐸⃗⃗| =
𝛿𝑄 cos3 𝜃

4𝜋𝜀0ℎ
2
=
𝜏

2𝜀0
sin 𝜃 𝑑𝜃, 𝜏 ≡ 𝜎 

𝐸 = ∫ |𝑑𝐸⃗⃗|

𝜃0

0

=
𝜏

2𝜀0
∫ sin 𝜃 𝑑𝜃

𝜃0

0

= 
𝜏

2𝜀0
(1 − cos 𝜃0) 

Частные случаи: 
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1. 𝜃0 →
𝜋

2
 

𝐸 →
𝜏

2𝜀0
=
𝜎

2𝜀0
  

2. 𝜃0 → 0 

cos 𝜃0 ≈ 1 −
𝜃0
2

2
   ⇒   𝐸 →

𝜏

2𝜀0
∙
𝜃0
2

2
 

3. 𝜃 → 0 

𝑅0 ≈ ℎ𝜃0   ⇒   𝐸 →  
𝜏𝜋𝑅0

2

4𝜋𝜀0ℎ
2
=

𝑄

4𝜋𝜀0ℎ
2

 

Теорема Остроградского – Гаусса 

 

Поток вектора 𝐸⃗⃗ через площадку 𝑑𝑆 с нормалью 𝑛⃗⃗: 

𝑑Φ𝐸 ≡ (𝐸⃗⃗ ∙ 𝑛⃗⃗)𝑑𝑆 = (𝐸⃗⃗ ∙ 𝑑𝑆) 

𝐸⃗⃗ ∥ 𝑛⃗⃗  ⇒  𝑑Φ𝐸 = 𝑚𝑎𝑥 

𝐸⃗⃗ ⊥ 𝑛⃗⃗  ⇒  𝑑Φ𝐸 = 0 

Поток вектора 𝐸⃗⃗ через произвольную поверхность: 

Φ𝐸 =∬(𝐸⃗⃗ ∙ 𝑑𝑆)

 

Σ

 

Теорема Остроградского – Гаусса (в единицах СИ): 
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Поток вектора 𝐸⃗⃗ через любую замкнутую поверхность пропорционален 

электрическому заряду внутри этой поверхности: 

∯(𝐸⃗⃗ ∙ 𝑑𝑆)

 

Σ

=
𝑄𝑖𝑛
𝜀0

 

Докажем для случая точечного заряда внутри сферы, используя принцип суперпозиции: 

𝐸⃗⃗||𝑛⃗⃗, 𝐸 =
𝑞

4𝜋𝜀0𝑅
2
, 𝑑Φ𝐸 = 𝐸𝑑𝑆 

Φ𝐸 = ∑𝑑Φ𝐸 = 𝐸∑𝑑𝑆 = 𝐸 ⋅ 4𝜋𝑅
2   ⇔   Φ𝐸 =

q

ε0
  

Для сферической поверхности имеет место понятие телесного угла: 

                      

Поток через элемент сферической поверхности: 

𝑑Φ𝐸 = 𝐸𝑑𝑆 =
𝑞

4𝜋𝜀0𝑟
2
dΩr2 =

𝑞

4𝜋𝜀0
dΩ 

 

Ω =
𝑆

𝑅2
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Следует разбить произвольную поверхность на множество малых поверхностей. Тогда, 

при условии, что заряд точечный, в каждой из них будет выполняться теорема Гаусса. 

Теорема Гаусса имеет ограниченную применимость – она справедлива только для 

симметричных систем зарядов. В этом случае: 

Φ = 𝐸𝑆 =
𝑄𝑖𝑛
𝜀0
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Виды симметрии: 

1. Сферическая 

 

2. Цилиндрическая 

 

3. Бесконечная плоскость 

 

Пример. Бесконечно длинный заряженный цилиндр 

 

Снаружи: 

https://vk.com/teachinmsu
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𝐸(𝑟) ⋅ 𝑆 =
𝜌𝜋𝑅0

2ℎ

𝜀0
, 𝑆 = ℎ ⋅ 2𝜋𝑟   ⇒    𝐸(𝑟) =

𝜌𝑅0
2

2𝜀0𝑟
~
1

𝑟
 

Внутри: 

𝐸(𝑟) ⋅ 2𝜋𝑟ℎ =
𝜌𝜋𝑟2ℎ

𝜀0
   ⇒    𝐸(𝑟) =

𝜌𝑟

2𝜀0
~𝑟  

Из теоремы Гаусса следует, что внутри замкнутой поверхности 𝐸 = 0. 
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Лекция 3 

Дифференциальные операторы 

оператор объект действия результат действия 

grad скаляр Ψ(𝑥, 𝑦, 𝑧) = Ψ(𝑟) вектор ∇Ψ 

div вектор 𝐸⃗⃗(𝑥, 𝑦, 𝑧) = 𝐸⃗⃗(𝑟) скаляр ∇𝐸⃗⃗ 

rot вектор 𝐸⃗⃗(𝑟) вектор [∇ × 𝐸⃗⃗] 

∇ ≡ 𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘⃗⃗

𝜕

𝜕𝑧
    ⇒     grad Ψ ≡ ∇Ψ = 𝑖

𝜕Ψ

𝜕𝑥
+ 𝑗
𝜕Ψ

𝜕𝑦
+ 𝑘⃗⃗

𝜕Ψ

𝜕𝑧
 

𝑑Ψ =
𝜕𝛹

𝜕𝑥
𝑑𝑥 +

𝜕𝛹

𝜕𝑦
𝑑𝑦 +

𝜕𝛹

𝜕𝑧
𝑑𝑧,   𝑑𝑟 = 𝑖𝑑𝑥 + 𝑗𝑑𝑦 + 𝑘⃗⃗𝑑𝑧 ⇒  𝑑Ψ = (∇Ψ ⋅ 𝑑𝑟) 

𝑑𝑟 ⊥ ∇Ψ ⇒  𝑑Ψ = 0 

𝑑𝑟 ⇈ ∇Ψ ⇒  𝑑Ψ = max 

Вдоль кривой ab: 

∫(∇Ψ ⋅ 𝑑𝑟)

𝑏

𝑎

= Ψ(𝑏) − Ψ(𝑎) 

div 𝐸⃗⃗ ≡ (∇ ⋅ 𝐸⃗⃗) =  
𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦
𝜕𝑦

+
𝜕𝐸𝑧
𝜕𝑧

 

Другая формулировка теоремы Остроградского – Гаусса: 
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∭div 𝐸⃗⃗𝑑𝑉

𝑉

=∯(𝐸⃗⃗ ⋅ 𝑑𝑆)

𝑆𝑉

 

(
𝜕𝐸𝑥
𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑑𝑆𝑦𝑧(𝐸𝑥(𝑏) − 𝐸𝑥(𝑎))) 

div 𝐸⃗⃗ ⋅ 𝑑𝑉 =
𝛿𝑄𝑖𝑛
𝜀0

⇒  div 𝐸⃗⃗ =
1

𝜀0

𝛿𝑄𝑖𝑛
𝑑𝑉

=
𝜌

𝜀0
 

                      – теорема Остроградского – Гаусса в дифференциальной форме  

 

Потенциальность электростатического поля 

 

∫(𝐸⃗⃗ ⋅ 𝑑𝑟)

𝑏

𝑎

= ? 

Для точечного заряда: 

𝐸⃗⃗ =
𝑞

4𝜋𝜀0

𝑟

𝑟3
  

∫ 𝐸𝑑𝑟

𝑟2

𝑟1

=
𝑞

4𝜋𝜀0
∫
𝑑𝑟

𝑟2

𝑟2

𝑟1

=
𝑞

4𝜋𝜀0
(
1

𝑟1
−
1

𝑟2
) 

Для любой системы неподвижных зарядов справедлив принцип суперпозиции, а значит 

интеграл не зависит от траектории движения от a к b. 

div 𝐸⃗⃗ =
𝜌

𝜀0
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∫(𝐸⃗⃗ ⋅ 𝑑𝑟)

𝑏

𝑎

=
𝑞

4𝜋𝜀0
∑[(

1

𝑟𝑎
−
1

𝑟𝑖
) + (

1

𝑟𝑖
−
1

𝑟𝑖+1
)]

𝑖

=
𝑞

4𝜋𝜀0
(
1

𝑟𝑎
−
1

𝑟𝑏
) 

Для 1 заряда: 

∫(𝐸⃗⃗ ⋅ 𝑑𝑟)

𝑏

𝑎

=
𝑞

4𝜋𝜀0
(
1

𝑟𝑎
−
1

𝑟𝑏
) 

Для N зарядов: 

∫(𝐸⃗⃗ ⋅ 𝑑𝑟)

𝑏

𝑎

=∑
𝑞

4𝜋𝜀0
(
1

𝑟𝑎𝑖
−
1

𝑟𝑏𝑖
)

𝑁

𝑖=1

 

В случае a = b циркуляция вектора 𝐸⃗⃗ равна 0: 

∮(𝐸⃗⃗ ⋅ 𝑑𝑟)

𝐿

= 0 

Это свойство называют свойством потенциальности. Оно справедливо для любой 

замкнутой траектории L.  

Работа электрического поля: 

𝐴 = ∫(𝑞𝐸⃗⃗ ⋅ 𝑑𝑟)

 

𝑎𝑏

= ∫(𝐹⃗𝑞 ⋅ 𝑑𝑟)

 

𝑎𝑏

 

Из свойства потенциальности следует, что работа электростатического поля по 

перемещению точечного заряда по любой замкнутой траектории равна 0. 

Если a = b, то 

∫(∇Ψ ⋅ 𝑑𝑟)

𝑏

𝑎

= Ψ(𝑏) − Ψ(𝑎) = 0 

Если электрическое поле потенциально, то математически его можно представить в 

виде: 
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𝐸⃗⃗ = −∇𝜑      𝜑 – потенциал электрического поля 

𝐴 = ∫(𝑞𝐸⃗⃗ ⋅ 𝑑𝑟)

 

𝑎𝑏

= −𝑞∫(∇𝜑 ⋅ 𝑑𝑟)

𝑏

𝑎

= −𝑞(𝜑(𝑏) − 𝜑(𝑎))  ⇒  𝜑(𝑎) − 𝜑(𝑏)

=
𝐴

𝑞
  

[𝜑] = В, 1 В =
Дж

Кл
 

Физическое определение потенциала 

Потенциал в данной точке численно равен отношению работы сил поля, затрачиваемой 

на перемещение пробного заряда из данной точки в точку с 𝜑 = 0, к величине этого 

заряда. 

Свойства: 

1. Энергетическая характеристика 

𝑊эл.внеш. = 𝑞𝜑 

2. Скаляр, определяемый с точностью до константы 

𝐸⃗⃗ = −∇𝜑 = −∇(𝜑 + 𝑐𝑜𝑛𝑠𝑡) 

3. Потенциал обычно нормируют, т. е. принимают в какой-то точке за известную 

величину. 

4. Для 𝜑 справедлив принцип суперпозиции. 

Потенциал точечного заряда: 

𝜑 =
𝑞

4𝜋𝜀0𝑟
 

Некоторые полезные формулы: 

∇Ψ(𝑟) = Ψ𝑟 ⋅
𝑟

𝑟
, ∇(𝑎⃗ ⋅ 𝑟) = 𝑎⃗ 

Из определения потенциала: 

https://vk.com/teachinmsu
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𝐸⃗⃗ = −∇(
𝑞

4𝜋𝜀0𝑟
) = −

𝑞

4𝜋𝜀0
∇ (
1

r
) =

𝑞

4𝜋𝜀0

𝑟

𝑟3
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Поле точечного диполя 

 

𝑝 = 𝑞𝑙 – дипольный момент 

Δ𝑟 = 𝑙 sin 𝛼 = 𝑙 cos 𝜃 , 𝑟+ ≈ 𝑟− ≫ 𝑙 

𝜑 =
𝑞

4𝜋𝜀0
(
1

𝑟+
−
1

𝑟−
) =

𝑞

4𝜋𝜀0

𝑟− − 𝑟+
𝑟+𝑟−

≈
𝑞Δ𝑟

4𝜋𝜀0𝑟
2
=
𝑞𝑙 cos 𝜃

4𝜋𝜀0𝑟
2
=

1

4𝜋𝜀0

(𝑝⃗ ⋅ 𝑟)

𝑟3
 

𝐸⃗⃗ = −∇𝜑 = −∇(
1

4𝜋𝜀0

(𝑝 ⋅ 𝑟)

𝑟3
) = −

1

4𝜋𝜀0
{
∇(𝑝⃗ ⋅ 𝑟)

𝑟3
+ (𝑝⃗ ⋅ 𝑟)∇ (

1

𝑟3
)} = 

    = −
1

4𝜋𝜀0
{
𝑝

𝑟3
−
3(𝑝⃗ ⋅ 𝑟)𝑟

𝑟5
} =

3(𝑝⃗ ⋅ 𝑟)𝑟 − 𝑝𝑟2

4𝜋𝜀0𝑟
5

~
1

𝑟3
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Уравнения Лапласа и Пуассона 

{
𝐸⃗⃗ = −∇𝜑,

div 𝐸⃗⃗ =
𝜌

𝜀0

 

−(div(∇φ)) = −∇2𝜑 =
𝜌

𝜀0
, ∇2= Δ =

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
  

 

                   – уравнение Пуассона 

𝜌 = 0    ⇒     Δ𝜑 = 0   – уравнение Лапласа 

  

Δ𝜑 = −
𝜌

𝜀0
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Лекция 4 

Использование уравнений Лапласа и Пуассона 

1. По известной функции 𝜑(𝑥, 𝑦, 𝑧) найти 𝜌(𝑥, 𝑦, 𝑧). 

2. По известному распределению заряда 𝜌(𝑟) найти 𝜑(𝑟). 

Пример. Безграничный плоский слой. 

𝜕𝜑

𝜕𝑦
=
𝜕𝜑

𝜕𝑧
= 0   ⇒     

𝜕2𝜑

𝜕𝑥2
= −

𝜌

𝜀0
 

𝜕𝜑

𝜕𝑥
= −

𝜌

𝜀0
𝑥 + 𝐶1, 𝐶1 = 𝑐𝑜𝑛𝑠𝑡 

𝜑(𝑥) = −
𝜌

2𝜀0
𝑥2 + 𝐶1𝑥 + 𝐶0, 𝐶0 = 𝑐𝑜𝑛𝑠𝑡 

Константы находятся из граничных условий: 

{
𝜑(−𝑑) = 𝜑1
𝜑(+𝑑) = 𝜑2

 

Если 𝜌 = 0, то из уравнения Лапласа: 

𝜑(𝑥) = С1𝑥 + 𝐶0 

 

В этом случае экстремумы потенциала могут быть только на границе области 𝜌 = 0. 
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Теорема Ирншоу 

Система неподвижных электростатических зарядов не может находиться в 

равновесии под действием только электростатических сил. 

 

Доказательство 1. 

Положение равновесия характеризуется минимумом энергии системы. 𝑊мин = 𝑞𝜑мин 

. Из условия уравнения Лапласа следует, что экстремумов в области 𝜌 = 0 нет, а значит 

равновесие не достигается. 

Доказательство 2. 

Окружим произвольный заряд 𝑞, находящийся в точке равновесия 𝐴, некоторой 

замкнутой поверхностью 𝑆 так, чтобы остальные заряды системы находились вне этой 

поверхности. 𝐸⃗⃗ – поле, создаваемое остальными зарядами системы, за исключением 

заряда 𝑞 при смещении заряда 𝑞 из точки равновесия в точку 𝐴′. Линии поля будут 

сходиться к точке равновесия, так как именно в этой точке достигается минимум 

потенциала. В этом случае по теореме Гаусса поток через поверхность: Φ < 0. Но это 

противоречит теореме Гаусса, так как она требует, чтобы поток был равен нулю, 

поскольку заряды находятся вне поверхности 𝑆. Значит равновесие невозможно. 

Теорема единственности в электростатике 

При заданных граничных условиях существуют единственные решения уравнений 

Лапласа и Пуассона. 

Потенциал точечного заряда есть частный случай решения уравнения Пуассона: 

𝜑 =
𝑞

4𝜋𝜀0𝑟
 

Электростатическое поле в веществе 

Рассмотрим физически малый объем вещества 𝛿𝑉. 

1. 𝑁 ≥ 𝑁𝐴 
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2. < 𝐸внутриат. > =  0 

3. В пределах 𝛿𝑉 внешние поля можно считать однородными. 

Электростатическая индукция 

 

Поляризация 

 

 идеальный проводники: Ag, Cu, Au 

 есть свободные заряды 

 Δ𝑟 – любое (макроскопическое > 

10-6 м) 

 

 идеальные диэлектрики: C 

(алмаз), фарфор 

 нет свободных зарядов 

 есть связанные заряды 

 Δ𝑟 ≃ 10−10 м 

 

Основные законы идеальных проводников в электростатическом поле 

1. 𝐸⃗⃗внутр = 0 

2. 𝜑внутр = 𝜑пов = 𝑐𝑜𝑛𝑠𝑡 

3. div 𝐸⃗⃗внутр = 0  ⇒    𝜌внутр = 0 (все заряды на поверхности проводника) 

 

 

4. Вблизи поверхности ∑ проводника (снаружи): 

{
𝐸⃗⃗ ⊥ Σ        

|𝐸⃗⃗| =
𝜎пов
𝜀0
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φa − 𝜑𝑏 = ∫(𝐸⃗⃗ ⋅ 𝑑𝑟) = 0

 

𝑎𝑏

  ⇒   𝐸⃗⃗ ⊥ Σ   

𝑙 ≫ ℎ:  𝐸пов =
𝜎пов
2𝜀0

, 𝐸2 = 0 = 𝐸кус − 𝐸ост, 

𝐸1 =
𝜎пов
2𝜀0

⋅ 2 =
𝜎пов
𝜀0

 

𝛿𝐹 = 𝐸ост𝜎пов𝑑𝑆 =
𝜎пов
2

2𝜀0
𝑑𝑆 

𝛿𝐹

𝑑𝑆
=
𝜎пов
2

2𝜀0
 

5. Линейная связь между зарядами проводников и потенциалами. 

 

{
𝜑1 = 𝛼11𝑄1 + 𝛼12𝑄2 +⋯+ 𝛼1𝑁𝑄𝑁

…
𝜑𝑁 = 𝛼𝑁1𝑄1 + 𝛼𝑁2𝑄2 +⋯+ 𝛼𝑁𝑁𝑄𝑁

 

𝜑 – нормирован: 𝜑(∞) ≡ 0 

𝛼𝑖𝑗  – потенциальные коэффициенты, зависят только от размеров, формы и 

взаимного расположения проводников. 

𝑄𝑖𝑗 =∑𝛽𝑖𝑗𝜑𝑗

𝑁

𝑗=1

 

𝛽𝑖𝑗 – емкостные коэффициенты 
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6. Электростатическая экранировка. 

 

Конденсаторы 

Емкость конденсатора: 

𝐶 ≡
𝑄

|𝜑+ − 𝜑−|
 

Сферический воздушный конденсатор 

 

В центре заряженной сферы: 

𝜑0 =
𝑄

4𝜋𝜀0𝑅
 

По теореме Гаусса: 

𝐸(𝑟) =
𝑄

4𝜋𝜀0𝑟
2
, 𝜑(𝑟) =

𝑄

4𝜋𝜀0𝑟
 

𝜑2 =
1

4𝜋𝜀0
{−
𝑄

𝑅2
+
𝑄

𝑅2
} = 0 

𝜑1 =
1

4𝜋𝜀0
{−
𝑄

𝑅1
+
𝑄

𝑅2
} 
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𝐶 =
𝑄

|𝜑1 − 𝜑2|
   ⇒    𝐶 = 4𝜋𝜀0

𝑅1𝑅2
𝑅2 − 𝑅1

 

Частный случай – плоский конденсатор 

 

{

𝑅1 → ∞                         
𝑅2 → ∞                         
𝑅2 − 𝑅1 = 𝑑 = 𝑐𝑜𝑛𝑠𝑡

   ⇒     𝑅1 ≈ 𝑅2 ≈ 𝑅, 𝑆сф = 4𝜋𝑅
2 

𝐶 →
𝜀0𝑆

𝑑
 

Другой способ: 

𝑑 ≪ √𝑆 ~ 𝑙хар, 𝐸внутр =
𝜎

𝜀0
   ⇒    𝐶 =

𝑄

𝐸внутр𝑑
= 𝜀0

𝑆

𝑑
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Лекция 5 

Цилиндрический воздушный конденсатор 

 

𝑅2 − 𝑅1 ≪ 𝑅1 

По теореме Гаусса: 

𝐸 ⋅ 2𝜋𝑟Δ𝑧 =
𝜎 ⋅ 2𝜋𝑅1Δ𝑧

𝜀0
   ⇒     𝐸 =

𝜎𝑅1
𝜀0𝑟

 

𝜑1 − 𝜑2 = ∫ 𝐸𝑑𝑟

𝑅2

𝑅1

=
𝜎𝑅1
𝜀0
ln
𝑅2
𝑅1

 

𝐶 =
𝑄

𝜑1 − 𝜑2
=
𝜎2𝜋𝑅1𝐻

𝜑1 − 𝜑2
   ⇒    𝐶 = 2𝜋𝜀0

𝐻

ln
𝑅2
𝑅1

 

Метод изображений в электростатике 

Решение «методом изображений» состоит в подборе фиктивных зарядов вне 

рассматриваемой области, таких, что их совместное с реальными зарядами поле 

обеспечивает заданные граничные условия (потенциал на границе). 
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Заземленная сфера и точечный заряд вне сферы 

  

{
𝑅2 = 𝑎𝑏
𝑞𝑎
2𝑏 = 𝑞𝑏

2𝑎
   ⇒    𝑞𝑎 = −

𝑞𝑏𝑅

𝑏
 

Поле 𝑞𝑎, 𝑞𝑏   ⇔   поле 𝑞𝑏 +  заземленная сфера. 

𝐹 =
1

4𝜋𝜀0

𝑞𝑎𝑞𝑏
(𝑏 − 𝑎)2

= −
1

4𝜋𝜀0

𝑞𝑏
2𝑅𝑏

(𝑏2 − 𝑅2)2
 

Заземленная плоскость 

 

𝐹 = −
1

4𝜋𝜀0

𝑞2

4𝑥2
  

|𝐸⃗⃗| =
1

4𝜋𝜀0

2𝑞 cos 𝜃

𝑟2
=
|𝜎|

𝜀0
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Незаземленная сфера 

 

1. Сфера не заряжена. 

𝜑0 =
𝑞𝑏

4𝜋𝜀0𝑏
=

𝑄′

4𝜋𝜀0𝑅
   ⇒    𝑄′ = 𝑞𝑏

𝑅

𝑏
 

𝜑0 +
𝑞𝑎

4𝜋𝜀0𝑅
= 0   ⇒    𝑞𝑎 = −𝑞𝑏

𝑅

𝑏
= −𝑄′ 

2. Сфера заряжена. 

φ0 =
1
4𝜋𝜀0

(
𝑞𝑏
𝑏
+
𝑄
𝑅
) =

𝑄′
4𝜋𝜀0𝑅

, 𝑄′ = 𝑄+ 𝑞𝑏
𝑅
𝑏

 

Замечание: Одноименно заряженные тела могут притягиваться: 

𝐹 =
1

4𝜋𝜀0
(
𝑄𝑞𝑏
𝑏2

+
𝑞𝑏
2𝑅

𝑏3
−

𝑞𝑏
2𝑅𝑏

(𝑏2 − 𝑅2)2
) 

Заземленная сфера и точечный заряд внутри сферы 
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𝑅2 = 𝑎𝑏, 𝑞𝑏 = −
𝑞𝑎𝑅

𝑏
 

𝐹 =
1

4𝜋𝜀0

𝑞𝑎𝑞𝑏
(𝑏 − 𝑎)2

= −
1

4𝜋𝜀0

𝑞𝑏
2𝑅𝑎

(𝑎2 − 𝑅2)2
 

Если сфера не заземлена, формула останется прежней. Правильный потенциал на сфере 

можно обеспечить сферическим слоем (сферический фиктивный заряд). 

Электрическое поле в диэлектриках 

Типы заряда: 

 свободный (Δ𝑟 > 10−6 м) 

 связанный (Δ𝑟 ~ 10−10 м) 

В идеальном диэлектрике нет свободных зарядов. 

Примеры элекментарных диполей 

1. Молекула воды (ориентационная поляризация) 

 

2. Молекула CO2 (ионная поляризация) 

 

3. Атом водорода (электронная поляризация) 

 

https://vk.com/teachinmsu


 

 

 

39 

 
 

 

Поляризация – изменение состояния диэлектрика во внешнем электростатическом поле, 

которове выражается в появлении или упорядочиваниии электрического дипольного 

момента диэлектрика. 

Вектор поляризации есть объемная плотность дипольных моментов: 

𝑃⃗⃗ =
1

𝛿𝑉
∑𝑝𝑖
𝑖

 

 

𝑑𝜑𝐴 =
1

4𝜋𝜀0

(𝑑𝑝 ⋅ 𝑟′)

𝑟′3
= −

1

4𝜋𝜀0

(𝑑𝑝 ⋅ 𝑟)

𝑟3
 

∇ (
1

𝑟
) = −

𝑟

𝑟3
, 𝑑𝑝 = 𝑃⃗⃗𝑑𝑉  ⇒   𝑑𝜑𝐴 =

1

4𝜋𝜀0
(𝑃⃗⃗ ⋅ ∇ (

1

𝑟
))𝑑𝑉 

[div (𝑃⃗⃗ ⋅
1

𝑟
) = (𝑃⃗⃗ ⋅ ∇ (

1

𝑟
)) +

1

𝑟
div P⃗⃗⃗] 

𝑑𝜑𝐴 =
1

4𝜋𝜀0
(div (𝑃⃗⃗ ⋅

1

𝑟
) −

1

𝑟
div (P⃗⃗⃗))𝑑𝑉 

По теореме Гаусса: 

𝜑𝐴 =
1

4𝜋𝜀0
{∯(

𝑃⃗⃗

𝑟
⋅ 𝑑𝑆)

Σ

+∭
(−div 𝑃⃗⃗)

𝑟
𝑑𝑉

𝑉

} 

Сравним с общем решением уравнения Пуассона: 

𝜑𝐴 =
1

4𝜋𝜀0
{∯

𝜎𝑑𝑆

𝑟
Σ

+∭
𝜌

𝑟
𝑑𝑉

𝑉

} 
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Получаем 

𝜎пол = (𝑃⃗⃗ ⋅ 𝑑𝑆), 𝜌пол = −div P⃗⃗⃗ 

𝜌 = 𝜌пол + 𝜌непол 

div E⃗⃗⃗ =
𝜌непол
𝜀0

−
div P⃗⃗⃗

𝜀0
 

 div (𝐸⃗⃗ +
𝑃⃗⃗

𝜀0
) =

𝜌непол
𝜀0

⇒ div (ε0𝐸⃗⃗ + 𝑃⃗⃗) = 𝜌непол 

div 𝐷⃗⃗⃗ = 𝜌непол  

𝐷⃗⃗⃗ = 𝜀0𝐸⃗⃗ + 𝑃⃗⃗ – вектор электрического смещения (электрической индукции) 
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Лекция 6 

 

Условие электронейтральности: 

∭𝜌пол𝑑𝑉

 

𝑉

= 0 

Теорема Гаусса для векторов 𝐸⃗⃗, 𝐷⃗⃗⃗, 𝑃⃗⃗ 

∯𝐸⃗⃗ ⋅ 𝑑𝑆

 

Σ

=
𝑄полн
𝜀0

, ∯ 𝑃⃗⃗ ⋅ 𝑑𝑆

 

Σ

= 𝑄пол, ∯ 𝐷⃗⃗⃗ ⋅ 𝑑𝑆

 

Σ

= 𝑄непол 

Граничные условия для векторов 𝐸⃗⃗, 𝐷⃗⃗⃗, 𝑃⃗⃗ 

 
𝐸1𝑛,  𝐸2𝑛,  𝐸1𝜏,  𝐸2𝜏− ? 

 

1. Для нормальных составляющих. 

𝑛⃗⃗ = 𝑛⃗⃗1 = −𝑛⃗⃗2, |𝑛⃗⃗| = |𝑛⃗⃗1| = |𝑛⃗⃗2| = 1 
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Теорема Гаусса: 

∯𝐸⃗⃗𝑑𝑆

Σ

=
𝑄полн
𝜀0

 

Φ𝐸 = 𝐸1𝑛1𝑆 + 𝐸2𝑛2𝑆 = (𝐸𝑛1 − 𝐸𝑛2)𝑆 =
𝜎полн𝑆

𝜀0
 

𝐸𝑛1 − 𝐸𝑛2 =
𝜎полн
𝜀0

 

Аналогично: 

𝑃𝑛1 − 𝑃𝑛2 = −𝜎пол  

𝐷𝑛1 − 𝐷𝑛2 − 𝜎непол  

 

2. Для тангециальных составляющих. 

Теорема о циркуляции в электростатике: 

∮ 𝐸⃗⃗𝑑𝑙

𝐿

= 0 

𝐸1𝜏𝑙 − 𝐸2𝜏𝑙 = 0 

𝐸1𝜏 = 𝐸2𝜏  

Материальные уравнения для линейного, изотропного диэлектрика (𝜀 = 𝑐𝑜𝑛𝑠𝑡): 

𝐷⃗⃗⃗ = 𝜀0𝜀𝐸⃗⃗

𝑃⃗⃗ = 𝜀0(𝜀 − 1)𝐸⃗⃗ = 𝜀0𝜒𝐸⃗⃗
 

𝜒 – диэлектрическая восприимчивость 

Для 𝐷⃗⃗⃗ и 𝑃⃗⃗: 

 
𝐷⃗⃗⃗1𝜏
𝜀1
=
𝐷⃗⃗⃗2𝜏
𝜀2
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𝑃1𝜏
𝜀1 − 1

=
𝑃2𝜏
𝜀2 − 1

 

Втягивание диэлектрика в неоднородное поле 

 

 

Связь неполяризационных и поляризационных зарядов в однородных 

изотропных средах 

div P⃗⃗⃗ = −𝜌пол 

однородная поляризация  ↔   𝑃⃗⃗ = 𝑐𝑜𝑛𝑠𝑡 ⇒   𝜌пол = 0 

div 𝐸⃗⃗ =
1

𝜀0
(𝜌пол + 𝜌непол) 

div (
𝑃⃗⃗

𝜀 − 1
) = 𝜌пол + 𝜌непол 

1

𝜀 − 1
div 𝑃⃗⃗ = 𝜌пол + 𝜌непол 

div 𝑃⃗⃗ = −𝜌пол   ⇒   𝜌пол (−
1

𝜀 − 1
− 1) = 𝜌непол 

𝜌пол = −
𝜀 − 1

𝜀
𝜌непол  

Если в диэлектрике нет сторонних объемных зарядов, то поляризационные заряды 

находятся только на поверхности. 
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Изотропная однородная диэлектрическая пластина в однородном поле 

 

𝐸⃗⃗0 – внешнее поле 

𝐸⃗⃗𝑖𝑛 – поле в диэлектрике 

𝐸⃗⃗𝑖𝑛  =
1

𝜀0
(𝐷⃗⃗⃗ − 𝑃⃗⃗) =

𝐸⃗⃗0
𝜀

 

𝜎пол = 𝑃𝑖𝑛 = 𝜀0(𝜀 − 1)𝐸𝑖𝑛 =
𝜀0(𝜀 − 1)

𝜀
𝐸0 

Изотропный однородный диэлектрический шар в однородном поле 

 

Поле заряженного шара (теорема Гаусса): 

𝐸⃗⃗ =
𝜌𝑟

3𝜀0
 

Поляризованный шар можно представить себе как два разноименных однородно 

заряженных (не диэлектрических!) шара, центры которых смещены на небольшое 

расстояние 𝑙. 

𝑝 = 𝑄𝑙 = 𝜌𝑉𝑙 
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𝑃⃗⃗ ≡
𝑝

𝑉
= 𝜌𝑙 

𝐸⃗⃗пол =
𝜌𝑟

3𝜀0
−
𝜌(𝑟 + 𝑙)

3𝜀0
= −

𝜌𝑙

3𝜀0
= −

𝑃⃗⃗

3𝜀0
 

𝐸⃗⃗𝑖𝑛 = 𝐸⃗⃗0 + 𝐸⃗⃗пол = 𝐸⃗⃗0 −
𝑃⃗⃗

3𝜀0
 

𝑃⃗⃗ = 𝜀0(𝜀 − 1)𝐸⃗⃗𝑖𝑛 ⇒ 𝐸⃗⃗𝑖𝑛 = 𝐸⃗⃗0 −
𝜀 − 1

3
𝐸⃗⃗𝑖𝑛 

𝐸⃗⃗𝑖𝑛 =
3

𝜀 + 2
𝐸⃗⃗0 < 𝐸⃗⃗0  

𝑃⃗⃗ =
3(𝜀 − 1)

𝜀 + 2
𝜀0𝐸⃗⃗0  

𝜀 → 1  ⇒   𝐸⃗⃗𝑖𝑛 → 𝐸⃗⃗0,    𝑃⃗⃗ → 0 

𝜀 → ∞ ⇒  𝐸⃗⃗𝑖𝑛 → 0,   𝑃 → 3𝜀0𝐸⃗⃗0,   𝐸⃗⃗пол = −𝐸⃗⃗0 

Граничные условия и экспериментальное измерение 𝐸⃗⃗ и 𝐷⃗⃗⃗ внутри диэлектрика 

Полость в виде иглы, направленной вдоль поля: 

 

𝐸⃗⃗𝑖𝑛 = 𝐸⃗⃗0 

Полость в виде диска перпендикулярного полю: 
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𝐷⃗⃗⃗𝑖𝑛 = 𝐷⃗⃗⃗0   ⇒   𝐸⃗⃗𝑖𝑛 =
𝐸⃗⃗0
𝜀

 

Диэлектрический шар с малой плоской полостью: 

 

𝐸⃗⃗𝑖𝑛 =
3

𝜀 + 2
𝐸⃗⃗0, 𝑃⃗⃗𝑖𝑛 =

3𝜀0(𝜀 − 1)

𝜀 + 2
𝐸⃗⃗0 

𝐸⃗⃗′𝑖𝑛 = 𝐸⃗⃗𝑖𝑛 +
𝑃⃗⃗

𝜀0
=

3𝜀

𝜀 + 2
𝐸⃗⃗0 ≥ 𝐸⃗⃗0 

Фактор формы диэлектрика 

𝐸⃗⃗𝑖𝑛 = 𝐸⃗⃗0 + 𝐸⃗⃗пол = 𝐸⃗⃗0 −
𝑁

𝜀0
𝑃⃗⃗ 

𝑁 – фактор формы 

𝑁 = 0 ↔  бесконечная пластина вдоль 𝐸⃗⃗0 

𝑁 = 1 ↔  бесконечная пластина перпендикулярна 𝐸⃗⃗0 

                 однородный шар 

Энергия и силы в электростатическом поле 

Взаимодействие точечного заряда и точечного диполя 

Для точечного заряда: 

𝐹⃗𝑞 = 𝑞𝐸⃗⃗ 

Для точечного диполя: 

𝐹⃗ = 𝑞𝐸⃗⃗+ − 𝑞𝐸⃗⃗− = 𝑞(𝐸⃗⃗+ − 𝐸⃗⃗−) = 𝑞
𝜕𝐸⃗⃗

𝜕𝑙
𝛿𝑙 = 𝑝

𝜕𝐸⃗⃗

𝜕𝑙
 

𝑁 =
1

3
↔ 
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𝐹⃗ = 𝑝
𝜕𝐸⃗⃗

𝜕𝑙
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Лекция 7 

 

𝐹𝑥 = 𝑞(𝐸+𝑥 − 𝐸−𝑥) = 𝑞(∇𝐸)𝑥𝑑𝑥 

𝐹𝑦 = 𝑞(∇𝐸)𝑦𝑑𝑦 

𝐹𝑧 = 𝑞(∇𝐸)𝑧𝑑𝑧 

𝑝 = 𝑞𝑑𝑙, 𝑑𝑙 = 𝑖𝑑𝑥 + 𝑗𝑑𝑦 + 𝑘⃗⃗𝑑𝑧 

𝐹⃗ = (𝑝 ⋅ ∇)𝐸⃗⃗  

Сила, действующая на диэлектрик 

𝜀 = 𝑐𝑜𝑛𝑠𝑡 

𝑑𝑝 = 𝑃⃗⃗𝑑𝑉 

𝑑𝐹⃗ = (𝑑𝑝 ⋅ ∇)𝐸⃗⃗ = (𝑃⃗⃗ ⋅ ∇)𝐸⃗⃗𝑑𝑉 = 𝜀0(𝜀 − 1)(𝐸⃗⃗ ⋅ ∇)𝐸⃗⃗𝛿𝑉 = 𝜀0
𝜀 − 1

2
∇𝐸2𝑑𝑉 

𝐹⃗ =∭𝑑𝐹⃗

𝑉

 

𝐹⃗ – пондеромоторная сила, направлена в сторону увеличения |𝐸⃗⃗|: 

𝑑𝐹⃗

𝑑𝑉
=
𝜀0(𝜀 − 1)

2
∇𝐸2  

Сила, действующая на проводник 

𝛿𝑞 = 𝜎𝑑𝑆 

𝑑𝐹 = 𝛿𝑞 ⋅ 𝐸 =
𝜎2

2𝜀0
𝑑𝑆 

𝑑𝐹

𝑑𝑆
=
𝜎2

2𝜀0
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(поверхностная плотность силы) 

Пример. Сила, действующая на обкладки плоского конденсатора 

 

𝐸⃗⃗𝑖𝑛 = 𝐸⃗⃗+𝜎 + 𝐸⃗⃗−𝜎 =
𝜎

2𝜀0
+
𝜎

2𝜀0
=
𝜎

𝜀0
 

𝐹+ = (+𝑄) ⋅ 𝐸−𝑄 =
𝑄2

2𝜀0𝑆
 

Момент, действующий на электрический диполь 

 

𝑀⃗⃗⃗ = [𝑟 × 𝐹⃗] 

𝑀⃗⃗⃗𝑞 = [𝑟+ × 𝐹⃗+] + [𝑟− × 𝐹⃗−] 

𝐸⃗⃗ = 𝑐𝑜𝑛𝑠𝑡 ⇒  𝐹⃗дип = 0 

𝑀⃗⃗⃗дип = 𝑞[𝑟+ × 𝐸⃗⃗ ] + 𝑞[𝑟− × 𝐸⃗⃗ ] = 𝑞[(𝑟+ − 𝑟−) × 𝐸⃗⃗] = [𝑞𝑙 × 𝐸⃗⃗] 
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𝑀⃗⃗⃗дип = [𝑝 × 𝐸⃗⃗] = 𝑝𝐸 sin𝛼  

       

∑𝑝𝑖 = 0

𝑖

                        ∑𝑝𝑖 ≠ 0

𝑖

 

Энергия системы зарядов в электростатическом поле 

 

Энергия точечного заряда: 

𝑊 = 𝑞𝜑 

𝜑 =
𝐴min  
внеш

𝑞
=
𝐴поля
𝑞

 

Энергия системы двух точечных зарядов на расстоянии 𝑟: 
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𝜑1→2 =
𝑞1

4𝜋𝜀0𝑟
 

𝑊1 = 𝑞2𝜑1→2 =
𝑞1𝑞2
4𝜋𝜀0𝑟

 

𝑊2 = 𝑞1𝜑2→1 =
𝑞1𝑞2
4𝜋𝜀0𝑟

= 𝑊1 = 𝑊 

(общая энергия взаимодействия) 

𝑊 =
1

2
(𝑞1𝜑2→1 + 𝑞2𝜑1→2) ≡

1

2
(𝑞1𝜑1 + 𝑞2𝜑2) 

Энергия системы 𝑁 точечных зарядов: 

𝑊 =
1

2
∑𝑞𝑖𝜑𝑖

𝑁

𝑖=1

 

Энергия системы 𝑁 проводников в электростатическом поле 

 

𝑊 =
1

2
∑ ∑ 𝛿𝑄𝑖𝑗𝜑𝑖

𝑁1→∞

𝑗=1

𝑁

𝑖=1

=
1

2
∑𝜑𝑖

𝑁

𝑖=1

∑𝛿𝑄𝑖𝑗

𝑁

𝑗=1

=
1

2
∑𝜑𝑖𝑄𝑖

𝑁

𝑖=1

 

𝑊 =
1

2
∑𝜑𝑖𝑄𝑖

𝑁

𝑖=1

 

𝜑𝑖 = 𝜑𝑖
собств + 𝜑𝑖

взаим 

𝑊 =
1

2
{∑𝜑𝑖

собств𝑞𝑖

𝑁

𝑖=1

+∑𝜑𝑖
взаим𝑄𝑖

𝑁

𝑖=1

} 
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∑𝜑𝑖
собств𝑞𝑖

𝑁

𝑖=1

− собственная энергия 𝑖 проводника 

∑𝜑𝑖
взаим𝑄𝑖

𝑁

𝑖=1

− энергия взаимодействия проводников 

Энергия плоского конденсатора 

 

𝑊 =
1

2
(𝑄𝜑+ − 𝑄𝜑−) =

1

2
𝑄𝑈, 𝑈 = 𝐸𝑑 

𝐶 =
𝑄

𝑈
  ⇒    𝑊 =

𝑄𝑈

2
=
𝐶𝑈2

2
=
𝑄2

2𝐶
 

Работа сторонних сил по перенесению заряда от «-» к «+»: 

Δ𝑊 = 𝛿𝑞(𝜑2 − 𝜑1) 

𝐴стор =∑𝛿𝑞Δ𝜑 =
𝑄𝑈

2
=
𝐶𝑈2

2
=
𝑄2

2𝐶
 

Если конденсатор заполнен диэлектриком: 

𝐶 =
𝜀𝜀0𝑆

𝑑
 

По теореме Гаусса: 

𝐷 = 𝜎 =
𝑄

𝑆
 

𝐴стор =∑𝑆𝛿𝐷 ⋅ 𝑑 ⋅ 𝐸 = 𝑑 ⋅ 𝑆∑𝐸𝛿𝐷 = 𝑉∫𝐸𝛿𝐷 

Наиболее общая формула для изменения энергии электрического поля: 
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Δ𝑊эл = 𝛿∫(𝐸⃗⃗ ⋅ 𝛿𝐷⃗⃗⃗)  

𝑊 =
𝑄𝑈

2
, 𝐸 =

𝑄

𝑆𝜀0
, 𝑈 = 𝐸𝑑   ⇒    𝑊 =

𝜀0𝐸
2

2
𝑆𝑑 

Объемная плотность энергии электрического поля в вакууме: 

𝑤 =
𝜀0𝐸

2

2
 

В общем случае: 

𝑤 =
(𝐸⃗⃗ ⋅ 𝐷⃗⃗⃗)

2
 

Соединения конденсаторов 

 Последовательное 

 

𝑈 = 𝑈1 + 𝑈2 =
𝑄

𝐶1
+
𝑄

𝐶2
=

𝑄

𝐶эфф
 

1

Сэфф
=
1

С1
+
1

С2
 

 Параллельное 

 

U1 = 𝑈2 = 𝑈 =
𝑄1
𝐶1
=
𝑄2
𝐶2
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𝑄 = 𝑄1 + 𝑄2 = 𝐶𝑈1 + 𝐶𝑈2 = (𝐶1 + 𝐶2)𝑈 = 𝐶эфф𝑈 

𝐶эфф = 𝐶1 + 𝐶2  

Связь пондеромоторных сил, действующих на проводники, и энергии 

 

Δ𝑊пот + Δ𝑊кин = 𝐴внеш + 𝐴внутр
  

В электростатике: 

Δ𝑊кин = 0, 𝐴внутр =
𝛿𝑊тепл
𝛿𝑡

= 𝐼2𝑅 = 0   ⇒      Δ𝑊 = 𝐴внеш 

𝛿𝐴внеш = 𝐹𝜉𝑑𝜉 +∑𝜑𝑖𝛿𝑞𝑖
𝑖

 

𝛿𝑊 =
1

2
(∑𝛿𝑞𝑖𝜑𝑖

𝑁

𝑖=1

+∑𝛿𝜑𝑖𝑞𝑖

𝑁

𝑖=1

) 

1. 𝑞𝑖 = 𝑐𝑜𝑛𝑠𝑡 

−𝐹пм𝑑𝜉 = 𝐹𝜉𝑑𝜉 = Δ𝑊 

𝐹пм= −
𝑑𝑊

𝑑𝜉
|
𝑄

 

2. 𝜑𝑖 = 𝑐𝑜𝑛𝑠𝑡 

 

𝛿𝑊пот = 𝐹𝜉𝑑𝜉 + 2𝛿𝑊пот 
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𝛿𝑊пот = −𝐹𝜉𝑑𝜉 

𝐹пм =
𝑑𝑊

𝑑𝜉
|
𝜑
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Лекция 8 

Вычислим силу 𝐹𝜉 , действующей на обкладки плоского конденсатора, двумя 

способами. 

1. 𝑄 = 𝑐𝑜𝑛𝑠𝑡 

 
 

𝐸𝑖𝑛 =
𝜎

𝜀0
=
𝑄

𝑆𝜀0
, 𝑤 =

𝜀0𝐸𝑖𝑛
2

2
, 𝑊пот = 𝑤𝑉 

Δ𝑉 = 𝑆(𝑑 + 𝑑𝜉) − 𝑆𝑑 = 𝑆 ⋅ 𝑑𝜉 

Δ𝑊пот = 𝑑𝑊пот =
𝜀0
2
(
𝑄

𝑆𝜀0
)
2

𝑆𝑑𝜉 =
𝑄2

2𝑆𝜀0
𝑑𝜉 > 0 

𝑑𝑊пот 
𝑑𝜉

=
𝑄2

2𝑆𝜀0
   ⇒     𝐹𝜉 = −

𝑄2

2𝑆𝜀0
 

2. 𝑈 = 𝑐𝑜𝑛𝑠𝑡 

 

𝐶 =
𝜀0𝑆

𝑑
, 𝑊пот =

𝐶𝑈2

2
 

𝑑𝐶 =
𝜀0𝑆

𝑑 + 𝑑𝜉
−
𝜀0𝑆

𝑑
= −𝜀0𝑆

𝑑𝜉

𝑑(𝑑 + 𝑑𝜉)
≅ −

𝜀0𝑆𝑑𝜉

𝑑2
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𝑑𝑊пот =
𝑈2

2
𝑑𝐶 < 0 

𝐹𝜉 =
𝑑𝑊пот
𝑑𝜉

= −
𝜀0𝑆𝑈

2

2𝑑2
=
𝐶2𝑈2

2𝜀0𝑆
= −

𝑄2

2𝜀0𝑆
 

Энергетический метод расчета пондеромоторных сил в присутствии диэлектрика 

Энергия диэлектрика должна быть учтена в выражении для потенциальной энергии. 

 

𝑊пот =
𝑄2

2𝐶
=
𝑄𝑈

2
=
𝐶𝑈2

2
, 𝑄 = 𝑐𝑜𝑛𝑠𝑡 

𝐶𝜀 =
𝜀0𝜀𝜉𝑎

2
, 𝐶в =

𝜀0(𝑎 − 𝜉)𝑎

𝑑
 

𝐶эфф = 𝐶𝜀 + 𝐶в =
𝜀0𝑎

2
(𝜀𝜉 + 𝑎 − 𝜉) 

𝑊пот =
𝑄2

2𝐶эфф
=

𝑄2𝑑2

2𝜀0𝑎(𝑎 + 𝜉(𝜀 − 1))
 

𝐹𝜉 = −
𝑑𝑊пот
𝑑𝜉

|
𝑄

= −
𝑄2𝑑

2𝜀0𝑎
(−

𝜀 − 1

(𝑎 + 𝜉(𝜀 − 1))
2) =

𝑄2𝑑(𝜀 − 1)

2𝜀0𝑎(𝑎 + 𝜉(𝜀 − 1))
2 

(диэлектрик втягивается в конденсатор) 

Для элемента диэлектрика: 

𝑑𝑊пот = 𝑑 (
𝐶𝑈2

2
) =

𝑈2

2
𝑑𝐶, 𝑈 = 𝑐𝑜𝑛𝑠𝑡 
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𝐹 =
𝑑𝑊пот
𝑑𝜉

|
𝑈

=
𝑈2

2

𝑑𝐶

𝑑𝜉
    ↔     𝐹 = −

𝑑𝑊пот
𝑑𝜉

|
𝑄

=
𝑄2

2𝐶2
𝑑𝐶

𝑑𝜉
 

𝑑𝑊пот = 𝑑 (
𝑄2

2𝐶
) = −

𝑄2

2𝐶2
𝑑𝐶, 𝑄 = 𝑐𝑜𝑛𝑠𝑡 

Энергия неполярных диэлектриков 

Модель атома Томсона: 

 

              𝐸⃗⃗𝑖𝑛 =
𝜌𝑟

3𝜀0
 

Поляризация при появлении электростатического поля: 

𝑝 = 𝑞𝑟, 𝑃⃗⃗ =
1

𝛿𝑉
∑𝑝𝑖
𝑖

 

𝑝 = 𝛼𝐸 – атомная поляризуемость 

В равновесии: 

 

𝐸𝑞 = 𝐸𝑖𝑛𝑞   ⇒    𝐸 = 𝐸𝑖𝑛    ⇒    𝐸 =
𝜌𝑟

3𝜀0
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𝑝 =
𝛼𝜌𝑟

3𝜀0
=

𝑞

4
3𝜋𝑅

3

𝛼𝑟

3𝜀0
=

𝛼𝑝

4𝜋𝜀0𝑅
3
   ⇒    𝛼 = 4𝜋𝜀0𝑅

3 

𝑝 = 𝛼𝐸⃗⃗  

Работа внешнего поля, затрачиваемая на образование диполя 

𝛿𝐴 = 𝐹𝛿𝑟 = (𝑞
𝜌𝑟

3𝜀0
) 𝑑𝑟 

𝑟0   ↔   равновесное состояние 

𝐴 = ∫ 𝐹𝑑𝑟

𝑟0

0

=
𝑞𝜌

3𝜀0
∫ 𝑟𝑑𝑟

𝑟0

0

=
𝑞𝜌

3𝜀0

𝑟0
2

2
=
𝑞𝑟0
2
𝐸равн =

𝑝𝐸равн

2
 

Энергия, затрачиваемая на образование диполя: 

𝑊дип
внутр

=
𝑝𝐸

2
 

Энергия диполя во внешнем поле известна (перемещение из бесконечности в данную 

точку): 

𝑊дип
внеш = −𝑝𝐸 

𝑊 =
𝑝𝐸

2
− 𝑝𝐸 = −

𝑝𝐸

2
 

Рассмотрим диэлектрическую пластину. 

𝐷⃗⃗⃗ = 𝜀0𝐸⃗⃗ + 𝑃⃗⃗ 

𝑊 =
(𝐷⃗⃗⃗ ⋅ 𝐸⃗⃗)

2
𝑉 = (

𝜀0𝐸
2

2
+
𝐸𝑃

2
)𝑉 

Замечание: 

𝑊 =∑𝑞𝑖𝜑𝑖

𝑁

𝑖=1

 

Формула несправедлива, так как не учитывается работа по созданию поляризации. 
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Энергия полярных диэлектриков. Формула Клаузиуса – Моссотти 

При отсутствии среды диполь будет вращаться бесконечно долго. При наличии поля – 

поляризуется вдоль вектора 𝐸⃗⃗. 

При поляризации полярного диэлектрика при 𝑇 = 𝑐𝑜𝑛𝑠𝑡 должно выделяться тепло, при 

𝑆 = 𝑐𝑜𝑛𝑠𝑡 произойдет нагрев диэлектрика. 

𝛼 – микроскопическая характеристика 

𝜀 – макроскопическая характеристика 

Нужно найти свзяь между 𝛼 и 𝜀. Используем метод сферы Лоренца. 

 

𝐸⃗⃗𝑃 =
𝑃⃗⃗

3𝜀0
, 𝐸⃗⃗лок = 𝐸⃗⃗ +

𝑃⃗⃗

3𝜀0
, 𝐸⃗⃗ = 𝐸⃗⃗0 

𝑝 = 𝛼𝜀0𝐸⃗⃗лок 

𝑃⃗⃗ = 𝜀0(𝜀 − 1)𝐸⃗⃗ = 𝑛𝑝,   𝑛 – концентрация диполей 

𝑃⃗⃗ = 𝑛𝛼𝜀0 (𝐸⃗⃗ +
𝑃⃗⃗

3𝜀0
) 

𝜀0(𝜀 − 1)𝐸⃗⃗ = 𝑛𝛼𝜀0 (𝐸⃗⃗ +
𝑃⃗⃗

3𝜀0
)    ⇒    𝜀 − 1 = 𝑛𝛼 (1 +

𝜀 − 1

3
) 

𝜀 − 1

𝜀 + 2
=
𝑛𝛼

3
 

Если вещество состоит из частиц нескольких сортов, то 
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𝜀 − 1

𝜀 + 2
=
1

3
∑𝑛𝑖𝛼𝑖

𝑁

𝑖=1

 

Формула справедлива только для неполярных диэлектриков! 

Пьезоэлектрики и пьезоэффект 

 
продольный                поперечный 

Виды пьезоэлектриков: кварц, турмалин, мегнетова соль, титанат бария 

Свойства пьезоэлеткриков: 

1. Ионные кристаллы. 

2. Отсутствие центра симметрии. 

3. Наличие полярных осей. 

4. Линейность. 

5. При изменении знака деформации заряды меняют знак. 
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Лекция 9 

Классификация диэлектриков 

 Неполярные (жидкости, газы) 

 Полярные (жидкости, газы) 

 Сегнетоэлектрики 

 Пироэлектрики 

 Пьезоэлеткрики 

 Электреты 

Полярные диэлектрические жидкости: вода, спирт, эфиры. 

 

Cегнетоэлектрики – вещества, у которых в некотором температурном интервале 

существует спонтанная поляризованность 𝑃⃗⃗. 

При определенных условиях дипольные моменты спонтанно устанавливаются 

параллельно друг другу в небольших областях кристалла, называемых доменами. 

 

𝑃⃗⃗полн =∑𝑃⃗⃗𝑖
𝑖

= 0 
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𝑃𝐶 – остаточная поляризованность, 𝐸𝑐 – коэрцитивная сила 

Пироэлектрики – сегнетоэлектрики без разбиения на домены. 

Электреты – аморфные материалы (смолы, полимеры), имеющие остаточную 

поляризованность после удаления внешнего электрического поля, но в них нет 

спонтанной поляризованности (это не сегнетоэлектрики). 

Связь 𝑃⃗⃗ и 𝐸⃗⃗ 

1. 𝑃⃗⃗ = 𝜀0(𝜀 − 1)𝐸⃗⃗ – полярные, неполярные 

2. 𝑃⃗⃗ = 𝜀0𝜒̂𝐸⃗⃗ 

(

𝑃𝑥
𝑃𝑦
𝑃𝑧

) = 𝜀0 (

𝜒𝑥𝑥 𝜒𝑥𝑦 𝜒𝑥𝑧
𝜒𝑦𝑥 𝜒𝑦𝑦 𝜒𝑦𝑧
𝜒𝑧𝑥 𝜒𝑧𝑦 𝜒𝑧𝑧

)(

𝐸𝑥
𝐸𝑦
𝐸𝑧

) 

3. Для сегнетоэлектриков 𝑃(𝐸) – неоднозначная функция. 

𝑃⃗⃗ = 𝜀0𝜀(𝐸⃗⃗)𝐸⃗⃗, 𝜀(𝐸 → 0)~104 

𝑃⃗⃗ ≅ 𝑃⃗⃗0 + 𝜀0𝜀𝐸⃗⃗,       𝑃⃗⃗0 – замороженная поляризация 
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Фактор Больцмана 

 

𝑓(𝑊) = 𝐶𝑒−
𝑊
𝑘𝑇 

𝑊 = −𝑝0𝐸0 cos 𝜃 , 𝛽 =
𝑝0𝐸0
𝑘𝑇

   ⇒    𝑓(𝑊) = 𝐶𝑒
𝛽 cos𝜃
𝑘𝑇  

𝑑𝑠 = 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜑   ↔    𝑑Ω = sin 𝜃 𝑑𝜃𝑑𝜑 

Условие нормировки: 

∫ 𝑓(𝑊)𝑑Ω

Ω

= 1 

∫ 𝑑𝜑

2𝜋

0

∫𝐶𝑒𝛽 cos𝜃 sin 𝜃 𝑑𝜃

𝜋

0

= 1 

2𝜋𝐶

𝛽
∫ 𝑒𝜉𝑑𝜉

𝛽

−𝛽

= 1 

2𝜋𝐶

𝛽
(𝑒𝛽 − 𝑒−𝛽) = 1, sh 𝛽 =

𝑒𝛽 − 𝑒−𝛽

2
 

4𝜋𝐶

𝛽
sh 𝛽 = 1 

< 𝑝𝑧 > =  ∫ 𝑝0 cos 𝜃 𝑓(𝑊)𝑑Ω

Ω

= 𝑝0𝐶 ⋅ 2𝜋∫ sin 𝜃 cos 𝜃 𝑒
𝛽 cos𝜃𝑑𝜃

𝜋

0
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𝐼(𝛽) ≡ ∫ sin 𝜃 𝑒𝛽 cos𝜃𝑑𝜃

𝜋

0

=
2sh 𝛽

𝛽
 

𝑑𝐼(𝛽)

𝑑𝛽
= ∫ cos 𝜃 sin 𝜃 𝑒𝛽 cos𝜃𝑑𝜃

𝜋

0

=
2ch 𝛽

𝛽
− 
2sh 𝛽

𝛽2
 

< 𝑝𝑧 > = 𝑝0𝐶 ⋅
4𝜋

𝛽
(ch 𝛽 −

sh 𝛽

𝛽
) = 𝑝0 (cth 𝛽 −

1

𝛽
) = 𝑝0ℒ(𝛽) 

ℒ(𝛽) – функция Ланжевена 

 

ℒ(𝛽) → 1 при 𝛽 → ∞ 

Если 𝛽 ≪ 1: 

ℒ(𝛽) ≅
𝛽

3
−
𝛽3

45
 

< 𝑝𝑧 > ≅
𝑝0𝛽

3
=
𝑝0
2𝐸

3𝑘𝑇
= 𝛼ориент𝜀0𝐸   ⇒    𝛼ориент =

𝑝0
2

3𝜀0𝑘𝑇
 

𝜒 = 𝑛𝛼ориент =
𝑛𝑝0

2

3𝜀0𝑘𝑇
 

𝜒 =
𝐶

3𝑘𝑇
, 𝑝0𝐸 ≪ 𝑘𝑇 

(закон Кюри для диэлектрической восприимчивости полярных диэлектриков) 

Постоянный электрический ток 

Постоянный (стационарный)  ↔  не зависит от времени 

Условие стационарности: электрическое поле в системе постоянных токов такое же, 

как и в электростатике. 

электрический ток ↔ поток частиц 
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𝑑𝑁 = 𝑛 ⋅ 𝑣𝑑𝑡 ⋅ 𝑆, 𝛿𝑄 = 𝑞𝑑𝑁 

𝐼 =
𝛿𝑄

𝑑𝑡
= 𝑛𝑣𝑞𝑆 

𝑗 =
𝐼

𝑆
= 𝑛𝑞𝑣   ↔    𝑗 = 𝑛𝑞𝑣⃗ 

𝑣⃗ – скорость упорядоченного движения (скорость дрейфа) 

Электрический ток – направленное движение заряженных частиц. 

Проводник можно считать линейным, если 𝑙 ≫ √𝑆. 

Ток создается зарядами на поверхности проводника. 

Где может существовать электрический ток? 

1. вакуум (электроны) 

2. электролиты (ионы) 

3. металлы и полупроводники (электроны) 

Модель вязкой среды 

Уравнение движения: 

𝑚
𝑑𝑣

𝑑𝑡
= −𝑘𝑣 + 𝑞𝐸 

𝑣 = 𝑣0𝑒
−
𝑘𝑡
𝑚 +

𝑞𝐸

𝑘
(1 − 𝑒−

𝑘𝑡
𝑚)    ↔    𝑣 = 𝑣0𝑒

−
𝑡
𝜏 +

𝑞𝐸𝜏

𝑚
(1 − 𝑒−

𝑡
𝜏) 

𝑣0 – начальная скорость,   𝜏 =
𝑚

𝑘
 – время релаксации 

𝑣(0) = 𝑣0, 𝑣(∞) = 𝑣др =
𝑞𝐸

𝑚
𝜏 = 𝑐𝑜𝑛𝑠𝑡   ⇒    𝑣̇(∞) = 0 

𝑗 = 𝑛𝑞𝑣уст =
𝑛𝑞2

𝑚
𝜏𝐸 = 𝜎𝐸 

Закон Ома в дифференциальной форме: 
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𝑗 = 𝜎𝐸⃗⃗ 

𝜎 – коэффициент идеальной электропроводности 

𝜎 =
𝑛𝑞2

𝑚
𝜏 
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Лекция 10 

Модель свободного пробега Друде – Лоренца 

В электрическом поле электроны приобретают направленное движение против поля и 

двигаются с ускорением: 

𝑚𝑎 = 𝑞𝐸 

𝑣ср = 𝑎𝜏св =
𝑞𝐸

𝑚
𝜏св 

𝜏св – среднее время свободного пробега 

 

𝜎 =
𝑛𝑞2

𝑚
𝜏св  

Закон Ома для однородного участка цепи 

В линейном проводнике 𝑗 = 𝜎𝐸⃗⃗   ⇒   линии тока ∥ 𝐸⃗⃗. 

𝜑1 − 𝜑2 = 𝑈 = 𝐸𝑙 

𝐼 = 𝑗𝑆 = 𝜎𝐸 ⋅ 𝑆 =
𝜎𝑈𝑆

𝑙
=
𝑈

𝑅
 

𝑈 = 𝐼𝑅  

𝑅 =
𝑙

𝜎𝑆
=
𝜌𝑙

𝑆
, 𝜌 =

𝑚

𝑛𝑞2𝜏
  

𝑅 – сопротивление,    𝜌 – удельное сопротивление 

Электрическая цепь – замкнутое соединение отдельных элементов (резистор, 

соединяющие провода, источники ЭДС и т.д.), 𝑅пр ≪ 𝑅рез 

Источники ЭДС (электродвижущих сил) – устройства, совершающие ненулевую работу 

при перемещении заряда вдоль замкнутой цепи. 
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Источники ЭДС 

 Химические 

 

 Индукционные 

 

 ТермоЭДС 

 

𝜉𝐴 ≠ 𝜉𝐵  (контактная разность потенциалов) 

 ФотоЭДС 
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Закон Ома для неоднородного участка цепи 

 

 

𝑈пад = 𝐼𝑅 

𝜑1 − 𝜑2 + ℰ = 𝐼𝑅 

Частные случаи: 

1. ℰ = 0  ⇒   𝑈 = 𝐼𝑅 

2. 𝜑1 = 𝜑2 (цепь замкнута)   ⇒   ℰ = 𝐼𝑅 

 

В любом источнике ЭДС имеется внутреннее сопротивление 𝑟: 

𝜑1 − 𝜑2 + ℰ = 𝐼(𝑅 + 𝑟) 

Правило знаков: 
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1) Направление обхода 1-2   ↔   𝜑1 − 𝜑2 

2) Источник ЭДС от «-» к «+»  ↔ +ℰ 

3) Направление обхода совпадает с направлением тока  ↔ +𝐼(𝑅+ 𝑟) 

Правила Кирхгофа 

Рассмотрим разветвленные цепи. 

Ветвь цепи – участок между двумя узлами. 

Узел цепи – точка цепи, где сходятся 3 и более проводников. 

 

Пример 
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{
 
 

 
 𝜑1 − 𝜑2 + ℰ1,2 = 𝐼1,2(𝑅1,2 + 𝑟1,2)                         

𝜑2 − 𝜑3 + ℰ2,3 = 𝐼2,3(𝑅2,3 + 𝑟2,3)                         
⋯

𝜑𝑁−1 − 𝜑1 + ℰ𝑁−1,1 = 𝐼𝑁−1,1(𝑅𝑁−1,1 + 𝑟𝑁−1,1)

 

⇒   ∑ ℰ𝑖,𝑖+1

𝑁−1

𝑖=1

= ∑ 𝐼𝑖,𝑖+1(𝑅𝑖,𝑖+1 + 𝑟𝑖,𝑖+1)

𝑁−1

𝑖=1

 

Также из закона сохранения заряда следует, что в пределах одной ветви во всех ее 

точках сила тока одна и та же. 

Правила Кирхгофа формулируются следующим образом: 

1. Правило напряжений. 

Для любого замкнутого контура разветвленной цепи алгебраическая сумма ЭДС 

равна алгебраической сумме падений напряжений 

∑ℰ𝑗

𝑁

𝑗=1

=∑𝐼𝑗(𝑅𝑗 + 𝑟𝑗)

𝑁

𝑗=1

 

2. Правило токов. 

Алгебраическая сумма токов, втекающих в узел равна 0. 

𝐼втек > 0, 𝐼выт < 0 

         

𝐼1 + 𝐼3 − 𝐼2 = 0 

В замкнутой цепи: (число уравнений для токов) = (число узлов) − 1 
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Последовательное соединение 𝑅 

 

𝐼 =
ℰ

𝑟 + 𝑅1 + 𝑅2
  ↔   𝐼 =

ℰ

𝑟 + 𝑅экв
 

𝑅экв = 𝑅1 + 𝑅2  
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Параллельное соединение 𝑅 

 

{
𝐼 = 𝐼1 + 𝐼2  
𝐼1𝑅1 = 𝐼2𝑅2

   ⇒    𝐼1 =
𝐼𝑅2

𝑅1 + 𝑅2
, 𝐼2 =

𝐼𝑅1
𝑅! + 𝑅2

 

𝜉 = 𝐼𝑟 + 𝐼1𝑅1 = 𝐼 (𝑟 +
𝑅1𝑅2
𝑅1 + 𝑅2

)    ↔     𝐼 =
𝜉

𝑟 + 𝑅экв
 

𝑅экв =
𝑅1𝑅2
𝑅1 + 𝑅2

  ⇔    
1

𝑅экв
=
1

𝑅1
+
1

𝑅2
 

Последовательное соединение ℰ 

 

𝐼 =
(ℰ1 + ℰ2)

𝑟1 + 𝑟2 + 𝑅
   ↔    𝐼 =

ℰэкв
𝑟экв + 𝑅

 

ℰэкв = ℰ1 + ℰ2
𝑟экв = 𝑟1 + 𝑟2
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Параллельное соединение ℰ 

 

{

𝜑1 − 𝜑2 + ℰ1 = 𝐼1𝑟1 
𝜑1 − 𝜑2 + ℰ2 = 𝐼2𝑟2 
𝜑1 − 𝜑2 = −𝐼𝑅          

 

𝜑1 − 𝜑2 + ℰ1
𝑟1

+
𝜑1 − 𝜑2 + ℰ2

𝑟2
= −

𝜑1 − 𝜑2
𝑅

= 𝐼 

(𝜑1 − 𝜑2) (
1

𝑟1
+
1

𝑟2
+
1

𝑅
) = −

ℰ1
𝑟1
−
ℰ2
𝑟2

 

𝐼 =
(
ℰ1
𝑟1
+
ℰ2
𝑟2
)

𝑅 (
1
𝑅
+
1
𝑟1
+
1
𝑟2
)
   ↔    𝐼 =

ℰэкв
𝑅 + 𝑟экв

 

𝑟экв =
𝑟1𝑟2
𝑟1 + 𝑟2

ℰэкв = (
ℰ1
𝑟1
+
ℰ2
𝑟2
) 𝑟экв
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Лекция 11 

         

𝐼,  𝐼1,  𝐼2− ? 

Способ 1. Метод узловых потенциалов: 

{

𝜑1 − 𝜑2 + ℰ1 = 𝐼1𝑟1
𝜑1 − 𝜑2 + ℰ2 = 𝐼2𝑟2
𝜑1 − 𝜑2 = −𝐼𝑅         
𝐼1 + 𝐼2 = 𝐼                 

    ⇒     {

𝐼 = 𝐼1 + 𝐼2                  
ℰ1 − ℰ2 = 𝐼1𝑟1 − 𝐼2𝑟2
ℰ2 = 𝐼2𝑟2 + 𝐼𝑅            

   ⇒  𝐼,  𝐼1,  𝐼2  

Способ 2. Метод контурных токов: 

{
ℰ1 − ℰ2 = 𝐼1𝑟1 + 𝑟2(𝐼1 − 𝐼2)

ℰ2 = 𝑟2(𝐼2 − 𝐼1) + 𝐼2𝑅          
   ⇒   𝐼,  𝐼1,  𝐼2 

Закон Джоуля – Ленца  

 

ℰ = 𝐼(𝑅 + 𝑟) 

Мощность сторонних сил: 

𝑃стор =
𝛿𝐴стор

𝑑𝑡
=
𝛿𝑞

𝑑𝑡
ℰ = 𝐼ℰ = 𝐼2(𝑅 + 𝑟) 

Закон Джоуля – Ленца для участка цепи: 
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𝑃тепл = 𝐼
2𝑅 =

𝑈2

𝑅
= 𝑈𝐼  

 

𝑅 =
𝜌𝑙

𝑆
, 𝑃тепл = 𝐼

2𝑅 = (𝑗𝑆)2
𝜌𝑙

𝑆
= 𝜌𝑗2𝑆𝑙 

Закон Джоуля – Ленца в дифференциальной форме: 

𝛿𝑃тепл
𝛿𝑉

= 𝜌𝑗2  

Токи в сплошных средах 

 

𝑄 = 𝐶𝑈 = 𝐶(𝜑+ − 𝜑−) – без тока 

𝜌ср ≫ 𝜌эл 

𝐼 = ∯(𝑗 ⋅ 𝑑𝑆)

Σ

, 𝑗 =
𝐸⃗⃗

𝜌
, 𝐸⃗⃗ =

𝐷⃗⃗⃗

𝜀0𝜀
 

 𝐼 =
1

𝜌𝜀0𝜀
∯(𝐷⃗⃗⃗ ⋅ 𝑑𝑆)

Σ

=
𝑄

𝜌𝜀0𝜀
=
𝐶𝑈

𝜌𝜀0𝜀
=
𝑈

𝑅
 

𝑅𝐶 = 𝜌𝜀0𝜀  
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Для плоского конденсатора: 

𝑗ут ⇈ 𝐸⃗⃗, 𝑅ут
𝜀0𝜀𝑆

𝑑
= 𝜌𝜀0𝜀   ⇒    𝑅ут =

𝜌𝑑

𝑆
 

Следствия движения зарядов: 

 Электрический ток 

 Появление магнитного поля 

 Появление электромагнитных волн (при движении с ускорением) 

Магнитостатика 

Магнитостатика – раздел, изучающий магнитные поля постоянных токов. 

Опыт Эрстеда 
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Магнитное поле Земли 

 

Сила Лоренца 

                                

𝐵⃗⃗ =
𝜇0
4𝜋
𝑞
[𝑣⃗ × 𝑟]

𝑟3
, |𝐵⃗⃗|~

1

𝑟2
  

𝐹⃗л = 𝑞[𝑣⃗ × 𝐵⃗⃗]  

1) 𝑣⃗ ∥ 𝐵⃗⃗   ⇒   𝐹⃗ = 0 

2) 𝑣⃗ ⊥ 𝐵⃗⃗  ↔  движение по окружности 

3) 𝑣⃗ = 𝑣⃗∥ + 𝑣⃗⊥  ↔  движение по спирали 
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Магнитное поле элемента тока 

   

𝑑𝑙 – длина, 𝑑 – поперечный размер 

Для бесконечно малого элемента линейного тока 𝑟 ≫ 𝑑𝑙,   𝑑 

𝑁 = 𝑛𝑆𝑑𝑙, 𝑆 =
𝜋𝑑2

2
 , 𝑗 = 𝑛𝑣⃗, 𝑑𝑙 ⇈ 𝑣⃗ 

𝑑𝐵⃗⃗ = 𝑞
[𝑣⃗ × 𝑟]

𝑟3
, 𝐵⃗⃗𝑑𝑙 =∑𝑑𝐵⃗⃗𝑖

𝑖

= 𝑁𝑑𝐵⃗⃗ =
𝜇0
4𝜋
𝑞𝑛
[𝑣⃗ × 𝑟]

𝑟3
𝑆𝑑𝑙 

𝐵⃗⃗𝑑𝑙 ==
𝜇0
4𝜋
𝐼
[𝑑𝑙 × 𝑟]

𝑟3
 

Закон Био – Савара – Лапласа для замкнутого тока: 

𝐵⃗⃗ =
𝜇0
4𝜋
𝐼 ∮
[𝑑𝑙 × 𝑟]

𝑟3

 

𝐿
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Простые системы 

 Прямой проводник 

 

 Кольцо 

 

 Постоянный магнит 
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Электростатика Магнитостатика 

𝐸⃗⃗ =
1

4𝜋𝜀0

𝑞𝑟

𝑟3
 

𝜀0 = 8, 85 ⋅ 10
−12  

Ф

м
 

𝐵⃗⃗ =
𝜇

4𝜋

𝑞[𝑣⃗ × 𝑟]

𝑟3
 

𝜇0 = 4𝜋 ⋅ 10
−7  
Гн

м
 

Принцип суперпозиции 

Закон сохранения эл. Заряда 

div 𝐸⃗⃗ =
𝜌

𝜀0
 

Нет магнитных зарядов 

div 𝐵⃗⃗ = 0 

 

Пример 1. Магнитное поле проводника с током. 
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𝑧 = −𝑎 ctg 𝛼, 𝑑𝑧 =
𝑎𝑑𝛼

sin2 𝛼
, 𝑟 =

𝑎

sin 𝛼
,

𝑑𝑧

𝑟2
=
𝑑𝛼

𝑎
 

𝑑𝐵⃗⃗𝑑𝑧 =
𝜇0
4𝜋
𝐼
[𝑑𝑙 × 𝑟]

𝑟3
= 𝑘⃗⃗ ⋅

𝜇0𝐼

4𝜋

𝑑𝑧

𝑟2
sin 𝛼 

𝐵⃗⃗ = 𝑘⃗⃗ ⋅
𝜇0𝐼

4𝜋𝑎
∫ sin𝛼 𝑑𝛼

𝛼1

𝜋−𝛼1

= 𝑘⃗⃗ ⋅
𝜇0𝐼

4𝜋𝑎
(cos𝛼1 − cos(𝜋 − 𝛼1)) 

𝐵⃗⃗ = 𝑘⃗⃗ ⋅
𝜇0𝐼

4𝜋𝑎
(cos 𝛼1 − cos𝛼2)  
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Частные случаи: 

1. На оси проводника: 𝛼1 = 0, 𝛼2 = 0  ⇒   𝐵⃗⃗ = 0 

2. Для бесконечного прямолинейного проводника: 

𝛼1 → 0,   𝛼2 → 𝜋   ⇒    𝐵⃗⃗ = 𝑘⃗⃗ ⋅
𝜇0𝐼

2𝜋𝑎
 

𝐵⃗⃗ – индукция магнитного поля 

[𝐵] = [𝜇0] ⋅
А

м
, 1 Тл = 104 Гс 

Закон полного тока (теорема о циркуляции) 

 

Циркуляция вектора 𝐵⃗⃗ по любому замкнутому контуру равна произведению 𝜇0 на 

алгебраическую сумму токов, пронизывающих поверхность, опирающуюся на данный 

контур. 

∮(𝐵⃗⃗ ⋅ 𝑑𝑙) = 𝜇0∑𝐼𝑘
𝑘𝐿

 

 

Правило знаков: циркуляция вектора 𝐵⃗⃗ и положительное направление тока, 

пронизывающего контур, связаны правилом правого винта. 
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Лекция 12 
Прямая задача: 

электростатики 

𝐸⃗⃗ =
1

4𝜋𝜀0
∑
𝑞𝑖𝑟𝑖
𝑟3

𝑁

𝑖=1

 

𝐸⃗⃗ =
1

4𝜋𝜀0
∭

𝜌𝑟

𝑟3
𝑑𝑉

𝑉

 

магнитостатики 

𝐵⃗⃗ =
𝜇

4𝜋

𝑞[𝑣⃗ × 𝑟]

𝑟3
 

𝐵⃗⃗ =
𝜇0
4𝜋
∭

[𝑗 × 𝑟]

𝑟3
𝑑𝑉   

𝑉

 

𝐵⃗⃗ =
𝜇𝐼

4𝜋
∭

[𝑑𝑙 × 𝑟]

𝑟3
𝑑𝑉

𝑉

 

𝐼𝑑𝑙 = 𝑗𝑑𝑉 

 

Пример 2. Поле на оси кольца с током. 

 

𝐵⃗⃗ =
𝜇𝐼

4𝜋
∭

[𝑑𝑙 × 𝑟]

𝑟3
𝑑𝑉

𝑉

 

𝑑𝐵𝑥 =
𝜇0
4𝜋
𝐼
𝑑𝑙

𝑟2
sin 𝛼 , 𝑟 =

𝑅

sin𝛼
 

𝑑𝐵𝑥 =
𝜇0
4𝜋
𝐼
𝑑𝑙 sin3 𝛼

𝑅2
  ⇒   𝐵𝑥 = ∮ 𝑑𝐵𝑥

𝐿

=
𝜇0𝐼

4𝜋𝑅2
sin3 𝛼∮ 𝑑𝑙

𝐿
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𝐵𝑥 =
𝜇0𝐼

2𝑅
sin3 𝛼  

 

         

𝐵𝑥 =
𝜇0𝐼

2𝑅

𝑅3

(𝑥2 + 𝑅2)
3
2

=
𝜇0
4𝜋
⋅
2𝐼𝜋𝑅2

(𝑥2 + 𝑅2)
3
2

, 𝑆 = 𝜋𝑅2 

                                              

𝐵𝑥 =
𝜇0
4𝜋

2𝑚⃗⃗⃗

(𝑥2 + 𝑅2)
3
2

 

В случае элементарного тока 𝑥 ≫ 𝑅: 

𝐵𝑥 =
𝜇0
4𝜋
⋅
2𝑚⃗⃗⃗

𝑥3
 

Аналогия с полем электрического диполя: 

𝐸𝑥 =
1

4𝜋𝜀0

2𝑝

𝑥3
 

Пример 3. Поле на оси конечного соленоида. 

магнитный диполь электрический диполь 

𝑚⃗⃗⃗ = 𝐼𝑆𝑛⃗⃗ – магнитный момент 
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𝑑𝑁 = 𝑛𝑑𝑥 – число витков в элементе 𝑑𝑥 

𝑑𝐵𝑥 =
𝜇0
2

𝑑𝐼

𝑅
sin3 𝛼 

𝑑𝐼 = 𝐼𝑑𝑁 = 𝐼𝑛𝑑𝑥, 𝑥 = −𝑅 ctg 𝛼, 𝑑𝑥 = −
𝑅𝑑𝛼

sin2 𝛼
 

𝑑𝐵𝑥 =
𝜇0
2
𝐼𝑛 sin 𝛼 𝑑𝛼 

𝐵𝑥 = ∫ 𝑑𝐵𝑥

𝛼2

𝜋−𝛼1

=
𝜇0
2
𝐼𝑛 ∫ (−sin𝛼) 𝑑𝛼

𝛼2

𝜋−𝛼1

 

𝐵𝑥 =
𝜇0
2
𝐼𝑛(cos𝛼2 + cos𝛼1) 

Частный случай: 𝛼1 → 0, 𝛼2 → 𝜋 (бесконечный соленоид) 

𝐵𝑥 = 𝜇0𝐼𝑛  

Пример 4. Катушки Гельмгольца 

 

Обратная задача 

электростатики магнитостатики 
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div 𝐸⃗⃗ =
𝜌

𝜀0
, 𝜌−? rot 𝐵⃗⃗ = 𝜇0𝑗, 𝑗−? 

rot 𝑎⃗ = ||

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑎𝑥 𝑎𝑦 𝑎𝑧

|| = [∇ × 𝑎⃗],                            

(rot 𝑎⃗⃗)𝑥 =
𝜕𝑎𝑧
𝜕𝑦

−
𝜕𝑎𝑦
𝜕𝑧

(rot 𝑎⃗⃗)𝑦 =
𝜕𝑎𝑥
𝜕𝑧
−
𝜕𝑎𝑧
𝜕𝑥

(rot 𝑎⃗⃗)𝑧 =
𝜕𝑎𝑦
𝜕𝑥

−
𝜕𝑎𝑥
𝜕𝑦

 

 

Фундаментальные теоремы математического анализа 

1. Теорема о производной под знаком интеграла. 

∫
𝑑𝑓(𝑥)

𝑑𝑥
𝑑𝑥

𝑏

𝑎

= 𝑓(𝑎) − 𝑓(𝑏) 

2. Теорема о градиенте. 

∫grad 𝜓 𝑑𝑙

𝑏

𝑎

= 𝜓(𝑏) − 𝜓(𝑎) 

3. Теорема Остроградского – Гаусса. 

 

∭div 𝑎⃗ 𝑑𝑉

𝑉

=∯(𝑎⃗ ⋅ 𝑑𝑙)

S

 

4. Теорема Стокса. 
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∬(rot 𝑎⃗ ⋅ 𝑑𝑠) = ∮(𝑎⃗ ⋅ 𝑑𝑙)

𝐿𝑆

 

В случае электростатики (поле потенциальное): 

∮(𝐸⃗⃗ ⋅ 𝑑𝑙)

𝐿

= 0   ⇒    rot 𝐸⃗⃗ = 0 = rot(−grad 𝛹)    ⇒    𝐸⃗⃗ = −grad 𝛹 

В случае магнитостатики (поле вихревое): 

∯(rot 𝐵⃗⃗ ⋅ 𝑑𝑠)

𝑆

= ∮(𝐵⃗⃗ ⋅ 𝑑𝑙)

𝐿

, 𝐼 = ∬(𝑗 ⋅ 𝑑𝑠)

𝑆

=
𝛿𝑄

𝑑𝑡
  

Теорема о циркуляции магнитного поля в дифференциальной форме: 

rot 𝐵⃗⃗ = 𝜇0𝑗  

Переход к закону Био – Савара – Лапласа: 

∬(rot 𝐵⃗⃗ ⋅ 𝑑𝑠)

𝑆

= 𝜇0∬(𝑗 ⋅ 𝑑𝑠)

𝑆

= 𝜇0𝐼    ⇒     𝐵⃗⃗ =  
𝜇0
4𝜋
∭

[𝑗 × 𝑟]

𝑟3
𝑑𝑉 

𝑉

 

Закон отсутствия магнитных зарядов 

𝐵⃗⃗ =
𝜇0
4𝜋
𝑞
[𝑣⃗ × 𝑟]

𝑟3
, div (

[𝑣⃗ × 𝑟]

𝑟3
)−? 

div [𝑎⃗ × 𝑏⃗⃗] = (∇ ⋅ [𝑎⃗ × 𝑏⃗⃗]) = ∇𝑎[𝑎⃗ × 𝑏⃗⃗] + ∇𝑏[𝑎⃗ × 𝑏⃗⃗] = 𝑏⃗⃗ rot 𝑎⃗ − 𝑎⃗ rot 𝑏⃗⃗ 

((𝑎⃗ ⋅ [𝑏⃗⃗ × 𝑐]) = ([𝑎⃗ × 𝑏⃗⃗] ⋅ 𝑐) = (𝑐 ⋅ [𝑎⃗ × 𝑏⃗⃗])) 

𝑣⃗ ≡ 𝑎⃗,    
𝑟

𝑟3
≡ 𝑏⃗⃗    ⇒   div (

[𝑣⃗ × 𝑟]

𝑟3
) = (

𝑟

𝑟3
⋅ rot 𝑣⃗⏟
=0

) − (𝑣⃗ ⋅ rot (
𝑟

𝑟3
)

⏟      
=0

) = 0 

(
𝜕𝑣⃗

𝜕𝑥
=
𝜕𝑣⃗

𝜕𝑦
=
𝜕𝑣⃗

𝜕𝑧
= 0, 𝐸⃗⃗ ~ 

𝑟

𝑟3
   ⇒    rot 𝐸⃗⃗ ~ rot (

𝑟

𝑟3
) = 0) 
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div 𝐵⃗⃗ = 0  

Примеры использования теоремы о циркуляции 

1. Прямой проводник 

                            
  

2𝜋𝑟𝐵 = 𝜇0𝐼 

𝐵 =
𝜇0𝐼

2𝜋𝑟
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2. Цилиндрический проводник 

                                                             

3. Бесконечный соленоид 

                                                 

Силы в магнитном поле 

Сила Лоренца:    𝐹л = 𝑞[𝑣⃗ × 𝐵⃗⃗],      𝐹⃗л ⊥ 𝑣⃗ ⊥  𝐵⃗⃗ 

 

Взаимодействие проводников с током (сила Ампера): 

 

2𝜋𝑟𝐵 = 𝜇0𝐼,                𝑟 > 𝑅 

2𝜋𝑟𝐵 = 𝜇0𝑗𝜋𝑟
2, 𝑟 ≤ 𝑅 

𝐵 =
𝜇0
2
𝑗𝑟                                 

 𝐵𝑑𝑙 = 𝜇0𝐼𝑛𝑙  

𝐵 = 𝜇0𝑛𝐼     
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Лекция 13 

Векторный магнитный потенциал 

div 𝐵⃗⃗ = 0,   𝐵⃗⃗ – вихревое поле 

Из векторного анализа: 

div 𝐵⃗⃗ = 0  ↔   div (rot 𝐴) = ∇[∇ × 𝐴] = 0   ⇒    𝐵⃗⃗ = rot 𝐴  

Чем оправдано введение векторного потенциала? 

 Имеет глубокий смысл в квантовой механике (даже если 𝐵⃗⃗ = 0, 𝐴 ≠ 0, то поле 

существует). 

 Уравнения магнитостатики можно записать в виде, аналогичному в 

электростатике. 

 Иногда с помощью него проще вычислить индукцию магнитного поля. 

Свойства векторного потенциала: 

1. 𝐴 ⊥ 𝐵⃗⃗ 

2. Δrot 𝐵⃗⃗ = 𝜇0𝑗 

rot (rot 𝐴) = [∇ × [∇ × 𝐴]] = ∇(∇𝐴) − 𝐴(∇ ⋅ ∇) = grad div 𝐴 − Δ𝐴 

Векторный потенциал определен с точностью до градиента произвольной 

функции: 

rot 𝐴 = rot (𝐴 + grad 𝜓) = rot 𝐴 + rot grad 𝜓⏟      
=0
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Можно наложить дополнительное условие, например div 𝐴 = 0 (нормировка 

Даламбера). 

rot 𝐵⃗⃗ = rot (rot 𝐴) = −Δ𝐴 = 𝜇0𝑗 

ΔA⃗⃗⃗ = −𝜇0𝑗  – уравнение Пуассона 

В электростатике: 

Δ𝜑 = −
𝜌

𝜀0
    →     𝜑 =

1

4𝜋𝜀0
∭

𝜌𝑑𝑉

𝑟

 

𝑉

 

В магнитостатике: 

Δ𝐴𝑥 = −𝜇0𝑗𝑥                              𝐴𝑥 =
𝜇0
4𝜋
∭

𝑗𝑥𝑑𝑉

𝑟

 

𝑉

 

Δ𝐴𝑦 = −𝜇0𝑗𝑦            →             𝐴𝑦 =
𝜇0
4𝜋
∭

𝑗𝑦𝑑𝑉

𝑟

 

𝑉

        ⇒        𝐴 =  
𝜇0
4𝜋
∭

𝑗𝑑𝑉

𝑟

 

𝑉

 

Δ𝐴𝑧 = −𝜇0𝑗𝑧                              𝐴𝑧 =
𝜇0
4𝜋
∭

𝑗𝑧𝑑𝑉

𝑟

 

𝑉

 

Линейный проводник: 

 

𝑟0 – радиус проводника 

𝑗𝑑𝑉 = 𝐼𝑑𝑙     ⇒     𝐴 =
𝜇0
4𝜋
𝐼 ∮

𝑑𝑙

𝑟
𝐿

, |𝐴| ~ ln
𝑟

𝑟0
  

Аналогия с электростатикой. В случае заряженного цилиндра: 

𝐸 ~ 
1

𝑟
, 𝜑 ~ ln

𝑟

𝑟0
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Соленоид 

Внутри соленоида векторный потенциал циркулирует точно так же, как и токи: 

 

Магнитное поле элементарного тока (магнитного диполя) 

𝑚⃗⃗⃗ = 𝑛⃗⃗𝐼𝑆 – магнитный дипольный момент 

𝐴 =
𝜇0
4𝜋

[𝑚⃗⃗⃗ × 𝑟0]

𝑟0
3        (м) 

𝜑 =
1

4𝜋𝜀0

(𝑝 ⋅ 𝑟)

𝑟3
        (э) 

 

𝐴 =
𝜇0
4𝜋
𝐼 ∮
𝑑𝑙

𝑟

 

𝐿

     ⇒     𝐴𝑦 =
𝜇0
4𝜋
𝐼 ∮
𝑑𝑙𝑦
𝑟

 

𝐿

, 𝑑𝑙𝑦 = 𝑙 cos𝜑 

𝑟0 = 𝜌⃗ + 𝑟    ⇒    𝑟 = 𝑟0 − 𝜌⃗ = 𝜌⃗𝑝 + ℎ⃗⃗ − 𝜌⃗ 
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𝑟2 = (𝜌⃗ + ℎ⃗⃗)
2
+ 𝜌2 − 2(𝜌⃗ ⋅ (𝜌⃗𝑝 + ℎ⃗⃗)) = 𝜌𝑝

2 + ℎ2⏟    
𝑟0
2

+ 𝜌2 − 2𝜌𝜌𝑝 cos𝜑 

(𝜌⃗ ⋅ ℎ⃗⃗) = 0, (𝜌⃗ ⋅ 𝜌⃗𝑝) = 𝜌𝜌𝑝 cos𝜑 , (𝜌⃗𝑝 ⋅ ℎ⃗⃗) = 0 

𝜌 = 𝑐𝑜𝑛𝑠𝑡 = 𝑎,   𝑟 ~ 𝑟0 ≫ 𝑎, 𝜌𝑝 = 𝑟0 sin 𝜃 

𝑟2 = 𝑟0
2 + 𝑎2 − 2𝑎𝑟0 sin 𝜃 cos𝜑 = 𝑟0

2

(

 1 +
𝑎2 − 2𝑎𝑟0 sin 𝜃 cos𝜑

𝑟0
2

⏟              
𝜉≪1 )

  

(1 + 𝜉)𝛼 ≈ 1 + 𝛼𝜉, 𝜉 ≪ 1 

1

𝑟
=
1

𝑟0

1

√1 + 𝜉
 ≅

1

𝑟0
(1 −

𝑎2

2𝑟0
2 +

𝑞𝑟0 sin 𝜃 cos𝜑

𝑟0
2 ) , 𝛼 = −

1

2
 

𝐴𝑦 =
𝜇0
4𝜋

𝐼𝑎

𝑟0
∫ cos𝜑 (1 −

𝑎2

2𝑟0
2 +

𝑎𝑟0 sin 𝜃 cos𝜑

𝑟0
2 )𝑑𝜑

2𝜋

0

 

∫ cos𝜑 𝑑𝜑

2𝜋

0

= 0, ∫ cos2 𝜑𝑑𝜑

2𝜋

0

= ∫
1 + cos 2𝜑

2

2𝜋

0

𝑑𝜑 =
1

2
∫ 𝑑𝜑

2𝜋

0

= 𝜋 

𝐴𝑦 =
𝜇0
4𝜋

𝐼 𝜋𝑎2⏞
𝑆

𝑟0 sin 𝜃

𝑟0
3 =

𝜇0
4𝜋

𝑚𝑟0 sin 𝜃

𝑟0
3  

𝐴 =
𝜇0
4𝜋

[𝑚⃗⃗⃗ × 𝑟0]

𝑟0
3  

𝐵⃗⃗ =
𝜇0
4𝜋

3𝑟(𝑟 ⋅ 𝑚⃗⃗⃗) − 𝑚⃗⃗⃗𝑟2

𝑟5
      (м) 

𝐸⃗⃗ =
1

4𝜋𝜀0

3𝑟(𝑟 ⋅ 𝑝) − 𝑝𝑟2

𝑟5
     (э) 
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𝐵⃗⃗ = rot 𝐴 =
𝜇0
4𝜋
 rot [𝑚⃗⃗⃗ ×

𝑟

𝑟3
] , 𝑚⃗⃗⃗ = 𝑐𝑜𝑛𝑠𝑡 

rot [𝑎⃗ × 𝑏⃗⃗] = [∇ × [𝑎⃗ × 𝑏⃗⃗]] = [∇𝑎 × [𝑎⃗ × 𝑏⃗⃗]] + [∇𝑏 × [𝑎⃗ × 𝑏⃗⃗]] = 

        = (𝑏⃗⃗ ⋅ ∇)𝑎⃗ − 𝑏⃗⃗ div 𝑎⃗ + 𝑎⃗ div 𝑏⃗⃗ − (𝑎⃗ ⋅ ∇)𝑏⃗⃗ 

𝑎⃗ = 𝑚⃗⃗⃗ = 𝑐𝑜𝑛𝑠𝑡, 𝑏⃗⃗ =
𝑟

𝑟3
 

rot [𝑚⃗⃗⃗ ×
𝑟

𝑟3
] = 𝑚⃗⃗⃗  div

𝑟

𝑟3⏟  
=0

−
(𝑚⃗⃗⃗ ⋅ ∇)𝑟

𝑟3
, 𝐸⃗⃗ ~ 

𝑟

𝑟3
   ↔    div 𝐸⃗⃗ ~ div (

𝑟

𝑟3
) = 0 

(𝑚⃗⃗⃗ ⋅ ∇)
𝑟

𝑟3
= (𝑚𝑥

𝜕

𝜕𝑥
+ 𝑚𝑦

𝜕

𝜕𝑦
+𝑚𝑧

𝜕

𝜕𝑧
)
𝑖𝑥 + 𝑗𝑦 + 𝑘⃗⃗𝑧

𝑟3
=  

        =
𝑚⃗⃗⃗

𝑟3
+ (𝑚⃗⃗⃗ ⋅ 𝑟)∇ (

1

𝑟3
) = (𝑚⃗⃗⃗ ⋅ 𝑟) (−

3𝑟

𝑟5
) 

𝐵⃗⃗ =
𝜇0
4𝜋

3𝑟(𝑚⃗⃗⃗ ⋅ 𝑟) − 𝑚⃗⃗⃗𝑟2

𝑟5
 

Поток вектора 𝐵⃗⃗ 

 

Φ =∬(𝐵⃗⃗ ⋅ 𝑑𝑆)

Σ

=∬(rot 𝐴 ⋅ 𝑑𝑆

Σ

) = ∮(𝐴 ⋅ 𝑑𝑙)

𝐿

 

∯(𝐵⃗⃗ ⋅ 𝑑𝑆)

Σ

= 0   ↔    div 𝐸⃗⃗ = 0 
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Электромагнитная индукция Фарадея 

Электромагнитная индукция Фарадея – это явление возникновения электрического тока 

в замкнутом контуре при изменении магнитного потока через поверхность, 

опирающуюся на данный контур. 

𝜉инд = −
𝑑Φ

𝑑𝑡
 

Правило Ленца:  

Индукционный ток 𝐼 направлен так, чтобы препятствовать изменению потока, его 

вызвавшего. 

 

 

𝐵⃗⃗инд  ↔  −
𝑑Φ

𝑑𝑡
 

𝐵⃗⃗инд и направление обхода контура с нормалью 𝑛⃗⃗ подчиняются правилу правого винта. 

𝐼 =
ℰинд
𝑅
= −

𝑑Φ

𝑑𝑡
⋅
1

𝑅
,

𝑑Φ

𝑑𝑡
> 0   ⇒    𝐼 < 0  

Природа ЭМ индукции Фарадея 

1. Вихревое электрическое поле. 

𝜕𝐵⃗⃗

𝜕𝑡
≠ 0  ⇒   𝐸⃗⃗вихр 

2. Проводник движется, 𝐵⃗⃗ = 𝑐𝑜𝑛𝑠𝑡  ⇒   сила Лоренца 

𝑑𝐵

𝑑𝑡
> 0  ⇒   

𝑑Φ

𝑑𝑡
> 0 

𝑑𝐵

𝑑𝑡
< 0  ⇒   

𝑑Φ

𝑑𝑡
< 0 
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1. 

𝑑Φ

𝑑𝑡
=
𝑑

𝑑𝑡
∯(𝐵⃗⃗ ⋅ 𝑑𝑆)

 

Σ

= ∯(
𝑑𝐵⃗⃗

𝑑𝑡
⋅ 𝑑𝑆)

 

Σ

=∯(rot 𝐸⃗⃗∗ ⋅ 𝑑𝑆)

 

Σ

= ∮(𝐸⃗⃗∗ ⋅ 𝑑𝑙)

 

𝐿

 ~ ℰинд 

ℰинд = −
𝑑Φ

𝑑𝑡
  ⇒   𝐸⃗⃗∗ ≡ 𝐸⃗⃗    ⇒    rot 𝐸⃗⃗ = −

𝜕𝐵⃗⃗

𝜕𝑡
, 𝐸⃗⃗ ⊥

𝜕𝐵⃗⃗

𝜕𝑡
,

∮(𝐸⃗⃗ ⋅ 𝑑𝑙)

 

𝐿

≠ 0 

rot 𝐸⃗⃗ = −
𝜕

𝜕𝑡
rot 𝐴    ⇒    𝐸⃗⃗ = −

𝜕𝐴

𝜕𝑡
 

 

 

 

Лекция 14 
2. 

 

𝐹𝐴 = 𝐼𝑙𝐵, ΔΦ = 𝑣Δ𝑡 ⋅ 𝑙 ⋅ 𝐵 
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|ℰинд| =
ΔΦ

Δ𝑡
= 𝑣𝑙𝐵, 𝐼инд =

ℰинд
𝑅
, 𝐼полн =

ℰ − 𝑣𝑙𝐵

𝑅
 

Неполная работа силы Лоренца: 

𝐹⃗л = 𝑞[𝑣⃗ × 𝐵⃗⃗], 𝛿𝐴л
′ = 𝐹л𝑙 = 𝑞𝑣𝐵𝑙, 𝜉инд =

𝛿𝐴л
′

𝑞
= 𝑣𝐵𝑙 

Поток магнитной индукции 

Элементарный поток: 

𝑑Φ𝐵 = (𝐵⃗⃗ ⋅ 𝑛⃗⃗)𝑑𝑆 = (𝐵⃗⃗ ⋅ 𝑑𝑆) 

Поток через поверхность: 

Φ =∬𝑑Φ𝐵

 

Σ

=∬(𝐵⃗⃗ ⋅ 𝑑𝑆)

 

Σ

=∬(rot 𝐴 ⋅ 𝑑𝑆)

 

Σ

= ∮(𝐴 ⋅ 𝑑𝑙)

 

𝐿

 

Для линейного тока: 

 

 

Φ12 = ∮(𝐴12 ⋅ 𝑑𝑙1)

 

𝐿1

= ∮(𝑑𝑙1 ⋅ ∮
𝜇0
4𝜋
𝐼2
𝑑𝑙2
𝑟

 

𝐿2

)

 

𝐿1

=
𝜇0
4𝜋
𝐼2 ∮ ∮

(𝑑𝑙1 ⋅ 𝑑𝑙2)

𝑟

 

𝐿2

 

𝐿1

= ℒ12𝐼2 

ℒ12 – коэффициент взаимной индукции 

𝐴 =
𝜇0
4𝜋
𝐼 ∮
𝑑𝑙

𝑟

 

𝐿
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Формула Неймана: 

ℒ12 =
𝜇0
4𝜋
∮ ∮

(𝑑𝑙1 ⋅ 𝑑𝑙2)

𝑟

 

𝐿2

 

𝐿1

 

Коэффициент самоиндукции (индуктивность контура): 

ℒ11 =
Φ11
𝐼1
=
𝜇0
4𝜋
∮ ∮

(𝑑𝑙1 ⋅ 𝑑𝑙1)

𝑟

 

𝐿1

 

𝐿1

 

Φ1 = Φ11 +Φ12 = ℒ11𝐼1 + ℒ12𝐼2 

Φ2 = Φ22 +Φ21 = ℒ22𝐼2 + ℒ21𝐼1 

В общем случае: 

Φ𝑖 =∑ℒ𝑖𝑗𝐼𝑗

𝑁

𝑗=1

      (м) 

𝑄𝑖 = ∑𝛽𝑖𝑗𝜑𝑗

𝑁

𝑗=1 

      (э) 
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Пример 1. Индуктивность бесконечного соленоида 

 

𝑛 =
𝑁

𝐿
, 𝑁 → ∞, 𝐿 → ∞ 

Φ = ℒ𝐼 = 𝑁𝑆𝐵 = 𝑁𝑆 ⋅ 𝜇0𝑛𝐼 = 𝜇0
𝑁2

𝐿2
(𝐿𝑆)𝐼 = 𝜇0𝑛

2𝑉𝐼 

ℒ = 𝜇0𝑛
2𝑉 ,

ℒ

𝑉
= 𝜇0𝑛

2 

[𝜇0] =
Гн

м
, [ℒ] = Гн 

Пример 2. Индуктивность витка провода. 

 

ℒ ≈ 𝜇0𝑅 ln (
𝐷

𝑑
) 

Пример 3.Взаимная индукция соосных соленоидов. 
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𝐿1 = 𝐿2 = 𝐿, 𝑆1 = 𝑆2 = 𝑆, 𝑁1 ≠ 𝑁2 

𝐼1   →   𝐵1   →   Φ2 = 𝑁2𝐵1𝑆 = 𝑁2𝑆 ⋅ 𝜇0
𝑁1𝑁2
𝐿
𝑆𝐼1 = 𝜇0𝑛1𝑛2𝑉𝐼1 

ℒ21 =
Φ2
𝐼1
= 𝜇0𝑛1𝑛2𝑉, ℒ11 = 𝜇0𝑛1

2𝑉, ℒ22 = 𝜇0𝑛2
2𝑉  

ℒ21 = √ℒ11ℒ22  

Энергетические соотношения в системе линейных токов 

 

ℰ −
𝑑Φ

𝑑𝑡
= 𝐼𝑅   ⇒    ℰ𝐼𝑑𝑡⏟

𝛿𝐴эдс

= 𝐼𝑑Φ + 𝐼2𝑅𝑑𝑡 

𝛿𝐴ЭДС = 𝐼𝑑Φ + 𝛿𝑄дж 

𝐼𝑑Φ = 𝐼𝑑(ℒ𝐼) = 𝑑 (
ℒ𝐼2

2
) = 𝑑𝑊магн 

𝛿𝐴ЭДС = 𝑑𝑊магн + 𝛿𝑄дж  
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𝑊магн =
ℒ𝐼2

2
=
Φ𝐼

2
=
Φ2

2ℒ
       (м) 

𝑊эл =
𝐶𝑈2

2
=
𝑄𝑈

2
=
𝑄2

2𝐶
         (э) 
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Для соленоида: 

𝐵 = 𝜇0𝑛𝐼, ℒ = 𝜇0𝑛
2𝑉 

𝑊магн =
1

2
𝜇0𝑛

2𝑉 ⋅
𝐵2

𝜇0
2𝑛2

=
𝐵2

2𝜇0
𝑉   ⇒    𝑤м =

𝐵2

2𝜇0
 

В магнитной среде: 

𝑤м =
(𝐵⃗⃗ ⋅ 𝐻⃗⃗⃗)

2
     ↔       𝑤э =

(𝐸⃗⃗ ⋅ 𝐷⃗⃗⃗)

2
 

 

В случае проводника на рельсах потоком через контур, создаваемого самим током, 

пренебрегают. 

Энергия и сила взаимодействия двух жестких контуров с током 

 

ℰ1 −
𝑑Φ1
𝑑𝑡

= 𝐼1𝑅1,                   ℰ1𝐼1𝑑𝑡 = 𝐼1
2𝑅1𝑑𝑡 + 𝐼1𝑑Φ1   

ℰ2 −
𝑑Φ2
𝑑𝑡

= 𝐼2𝑅2,                   ℰ2𝐼2𝑑𝑡 = 𝐼2
2𝑅2𝑑𝑡 + 𝐼2𝑑Φ2 

𝐼1𝑑Φ1 = 𝐼1𝑑(ℒ11𝐼1 + ℒ12𝐼2) = ℒ11𝐼1𝑑𝐼1 + 𝐼1
2𝑑ℒ11 + 𝐼1𝐼2𝑑ℒ12 + ℒ12𝐼1𝑑𝐼2 

𝐼2𝑑Φ2 = 𝐼2𝑑(ℒ22𝐼2 + ℒ21𝐼1) = ℒ22𝐼2𝑑𝐼2 + 𝐼2
2𝑑ℒ22 + 𝐼2𝐼1𝑑ℒ21 + ℒ21𝐼2𝑑𝐼1 
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По теореме взаимности ℒ12 = ℒ21 

𝐼𝑑Φ1 + 𝐼𝑑Φ2

= 𝑑

(

 
 ℒ11𝐼1

2

2⏟  
энергия
1−го

+
ℒ22𝐼2

2

2⏟  
энергия
2−го 

+ 𝐼1𝐼2ℒ12⏟    
энергия
вз−я

)

 
 

+
𝐼1
2

2
𝑑ℒ11 +

𝐼2
2

2
𝑑ℒ22 + 𝐼1𝐼2𝑑ℒ12⏟                  

работа сил Ампера

 

𝛿𝐴ЭДС = 𝛿𝑄дж + 𝑑𝑊м + 𝛿𝐴Амп 

𝑊м =
ℒ11𝐼1

2

2
+
ℒ22𝐼2

2

2
+ 𝐼1𝐼2ℒ12  

𝛿𝐴Амп =
𝐼1
2

2
𝑑ℒ11 +

𝐼2
2

2
𝑑ℒ22 + 𝐼1𝐼2𝑑ℒ12  

Для жестких контуров: ℒ11 = 𝑐𝑜𝑛𝑠𝑡, ℒ22 = 𝑐𝑜𝑛𝑠𝑡 

𝐹𝐴 =
𝛿𝐴Амп
𝛿𝑥

= 𝐼1𝐼2
𝑑ℒ12
𝑑𝑥

 

Связь сил Ампера в системе линейных контуров с изменением энергии 

𝐼1𝑑Φ1 + 𝐼2𝑑Φ2 = 𝑑𝑊м + 𝛿𝐴Амп 

1. Φ1, Φ2 = 𝑐𝑜𝑛𝑠𝑡 ⇒  𝛿𝐴Амп = −𝑑𝑊м = 𝐹𝐴𝑑𝜉 

𝐹𝐴 = −
𝑑𝑊м
𝑑𝜉
|
𝛷=𝑐𝑜𝑛𝑠𝑡

 

2. 𝐼1, 𝐼2 = 𝑐𝑜𝑛𝑠𝑡  ⇒   𝐼1𝑑Φ1 + 𝐼2𝑑Φ2 = 𝛿𝑊м + 𝛿𝐴Амп  

𝑑𝑊м =
1

2
(𝐼1𝑑Φ1 + 𝐼2𝑑Φ2) 
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𝛿𝐴Амп = 𝐼1𝑑Φ1 + 𝐼2𝑑Φ2 − 𝑑𝑊м =
1

2
(𝐼1𝑑Φ1 + 𝐼2𝑑Φ2) = 𝑑𝑊м 

𝐹𝐴 =
𝑑𝑊м
𝑑𝜉
|
𝐼=𝑐𝑜𝑛𝑠𝑡

 

Частные случаи: 

1) Одиночный жесткий контур 

𝐼1𝑑Φ1 = 𝑑 (
ℒ11𝐼1

2

2
) 

2) Одиночный нежесткий контур (на контур действует собственная сила) 

𝐼1𝑑Φ1 = 𝑑 (
ℒ11𝐼1

2

2
) +

𝐼2

2
𝑑ℒ11⏟    
𝛿𝐴Амп 
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Лекция 15 

Экстраток самоиндукции 

  

Взаимная индукция систем с током 

 

𝑊м =
ℒ11𝐼1

2

2
+
ℒ22𝐼2

2

2
+ ℒ12𝐼1𝐼2 

В случае сплошного проводника: 

ℒ11 =
2𝑊м1
𝐼1
2 =

2

𝐼1
2∭𝑤м𝑑𝑉

 

𝑉

=
2

𝐼1
2∭

𝐵1
2

2𝜇0
𝑑𝑉

 

𝑉

=
1

𝐼1
2∭

𝐵1
2

𝜇0
𝑑𝑉

 

𝑉

 

Формула для индуктивности в общем случае: 

ℒ11 =
1

𝜇0𝐼1
2∭𝐵1

2𝑑𝑉

 

𝑉

 

Для линейных проводников справедливо: 
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ℒ11 =
Φ1
𝐼1

 

 

Если ℒ12 > 0, контуры «подмагничивают» друг друга: (𝐵⃗⃗1 ⋅ 𝐵⃗⃗2) > 0. 

Если ℒ12 < 0, то – «размагничивают»: (𝐵⃗⃗1 ⋅ 𝐵⃗⃗2) < 0. 

 

           ℒ12 = √ℒ1ℒ2                      ℒ12 = −√ℒ1ℒ2  

Силы, действующие на системы с током 

 

Магнитное давление: 
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𝛿𝐴Амп =
𝐼1
2

2
𝑑ℒ11 +

𝐼2
2

2
𝑑ℒ22 + 𝐼1𝐼2𝑑ℒ12 

ℒ = 𝜇0𝑛
2𝑉 = 𝜇0

𝑁2

𝐿2
⋅ 𝑆𝐿 = 𝜇0

𝑁2

𝐿
⋅ 𝜋𝑅2 

Мысленно увеличим радиус обмотки на ΔR. Тогда сила, действующая на виток 

соленоида: 

𝑑𝐹⃗𝐴 = 𝐼[𝑑𝑙 × 𝐵⃗⃗
∗],     𝐵⃗⃗∗ - суммарное поле остальных элементов тока 

𝐵⃗⃗ = 𝐵⃗⃗собств + 𝐵⃗⃗
∗ 

𝑑𝐹𝐴 = 𝐼𝑑𝑙𝐵
∗, 𝐵∗ =

𝐵

2
    ⇒     𝑑𝐹𝐴 = 𝐼𝑑𝑙 ⋅

𝜇0𝑛𝐼

2
 

𝐹𝐴 =∑𝑑𝐹𝐴
𝑖

= 𝐼 ⋅ 2𝜋𝑅 ⋅
𝜇0𝑁𝐼

2𝐿
= 𝜇0𝐼

2𝑁2
𝜋𝑅

𝐿
 

𝛿𝐴Амп =
𝐼2

2
𝑑ℒ = 𝐹𝐴𝑑𝑅, 𝑑ℒ =

𝜇0𝑁
2

𝐿
⋅ 2𝜋𝑅𝑑𝑅 

𝛿𝐴Амп = 𝜇0𝑁
2
2𝜋𝑅

𝐿
𝑑𝑅 ⋅

𝐼2

2
= 𝜇0𝐼

2𝑁2
𝜋𝑅

𝐿
𝑑𝑅 = 𝐹𝐴𝑑𝑅 

𝐹𝐴 = 𝜇0𝐼
2𝑁2

𝜋𝑅

𝐿
 

Удлинение обмотки: 

𝛿𝐴Амп =
𝐼2

2
𝑑ℒ, 𝑑ℒ = −

𝜇0𝑁
2

𝐿2
𝜋𝑅2𝑑𝑥 = 𝐹𝐴𝑑𝑥    ⇒     𝐹𝐴 = −𝜇0

𝑁2

𝐿2
𝜋𝑅2 

Взаимодействие двух катушек: 
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1. Токи сонаправлены: ℒ12 > 0 

𝛿𝐴Амп = 𝐼1𝐼2𝑑ℒ12,    𝑑𝑥 > 0 

Δ𝑆 растет     ⇒    ℒ12 уменьшается 

𝑑ℒ12
𝑑𝑥

< 0   ⇒    𝛿𝐴Амп < 0   ⇒    𝐹𝐴 < 0 

2. Токи противонаправлены: ℒ12 < 0 

𝑑ℒ12
𝑑𝑥

> 0   ⇒    𝛿𝐴Амп > 0   ⇒    𝐹𝐴 > 0 

Соленоид и проводник на рельсах: 

 

𝛿𝐴Амп = 𝐼1𝐼2𝑑ℒ12 = 𝐼1𝑑(ℒ12𝐼2) = 𝐼1𝑑Φ12 

𝛿𝐴Амп = 𝐼1𝑑Φвнеш 

https://vk.com/teachinmsu
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Соленоид и малое кольцо с током: 

 

𝐹внеш = 𝐹𝐴, ℒ11,  ℒ22 = 𝑐𝑜𝑛𝑠𝑡 

𝛿𝐴Амп = 𝐼1𝐼2𝑑ℒ12 = 𝑑(𝐼1𝐼2ℒ12), Φ12 = 𝐼2ℒ12 = (𝐵⃗⃗2 ⋅ 𝑛⃗⃗) ⋅ 𝑆1 

𝑚⃗⃗⃗ = 𝑛⃗⃗1𝑆1𝐼1 

𝛿𝐴Амп = 𝑑(𝐼1 ⋅ (𝐵⃗⃗2 ⋅ 𝑛⃗⃗1)𝑆1) = 𝑑(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗2) = 𝐹𝐴𝑑𝜉 

𝐴Амп = ∫ 𝑑 (𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗2)

𝐵⃗⃗

= (𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗) 

𝐹⃗внеш = −𝐹⃗Амп     ⇒    𝛿𝐴внеш = −𝛿𝐴Амп 

𝑊дип = −(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗)   ⇔   𝐹𝐴,𝑥 =
𝜕(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗)

𝜕𝑥
,    𝐹𝐴,𝑦 =

𝜕(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗)

𝜕𝑦
,   𝐹𝐴,𝑧 =

𝜕(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗)

𝜕𝑧
 

𝐹⃗𝐴,дип = ∇(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗) = (𝑚⃗⃗⃗ ⋅ ∇)𝐵⃗⃗        (м) 

𝐹дип = (𝑝 ⋅ ∇)𝐸⃗⃗                                    (э) 
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Потенциальная функция тока 

𝐹⃗𝐴 = ∇(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗), 𝐹⃗ = −∇𝑊пот 

𝑊полн = 𝐴эл
внеш⏟  

2(𝑚⃗⃗⃗⃗⋅𝐵⃗⃗)

+ 𝐴мех
внеш⏟  

−(𝑚⃗⃗⃗⃗⋅𝐵⃗⃗)

 

𝐹𝐴 = −grad (−(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗)) , 𝑊пот = −(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗)  

Момент сил Ампера, действующих на элементарный ток: 

𝑀⃗⃗⃗ = [𝑚⃗⃗⃗ × 𝐵⃗⃗]  

Индукционные методы измерения магнитных полей: баллистический гальванометр 

измеряет прошедший заряд. 

Токи Фуко – вихревые токи в сплошных проводниках. 

Магнитное поле в веществе 

 

токи Ампера   ↔   молекулярные токи 

𝑗 = 𝑗св + 𝑗мол    ↔    𝜌 = 𝜌пол + 𝜌своб 

𝑀⃗⃗⃗ ≡
∑ 𝑚⃗⃗⃗𝑖
 
 

𝛿𝑉
      ↔      𝑃⃗⃗ =

∑𝑝𝑖
𝛿𝑉
   ⇒   div 𝑃⃗⃗ = −𝜌пол 

rot 𝑀⃗⃗⃗ = 𝑗мол,   𝑀⃗⃗⃗ – намагниченность 

rot 𝐵⃗⃗ = 𝜇0𝑗 = 𝜇0(𝑗пров + 𝑗мол)  
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rot (𝐵⃗⃗ − 𝜇0𝑀⃗⃗⃗) = 𝜇0𝑗пров    ⇒    rot (
𝐵⃗⃗

𝜇0
− 𝑀⃗⃗⃗) = 𝑗пров    ⇒    rot 𝐻⃗⃗⃗ = 𝑗пров 

𝐻⃗⃗⃗ – напряженность магнитного поля 

𝐻⃗⃗⃗ ≡
𝐵⃗⃗

𝜇0
− 𝑀⃗⃗⃗  

[𝐵] = Тл, [𝐻] = [𝑀] =
А

м
 

𝐻 = 𝑛𝐼 – не зависит от вещества внутри соленоида 
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Лекция 16 

вакуум: 𝐵⃗⃗ 

вещество: 〈𝐵⃗⃗〉 

rot 𝑀⃗⃗⃗ = 𝑗мол              ↔                  

𝑗𝑥 =
𝜕𝑀𝑧
𝜕𝑦

−
𝜕𝑀𝑦
𝜕𝑧

𝑗𝑦 =
𝜕𝑀𝑥
𝜕𝑧

−
𝜕𝑀𝑧
𝜕𝑥

𝑗𝑧 =
𝜕𝑀𝑦
𝜕𝑥

−
𝜕𝑀𝑥
𝜕𝑦

 

 

𝐼 = 𝑖 ⋅ 𝑐, 𝑚𝑧 = 𝐼𝑆 = 𝑖 ⋅ 𝑐 ⋅ 𝑏 ⋅ 𝑎, 𝑀𝑧 =
𝑚𝑧
𝑎𝑏𝑐

= 𝑖 

𝐼 = 𝑖пр ⋅ 𝑐 − 𝑖л ⋅ 𝑐 = (𝑚𝑧(𝑦 + 𝑏) − 𝑚𝑧(𝑦)) ⋅ 𝑐 
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𝑗𝑥,1 =
(𝑀𝑧(𝑦 + 𝑏) −𝑀𝑧(𝑦)) ⋅ 𝑐

𝑏𝑐
=
𝜕𝑀𝑧
𝜕𝑦

, 𝑗𝑥,2 = −
𝜕𝑀𝑦
𝜕𝑧

 

𝑗𝑥 =
𝜕𝑀𝑧
𝜕𝑦

−
𝜕𝑀𝑦
𝜕𝑧

 

{

rot 𝐵⃗⃗ = 𝜇0𝑗       

𝑗 = 𝑗пров + 𝑗мол

rot 𝑀⃗⃗⃗ = 𝑗мол     

      ⇒      rot 𝐻⃗⃗⃗ = 𝑗пров , 𝐻⃗⃗⃗ ≡
𝐵⃗⃗

𝜇0
− 𝑀⃗⃗⃗  

Закон Био – Савара – Лапласа для 𝐻⃗⃗⃗ (вихревое поле) 

𝐻⃗⃗⃗ =
1

4𝜋
∭

[𝑗пр × 𝑟]

𝑟3
𝑑𝑉

 

𝑉

 

div 𝐵⃗⃗ = 0, 𝐵⃗⃗ = 𝜇0(𝐻⃗⃗⃗ + 𝑀⃗⃗⃗) 

div 𝐵⃗⃗ = 𝜇0div 𝐻⃗⃗⃗ + 𝜇0div 𝑀⃗⃗⃗ = 0 

div 𝐻⃗⃗⃗ = −div 𝑀⃗⃗⃗ ≠ 0           ↔       div 𝑃⃗⃗ = −𝜌пол 

div 𝑀⃗⃗⃗ = −𝜌м – «фиктивный» магнитный заряд 

div 𝐻⃗⃗⃗ = 𝜌м     ⇒       𝐻⃗⃗⃗ =
1

4𝜋
∭

𝜌м𝑟

𝑟3
𝑑𝑉

 

𝑉

                       (м) 

div 𝐸⃗⃗ =
𝜌

𝜀0 
    ⇒       𝐸⃗⃗ =

1

4𝜋
∭

𝜌 𝑟

𝑟3
𝑑𝑉

 

𝑉

                          (э) 

𝐻⃗⃗⃗ = 𝐻⃗⃗⃗вихр + 𝐻⃗⃗⃗пот 

𝐻⃗⃗⃗вихр →  токи проводимости (закон БСЛ, теорема о циркуляции) 

𝐻⃗⃗⃗пот  →   𝜌м = −div M⃗⃗⃗⃗    (теорема Гаусса) 

Пример 1. Соленоид 

https://vk.com/teachinmsu
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∮(𝐻⃗⃗⃗ ⋅ 𝑑𝑙) = 𝐼пров

 

𝐿

, 𝐵 = 𝜇0𝑛𝐼 

Для вакуума: 

𝐻⃗⃗⃗ =
𝐵

𝜇0
= 𝑛𝐼 

Пример 2. Постоянный магнит 

𝜎м = 𝑀   ↔    𝜎пол = 𝑃 

rot 𝐻⃗⃗⃗ = 0   ⇒    𝐻 = 0   ⇒    𝐵 = 𝜇0𝑀 

𝑄м = 𝜎м𝑆 = 𝑀𝑆 

Поле размагничивания 

  

𝐻⃗⃗⃗м = −
𝑀⃗⃗⃗

3
 

𝐻м – поле размагничивания 

𝑀⃗⃗⃗ = 𝜒м𝐻⃗⃗⃗ = (𝜇 − 1)𝐻⃗⃗⃗  

𝐵⃗⃗ = 𝜇0𝜇𝐻⃗⃗⃗ 

𝑀⃗⃗⃗ = (𝜇 − 1) (𝐻⃗⃗⃗вн −
𝑀⃗⃗⃗

3
) 

𝐸⃗⃗пол = −
𝑃⃗⃗

3𝜀0
 

𝐸⃗⃗пол – деполяризационное поле 

𝑃⃗⃗ = 𝜀0(𝜀 − 1)(𝐸⃗⃗вн + 𝐸⃗⃗пол)    

𝑃⃗⃗ = 𝜀0(𝜀 − 1) (𝐸⃗⃗вн −
𝑃⃗⃗

3𝜀0
)     

 

𝑀⃗⃗⃗ ≅ (𝜇 − 1)𝐻⃗⃗⃗вн 

Энергия диполя: 𝑊 = −(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗) < 0 ↔   притяжение 
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Магнетики 

ферромагнетики:   𝜇 ≫ 1   ⇒    𝑀 = (𝜇 − 1)𝐻вн ≈ 𝜇𝐻вн ≫ 𝐻вн 

парамагнетики:   𝜇 ≈ 1, 𝜇 > 1 

диамагнетики:   𝜇 ≈ 1, 𝜇 < 1 

 

раствор FeCl3 в H2O – парамагнетик 

Bi – диамагнетик 

Если 𝑚⃗⃗⃗ и 𝐵⃗⃗ противонаправлены, то 𝑊 = −(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗) > 0. 

Фактор формы 

              

Поле внутри эллипсоида однородно. 

(𝐻⃗⃗⃗𝑖𝑛)𝑥 = (𝐻⃗⃗⃗вн)𝑥 − 𝑁𝑥(𝑀⃗⃗⃗)𝑥 ,        𝑁𝑥 – фактор формы 

𝑁𝑥 +𝑁𝑦 + 𝑁𝑧 = 1 
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Предельные случаи: 

1. Диск. 

 

𝑁𝑧 ≈ 1, 𝑁𝑥 ≈ 𝑁𝑦 ≈ 0 

2. Цилиндр. 

 

𝐿 ≫ 𝑅 

𝑁𝑧 ≈ 0, 𝑁𝑥 ≈ 𝑁𝑦 ≈
1

2
 

Граничные условия для векторов 𝐵⃗⃗ и 𝐻⃗⃗⃗ 

 

div 𝐵⃗⃗ = 0, div 𝐻⃗⃗⃗ = −div 𝑀⃗⃗⃗ 

∯(𝐵⃗⃗ ⋅ 𝑑𝑠)

 

Φ

= 0, ℎ → 0 

𝐵1𝑛 = 𝐵2𝑛  

𝐻1𝑛 +𝑀1𝑛 = 𝐻2𝑛 +𝑀2𝑛    ⇒     𝐻1𝑛 −𝐻2𝑛 = 𝑀2𝑛 −𝑀1𝑛 
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div 𝑀⃗⃗⃗ = −𝜌м  

 𝑀1𝑛 −𝑀2𝑛 = 𝜎м  

𝑀1𝑛 = 𝑀,     𝑀2𝑛 = 0      ⇒      𝜎м = 𝑀 

𝐻1𝑛 −𝐻2𝑛 = −𝜎м  

𝐻1𝑛 = −𝐻,     𝐻2𝑛 = 𝐻   ⇒    𝐻 =
𝜎м
2
      ↔      𝐸 =

𝜎э
2𝜀0

 

Среды 1 и 2 – линейные и изотропные. 

𝐵⃗⃗ = 𝜇0𝜇𝐻⃗⃗⃗ = 𝜇0𝜇
𝑀⃗⃗⃗

𝜇 − 1
 

𝜇1𝐻1𝑛 = 𝜇2𝐻2𝑛
 

𝜇1
𝜇1 − 1

𝑀1𝑛 =
𝜇2

𝜇2 − 1
𝑀2𝑛

 

 

Для соленоида: 

𝐵 = 𝜇0𝑛𝐼 =
𝑁𝐼

𝐿
𝜇0 = 𝜇0𝑖пов 

𝑖пов – линейная плотность тока 

∮(𝐵⃗⃗ ⋅ 𝑑𝑙)

 

𝐿

= 𝜇0𝐼 

𝐵1𝜏 − 𝐵2𝜏 = 𝜇0𝑖пов
полн 

 
𝐻1𝜏 −𝐻2𝜏 = 𝑖пов

пров
   

  
𝑀1𝜏 −𝑀2𝜏 = 𝑖пров

мол      

 

Если токов проводимости нет: 

𝐻1𝜏 = 𝐻2𝜏 

𝑀1𝜏 = 𝑀 = 𝑖пов
мол     ⇒     𝐼 = 𝑖пов

мол𝐿 = 𝑀𝐿 
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Лекция 17 

 

𝑗пров = 0   ⇒    𝐻1𝜏 = 𝐻2𝜏 ,    𝐵1𝑛 = 𝐵2𝑛 

𝐵1𝜏 = 𝜇0𝜇1𝐻1𝜏 , 𝐵2𝜏 = 𝜇0𝜇2𝐻2𝜏 

𝜇2 > 𝜇1    ⇒    𝐵2𝜏 > 𝐵1𝜏 

 

𝐿⃗⃗𝑒  – механический момент,   |𝐿⃗⃗⃗𝑒| = 𝑟𝑚𝑣 

𝐼 = 𝑞 ⋅
𝑣

2𝜋𝑟
, 𝑆 = 𝜋𝑟2 

𝑝𝑚 = 𝐼𝑆 =
𝑞𝑣𝑟

2
=
𝑞

2𝑚
⋅ 𝐿 

𝑝𝑚 =
𝑞

2𝑚
𝐿⃗⃗  

 

– гиромагнитное отношение для орбитального движения частицы 

В частности, для электрона: 

𝛾𝐿 =
𝑞

2𝑚
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𝑝𝑚 = −
𝑒

2𝑚
𝐿⃗⃗𝑒 , 𝛾𝐿𝑒 = −

𝑒

2𝑚
 

Механомагнитный опыт Барнетта 

 
намагничивание при вращении 

 

Магнитомеханический опыт Эйнштейна – де Гааза 

 
вращение при намагничивании 
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𝜒м =
1

2
⋅ 1,75 ⋅ 1011 𝑐−1Тл−1 

Замечание 

 

𝑗мол = (𝜇 − 1)𝑗пров    ↔   𝜌пол = −
𝜀 − 1

𝜀
𝜌непол 

{ 

rot 𝐻⃗⃗⃗ = 𝑗пров   

𝑀⃗⃗⃗ = (𝜇 − 1)𝐻⃗⃗⃗

rot 𝑀⃗⃗⃗ = 𝑗мол   

     ⇒    
1

𝜇 − 1
 rot 𝑀⃗⃗⃗ = 𝑗пров 

𝑗полн = 𝑗мол + 𝑗пров = 𝜇𝑗пров 

𝐵вак =
𝜇0𝐼

2𝜋𝑟
, 𝐵магн =

𝜇0𝜇𝐼

2𝜋𝑟
 

В однородном магнетике молекулярные токи могут быть только на поверхности. 

Магнитное поле в полости. Вытеснение магнитного поля из сверхпроводника. 

 

𝐵⃗⃗𝑖𝑛 = 𝐵⃗⃗𝑀 

 

𝐵⃗⃗𝑖𝑛 = 𝜇0𝐻⃗⃗⃗𝑀 

 

 

𝐵⃗⃗𝑖𝑛 = (𝐻⃗⃗⃗𝑖𝑛 + 𝑀⃗⃗⃗)𝜇0 

𝐻⃗⃗⃗𝑖𝑛 = −𝑀⃗⃗⃗ 
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𝐵вак = 𝜇0𝐻вак 

𝐵⃗⃗ = 𝜇0(𝐻⃗⃗⃗ + 𝑀⃗⃗⃗) 

пара-, ферро-:          𝑀⃗⃗⃗ ⇈ 𝐻⃗⃗⃗ 

диа-:                        𝑀⃗⃗⃗ ↑↓ 𝐻⃗⃗⃗ 

 

Диамагнетики 

 

𝜒м = 𝜇 − 1 < 0, 𝑀⃗⃗⃗ = 𝜒м𝐻⃗⃗⃗ 

Прецессия Лармора 

           

𝐹цб = 𝑚𝜔0
2𝑟 − 𝐵 = 0, 𝑣 = 𝜔𝑟 

𝐹цб ± 𝑞𝑣𝐵 = 𝑚𝜔
2𝑟  ⇒   𝑚(𝜔2 −𝜔0

2)𝑟 = ±𝑞𝑣𝐵 

𝜔2 −𝜔0
2 = (𝜔 − 𝜔0)⏟      

Δ𝜔

(𝜔 + 𝜔0)⏟      
≈2𝜔

≈ 2𝜔Δ𝜔, 𝜔 ≈ 𝜔0 

Δ𝜔 = ±
𝑞

2𝑚
𝐵 = ±𝛾𝐿𝐵 
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𝐿 = 𝑚𝑣𝑟 = 𝑚𝜔𝑟2     ↔     𝑝𝑚 = 𝛾𝐿𝐿 

Δ𝐿 = 𝑚Δ𝜔𝑟2              ↔    Δ𝑝𝑚 = 𝛾𝐿Δ𝐿 = 𝛾𝐿Δ𝐿 = 𝛾𝐿𝑚Δ𝜔𝑟
2 

Δ𝑀 = Δ𝑝𝑚 ⋅ 𝑁 ⋅ 𝑍 ⋅ 1, Δ𝑀 = 𝜒мΔ𝐵 = 𝜒м𝐵 

𝑍 – количество электронов в атоме, 𝑁 – количество атомов в единице объема 

Δ𝑝𝑚 =
𝑞

2𝑚
⋅ 𝑚 ⋅

𝑞

2𝑚
𝐵𝑟2 =

𝑞2

4𝑚
𝐵𝑟2 

Δ𝑀 = 𝑁𝑍
𝑞2

4𝑚
〈𝑟2〉𝐵 

𝑥2 + 𝑦2 + 𝑧2 = 𝑅2    ⇒    〈𝑥2〉 + 〈𝑦2〉 + 〈𝑧2〉 = 〈𝑅2〉,        𝑅 – размер атома 

〈𝑅2〉

3
= 〈𝑦2〉 = 〈𝑧2〉, 〈𝑥2 + 𝑦2〉 = 〈𝑟2〉 =

2

3
〈𝑅2〉 

Δ𝑀 =
𝑞2

6𝑚
𝑁𝑍〈𝑅2〉

⏟      
𝜒м

𝐵 

𝜒м ≈ 10
8 с−1Тл−1 

Особенности диамагнетизма: 

1. Диамагнетизм зависит от межатомных взаимодействий. 

2. 𝜒 < 1 – не зависит от 𝑇. 

3. Существует в любом веществе. 

Парамагнетики 

Парамагнетики – вещества, в которых существуют атомные магнитные диполи при 

отсутствии внешнего магнитного поля. 

Виды – ионы переходных металлов. 

Спиновый магнетизм 

 

𝑝сп = 𝛾𝐿𝐿сп𝑔,      𝑔 – «g-фактор», для электронов  𝑔 = 2 
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𝛾𝐿 =
𝑒

2𝑚
, 𝑝𝑚 ≈ 𝜇Б, 𝜇Б ≈ 10

−20  
эрг

Гс
 

𝜇Б – магнетон Бора,      1 Гс = 104 Тл,      1 эрг = 10−7 Дж 

Fe3+,   Cu2+ 

𝑊 = −𝑝𝑚 ⋅ 𝐵, [𝑝𝑚] =
эрг

Гс
 

 

 

〈𝑝𝑚,𝐵〉 = 𝑝𝑚ℒ(𝜉), 𝜉 =
𝜇Б𝐵

𝑘Б𝑇
 

𝜉 ≪  1    ⇒     ℒ(𝜉) ≈
𝜉

3
, 〈𝑝𝑚,𝐵〉 =

𝑝𝑚
2

3𝑘Б𝑇
𝐵 

𝜒м = 𝑁
𝑝𝑚
2

2𝑘Б𝑇
 

 

Ферромагнетики 

Ферромагнетики – сильномагнитные вещества 
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Система стремится уменьшить свою энергию. 

𝑊 =∭
𝐵2

2𝜇0
𝑑𝑉

 

𝑉

 

 

Для ферромагнетиков характерна петля гистерезиса. 
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Лекция 18 

Энергия и силы в магнитном поле при наличии магнетика 

 

𝐼𝑑Φ = 𝑑𝑊магн + 𝛿𝐴Ампер   

𝐻 = 𝑛𝐼 =
𝑁

𝐿
𝐼, Φ = 𝐵𝑆𝑁, 𝑑Φ = 𝑁𝑆𝑑𝐵 

𝐼𝑑Φ =
𝐻𝐿

𝑁
𝑆𝑁𝑑𝐵 = 𝐻𝑉𝑑𝐵 = 𝑑𝑊магн 

𝑑𝑊магн = (𝐻⃗⃗⃗ ⋅ 𝑑𝐵⃗⃗)𝛿𝑉   ⇒      𝑊магн =∭(∫(𝐻⃗⃗⃗ ⋅ 𝑑𝐵⃗⃗)

𝐵0

0

)𝛿𝑉

 

𝑉

 

Для однородной изотропной среды:      𝐵⃗⃗⃗⃗ = 𝜇0𝜇𝐻⃗⃗⃗⃗ 

𝑤магн =
𝑑𝑊магн
𝑑𝑉

= (𝐻⃗⃗⃗ ⋅ 𝑑𝐵⃗⃗) =
1

𝜇𝜇0
(𝐵⃗⃗ ⋅ 𝑑𝐵⃗⃗) = 𝑑 (

𝐵2

2𝜇𝜇0
) = 𝑑 (

(𝐵⃗⃗ ⋅ 𝐻⃗⃗⃗)

2
) 

𝑊магн =
(𝐵⃗⃗ ⋅ 𝐻⃗⃗⃗)

2
𝑉 =

𝜇0 ((𝐻⃗⃗⃗ + 𝑀⃗⃗⃗) ⋅ 𝐻⃗⃗⃗)

2
=
𝜇0𝐻

2

2
+
𝜇0(𝐻⃗⃗⃗ ⋅ 𝑀⃗⃗⃗)

2
 

В случае парамагнетика энергия уменьшается: 

𝑊дип = −(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗), 𝑀𝑥 = 𝜒𝐻 
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I-е начало термодинамики: 

𝛿𝑄 = 𝛿𝐴мех + 𝑑𝑈 − 𝐻𝑑𝑀  →   происходит выделение теплоты при 

намагничивании. 

(𝐻⃗⃗⃗ ⋅ 𝑑𝐵⃗⃗) = 𝜇0(𝐻⃗⃗⃗ ⋅ 𝑑𝐻⃗⃗⃗) + 𝜇0(𝐻⃗⃗⃗ ⋅ 𝑑𝑀⃗⃗⃗) 

𝐹дип = ∇(𝑚⃗⃗⃗ ⋅ 𝐵⃗⃗),    𝑚 = 𝑐𝑜𝑛𝑠𝑡    ⇒    𝐹дип = (𝑚⃗⃗⃗ ⋅ ∇)𝐸⃗⃗ 

В веществе: 𝑚⃗⃗⃗ = 𝑀⃗⃗⃗𝑑𝑉 

𝑀⃗⃗⃗ = (𝜇 − 1)𝐻⃗⃗⃗ =
𝜇 − 1

𝜇0𝜇
𝐵⃗⃗,     𝜇 = 𝑐𝑜𝑛𝑠𝑡 

𝑑𝐹⃗ =
𝜇 − 1

𝜇0𝜇
(𝐵⃗⃗ ⋅ ∇)𝐵⃗⃗𝑑𝑉,     (𝐵⃗⃗ ⋅ ∇)𝐵⃗⃗ =

∇𝐵2

2
 

𝑑𝐹⃗ =
𝜇 − 1

2𝜇0𝜇
∇𝐵2  

𝜇 > 1 – парамагнетик   ↔   𝑑𝐹⃗ направлена в сторону увеличения поля 

𝜇 < 1 – диамагнетик     ↔   𝑑𝐹⃗ направлена в сторону уменьшения поля 

Для постоянных магнитов 𝑀⃗⃗⃗ ≠ (𝜇 − 1)𝐻⃗⃗⃗ 

𝐹⃗магн =∭𝜌магн𝐵⃗⃗внеш𝑑𝑉

 

𝑉

+∬𝜎м𝐵⃗⃗внеш𝑑𝑆

 

Σ

 

Внешнее поле не включает поле самого магнита. 

𝜌магн = −div 𝑀⃗⃗⃗ 
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Магнит с постоянной намагниченностью, разделенный на две части 

       

𝐻 =
𝑀

2
+
𝑀

2
= 𝑀 

𝐹 = 𝜎м𝑆𝐵внеш = 𝑀𝑆 ⋅
𝜇0𝑀

2
=
𝜇0𝑀

2

2
𝑆 

Тензор напряжения Максвелла для линейной изотропной среды 

 

𝐹⃗Σ = 𝜇0∬((𝐻⃗⃗⃗ ⋅ 𝑛⃗⃗)𝐻⃗⃗⃗ −
1

2
𝐻2𝑛⃗⃗) 𝑑𝑆

 

Σ

 

Затягивание магнетика в соленоид 

𝐹𝜉 =
𝑑𝑊магн
𝑑𝜉

|
𝐼=𝑐𝑜𝑛𝑠𝑡

 

Способ 1 
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𝑑𝐹⃗ =
𝜇 − 1

2𝜇0𝜇
∇𝐵2    ⇒    𝐹⃗ =

𝜇 − 1

2𝜇0𝜇
∭∇𝐵2𝑑𝑉

 

𝑉

 

∭∇𝜑𝑑𝑉

 

𝑉

= ∯𝜑𝑛⃗⃗𝑑𝑆

 

𝛿𝑉

, 𝛿𝑉 = 𝑑𝜉 ⋅ 𝑆 

𝐹 =
𝜇 − 1

2𝜇0𝜇
𝐵2𝑆  

Способ 2 

 

𝛿𝑊нач =
𝜇0𝐻

2

2
𝑑𝜉 ⋅ 𝑆 

𝛿𝑊кон =
𝐵𝐻

2
𝑑𝜉 ⋅ 𝑆 =

𝜇0𝜇𝐻 ⋅ 𝐻

2
𝑑𝜉 ⋅ 𝑆 =

𝜇0𝜇𝐻
2

2
𝑑𝜉𝑆 

𝛿𝑊магн = 𝛿𝑊кон − 𝛿𝑊нач =
𝜇0
2
𝑑𝜉𝑆𝐻2(𝜇 − 1) 

𝐹 =
𝛿𝑊магн
𝑑𝜉

|
𝐼=𝑐𝑜𝑛𝑠𝑡

=
𝜇0(𝜇 − 1)

2
𝐻2𝑆 =

𝜇 − 1

2𝜇0𝜇
2
𝐵2𝑆 

𝜇 ≈ 1    ⇒      𝐹 ≈
𝜇 − 1

2𝜇0𝜇
𝐵2𝑆  
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Квазистационарные токи. Критерий квазистационарности 

 

1. Сила тока во всех участках неразветвленной цепи постоянна. 

 

𝜆 = 𝑐𝑇, 𝑙хар ≈ 𝑐 ⋅ 𝜏хар ≫ 𝐿 

𝜏хар ≫
𝐿

𝑐
 

𝜈 = 50 Гц, 𝜆 =
𝑐

𝜈
=
3 ⋅ 108

50
= 6 ⋅ 106 м = 6 ⋅ 103 км 

2. rot 𝐻⃗⃗⃗ = 𝑗пров 

𝐻⃗⃗⃗ → 𝐵⃗⃗ → Φ → ℒ 

{
 
 

 
 
rot 𝐸⃗⃗ = −

𝜕𝐵⃗⃗

𝜕𝑡
          

rot 𝐻⃗⃗⃗ = 𝑗пров +
𝜕𝐷⃗⃗⃗

𝜕𝑡

 

𝑗смещ ≪ 𝑗пров  

{

𝜕𝐷⃗⃗⃗

𝜕𝑡
= 𝜀0𝜀

𝜕𝐸⃗⃗

𝜕𝑡

𝑗пров = 𝜎𝐸⃗⃗

    ⇒     
𝜕𝐷⃗⃗⃗

𝜕𝑡
=
𝜀0𝜀

𝜎
⋅
𝜕𝑗пров

𝜕𝑡
 

𝑗пров ~ cos𝜔𝑡 ,
𝜕𝑗пров

𝜕𝑡
 ~ 𝜔𝑗пров 
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𝜀0𝜀

𝜎
𝜔𝑗пров ≪ 𝑗пров 

𝜔 ≪
𝜎

𝜀0𝜀
 

𝜀 ≈ 1, 𝜎 ≈ 108, 𝜀0 = 8,85 ⋅ 10
−12  

Ф

м
, 𝜔 ≪ 1019 с−1 

𝜈вид.света ≈ 10
15 Гц 

3. Для постоянного тока: 

𝜕𝜌

𝜕𝑡
= 0   ⇒    div 𝑗 = 0 

{
 
 

 
 𝑗 = 𝜎𝐸⃗⃗    

div 𝐸⃗⃗ =
𝜌

𝜀0
    

div 𝑗 = −
𝜕𝜌

𝜕𝑡

    ⇒      
𝜎

𝜀0
𝜌 = −

𝜕𝜌

𝜕𝑡
      ⇒     

𝑑𝜌

𝜌
= −(

𝜀0
𝜎
)
−1

𝑑𝑡 

𝜌 = 𝜌0𝑒
−
𝑡
𝜏, 𝜏 =

𝜀0
𝜎

 

𝑇 =
1

𝜈
≫ 𝜏   ⇒     𝜈 ≪

𝜎

𝜀0
 

Квазистационарные процессы 

1) Переходные процессы 

              

2) Электрические колебания (затухающие, вынужденные) 
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При большом 𝑅 затухание велико: 

 

3) Переменный ток 

                          

ℰ = ℰ0 cos𝜔𝑡 , |𝑈𝑅| ~ 𝑅, |𝑈𝐶| ~ 
1

𝜔𝐶
, |𝑈𝐿| ~ 𝜔ℒ 

ℰ2 = (𝑈ℒ − 𝑈𝐶)
2 + 𝑈𝑅

2 
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Квазистационарные токи подчиняются законам Ома и правилам Кирхгофа. 
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Лекция 19 

Закон сохранения энергии в цепях квазистационарного тока 

𝐼𝑑Φ = 𝑑𝑊магн + 𝛿𝐴Амп 

ℰ𝐼 = 𝐼2𝑅 + 𝐼𝑑Φ +
𝑑

𝑑𝑡
(
𝑞2

2𝐶
) 

ℰ𝐼 – мощность внешнего источника 

Если 𝛿𝐴Амп = 0: 

ℰ𝐼 = 𝐼2𝑅 +
𝑑

𝑑𝑡
(
ℒ𝐼2

2
) +

𝑑

𝑑𝑡
(
𝑞2

2𝐶
) , ℒ, 𝐶 = 𝑐𝑜𝑛𝑠𝑡 

ℰ𝐼 = 𝐼2𝑅 + 𝐿𝐼𝐼̇ +
𝑞

𝐶
𝑞̇,   𝑞̇ = 𝐼 

ℰ = 𝐼𝑅 + ℒ𝐼̇ +
𝑞

𝐶
,                𝑈𝑅 = 𝐼𝑅,    𝑈ℒ = ℒ𝐼,̇    𝑈𝐶 =

𝑞

𝐶
 

Закон Ома для цепи квазистационарного тока 

∑ℰ𝑗
𝑗

=∑𝑈𝑖
𝑖

 

Правила знаков 

1) ℰ > 0  

2) 𝑈𝐶 > 0 

3) 𝑈𝑅 > 0 

4) 𝑈ℒ > 0 

5) 𝑞̇ = +𝐼     

𝑞̇ = −𝐼     

Собственные электрические колебания 

1. Гармонические колебания: 𝑅 = 0 
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{

𝑞

𝐶
+ ℒ𝐼̇ = 0

𝑞̇ = 𝐼           
    ⇒     𝑞̈ +

1

ℒ𝐶
𝑞̇ = 0 

𝑞̈ + 𝜔0
2𝑞 = 0    ↔    гармонический осциллятор 

𝑞 = 𝑞0 cos(𝜔0𝑡 + 𝜑) – решение единственно 

𝑞0 = √𝑞
2(0) +

𝐼2(0) 

𝜔0
2  

𝑞̇ = −𝑞0𝜔0 sin(𝜔0𝑡 + 𝜑) 

𝐼(0) = −𝑞0𝜔0 sin𝜑 

𝑞(0) = 𝑞0 cos𝜑 

tg 𝜑 = −
𝐼(0)

𝑞(0)𝜔0
 

𝜔0 – частота собственных незатухающих колебаний 

𝜔0 =
1

√ℒ𝐶
, 𝑇0 =

2𝜋

𝜔0
 

𝑇0 = 2𝜋√ℒ𝐶  – формула Томсона для периода собственных незатухающих 

колебаний 

Превращение энергии: 

𝑊э +𝑊м =
𝑞𝑚𝑎𝑥
2

2𝐶
=
ℒ𝐼𝑚𝑎𝑥
2

2
= 𝑐𝑜𝑛𝑠𝑡 
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2. Затухающие колебания: 𝑅 ≠ 0 

 

{
𝐼𝑅 +

𝑞

𝐶
+ ℒ𝐼̇ = 0

𝑞̇ = 𝐼                     
    ⇒     𝑞̈ + 2𝛾𝑞̇ + 𝜔0

2𝑞 = 0 

𝛾 =
𝑅

2ℒ
 

𝑞 = 𝑞0𝑒
−𝛾𝑡 cos(𝜔1𝑡 + 𝜑) – решение единственно 

𝜔1 = √𝜔
2 − 𝛾2, 𝑇1 =

2𝜋

𝜔1
 

Считаем, что 𝛾 ≪ 𝜔0 (затухание слабое). 
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ln (
𝑞0𝑒

−𝛾(𝑡)

𝑞0𝑒
−𝛾(𝑡+𝑇1)

) = ln(𝑒𝛾𝑇1) = 𝛾𝑇1 

𝜃 = 𝛾𝑇1  – логарифмический декремент затухания 

𝛾 ≪ 𝜔1    ⇒    𝜃 = 𝛾
2𝜋

𝜔1
≪ 1 

Добротность колебательного контура 

𝑄 ≡ 2𝜋
〈𝑊конт〉

|Δ𝑊𝑇|
 

〈𝑊конт〉 =
𝑞0
2

2𝐶
𝑒−2𝛾𝑡 

|Δ𝑊𝑇| =
𝑞0
2

2𝐶
𝑒−2𝛾𝑡 −

𝑞0
2

2𝐶
𝑒−2𝛾(𝑡+𝑇1) =

𝑞0
2

2𝐶
𝑒−2𝛾𝑡

⏟    
〈𝑊конт〉

(1 − 𝑒−2𝛾𝑇1) 

𝑄 =
2𝜋

1 − 𝑒−2𝛾𝑇1
≈

2𝜋

1 − (1 − 2𝛾𝑇1)
=
𝜋

𝛾𝑇1
              (𝑒𝑥 ≈ 1 + 𝑥, 𝑥 ≪ 1) 

 𝑄 =
𝜋

𝜃
 

𝜃 = 𝛾𝑇1 = 𝛾
2𝜋

𝜔1
≈ 𝛾

2𝜋

𝜔0
=
𝑅

2ℒ
⋅ 2𝜋√ℒ𝐶 = 𝜋𝑅√

𝐶

ℒ
 

𝑄 =
1

𝑅
√
ℒ

𝐶
 

Вынужденные колебания в 𝑅ℒ𝐶 – контуре 

 

https://vk.com/teachinmsu


 

 

 

140 

 
 

 

𝐼𝑅 + ℒ𝐼̇ +
𝑞

𝐶
= ℰ0 cos𝜔𝑡 , 𝐼 = 𝑞̇ 

𝑞̈ + 2𝛾𝑞̇ + 𝜔0
2𝑞 =

ℰ0
ℒ
cos𝜔𝑡 

(общее решение НУ) = (общее решение ОУ) + (частное решение НУ) 

𝑞ОУ = 𝑞0𝑒
−𝛾𝑡 cos(𝜔1𝑡 + 𝜑1)  →  0   при   𝑡 → ∞ 

 

Время установления колебаний: 

𝜏 =
1

𝛾
 

При установившихся колебаниях: 

𝑞 = 𝑞0 cos(𝜔𝑡 + 𝜓) 

𝐼 = 𝑞̇ = −𝜔𝑞0 sin(𝜔𝑡 + 𝜓) = 𝐼0 cos (𝜔𝑡 + 𝜓 +
𝜋

2
) , 𝐼0 = 𝑞0𝜔 

𝑈ℒ = ℒ𝐼̇ = ℒ𝑞0𝜔
2 cos(𝜔𝑡 + 𝜓 + 𝜋) 

Представление в комплексном виде 

ℰ = 𝐴 cos(𝜔𝑡 + 𝛼)    ↔    𝑧 = 𝜌𝑒𝑖𝜑 

𝑧 = 𝜌𝑒𝑖𝜑, 𝑥 = 𝑅𝑒 𝑧 = 𝜌 cos𝜑 , 𝑦 = 𝐼𝑚 𝑧 = 𝜌 sin𝜑 
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Метод векторных диаграмм 

 

𝑈⃗⃗⃗ℒ + 𝑈⃗⃗⃗𝐶 + 𝑈⃗⃗⃗𝑅 = ℰ⃗     ⇒     𝑈ℒ𝑥 + 𝑈𝐶𝑥 + 𝑈𝑅𝑥 = ℰ 𝑥 

𝑈ℒ𝑥 = 𝑈0𝑥 cos(𝜔𝑡 + 𝛼) , ℰ𝑥 = ℰ0 cos𝜔𝑡 

𝑈𝐶  ~ 𝑞, 𝑈𝑅  ~ 𝑞̇, 𝑈ℒ  ~ 𝑞̈ 

|𝜉|
2
= |𝑈⃗⃗⃗ℒ + 𝑈⃗⃗⃗𝐶|

2
+ |𝑈⃗⃗⃗𝑅|

2
 

𝑈𝑅0 = 𝑞0𝜔0𝑅, 𝑈ℒ0 = ℒ𝑞0𝑅, 𝑈𝐶0 =
𝑞0
𝐶

 

ℰ0
2 = 𝑞0

2 (ℒ𝜔2 −
1

𝐶
)
2

+ 𝑞0
2𝜔2𝑅2 = 𝑞0

2ℒ2(𝜔2 −𝜔2) + 𝑞0
2𝜔2𝑅2 

𝑞0 =
𝜉0

√ℒ2(𝜔2 −𝜔0
2)2 +𝜔2𝑅2

, 𝛾 =
𝑅

2ℒ
, 𝑄 =

𝑞𝑚𝑎𝑥
𝜉0𝐶

 

𝑞0 =
ℰ0

ℒ√(𝜔2 −𝜔0
2)2 + 4𝜔2𝛾2

, 𝜔рез = √𝜔0
2 − 2𝛾2 
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Лекция 20 

 

ℰ = ℰ0 cos𝜔𝑡 , ℰ = 𝑈ℒ + 𝑈𝐶 + 𝑈𝑅 

𝐼 = 𝐼0 cos(𝜔𝑡 + 𝜓) , 𝜓 < 0 

𝑈𝑅 = 𝐼𝑅 = 𝐼0𝑅 cos(𝜔𝑡 + 𝜓) , 𝐼𝑅0 = 𝐼0𝑅 

𝑈𝐶 =
𝑞

𝐶
=
𝑞0
𝐶
cos(𝜔𝑡 + 𝜓1) , 𝐼 = 𝑞̇ 

𝐼0 cos(𝜔𝑡 + 𝜓) = 𝑞0𝜔 cos (𝜔𝑡 + 𝜓1 +
𝜋

2
) , 𝑞0 = 𝐼0/𝜔0 

𝑈𝐶0 =
𝑞0
𝐶
=
𝐼0
𝜔𝐶

= 𝐼0
1

𝜔𝐶
 

 

         – «сопротивление» конденсатора по переменному току 

 

𝑈ℒ = ℒ𝐼̇ = 𝐼0(𝜔ℒ) 

1

𝜔𝐶
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𝜔ℒ – «сопротивление» катушки по переменному току 

ℰ0
2 = 𝐼0

2 ((𝜔ℒ −
1

𝜔𝐶
)
2

+ 𝑅2) 

𝐼0 =
ℰ0

√(𝜔ℒ −
1
𝜔𝐶)

2

+ 𝑅2

, 𝑞0 =
𝐼0
𝜔

 

 

 

Резонансные кривые 

           

𝜔р𝐶
= √𝜔0

2 − 2𝛾2, 𝜔рℒ
=

𝜔0
2

√𝜔0
2 − 2𝛾2

 

𝜔0
2 = 𝜔р𝐶 ⋅ 𝜔рℒ  

Резонанс напряжений 

𝑈𝑅 ~ 𝐼0𝑅, 𝑈𝐶  ~ 𝐼0 (
1

𝜔𝐶
) , 𝑈ℒ  ~ 𝐼0(𝜔ℒ) 

𝜔 → 0  ⇒   𝑈ℒ0 → 0, 𝜔 → ∞ ⇒  𝑈𝐶0 → 0 
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 tg 𝜓 = −
𝑈ℒ0 − 𝑈𝐶0
𝑈𝑅0

=

1
𝜔𝐶

− 𝜔ℒ

𝑅
 

 

При 𝜔 = 𝜔0: 

 

𝐼0 =
ℰ0
𝑅
,𝑈𝐶0 = 𝐼0 (

1

𝜔𝐶
) =

ℰ0
𝑅

1

𝜔𝐶
 

1

𝜔𝐶𝑅
≫ 1  ⇒   𝑈𝐶0 = 𝑈ℒ0 ≫ ℰ0 

Резонанс токов 

 

𝐼ℒ0 =
ℰ0
𝜔ℒ
, 𝐼𝐶0 = ℰ0𝜔𝐶, 𝐼𝑅0 =

ℰ0
𝑅
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𝐼0
2 = ℰ0

2 ((𝜔𝐶 −
1

𝜔ℒ
)
2

+
1

𝑅2
) 

𝑈𝐶0 =
𝐼0
𝜔𝐶

=
ℰ0

𝜔𝐶√(𝜔ℒ −
1
𝜔𝐶)

2

+ 𝑅2

  

𝑈𝐶0𝑚𝑎𝑥 ≈
ℰ0
𝑅

1

𝜔0𝐶
=
ℰ0
𝑅

√ℒ𝐶

𝐶
= ℰ0

1

𝑅
√
ℒ

𝐶
= ℰ0𝑄 

𝑄 =
√𝑈ℒ0𝑈𝐶0
𝑈𝑅0

 

Полуширина резонансной кривой 
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Δ𝜔1
2
= 𝜔2 −𝜔1 ≈

𝜔

𝜃
 

𝐼0 =
ℰ0

√(𝜔ℒ −
1
𝜔𝐶)

2

+ 𝑅2

, 𝐼0𝑚𝑎𝑥 =
ℰ0
𝑅

 

𝑅2 = (𝜔ℒ −
1

𝜔𝐶
)
2

= ℒ2 (𝜔 −
1

𝜔ℒ𝐶
)
2

= ℒ2 (𝜔 −
𝜔0
2

𝜔
)

2

=
ℒ2

𝜔2
(𝜔2 −𝜔0

2)2 

𝑅 =
ℒ

𝜔
(𝜔2 −𝜔0

2) = ℒ(𝜔 + 𝜔0) (𝜔 − 𝜔0)⏟      
1
2
Δ𝜔1

2

≈ 2𝜔0 ⋅
1

2
Δ𝜔1

2
⋅
ℒ

𝜔0
 

𝑅 ≈ ℒΔ𝜔1
2
 

𝜔0
Δ𝜔1

2

≈
1

√ℒ𝐶

ℒ

𝑅
=
1

𝑅
√
ℒ

𝐶
= 𝑄 

𝑄 ≈
𝜔0
Δ𝜔1

2

 

Метод комплексных амплитуд 

𝑖 = 𝑒𝑖
𝜋
2 , −𝑖 = 𝑒−𝑖

𝜋
2 , 𝑒𝑖𝜔𝑡 = cos𝜔𝑡 + 𝑖 sin𝜔𝑡 

𝑈̂𝐶 = 𝐼𝐶𝑍̂,         𝑍̂ – импеданс  

𝑍̂𝐶 =
1

𝑖𝜔𝐶
=
1

𝜔𝐶
(−𝑖) =

1

𝜔𝐶
 𝑒−𝑖

𝜋
2  

𝑈̂𝐶 = 𝐼0𝑒
𝑖𝜔𝑡

1

𝜔𝐶
𝑒−
𝑖𝜋
2 =

𝐼0
𝜔𝐶
𝑒
𝑖(𝜔𝑡−

𝜋
2
)
 

𝑍̂𝐶 =
1

𝑖𝜔𝐶
, 𝑍̂ℒ = 𝑖𝜔ℒ, 𝑍̂𝑅 = 𝑅  

Пример: 𝑅ℒ𝐶 – цепь. 
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ℰ̂ = 𝑈̂𝐶 + 𝑈̂ℒ + 𝑈̂𝑅 

ℰ0𝑒
𝑖𝜔𝑡 = 𝐼 ⋅

1

𝑖𝜔𝐶
+ 𝐼 ⋅ 𝑖𝜔ℒ + 𝐼𝑅 

ℰ̂ = 𝐼 (𝑅 + 𝑖𝜔ℒ +
1

𝑖𝜔𝐶
) 

𝐼 =
ℰ̂

𝑅 + 𝑖𝜔ℒ +
1
𝑖𝜔𝐶

=
ℰ0𝑒

𝑖𝜔𝑡

𝑅 + 𝑖 (𝜔ℒ −
1
𝜔𝐶)

=

ℰ0𝑒
𝑖𝜔𝑡 (𝑅 − 𝑖 (𝜔ℒ −

1
𝜔𝐶))

𝑅2 + (𝜔ℒ −
1
𝜔𝐶)

2  

𝑧̂ = 𝑎 + 𝑖𝑏 = 𝜌𝑒𝑖𝜓 = √𝑎2 + 𝑏2 𝑒
𝑖 𝑎𝑟𝑐𝑡𝑔 (

𝑏
𝑎
)
 

𝐼0 = √𝐼𝐼
∗ =

ℰ0

√𝑅2 + (𝜔ℒ −
1
𝜔𝐶)

2
, tg 𝜓 = −

𝜔ℒ −
1
𝜔𝐶

𝑅
 

Активные потери в цепи 

𝑟 – сопротивление линии передачи 

𝑃потери = 𝐼
2𝑟, 𝑃потреб = 𝐼𝑈 = 𝑓𝑖𝑥 

𝑃потери =
𝑃потреб
2

𝑈2
⋅ 𝑟 

Чтобы избежать высоких потерь, нужно повышать напряжение. 

Генераторы тока 

Замкнутый контур в магнитном поле 
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Φ = 𝐵𝑆 cos𝛼 , 𝛼 = 𝜔𝑡 

ℰ𝑖 = −Φ̇ = 𝐵𝑆𝜔 sin𝜔𝑡 

Подвижный проводник на рельсах 

 

𝛿𝐴внеш = −𝛿𝐴Амп, |𝐹⃗А| = |𝐹⃗внеш| 

𝛿𝐴Лор = 𝛿𝐴Амп + 𝛿𝐴ЭДС = 0 

𝛿𝐴ЭДС = −𝛿𝐴Амп = 𝛿𝐴внеш 

ℰ𝑖 = −
𝑑Φ

𝑑𝑡
= 𝐼𝑅 

ℰ𝑖𝐼 = 𝐼
2𝑅 =

𝛿𝐴внеш
𝑑𝑡
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Экстратоки. Токи размыкания. 

             

𝑊 =
𝐶𝑈2

2
=
ℒ𝐼2

2
, 𝑈 = √

2𝑊

𝐶ключа
 

𝐶ключа мала. 

 

 

Лекция 21 

Трансформатор 

 

𝑁1 < 𝑁2  ↔  повышающий трансформатор 

𝑁1 > 𝑁2  ↔  понижающий трансформатор 

Из закона сохранения энергии: ℰ1𝐼1 ≈ 𝑈2𝐼2 

В сердечнике: 𝜇 ≫ 1, набор пластин уменьшает токи Фуко. 
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ℒ12 ≡ℳ – коэффициент взаимной индукции 

ℒ1 = 𝜇0𝜇 (
𝑁1
𝐿1
)
2

𝑉1 ~ 𝑁1
2, ℒ2 = 𝜇0𝜇 (

𝑁2
𝐿2
)
2

𝑉2 ~ 𝑁2
2 

ℳ = √ℒ1ℒ2 ~ 𝑁1𝑁2 

ℰ1 = ℰ10 cos𝜔𝑡 , ℰ̂1 = ℰ0𝑒
𝑖𝜔𝑡 

Правила Кирхгофа: 

{
ℰ̂1 = 𝑈̂𝑅1 + 𝑈̂ℒ1
0 = 𝑈̂𝑅2 + 𝑈̂ℒ2  

 

𝑈̂𝑅1 = 𝐼1𝑅1, 𝑈̂2 = 𝐼2𝑅2 

𝑈̂ℒ1 = 𝐼1𝑖𝜔ℒ1 + 𝐼2𝑖𝜔ℳ, 𝑈̂ℒ2 = 𝐼2𝑖𝜔ℒ2 + 𝐼1𝑖𝜔ℳ  

{
ℰ̂1 = 𝐼1(𝑅1 + 𝑖𝜔ℒ1) + 𝐼2𝑖𝜔ℳ

0 = 𝐼2(𝑅2 + 𝑖𝜔ℒ2) + 𝐼1𝑖𝜔ℳ 
 

𝐼2 = −
𝐼1𝑖𝜔ℳ

𝑅2 + 𝑖𝜔ℒ2
≈ −𝐼1

𝑀

ℒ2
= −𝐼1√

ℒ1
ℒ2
= −𝐼1

𝑁1
𝑁2

 

𝐼2𝑁2 = −𝐼1𝑁1 

𝐼20𝑁2 = 𝐼10𝑁1  

𝑈̂2 = 𝐼2𝑅2 – выходное напряжение трансформатора 
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𝑈̂2 = −𝑖𝜔ℒ2𝐼2 − 𝑖𝜔ℳ𝐼1 

ℰ1 = 𝐼1𝑅1 + 𝑖𝜔ℒ1𝐼1 + 𝑖𝜔ℳ𝐼2 ≈ 𝑖𝜔ℒ1𝐼1 + 𝑖𝜔ℳ𝐼2 = −𝑖𝜔ℒ1
𝑁2
𝑁1
𝐼2 − 𝑖𝜔ℳ𝐼1

𝑁1
𝑁2

= 

     = −𝑖𝜔ℒ2
𝑁1
𝑁2
𝐼1 − 𝑖𝜔ℳ𝐼1

𝑁1
𝑁2

 

ℒ1
ℒ2
=
𝑁1
2

𝑁2
2 , ℰ1𝑁2 = 𝑈̂2𝑁1 

ℰ10𝑁2 = 𝑈20𝑁1  

Двухфазная система (связанные контуры) 
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Трехфазный ток 

Соединение звездой 

 

𝑅1 > 𝑅3   ⇒   𝑈1 > 𝑈3 (если убрать нулевой провод) 

ℰ1 = ℰ10 cos𝜔𝑡 , ℰ2 = ℰ20 cos (𝜔𝑡 +
2𝜋

3
) , ℰ3 = ℰ30 cos (𝜔𝑡 +

4𝜋

3
) 

ℰ10 = ℰ20 = ℰ30 = ℰ0 

Соединение треугольником 

 

Вращающееся магнитное поле 

 

(не векторная диаграмма!) 

𝐻⃗⃗⃗1 = 𝐻⃗⃗⃗10 cos𝜔𝑡 , 𝐻⃗⃗⃗2 = 𝐻⃗⃗⃗20 cos (𝜔𝑡 +
2𝜋

3
 ) , 𝐻⃗⃗⃗3 = 𝐻⃗⃗⃗30 cos (𝜔𝑡 +

4𝜋

3
) 
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𝐻𝑥 =
√3

2
𝐻0 cos𝜔𝑡 −

√3

2
𝐻0 cos (𝜔𝑡 +

2𝜋

3
) ⋅ +0

= 𝐻0
√3

2
(2 sin (𝜔𝑡 +

𝜋

3
) sin

𝜋

3
) 

cos 𝛼 − cos𝛽 = 2 sin
𝛽 − 𝛼

2
sin
𝛽 + 𝛼

2
 

𝐻𝑥 =
3

2
𝐻0 sin (𝜔𝑡 +

𝜋

3
)  

Линейное и фазное напряжения 

                   

 

𝑈фаз = ℰ0, 𝑈лин = ℰ0 sin 60° ⋅ 2 = √3ℰ0 

Мощность переменного тока 

                       

ℰ = 𝑈𝑅 + 𝑈ℒ + 𝑈𝐶 , ℰ𝐼 = 𝐼𝑈𝑅 + 𝐼𝑈ℒ + 𝐼𝑈𝐶 

𝑃 = ℰ0 cos𝜔𝑡 ⋅ 𝐼0 cos(𝜔𝑡 + 𝜑) 
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1

𝑇
∫𝑓(𝑡)𝑑𝑡

𝑇

0

≡ 〈𝑓〉𝑇 

〈𝑃ℰ〉𝑇 =
1

𝑇
∫ℰ0𝐼0 cos𝜔𝑡 cos(𝜔𝑡 + 𝜑) 𝑑𝑡

𝑇

0

 

〈𝑃ℰ〉𝑇 =
1

2𝑇
ℰ0𝐼0 {∫cos𝜑 𝑑𝑡

𝑇

0

+∫cos(2𝜔𝑡 + 𝜑)𝑑𝑡

𝑇

0

} =
ℰ0𝐼0
2
cos𝜑 

〈𝑃ℰ〉𝑇 =
ℰ0𝐼0
2
cos𝜑  

〈𝑃𝑅〉𝑇 =
1

𝑇
∫𝑈𝑅𝐼𝑑𝑡

𝑇

0

=
𝑈𝑅0𝐼0

2
=
𝐼0
2𝑅

2
= 𝐼эфф

2 𝑅 

𝐼эфф =
𝐼0

√2
, 𝑈эфф =

𝑈0

√2
 

〈𝑃ℰ〉𝑇 = ℰэфф𝐼эфф cos𝜑 , 〈𝑃ℒ〉𝑇 = 〈𝑃𝐶〉𝑇 = 0  

cos𝜑 = 𝑚𝑎𝑥  ↔   𝜔ℒ =
1

𝜔𝐶
 

𝑅ℒ и -цепи. Переходные процессы. 

Не может измениться мгновенно: 

1) Ток через катушку 

2) Заряд на конденсатор 

𝑅ℒ-цепь 
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ℰ = ℒ𝐼̇ + 𝐼𝑅 

𝐼1 = 𝐼 + 𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝐼̇ = 𝐼 

ℰ = ℒ𝐼1̇ + 𝑅(𝐼1 − 𝐴) 

𝐴 = −
ℰ

𝑅
  ⇒   0 = ℒ𝐼1̇ + 𝑅𝐼1 

𝑑𝐼1
𝐼1
= −

𝑅

ℒ
𝑑𝑡 

ln
𝐼1
𝐼10
= −

𝑅

ℒ
𝑡 

𝐼1 = 𝐼10 exp (−
𝑅

ℒ
𝑡) , 𝐼 = 𝐼10 exp (−

𝑅

ℒ
𝑡) +

ℰ

𝑅
 

Включение: 

𝐼(0) = 0  ⇒   𝐼10 = −
ℰ

𝑅
 

𝐼(𝑡) =
ℰ

𝑅
(1 − exp (−

𝑅

ℒ
𝑡))  

Выключение: 

𝐼(0) =
ℰ

𝑅
  ⇒   𝐼10 = 0 

𝐼(𝑡) =
ℰ

𝑅
exp (−

𝑅

ℒ
𝑡)  

𝜏 =
ℒ

𝑅
 

В случае 𝑅𝐶-цепи: 𝜏 = 𝑅𝐶 
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Лекция 22 

Высокочастотные токи 

rot 𝐵⃗⃗ = 𝜇0𝑗 

∮(𝐵⃗⃗ ⋅ 𝑑𝑙)

 

𝐿

= 𝜇0𝐼   ⇒    𝐵 =
𝜇0𝐼

2𝜋𝑟
   ? 

1. Критерий квазистационарности: 𝑗смещ ≪ 𝑗пров – не выполняется! 

𝐸 =
𝑄

𝑆𝜀0
 

𝜕𝐸

𝜕𝑡
=
1

𝑆𝜀0

𝜕𝑄

𝜕𝑡
=
1

𝑆𝜀0
𝐼 =

𝑗

𝜀0
 

Необходимо учитывать ток смещения. 

2. rot 𝐵⃗⃗ = 𝜇0𝑗 

div rot 𝐵⃗⃗ = 𝜇0div 𝑗 

0 = 𝜇0 div 𝑗    ⇒    div 𝑗 = 0 ? 

div 𝑗 = −
𝜕𝜌

𝜕𝑡
 ‼! 

rot 𝐵⃗⃗ = 𝜇0𝑗 + 𝜇0𝜀0
𝜕𝐸⃗⃗

𝜕𝑡
 

div 𝑗 = −𝜀0 div
𝜕𝐸⃗⃗

𝜕𝑡
= −𝜀0

𝜕

𝜕𝑡
div 𝐸⃗⃗ = −𝜀0

𝜕

𝜕𝑡
(
𝜌

𝜀0
) = −

𝜕𝜌

𝜕𝑡
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Система уравнений Максвелла 

1) для вакуума 

{
 
 
 

 
 
 div 𝐸⃗⃗ =

𝜌

𝜀0
                      

div 𝐵⃗⃗ = 0                        

rot 𝐸⃗⃗ = −
𝜕𝐵⃗⃗

𝜕𝑡
                 

rot 𝐵⃗⃗ = 𝜇0𝑗 + 𝜇0𝜀0
𝜕𝐸⃗⃗

𝜕𝑡

 

2) для вещества 

{
 
 
 

 
 
 div 𝐷⃗⃗⃗ =

𝜌своб.непол.  

𝜀0
                                                                                                         

div 𝐵⃗⃗ = 0                                                                                                                            

rot 𝐸⃗⃗ = −
𝜕𝐵⃗⃗

𝜕𝑡
                                                                                                                     

rot 𝐻⃗⃗⃗ = 𝑗пров +
𝜕𝑃⃗⃗

𝜕𝑡
+ 𝜀0

𝜕𝐸⃗⃗

𝜕𝑡
     ⇔     rot 𝐵⃗⃗ = 𝜇0 (𝑗пров +

𝜕𝑃⃗⃗

𝜕𝑡
+ 𝜀0

𝜕𝐸⃗⃗

𝜕𝑡
+ 𝑗мол)

 

Для решения системы уравнений Максвелла в веществе, необходимо дополнить ее 

материальными уравнениями (в общем случае определяются из эксперимента). 

Для линейной, однородной, изотропной среды: 

𝐷⃗⃗⃗ = 𝜀0𝜀𝐸⃗⃗, 𝐵⃗⃗ = 𝜇0𝜇𝐻⃗⃗⃗, 𝜇 = 𝑐𝑜𝑛𝑠𝑡, 𝜀 = 𝑐𝑜𝑛𝑠𝑡 

Обобщенное волновое уравнение 

rot 𝐸⃗⃗ = −
𝜕𝐵⃗⃗

𝜕𝑡
 

rot(rot 𝐸⃗⃗)⏟      
grad(div 𝐸⃗⃗)−Δ𝐸⃗⃗

= −
𝜕

𝜕𝑡
rot 𝐵⃗⃗ 

𝜌полн = 0   ⇒   div 𝐸⃗⃗ = 0 
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∇2𝐸⃗⃗ = (
1

𝜇0𝜇
)
−1 𝜕

𝜕𝑡
rot 𝐻⃗⃗⃗ = (

1

𝜇0𝜇
)
−1 𝜕

𝜕𝑡

(

 
 
𝑗пров⏟
𝜎𝐸⃗⃗

+
𝜕𝑃⃗⃗

𝜕𝑡
+ 𝜀0

𝜕𝐸⃗⃗

𝜕𝑡⏟      
𝜕𝐷⃗⃗⃗
𝜕𝑡 )

 
 
  

∇2𝐸⃗⃗ = 𝜇0𝜇𝜎
𝜕𝐸⃗⃗

𝜕𝑡
+ 𝜇0𝜇𝜀

𝜕2𝐸⃗⃗

𝜕𝑡2
 

𝜎 = 0: 

∇2𝐸⃗⃗ =
1

𝑣2
𝜕2𝐸⃗⃗

𝜕𝑡2
, 𝑣 =

1

√𝜀0𝜇0𝜀𝜇
, 𝑐 =

1

√𝜀0𝜇0
 

𝜕2𝜉

𝜕𝑡2
−
1

𝑣2
𝜕2𝜉

𝜕𝑡2
= 0     ⇒      𝜉о = 𝑓 (𝑡 −

𝑥

𝑣
) ,    𝜉ч = 𝜉0 cos(𝜔𝑡 − 𝑘𝑥) 

Решение ВУ: 

𝐸⃗⃗ = 𝐸⃗⃗0𝑒
𝑖(𝜔𝑡−(𝑘⃗⃗⋅𝑟))

 

𝑟 = 𝑟𝑥𝑥 + 𝑟𝑦𝑦 + 𝑟𝑧𝑧, 𝑘⃗⃗ = 𝑘𝑥𝑟𝑥 + 𝑘𝑦𝑟𝑦 + 𝑘𝑧𝑟𝑧 

𝐵⃗⃗ = 𝐵⃗⃗0𝑒
𝑖(𝜔𝑡−(𝑘⃗⃗⋅𝑟))

 

Свойства электромагнитных волн 

1) 𝐵⃗⃗0 ⊥ 𝐸⃗⃗0    ⇒    𝐵⃗⃗ ⊥ 𝐸⃗⃗ 

rot 𝐸⃗⃗ = −
𝜕𝐵⃗⃗

𝜕𝑡
 

−𝑖[𝑘⃗⃗ × 𝐸⃗⃗0]𝑒
𝑖(𝜔𝑡−(𝑘⃗⃗⋅𝑟))

= −𝑖𝜔𝐵⃗⃗0𝑒
𝑖(𝜔𝑡−(𝑘⃗⃗⋅𝑟))

 

𝜔𝐵⃗⃗0 = [𝑘⃗⃗ × 𝐸⃗⃗0]  

2) фазы 𝐸⃗⃗ и 𝐵⃗⃗ совпадают 

3) (𝐸⃗⃗, 𝐵⃗⃗, 𝑘⃗⃗) – правая тройка 
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{
div 𝐸⃗⃗ =

𝜌

𝜀0
= 0  ↔   (𝑘⃗⃗ ⋅ 𝐸⃗⃗) = 0

div 𝐵 = 0                                          

   ⇒    𝑘⃗⃗ ⊥ 𝐸⃗⃗0, 𝐵⃗⃗0 

4) |𝐸⃗⃗| = 𝑣|𝐵⃗⃗| 

𝜔𝐵0 = 𝑘𝐸0    ⇔    𝑣𝐵0 = 𝐸0 

𝑣 =
𝜔

𝑘
,   𝑘 =

2𝜋

𝜆
,   𝜔 =

2𝜋

𝑇
    ⇒    𝑣 =

𝜆

𝑇
 

𝐸⃗⃗ = 𝐸⃗⃗0𝑒
𝑖(𝜔𝑡−(𝑘⃗⃗⋅𝑟))

   →    ∇2𝐸⃗⃗ =
1

𝑣2
𝜕2𝐸⃗⃗

𝜕𝑡2
 

−𝑘2 = 𝐸⃗⃗0𝑒
𝑖(𝜔𝑡−(𝑘⃗⃗⋅𝑟))

=
1

𝑣2
(−𝜔2𝐸⃗⃗0𝑒

𝑖(𝜔𝑡−(𝑘⃗⃗⋅𝑟))
)    ⇒    𝑣 =

𝜔

𝑘
 

Скин-эффект 

 

Поле 𝐸⃗⃗ всегда усиливает 𝑗 

 

                              – глубина скин-слоя  

При   𝜈 = 50 Гц    𝛿 ≈ 3 см    (эффект мал) 

∇2𝐸⃗⃗ = 𝜇0𝜇𝜎
𝜕𝐸⃗⃗

𝜕𝑡
+ 𝜇0𝜇𝜀0𝜀

𝜕2𝐸⃗⃗

𝜕𝑡2
 

𝛿 = √
2

𝜇0𝜇𝜎𝜔
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∇2𝐸⃗⃗ = 𝜇0𝜇𝜎
𝜕𝐸⃗⃗

𝜕𝑡
   ⇒   

𝜕2𝐸𝑥
𝜕𝑧

= 𝜇0𝜇𝜎
𝜕𝐸𝑥
𝜕𝑡

 

𝐸𝑥 = 𝐸𝑥0𝑒
𝛼𝑧𝑒𝑖𝜔𝑡 

𝛼2𝐸𝑥0𝑒
𝛼𝑧𝑒𝑖𝜔𝑡 = 𝜇0𝜇𝜎 ⋅ 𝑖𝜔 ⋅ 𝐸𝑥0𝑒

𝛼𝑧𝑒𝑖𝜔𝑡   ⇒   𝛼2 = 𝑖𝜇0𝜇𝜎𝜔 

𝑖 = 𝑒𝑖
𝜋
2 , √𝑖 = 𝑒

𝑖
𝜋
4 =

1

√2
(1 + 𝑖) 

𝛼 = ±
1

√2
(1 + 𝑖)√𝜇0𝜇𝜔𝜎 

𝛿 = √
2

𝜇0𝜇𝜎𝜔
 

~ 𝑒+
𝑧

𝛿   →   волна не может усиливаться! 

𝐸𝑥0  ~ 𝑒
−
𝑧
𝛿  
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Лекция 23 

𝑞,   𝑣 = 0  →   𝐸⃗⃗ 

𝑞,   𝑣 = 𝑐𝑜𝑛𝑠𝑡  →   𝐵⃗⃗,   𝐸⃗⃗ 

𝑞,   𝑣 ≠ 𝑐𝑜𝑛𝑠𝑡  →   э/м волны 

Источник электромагнитных волн. Интенсивность излучения. 

Диаграмма направленности излучения: 

 

                     𝐼𝐴 ~ sin
2 𝜃 

 

𝛿𝑊 = 𝑤 ⋅ 𝑣𝑑𝑡 ⋅ 𝑆 

Φ𝑊 ≡
𝛿𝑊

Δ𝑡
= 𝑤 ⋅ 𝑣 ⋅ 𝑆 

𝐽 ≡
Φ𝑊
𝑆
= 𝑤 ⋅ 𝑣 

𝑤 =
(𝐸⃗⃗ ⋅ 𝐷⃗⃗⃗)

2
+
(𝐻⃗⃗⃗ ⋅ 𝐵⃗⃗)

2
 

В плоской волны вакууме: 
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{
 
 

 
 𝑤 =

𝜀0𝐸
2

2
+
𝐵2

2𝜇0
                     

𝐸 = 𝑣𝐵 = 𝑐𝐵 =
1

√𝜀0𝜇0
𝐵     

    ⇒    𝑤 =
𝜀0𝐸

2

2
+

𝐸2

2𝜇0𝑐
2
=
𝜀0𝐸

2

2
+
𝜀0𝐸

2

2

= 𝜀0𝐸
2 

𝐽 = 𝜀𝐸2𝑐 

Вектор Умова – Пойнтинга 

 

𝑆 – вектор плотности потока энергии излучения 

𝛿𝑊

𝑑𝑡
=∭

𝜕𝑤

𝜕𝑡
𝑑𝑉

𝑉

= −∯(𝑆 ⋅ 𝑑𝑎⃗)

Σ

−∭(𝐸⃗⃗ ⋅ 𝑗)𝑑𝑉

𝑉

 

∭
𝜕𝑤

𝜕𝑡
𝑑𝑉

𝑉

= −∭div 𝑆 𝑑𝑉

V

−∭(𝐸⃗⃗ ⋅ 𝑗)𝑑𝑉

𝑉

 

(𝐸⃗⃗ ⋅ 𝑗) = −
𝜕𝑤

𝜕𝑡
− div 𝑆 

𝑗 = 𝑛𝑞𝑣⃗   ⇒   (𝐸⃗⃗ ⋅ 𝑗) = 𝑛(𝑞𝐸⃗⃗ ⋅ 𝑣⃗), 𝑛𝛿𝑉 = 𝛿𝑁 
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𝑆 = [𝐸⃗⃗ × 𝐻⃗⃗⃗]  – вектор Умова – Пойнтинга, показывает направление распространения 

волны 

|𝑆| = 𝐽 

Электрические свойства веществ 

проводники      →   𝜎 ≠ 0, 𝜀 = 1 

диэлектрики     →   𝜎 = 0, 𝜀 > 1 

полупроводники    →   𝜎 ≠ 0, 𝜀 > 1 

 

𝜌 = 𝜌(1 + 𝛼𝑡)  ↔  чистый металл 

𝜎 =
𝑛𝑞2𝜏

𝑚
, 𝜎 =

1

𝜌
 

Значительное влияние дефектов кристаллической решетки при низких 𝑇. 
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Основные свойства сверхпроводников 

1. 𝑅 = 0  ⇒   𝑄дж = 0 

2. 𝐵внутр = 0 (эффект Мейснера) 

3. При 𝐵 > 𝐵крит сверхпроводимость исчезает 

4. При 𝐼 > 𝐼крит сверхпроводимость исчезает 

Термоэлектрические явления. Термопара. 

Эффект Зеебека 

 

𝑛1 > 𝑛2   ⇒   запирающее 𝐸⃗⃗  ⇒  термоЭДС,   𝜉 ~ 𝑇1−𝑇 ≤ 10
2 мВ  

Эффект Пельтье 
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𝑄 = Δ𝑞 ⋅ Π, меняет направление при изменении тока 

Эффект Томсона 

 

𝐸1,  𝐸2 – энергии носителей заряда 

𝐸2 > 𝐸1 ⇒ 𝑄 < 0 (поглощение тепла) 

𝐸1 > 𝐸2 ⇒ 𝑄 > 0 (выделение тепла) 

Полупроводниковый биполярный транзистор 

 

Основан на принципе внутреннего фотоэффекта. 

Фоторезистор 
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Терморезистор 
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