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Напоминания из математического анализа

Дифференцируемость функции в точке

Вспомним определение функции, дифференцируемой в точке.

Определение 1.1. Пусть f : Rn → Rm, точка P0, P ∈ Rn.
Функция f называется дифференцируемой в точке P0, если ∃A ∈ Matn×m(R) и

существует окрестность U точки P0 такие, что ∀P ∈ U имеем:

f(P )− f(P0) = A(X −X0) + o(‖X −X0‖),

где P = (x1, . . . , xn), P0 = (x10, . . . , x
n
0 ), X и X0 – столбцы координат точек P и P0,

‖ · ‖ – норма (в Rn все нормы эквивалентны).

Если функция f дифференцируема в точке, то матрица A состоит из частных
производных функции f .

Распространённое заблуждение: функция f дифференцируема в точке, если
она имеет в этой точке все частные производные. Приведём контрпример. Пусть

f : R2 → R такая, что f(x, y) =

{
1, если xy = 0

0, если xy 6= 0
. Заметим, что f ′x(0, 0) = f ′y(0, 0) =

= 0. Однако функция f в точке (0, 0) не является непрерывной, а значит, и не
является дифференцируемой в этой точке.
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Можно даже построить функцию, которая будет иметь в некоторой точке все
производные по любому направлению, но не будет непрерывной и дифференцируе-

мой в этой точке. Например, пусть f(x, y) =

{
1, если y = x2 и (x, y) 6= (0, 0)

0, иначе
. Тогда

производная функции f по любому направлению в точке (0, 0) равна 0 (так как на
любом достаточно малом отрезке любого луча, исходящего из точки (0, 0) функция
f тождественно равна 0). Однако функция f не является непрерывной в точке (0, 0)
(так как в любой достаточно малой окрестности точки (0, 0) функция принимает
значения 0 и 1). Значит, функция f не является дифференцируемой в точке (0, 0).

Достаточное условие дифференцируемости функции в точке: все частные произ-
водные функции в этой точке должны существовать и быть непрерывны.

Смысл понятия дифференцируемости в точке: функция f в точке приближается
линейной функцией с точностью до бесконечно малых порядка больше 1.

Теоремы об обратной функции и о неявной функции

Теорема 1.1 (Теорема об обратной функции). Пусть f : Rn → Rn и точка P0 ∈ Rn.
Пусть дифференциал df

∣∣
P0

невырожден. Тогда локально ∃ обратное отображение

f−1, причём df−1
∣∣
f(P0)

=
(
df
∣∣
P0

)−1
.

Теорема 1.2 (Теорема о неявной функции). Пусть F : Rn → Rm и точка P0 ∈
∈ Rn. Пусть rank dF

∣∣
P0

= m. Тогда ∃ функция f такая, что уравнение F (x) = y0
локально эквивалентно

xi1 = f1(x
1, . . . , xî1 , . . . , xn)

...

xim = fm(x1, . . . , xîm , . . . , xn),

где xîk – пропущенные координаты, то есть fk(x
1, . . . , xîk , . . . , xn) – функция от

всех координат, кроме xik . Здесь coli1

(
dF
∣∣
P0

)
, . . . , colim(dF

∣∣
P0

) независимы.

Приведение двух квадратичных форм

Теорема 1.3 (Теорема о приведении двух квадратичных форм). Если есть две
квадратичные формы, одна из которых положительно определена, то существу-
ет такая замена координат, в результате которой положительно определённая
квадратичная форма становится единичной, а другая квадратичная форма ста-
новится диагональной.

С одной квадратичной формой мы работали в аналитической геометрии. Когда
мы приводили поверхность к каноническому виду, мы ортогональными преобразо-
ваниями приводили квадратичную форму поверхности к диагональному виду. Для
этого мы находили собственные значения, и в базисе собственных векторов матрица
становилась диагональной.
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Если есть две квадратичные формы, то идея состоит в следующем. Мы можем
положительно определённую квадратичную форму принять за скалярное произве-
дение. Далее мы можем действовать ортогональными преобразованиями относи-
тельно этого скалярного произведения. Тогда положительно определённая квадра-
тичная форма так и останется единичной, а другую мы сможем привести ортого-
нальными преобразованиями к диагональному виду.

Определения кривых

В дифференциальной геометрии мы будем изучать кривые и поверхности. В ана-
литической геометрии мы рассматривали кривые и поверхности второго порядка.
Это такие объекты, которые задаются алгебраическими уравнениями соответству-
ющего порядка. Теперь мы будем рассматривать произвольные кривые и поверхно-
сти. Для этого необходимо формализовать эти понятия.

Определение 1.2. Простая дуга – гомеоморфный образ отрезка [a, b] в Rn.

Определение 1.3. Простая параметризованная дуга – простая дуга вместе с па-
раметризацией γ : [a, b]→ Rn.

Гладкости γ мало. Приведём пример.

x(t) =

{
0, t ≤ 0

t2, t ≥ 0
; y(t) =

{
t2, t ≤ 0

0, t ≥ 0
.

Рис. 1.1: Множество точек, задаваемое примером,
на координатной плоскости

Заметим, что в этом примере x′(0) = y′(0) = 0.

Определение 1.4. Пусть γ – гладкое отображение [a, b]→ Rn. Вектор (γ′1, . . . , γ
′
n)

называется вектором скорости.

Определение 1.5. Простая гладкая параметризованная дуга – это простая пара-

метризованная дуга + условие гладкости γ + условие регулярности:
dγ

dt
6= 0 всюду.
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Определение 1.6. Параметризованная кривая – отображение промежутка (то
есть отрезка, интервала, полуинтервала, прямой, луча) γ : I → Rn такое, что ∃
не более чем счётное покрытие промежутка I отрезками [ai, bi] такое, что γ

∣∣
[ai,bi]

–
простая параметризованная дуга ∀i.

Приведём пример. Рассмотрим отображение [0, 2π) → R2, где ϕ → (cosϕ, sinϕ).
Геометрическим образом является единичная окружность. Можно устроить счётное
покрытие полуинтервала [0, 2π) отрезками, на каждом из которых отображение
будет простой параметризованной дугой.

Определение 1.7. Гладкая параметризованная кривая – это параметризованная

кривая + условие гладкости γ + условие регулярности:
dγ

dt
6= 0 всюду.

Определение 1.8. Пусть γ1 : I1 → Rn и γ2 : I2 → Rn – параметризованные кривые.
Они называются эквивалентными, если ∃ гомеоморфизм ϕ : I1 → I2 такой, что
γ2 ◦ ϕ = γ1.

Определение 1.9. Гладкая кривая – это класс эквивалентности параметризован-
ных кривых.

Гладкая кривая не является геометрическим образом в полной мере, так как в
ней важен порядок обхода, что иллюстрируется следующим рисунком.

Рис. 1.2: Пример геометрического образа для двух гладких кривых
Такому геометрическому образу соответствуют две гладких кривых:
1) можно пройти сначала по левому лучу, затем по верхней окружности, потом

по нижней окружности и в конце по правому лучу;
2) а можно пройти сначала по левому лучу, затем по нижней окружности, потом

по верхней окружности и в конце по правому лучу.
Кривая называется гладкой (или регулярной), если она допускает регулярную

параметризацию. Может быть, что одна параметризация будет регулярна, а другая
– нерегулярна.

Рассмотрим в качестве примера кривую

{
x(t) = t3

y(t) = t5
. При t = 0 вектор скорости

обращается в 0. Однако эта кривая задаётся функцией y = x
5
3 , график которой не

имеет углов. У этой кривой можно выбрать регулярную параметризацию.
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Рис. 1.3: Кривая

{
x(t) = t3

y(t) = t5

Бывает, что регулярную параметризацию выбрать нельзя. Рассмотрим в качестве

примера

{
x(t) = t2

y(t) = t3
. Эта кривая не допускает регулярной параметризации, так как

при t = 0 она не имеет касательной.

Рис. 1.4: Кривая

{
x(t) = t2

y(t) = t3

Другие способы задания кривых

Неявный способ задания кривых

Рассмотрим неявное уравнение F (x, y) = 0, где F – гладкая функция. Пусть
gradF 6= 0 всюду на кривой. Тогда локально можно разрешить уравнение в виде
x = f(y) или y = g(x). Тогда в окрестности любой точки кривой можно ввести

параметризацию

{
x = f(t)

y = t
или

{
x = t

y = g(t)
.
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И наоборот. Рассмотрим кривую

{
x = t

y = g(t)
, причём

dγ

dt
6= 0. Пусть для опреде-

лённости в точке t0 производная x′t 6= 0. Тогда по теореме об обратной функции
можно локально выразить t = t(x). Тогда y = y(t(x)) – явная функция, являющая-
ся частным случаем неявной функции: y − y(t(x)) = 0.

Приведём пример, который необходимо иметь в виду. Рассмотрим кривую y2 =
= (x+ 1)x2.

Рис. 1.5: Кривая y2 = (x+ 1)x2

В точке (0, 0) имеем: gradF = 0. Однако ввести параметризацию на этой кривой
возможно. Например, можно двигаться по кривой из первого квадранта в третий,
затем во второй, потом в четвёртый. При этом в точке (0, 0) совпадут две разные
точки параметризованной кривой (мы будем их проходить при разных значениях
t).

Задание кривых как решений дифференциальных уравнений

Решением дифференциального уравнения с заданными начальными условиями
является параметризованная кривая.

Упражнение 1.1. Сидит кот. Подкрался Вовочка и привязал к хвосту кота на
верёвке консервную банку, как показано на рисунке. Затем Вовочка напугал кота.
Кот побежал прямо вдоль направления хвоста. По какой траектории будет двигать-
ся консервная банка?
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Рис. 1.6: Вид сверху
То есть надо написать дифференциальное уравнение и решить его. Решением

будет важная кривая, которая будет встречаться дальше в курсе.
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Семинар 2

Кривизна кривой

Определение 2.1. Пусть γ – регулярная кривая с регулярной параметризацией
r(t). Тогда

s =

t∫
t0

|r′(t)| dt

– натуральный параметр, где r′(t) – вектор скорости (в исходной параметризации).

Вектор скорости в натуральной параметризации будем обозначать производной

с точкой: ṙ =
dr

ds
. Посчитаем модуль этого вектора скорости:

|ṙ| =
∣∣∣∣drds
∣∣∣∣ =

∣∣∣∣drdt · dtds
∣∣∣∣ =

∣∣∣∣drdt :
ds

dt

∣∣∣∣ =

∣∣∣∣drdt
∣∣∣∣∣∣∣∣dsdt
∣∣∣∣ = 1,

так как дифференцированием интеграла s =

t∫
t0

|r′(t)| dt по верхнему пределу полу-

чаем:
∣∣∣∣dsdt
∣∣∣∣ =

∣∣∣∣drdt
∣∣∣∣.

Таким образом, если взять в качестве параметра длину кривой, то вектор скоро-
сти имеет всюду постоянную длину, равную 1.

Упражнение 2.1. Докажите, что длина вектора скорости тождественно равна 1

тогда и только тогда, когда параметр может отличаться от s =

t∫
t0

|r′(t)| dt сдвигом

(изменением t0) и умножением на −1.

Далее будем точкой обозначать производную по натуральному параметру.
Введём обозначение: v = ṙ.

Определение 2.2. |v̇| = k – кривизна кривой.

Приведём примеры.
1) Для прямой v = const, поэтому k = 0.

2) Рассмотрим окружность

{
x = R cos t

y = R sin t
. Введём натуральный параметр:

s =
t

2π
· 2πR = tR.
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Запишем уравнения окружности в натуральной параметризации:

x = R cos
s

R

y = R sin
s

R

.

Посчитаем вектор скорости:

v =
(
− sin

s

R
, cos

s

R

)
.

Посчитаем вектор ускорения:

v̇ =

(
− 1

R
cos

s

R
, − 1

R
sin

s

R

)
.

Таким образом, k = |v̇| =
1

R
. То есть кривизна окружности постоянна для данной

окружности и обратно пропорциональна радиусу.
Заметим, что в большинстве случаев считать длину дуги кривой сложно. Почти

всегда интеграл не берётся в элементарных функциях.

Репер Френе и формулы Френе

Определение 2.3. Пусть v – вектор скорости в натуральной параметризации. Вве-

дём вектор n =
v̇

|v̇|
. Пара векторов v и n, откладываемых от точки на кривой,

называется репером Френе.

Покажем, что n ⊥ v. Мы знаем, что |v| ≡ 1. Тогда |v|2 ≡ 1, то есть (v, v) ≡ 1.
Продифференцируем последнее равенство по s, получим: 2(v̇, v) ≡ 0. Значит, n ⊥ v.
Таким образом, репер Френе ортонормированный.

Для вектора n остаются два возможных направления в плоскости кривой, пер-
пендикулярные вектору v. Чтобы выделить из них одно верное, введём систему
координат: центр в точке на кривой, ось x вдоль вектора v, ось y внутрь кривой
перпендикулярно оси x (см. рисунок).

Рис. 2.1: Система координат для репера Френа
У функции y(s) точка начала координат является точкой минимума, значит, в

начале координат ÿ > 0. Но ÿ – это вторая компонента вектора v̇, а вектор n сона-
правлен вектору v̇. Значит, вторая компонента вектора n положительна в введённой
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системе координат. Таким образом, репер Френе выглядит так, как показано на сле-
дующем рисунке.

Рис. 2.2: Репер Френа
Если по кривой пойти в другую сторону, то вектор v изменит направление на

противоположное, а вектор n не изменит направление.

Так как n =
v̇

|v̇|
и |v̇| = k, то v̇ = kn. Также можно показать, что ṅ = −kv.

Утверждение 2.1.

{
v̇ = kn

ṅ = −kv
– формулы Френе для натуральной параметриза-

ции плоской кривой.

Кривизна со знаком

Определение 2.4. Вектор n из репера Френе называется вектором главной нор-
мали.

В точке перегиба поле векторов главной нормали испытывает разрыв (см. рису-
нок).

Рис. 2.3: Точка перегиба
Выберем внешнее нормальное направление кривой. Например, пусть в левой ча-

сти рисунка (до точки перегиба) вектор n ориентирован положительно, а в правой
части рисунка (после точки перегиба) – отрицательно.

Определение 2.5. k̂ = k, если направление n совпадает с положительным нор-
мальным направлением, и k̂ = −k, если направление n совпадает с отрицательным
нормальным направлением. k̂ – кривизна со знаком.
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Пусть ϕ – угол между горизонталью и вектором v. Если параметризация нату-
ральная, то есть |v| ≡ 1, то v = (cosϕ, sinϕ). Тогда

v̇ = (−ϕ̇ sinϕ, ϕ̇ cosϕ) = ϕ̇ · (− sinϕ, cosϕ).

Значит, k = |ϕ̇| и k̂ = ϕ̇ (такое определение кривизны со знаком в данном случае
эквивалентно выбору внешнего нормального направления кривой).

Восстановление кривой по заданной функции кривизны

Пусть задана кривизна со знаком k̂ = k̂(s). Мы хотим восстановить кривую r(s).

Из того, что k̂ = ϕ̇, получаем: ϕ(s) =

s∫
s1

k̂(σ) dσ. Тогда, используя v = (cosϕ, sinϕ)

и v = ṙ, для координат кривой получаем:
x(s) =

s∫
s2

cosϕ(σ) dσ

y(s) =

s∫
s3

sinϕ(σ) dσ

.

Таким образом, мы восстановили кривую r(s), но неоднозначно, так как в про-
цессе восстановления кривой участвовали произвольные начальные точки s1, s2,
s3 (или произвольные константы интегрирования). Константы s2 и s3 отвечают за
параллельный перенос кривой вдоль направлений осей x и y соответственно, а кон-
станта s1 отвечает за поворот всей кривой. Таким образом, мы восстановили кривую
с точностью до движений плоскости.

Рассмотрим практический пример.
Пусть при строительстве железной дороги необходимо сделать поворот после пря-

молинейного участка. Может показаться, что поворот нужно делать дугой окруж-
ности, но это плохой вариант, так как в таком случае при переходе с прямолинейного
участка на дугу окружности кривизна будет резко меняться, вследствие чего поезд
испытает сильный удар об рельсы (а в худшем случае сойдёт с рельс).

Можно рассматривать кубические кривые, а не квадратичные.
Другой способ: после прямолинейного участка линейно увеличиваем кривизну от

0 до
1

R
, далее делаем дугу окружности нужного нам радиуса R, затем линейно

уменьшаем кривизну от
1

R
до 0, а потом снова делаем прямолинейный участок (см.

рисунок).
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Рис. 2.4: 1 – прямолинейный участок;

2 – увеличение кривизны от 0 до
1

R
;

3 – дуга окружности радиуса R;

4 – уменьшение кривизны от
1

R
до 0;

5 – прямолинейный участок
Так как кривизна меняется линейно, то k(s) = αs, где α – некоторая константа.

Пусть α = 1, тогда k(s) = s. Пусть для определённости k̂(s) = k(s) = s, тогда,

например, ϕ(s) =
s2

2
. Таким образом, получаем общий вид кривой для участков 2

и 4: 
x(s) =

∫
cos

(
s2

2

)
ds

y(s) =

∫
sin

(
s2

2

)
ds

.

Эти интегралы не берутся в элементарных функциях.

Порядок соприкосновения кривых

Определение 2.6. Две кривые r1(t) и r2(t) имеют соприкосновение порядка k в
точке t0, если у них существуют такие параметризации одним и тем же отрезком,
что |r1(t)− r2(t)| = o

(
(t− t0)k

)
при t→ t0.

Рассмотрим касательную к кривой в некоторой точке и различные окружности,
касающиеся кривой в этой же точке. Касательная и кривая имеют порядок сопри-
косновения 1. Покажем, что среди всех окружностей, касающихся данной кривой в
заданной точке, есть одна выделенная, у которой порядок касания будет на 1 выше.

Пусть r(s) – кривая, r̂(s) – окружность, касающаяся кривой в точке r0 (при зна-
чении параметра s0). Пусть v0 и n0 репер Френе в точке касания, R0 – радиус
касательной окружности. Введём обозначение ∆(s) = |r(s) − r̂(s)|. Пусть p(s) =
= r(s)− (r0 +R0n0) (см. рисунок).
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Рис. 2.5: Соприкасающаяся окружность
Тогда

∆(s) =

∣∣∣∣r(s)− (r0 +R0n0 +R0
p(s)

|p(s)|

)∣∣∣∣ =

∣∣∣∣p(s)−R0
p(s)

|p(s)|

∣∣∣∣ =

∣∣∣∣p(s)(1− R0

|p(s)|

)∣∣∣∣ =

= |p(s)| ·
∣∣∣∣1− R0

|p(s)|

∣∣∣∣ = ||p(s)| −R0|.

Таким образом, с точностью до знака ∆(s) = |p(s)| − R0. Мы хотим показать, что
∆(s) является «o малым» от s− s0 довольно большого порядка. Значит, надо пока-
зать, что ∆(s) и её производные вплоть до некоторого довольно большого порядка
в точке s0 обращаются в 0 (поэтому на знак можно не обращать внимания):

∆(s0) = |p(s0)| −R0 = | −R0n0| −R0 = 0;

∆̇(s) =
2(p(s), ṗ(s))

2|p(s)|
=

(p(s), ṗ(s))

|p(s)|
;

∆̇(s0) =
(p(s0), ṗ(s0))

|p(s0)|
=

(−R0n0, v0)

R0

= 0, так как n0 ⊥ v0;

∆̈(s) =

|p(s)| · ((ṗ(s), ṗ(s)) + (p(s), p̈(s)))− (p(s), ṗ(s)) · (p(s), ṗ(s))

|p(s)|
|p(s)|2

=

=
1

|p(s)|3
·
(
|p(s)|2 · ((ṗ(s), ṗ(s)) + (p(s), p̈(s)))− (p(s), ṗ(s))2

)
;

∆̈(s0) =
1

R3
0

·
(
R2

0 · (1 + (−R0n0, k0n0))
)

=
1− k0R0

R0

,

так как (ṗ(s0), ṗ(s0)) = (v0, v0) = 1 (в натуральной параметризации)
и p̈(s0) = v̇(s0) = k0n0 – формула Френе.

Таким образом, ∆̈(s0) = 0 ⇔ R0 =
1

k0
.

Определение 2.7. Окружность с радиусом R0 =
1

k0
, касающаяся кривой в точке с

кривизной k0, называется соприкасающейся окружностью кривой в данной точке.
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Определение 2.8. Центр соприкасающейся окружности называется центром кри-
визны.
Если в качестве кривой взять окружность, то её центр кривизны совпадёт с цен-

тром окружности, и она будет сама себе соприкасающаяся во всех точках.
Замечание 2.1. Рисунок (2.5) соответствует частному случаю, когда k̇

∣∣
s=s0

= 0 (в
этом случае порядок касания будет ещё на 1 выше). Если k̇

∣∣
s=s0

> 0, то кривая при
переходе s через s0 в сторону увеличения параметра будет «входить в окружность».
Соответственно, при k̇

∣∣
s=s0

< 0 кривая при переходе s через s0 в сторону увеличения
параметра будет «выходить из окружности» (см. рисунок).

Рис. 2.6: Соприкасающиеся окружности при k̇
∣∣
s=s0
6= 0

(считаем, что увеличение параметра s соответствует
движению по кривой слева направо)

Определение 2.9. Точки кривой, в которых k̇(s0) = 0, называются вершинами
кривой.

Рис. 2.7: Вершины эллипса:
левая и правая – точки максимума кривизны;
верхняя и нижняя – точки минимума кривизны

Упражнение 2.2. Доказать, что у любой замкнутой регулярной кривой есть по
крайней мере 4 вершины.

Эволюта кривой

Определение 2.10. Эволюта кривой – множество центров кривизны.
Пусть дана кривая r(s). Запишем уравнение эволюты ρ(s) (для этого надо от

кривой отойти в направлении главной нормали на расстояние, равное радиусу кри-
визны):

ρ(s) = r(s) +R(s)n(s) = r(s) +
1

k(s)
n(s).
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При этом надо понимать, что если параметр s на исходной кривой r(s) был на-
туральный, то, вообще говоря, на эволюте ρ(s) такая параметризация уже не будет
натуральной.

Выясним, куда направлен касательный вектор к эволюте:

ρ̇(s) = v(s)− k̇(s)

k2(s)
n(s) +

1

k(s)
· (−k(s)v(s)) = − k̇(s)

k2(s)
n(s).

Как видно, касательный вектор к эволюте направлен вдоль направления вектора
n(s). При этом можно сделать вывод, что у эволюты нарушается регулярность в
вершинах кривой.

Чтобы представить, как выглядит эволюта, надо из кривой «выпустить волновой
фронт», то есть волны, идущие с одинаковой скоростью по нормальным направле-
ниям. Сначала картинка будет без особенностей, но затем волновые фронты начнут
в некоторых точках друг с другом «схлёстываться». Эти особые точки «прорисуют»
эволюту.

Упражнение 2.3. Напишите уравнение эволюты эллипса в явном виде.

Эвольвента кривой

Возьмём кривую, приложим к некоторой её точке s0 жёсткий достаточно длинный
стержень, затем будем его прокатывать по кривой без проскальзывания. Будем
следить за концом этого стержня (см. рисунок).

Определение 2.11. Эвольвента – кривая, которую вычертит конец стержня, о
котором шла речь выше.

Рис. 2.8: Эвольвента
Пусть дана кривая r(s). Запишем уравнение эвольвенты σ(s) (для этого надо от

кривой отойти в направлении, противоположном вектору скорости на расстояние,
равное длине пройденной дуги s− s0):

σ(s) = r(s)− v(s)(s− s0).

Упражнение 2.4. Найти касательный вектор к эвольвенте σ̇(s).

Упражнение 2.5. Написать уравнение эвольвенты окружности в явном виде.

Упражнение 2.6. Что получится, если взять эволюту от эвольвенты от некоторой
кривой?
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Семинар 3

Разбор домашнего задания

Эволюта для эллипса

Разберём выполнение упражнения (2.3).
Задача 3.1. Напишите уравнение эволюты эллипса в явном виде.
Решение:
ρ(s) = r(s) +R(s)n(s) – уравнение эволюты.

n(s) =
v̇(s)

k(s)
по формуле Френе. Но v̇(s) = v′ · ṫ =

v′

s′
(здесь точкой обозначается

производная по s, а штрихом – производная по t). Таким образом, получаем:

n(s) =
1

k(s)
· v
′

s′
=

1

k(s)
· (ṙ)′

s′
=

1

k(s)
·
(
r′

s′

)′
· 1

s′
=

1

k(s)
· r
′′s′ − s′′r′

(s′)3
.

R(s) =
1

k(s)
. Можно показать, что в произвольной параметризации k(s) =

|[r′, r′′]|
|r′|3

(вкратце: можно показать, что в натуральной параметризации эта формула верна,
а затем показать, что эта формула не зависит от выбора параметризации).

Подставляем всё в уравнение эволюты:

ρ(s) = r(s) +
|r′|6

|[r′, r′′]|2
· r
′′s′ − s′′r′

(s′)3
.

Учитывая, что s – натуральный параметр, получаем:

s =

t∫
t0

√
(x′)2 + (y′)2 dt – длина дуги;

s′ =
√

(x′)2 + (y′)2;

s′′ =
2x′x′′ + 2y′y′′

2
√

(x′)2 + (y′)2
=

x′x′′ + y′y′′√
(x′)2 + (y′)2

.

Преобразуем модуль векторного произведения:

|[r′, r′′]| = |(0, 0, x′y′′ − x′′y′)| = |x′y′′ − x′′y′|.
Снова подставляем всё в уравнение эволюты:

ρ(s) = r(s) +
((x′)2 + (y′)2)

3

|x′y′′ − x′′y′|2
·
r′′
√

(x′)2 + (y′)2 − r′(x′x′′ + y′y′′)√
(x′)2 + (y′)2

((x′)2 + (y′)2)
3
2

=

= r(s) +

((x′)2 + (y′)2)
3
2 ·

(
r′′
√

(x′)2 + (y′)2 − r′(x′x′′ + y′y′′)√
(x′)2 + (y′)2

)
|x′y′′ − x′′y′|2

=

= r(s) +
((x′)2 + (y′)2) · (r′′((x′)2 + (y′)2)− r′(x′x′′ + y′y′′))

|x′y′′ − x′′y′|2
.
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Будем считать, что вектор ρ имеет координаты (ξ, η). Тогда для этих координат
получаем:

ξ = x+
((x′)2 + (y′)2) · (x′′((x′)2 + (y′)2)− x′(x′x′′ + y′y′′))

|x′y′′ − x′′y′|2
=

= x+
((x′)2 + (y′)2) · (x′′(y′)2 − x′y′y′′)

|x′y′′ − x′′y′|2
=

= x+
((x′)2 + (y′)2)y′(x′′y′ − x′y′′)

|x′y′′ − x′′y′|2
= x+

y′((x′)2 + (y′)2)

(x′′y′ − x′y′′)
;

η = y − x′((x′)2 + (y′)2)

(x′′y′ − x′y′′)
(выводится аналогично).

Таким образом, мы вывели формулы для координат эволюты в произвольной
параметризации.

Теперь рассмотрим стандартную параметризацию эллипса:{
x = a cos t

y = b sin t
.

Получаем выражения для производных координат эллипса:

x′ = −a sin t;

y′ = b cos t;

x′′ = −a cos t;

y′′ = −b sin t.

Подставляем всё в формулы для координат эволюты в произвольной параметри-
зации:

ξ = a cos t+
b cos t(a2 sin2 t+ b2 cos2 t)

(−ab cos2 t− ab sin2 t)
= a cos t− cos t(a2 sin2 t+ b2 cos2 t)

a
=

=
cos t(a2 − a2 sin2 t− b2 cos2 t)

a
=

(a2 − b2) cos3 t

a
;

η =
(a2 − b2) sin3 t

b
(выводится аналогично).

Заметим, что из основного тригонометрического тождества получаем уравнение(
aξ

a2 − b2

)2
3

+

(
bη

a2 − b2

)2
3

= 1 – это уравнение кривой, называемой астроидой.
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Рис. 3.1: Астроида

Аналогичным образом можно вывести уравнение эволюты для параболы, полу-
чится полукубическая парабола.

Упражнение про 4 вершины

Разберём выполнение упражнения (2.2).

Задача 3.2. Доказать, что у любой замкнутой регулярной кривой есть по крайней
мере 4 вершины.

Решение:
Предположим, что на рассматриваемой кривой меньше 4 вершин.
Если рассматриваемая кривая не является окружностью (окружность – триви-

альный случай), то на кривой существуют по крайней мере один локальный мак-
симум кривизны и один локальный минимум кривизны. Введём систему координат
так, чтобы ось x проходила через некоторую точку локального максимума кри-
визны и через некоторую точку локального минимума кривизны, при этом точка
максимума пусть лежит левее точки минимума (см. рисунок).

Рис. 3.2: Ввели систему координат
Тогда по ту сторону от оси x, где при движении по кривой мы движемся от макси-

мума к минимуму кривизны, будет k̇ ≤ 0 (то есть при y < 0), а по другую сторону
от оси x, где при движении по кривой мы движемся от минимума к максимуму
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кривизны, будет k̇ ≥ 0 (то есть при y > 0). При этом равенство k̇ = 0 может дости-
гаться только в одной точке, не считая максимума и минимума, о которых уже шла
речь раньше, так как мы предположили, что на рассматриваемой кривой меньше 4
вершин.

v =

(
ẋ
ẏ

)
– вектор скорости.

kn = v̇ =

(
ẍ
ÿ

)
– формула Френе.

n = ±
(
ẏ
−ẋ

)
, так как n ⊥ v. При этом можно показать, что знак не может

меняться. Будем для определённости считать, что n =

(
ẏ
−ẋ

)
.

Пусть кривая параметризована отрезком [a, b]. При этом так как кривая замкну-
та, то при t = a и при t = b получаем одну и ту же точку на кривой. Проинтегрируем
ẍ по всей замкнутой кривой:

b∫
a

ẍ(s) ds = ẋ(b)− ẋ(a) = 0,

так как считаем кривую гладкой. С другой стороны, используя kn =

(
ẍ
ÿ

)
=

= k

(
ẏ
−ẋ

)
, получаем интегрированием по частям:

b∫
a

ẍ(s) ds =

b∫
a

k(s)ẏ(s) ds = −
b∫

a

k̇(s)y(s) ds.

Таким образом, получаем, что
b∫

a

k̇(s)y(s) ds = 0. Но при y < 0 имеем k̇ ≤ 0, а при

y > 0 имеем k̇ ≥ 0, причём k̇ = 0 может выполняться только в одной точке. Значит,
b∫

a

k̇(s)y(s) ds > 0. Получили противоречие. Значит, наше предположение неверно,

и на рассматриваемой кривой есть по крайней мере 4 вершины.

Кривые в пространстве

Кривизна определяется аналогично по изменению вектора скорости.
Разница появляется в формулах Френе. В случае плоской кривой векторы v и n

образуют базис. В пространстве для образования базиса нужен третий вектор.
Пусть γ – регулярная кривая, r – её радиус-вектор. Пусть r′ и r′′ линейно незави-

симы. Введём единичный вектор скорости: v =
r′

|r′|
. Если мы вводим натуральный
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параметр, то v ⊥ v̇, и если мы нормируем вектор v̇, то получаем вектор главной
нормали: v̇ = kn, где k – кривизна, n – вектор главной нормали.

Определение 3.1. b = [v, n] – бинормаль.

Определение 3.2. Базис в пространстве, состоящий из векторов v, n, b, называется
репером Френе.

Репер Френе является ортонормированным.

Утверждение 3.1.


v̇ = kn

ṅ = −kv + κb
ḃ = −κn

– формулы Френе, где κ =
< r′, r′′, r′′′ >

|[r′, r′′]|2
–

кручение (скобками < ·, ·, · > обозначено смешанное произведение).

Замечание 3.1. Коэффициенты в формулах Френе можно запомнить с помощью

кососимметричной матрицы

 0 k 0
−k 0 κ
0 −κ 0

.

Иногда кручение определяется с противоположным знаком.

Задача 3.3 (№ 4.10 (а)). Найти кривизну и кручение в произвольной точке сле-
дующей линии: r(t) = (et, e−t, t

√
2).

Решение:

r′ = (et, − e−t,
√

2);

r′′ = (et, e−t, 0);

r′′′ = (et, − e−t, 0);

k =
|[r′, r′′]|
|r′|3

=

∣∣(−√2e−t,
√

2et, 2
)∣∣(√

e2t + e−2t + 2
)3 =

√
2e−2t + 2e2t + 4(√
e2t + e−2t + 2

)3 =

√
2

e2t + e−2t + 2
.

< r′, r′′, r′′′ >= −
√

2−
√

2 = −2
√

2;

κ =
< r′, r′′, r′′′ >

|[r′, r′′]|2
=

−2
√

2

2e−2t + 2e2t + 4
=

−
√

2

e−2t + e2t + 2
.
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Винтовая линия

Если сверху смотреть на винтовую линию, то она проектируется в окружность.
При этом подъём винтовой линии должен быть равномерный. Поэтому можно на-

писать такую параметризацию для винтовой линии:


x = a cos t

y = a sin t

z = bt

, где a, b > 0.

r′ = (−a sin t, a cos t, b);

r′′ = (−a cos t, − a sin t, 0);

r′′′ = (a sin t, − a cos t, 0);

k =
|[r′, r′′]|
|r′|3

=
|(ab sin t, − ab cos t, a2)|(√

a2 + b2
)3 =

√
a2b2 + a4(√
a2 + b2

)3 =
a

a2 + b2
.

< r′, r′′, r′′′ >= a2b;

κ =
< r′, r′′, r′′′ >

|[r′, r′′]|2
=

a2b

a2b2 + a4
=

b

a2 + b2
.

Упражнение 3.1. Доказать, что не существует в пространстве никаких других
кривых с постоянной кривизной, но ненулевым постоянным кручением, кроме вин-
товой линии.

Вводить натуральную параметризацию для винтовой линии неудобно, поэтому
посчитаем репер Френе без введения натурального параметра.

v =
r′

|r′|
=

(
− a√

a2 + b2
sin t,

a√
a2 + b2

cos t,
b√

a2 + b2

)
.

b = [v, n] и |b| = 1 по определению. Но v = ṙ и n � v̇ = r̈, значит, b =
[ṙ, r̈]

|[ṙ, r̈]|
.

r′ = ṙs′;

r′′ = r̈(s′)2 + ṙs′′.

Заметим, что [r′, r′′] = [ṙ, r̈](s′)3 + [ṙ, ṙ]s′s′′ = [ṙ, r̈](s′)3, то есть [r′, r′′] � [ṙ, r̈]. Значит,

b =
[r′, r′′]

|[r′, r′′]|
.

b =
[r′, r′′]

|[r′, r′′]|
=

(ab sin t, − ab cos t, a2)

a
√
a2 + b2

=

(
b√

a2 + b2
sin t, − b√

a2 + b2
cos t,

a√
a2 + b2

)
.

b = [v, n] по определению и все три вектора единичной длины, тогда перестанов-
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кой по циклу получаем, что n = [b, v].

n = [b, v] =

∣∣∣∣∣∣∣∣∣
i j k

b√
a2 + b2

sin t − b√
a2 + b2

cos t
a√

a2 + b2

− a√
a2 + b2

sin t
a√

a2 + b2
cos t

b√
a2 + b2

∣∣∣∣∣∣∣∣∣ =

=
1

a2 + b2
(
(−a2 − b2) cos t, (−a2 − b2) sin t, 0

)
= (− cos t, − sin t, 0).

Таким образом, вектор главной нормали всегда горизонтален и совпадает с век-
тором главной нормали для окружности, в которую проектируется винтовая линия,
если смотреть на неё сверху.

Упражнение 3.2. Найти явные формулы для кривизны кривой на плоскости, за-
данной явно (y = f(x)) и заданной неявно (F (x, y) = 0).

27

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Семинар 4

Решение задач

Кривая как пересечение двух поверхностей

Задача 4.4 (№ 4.11). Найти кривизну и кручение кривой, заданной уравнениями{
x2 + z2 − y2 = 1

y2 − 2x+ z = 0
, в точке M(1, 1, 1).

Решение:
Будем считать, что кривая параметризована параметром t. Продифференцируем

по нему оба уравнения системы:{
xx′ + zz′ − yy′ = 0

2yy′ − 2x′ + z′ = 0
.

И ещё раз продифференцируем:{
xx′′ + (x′)2 + zz′′ + (z′)2 − yy′′ − (y′)2 = 0

2yy′′ + 2(y′)2 − 2x′′ + z′′ = 0
.

Подставим точку M(1, 1, 1):{
x′ + z′ − y′ = 0

2y′ − 2x′ + z′ = 0
; (4.1){

x′′ + (x′)2 + z′′ + (z′)2 − y′′ − (y′)2 = 0

2y′′ + 2(y′)2 − 2x′′ + z′′ = 0
. (4.2)

Пусть x′ = a, тогда из системы (4.1) можем выразить y′ и z′:{
a+ z′ − y′ = 0

2y′ − 2a+ z′ = 0
;{

y′ = a

z′ = 0
.

Таким образом, r′
∣∣
M

= (a, a, 0).
Теперь выразим из системы (4.2) координаты вектора r′′

∣∣
M
, подставляя коорди-

наты r′
∣∣
M

= (a, a, 0) и полагая x′′ = b:{
b+ z′′ − y′′ = 0

2y′′ + 2a2 − 2b+ z′′ = 0
;

y′′ = b− 2

3
a2

z′′ = −2

3
a2

.
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Таким образом, r′′
∣∣
M

=

(
b, b− 2

3
a2, − 2

3
a2
)
.

[r′, r′′]
∣∣
M

=

∣∣∣∣∣∣∣
i j k
a a 0

b b− 2

3
a2 −2

3
a2

∣∣∣∣∣∣∣ =

(
−2

3
a3,

2

3
a3, − 2

3
a3
)

;

|[r′, r′′]|
∣∣
M

=
2|a|3
√

3

3
.

Теперь можем посчитать кривизну:

k
∣∣
M

=
|[r′, r′′]|
|r′|3

∣∣∣∣
M

=
2|a|3
√

3

3
· 1

|a|3 · 2
√

2
=

√
3

3
√

2
.

Чтобы посчитать кручение, необходимо ещё раз продифференцировать уравне-
ния в системе.

Упражнение 4.1. Посчитать кручение.

Если при расчётах кривизна или кручение в итоге зависят от произвольных па-
раметров a или b, то где-то ошибка, так как ответ не должен зависеть от выбора
параметризации. Поэтому для удобства счёта можно считать, например, что a =
= b = 1.

Задача на формулу Френе

Задача 4.5 (№ 4.38). Вычислить смешанное произведение
(
d

ds
b,

d2

ds2
b,

d3

ds3
b

)
.

Решение:
Выпишем формулы Френе: 

v̇ = kn

ṅ = −kv + κb
ḃ = −κn

.

Будем дифференцировать ḃ по s, чтобы получить b̈ и
...
b :

b̈ = −κ̇n− κṅ = −κ̇n+ κkv − κ2b;
...
b = −κ̈n− κ̇ṅ+ κ̇kv + κk̇v + κkv̇ − 2κκ̇b− κ2ḃ =

= −κ̈n+ κ̇kv − κ̇κb+ κ̇kv + κk̇v + κk2n− 2κκ̇b+ κ3n =

= (2κ̇k + κk̇)v + (−κ̈ + κk2 + κ3)n− 3κκ̇b.
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Теперь можем посчитать смешанное произведение:(
d

ds
b,

d2

ds2
b,

d3

ds3
b

)
=

= (−κn, − κ̇n+ κkv − κ2b, (2κ̇k + κk̇)v + (−κ̈ + κk2 + κ3)n− 3κκ̇b) =

= (−κn, κkv − κ2b, (2κ̇k + κk̇)v + (−κ̈ + κk2 + κ3)n− 3κκ̇b) =

= (−κn, κkv − κ2b, (2κ̇k + κk̇)v − 3κκ̇b) =

= (−κn, κkv, (2κ̇k + κk̇)v − 3κκ̇b) + (−κn, − κ2b, (2κ̇k + κk̇)v − 3κκ̇b) =

= (−κn, κkv, − 3κκ̇b) + (−κn, − κ2b, (2κ̇k + κk̇)v) =

= 3κ3kκ̇(n, v, b) + κ3(2κ̇k + κk̇)(n, b, v) = −3κ3kκ̇ + 2κ3κ̇k + κ4k̇ =

= κ4k̇ − κ3κ̇k.

Касательный, нормальный и бинормальный
сферические образы

Для регулярной кривой

Пусть задана регулярная кривая γ : [a, b] → R3, вдоль которой движется репер
Френе v(s), n(s), b(s). Рассмотрим другой экземпляр вещественного пространства
R3, в котором от начала координат будем откладывать вектор v(s). Так как вектор
v(s) имеет единичную длину, то его конец всегда будет находиться на единичной
сфере. Значит, при изменении s конец вектора v(s) нарисует некоторую кривую на
единичной сфере, то есть v : [a, b]→ S2.

Определение 4.1. Кривая v : [a, b] → S2 называется касательным сферическим
образом кривой γ.

Аналогичную процедуру можно проделывать с векторами n и b

Определение 4.2. Кривая n : [a, b] → S2 называется нормальным сферическим
образом кривой γ.

Определение 4.3. Кривая b : [a, b] → S2 называется бинормальным сферическим
образом кривой γ.

Для винтовой линии

На прошлом семинаре для винтовой линии мы получили явный вид векторов
репера Френе:

v =

(
− a√

a2 + b2
sin t,

a√
a2 + b2

cos t,
b√

a2 + b2

)
;

n = (− cos t, − sin t, 0);

b =

(
b√

a2 + b2
sin t, − b√

a2 + b2
cos t,

a√
a2 + b2

)
.
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Видно, что:
1) касательный сферический образ – окружность, параллельная экватору сферы;
2) нормальный сферический образ – экватор сферы;
3) бинормальный сферический образ – окружность, параллельная экватору сфе-

ры, отличная от касательного сферического образа (при a 6= b).

Кривая в Rn

Пусть r′, . . . , r(n−1) линейно независимы – это условие регулярности. Отсюда сле-

дует, что ṙ, . . . ,
dn−1r

dsn−1
линейно независимы. С помощью процесса ортогонализации

получаем векторы τ1, . . . , τn−1. Затем добавляем вектор τn, который ортогонален
векторам τ1, . . . , τn−1, причём |τn| = 1.
Здесь наиболее принципиально, что на каждом шагу вектор τ̇k находится в ли-

нейной оболочке < r1, . . . , rk+1 >=< τ1, . . . , τk+1 >.
Возьмём репер Френе в моменты времени s и s0: (τ1(s), . . . , τn(s)) и

(τ1(s0), . . . , τn(s0)). Это два ортонормированных положительно ориентированных
репера, значит, они связаны матрицей:

(τ1(s), . . . , τn(s)) = (τ1(s0), . . . , τn(s0))A(s), (4.3)

где A(s) ∈ SO(n). Продифференцируем по s, получим:

(τ̇1(s), . . . , τ̇n(s)) = (τ1(s0), . . . , τn(s0))
dA

ds
.

Теперь рассмотрим это равенство при s = s0, получим:

(τ̇1(s0), . . . , τ̇n(s0)) = (τ1(s0), . . . , τn(s0))
dA

ds

∣∣∣∣
s=s0

.

Соответствие s 7→ A(s) задаёт некоторую кривую в группе SO(n). Из равенства
(4.3) при s = s0 получаем, что A(s0) = E – единичная матрица. Таким образом,

матрица
dA

ds

∣∣∣∣
s=s0

– это вектор скорости кривой в группе SO(n), задаваемой соот-

ветствием s 7→ A(s), при s = s0, то есть при A(s0) = E.
Так как A(s) – ортогональная, то A(s)AT (s) = E при любом s. Продифференци-

руем это матричное равенство, получим:

d

ds
A(s) · AT (s) + A(s) · d

ds
AT (s) = 0.

Подставим в это равенство s = s0. Учитывая, что A(s0) = AT (s0) = E, получим:

d

ds

∣∣∣∣
s=s0

A(s) +

(
d

ds

∣∣∣∣
s=s0

A(s)

)T

= 0.

Это значит, что матрица
dA

ds

∣∣∣∣
s=s0

– кососимметричная.
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Это проявление более общего факта, что если взять касательную плоскость в еди-
нице к группе ортогональных матриц, то получатся кососимметричные матрицы.

Так как τ̇k ∈< r1, . . . , rk+1 >=< τ1, . . . , τk+1 > и
dA

ds

∣∣∣∣
s=s0

– кососимметричная, то

dA

ds

∣∣∣∣
s=s0

=


0 k1 0
−k1

. . . . . .

. . . . . . kn−1

0 −kn−1 0

.

Определение 4.4. k1, . . . , kn−1 – обобщённые кривизны (или кручения).

Можно показать, что k1, . . . , kn−2 > 0 (это отражение того факта, что кривизна
больше 0, а кручение может быть любым).

Гиперповерхность в Rn+1

Определение 4.5. Гиперповерхность – это гладкое отображение r : Rn → Rn+1,
то есть если (u1, . . . , un) – координаты в Rn, а (x1, . . . , xn+1) – координаты в Rn+1,

то


x1 = x1(u1, . . . , un)

...
xn+1 = xn+1(u1, . . . , un)

.

Утверждение 4.1. rank

(
∂xi

∂uj

)
= n – условие регулярности.

Условие регулярности эквивалентно тому, что гиперповерхность имеет в каждой
своей точке касательную плоскость. Покажем это.

Рассмотрим гиперповерхность V и кривую γ на ней: γ ⊂ V . Кривая будет зада-
ваться следующим образом: (x1(u1(t), . . . , un(t)), . . . , xn+1(u1(t), . . . , un(t))). Введём

обозначения ri =
∂r

∂ui
=

(
∂x1
∂ui

, . . . ,
∂xn+1

∂ui

)
, где i = 1, . . . , n. Рассмотрим вектор

скорости этой кривой:
dγ

dt
=

n∑
i=1

dui
dt
ri. Таким образом, мы записали вектор скоро-

сти
dγ

dt
как линейную комбинацию векторов ri.

Условие rank

(
∂xi

∂uj

)
= n о максимальности ранга матрицы

(
∂xi

∂uj

)
обозначает

линейную независимость векторов ri, то есть их линейная оболочка имеет размер-
ность n.

Таким образом, TPV =< r1, . . . , rn > – касательная плоскость к гиперповерхности
V в точке P является линейной оболочкой векторов r1, . . . , rn.
Иногда вместо r1, . . . , rn пишут ru1 , . . . , run .

Упражнение 4.2. Проверить, выполнено ли условие регулярности для стандарт-
ной параметризации двумерной сферы S2.
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Семинар 5

Разбор домашнего задания

Условие регулярности для стандартной единичной сферы

Разберём выполнение упражнения (4.2).

Задача 5.6. Проверить, выполнено ли условие регулярности для стандартной па-
раметризации двумерной сферы S2.

Решение:
Для простоты будем рассматривать единичную сферу. Параметризуем её стан-

дартным образом: 
x = cosψ cosϕ

y = cosψ sinϕ

z = sinψ

,

где ϕ ∈ [0, 2π), ψ ∈
[
−π

2
,
π

2

]
.

Возьмём производные радиус-вектора сферы по параметрам:

r′ϕ = (− cosψ sinϕ, cosψ cosϕ, 0);

r′ψ = (− sinψ cosϕ, − sinψ sinϕ, cosψ).

Теперь проверим, всюду ли выполняется условие регулярности

rank

(
∂(x, y, z)

∂(ϕ, ψ)

)
= 2.

∂(x, y, z)

∂(ϕ, ψ)
=

(
− cosψ sinϕ cosψ cosϕ 0
− sinψ cosϕ − sinψ sinϕ cosψ

)
.

Рассмотрим следующий минор:∣∣∣∣ cosψ cosϕ 0
− sinψ sinϕ cosψ

∣∣∣∣ = cos2 ψ cosϕ.

Он равен 0 при


ψ = ±π

2

ϕ =
π

2

ϕ =
3π

2

.

Теперь рассмотрим другой минор:∣∣∣∣− cosψ sinϕ 0
− sinψ cosϕ cosψ

∣∣∣∣ = − cos2 ψ sinϕ.

Он равен 0 при


ψ = ±π

2
ϕ = 0

ϕ = π

.
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Таким образом, оба рассмотренных минора зануляются при ψ = ±π
2
. Значит, при

= ±π
2
оказываются пропорциональны второй и третий столбцы, а также первый

и третий столбцы матрицы
∂(x, y, z)

∂(ϕ, ψ)
. Тогда первый и второй столбцы тоже пропор-

циональны при ψ = ±π
2
. Таким образом, при ψ = ±π

2
имеем: rank

(
∂(x, y, z)

∂(ϕ, ψ)

)
< 2,

то есть нарушается условие регулярности.

Нельзя придумать для сферы какую-нибудь «хорошую» параметризацию, у кото-
рой не будет особых точек, так как сфера топологически неэквивалентна плоскости.
Можно только локально сделать параметризацию, которая будет где-то «хорошей»,
но где-то она будет «плохой».

Упражнение 5.1. Проверить, выполнено ли условие регулярности для стандарт-
ной параметризации n-мерной сферы Sn ⊂ Rn+1.
Подсказка: такая сфера задаётся условием, что сумма квадратов координат равна

1.

Параметризация важных классов поверхностей

Параметризация тора

Рис. 5.1: Тор (a > b > 0)
Отрезок a лежит в плоскости Oxy. Пусть он повёрнут от оси x на угол ϕ. Отрезок

b при каждом положении отрезка a лежит в какой-нибудь плоскости, перпендику-
лярной «серединной» окружности внутри тора. Пусть отрезок b повёрнут в этой
плоскости на угол ψ от продолжения отрезка a (см. рисунок).
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Рис. 5.2: Параметризация тора
Таким образом, получаем параметризацию тора:

x = (a+ b cosψ) cosϕ

y = (a+ b cosψ) sinϕ

z = b sinψ

,

где ϕ ∈ [0, 2π), ψ ∈ [0, 2π).

Упражнение 5.2. Задать тор алгебраическим уравнением. Понять, какого поряд-
ка это будет алгебраическая поверхность.

Параметризация поверхности вращения

Определение 5.1. Возьмём какую-нибудь кривую

{
y = f(t)

z = g(t)
в плоскости Oyz и

выполним её вращение вокруг оси z, получим поверхность вращения (см. рисунок).

Рис. 5.3: Поверхность вращения
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Запишем параметрические уравнения такой поверхности:
x = f(t) cosϕ

y = f(t) sinϕ

z = g(t)

,

где ϕ ∈ [0, 2π).

Упражнение 5.3. Проверить, выполнено ли условие регулярности для парамет-
ризации поверхности вращения.

Параметризация цилиндрической поверхности

Определение 5.2. Пусть γ – плоская кривая, a – постоянный вектор. Будем через
все точки кривой γ проводить прямые, параллельные вектору a. Получающаяся
таким образом поверхность называется цилиндрической поверхностью.

Пусть ρ(u) – радиус-вектор кривой γ. Запишем параметризацию цилиндрической
поверхности:

r(u, v) = ρ(u) + va,

где v ∈ R.

Параметризация конической поверхности

Определение 5.3. Пусть γ – плоская кривая,M – точка не на этой кривой. Будем
проводить прямые через точку M и все точки кривой γ. Получающаяся таким
образом поверхность называется конической поверхностью.

Пусть ρ(u) – радиус-вектор кривой γ, r0 – радиус-вектор точки M . Запишем
параметризацию конической поверхности:

r(u, v) = ρ(u) + v(r0 − ρ(u)),

где v ∈ R.

Параметризация линейчатой поверхности

Определение 5.4. Пусть γ – плоская кривая. Будем через все точки кривой γ
проводить прямые, направление которых может меняться, то есть пусть у прямых
будут направляющие векторы a(u). Получающаяся таким образом поверхность на-
зывается линейчатой поверхностью.

Линейчатая поверхность является обобщением цилиндрической и конической по-
верхностей.
Пусть ρ(u) – радиус-вектор кривой γ. Запишем параметризацию линейчатой по-

верхности:
r(u, v) = ρ(u) + va(u),

где v ∈ R.
Примеры линейчатых поверхностей, не являющихся цилиндрической или кони-

ческой поверхностью: однополостный гиперболоид, гиперболический параболоид.
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Упражнение 5.4. Проверить, выполнено ли условие регулярности для парамет-
ризации цилиндрической, конической и линейчатой поверхностей.

Первая квадратичная форма поверхности

Рассмотрим регулярную поверхность V 2 ⊂ R3 (при рассмотрении гиперповерх-
ности V n ⊂ Rn+1 никакой разницы не будет). Рассмотрим кривую γ на поверхности
V с концами γ(a) и γ(b). Хотим вычислить длину этой кривой l(γ). Для этого надо
проинтегрировать модуль вектора скорости вдоль всей кривой:

l(γ) =

b∫
a

∣∣∣∣dγdt
∣∣∣∣ dt.

Рассмотрим вектор скорости в некоторой точке кривой γ. Проведём в этой точке
касательную плоскость к поверхности V . На прошлом семинаре обсуждалось, что
в каждой касательной плоскости есть базис ru, rv (u и v – параметры, на которых

задаётся поверхность V ). Разложим в каждой точке кривой вектор скорости
dγ

dt
по

базису ru, rv касательной плоскости:

l(γ) =

b∫
a

|ruu′(t) + rvv
′(t)| dt =

b∫
a

√
(ruu′ + rvv′, ruu′ + rvv′) dt =

=

b∫
a

√(
u′ v′

)((ru, ru) (ru, rv)
(ru, rv) (rv, rv)

)(
u′

v′

)
dt.

Определение 5.5. G =

(
(ru, ru) (ru, rv)
(ru, rv) (rv, rv)

)
=

(
E F
F G

)
– первая квадратичная фор-

ма поверхности (или метрика на поверхности).

В каждой точке поверхности можно посчитать такую матрицу. Поскольку это
матрица Грамма в касательной плоскости, то она положительно определена и сим-
метрична. Таким образом, эта матрица задаёт скалярное произведение в каждой
касательной плоскости к поверхности. При этом u′ и v′ – это координаты вектора
скорости в терминах внутренней геометрии поверхности. Таким образом, для того,
чтобы посчитать длину кривой на поверхности, зная первую квадратичную фор-
му, надо взять первую квадратичную форму от вектора скорости (u′, v′), извлечь
квадратный корень и проинтегрировать вдоль всей кривой.

Если перейти к какой-то другой системе локальных координат на поверхности
ũ, ṽ, которые связаны со старыми координатами следующими функциями: u =
= u(ũ, ṽ), v = v(ũ, ṽ), то

rũ = ru
∂u

∂ũ
+ rv

∂v

∂ũ
;

rṽ = ru
∂u

∂ṽ
+ rv

∂v

∂ṽ
.
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Тогда первая квадратичная форма в новых координатах будет иметь следующий
вид:

G̃ = CTGC,

где C =


∂u

∂ũ

∂u

∂ṽ
∂v

∂ũ

∂v

∂ṽ

 – матрица перехода (матрица Якоби).

Первая квадратичная форма G ставит в соответствие касательному вектору
(u′, v′) квадрат его длины.

При записи первой квадратичной формы вместо использования матрицы G ино-
гда пишут так:

ds2 = E du2 + 2F du dv +Gdv2.

Что позволяет считать первая квадратичная форма поверхности:

• длины кривых на поверхности (уже обсудили);

• углы ϕ между кривыми на поверхности, то есть между их касательными век-
торами v1 и v2:

cosϕ =
vT1 Gv2
|v1| · |v2|

;

• площади: ∫∫
u,v

√
detG du dv.

Решение задач

Площадь тора

Выпишем полученную ранее параметризацию тора:
x = (a+ b cosψ) cosϕ

y = (a+ b cosψ) sinϕ

z = b sinψ

,

где ϕ ∈ [0, 2π), ψ ∈ [0, 2π).
Посчитаем производные радиус-вектора:

rϕ = (a+ b cosψ)(− sinϕ, cosϕ, 0);

rψ = b(− cosϕ sinψ, − sinϕ sinψ, cosψ).

Посчитаем элементы первой квадратичной формы поверхности:

E = (a+ b cosψ)2;

F = 0;

G = b2.
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Теперь можем посчитать площадь:

S =

∫∫
ϕ,ψ

√
detG dϕ dψ =

2π∫
0

dϕ

2π∫
0

(a+ b cosψ)b dψ =

= 2πb

2π∫
0

(a+ b cosψ) dψ = 2πb · 2πa = 4π2ab.

Нахождение угла между линиями на поверхности

Задача 5.7 (№ 5.4). Найти угол между линиями v = u+ 1 и v = 3− u на поверх-
ности x = u cos v, y = u sin v, z = u2.

Решение:
Посчитаем производные радиус-вектора:

ru = (cos v, sin v, 2u);

rv = (−u sin v, u cos v, 0).

Посчитаем первую квадратичную форму поверхности:

G =

(
1 + 4u2 0

0 u2

)
.

Найдём точку пересечения кривых v = u+ 1 и v = 3− u:

(u0, v0) = (1, 2).

Найдём первую квадратичную форму в точке пересечения кривых:

G
∣∣
(u0,v0)

=

(
5 0
0 1

)
.

Для нахождения касательных векторов надо на каждой из кривых выбрать
какой-то параметр, например, выберем u в качестве параметра. Тогда касатель-
ные векторы в точке пересечения кривых будут иметь координаты

(
1, v′u

∣∣
(u0,v0)

)
.

Таким образом, получаем касательные векторы v1 и v2 для кривых v = u + 1 и
v = 3− u соответственно в точке их пересечения:

v1 = (1, 1); v2 = (1,−1).

Находим косинус угла:

cosϕ =
vT1 Gv2
|v1| · |v2|

=
5− 1√

5 + 1 ·
√

5− 1
=

4

2
√

6
=

√
2

3
.
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Семинар 6

Решение задач

Нахождение периметра, углов и площади
криволинейного треугольника на поверхности

Задача 6.8 (№ 5.19). Пусть первая квадратичная форма поверхности имеет вид

ds2 = du2 + (u2 + a2) dv2.

а) Найти периметр криволинейного треугольника, образованного пересечением
кривых

u = ±1

2
av2, v = 1.

б) Найти углы этого криволинейного треугольника.
в) Вычислить площадь треугольника, образованного пересечением кривых

u = ±av, v = 1.

Решение:
а) Сделаем символический рисунок криволинейного треугольника (на самом деле

координаты u и v – криволинейные).

Рис. 6.1: Символический рисунок криволинейного треугольника
для пунктов (а) и (б)

Для определённости будем считать, что a > 0.
Чтобы найти периметр этого треугольника, надо отдельно посчитать длины трёх

его сторон. Для этого нам нужны векторы скоростей соответствующих кривых,
являющихся сторонами треугольника.

Рассмотрим сначала кривую OA (назовём её γ1). Возьмём в качестве параметра
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v. Тогда вектор скорости
dγ1
dv

= (av, 1). Теперь найдём длину стороны OA:

l(OA) =

1∫
0

√
a2v2 + u2 + a2 dv =

1∫
0

√
a2v2 +

a2v4

4
+ a2 dv =

=
a

2

1∫
0

√
4v2 + v4 + 4 dv =

a

2

1∫
0

√
(2 + v2)2 dv =

a

2

∫ 1

0

(2 + v2) dv =

=
a

2

(
2v +

v3

3

) ∣∣∣∣∣
1

0

=
a

2

(
2 +

1

3

)
=

7a

6
.

Так как метрика и треугольник симметричны относительно замены u на −u, то

l(OB) = l(OA) =
7a

6
.

Кривую OB назовём γ2 (далее это обозначение будем использовать).
Теперь рассмотрим кривую AB (назовём её γ3). Возьмём в качестве параметра u

(v взять нельзя, так как v = 1 = const). Тогда вектор скорости
dγ3
du

= (1, 0). Теперь
найдём длину стороны AB:

l(AB) =

a
2∫

−a
2

√
1 du = u

∣∣∣∣
a
2

−a
2

=
a

2
+
a

2
= a.

Теперь можем вычислить периметр треугольника:

P =
7a

6
+

7a

6
+ a =

10a

3
.

б) Чтобы найти углы, нужно взять касательные векторы в вершинах треуголь-
ника.

Сначала найдём ∠O. Для этого надо найти касательные векторы
dγ1
dv

∣∣∣∣
O

и
dγ2
dv

∣∣∣∣
O

.

dγ1
dv

∣∣∣∣
O

= (av, 1)
∣∣
O

= (0, 1);

dγ2
dv

∣∣∣∣
O

= (−av, 1)
∣∣
O

= (0, 1).

Так как касательные векторы при вершине O совпадают, то

∠O = 0.
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Теперь найдём ∠A. Для этого надо найти касательные векторы
dγ1
dv

∣∣∣∣
A

и
dγ3
du

∣∣∣∣
A

(важно следить, чтобы оба вектора были направлены «внутрь» треугольника или
оба – «вне» треугольника, иначе найдём не нужный угол, а смежный с ним).

dγ1
dv

∣∣∣∣
A

= (av, 1)
∣∣
A

= (a, 1);

dγ3
du

∣∣∣∣
A

= (1, 0)
∣∣
A

= (1, 0).

Теперь можем найти ∠A:

cos∠A =

(
dγ1
dv

∣∣∣∣
A

,
dγ3
du

∣∣∣∣
A

)
∣∣∣∣dγ1dv

∣∣∣∣
A

∣∣∣∣ · ∣∣∣∣dγ3du
∣∣∣∣
A

∣∣∣∣ =
a+ 0 · 1 · (u2 + a2)√
a2 + u2 + a2 ·

√
1

∣∣∣∣∣
(a2 , 1)

=
a√

a2 +
a2

4
+ a2

=
2

3
;

∠A = arccos
2

3
.

Так как метрика и треугольник симметричны относительно замены u на −u, то

∠B = arccos
2

3
.

Замечание 6.1. В данном случае сумма углов треугольника не равна π. В этом
нет ничего удивительного, так как равенство суммы углов треугольника π – это
свойство евклидовой геометрии.

в) Сделаем символический рисунок криволинейного треугольника (на самом деле
координаты u и v – криволинейные).

Рис. 6.2: Символический рисунок криволинейного треугольника
для пункта (в)

Для определённости будем считать, что a > 0.
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S =

∫∫
D

√
detG du dv =

∫∫
D

√
u2 + a2 du dv =

=

a∫
0

du

1∫
u
a

√
u2 + a2 dv +

0∫
−a

du

1∫
−u
a

√
u2 + a2 dv = 2

a∫
0

du

1∫
u
a

√
u2 + a2 dv =

= 2

a∫
0

√
u2 + a2

(
v
∣∣∣1u
a

)
du = 2

a∫
0

√
u2 + a2

(
1− u

a

)
du =

= 2

a∫
0

√
u2 + a2 du− 2

a∫
0

u

a

√
u2 + a2 du.

Вычислим первый интеграл:

a∫
0

√
u2 + a2 du =○

Замена: u = a sh t, тогда du = a ch t.

При u = 0 поулчаем: t = 0.

При u = a получаем: sh t =
et − e−t

2
= 1; e2t − 2et − 1 = 0;

et =
2±
√

8

2
= 1±

√
2; так как et > 0, то et = 1 +

√
2; t = ln(1 +

√
2).

=○

ln(1+
√
2)∫

0

a2 ch2 t dt = a2
ln(1+

√
2)∫

0

e2t + 2 + e−2t

4
dt =

=
a2

4

(
1

2
e2t + 2t− 1

2
e−2t

) ∣∣∣∣ln(1+
√
2)

0

=

=
a2

4

(
1

2
(1 +

√
2)2 + 2 ln(1 +

√
2)− 1

2
(1 +

√
2)−2 − 1

2
+

1

2

)
=○

Заметим:
1

1 +
√

2
=

1−
√

2

1− 2
=
√

2− 1.

=○
a2

4

(
1

2
(1 + 2

√
2 + 2) + 2 ln(1 +

√
2)− 1

2
(2− 2

√
2 + 1)

)
=

=
a2

4

(
2
√

2 + 2 ln(1 +
√

2)
)

=
a2

2

(√
2 + ln(1 +

√
2)
)
.
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Вычислим второй интеграл:

a∫
0

u

a

√
u2 + a2 du =○

Замена: t = u2 + a2, тогда dt = 2u du.

При u = 0 поулчаем: t = a2.

При u = a получаем: t = 2a2.

=○
1

2a

2a2∫
a2

√
t dt =

1

2a
· 2

3
t
3
2

∣∣∣∣2a2
a2

=
1

3a

(
2
√

2a3 − a3
)

=
a2

3
(2
√

2− 1).

Подставим значения интегралов в выражение для площади, получим:

S = a2
(√

2 + ln(1 +
√

2)
)
− 2a2

3
(2
√

2− 1) = a2

(
2

3
−
√

2

3
+ ln(1 +

√
2)

)
.

Уравнение локсодромы

Определение 6.1. Локсодрома – это такая линия, которая идёт на поверхности
вращения таким образом, что её угол с меридианом всегда остаётся постоянным.

Рассмотрим сферу S2. Её метрика

ds2 = R2(dθ2 + cos2 θ dϕ2),

где ϕ – долгота, θ – широта (стандартные сферические координаты). Пусть ψ – угол
между локсодромой и меридианом. Мы хотим написать уравнение такой локсодро-
мы.

Такие кривые были интересны для целей мореплавания, так как было удобно
плавать по линии постоянного азимута, то есть когда курс судна всегда имеет один
и тот же угол с направлением на север.

Будем считать, что на локсодроме θ = θ(ϕ). Назовём искомую локсодрому γ.
Возьмём на γ в качестве параметра ϕ. Тогда вектор скорости на локсодроме

dγ

dϕ
= (1, θ′)

(считаем ϕ первой координатой, а θ – второй).
Меридиан m задаётся условием ϕ = const. Значит, на m в качестве параметра

надо брать θ. Тогда вектора скорости на меридиане

dm

dθ
= (0, 1).
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Матрица первой квадратичной формы будет иметь следующий вид:(
R2 cos2 θ 0

0 R2

)
.

Теперь запишем условие того, что локсодрома имеет постоянный угол с мериди-
аном:

const = cosψ =

(
dγ

dϕ
,
dm

dθ

)
∣∣∣∣dγdϕ

∣∣∣∣ · ∣∣∣∣dmdθ
∣∣∣∣ =

R2θ′
√
R2 cos2 θ +R2θ′2 ·

√
R2

=
θ′√

cos2 θ + θ′2
.

Возведём в квадрат:

cos2 ψ =
θ′2

cos2 θ + θ′2
.

Домножим на знаменатель:

(θ′2 + cos2 θ) cos2 ψ = θ′2;

θ′2(1− cos2 ψ) = cos2 θ cos2 ψ;

θ′2

cos2 θ
= ctg2 ψ;

θ′

cos θ
= ± ctgψ.

Проинтегрируем: ∫
dθ

cos θ
= ± ctgψ

∫
dϕ = ± ctgψ · ϕ. (6.1)

Посчитаем интеграл:∫
dθ

cos θ
=

∫
cos θ dθ

cos2 θ
=○

Замена: t = sin θ, тогда dt = cos θ dθ.

=○
∫

dt

1− t2
=○

Заметим:
1

1− t2
=

1

2

(
1

1− t
+

1

1 + t

)
.

=○
1

2

(∫
dt

1− t
+

∫
dt

1 + t

)
=

1

2
(− ln(1− t) + ln(1 + t)) =

=
1

2
ln

1 + t

1− t
=

1

2
ln

1 + sin θ

1− sin θ
.

Подставим значение интеграла равенство (6.1) и выразим ϕ, получим:

ϕ = ± tgψ · 1

2
ln

1 + sin θ

1− sin θ
. (6.2)
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Таким образом, получили уравнения локсодром на сфере.
Посмотрим, что будет, когда при движении по локсодроме мы будем приближать-

ся к северному полюсу, то есть при θ → π

2
. Из уравнения локсодромы (6.2) видно,

что ϕ→ ±∞, то есть локсодрома начинает наматываться вокруг северного полюса
подобно спирали.

Теперь посмотрим, что будет, когда при движении по локсодроме мы будем при-
ближаться к южному полюсу, то есть при θ → −π

2
. Из уравнения локсодромы (6.2)

видно, что ϕ → ∓∞, то есть локсодрома начинает наматываться вокруг южного
полюса подобно спирали.

Стереографическая проекция

Возьмём двумерную сферу S2 с северным полюсом N , стандартно вложенную в
R3, возьмём плоскость z = 0 и произвольную точку P на сфере. Проведём прямую
NP , она пересечёт плоскость z = 0 в некоторой точке Q. Точку Q будем считать
образом точки P при стереографической проекции. Таким образом, мы задаём про-
екцию π : S2\{N} → R2, причём Q = π(P ).

Рис. 6.3: Стереографическая проекция
На плоскости z = 0 введём обычные полярные координаты (r, ϕ) и пересчитаем

метрику сферы в этих координатах. Раз у нас есть стереографическая проекция, то
у нас есть взаимно однозначное соответствие между точками плоскости и точками
на сфере без северного полюса. Значит, каждая точка на сфере без северного полюса
задаётся некоторыми координатами (r, ϕ) (хотя ещё будет особенность в южном
полюсе). Мы хотим узнать, какой вид будет иметь метрика сферы в координатах
(r, ϕ).
Рассмотрим сечение, в котором находятся точки N , P и Q.
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Рис. 6.4: Сечение стереографической проекции
ON = OP как радиусы сферы, тогда

∠ONQ =
1

2
(π − ∠NOP ) =

1

2

(
π −

(π
2
− θ
))

=
π

4
+
θ

2
.

OQ = r – полярный радиус, ON = R – радиус сферы, тогда

r

R
=
OQ

ON
= tg∠ONQ ⇒ r = R tg

(
π

4
+
θ

2

)
.

При переходе от координат (θ, ϕ) к координатам (r, ϕ) нужно выразить dr и dϕ
через dθ и dϕ, то есть надо выразить dr через dθ.

dr =
R

2
· 1

cos2
(
π

4
+
θ

2

) dθ =
R

1 + cos
(π

2
+ θ
) dθ =

R

1− sin θ
dθ. (6.3)

Надо выразить sin θ и cos θ через полярные координаты на плоскости r и ϕ, так
как sin θ содержится в выражении (6.3) для dr через dθ, а cos θ содержится в мет-
рике сферы ds2 = R2(dθ2 + cos2 θ dϕ2).

r = R tg

(
π

4
+
θ

2

)
= R

1 + tg
θ

2

1− tg
θ

2

;

r

R

(
1− tg

θ

2

)
= 1 + tg

θ

2
;(

1 +
r

R

)
tg
θ

2
=

r

R
− 1;

tg
θ

2
=
r −R
r +R

.
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sin θ = 2 sin
θ

2
cos

θ

2
= 2 tg

θ

2
cos2

θ

2
=

2 tg
θ

2

1 + tg2 θ

2

=
2 · r −R

r +R

1 +

(
r −R
r +R

)2 =

=
2(r −R)(r +R)

(r +R)2 + (r −R)2
=

2(r2 −R2)

2(r2 +R2)
=
r2 −R2

r2 +R2
. (6.4)

cos θ = cos2
θ

2
− sin2 θ

2
=

(
1− tg2 θ

2

)
cos2

θ

2
=

1− tg2 θ

2

1 + tg2 θ

2

=

=

1−
(
r −R
r +R

)2

1 +

(
r −R
r +R

)2 =
4rR

2(r2 +R2)
=

2rR

r2 +R2
. (6.5)

Выражаем dθ из равенства (6.3), при этом используя полученное выражение (6.4)
для sin θ:

dθ =
1

R
(1− sin θ) dr =

1

R

(
1− r2 −R2

r2 +R2

)
dr =

2R2

R(r2 +R2)
dr =

2Rdr

r2 +R2
. (6.6)

Теперь пересчитаем метрику для сферы, используя полученные выражения (6.5)
и (6.6) для cos θ и dθ:

ds2 = R2(dθ2 + cos2 θ dϕ2) = R2

(
4R2 dr2

(r2 +R2)2
+

4r2R2

(r2 +R2)2
dϕ2

)
=

=
4R4

(r2 +R2)2
(dr2 + r2 dϕ2). (6.7)

Таким образом, мы пересчитали метрику сферы в полярных координатах (r, ϕ)
стереографической проекции. Теперь дополнительно перейдём от координат (r, ϕ)
к декартовым координатам (x, y) стереографической проекции:{

x = r cosϕ

y = r sinϕ
.

Посчитаем дифференциалы:

dx = cosϕdr − r sinϕdϕ;

dy = sinϕdr + r cosϕdϕ.

Посчитаем декартов элемент длины:

dx2 + dy2 = (sin2 ϕ+ cos2 ϕ) dr2 + r2(sin2 ϕ+ cos2 ϕ) dϕ = dr2 + r2 dϕ2.
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Теперь можем пересчитать метрику сферы (6.7) в декартовых координатах (x, y)
стереографической проекции:

ds2 =
4R4

(r2 +R2)2
(dr2 + r2 dϕ2) =

4R4

(x2 + y2 +R2)2
(dx2 + dy2). (6.8)

Отсюда следует важный вывод, что декартовы координаты (x, y) стереографиче-
ской проекции на сфере конформно-евклидовы. Это означает, что метрика сферы
(6.8) представляет собой евклидову метрику dx2 + dy2, умноженную на множитель

4R4

(x2 + y2 +R2)2
(зависящий от точки). Из этого следует, что при вычислении углов

между кривыми этот множитель войдёт и в числитель, и в знаменатель, а значит,
сократится. Таким образом, в конформно-евклидовых координатах углы такие же,
как и в евклидовых. Длины, естественно, другие, за счёт наличия множителя.
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Семинар 7

Решение задач

Сфера, заключённая в цилиндр

Задача 7.9. Пусть сфера вписана в цилиндр. Спроектируем сферу в горизонталь-
ных направлениях от оси цилиндра на его поверхность. Какая получится метрика?

Решение:

Рис. 7.1: Сечение сферы в цилиндре
Запишем метрику сферы:

ds2 = R2(cos2 ψ dϕ2 + dψ2).

На цилиндре координаты (z, ϕ). Из рисунка видно, что z = R sinψ. Тогда

sinψ =
z

R
, значит, cos2 ψ = 1− sin2 ψ =

R2 − z2

R2
.

Также из z = R sinψ можем выразить dψ2:

cosψ dψ =
dz

R
;

dψ2 =
1

cos2 ψ

dz

R
=

R2

R2 − z2
dz2

R2
=

dz2

R2 − z2
.

Теперь запишем искомую метрику:

ds2 = (R2 − z2) dϕ2 +
R2 dz2

R2 − z2
.

Метрика проекции Меркатора

Определение 7.1. Проекция Меркатора – это такая метрика, в которой при про-
ецировании сферы на цилиндр все локсодромы изображаются прямыми линиями
(в развёртке цилиндра).
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Задача 7.10. Найти метрику проекции Меркатора.

Решение:
На сфере есть стандартные географические координаты (ϕ, θ). Мы ищем проек-

цию, то есть функции x = x(ϕ, θ) и y = y(ϕ, θ). Для простоты будем считать радиус
сферы R = 1, тогда метрика на сфере имеет такой вид:

ds2 = cos2 θ dϕ2 + dθ2. (7.1)

Пусть локсодрома задаётся уравнением ϕ = ϕ(θ). Тогда вектор скорости на лок-
содроме будет иметь вид v = (ϕ′, 1). Меридиан задаётся условием ϕ = const, тогда
в качестве параметра на нём выбираем θ и получаем вектор скорости m = (0, 1).
Запишем условие того, что локсодрома образует постоянный угол ψ с меридиа-

нами:
cosψ =

(v,m)

|v| · |m|
=

1√
cos2 θ · ϕ′2 + 1

.

Возведём в квадрат и преобразуем, получим:

cos2 θ · ϕ′2 = tg2 ψ.

При извлечении корня выберем для определённости знак «+» (это соответствует
выбору направления закручивания локсодромы: по часовой стрелке или против
часовой стрелки):

cos θ · ϕ′ = tgψ. (7.2)

В проекции Меркатора мы хотим нарисовать карту на плоскости так, чтобы лок-

содромы были прямыми, то есть
dy

dx
= const = ctgψ (так как ψ – угол с вертикалью

на плоскости, а не с горизонталью). Так как на локсодроме x = x(ϕ(θ), θ) и y =
= y(ϕ(θ), θ), то

dx

dy
=

dx

dθ
dy

dθ

=

∂x

∂ϕ

dϕ

dθ
+
∂x

∂θ
∂y

∂ϕ

dϕ

dθ
+
∂y

∂θ

= tgψ. (7.3)

Подставим (7.2) в (7.3):

∂x

∂ϕ

dϕ

dθ
+
∂x

∂θ
∂y

∂ϕ

dϕ

dθ
+
∂y

∂θ

=
dϕ

dθ
cos θ;

∂x

∂ϕ

dϕ

dθ
+
∂x

∂θ
=
∂y

∂ϕ

(
dϕ

dθ

)2

cos θ +
∂y

∂θ

dϕ

dθ
cos θ;

∂y

∂ϕ
cos θ ·

(
dϕ

dθ

)2

+

(
∂y

∂θ
cos θ − ∂x

∂ϕ

)
· dϕ
dθ
− ∂x

∂θ
= 0.

Полученное уравнение должно быть выполнено для любой локсодромы, то есть

для любого
dϕ

dθ
, тогда должны быть равны 0 все коэффициенты при различных
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степенях
dϕ

dθ
(учитываем, что cos θ 6= 0 вне особых точек северного и юного полюсов,

которые мы не рассматриваем):

∂y

∂ϕ
= 0

∂y

∂θ
cos θ − ∂x

∂ϕ
= 0

∂x

∂θ
= 0

.

Из первого и третьего уравнений системы соответственно можем сделать выводы,

что y = y(θ) и x = x(ϕ). Тогда из второго уравнения системы следует, что
dy

dθ
cos θ =

=
dx

dϕ
, причём левая часть этого равенства зависит только от θ, а правая – только от

ϕ. Значит, левая и правая части равенства – одинаковые константы. Для простоты

положим их обе равными 1 (это влияет только на масштаб карты), тогда
dy

dθ
cos θ =

=
dx

dϕ
= 1. Получили дифференциальные уравнения для x и y. Сразу видно, что

x = ϕ, а y сейчас найдём:

dy =
dθ

cos θ
; (7.4)

y =

∫
dθ

cos θ
=

∫
cos θ dθ

cos2 θ
=

∫
d(sin θ)

1− sin2 θ
=

1

2

(∫
d(sin θ)

1 + sin θ
+

∫
d(sin θ)

1− sin θ

)
=

=
1

2
(ln(1 + sin θ)− ln(1− sin θ)) =

1

2
ln

1 + sin θ

1− sin θ
. (7.5)

dϕ = dx. Ещё для пересчёта метрики надо выразить cos θ из (7.5) и dθ из (7.4):

e2y =
1 + sin θ

1− sin θ
;

e2y − 1 = (e2y + 1) sin θ;

sin θ =
e2y − 1

e2y + 1
;

cos θ =
√

1− sin2 θ =

√
1−

(
e2y − 1

e2y + 1

)2

=
2ey

e2y + 1
;

dθ = cos θ dy =
2ey

e2y + 1
dy.

Теперь подставим всё в метрику (7.1):

ds2 = cos2 θ dϕ2 + dθ2 =
4e2y

(e2y + 1)2
dx2 +

4e2y

(e2y + 1)2
dy2 =

=

(
2ey

e2y + 1

)2

(dx2 + dy2) =

(
ey + e−y

2

)−2
(dx2 + dy2) =

dx2 + dy2

ch2 y
.
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Таким образом, метрика проекции Меркатора конформно-евклидова.
Так как проекция Меркатора растягивает вблизи полюсов карту на бесконечные

области, то около полюсов карту надо обрезать, тогда получится прямоугольная
карта.

Упражнение 7.1. Придумать на произвольной поверхности вращения изотерми-
ческие координаты, то есть такие, в которых метрика имеет конформно-евклидовый
вид.

Вторая квадратичная форма

Пусть задана кривая на поверхности. Для простоты будем рассматривать дву-
мерную поверхность (многомерный случай рассматривается аналогично).

Продифференцируем радиус-вектор кривой дважды по t:

dr

dt
= ru

du

dt
+ rv

dv

dt
;

d2r

dt2
= ruu

(
du

dt

)2

+ ruv
du

dt

dv

dt
+ ru

d2u

dt2
+ rvu

du

dt

dv

dt
+ rvv

(
dv

dt

)2

+ rv
d2v

dt2
. (7.6)

Выберем единичную нормаль к поверхности: n =
[ru, rv]

|[ru, rv]|
.

Скалярно умножим (7.6) на n, учитывая, что (ru, n) = (rv, n) = 0, и считая,
что поверхность достаточно хорошая, чтобы выполнялось равенство смешанных
производных, получим:(

d2r

dt2
, n

)
= (ruu, n)

(
du

dt

)2

+ 2(ruv, n)
du

dt

dv

dt
+ (rvv, n)

(
dv

dt

)2

=

=

(
du

dt

dv

dt

)
Q


du

dt
dv

dt

 .

Определение 7.2. Q =

(
(ruu, n) (ruv, n)
(ruv, n) (rvv, n)

)
=

(
L M
M N

)
– вторая квадратичная

форма поверхности.

Выясним геометрический смысл второй квадратичной формы поверхности. Вы-
берем на поверхности нормаль и рассмотрим нормальное сечение, то есть плоскость,
проходящую через эту нормаль. Получаем в пересечении поверхности и нормаль-
ного сечения некоторую кривую γn (см. рисунок).
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Рис. 7.2: Нормальное сечение
Выберем на этой кривой натуральный параметр t. Тогда, используя формулу

Френе, получаем: (
d2r

dt2
, n

)
= (±knn, n) = Q(v),

где v – вектор скорости на кривой γn (в натуральной параметризации). Так как
n – единичная нормаль, то (±knn, n) = ±kn – плюс-минус кривизна нормального
сечения.

Таким образом, значение второй квадратичной формы на единичном касатель-
ном векторе – это кривизна нормального сечения, идущего вдоль этого вектора.
При этом всё определено с точностью до выбора направления вектора нормали к
поверхности (при изменении направления знаки поменяются на противоположные).

Главные направления и главные кривизны

Таким образом, у нас есть две квадратичные формы: G – первая (положительно
определённая) и Q – вторая.

В линейной алгебре доказывается общий факт: если есть две квадратичные фор-
мы, одна из которых положительно определена, то существует базис, в котором
положительно определённая квадратичная форма становится единичной, а другая
– диагональной. Вкратце мы это обсуждали на первом семинаре.

Рассмотрим гиперповерхность V n ⊂ Rn+1. В любой точке P ∈ V ∃ векторы
e1, . . . , en, образующие ортонормированный относительно G базис касательной плос-
кости TPV , при этом вторая квадратичная форма в этом базисе будет диагональной:
Q = diag(λ1, . . . , λn).

Определение 7.3. Векторы e1, . . . , en – главные направления поверхности V в точ-
ке P .

Определение 7.4. Числа λ1, . . . , λn – главные кривизны поверхности V в точке P .

Геометрический смысл λi: кривизна нормального сечения в направлении ei, так
как Q(ei) = λi.
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Определение 7.5. K = λ1 · . . . · λn – гауссова кривизна.

Определение 7.6. H = λ1 + . . . + λn – средняя кривизна (иногда сумму делят на
n).

Рассмотрим двумерную поверхность (n = 2), чтобы разобраться со смыслом гаус-
совой кривизны и главных направлений. Если K > 0, то главные кривизны одного
знака. Значит, поверхность вдоль каждого из главных направлений выгибается в
одну сторону.

Возьмём произвольный единичный вектор a ∈ TPV . В базисе из главных направ-
лений он будет иметь вид a = cosϕ · e1 + sinϕ · e2. Тогда Q(a) = λ1 cos2 ϕ+ λ2 sin2 ϕ.
Пусть для определённости λ2 ≥ λ1. Тогда Q(a) = (λ2 − λ1) sin2 ϕ + λ1. Тогда Q(a)

максимально при ϕ =
π

2
и минимально при ϕ = 0. Таким образом, максимальное и

минимальное значения кривизн нормальных сечений достигаются на главных на-
правлениях.

Если K < 0, то будет поверхность типа седла.
Если K = 0, то примером поверхности может быть цилиндр или конус, так как

одна из главных кривизн у них равна 0.

Вторая квадратичная форма для геликоида

Запишем параметризацию для геликоида:
x = u cos v

y = u sin v

z = av

,

где a = const > 0.
Найдём производные радиус-вектора поверхности и вектор нормали:

ru = (cos v, sin v, 0);

rv = (−u sin v, u cos v, a);

n =
[ru, rv]

|[ru, rv]|
=

(a sin v, − a cos v, u)√
a2 + u2

;

ruu = (0, 0, 0);

ruv = (− sin v, cos v, 0);

rvv = (−u cos v, − u sin v, 0).

Теперь найдём элементы матрицы второй квадратичной формы поверхности:

(ruu, n) = 0;

(ruv, n) = − a√
a2 + u2

;

(rvv, n) = 0.
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Теперь запишем вторую квадратичную форму поверхности:

Q =

 0 − a√
a2 + u2

− a√
a2 + u2

0

 .

Как находить главные направления и главные кривизны

Главные кривизны λi – это корни уравнения det(Q− λG) = 0.
Главные направления ei удовлетворяют уравнениям (Q− λiG)ei = 0.
Бывает ситуация, например, при n = 2, когда λ1 = λ2. Это значит, что первая

и вторая квадратичные формы пропорциональны и любое направление является
главным. В качестве примера можно привести сферу. Но может быть такая ситуа-
ция и только в отдельных точках, а не на всей поверхности.

Определение 7.7. Точки, в которых любое направление является главным, назы-
ваются омбилическими.

Упражнение 7.2. Найти омбилические точки на эллипсоиде.

Упражнение 7.3. Вывести явные формулы для гауссовой и средней кривизн для
явно заданной поверхности z = f(x, y).
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Семинар 8

Решение задач

Кривизны K и H

Задача 8.11 (№ 6.7). Дана кривая ρ = ρ(s) с натуральным параметром s, кривиз-
ной k = k(s) 6= 0 и кручением κ = κ(s) 6= 0. Пусть v = v(s) – орт касательной к этой
кривой. Для поверхности, образованной касательными к данной кривой, то есть

r(s, u) = ρ(s) + uv(s),

где u > 0, найти кривизны K и H.

Решение:
Напишем явные формулы для K и H через элементы первой и второй квадра-

тичной форм.
Нам известно, что det(Q − λG) = 0. Так как матрица G обратима, то можем

записать уравнение следующим образом:

detG · det(QG−1 − λ) = 0.

Так как detG 6= 0, то det(QG−1 − λ) = 0. Тогда для гауссовой кривизны можем
написать:

K = λ1 · . . . · λn = det(QG−1) =
detQ

detG
=
LN −M2

EG− F 2
.

А для средней кривизны можем написать:

H = λ1 + . . .+ λn = Tr(QG−1).

Доделать эту задачу не должно вызвать трудностей (в конце задачника приведено
решение).

Главные радиусы кривизны

Задача 8.12 (№ 6.12). Найти главные радиусы кривизны поверхности
x = cos v − u sin v

y = sin v + u cos v

z = u+ v

.

Решение:

Определение 8.1. Главный радиус кривизны – это величина, обратная главной
кривизне.

57

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Найдём производные радиус-вектора поверхности и нормаль:

ru = (− sin v, cos v, 1);

rv = (− sin v − u cos v, cos v − u sin v, 1);

n =
[ru, rv]

|[ru, rv]|
=

(sin v, − cos v, 1)√
2

;

ruu = (0, 0, 0);

ruv = (− cos v, − sin v, 0);

rvv = (− cos v + u sin v, − sin v − u cos v, 0).

Теперь выпишем первую и вторую квадратичные формы:

G =

(
(ru, ru) (ru, rv)
(ru, rv) (rv, rv)

)
=

(
2 2
2 2 + u2

)
;

Q =

(
(ruu, n) (ruv, n)
(ruv, n) (rvv, n)

)
=

1√
2

(
0 0
0 u

)
.

Найдём главные кривизны:

det(Q− λG) =

∣∣∣∣∣∣
−2λ −2λ

−2λ
u√
2
− λ(2 + u2)

∣∣∣∣∣∣ = −2λ

(
u√
2
− λ(2 + u2)

)
− 4λ2 =

= −
√

2λu+ 4λ2 + 2λ2u2 − 4λ2 =
√

2λu(
√

2λu− 1) = 0.

Таким образом, λ1 = 0, λ2 =
1

u
√

2
.

Тогда главные радиусы кривизны: R1 =∞, R2 = u
√

2.

Асимптотические направления, асимптотические линии,
линии кривизны

Определение 8.2. Асимптотическое направление в точке – это вектор a, кото-
рый зануляет вторую квадратичную форму: Q(a) = 0.

То есть в данной точке вдоль вектора a кривизна равна 0.

Выпишем полученную ранее формулу для гауссовой кривизны: K =
detQ

detG
, где

detG > 0. Рассмотрим случай n = 2.
Если K > 0, то есть если detQ > 0, то обе главные кривизны одного знака, и

поэтому асимптотических направлений нет.
Если K = 0, то есть если detQ = 0, то хотя бы одна главная кривизна равна

0, и поэтому существует либо ровно одно, либо бесконечно много асимптотических
направлений.
Если K < 0, то есть если detQ < 0, то главные кривизны разных знаков, и

поэтому существует не меньше двух асимптотических направлений.
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Определение 8.3. Асимптотическая линия – такая линия, у которой вектор ско-

рости в каждой точке имеет асимптотическое направление: Q(a) = 0, где a =
dγ

dt
.

Если K < 0 всюду, то в каждой точке есть по крайней мере два асимптотических
направления и существуют асимптотические линии.

Асимптотическая линия является интегральной траекторией поля асимптотиче-
ских направлений.

Определение 8.4. Линия кривизны – интегральная траектория поля главных на-
правлений.

Касательный вектор в каждой точке линии кривизны имеет главное направление.
Так как в омбилических точках нет главного направления, то в них линии кри-

визны не определены.

Асимптотические линии и линии кривизны для геликоида

Выпишем радиус-вектор геликоида:

r = (u cos v, u sin v, av),

где a = const > 0.
Найдём производные радиус-вектора поверхности и нормаль:

ru = (cos v, sin v, 0);

rv = (−u sin v, u cos v, a);

ruu = (0, 0, 0);

ruv = (− sin v, cos v, 0);

rvv = (−u cos v, − u sin v, 0);

n =
[ru, rv]

|[ru, rv]|
=

(a sin v, − a cos v, u)√
a2 + u2

.

Запишем первую и вторую квадратичные формы:

G =

(
(ru, ru) (ru, rv)
(ru, rv) (rv, rv)

)
=

(
1 0
0 u2 + a2

)
;

Q =

(
(ruu, n) (ruv, n)
(ruv, n) (rvv, n)

)
=

1√
a2 + u2

(
0 −a
−a 0

)
.

Найдём главные кривизны:

det(Q− λG) =

∣∣∣∣∣∣∣
−λ − a√

a2 + u2

− a√
a2 + u2

−λ(u2 + a2)

∣∣∣∣∣∣∣ = λ2(u2 + a2)− a2

a2 + u2
= 0.

Тогда λ1,2 = ± a

a2 + u2
.
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Найдём главные направления.

λ1 =
a

a2 + u2
:

 −
a

a2 + u2
− a√

a2 + u2

− a√
a2 + u2

−a

 ẽ1 = 0;

ẽ1 =

 1

− 1√
a2 + u2

 ;

e1 =
ẽ1
|ẽ1|

=
1√

1 + 1

 1

− 1√
a2 + u2

 =
1√
2

 1

− 1√
a2 + u2

 .

λ2 = − a

a2 + u2
:


a

a2 + u2
− a√

a2 + u2

− a√
a2 + u2

a

 ẽ2 = 0;

ẽ2 =

 1
1√

a2 + u2

 ;

e2 =
ẽ2
|ẽ2|

=
1√

1 + 1

 1
1√

a2 + u2

 =
1√
2

 1
1√

a2 + u2

 .

Найдём линии кривизны (нормировка главных направлений здесь не важна).

e1 =
1√
2

(
1, − 1√

a2 + u2

)
: r′ = (u′, v′) =

(
1, − 1√

a2 + u2

)
.

Так как u′ = 1, то можно взять u в качестве параметра на кривой, тогда v′ =
dv

du
и

надо найти уравнение кривой в виде v = v(u).

dv

du
= − 1√

a2 + u2
;

v = −
∫

du√
a2 + u2

= − ln
∣∣∣u+

√
u2 + a2

∣∣∣ .
Для поля векторов e2 аналогично можно получить линию кривизны:

v = ln
∣∣∣u+

√
u2 + a2

∣∣∣ .
Теперь найдём асимптотические направления (то есть векторы, для которых

Q(a) = 0):

a1 =

(
1
0

)
; a2 =

(
0
1

)
.
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Найдём асимптотические линии (то есть такие линии, для которых соответствен-
но векторы a1 и a2 являются касательными):

a1 = (1, 0) : v = const;

a2 = (0, 1) : u = const .

Таким образом, для геликоида асимптотическими линии являются координатные
линии. Они представляют из себя всевозможные прямые, перпендикулярные оси
вращения, и винтовые линии.

Триортогональное семейство поверхностей

Рассмотрим семейство поверхностей F (x, y, z) = C1 = const (то есть при измене-
нии константы C1 меняются поверхности в этом семействе). Рассмотрим ещё два
семейства поверхностей: G(x, y, z) = C2 = const и H(x, y, z) = C3 = const. Пусть
через любую точку области D ⊂ R3 проходит ровно одна поверхность каждого
семейства и они все 3 попарно ортогональны в любой точке.

Определение 8.5. Триортогональное семейство поверхностей – семейство по-
верхностей, состоящее из поверхностей семейств F (x, y, z) = C1, G(x, y, z) = C2,
H(x, y, z) = C3, описанных выше.

В качестве примера можно привести плоскости x = const, y = const, z = const.
Другой пример: координатные поверхности сферической системы координат: r =

= const – сферы с центром в начале координат, ϕ = const – полуплоскости, ψ = const
– конусы.

Теорема 8.1 (Теорема Дюпена). Пусть F (x, y, z) = C1, G(x, y, z) = C2, H(x, y, z) =
= C3 – триортогональное семейство поверхностей. Фиксируем C3. Тогда поверх-
ности F (x, y, z) = C1, G(x, y, z) = C2 пересекают поверхность H(x, y, z) = C3 по
линиям кривизны.

Упражнение 8.1. Доказать теорему Дюпена (8.1).

Упражнение 8.2. Найти в терминах первой и второй квадратичных форм необхо-
димые и достаточные условия того, что координатные линии совпадают с линиями
кривизны.

Упражнение 8.3. Найти в терминах первой и второй квадратичных форм необ-
ходимые и достаточные условия того, что координатные линии совпадают с асимп-
тотическими линиями.

Упражнение 8.4. Найти гауссову кривизну поверхности Бельтрами (это поверх-
ность вращения трактрисы).

Упражнение 8.5. Найти линии кривизны на катеноиде (это поверхность враще-
ния цепной линии).
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Описание всех минимальных поверхностей вращения

Определение 8.6. Минимальная поверхность – поверхность, у которой средняя
кривизна равна 0.

Параметризуем поверхность вращения:

r = (f(u) cos v, f(u) sin v, u).

Найдём производные радиус-вектора поверхности и нормаль:

ru = (f ′(u) cos v, f ′(u) sin v, 1);

rv = (−f(u) sin v, f(u) cos v, 0);

ruu = (f ′′(u) cos v, f ′′(u) sin v, 0);

ruv = (−f ′(u) sin v, f ′(u) cos v, 0);

rvv = (−f(u) cos v, − f(u) sin v, 0);

n =
[ru, rv]

|[ru, rv]|
=

(− cos v, − sin v, f ′(u))√
1 + f ′2(u)

.

Запишем первую и вторую квадратичные формы:

G =

(
(ru, ru) (ru, rv)
(ru, rv) (rv, rv)

)
=

(
f ′2(u) + 1 0

0 f 2(u)

)
;

Q =

(
(ruu, n) (ruv, n)
(ruv, n) (rvv, n)

)
=

1√
1 + f ′2(u)

(
−f ′′(u) 0

0 f(u)

)
.

Воспользуемся формулой для средней кривизны:

H = Tr(QG−1) = Tr


− f ′′(u)

(1 + f ′2(u))
3
2

0

0
1

f(u)
√

1 + f ′2(u)

 =

=
1 + f ′2(u)− f(u)f ′′(u)

f(u)(1 + f ′2(u))
3
2

= 0.

Таким образом, получаем дифференциальное уравнение:

1 + f ′2(u)− f(u)f ′′(u) = 0. (8.1)

Упражнение 8.6. Решить дифференциальное уравнение (8.1).
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Семинар 9

Разбор домашнего задания

Координатные и асимптотические линии

Разберём выполнение упражнения (8.3).

Задача 9.13. Найти в терминах первой и второй квадратичных форм необходимые
и достаточные условия того, что координатные линии совпадают с асимптотически-
ми линиями.

Решение:
Пусть координатные линии являются асимптотическими. Тогда векторы ru и rv

являются асимптотическими направлениями. Значит, Q(ru) = Q(rv) = 0. Эти век-
торы имеют координаты (1, 0) и (0, 1) соответственно.
Таким образом, получаем:

(
1 0

)(L M
M N

)(
1
0

)
= 0 ⇔ L = 0;

(
0 1

)(L M
M N

)(
0
1

)
= 0 ⇔ N = 0.

Значит, антидиагональность второй квадратичной формы является необходимым
условием. Оно же является и достаточным, так как если L = N = 0, то векторы ru
и rv являются асимптотическими направлениями.

Координатные линии и линии кривизны

Разберём выполнение упражнения (8.2).

Задача 9.14. Найти в терминах первой и второй квадратичных форм необходи-
мые и достаточные условия того, что координатные линии совпадают с линиями
кривизны.

Решение:
Пусть координатные линии являются линиями кривизны. Тогда векторы ru и rv

являются главными направлениями (с точностью до растяжения). Значит, в этом
базисе матрицы первой и второй квадратичных форм являются диагональными ⇔
⇔ F = 0 и M = 0.

И наоборот, если матрицы первой и второй квадратичных форм являются диа-
гональными, то ru и rv являются главными направлениями (с точностью до растя-
жения).

Теорема Дюпена

Разберём выполнение упражнения (8.1).

Задача 9.15. Доказать теорему Дюпена (8.1).
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Теорема. Пусть F (x, y, z) = C1, G(x, y, z) = C2, H(x, y, z) = C3 – триортогональ-
ное семейство поверхностей. Фиксируем C3. Тогда поверхности F (x, y, z) = C1,
G(x, y, z) = C2 пересекают поверхность H(x, y, z) = C3 по линиям кривизны.

Доказательство:
Введём новые обозначения для поверхностей F ,G иH: F1, F2 и F3 соответственно.

И введём ортогональные координаты в R3 следующим образом: ui = Fi(x, y, z).
Фиксируем u3. Тогда u1 и u2 – локальные координаты на поверхности u3 = const.

Так как поверхности ui и uj ортогональны, то (rui , ruj) = 0.
Продифференцируем равенство (ru1 , ru2) по u3, получим:

(ru1u3 , ru2) + (ru1 , ru2u3) = 0. (9.1)

Теперь продифференцируем равенство (ru1 , ru3) по u2, получим:

(ru1u2 , ru3) + (ru1 , ru2u3) = 0. (9.2)

Теперь продифференцируем равенство (ru2 , ru3) по u1, получим:

(ru1u2 , ru3) + (ru2 , ru1u3) = 0. (9.3)

Сложим равенства (9.2) и (9.3), а затем вычтем (9.1) и результат поделим на 2,
получим: (ru1u2 , ru3) = 0. Так как u1 и u2 – координаты на поверхности, то ru3 ‖ n,
где n – нормаль к поверхности. Значит, (ru1u2 , n) = 0, а это есть внедиагональные
элементы матрицы второй квадратичной формы. Таким образом, в базисе ru1 , ru2
матрица второй квадратичной формы является диагональной.
Матрица первой квадратичной формы в базисе ru1 , ru2 тоже диагональна, так

как (rui , ruj) = 0.
Таким образом, по решению задачи (9.14) получаем, что координатные линии u1

и u2 являются линиями кривизны. �

Решение задач

Средняя кривизна как интегральное среднее нормальных кривизн

Задача 9.16 (№ 6.52). Показать, что среднюю кривизну H поверхности можно
рассматривать как интегральное среднее всех нормальных кривизн, то есть

H =
1

π

2π∫
0

k(ϕ) dϕ,

где k(ϕ) – нормальная кривизна в направлении ϕ, отсчитываемом от одного из
главных направлений.

Решение:
Пусть e1, e2 – главные направления. Рассмотрим какой-нибудь единичный вектор

e в касательной плоскости. Кривизна нормального сечения вдоль вектора e равна
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значению второй квадратичной формы на этом векторе e: k(e) = Q(e). В базисе e1,
e2 вектор e представляется следующим образом: e = cosϕ · e1 + sinϕ · e2.

Пусть направление ϕ задаётся вектором e. Тогда

k(ϕ) = k(e) = Q(e) =
(
cosϕ sinϕ

)(λ1 0
0 λ2

)(
cosϕ
sinϕ

)
= λ1 cos2 ϕ+ λ2 sin2 ϕ.

Теперь можем посчитать интеграл из задания:

1

π

2π∫
0

k(ϕ) dϕ =
1

π

2π∫
0

(
λ1

1 + cos 2ϕ

2
+ λ2

1− cos 2ϕ

2

)
dϕ =

1

π
·λ1 + λ2

2
·2π = λ1+λ2 = H.

Упражнение 9.1. Пусть поверхность r(u, v) выпукла вниз. Выберем на ней по-
ле единичных нормалей n(u, v), направленных вверх. Рассмотрим поверхность
ρ(u, v) = r(u, v) + εn(u, v), где ε > 0. При каких значениях ε поверхность ρ(u, v)
будет регулярной?

Упражнение 9.2. Рассмотрим поверхность V . Выберем на ней поле единичных
нормалей n. Таким образом, каждой точке поверхности мы ставим в соответствие
единичный вектор, то есть задаём отображение из поверхности в единичную сферу:
Γ : V → S2 – гауссово отображение.
Пусть V – поверхность постоянной отрицательной кривизны k. Рассмотрим об-

ласть D ⊂ V . Доказать, что S(D) =
1

−k
· S(Γ(D)), где S(·) – площадь.

Упражнение 9.3. Пусть n(u, v) – поле единичных нормалей к поверхности V .
Рассмотрим первую квадратичную форму для сферы, получаемой при гауссовом
отображении: (

(nu, nu) (nu, nv)
(nu, nv) (nv, nv)

)
.

Выразить эту квадратичную форму через первую и вторую квадратичные формы
G и Q для V .

Разбор домашнего задания

Описание всех минимальных поверхностей вращения

Разберём выполнение упражнения (8.6).

Задача 9.17. Решить дифференциальное уравнение (8.1).

Решение:
На прошлом семинаре мы получили такое дифференциальное уравнение:

f ′2 − f ′′f + 1 = 0.
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Понизим его порядок:

ff ′′ = 1 + f ′2;
f ′′

1 + f ′2
=

1

f
;

f ′′f ′

1 + f ′2
=
f ′

f
;

1

2

(
ln(1 + f ′2)

)′
= (ln f)′.

Далее получается уравнение с разделяющимися переменными.

Метрика сферы в комплексных координатах

Ранее мы находили метрику сферы в стандартных географических координатах:

ds2 = R2(dθ2 + cos2 θ dϕ2). (9.4)

Если мы сделаем стереографическую проекцию, то метрика сферы в полярных
координатах примет следующий вид:

ds2 =
4R4

(r2 +R2)2
(dr2 + r2 dϕ2).

Если теперь мы перейдём к декартовым координатам, то метрика примет следу-
ющий вид:

ds2 =
4R4

(x2 + y2 +R2)2
(dx2 + dy2). (9.5)

Введём комплексную координату z = x + iy, тогда z̄ = x − iy. Формально пере-
считаем метрику сферы в комплексных координатах.

x =
1

2
(z + z̄); y =

1

2i
(z − z̄);

dx =
1

2
(dz + dz̄); dy =

1

2i
(dz − dz̄).

Подставим это всё в (9.5):

ds2 =
4R4

(x2 + y2 +R2)2
(dx2 + dy2) =

=
4R4(

1

4
(z + z̄)2 − 1

4
(z − z̄)2 +R2

)2

(
1

4
(dz + dz)2 − 1

4
(dz − dz)2

)
=

=
4R4

(zz̄ +R2)2
dz dz̄.

Сфера радиуса iR в R3
2,1

Рассмотрим в псевдоевклидовом пространстве R3
2,1 сферу радиуса iR, она будет

иметь следующее уравнение:

x2 + y2 − z2 = −R2.
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Это двуполостный гиперболоид (см. рисунок).

Рис. 9.1: Двуполостный гиперболоид

Определение 9.1. Псевдосфера – сфера мнимого радиуса в псевдоевклидовом про-
странстве.

Запишем параметризацию для верхней «чашечки» двуполостного гиперболоида:
x = R cosϕ shψ

y = R sinϕ shψ

z = R chψ

.

Вычислим первую квадратичную форму:

rϕ = (−R sinϕ shψ, R cosϕ shψ, 0);

rψ = (R cosϕ chψ, R sinϕ chψ, R shψ);

E = (rϕ, rϕ) = R2 sh2 ψ;

F = (rϕ, rψ) = 0;

G = (rψ, rψ) = R2;

ds2 = R2(dψ2 + sh2 ψ dϕ2). (9.6)

Заметим, что полученная метрика псевдосферы (9.6) аналогична метрике сферы
(9.4) (ещё более полная аналогия выйдет, если за θ брать не географический угол,
а угол с осью z, тогда cos2 θ заменится на sin2 θ).
Обратим внимание, что скалярное произведение в объемлющем пространстве

индефинитное, а его ограничение (9.6) на псевдосфере получилось положительно
определённым, то есть евклидовым. Но если двуполостный гиперболоид рассматри-
вать как поверхность, вложенную в евклидово пространство R3, то индуцированная
метрика из евклидова пространства выйдет отличной от (9.6).

Теперь сделаем стереографическую проекцию верхней «чашечки». Она делается
следующим образом: обозначим за S вершину нижней «чашечки» двуполостного
гиперболоида и будем соединять произвольную точку верхней «чашечки» с точкой
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S, при этом соединительная прямая пересечёт плоскость Oxy в некоторой точке
(см. рисунок).

Рис. 9.2: Стереографическая проекция верхней «чашечки»
двуполостного гиперболоида

Получаем стереографическую проекцию π : V → R2, где V – верхняя «чашечка»
двуполостного гиперболоида. Такая стереографическая проекция будет находиться
внутри круга радиуса R.

Упражнение 9.4. Написать формулы для стереографической проекции псевдо-
сферы.

Упражнение 9.5. Пересчитать метрику псевдосферы в декартовых координатах
стереографической проекции (x, y).

Упражнение 9.6. Пересчитать метрику псевдосферы в полярных координатах
стереографической проекции (r, ϕ).

Упражнение 9.7. Пересчитать метрику псевдосферы в комплексных координатах
стереографической проекции (z, z̄).
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Семинар 10

Разбор домашнего задания

Формулы для стереографической проекции псевдосферы

Разберём выполнение упражнения (9.4).

Задача 10.18. Написать формулы для стереографической проекции псевдосферы.

Решение:
Вспомним рисунок стереографической проекции верхней «чашечки» двуполост-

ного гиперболоида (9.2).
Рассмотрим вектор, идущий от вершины нижней «чашечки» S к произвольной

точке на верхней «чашечки». Координаты начала и конца этого вектора будут со-
ответственно

(0, 0,−R) и (R cosϕ shψ, R sinϕ shψ, R chψ).

Точка, в которой этот вектор пересечёт плоскость Oxy, будет отдалена от начала
вектора по оси z на R. При этом длина проекции вектора на ось z равна R(chψ +
+ 1). Тогда точка, в которой вектор пересечёт плоскость, будет иметь следующие
координаты: (

R cosϕ shψ

chψ + 1
,
R sinϕ shψ

chψ + 1
, 0

)
.

Таким образом, при стереографической проекции псевдосферы получаем в плос-
кости следующие координаты: 

x =
R cosϕ shψ

chψ + 1

y =
R sinϕ shψ

chψ + 1

. (10.1)

Метрика псевдосферы в декартовых координатах
стереографической проекции (x, y)

Разберём выполнение упражнения (9.5).

Задача 10.19. Пересчитать метрику псевдосферы в декартовых координатах сте-
реографической проекции (x, y).

Решение:
На прошлом семинаре мы получили метрику, индуцированную на псевдосфере в

псевдоевклидовом пространстве:

ds2 = R2(dψ2 + sh2 ψ dϕ2). (10.2)
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Запишем дифференциалы декартовых координат (10.1):

dx =
−R sinϕ shψ

chψ + 1
dϕ+

R cosϕ(chψ(chψ + 1)− sh2 ψ)

(chψ + 1)2
dψ =

=
−R sinϕ shψ

chψ + 1
dϕ+

R cosϕ

chψ + 1
dψ; (10.3)

dy =
R cosϕ shψ

chψ + 1
dϕ+

R sinϕ(chψ(chψ + 1)− sh2 ψ)

(chψ + 1)2
dψ =

=
R cosϕ shψ

chψ + 1
dϕ+

R sinϕ

chψ + 1
dψ. (10.4)

Выразим из (10.3) и (10.4) величины shψ dϕ и dψ, чтобы затем подставить их в
метрику псевдосферы (10.2):

cosϕdy − sinϕdx =
R shψ

chψ + 1
dϕ; shψ dϕ =

chψ + 1

R
(cosϕdy − sinϕdx); (10.5)

cosϕdx+ sinϕdy =
R

chψ + 1
dψ; dψ =

chψ + 1

R
(cosϕdx+ sinϕdy). (10.6)

Подставим (10.5) и (10.6) в метрику псевдосферы (10.2):

ds2 = R2(dψ2 + sh2 ψ dϕ2) =

= (chψ + 1)2
(
(cosϕdx+ sinϕdy)2 + (cosϕdy − sinϕdx)2

)
=

= (chψ + 1)2(dx2 + dy2). (10.7)

Осталось выразить (chψ + 1)2 через x и y из (10.1):

x2 + y2 =
R2 sh2 ψ

(chψ + 1)2
;

x2 + y2 −R2 =
R2
(
sh2 ψ − (chψ + 1)2

)
(chψ + 1)2

=
−2R2(chψ + 1)

(chψ + 1)2
=
−2R2

chψ + 1
;

chψ + 1 =
−2R2

x2 + y2 −R2
;

(chψ + 1)2 =
4R4

(x2 + y2 −R2)2
. (10.8)

Подставляем (10.8) в (10.7):

ds2 = (chψ + 1)2(dx2 + dy2) =
4R4

(x2 + y2 −R2)2
(dx2 + dy2). (10.9)

Метрика получилась конформно-евклидова.

Метрика псевдосферы в полярных координатах
стереографической проекции (r, ϕ)

Разберём выполнение упражнения (9.6).
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Задача 10.20. Пересчитать метрику псевдосферы в полярных координатах сте-
реографической проекции (r, ϕ).

Решение:
Выпишем связь декартовых и полярных координат:{

x = r cosϕ

y = r sinϕ
.

Вычислим дифференциалы:

dx = cosϕdr − r sinϕdϕ;

dy = sinϕdr + r cosϕdϕ.

Подставим это всё в метрику псевдосферы в декартовых координатах стереогра-
фической проекции (10.9):

ds2 =
4R4

(x2 + y2 −R2)2
(dx2 + dy2) =

4R4

(r2 −R2)2
(dr2 + r2 dϕ2). (10.10)

Метрика псевдосферы в комплексных координатах
стереографической проекции (z, z̄)

Разберём выполнение упражнения (9.7).

Задача 10.21. Пересчитать метрику псевдосферы в комплексных координатах сте-
реографической проекции (z, z̄).

Решение:
Выпишем связь декартовых и комплексных координат:

x =
z + z̄

2

y =
z − z̄

2i

.

Вычислим дифференциалы:

dx =
dz + dz̄

2
;

dy =
dz − dz̄

2i
.

Подставим это всё в метрику псевдосферы в декартовых координатах стереогра-
фической проекции (10.9):

ds2 =
4R4

(x2 + y2 −R2)2
(dx2 + dy2) =

4R4

(zz̄ −R2)2
dz dz̄. (10.11)
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Геометрия в единичном круге

На сфере прямыми являются сечения плоскостями, проходящими через центр
сферы. Можно показать, что на псевдосфере прямыми являются сечения плоско-
стями, проходящими через вершину верхней «чашечки» гиперболоида.

Упражнение 10.1. Доказать, что при стереографической проекции прямые на
псевдосфере переходят либо в отрезки, являющиеся диаметрами абсолюта (то есть
окружности радиуса R с центром в начале координат), либо в дуги окружности,
перпендикулярные абсолюту.

Можно для простоты рассматривать не круг с радиусом R, а единичный круг. Та-
ким образом, мы получаем геометрию в единичном круге, которая является одной
из моделей геометрии Лобачевского.

Для дальнейшего развития темы нам понадобятся дробно-линейные преобразо-
вания.

Дробно-линейные преобразования

Определение 10.1. Дробно-линейное преобразование – преобразование вида

z 7→ az + b

cz + d
,

где a, b, c, d ∈ C, причём ad− bc 6= 0.

Это преобразование CP 1 → CP 1, где CP 1 = C ∪ {∞} (комплексная проективная

прямая). Таким образом, −d
c
7→ ∞ и ∞ 7→ a

c
.

Свойства дробно-линейных преобразований:

1) Дробно-линейные преобразования образуют группу относительно компози-
ции, которая изоморфна проективной группе PGL(2,C).

2) ∀z1, z2, z3 ∈ C и ∀w1, w2, w3 ∈ C ∃! дробно-линейное преобразование такое, что
zi 7→ wi ∀i = 1, 2, 3.

Доказательство:

Рассмотрим дробно-линейное преобразование

L1(z) =
z − z1
z − z2

:
z3 − z1
z3 − z2

.

Для такого преобразования z1 7→ 0, z2 7→ ∞, z3 7→ 1.

Теперь рассмотрим дробно-линейное преобразование

L2(z) =
z − w1

z − w2

:
w3 − w1

w3 − w2

.

Для такого преобразования w1 7→ 0, w2 7→ ∞, w3 7→ 1.
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Если взять композицию L−12 ◦ L1, то получим искомое преобразование. Оста-
лось доказать его единственность.

Предположим, что существует ещё одно искомое преобразование L, тогда ком-
позиция L̃ = L2 ◦ L ◦ L−11 осуществляет следующие переходы: 0 7→ 0, ∞ 7→ ∞,

1 7→ 1. Пусть L̃ =
az + b

cz + d
. Так как точка 0 остаётся неподвижной, то b = 0.

Так как точка ∞ остаётся неподвижной, то c = 0. Так как точка 1 остаётся
неподвижной, то a+ b = c+ d, то есть a = d. Таким образом, L̃ – тождествен-
ное преобразование. Тогда L = L−12 ◦L1, то есть совпадает с ранее найденным
преобразованием. Получили противоречие, значит, искомое преобразование
единственно. �

3) Дробно-линейные преобразования конформны, то есть сохраняют углы.

Объясним вкратце, почему так. На касательные векторы действует диффе-
ренциал отображения. Дифференциал – это линейное отображение. В одно-
мерном комплексном случае это значит, что z переходит в λz, где λ ∈ C. Такие
отображения являются гомотетиями с поворотами. А гомотетии и повороты
не изменяют углы.

4) Дробно-линейные преобразования переводят обобщённые окружности в обоб-
щённые окружности.

Определение 10.2. Обобщённая окружность – это окружность или прямая,
то есть это кривые на плоскости, задаваемые уравнением

E(x2 + y2) + F1x+ F2y +G = 0,

где E,F1, F2, G ∈ R (на G ещё накладываются некоторые ограничения, чтобы
не получилось пустое множество).

Доказательство:

Перепишем уравнение в следующем виде:

Ezz̄ + F1
z + z̄

2
+ F2

z − z̄
2

+G = 0. (10.12)

Дробно-линейное преобразование
az + b

cz + d
раскладывается в композицию пре-

образований

z 7→ Az + b; z 7→ 1

z
; z 7→ z + C (10.13)

для некоторых A,C ∈ C.
Для преобразований (10.13) доказать сохранение уравнения вида (10.12) не
составит трудностей. �

5) Дробно-линейные преобразования сохраняют двойные отношения 4 точек
z1 − z3
z2 − z3

:
z1 − z4
z2 − z4

.
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6) Дробно-линейные преобразования сохраняют симметричность точек относи-
тельно обобщённых окружностей (для обычных окружностей с центром z0
симметричность определяется так: если точка z1 внутри окружности, а точка
z2 вне окружности, то |z1 − z0| · |z2 − z0| = R2).

Отображение единичного круга на верхнюю полуплоскость

Мы хотим получить преобразование {z | |z| < 1} → {w | |w| > 0}. Можно соста-
вить множество таких различных преобразований. Мы составим такое преобразо-
вание, при котором 1 7→ ∞ и −1 → 0. Таким переходам удовлетворяет, например,
следующее преобразование:

w = −iz + 1

z − 1
. (10.14)

При таком преобразовании 0→ i. Посмотрим, куда перейдёт точка i:

i→ −i i+ 1

i− 1
= −i(i+ 1)2

−2
= i
−1 + 2i+ 1

2
= −1.

Таким образом, три точки с окружности |z| = 1 перешли в три точки вещественной
прямой Imw = 0. Так как обобщённые окружности при дробно-линейном преобра-
зовании переходят в обобщённые окружности, то вся окружность |z| = 1 перешла
в вещественную прямую Imw = 0.
Можно показать, что при дробно-линейных преобразованиях граница переходит

в границу. В выбранном нами преобразовании (10.14) граница единичного круга
перешла в вещественную прямую, а внутренняя точка единичного круга 0 перешла
в точку верхней полуплоскости i. Значит, {z | |z| < 1} → {w | |w| > 0}, что и
требовалось.

Ранее мы получали метрику псевдосферы в комплексных координатах стереогра-
фической проекции (10.11), запишем её для R = 1:

ds2 =
4 dz dz̄

(1− zz̄)2
. (10.15)

Упражнение 10.2. Пересчитать метрику псевдосферы с R = 1 (10.15) в комплекс-
ных координатах верхней полуплоскости.

Длина окружности в метрике Лобачевского

Можно показать, что произвольные дробно-линейные преобразования, которые
сохраняют единичный круг, будут сохранять метрику.

Определение 10.3. Окружность – это геометрическое метро точек, равноудалён-
ных от данной.

Ранее мы получали метрику псевдосферы в полярных координатах стереографи-
ческой проекции (10.10), запишем её для R = 1:

ds2 = 4
dr2 + r2 dϕ2

(1− r2)2
.
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Рассмотрим в этой метрике окружность с центром в начале координат. Видно,
что метрика устроена так, что расстояние от начала координат вдоль любого на-
правления будет отсчитываться одинаково. Значит, окружность с центром в начале
координат в этой метрике – это обычная окружность вида r = const.
Теперь рассмотрим окружность в метрике Лобачевского с центром не в начале ко-

ординат. Сделаем дробно-линейное преобразование, переводящее эту окружность в
окружность с центром в начале координат. В силу вида метрики и сохранения мет-
рики при таком преобразовании получим обычную окружность вида r = const с
тем же радиусом, который был у исходной окружности. Теперь сделаем обратное
преобразование, оно тоже будет дробно-линейным, так как преобразование, обрат-
ное к дробно-линейному, является дробно-линейным. Так как при дробно-линейном
преобразовании обобщённые окружности переходят в обобщённые окружности, то
обычная окружность вида r = const перейдёт в обычную окружность или в пря-
мую. Но переход в прямую невозможен, так как прямая выйдет из единичного
круга. Значит, мы получим обычную окружность с центром не в начале координат.

Таким образом, все окружности в метрике Лобачевского являются обычными
окружностями.

Посчитаем длину lL окружности с центром в начале координат и евклидовым
радиусом ρ в метрике Лобачевского:

lL =

2π∫
0

|r′|
∣∣
r=ρ

dϕ =

2π∫
0

|(0, 1)|
∣∣
r=ρ

dϕ =○

(
0 1

)
4

(1− r2)2
0

0
4r2

(1− r2)2

(0
1

)
=

4r2

(1− r2)2

=○
2π∫
0

2ρ

1− ρ2
dϕ =

4πρ

1− ρ2
.

Теперь посчитаем длину RL евклидового радиуса ρ в метрике Лобачевского:

RL =

ρ∫
0

|r′|
∣∣
ϕ=const

dr =

ρ∫
0

|(1, 0)|
∣∣
ϕ=const

dr =○

(
1 0

)
4

(1− r2)2
0

0
4r2

(1− r2)2

(1
0

)
=

4

(1− r2)2

=○

ρ∫
0

2

1− r2
dr =

ρ∫
0

1

1 + r
dr +

ρ∫
0

1

1− r
dr = ln

1 + r

1− r

∣∣∣∣ρ
0

= ln
1 + ρ

1− ρ
.

Выразим длину окружности в метрике Лобачевского через длину радиуса в мет-

75

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

рике Лобачевского:

RL = ln
1 + ρ

1− ρ
;

1 + ρ

1− ρ
= eRL ; ρ =

eRL − 1

eRL + 1
;

lL =
4πρ

1− ρ2
=

4π · e
RL − 1

eRL + 1

1−
(
eRL − 1

eRL + 1

)2 =
4π(eRL − 1)(eRL + 1)

(eRL + 1)2 − (eRL − 1)2
=
π(e2RL − 1)

eRL
=

= 2π · e
RL − e−RL

2
= 2π shRL. (10.16)

Формула (10.16) будет верна и для окружностей с центром не в начале коорди-
нат. При этом надо понимать, что у таких окружностей центр будет сдвинут от
евклидового центра окружности.

Упражнение 10.3. Найти формулу для площади круга в геометрии Лобачевского.

Упражнение 10.4. Найти формулы для длины окружности и площади круга в
сферической геометрии.

Упражнение 10.5. Пусть точки P1 и P2 в геометрии Лобачевского лежат на пря-
мой AB (см. рисунок).

Рис. 10.1: Точки P1 и P2 на прямой AB
Доказать, что для расстояния между точками P1 и P2 справедлива следующая

формула:

d(P1, P2) = ln

(
z2 − a
z1 − a

:
z2 − b
z1 − b

)
,

где z1, z2, a, b – комплексные координаты точек P1, P2, A,B соответственно.
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Семинар 11

Разбор домашнего задания

Формула для расстояния между двумя точками в геометрии Лобачевского

Разберём выполнение упражнения (10.5).

Задача 11.22. Пусть точки P1 и P2 в геометрии Лобачевского лежат на прямой
AB (см. рисунок).

Рис. 11.1: Точки P1 и P2 на прямой AB
Доказать, что для расстояния между точками P1 и P2 справедлива следующая

формула:

d(P1, P2) = ln

(
z2 − a
z1 − a

:
z2 − b
z1 − b

)
, (11.1)

где z1, z2, a, b – комплексные координаты точек P1, P2, A,B соответственно.

Решение:
Сделаем упрощающее дробно-линейное преобразование, которое переведёт еди-

ничный круг в себя, а дугу AB – в диаметр (см. рисунок).

Рис. 11.2: Точки P1 и P2 на прямой AB
после дробно-линейного преобразования

Так как дробно-линейные преобразования сохраняют двойное отношение и сохра-
няют расстояния в метрике Лобачевского, если переводят единичный круг в себя,
то достаточно доказать справедливость формулы (11.1) для упрощённой ситуации
после преобразования.
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Выпишем метрику:

ds2 =
4

(1− r2)2
(dr2 + r2 dϕ2).

Введём обозначения: rP1 = p, rP2 = q.
Посчитаем расстояние между точками O и P2:

d(O,P2) =

q∫
0

|r′|
∣∣
ϕ=0

dr =

q∫
0

|(1, 0)|
∣∣
ϕ=0

dr =○

(
1 0

)
4

(1− r2)2
0

0
4r2

(1− r2)2

(1
0

)
=

4

(1− r2)2

=○

q∫
0

2

1− r2
dr =

q∫
0

1

1 + r
dr +

q∫
0

1

1− r
dr = ln

1 + r

1− r

∣∣∣∣q
0

= ln
1 + q

1− q
.

Аналогично получаем расстояние между точками O и P1:

d(O,P1) = ln
1 + p

1− p
.

Теперь можем найти расстояние между точками P1 и P2:

d(P1, P2) = d(O,P1) + d(O,P2) = ln
(1 + p)(1 + q)

(1− p)(1− q)
. (11.2)

Преобразуем выражение в правой части формулы (11.1):

ln

(
z2 − a
z1 − a

:
z2 − b
z1 − b

)
= ln

(
q + 1

−p+ 1
:
q − 1

−p− 1

)
= ln

(1 + p)(1 + q)

(1− p)(1− q)
. (11.3)

Таким образом, из (11.2) и (11.3) получаем искомую формулу:

d(P1, P2) = ln

(
z2 − a
z1 − a

:
z2 − b
z1 − b

)
.

Метрика Лобачевского в верхней полуплоскости

На прошлом семинаре мы с помощью дробно-линейного преобразования

w = −iz + 1

z − 1

отобразили единичный круг на верхнюю полуплоскость.
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В качестве упражнения (10.2) было задано пересчитать метрику псевдосферы с
R = 1 (10.15)

ds2 =
4 dz dz̄

(1− zz̄)2
.

в комплексных координатах верхней полуплоскости. Должна была получиться сле-
дующая метрика:

ds2 = − 4 dw dw̄

(w − w̄)2
. (11.4)

Теперь пересчитаем метрику псевдосферы (11.4) в декартовых координатах верх-
ней полуплоскости.

Запишем связь комплексных и декартовых координат:{
w = x+ iy

w̄ = x− iy
.

Запишем дифференциалы:

dw = dx+ i dy;

dw̄ = dx− i dy.

Подставим всё в метрику (11.4), получим:

ds2 = − 4 dw dw̄

(w − w̄)2
=
dx2 + dy2

y2
. (11.5)

Упражнение 11.1. Доказать, что преобразования вида z 7→ az + b

cz + d
, где a, b, c, d ∈

∈ R, причём ad − bc = 1, переводят верхнюю полуплоскость в себя и сохраняют
метрику.

Упражнение 11.2. Доказать, что в полученной метрике псевдосферы в декарто-
вых координатах верхней полуплоскости (11.5) справедлива следующая формула
для расстояния d(z1, z2) между точками z1 и z2:

ch d(z1, z2) = 1 +
|z1 − z2|2

2 Im z1 Im z2
. (11.6)

В единичном круге прямыми были либо диаметры абсолюта, либо дуги окруж-
ностей, перпендикулярные абсолюту. При переходе в верхнюю полуплоскость аб-
солют переходит в вещественную ось. Дробно-линейные преобразования переводят
обобщённые окружности в обобщённые окружности. Значит, прямые из единично-
го круга переходят либо в обычные прямые, либо в дуги окружностей. Причём эти
обычные прямые и дуги окружностей перпендикулярны вещественной оси, так как
в единичном круге прямые были перпендикулярны абсолюту, а дробно-линейные
преобразования сохраняют углы. Заметим также, что дуги окружностей, перпен-
дикулярные вещественной оси, – это полуокружности.
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Упражнение 11.3. Пусть точки P1 и P2 верхней полуплоскости не лежат на од-
ной вертикальной прямой. Тогда прямая, проходящая через эти точки, – это полу-
окружность, перпендикулярная вещественной оси. Пусть ϕ1 и ϕ2 – углы с вершиной
в евклидовом центре этой полуокружности от положительного направления веще-
ственной оси до направления на точки P1 и P2 соответственно, причём пусть ϕ1 > ϕ2

(см. рисунок).

Рис. 11.3: Точки P1 и P2 на полуокружности
Доказать, что для расстояния d(P1, P2) между точками P1 и P2 в этом случае

справедлива следующая формула:

d(P1, P2) = ln
tg
ϕ1

2

tg
ϕ2

2

. (11.7)

Теперь пусть точки P1 и P2 верхней полуплоскости лежат на одной вертикаль-
ной прямой и имеют вертикальные координаты y1 и y2, причём пусть y1 > y2 (см.
рисунок).

Рис. 11.4: Точки P1 и P2 на вертикальной прямой
Доказать, что для расстояния d(P1, P2) между точками P1 и P2 в этом случае

справедлива следующая формула:

d(P1, P2) = ln
y1
y2
. (11.8)

Теорема Пифагора в геометрии Лобачевского

Теорема 11.1 (Теорема Пифагора в геометрии Лобачевского). Если a, b – катеты,
c – гипотенуза, то

ch c = ch a ch b. (11.9)

Стороны треугольника – это отрезки прямых в геометрии Лобачевского, то есть
с евклидовой точки зрения это отрезки прямых или дуг окружностей. А углы в гео-
метрии Лобачевского такие же, как и в евклидовой геометрии, потому что метрика
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псевдосферы в декартовых координатах верхней полуплоскости (11.5) конформно-
евклидова.

Рис. 11.5: Пример прямоугольного треугольника
в геометрии Лобачевского

Доказательство:
Сделаем дробно-линейное преобразование, переводящее полуокружность со сто-

роной a в единичную с центром в начале координат, а полуокружность со стороной
b – в вертикальную прямую, проходящую через центр единичной полуокружности
со стороной a (см. рисунок).

Рис. 11.6: Прямоугольный треугольник после преобразования
Тогда координаты вершин треугольника будут иметь следующий вид:

A(0,m); B(cosϕ, sinϕ); C(0, 1),

где m – высота точки A, ϕ – угол поворота точки B на единичной окружности.
Найдём длину стороны b, применяя формулу (11.8):

b = d(A,C) = ln
m

1
= lnm. (11.10)

Найдём длину стороны a, применяя формулу (11.7):

a = d(C,B) = ln
tg
π/2

2

tg
ϕ

2

= ln ctg
ϕ

2
. (11.11)

Найдём ch c, применяя формулу (11.6):

ch c = ch d(A,B) = 1 +
cos2 ϕ+ (m− sinϕ)2

2m sinϕ
=

1 +m2

2m sinϕ
. (11.12)

Теперь посчитаем правую часть доказываемого равенства (11.9), используя най-
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денные выражения (11.11) и (11.10) для a и b соответственно:

ch a ch b =
ea + e−a

2
· e

b + e−b

2
=

ctg
ϕ

2
+ tg

ϕ

2
2

·
m+

1

m
2

=
1 + tg2 ϕ

2

2 tg
ϕ

2

· m
2 + 1

2m
=

=
1

2 cos2
ϕ

2
tg
ϕ

2

· m
2 + 1

2m
=

1

2 sin
ϕ

2
cos

ϕ

2

· m
2 + 1

2m
=

1 +m2

2m sinϕ
. (11.13)

Таким образом, из (11.12) и (11.13) видно, что

ch c = ch a ch b.

�

Кроме этого, в геометрии Лобачевского существуют теоремы косинусов и теорема
синусов (в задачнике они приведены в № 3.24 и № 3.26 (а) соответственно).

Связь углов и площадей треугольников в геометрии
на единичной сфере и в геометрии Лобачевского

Сумма углов треугольника на единичной сфере

Для удобства рассмотрим единичную сферу S2. Чтобы построить треугольник на
сфере, надо сделать три сечения, проходящие через центр сферы, их пересечение
образуем треугольник (см. рисунок).

Рис. 11.7: Треугольник на сфере

Упражнение 11.4. Доказать, что для суммы углов треугольника на единичной
сфере справедлива следующая формула:

α + β + γ = π + S4, (11.14)

где S4 – площадь треугольника на единичной сфере.
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Площадь двуугольника в геометрии Лобачевского

Рассмотрим модель геометрии Лобачевского в верхней полуплоскости.

Определение 11.1. Возьмём три пересекающихся прямых, одна из которых будет
полуокружностью, а две другие – вертикальными прямыми (то есть они пересекутся
на бесконечности). Получившаяся фигура называется двуугольником (см. рисунок).

Рис. 11.8: Двуугольник в геометрии Лобачевского
Таким образом, двуугольник – это треугольник, у которого один из углов равен

0.
Выпишем метрику (11.5):

ds2 =
dx2 + dy2

y2
.

Запишем выражение для площади двуугольника (область обозначим D):

S =

∫∫
D

√
detG dx dy =

∫∫
D

dx dy

y2
. (11.15)

Для простоты будем считать, что полуокружность единичная с центром в начале
координат, так как дробно-линейным преобразованием её можно к такой привести.

Рис. 11.9: Углы для пределов интегрирования
Выразим углы α1 и β1, необходимые для записи пределов интегрирования, через

α и β соответственно:

α2 =
π

2
− (π − α) = α− π

2
; α1 =

π

2
− α2 = π − α;

β2 = π − π

2
− β =

π

2
− β; β1 =

π

2
− β2 = β.
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Посчитаем площадь двуугольника (11.15):

S =

∫∫
D

dx dy

y2
=

cosβ1∫
cosα1

dx

∞∫
√
1−x2

dy

y2
=

cosβ1∫
cosα1

dx√
1− x2

= arcsinx
∣∣∣cosβ
cos(π−α)

=

=
(π

2
− arccosx

) ∣∣∣∣cosβ
cos(π−α)

= −β + π − α = π − (α + β). (11.16)

Площадь треугольника в геометрии Лобачевского

Рассмотрим треугольник общего вида в геометрии Лобачевского. Достроим дву-
угольники как показано на рисунке.

Рис. 11.10: Треугольник и двуугольники
Введём обозначения: S1 – площадь двуугольника, состоящего из красной и фио-

летовой областей, S2 – площадь двуугольника, состоящего из зелёной и оранжевой
областей, S3 – площадь двуугольника состоящего из красной и зелёной областей.
Тогда площадь треугольника с синими сторонами можно выразить через площади
двуугольников следующим образом:

S4 = S1 + S2 − S3. (11.17)

Упражнение 11.5. Используя формулу (11.16) для площади двуугольника в гео-
метрии Лобачевского и выражение (11.17), доказать, что для площади треугольника
в геометрии Лобачевского справедлива следующая формула:

S4 = π − (α + β + γ). (11.18)

Таким образом, как видно из формул (11.18) и (11.14), в геометрии Лобачевского
сумма углов треугольника всегда меньше π, в геометрии на сфере – всегда больше
π. Значит, геометрия на плоскости является промежуточной ситуацией между гео-
метрией Лобачевского и геометрией на сфере, так как на плоскости сумма углов
треугольника всегда равна π.
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Семинар 12

Символы Кристоффеля

Рассмотрим гиперповерхность V в Rn+1. Пусть u1, . . . , un – локальные координа-
ты, m – единичный вектор нормали. Тогда {ru1 , . . . , run ,m} – базис в Rn+1. Разло-
жим вектор ruiuj по этому базису, получим:

ruiuj = Γkijruk + cijm, (12.1)

где Γkij, cij – коэффициенты разложения (в разложении присутствует суммирование
по k).

Определение 12.1. Коэффициенты Γkij называются символами Кристоффеля.

Умножим скалярно разложение (12.1) на нормаль n, получим:

bij = (ruiuj , m) = Γkij(ruk , m) + cij(m,m) = cij.

Отсюда видно, что cij – это элементы второй квадратичной формы.
Можно показать, что символы Кристоффеля Γkij выражаются только через

первую квадратичную форму:

Γkij =
1

2
gkl
(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
, (12.2)

где gkl – элементы обратной матрицы метрики.
Символы Кристоффеля не образуют тензор.

Рассмотрим случай n = 2. Тогда у нас есть репер

rurv
m

. Продифференцируем

этот репер отдельно по u и отдельно по v, затем разложим результаты по базису
{ru, rv,m}, получим:

∂

∂u

rurv
m

 = A1

rurv
m

 ;
∂

∂v

rurv
m

 = A2

rurv
m

 ,

где A1 и A2 – некоторые матрицы, зависящие от точки.
Теперь найдём смешанную производную репера двумя способами:

∂

∂u

 ∂

∂v

rurv
m

 =
∂A2

∂u

rurv
m

+ A2A1

rurv
m

 ;

∂

∂v

 ∂

∂u

rurv
m

 =
∂A1

∂v

rurv
m

+ A1A2

rurv
m

 .
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Так как смешанная репера производная не зависит от порядка дифференцирова-
ния, то получаем следующее соотношение:

∂A2

∂u
+ A2A1 =

∂A1

∂v
+ A1A2;

∂A2

∂u
− ∂A1

∂v
= [A1, A2], (12.3)

где [A1, A2] – коммутатор матриц A1 и A2.
Матрицы A1 и A2 зависят от элементов первой и второй квадратичных форм.
Рассмотрим две произвольные квадратичные формы, одна из которых положи-

тельно определена. В общем случае они не будут задавать некоторую поверхность,
выступая для неё в качестве первой и второй квадратичных форм. Можно показать,
что условие (12.3) является необходимым и достаточным для существования такой
поверхности. Это называется уравнения Гаусса-Петерсона-Кодацци (или Майнар-
ди).
Можно показать, что в силу этих уравнений гауссова кривизна зависит только

от первой квадратичной формы.

Символы Кристоффеля для метрики Лобачевского
в верхней полуплоскости

Выпишем метрику Лобачевского в верхней полуплоскости (11.5) и формулу для
символов Кристоффеля (12.2):

ds2 =
dx2 + dy2

y2
;

Γkij =
1

2
gkl
(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
.

При n = 2 символов Кристоффеля 8 штук (но различных не более 6, так как Γkij =
= Γkji), посчитаем их (в наших обозначениях u1 = x, u2 = y; также будем учитывать,
что матрица метрики и обратная к ней матрица диагональны):

Γ1
11 =

1

2
g11
(
∂g11
∂u1

+
∂g11
∂u1
− ∂g11
∂u1

)
= 0;

Γ1
12 = Γ1

21 =
1

2
g11
(
∂g11
∂u2

+
∂g21
∂u1
− ∂g12
∂u1

)
=

1

2
g11

∂g11
∂u2

=
1

2
y2 ·

(
− 2

y3

)
= −1

y
;

Γ1
22 =

1

2
g11
(
∂g21
∂u2

+
∂g21
∂u2
− ∂g22
∂u1

)
= 0;

Γ2
11 =

1

2
g22
(
∂g12
∂u1

+
∂g12
∂u1
− ∂g11
∂u2

)
= −1

2
g11

∂g11
∂u2

= −1

2
y2 ·

(
− 2

y3

)
=

1

y
;

Γ2
12 = Γ2

21 =
1

2
g22
(
∂g12
∂u2

+
∂g22
∂u1
− ∂g12
∂u2

)
= 0;

Γ2
22 =

1

2
g22
(
∂g22
∂u2

+
∂g22
∂u2
− ∂g22
∂u2

)
=

1

2
g22

∂g22
∂u2

=
1

2
y2 ·

(
− 2

y3

)
= −1

y
.
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Геодезические на поверхности

Определение 12.2. Геодезическая на поверхности – это такая кривая, у которой
её главная нормаль во всех точках совпадает с нормалью к поверхности.

Приведём примеры.
1) На круге геодезическими являются большие круги.
2) На цилиндре геодезическими являются его образующие и винтовые линии.
3) На произвольной поверхности вращения геодезическими являются меридианы,

а параллели в общем случае не являются геодезическими. Параллель будет геоде-
зической в том случае, когда она проходит через точку минимума или максимума
функции, которая вращением образует поверхность.

Смысл геодезических в том, что это аналоги прямых на поверхности, то есть
геодезические являются локально кратчайшими.

Пусть γ – натурально параметризованная кривая на поверхности V . Тогда

dγ

dt
= ruiu̇

i;

d2γ

dt2
= ruiuj u̇

iu̇j + ruiü
i =

(
Γkijruk + bijm

)
u̇iu̇j + ruk ü

k. (12.4)

Так как параметризация натуральная, то
d2γ

dt2
‖ n, где n – вектор главной норма-

ли. Значит, если γ – геодезическая, то
d2γ

dt2
‖ m, где m – вектор нормали к поверх-

ности, то есть в разложении (12.4) касательная составляющая равна 0:

ük + Γkiju̇
iu̇j = 0 ∀k = 1, . . . , n. (12.5)

Это называется уравнение геодезических. Натурально параметризованная кривая
является геодезической на поверхности тогда и только тогда, когда выполнено усло-
вие (12.5).

Уравнение (12.5) является дифференциальным уравнением второго порядка. Зна-
чит, при условии достаточной гладкости для того, чтобы поставить задачу Коши,
необходимо знать точку и направление (производную), тогда задача Коши решает-
ся однозначно. Геометрически это значит, что через любую точку на поверхности в
заданном направлении проходит единственная геодезическая.

Так как символы Кристоффеля зависят только от метрики, то из уравнения гео-
дезических (12.5) получаем, что и геодезические зависят только от метрики.

Геодезические для метрики Лобачевского
в верхней полуплоскости

Выпишем ненулевые символы Кристоффеля для метрики Лобачевского:

Γ1
12 = Γ1

21 = −1

y
; Γ2

11 =
1

y
; Γ2

22 = −1

y
.
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Выпишем уравнения геодезических:

ẍ+ Γ1
12ẋẏ + Γ1

21ẋẏ = 0; ẍ =
2

y
ẋẏ; (12.6)

ÿ + Γ2
11ẋ

2 + Γ2
22ẏ

2 = 0; ÿ = − ẋ
2

y
+
ẏ2

y
. (12.7)

Если ẋ = 0, то


ẍ = 0

ÿ =
ẏ2

y

. Понятно, что такая система имеет решение. Значит,

x = const – геодезическая.
Если ẋ 6= 0, то будем считать, что y = y(x), тогда получаем:

dy

dx
=
ẏ

ẋ
d2y

dx2
=

d

dx

(
ẏ

ẋ

)
=

d

dt

(
ẏ

ẋ

)
· dt
dx

=

(
ÿ

ẋ
− ẏẍ

ẋ2

)
· 1

ẋ
=

ÿ

ẋ2
− ẏẍ

ẋ3
. (12.8)

Подставим (12.6) и (12.7) в (12.8), получим:

d2y

dx2
=

1

ẋ2
·
(
− ẋ

2

y
+
ẏ2

y

)
− ẏ

ẋ3
· 2

y
ẋẏ = −1

y
+

ẏ2

ẋ2y
− 2ẏ2

ẋ2y
= −1

y
− ẏ2

ẋ2y
=

= −1

y

(
1 +

ẏ2

ẋ2

)
= −1

y

(
1 + y′2

)
. (12.9)

Домножим (12.9) на y и перенесём все слагаемые в одну сторону, получим:

yy′′ + y′2 + 1 = 0;

(yy′)′ + 1 = 0;

yy′ = −x+ C1;

y2

2
= −x

2

2
+ C1x+ C2;

y2 = −x2 + 2C1x+ 2C2 = −(x− C1)
2 + C2

1 + 2C2 = −(x− C1)
2 + C3;

y2 + (x− C1)
2 = C3.

Получили уравнение окружности с центром на оси x, но в верхней полуплоскости
это будут только полуокружности с центром на оси x.

Таким образом, в метрике Лобачевского в верхней полуплоскости геодезическими
являются вертикальные прямые и полуокружности, перпендикулярные абсолюту.
А это и есть прямые в модели Лобачевского в верхней полуплоскости.

Если взять двумерную сферу S2, записать на ней метрику, посчитать символы
Кристоффеля, записать и решить уравнения геодезических, то в качестве решений
получатся в точности большие круги.
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Геодезическая кривизна

Определение 12.3. Рассмотрим гиперповерхность V n в Rn+1 и натурально пара-
метризованную кривую γ на ней. Тогда

d2γ

dt2
= kn

называется вектором кривизны, где n – главная нормаль к кривой.

Разложим вектор кривизны следующим образом:

d2γ

dt2
= kn = kg + kn, (12.10)

где вектор kg – касательная составляющая (то есть лежит в касательной плоскости
к поверхности), а вектор kn – нормальная составляющая (то есть направлен вдоль
нормали к поверхности).

Определение 12.4. |kg| – геодезическая кривизна кривой.

Пусть m – вектор единичной нормали к поверхности. Умножим скалярно (12.10)
на m, получим:

Q

(
dγ

dt

)
=

(
d2γ

dt2
, m

)
= |kn|(m,m) = |kn|.

Таким образом, величина |kn| равна кривизне нормального сечения в направлении
dγ

dt
.

Если γ – геодезическая, то
d2γ

dt2
‖ m, значит, |kg| = 0.

Можно показать, что геодезическая кривизна не зависит от вложения поверх-
ности в пространство, то есть при деформировании поверхности будет меняться
только нормальная кривизна кривой, а геодезическая кривизна будет оставаться
неизменной.

Выпишем полученное ранее выражение (12.4):

d2γ

dt2
=
(
Γkijruk + bijm

)
u̇iu̇j + ruk ü

k =
(
Γkiju̇

iu̇j + ük
)
ruk + biju̇

iu̇jm.

Отсюда видно, что касательной составляющей вектора кривизны является слагае-
мое с вектором ruk :

kg =
(
Γkiju̇

iu̇j + ük
)
ruk .

Найдём геодезическую кривизну:

|kg| =
√

(kg, kg) =
√
gkl
(
Γkiju̇

iu̇j + ük
) (

Γlpqu̇
pu̇q + ül

)
. (12.11)

При использовании формулы (12.11) важно помнить, что кривая должна быть
натурально параметризованной.
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Семинар 13

Решение задач

Геодезическая кривизна линии на геликоиде

Задача 13.23 (№ 11.36). Вычислить геодезическую кривизну линии u = sh v, где

0 ≤ v ≤ v0, на геликоиде


x = u cos v

y = u sin v

z = v

.

Решение:
На прошлом семинаре мы вывели формулу (12.11) для геодезической кривизны:

|kg| =
√
gkl
(
Γkiju̇

iu̇j + ük
) (

Γlpqu̇
pu̇q + ül

)
.

Посчитаем метрику для геликоида:

ru = (cos v, sin v, 0);

rv = (−u sin v, u cos v, 1);

G =

(
1 0
0 u2 + 1

)
.

Выпишем ненулевые символы Кристоффеля для геликоида:

Γ1
22 = −u; Γ2

12 = Γ2
21 =

u

u2 + 1
.

Введём на кривой u = sh v натуральный параметр:

s =

v∫
0

|r′| dv =

v∫
0

|(ch v, 1)| dv =○

(
ch v 1

)(1 0
0 u2 + 1

)(
ch v

1

)
= ch2 v + u2 + 1 = ch2 v + sh2 v + 1 = 2 ch2 v

=○
v∫

0

√
2 ch v dv =

√
2 sh v.

Таким образом, получаем зависимость u = u(s) в натуральной параметризации:
u = sh v =

s√
2
. Найдём производные u и v по натуральному параметру:

u̇ =
1√
2

; ü = 0;

v̇ = v′u · u̇ =
u̇

u′v
=

1√
2 ch v

=
1√

2(sh2 v + 1)
=

1√
s2 + 2

;

v̈ = −1

2
· 1

(s2 + 2)
3
2

· 2s = − s

(s2 + 2)
3
2

.
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Пересчитаем производные u и v по натуральному параметру в координатах u и
v, чтобы геодезическая кривизна получилась в естественных координатах поверх-
ности:

u̇ =
1√
2

; ü = 0; (13.1)

v̇ =
1√
s2 + 2

=
1√

2 sh2 v + 2
=

1√
2 ch v

; (13.2)

v̈ = − s

(s2 + 2)
3
2

= −
√

2 sh v

(2 sh2 v + 2)
3
2

= −
√

2 sh v

2
√

2 ch3 v
= − sh v

2 ch3 v
. (13.3)

Теперь посчитаем геодезическую кривизну (учитываем, что в наших обозначени-
ях u1 = u, u2 = v, а также, что метрика диагональна):

|kg| =
√
gkl
(
Γkiju̇

iu̇j + ük
) (

Γlpqu̇
pu̇q + ül

)
=

=

√
1 · (−uv̇2 + ü)2 + (u2 + 1)

(
2u

u2 + 1
u̇v̇ + v̈

)2

=

=

√
sh2 v

4 ch4 v
+ ch2 v ·

(
sh v

ch3 v
− sh v

2 ch3 v

)2

=

√
sh2 v

4 ch4 v
+

sh2 v

4 ch4 v
=
| sh v|√
2 ch2 v

.

Так как по условию 0 ≤ v ≤ v0, то | sh v| = sh v, поэтому получаем:

|kg| =
sh v√
2 ch2 v

.

Геодезическая кривизна параллели основания конуса

Рассмотрим конус с радиусом основания r и углом ϕ между высотой и образую-
щей. Найдём геодезическую кривизну параллели основания этого конуса. Решать
эту задачу через формулу с символами Кристоффеля нерационально. Лучше дей-
ствовать по определению.

Разложим вектор кривизны на касательную и нормальную составляющие:

kn = kg + kn,

где |kg| – геодезическая кривизна.
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Рис. 13.1: Построения для расчёта
геодезической кривизны параллели основания конуса

Из рисунка видно, что

|kg| = k cos
(π

2
− ϕ

)
= k sinϕ =

sinϕ

r
,

так как кривизна окружности k с радиусом r равна
1

r
.

Аналогичным образом можно посчитать, например, геодезическую кривизну па-
раллели на сфере или вообще на поверхности вращения.

Параллельный перенос на поверхности

Определение параллельного переноса на поверхности

Если на плоскости мы осуществляем параллельный перенос вектора ξ вдоль кри-

вой γ(t), то по сути мы строим векторное поле ξ(t) такое, что
dξ

dt
= 0 (см. рисунок).

Рис. 13.2: Параллельный перенос вектора на плоскости вдоль кривой
Теперь рассмотрим поверхность V и кривую γ на ней. Пусть ξ(t) ∈ Tγ(t)V – поле

касательных векторов к поверхности на кривой γ (см. рисунок).
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Рис. 13.3: Поле касательных векторов к поверхности на кривой

Если потребовать выполнения условия
dξ

dt
= 0, то вектор ξ выйдет из касательной

плоскости.

Определение 13.1. Параллельный перенос вектора ξ на поверхности V вдоль кри-
вой γ – это такой перенос вектора ξ вдоль кривой γ, для которого выполняется

условие prTγ(t)V

∣∣∣∣dξdt
∣∣∣∣ ≡ 0.

Пусть на поверхности V расположены две кривые γ1 и γ2 с общими началом и
концом. Пусть в начале этих кривых задан некоторый вектор. Если осуществить
его параллельный перенос вдоль кривой γ1 и параллельный перенос вдоль кривой
γ2, то в конце этих кривых, вообще говоря, мы получим разные векторы. Таким
образом, результат параллельного переноса вектора на поверхности существенным
образом зависит от кривой, вдоль которой происходит перенос.

Можно показать, что параллельный перенос вектора на поверхности не меняет
длину вектора.

Параллельный перенос на конусе

Рассмотрим конус с углом ϕ между высотой и образующей. Пусть на паралле-
ли с радиусом r в некоторой точке задан вектор, направленный вдоль образующей
конуса к его вершине. Выполним параллельный перенос этого вектора вдоль па-
раллели на полный оборот вокруг конуса, то есть на угол 2π. Хотим найти угол θ,
на который повернётся вектор при таком параллельном переносе, когда вернётся в
начальную точку на параллели.

Разрежем конус вдоль образующей и развернём его боковую поверхность, полу-
чим круговой сектор с радиусом, равным длине участка образующей от вершины
до параллели: l =

r

sinϕ
(см. рисунок).

Рис. 13.4: Развёртка конуса
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Длина дуги кругового сектора равна длине окружности параллели на конусе:

(2π − θ)l = 2πr; (2π − θ) r

sinϕ
= 2πr;

2π − θ = 2π sinϕ; θ = 2π(1− sinϕ). (13.4)

Заметим, что при стремлении конуса к плоскости ϕ→ π

2
и θ → 0.

Независимость параллельного переноса от выбора поверхности

Если две поверхности касаются по кривой, то касательные плоскости вдоль кри-
вой касания у них одинаковые. Значит, результат параллельного переноса не зави-
сит от выбора поверхности.
В качестве примера рассмотрим на сфере параллель с географической широтой θ.

В некоторой точке на этой параллели выберем касательный вектор в направлении
севера. Выполним параллельный перенос этого вектора по параллели на полный
оборот. Хотим узнать, на какой угол ψ повернётся этот вектор, когда вернётся в
начальную точку на параллели сферы.
Наденем на сферу конус так, чтобы он касался сферы по рассматриваемой па-

раллели (см. рисунок).

Рис. 13.5: Конус на сфере
Из рисунка видно, что угол между высотой и образующей конуса равен геогра-

фической широте θ, тогда, применяя формулу (13.4), получаем:

ψ = 2π(1− sin θ).

Аналогично можно решать подобные задачи с поверхностями вращения.
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Уравнение параллельного переноса

Пусть ξ(t) – касательное векторное поле вдоль кривой. Разложим его по базису
в касательной плоскости: ξ = ξirui . Продифференцируем это разложение:

dξ

dt
= ξ̇irui + ξiruiuj u̇

j = ξ̇irui + (Γkijruk + bijm)ξiu̇j.

Так как касательная составляющая вектора
dξ

dt
должна быть равна 0, то получа-

ем:
ξ̇kruk + Γkijrukξ

iu̇j = 0.

Касательный вектор равен 0 тогда и только тогда, когда все его координаты
равны 0, поэтому получаем:

ξ̇k + Γkijξ
iu̇j = 0 ∀k = 1, . . . , n. (13.5)

Таким образом, мы получили уравнение параллельного переноса.
Сделаем выводы.
1) Так как уравнение параллельного переноса (13.5) является уравнением первого

порядка, то при задании начальных условий (то есть начального вектора и кривой)
процедура параллельного переноса однозначно определена для любой кривой.

2) Процедура параллельного переноса зависит только от внутренней геометрии
поверхности, так как символы Кристоффеля зависят только от метрики (это оправ-
дывает процедуру разрезания конуса).

3) Если в качестве кривой γ, вдоль которой осуществляется параллельный пе-
ренос, взять натурально параметризованную геодезическую, а в качестве перено-
симого вектора ξ взять вектор скорости этой геодезической γ̇, то из уравнения
параллельного переноса (13.5) получается уравнение геодезических (12.5). Значит,
поле скоростей геодезической является параллельным вдоль геодезической. Можно
показать, что и поле векторов, имеющих постоянный угол с геодезической, тоже
будет параллельным.

Параллельный перенос в метрике Лобачевского в верхней полуплоскости

Выпишем метрику Лобачевского в верхней полуплоскости (11.5):

ds2 =
dx2 + dy2

y2
.

Выпишем ненулевые символы Кристоффеля для метрики Лобачевского в верхней
полуплоскости:

Γ1
12 = Γ1

21 = −1

y
; Γ2

11 =
1

y
; Γ2

22 = −1

y
.
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Запишем уравнения параллельного переноса (13.5) (в наших обозначениях u1 =
= x, u2 = y): {

ξ̇1 + Γ1
12ξ

1ẏ + Γ1
21ξ

2ẋ = 0

ξ̇2 + Γ2
11ξ

1ẋ+ Γ2
22ξ

2ẏ = 0
;

ξ̇1 − ξ1 ẏ
y
− ξ2 ẋ

y
= 0

ξ̇2 + ξ1
ẋ

y
− ξ2 ẏ

y
= 0

.

Теперь будем рассматривать конкретные кривые, чтобы узнать, как будет пово-
рачиваться вектор ξ при параллельном переносе вдоль них.

Рассмотрим геодезическую

{
x = x0

y = t
:


ξ̇1 − ξ1

t
= 0

ξ̇2 − ξ2

t
= 0

;


dξ1

ξ1
=
dt

t

dξ2

ξ2
=
dt

t

;

{
ξ1 = C1t

ξ2 = C2t
.

Заметим, что при увеличении t полученный вектор ξ остаётся параллельным себе
и удлиняется с евклидовой точки зрения, но в метрике Лобачевского его длина не
меняется.

Теперь рассмотрим кривую

{
x = t

y = y0
:


ξ̇1 − ξ2

y0
= 0

ξ̇2 +
ξ1

y0
= 0

;

ξ̈1 − ξ̇2

y0
= 0; ξ̈1 +

ξ1

y20
= 0; ξ1 = C1 cos

t

y0
+ C2 sin

t

y0
;

ξ̇2 = −ξ
1

y0
= −C1

y0
cos

t

y0
− C2

y0
sin

t

y0
; ξ2 = −C1 sin

t

y0
+ C2 cos

t

y0
.

Выразим константы C1 и C2 через начальные условия:{
C1 = ξ1(0)

C2 = ξ2(0)
.

Тогда вектор ξ можно записать в матричном виде следующим образом:(
ξ1(t)

ξ2(t)

)
=

 cos
t

y0
sin

t

y0

− sin
t

y0
cos

t

y0


(
ξ1(0)

ξ2(0)

)
.

Таким образом, при параллельном переносе вдоль прямой y = y0 вектор ξ вращается 
с постоянной скоростью.
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