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Лекция 1. Тензоры. Тензорные поля. Операции над 

тензорами 

Рассмотрим гладкое многообразие n
M  (рисунок 1), на нем – точку x  и локальные 

координаты вокруг этой точки  1, , nx x… . Для нашего курса достаточно будет 

считать, что многообразие n
M  реализовано в виде гладкой поверхности в некотором 

конечномерном евклидовом пространстве nℝ . 

 
Рисунок 1 

Приведем примеры тензоров. 

1. Вектор (векторное поле). 

Зададим в точке x  на многообразии вектор  a x , лежащий в  касательном 

пространстве n

xT M . 

 
 1, , n

x
a a a …  – вектор a  в системе координат x  

Сделаем замену координат 

   x x  

Тогда в новой системе координат 

 ia a
  

Напомним из предыдущего курса, что координаты вектора a  преобразуются 
следующим образом: 

1

in
i i

i
i

x
a a

x









  

Условимся в случае, когда индекс вверху и внизу повторяется, опускать знак суммы и 
писать 

i
i i

i

x
a a

x


 


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Как видно, возникает матрица 

i
i

i

x
A a

x

 
   

, 

т.н. матрица Якоби. 

Будем в дальнейшем говорить, что у этого тензорного поля тип  1,0 , т.е. что у него 

есть один верхний индекс, а нижнего индекса нет. Также договоримся, что верхние 
индексы преобразуются при помощи матрицы Якоби A . 

2.1. Рассмотрим на многообразии M  гладкую функцию  f x  класса  C 1  и ее 

градиент 

grad ii

f
f

x


 
   

 

Проведем регулярную2 замену координат 

   x x  

Тогда в новой системе координат получим 

i i

i ii i i i

f x f x

x x x x
    

   
  
   

 

Мы видим, что связь между старыми координатами и новыми задается матрицей 

 1
i

T

i

x
A

x




 
   

 

Таким образом, в примерах 1 и 2 закон преобразования компонент, вообще говоря, 
различается, т.к. 

 1 T

A A   

В дальнейшем будем говорить, что градиент дает нам пример тензорного поля типа 

 0,1 . Нижний индекс при этом указывает на то, что он преобразуется при помощи 

матрицы  1 T

A . 

                                                 
1 У функции существуют непрерывные производные всех сколь угодно больших порядков. 
2 det 0A    
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2.2. Ковекторы3. 

Рассмотрим многообразие nM  и рассмотрим в точке x  всевозможные линейные 

функции, заданные на n

xT M . Обозначим   * n

xT M   –  кокасательное пространство. 

При переходе 

   x x  

справедливы равенства: 

 
 

 
 

i i

i i

x x

a a a a    




    

   
i i

i i i

i i i i ii i

x x
a a a

x x
     

  

 
   

 
 

Как видно, преобразование координат здесь такое же, как и для градиента. 

Итак, ковекторы – тензоры типа  0,1 , преобразуемые по закону, отличному от закона 

преобразования векторов. 

Отметим, что касательное и кокасательное пространства имеют одинаковую 
размерность, а значит их можно отождествить при помощи линейного изоморфизма: 

*n n

x xT M T M


 , 

однако это отождествление работает только в фиксированной системе координат – при 
переходе к другой системе координат приведенное соответствие разрушится. 

3. Пусть nV  –  произвольное линейное пространство и пусть задан линейный оператор 

 

 

:  

0 0

n n

i

j n n

C V V

C

C c








 

При переходе 

   x x  

оператор приобретет матрицу C , связанную, как мы знаем из линейной алгебры, 
соотношением 

1C ACA  , 

                                                 
3 Приставка ко- указывает на двойственность векторам. 



 

 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И ТОПОЛОГИЯ 
 ФОМЕНКО АНАТОЛИЙ ТИМОФЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                          
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                      

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

10 
 
 

 

где A  – матрица Якоби. 

В координатах эта запись имеет вид 

i j
i i

j ji j

x x
c c

x x



 

 

 

 

Тензоры здесь типа  1,1 , т.к. индексы преобразуются при помощи матриц A  и  1 T

A . 

4. Рассмотрим билинейную форму  ,Q a b , на произвольных векторах , n

xa b T M . 

 , i j

i j
Q a b q a b  

   x x  

i j

i j i ji j

x x
q q

x x
   

 

 

 

   1 1T

Q A Q A    

Таким образом, тензоры в этом примере типа  0,2 . 

5. Рассмотрим билинейную форму  ,D   , на произвольных ковекторах *, n

xT M  . 

 , i j i jD d     

   x x  

i j
i j i j

i j

x x
d d

x x

 
   

 

 

TD ADA   

Тензоры – типа  2,0 . 

Общее определение тензорного поля на гладком многообразии 

Пусть nM  –  гладкое многообразие размерности n. 

Определение. Тензорным полем типа  ,p q  и ранга p q  называется объект, 

который задается в каждой регулярной гладкой системе координат  x  набором 
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функций, обозначенных 1

1

, ,

, ,
p

q

i i

j jT
…

… , со свойством, что при замене координат    x x  

эти функции преобразуются по следующему закону: 

   

1 1
1 1

1 11 1

, , , ,

, , , ,

p q

p p

q qp q

i ji j
i i i i

j j j ji ji j

x x

x x x x
T T

x xx x


 
  


   
  
  

… …

… …⋯ ⋯  (*) 

Замечание. Примеры 1–5 есть частные случаи этого определения. 

Простейшие свойства закона преобразования (*) 

Договоримся, для начала, использовать сокращенную запись (*): 

I J
I I

J JI J

x x
T T

x x



 

 
  
 

 

Утверждение 1. Закон (*) обратим, причем 

I J
I I

J JI J

x x
T T

x x





 
  
 

 

Доказательство вытекает из того, что 

1AA E id    

Запишем это равенство в координатах: 

i i
i

ki k

x x

x x






 
 

 
 

Умножая соотношение (*) на элементы обратной матрицы, получаем 
вышеприведенную формулу. 

Утверждение 2 (правило композиции для тензорных полей).  

Пусть дано тензорное поле T  типа  ,p q . Рассмотрим систему координат  x  и 

переходы  

     x y x   

     x z x   

Утверждается, что результат не зависит от выбора промежуточной системы координат. 

Доказательство вытекает из правил дифференцирования сложных функций: 

i i i

i i i

x x y x z

x y x z x

 

 

      
 

    
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Тензорное поле как полилинейное отображение 

Пусть задано тензорное поле T  типа  ,p q . Рассмотрим его как полилинейное 

отображение:  

   1 1 1

1

, ,1
1 , , 1 1, , ; , , p q p

q

i i j ij ip

q j j q pT a a T x           …

…… … … … , 

где 1 *
1, , ,   , ,n p n

q x xa a T M T M  … … . 

В действительности это отображение 

  * *:    x x x x

q p

T T T T T C M     … … ℝ
����� �����

 

Базис в пространстве тензоров типа (p, q) 

           1 11 1 1

1 1 1

, , , , 1
, , 1 1 , , 1

p q p p q

q q p

i i j i i i jj i j p

j j q p j j q i iT x T x e a e a e e                  … …

… …… … … …  

  1 1

1 1 1

, , 1
, , 1, , ; , ,p q

q

i i jj p

j j i i qT e e e e a a       …

… … … … …  

Таким образом, мы разложили тензорное поле по базису, т.е. представили в виде 

тензорного произведения элементарных функционалов типов  1,0  или  0,1 . В 

фиксированной точке размерность тензора – p qn  . 

Примеры тензорных полей в физике, механике 

 
Рисунок 2 

1. Тензор малых деформаций сплошной среды. 

Пусть в трехмерном (в общем случае – n-мерном) пространстве задана сплошная среда 
(жидкость, газ и т.д.) и некоторая малая деформация  U x  в точке x  (рисунок 2). 

Таким образом, вектор  U x  смещает точку x  в точку  x U x .  

Аналогично близкая точка xɶ  смещается в точку  x U xɶ ɶ .  



 

 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И ТОПОЛОГИЯ 
 ФОМЕНКО АНАТОЛИЙ ТИМОФЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                          
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                      

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

13 
 
 

 

Рассмотрим попарные евклидовы расстояния l  и 
*

l между точками. 

Используя декартовы координаты, найдем в явном виде 
*

l : 

         *

2
2 2 2

1 1

in n
i i i i i i i k

k
i i

u
l x u x x u x x u x x x

x 

 
                

  ɶ ɶ …  

 
 

 
2

2 2

1 , ,

2
i i kn

i i k i k

k k i
i i k i k

l

u u u
x x x l x x

x x x



   
                 
  … …

�����

 

Итак, мы получили, что 

     
* 2 2

,

i k

ik

i k

l l x x x       …  

 
i k

ik k i

u u
x

x x


  
    

 –  тензор малой деформации типа  0,2 . 

2. Тензор напряжений сплошной среды. 

Пусть в трехмерном (в общем случае – n-мерном) пространстве задана сплошная среда 
(жидкость, газ и т.д.) и пусть она подвергнута малой деформации, т.е. задан тензор  

 ij x  

В этом случае в материале возникает напряжение. Как его оценить? 

Возьмем произвольную точку x  и рассмотрим бесконечно малую двумерную 

площадку d , а также нормаль  n x  к ней и малый объем среды вокруг нее (рисунок 

3). Возникает некоторая сила, показывающая, как левый и правый фрагмент среды 
давят друг на друга (рисунок 4). 

 

                                                  Рисунок 3                       Рисунок 4 

Для малых деформаций можно считать, что векторы  F x  и  n x  связаны 

следующим образом: 

   F x P n d  , 
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где  P n  –  линейный оператор, называемый тензором напряжения сплошной среды. 

То же самое в координатах: 

i i j

jF P n d   

Определение. Сплошная среда называется изотропной, если тензор напряжения – 
шаровой, т.е.  

 i i

j jP p x  , 

где   – символ Кронекера4,  p x  –  давление в точке x  данной среды, 

и анизотропной в противном случае. 

Для изотропной среды тензор напряжения имеет вид 

    i i j i

j
F n p x d n p x d     

Связь между тензором малой деформации и напряжения. Закон Гука5 

Пусть в 3ℝ  задана сплошная среда, подвергнутая деформации. Тогда, как мы 

выяснили, возникают два тензора – i

jP  и ij . Закон Гука об их связи имеет вид: 
i ik l

j j k l
P    , 

где ik l

j  –  тензорное поле типа  3,1  и ранга 4. 

Теорема. Пусть закон Гука инвариантен по отношению к ортогональному вращению 

 SO 3 . Тогда он записывается как 

 λ Trij ij ijP         , 

где   и λ  называются коэффициентами Ламе6. 

Основные операции над тензорными полями 

1. Сумма 

Лемма. Сумма тензорных полей одного типа есть тензорное поле того же типа.  

                                                 
4 Леопо́льд Кро́некер (нем. Leopold Kronecker; 1823 — 1891) — немецкий математик. Основные труды по 
алгебре и теории чисел, где он продолжил работы своего учителя Э. Куммера по теории квадратичных 
форм и теории групп. Большое значение имеют его исследования по арифметической теории 
алгебраических величин. 
5 Ро́берт Гук (англ. Robert Hooke; 1635 — 1703) — английский естествоиспытатель и изобретатель. Член 
Лондонского королевского общества, один из отцов-создателей экспериментальной физики. 
6 Габрие́ль Ламе́ (фр. Gabriel Lamé; 1795 — 1870) — французский математик, механик, физик и инженер. 
Основные труды по математической физике и теории упругости. 
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Утверждение очевидно из закона преобразования (*). 

2. Умножение на функцию 

Лемма. Пусть T  –  тензорное поле произвольного типа,  f x  –  некоторая гладкая 

функция. Тогда произведение  T f x  есть тензорное поле того же типа. 

Утверждение также очевидно из закона преобразования (*). 

3. Перестановка индексов 

Лемма. Перестановка индексов одного типа является тензорной операцией. 

Доказательство: рассмотрим тензорное поле  ijQ q  типа  0,2 . 

При перестановке индексов  

TQ Q  

Является ли эта операция тензорной? 

 

T

x

D Q  

   x x  

   
? TTT T T T TADA D Q AQA AQ A ADA       

Как видно, мы получили тождество, а значит и доказали, что эта операция тензорная. 

Аналогично проверяется, что перестановка двух верхних индексов – операция 
тензорная. 

Покажем теперь, что перестановка индексов разного типа, вообще говоря, не является 
тензорной операцией. 

Возьмем линейный оператор  i

jC c , который, как мы знаем, является тензорным 

полем типа  1,1 . 

 

T

x
D C  

   x x  

       
?

1 1 1 1T T TT T T TADA D C ACA A C A A DA          

Домножив крайние члены равенства слева на TA  и справа на A , получим, что 
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   T TA A D D A A  

В общем случае матрицы  TA A  и D  не коммутируют между собой, а значит 

тождество не выполняется.  
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Лекция 2. Алгебраические операции над тензорами. Понятие 

объема на римановых многообразиях 

4. Умножение тензорных полей 

Теорема. Умножение тензорных полей – тензорная операция. 

     ,, ,

i s i s

j t j t
s tp q p s q t

T P Q
 

   

Это утверждение очевидным образом вытекает из формулы (*). 

5. Свертка 

Рассмотрим произвольное тензорное поле типа  ,p q  и выберем произвольные 

индексы i  и j : 

1

1

p

q

i i i

j j jT 



… …

… …  

Сложим компоненты с одинаковыми индексами: 

1

1

p

q

i t i

j t j

t

T … …

… …  

Теорема. Эта операция, называемая сверткой, – тензорная операция. 

Рассмотрим простейший случай тензорного поля типа  1,1  – i

jC .  

Операция свертки в этом случае означает  

Tri

iC C  

   
A

x x  

1С ACA   

Из алгебры мы знаем, что 

   1Tr Tr TrС ACA С    

Таким образом, при замене координат след матрицы остается неизменным, значит, 
операция тензорная. 

Отметим, что после применения свертки тензорное поле стало иметь вид 

1 1 1 1

1 1 1 1

p p

q q

i i i i i t i

j j j j j t j

t

P T 

 

 

 
… … … …

… … … …  

5.1. Инвариантность свертки. 
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Рассмотрим два тензорных поля T  и P  произвольного типа и их инварианты. 

Утверждение. Если для двух тензорных полей T  и P  нашлись два их различных 
инварианта (например, полученные сверткой), то не существует замены координат, 
переводящей поле T в поле P . 

Обратное утверждение не обязательно верно. 

5.2. Свертка зависит, вообще говоря, от порядка индексов. 

Рассмотрим тензорное поле 

ij i j

st s tT A B   

Свернем его по двум разным парам индексов: сначала по i  и t , затем по j  и s . 

 Tri j i j

s t s iA B A B AB     

   Tr Tri j

s tA B A B    

Таким образом, мы получили разные свертки, т.к. в общем случае след произведения не 
равен произведению следов. 

6. Поднятие и опускание индексов у тензорного поля 

Возьмем тензорное поле произвольного вида 

1

1

p

q

i i

j jT
…

…  

и невырожденное тензорное поле типа  0,2  

 ijg x  

Тогда операция  

1 2

1 1 1

,p p

q q

i i i i

i j j j jg T P  … …

… …  

называется опусканием индекса. 

Теорема. Эта операция тензорная. 

Доказательство: эта операция есть композиция двух предыдущих операций (умножения 
и свертки), которые были тензорными. 

В результате тип тензора преобразуется следующим образом: 

   , 1, 1p q p q    

Аналогично определяется операция поднятия индекса: 
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1 11

1 2

,p p

q q

i i i ij

j j j jg T Q
  … …

… …  

   , 1, 1p q p q    

Теорема. Эта операция также тензорная. 

Зададим, например, евклидову метрику в пространстве nℝ . Тогда поле будет иметь вид 

ij ijg   

По определению опускания индекса 

2 1 2

1 1 1 1

, ,p p p

q q q

i i i i i i

j j i j j j jT g T P


   … … …

… … …  

Лемма. При наличии евклидовой метрики ij ijg   между верхними и нижними 

индексами нет разницы – писать их можно где угодно. Их закон преобразования 
одинаков. 

Утверждение. Пусть дано многообразие nM  и пусть на нем задана риманова метрика 

 ijg x . Рассмотрим касательное и кокасательное пространства *
nT M  и  * nT M . Тогда 

существует каноническое отождествление векторов и ковекторов, т.е. инвариантное по 
отношению к замене координат. 

Доказательство: отметим для начала, что каноническое отождествление этих 

пространств без задания метрики  ijg x  невозможно. 

Введем два отображения: 

*
*

*
*

:  

:  

 

 

T T

T T





 



 

:  

:  

i

ij j

ij j

i

g a

g b

 

 

 



 

Теорема. Отображения   и   –  линейные изоморфизмы. 

Доказательство: i ji ji k i k i

j kj kb g g g a a a      

Таким образом, мы показали, что сквозное отображение тождественно. В обратную 
сторону показывается аналогично. 

Пример. Пусть дано многообразие nM  с заданной на нем метрикой  ijg x  и пусть 

задана гладкая функция  f x . Рассмотрим градиент: 
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grad
i

f
f

x

    
 

Как обсуждалось ранее, это ковектор. Изготовим из него при помощи метрики вектор: 

i ij

j

f
V g

x





 

Итак, при наличии метрики градиент можно интерпретировать как векторное поле. 

7. Симметрирование. 

Определение. Тензорное поле T  с индексами одного типа называется симметричным, 
если его компоненты не меняются при произвольной перестановке индексов одного 
типа. 

Комментарий. Достаточно потребовать, чтобы это было верно для любой пары 
соседних индексов. Это следует из того, что в группе перестановок элементарные 
перестановки (меняющие местами соседние индексы) – это образующие группы. 

Симметрированием произвольного тензорного поля называется 

   1 1

1

!k ki i i i
T T

k




 … …
, 

где kS   –  произвольная перестановка. 

Утверждение. Симметрирование – операция тензорная. 

8. Альтернирование. 

Определение. Тензорное поле T  с индексами одного типа называется 
кососимметричным, если перестановка любых двух соседних индексов меняет знак 
компоненты. То есть, компоненты сохраняют знак при любой четной перестановке и 
меняют – при любой нечетной. 

Альтернированием произвольного тензорного поля называется 

     1 1

1
1

!k ki i i i
T T

k






 … …
, 

где kS   –  произвольная перестановка. 

Теорема.  

а) Операция симметрирования сохраняет симметричное поле, а кососимметричное – 
обращает в ноль. 

б) Операция альтернирования сохраняет кососимметричное поле, а симметричное – 
обращает в ноль. 
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Доказательство очевидно. 

Что такое симметричный или кососимметричный линейный оператор? 

Возьмем оператор i

jA . Естественно предположить, что у симметричного оператора 

матрица A  должна быть симметричной, т.е. 

i j

j iA A  

Однако так определять оператор нельзя, т.к. операция транспонирования, вообще 
говоря, не тензорная. 

Утверждение. При наличии римановой метрики понятие симметричного 
(кососимметричного) линейного оператора корректно определено. 

Доказательство: пусть дано многообразие nM  с римановой метрикой ijg . 

Определение. Линейный оператор A называется симметричным по отношению к 
данной метрике ijg , если  

,   , ,xa b T M Aa b a Ab   , 

где , i j

ija b g a b  –  скалярное произведение к данной форме. 

Распишем это равенство в координатах: 

   i ji k j j i j i k

ij k ij ij ij kg A a b g Aa b g a Ab g A a b    

Сделаем перенумерацию индексов 

i k

k j

j i





 

 

i k j i k j

ij k ki jg A a b g A a b  

jk kjA A  

Таким образом, мы показали симметричность матриц. 

Отметим, что симметрия линейного оператора имеет смысл при опускании верхнего 
индекса с помощью метрики. Аналогично – для кососимметричного. 

Понятие объема области на римановом многообразии (поверхности) 

1. Вспомним, что такое интеграл Римана на плоскости (рисунок 5). 
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Пусть дана гладкая функция  y f x , заданная на  ,a b . Разобьем отрезок  ,a b  на 

малые отрезки ix , в каждом из них выберем некоторое значение i . Произведение 

 i if x   есть ни что иное, как площадь соответствующего прямоугольника. 

Интеграл Римана определяется так: 

 
 

 
 

0
,

lim
i

i i
x

ia b

f x dx f x
 

   

Отметим, что интеграл, определенный таким образом – это площадь под графиком 
функции. 

2. Рассмотрим теперь пространство 3ℝ , гладкую функцию  ,z f x y  и некоторую 

область  ,D x y . Разбиваем эту область на прямоугольники со сторонами ix  и jy , 

в произвольном прямоугольнике выбираем точку  ,i j  . Аналогично предыдущему 

случаю  ,i j i jf x y     – объем параллелепипеда (рисунок 6). 

Двойной интеграл Римана определяется так: 

 
 

 
 

 
0

,, 0

, lim ,
i

j

i j i j
x

i jD x y
y

f x y dxdy f x y 
 
 

    

Отметим, что двойной интеграл – это трехмерный объем области U. 

                              

Рисунок 5. Интеграл Римана на плоскости                Рисунок 6. Интеграл Римана в пространстве 

Вывод: то же самое верно и в многомерном случае. 

Пусть дано пространство 1nℝ , на нем задана функция  1 1, ,n nx f x x  …  и некоторая 

область D (рисунок 7). Кратный интеграл соответствует n-мерному объему области U: 

 
 

1
1voln

n

D x

f x dx dx U …  
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Рисунок 7. Кратный интеграл 

Пусть  D x  – компактная область в nℝ  с гладкой (или кусочно-гладкой) границей, x  

– декартовы координаты. 

Определение.  
 

1vol 1 n

n

D x

D x dx dx  …  

Поймем, что происходит с объемом при замене координат. 

Зададим в области D  регулярную криволинейную систему координат  x  и сделаем 

замену: 

   x x  

Используя известное нам правило замены переменной под интегралом, получим: 

 

1vol 1 n

n

D x

x
D dx dx

x


 

 … , 

где 
x

x




 – определитель матрицы Якоби A . 

Зададим метрику 

 x
G E  

ij ijg   

При замене координат 

T TG AGA AA    

 detA G g x     

Перепишем тогда формулу для объема: 
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 
 

   

1vol n

n
x D x D x

D g x dx dx g dx
  

        …  

Пусть дано риманово многообразие nM  с произвольной метрикой  ijg x , где x  – 

локальные регулярные координаты. Рассмотрим область nD M . Считаем её «малой», 

т.е. лежащей в некоторой одной карте локальных координат  1, , nU x x… . 

Определение. 
 

 
 

1vol n

n
x D x

D g x dx dx


  … , где    detg x G x  

Теперь рассмотрим случай «большой» области, т.е. не обязанной лежать на карте. 

Пусть задано покрытие многообразия атласом: 

 
 

,   n n n

i i

i

M U x U D ≃ ℝ∪  

Здесь нам понадобится понятие разбиения единицы.  

Теорема.  

1)     ,   ,   0i i i i ix U C         

2)   supp :  0n

i i ix M x U     , 

где supp  –  т.н. носитель функций i . 

3)  
 

1,   n

i

i

x x M      

Из этой теоремы нас интересует третье свойство. 

Вернемся к определению объема. 

 
 

 
     

 
vol 1

i

n i i
x i iD D D U

D g dx x g x dx x g x dx 


             

Итак, с помощью разбиения единицы мы свели определение к предыдущему случаю – 
«малой» карты. 

Лемма. Определение объема произвольной области не зависит от выбора разбиения 
единицы, т.е. корректно. 

Доказательство: пусть есть два покрытия 

   

n

i j j

i j

U M W   ∪ ∪  

Тогда по определению объема: 
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 
   

   
   

 
vol 1

i i

n i j i
x i i jD U D U

D x g x dx x g x dx  
 

 
         

 
     

 
,

i j

j i

i j D U W

g x dx 
 

     

Отсюда вытекает, что эта сумма симметрична по отношению к j i  . 

Утверждение. Общее понятие объема области на римановом многообразии 
превращается в трех важных частных случаях в естественное, ранее нам известное 
понятие объема. 

1. Рассмотрим область nD  ℝ , отнесенную к декартовым координатам  1, , nx x… .  

 
 

 
  

 

vol ,  1n
x

D x D x

D g x dx G E g x dx        –  евклидов объем.  
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Лекция 3. Объем. Кососимметричные тензорные поля. 

Внешние дифференциальные формы 

Частные случаи объема 

2. Рассмотрим поверхность многообразия n nM  ℝ . Пусть она задана параметрически 

при помощи  1, , ny y… . Рассмотрим область  D x  на этой поверхности. 

 1, ,i i ny y x x …  

На многообразии nM  мы рассматриваем индуцированную риманову метрику ij  , 

порождающую при ограничении на поверхность метрику ijg . 

Введем понятие объема. Для этого разобьем многообразие на бесконечно малые 

параллелепипеды i  уравнениями ix const  (рисунок 8). 

 

Рисунок 8. Разбиение плоскости параллелепипедами 

 

?
1 1vol voln n

n n i

iD x

g dx dx D g dx dx     … …  

Бесконечно малый параллелепипед i  на многообразии давайте аппроксимируем 

линейным параллелепипедом � n
i x

T M  : 

�vol vol in i n
 ≃  

Рассмотрим отдельно касательную плоскость (рисунок 9). В некоторой точке на ней 

возникает бесконечно малый параллелепипед � i , образованный на векторах 1a  и na  –  

векторах скоростей координатных линий, со сторонами 1
1dx a  и n

ndx a . Параллелепипед 

iQ  при этом натянут на вектора 1a … na . Как связаны объемы этих параллелепипедов? 

Ввиду их подобия, 

�   1
1vol vol , , n

in n i nQ a a dx dx  … …  

Рассмотрим в касательной плоскости относительно объемлющей евклидовой метрики 

ортонормированный базис  1 ne e… . 
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A

i ie a , 

где A  – матрица Якоби. 

 
1

1vol det  detn i n

n

a

Q a a A g

a

 
    
 
 

… ⋮  

Таким образом, мы получили, что 

� 1vol n
in

g dx dx   …  

 
Рисунок 9                                              Рисунок 10 

3. Объем области на графике функции (рисунок 10). 

Рассмотрим евклидово пространство размерности 1n  . Пусть на некоторой области 

задана гладкая функция  1 1, ,n nx f x x  … . Рассмотрим область D . 

vol ?n D   

Разобьем, как и раньше, область определения на бесконечно малые параллелепипеды, 

обозначим любой из них 1 ndx dx dx ⋯ . Пусть d  –  график параллелепипеда на 
области D . (Отметим: это обозначение будет использоваться и для самой площадки, и 
для ее объема.) 

 

voln

D x

D d   

Выберем в d  точку и отложим от нее два вектора: вектор нормали к поверхности   и 

единичный вектор 1ne  , идущий вдоль оси 1nx  . Угол между ними обозначим  . 
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cosd dx    

1cos , ne    

Рассмотрим функцию 

   1 1 1 1, , , , ,n n n nF x x x x f x x  … …  

 0nM F   -  поверхность уровня функции F  

 grad 0F F   

 1

2

1

grad 1
, , , 1

grad
1

n

i

x xn

x
i

F
f f

F
f





    


…  

 1 0, ,0,1ne   …  

2

1

1
cos

1 i

n

x
i

f








 

   

2

1

vol 1 i

n

n x
iD x D x

D d f dx


     

Утверждение. Полученная формула совпадает с общей формулой для объема, т.е. 

2

1

1 i

n

x
i

g f


   

Докажем это для 2n  . (Доказательство для общего случая пусть останется вашим 
приятным вечерним времяпрепровождением.) 

?
2

1

1 i

n

x
i

g f


   

 det det ijg G g   

i jij ij x x
g f f   

Таким образом, нам нужно доказать, что 
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  2

1

det 1i j i

n

ij x x x
i

f f f


    

Для нашего случая этот определитель будет выглядеть следующим образом: 

2
2 2

2

1
1

1
x x y

x y

y x y

f f f
f f

f f f


  


, 

что и доказывает исходное равенство. 

Кососимметричные тензорные поля и объем 

1. Кососимметричное поле максимального ранга. 

Рассмотрим многообразие nM , на нем – кососимметричное тензорное поле  
1 , , ki iT x… . 

Как обсуждалось ранее,  

  0k n T   , 

т.к. пара индексов повторится. 

Рассмотрим случай, когда k n . 

Теорема. Кососимметричное тензорное поле максимального ранга полностью 
определяется одной своей компонентой, называемой существенной. 

Доказательство: 

     
1 11

ni i nT x T x


 … … , 

где 
1 2

1,2, ,

, , , n

n

i i i


 
  
 

…

…
 

Сделаем замену координат 

   x x  

     
1 1

11 1 11 1
1 det

n n

n

n

i ii i

n i i n nn n
S

x x x x
T T T x A T x

x x x x




     



    
       
    

… … … …⋯ ⋯  

2. Связь с объемом 

 

voln

D x

D g dx   

   x x  
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detg g A    

detg G   

TG AGA   

   

voln

D x D x

D g dx g dx       

Замечание 1. Закон преобразования здесь в точности такой, как существенной 
компоненты косого7 тензорного поля максимального ранга. 

Замечание 2. Объем при перестановке индексов меняет знак, если   –  нечетная и 
сохраняет в противном случае. Следовательно, элементарный объем на римановом 
многообразии является косым тензором максимального ранга, при этом 

1 nT g…  

Объем, таким образом, имеет ориентацию. На этом основании в дальнейшем мы будем 
записывать его, как 

 

1vol n

n

D x

D g dx dx    … , 

где   обозначает внешнее произведение. 

Рассмотрим два произвольных тензорных поля IT  и JP . Внешним их произведением 

называется 

[ ]I J I JT P T P   , 

где квадратными скобками мы обозначаем альтернацию. 

Легко проверить, что это умножение ассоциативно. 

Внешняя алгебра 

Рассмотрим символы 1, , ndx dx… . Тогда 

 1, , ndx dx …  –  внешняя алгебра над ℝ  от образующих 11, , , ndx dx…  с внешним 

умножением, определяемым как 

,   0i j i ji j dx dx dx dx      

В частности, 

                                                 
7 Авторское сокращение «кососимметричного». 
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   0i ii j dx dx     

Алгебра порождается всеми такими произведениями и их линейными комбинациями 
над ℝ . 

Алгебра ассоциативна и распадается в сумму линейных подпространств: 

0 1 n     … , 

0 0:  1,   ≃ ℝ  

1 1:  , , ndx dx …  

2 :  i j

i j
dx dx


   

… 

1

  
:  kiik dx dx


  …  (обозначение «    » означает строгую упорядоченность) 

… 

1:  n ndx dx  …  

Их размерности, как мы знаем: 

dim k k

nC   

dim 2k n

nC    

Итак,   –  конечномерная ассоциативная косокоммутативная внешняя алгебра над 

полем ℝ  размерности 2n . 

Запишем общий вид элемента из k : 

1

1   

k

k

ii

i ia a dx dx


   … …  

deg a k  

Внешние дифференциальные формы на многообразии 

Рассмотрим многообразие nM  и точку  1, , nx x x …  на нем. 

Определение. Внешней дифференциальной формой  k  называется 
дифференциальное выражение следующего вида: 

  1

1

k

k

ii

i iT x dx dx … … , 

где  
1 ki iT x…  – произвольное тензорное поле типа  0,k  ранга k . 
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Канонический вид формы 

Приведем подобные члены, используя косую симметрию внешнего произведения: 

       1 1

1 1   

k k

k k

k i ii i

i i i i
T x dx dx T x dx dx


     … …

… …  

Мы, таким образом, «платим» альтернацией коэффициентов за приведение подобных 
членов. Эта запись и называется канонической. В ней тензорное поле уже обязано быть 
кососимметрическим. 

Замечание. Форма  k  однозначно задает (и задается) набором коэффициентов 1 ki i…  

кососимметричного тензорного поля. 

Замечание. Классическая внешняя конечномерная алгебра – алгебра внешних форм на 
многообразии, взятая в одной точке. 

Лемма. Умножение форм соответствует внешнему произведению косых тензоров (т.е. 
их коэффициентов). 

   
[ ]

          

JI J I Jk p I

I J I j I jT dx P dx T P dx dx T P dx dx 
    

            
   

 

Замечание. Внешнее произведение форм    k p   однозначно задает (и задается) 

внешним произведением коэффициентов их косых тензоров I jT P . 

В этом смысле алгебра внешних форм – это алгебра косых тензорных полей по 
отношению к внешнему произведению. 

         0 2 k nM M M M M       … …  

Зачем нужны формы? 

На языке форм и их дифференциалов пишется подавляющее большинство законов 
физики, механики, химии, биологии. 

Внешний дифференциал форм 

Введем тензорную операцию внешнего дифференцирования. 

     1k k kd d      

Определение 1. Пусть    
1 k

k

i iT x  … . Тогда 

   



1 1

1 1

1
1

1

: 1 k

k

k
i i i

ii i

T
dT

x



















 

 … …

…
 –  компонента дифференциала внешней формы 
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Определение 2. Пусть     1

1   

k

k

k ii

i iT x dx dx


  … … . Тогда 

   
1 1 0 1

0

0

1

1   

k k

n
i ik i iik

i
i

T x
T d dx dx dx

x
 

 


    

 …
…

�������
, 

где 
 

1 1 0

10

k

k

i i i

i ii

T x
dx dT

x






…

…  

Утверждение. Определения 1 и 2 эквивалентны. 

Доказательство: приведем форму из определения 2 к каноническому виду, т.е. 

упорядочим все индексы, коих 1k  . Для этого помещаем моном 0idx  на некоторое 
место   так, чтобы набор был упорядочен: 

   
 

1 1 01

0

0

1

1   

1 k k

n
i ik i ii

i
i

T x
d dx dx dx

x

 

 


     

 …
… …

�����������
 

Сделаем теперь перенумерацию индексов: 

   
 

1 1 11

0

1
1

1 1   

1 k k

n k
j j jk j jj

j
i

T x
d dx dx dx

x

 







  




  


     

 … …
… …

�����������
 

Таким образом, один и тот же моном может быть получен вставлением разных j .  

При этом сумма 

 
 

1 1 11

1
1

1   

1 k k

k
j j j j jj

j

T x
dx dx dx

x

 







 




 


    

 … …
… …

�����������
 

есть ни что иное, как форма из определения 1. 

Теорема. Операция d  –  тензорная. 

Доказательство: рассмотрим тензорное поле  iT T  и его дифференциал. 

  ji

j iji

TT
dT

x x


 
 

 

   x x  

     
2j i j i i

ji i
i ij i j j i j i j j ij i

TT Tx x x x x
dT T T

x x x x x x x x x x


        

        
                  

… …  
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 
j i

j i ji

x x
dT

x x
 

 

 

 

На месте пропусков – продифференцированное слагаемое j

i

T

x




 
  

 с переставленными 

индексами. Таким образом, теорема доказана.  
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Лекция 4. Внешнее дифференцирование. Алгебра 

когомологий 

Внешняя форма как функционал 

    1

1   

k

k

k ii

i iT x dx dx


  … …  

Рассмотрим вектора 1, , ka a…  из касательной плоскости n

xT M  в некоторой точке на 

многообразии nM  (рисунок 11). 

         1 1

1 1

] ][ [
1 1 1, , k k

k k

k i ii i

k i i k i i ka a T x dx a dx a T a a       … …… … …  

    1 1 ][
1 1, , valk ki ii i

k k kdx dx a a a a p      … … … , 

где p – проекция на пространство  1 , , kiik x xℝ … ,   1, ,K

ka a …  –  параллелепипед. 

 
Рисунок 11 

Таким образом, значение формы на векторах есть ни что иное, как взвешенный объем, 
т.е. линейная комбинация объемов с коэффициентами: 

       
11 1, , val , ,

k

k

k i i k ka a T x p a a  …… …  

Свойства внешнего дифференцирования d 

Рассмотрим многообразие nM , внешние формы    k k nM  , где  k nM  – 

функциональное линейное пространство всех форм степени k.  

1:  kd d     

1:  k kd    
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Теорема. 

1. Оператор d – линеен. 

2. 2 0d  , т.е. 1 0k kd d   . 

3. Формула Лейбница: 

        1
kk p

d d d            

Доказательство: 

1. Вытекает из линейности оператора частного дифференцирования. 

2. Рассмотрим произвольную форму 

 

 

1 1

1

k k

i ik

i ik iip

p

dT x

T
d dx dx dx

x





   


…

…
…

�������
�����

 

1 12 0k k
i i iiq p

q p

T
d dx dx dx dx

x x





     
 

…
…

�������
, 

т.к. частные производные qx  и px  – симметричны, а внешнее умножение – 
косокоммутативно, а значит соответствующие члены этой суммы сократятся. 

3. В силу линейности d, формулу Лейбница достаточно проверить на произведениях 
отдельных мономов. 

      k p I J I J I J

df

f
d d f dx g dx d f g dx dx dx g dx dx

x






 
  

              
   

������
�����

 

   1
kI Jg

f dx dx dx d d
x


    


       


 

Алгебра когомологий. Комплекс внешних дифференциальных форм 

Рассмотрим внешние формы  k nM , по определению  0 С M  . Формы степени 

 1   и  1n   на многообразии отсутствуют. 

0 1 1
0 1 1 10 0

k k kd d d d
k k k n

 
         … …  

Смотрим на k  как на абелевы группы (они же линейные пространства) над ℝ . 

Определение. Форма   называется замкнутой (или коциклом), если 0d  . 
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Определение. Форма   называется точной (или кограницей), если d  . 

Рассмотрим пространство всех замкнутых форм: 

  :  0 kerkk k

kZ d d       

Совокупность всех точных форм, в свою очередь, обозначим как 

   1:  Imkk k

kB d d         

Фундаментальный факт. k kB Z  

Доказательство: 2  0d d d        

Определение. Фактор-группа  n

k k kH M Z B   называется группой k-мерных 

когомологий данного многообразия (с коэффициентами в ℝ ). 

Определение. Размерность группы когомологий  dim k

kH M   называется числом 

Бетти8. 

Определение. Число  
0

n
n

k

k

M 


  называется эйлеровой характеристикой данного 

многообразия. 

Теорема.  

1. Пусть M  –  компактное гладкое связное многообразие. Тогда   k k    , т.е. все 

группы когомологий конечномерны. 

2. Рассмотрим абелеву группу    *

0

n
n k

k
H M H M


  . Тогда эта группа превращается в 

ассоциативное кольцо (алгебру) с единицей с умножением, порожденным внешним 
произведением форм. 

3. Если два многообразия M  и P  – гомеоморфны, то их кольца когомологий  *H M  

и  *H P  – изоморфны как алгебры. 

Доказательство: пункты 1 и 3 оставим без доказательства. 

2. Введем умножение на элементах группы когомологий: 

k k kH Z B  

                                                 
8 Энри́ко Бе́тти (итал. Enrico Betti, 1823 — 1892) — итальянский математик и физик. Известен своими 
пионерскими работами по топологии, занимался также общей алгеброй и математическим анализом. 
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   kH d      

  pH   

       
опр

da db           

Покажем, что это определение корректно, т.е. не зависит от выбора множителей: 

     
?

       

   da db db da da db                 9      

 
�

     
�0 0

d b a a db d b db da a d


       
  

                   
 
�����������  

     
0

2da db a d b



   
�����

 

Таким образом, теорема частично доказана. 

Замечание. Умножение в когомологиях косокоммутативно в следующем смысле: 

     1
kpk kp p                    

Понятие гомотопии 

Пусть даны топологические пространства x  и y  и отображения f  и g  из x  в y . 

Определение 1. f  и g  называются гомотопными, если  

0 1

:   t
t

X Y
 

  , 

причем это отображение непрерывно по обоим аргументам t  и x ,  

0 f   

1 g   

Обозначение: f g∼   

Таким образом, t  –  непрерывная деформация отображения f  в g  и наоборот. 

Определение 2. f  и g  называются гомотопными, если   

                                                 
9 Обозначение   здесь означает, что знак нас не интересует. 



 

 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И ТОПОЛОГИЯ 
 ФОМЕНКО АНАТОЛИЙ ТИМОФЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                          
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                      

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

39 
 
 

 

:  F X I Y   – непрерывно (рисунок 12), 

   ,0F x f x , 

   ,1F x g x . 

 
Рисунок 12 

Лемма. Определения 1 и 2 эквивалентны. 

Доказательство: положим    , tF x t x , из чего и следует требуемое. 

Определение 1. Два пространства называются гомотопически эквивалентными, если 
существуют два непрерывных отображения  

:  f X Y , 

:  g Y X , 

таких, что 

id 1

1
X

Y

g f X

f g





� ∼

� ∼
 

Примеры. 

1. *nℝ ∼   (рисунок 13) 

2. 1 1 1S D S ∼  (рисунок 14) 

 

 

                      Рисунок 13                        Рисунок 14                               Рисунок 15 

Комментарий. Размерность не является гомотопическим инвариантом. 
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3. Лист Мёбиуса (рисунок 15) 

1S ∼  

Комментарий. Ориентируемость также не является гомотопическим инвариантом. 

Усиление пункта 3 теоремы 

3’. Пусть даны два гомотопически эквивалентных многообразия M  и P . Тогда  

   * *H M H P≃  

Комментарий. Очевидно, гомеоморфизм есть гомотопическая эквивалентность и 
пункт 3 предыдущей теоремы вытекает из пункта 3’. 

Следствие. Если у двух многообразий M  и P  кольца гомологий не изоморфны, то эти 
многообразия гомотопически не эквивалентны (и тем более не гомеоморфны). 

Комментарий. Когомологии не являются полным гомотопическим инвариантом, т.е. 
из изоморфности колец многообразий M  и P  не вытекает, вообще говоря, их 
гомотопическая эквивалентность. 

Пример.  

1.    * 3 * 3H P H Sℝ ≃ , 

 но 3Pℝ  и 3S – гомотопически не эквивалентны, т.к. 

 
 

3
1 2

3
1

0

0

P

S





  




ℝ ℤ
 

Примеры подсчета когомологий 

Утверждение 1. Пусть nM  – гладкое компактное многообразие, состоящее из k 

компонент связности. Тогда  0 n kH M ℝ . 

Доказательство: по определению 

   
 
�

 0 0 0 0 0 :  0 :  0

C M

H Z B Z d f x df x 


 
      
 
 

 

Отметим, что на функциях f  оператор d   –  это обычный дифференциал, а значит эти 

функции локально постоянны. Таким образом, каждая функция задается набором 
констант 1, , ka a … ℝ . 
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Утверждение 2. Пусть 1 1M  ℝ  – одномерное некомпактное гладкое многообразие. 
Зададим на этой прямой координаты x. Найдем группы когомологий: 

 0H ℝ ℝ  

 1 ?H ℝ  

 
 

2

3

0

0

H

H

 






ℝ

ℝ

…

 

1 1 1H Z B  

   
 
�

1

C

f x dx



ℝ

 

 1 1 10   d Z      

Отметим, что любая одномерная форма замкнута. 

Покажем, что любая одномерная форма точна, т.е. 1 1B   . В этом случае 

1 1 1 1 1 1 1 0H Z B B        

     1

0

x

f x dx d f t dt
 

   
 
  

Таким образом, мы показали, что  

1 0H   

Утверждение 3. Пусть 1 1M S . Тогда группы когомологий будут иметь вид: 

 0 1H S ℝ  

 1 1H S ℝ  

 
 

2 1

3 1

0

0

H S

H S

 





…

 

Доказательство:  
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1 1 1 1 1H Z B B    (см. предыдущее утверждение) 

Зададим на окружности угловую координату  : 

   1
f d    

Построим отображение  

1:    ℝ  

       
2

1

0

f d f d



         ℝ  

Замечание. Очевидно, что   – гомоморфизм. 

Замечание.   – эпиморфизм10. Это справедливо, т.к. 

 
2

0

1 2 0d d



        

Из курса алгебры мы знаем, что 

1 ker  ℝ  

Осталось показать, что  

1ker B   

1. 1ker B   

     
1 

  0 2
на S

d g g g      

       
2

0

2 0 0dg g g



        

2. 1ker B   

   
2

0

0 0fd f d



       

                                                 
10 Отображение «на». 
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 

 

0

g

fd d f t dt







 
 
 
 
 
 


�����

 

Проверим, что функция  g   – периодична. 

   
2

0

0 0 0g f d



     

Таким образом, доказано двустороннее вложение, а значит и полностью обосновано 
утверждение 3.  
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Лекция 5. Когомологии и дифференциальные уравнения 

Рассмотрим гладкое многообразие nM , на нем – дифференциальную форму  k . 

(*)     1k k
d    – дифференциальное уравнение, где   – неизвестная. 

Такой вид имеют многие уравнения из физики и механики.  

Пример. 

1k   

 1 i

i
df dx    

 f x C  

Здесь необходимо выяснить, когда одномерная форма имеет вид полного 
дифференциала. 

Теорема. 

1. Уравнение (*) имеет решение, если и только если форма замкнута (т.е. 0d  ), и 

определяемый ей класс когомологий    равен нулю. 

2. Пусть 1  и 2  – решения уравнения (*). Тогда 

1 2 :  0d       

Пусть   – произвольное решение уравнения (*), а 0  – некоторое конкретное. Тогда 

0     , 

т.е. все решения   получаются из одного решения 0  добавлением всевозможных 

замкнутых форм. 

3. Лемма Пуанкаре11. 

Локально (в некоторой окрестности nu D≃ ) уравнение (*) всегда имеет решения для 
любой замкнутой формы  . 

Доказательство: 

1. 20 d d    

  0d   ≃  

                                                 
11 Жюль Анри́ Пуанкаре́ (фр. Jules Henri Poincaré; 1854 —1912) — французский математик, механик, 
физик, астроном и философ. 
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2. 1d   

2d   

Ввиду линейности оператора, получим 

 1 2 0d     

1 2     

0d   

Для второй части – аналогично: 

d   

0d   

 0 0d     

0     

0d   

3. Докажем лемму Пуанкаре для двумерного случая. Ввиду того, что 

2 2D ≃ ℝ , 

будем доказывать ее на плоскости. 

 2
d   

     
? ?

2
y xf dx dy d d Pdx Qdy P Q dx dy           

Таким образом, для заданной функции f  ищем P и Q: 

y xf P Q    

Положим, например, 

0P   

   
0

, ,
x

Q x y f x y dx   

Итак, мы нашли решения уравнения (*). 

Рассмотрим теперь случай одномерной формы. 
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 1
d Pdx Qdy     

0d   

 0 0  0y x y xd P Q dx dy P Q           

y xP Q  

Найдем функцию f : 

?

x ydf f dx f dy Pdx Qdy     

 
Рисунок 16 

     
?

0

   , ,
x

x

y

f P
f x y p x y dx g y

f Q


   

  

   
0 0

x x

y y xQ f P dx g y Q dx g y        

После взятия интеграла получим 

       , , 0,Q x y Q x y Q y g y    

   
0

0,
y

g y Q y dy C   

Таким образом, мы получили решение в явном виде: 

     
0 0

, , 0,
yx

f x y p x y dx Q y dy C     (рисунок 16)
0

A B

Pdx Qdy





    

A A B

Pdx Qdy Pdx Qdy


      

и показали, что  
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   1 1
f

 

     

Здесь   –  путь, полученный другим порядком интегрирования. 

Комментарий к п. 3 теоремы. 

Когда уравнение (*) решений не имеет? 

   1k k
d    

2 0  0d d    

Если форма   замкнута, но при этом она не реализует нулевой класс в группе 
когомологий данного многообразия, то решения уравнения нет. Например, мы уже 
считали одномерные когомологии окружности: 

 1 1 0H S  ℝ  

 1
d   

Рассмотрим риманово многообразие nM  с заданной римановой метрикой  ijg x  и 

рассмотрим одномерную форму  

   1 i

i x dx   

Построим по ней векторное поле  

 i  , 

где i ik

kg  . 

Таким образом, в каждой точке x  на многообразии возник вектор, в результате чего  
образуется поток. 

Рассмотрим интегральные траектории этого поля. 

Теорема. Пусть на nM  с ijg  задана форма  1  и пусть   –  соответствующее 

построенное векторное поле. Предположим, что для этого поля существует хотя бы 
одна замкнутая интегральная траектория, т.е. что хотя бы в одной точке 0  . Тогда 

утверждается, что уравнение   1
df    не имеет решений. 

Замечание. Функция f  в этом уравнении называется потенциалом формы. 

Доказательство: предположим, что решение существует, т.е. 

 1:  f df    
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   
     

 
             

0 0 0 0 0

0 0
i

i i

i i i

t t t t t
t T t T t T t T t T

dx t
f T f df dx dt dt

dt    

   

         

             

 
 

 

2

    
0 0

0k i

ik

t t
t T t T

g dt t dt
 

  

   

     

Примеры. 

 
Рисунок 17 

1. Рассмотрим плоскость 2 \ 0ℝ  –  некомпактное многообразие (рисунок 17). 

 1
d   

Для этой формы уравнение (*) 

 1
df d    

решения не имеет, поскольку векторное поле   ортогонально радиус-вектору точки. 
Таким образом, интегральные траектории представляют собой окружности, которые, 
понятно, замкнуты. 

2. Рассмотрим двумерный тор    2 1 1T S S    – компактное многообразие. Здесь 

возникают формы d  и d . Аналогично предыдущему примеру, все интегральные 

траектории замкнуты, и у уравнения (*) нет решений. 

Операция (*) на дифференциальных формах 

Рассмотрим многомерные формы k  на многообразии nM . Тогда 

   :   k n n k nM M    

Мы будем рассматривать частный случай n nM  ℝ  в декартовых координатах. 

 1 1 1

1 1 1
1k k n k

k k k

i i ji i j

i i i i i idx dx dx dx dx dx


   

  

   
             
   
   

… … …… … …
������� ������� �������

, 
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где индексы J  – дополнительные к индексам I , а 
            

1 2

I J

n


 
  
 …

  

Теорема (свойство операции). 

1. Операция линейна. 

2.    2 1
k n k

    

3.   коммутирует с  SO n  в nℝ  

Доказательство:  

2.                                      11 11k n ki ji jdx dx dx dx




 

 
       
 
 

… …
������� �������

 

     1 22 1 1I Idx dx
 

     

1

            

1 2

I J

n


 
  
 …

 

   
2 1

            
1

1 2
k n kJ I

n
 

 
   
 …

 

                 1 2 1 12 1 1 1 1 1 1
k n k k n kI I I Idx dx dx dx

    
           

3. Воспользуемся определением формы   как объема. Напомним, что значение 
внешнего произведение мономов на наборе векторов 1, , ka a…  есть ни что иное, как 

объем проекции p  параллелепипеда П, натянутого на векторы 1, , ka a… , на плоскость 
kℝ , натянутую на координаты 1 , , kiix x… : 

   
 

1

1

1 1
, ,

, , vol , ,k

iik k

ii

k k

x x

dx dx a a p a a   
ℝ …

… … …  

   
 

1

1

1 1
, ,

, , vol , ,k

jjn k n k

jj

n k n k

x x

dx dx b b p b b
 

    
ℝ …

… … …  
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Рисунок 18 

Как видно из рисунка 18, вращение не меняет длин и объемов проекций. 

Примеры действия (*) 

1. Плоскость 2ℝ  с декартовыми координатами  ,x y . 

   1   ,ij ijg
Pdx Qdy P Q

      

   1 2 1 2:       ℝ ℝ  

 
Рисунок 19 

 
 
dx dy

dy dx

 

  

 

     ,Pdy Qdx Q P   ∼  

Таким образом, смысл операции (*) на плоскости – вращение на 2  (рисунок 19). 

2.  3 , ,x y zℝ  

 1
Pdx Qdy Rdz     
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 , ,V P Q R  

   1

deg 1

     
d

V d d W  




      

y z x z x yd P dy dx P dz dx Q dx dy Q dz dy R dx dz R dy dz               

         x y x z y z x yQ P dx dy R P dx dz R Q dy dz Q P dz             

       , ,z x y z x y z x y zP R dy R Q dx Q P P R R Q W          

Из курса мат. анализа известно, что поле W называется ротором. 

Обозначение. rotW V   

По ходу мы доказали утверждение: 

 rot d   

Форма Стокса12 

Теорема (Стокса). 

Пусть дано гладкое связное компактное ориентируемое многообразие 1kM   с краем 
1k kV M    (не обязательно связным) и пусть на нем задана форма k . Тогда 

     

1 1

1
k k

kk k

M M

d 
 

    

Рассмотрим подробнее формулировку теоремы. 

1. Многообразие с краем. 

Пусть 1kW   – гладкое многообразие без края13,  f x C . Рассмотрим уровень этой 

функции  0f  . Предположим, что 

 grad 0  0f x f     

Тогда по теореме о неявных функциях множество  0f   есть гладкое k-мерное 

многообразие, вложенное в 1kW  . 

                                                 
12 Сэр Джордж Габрие́ль Стокс (англ. Sir George Gabriel Stokes; 1819 — 1903) — английский математик, 
механик и физик-теоретик ирландского происхождения. Работал в Кембриджском университете, внёс 
значительный вклад в гидро- и газодинамику (уравнения Навье — Стокса), оптику и математическую 
физику. 
13 То есть каждая точка имеет окрестность, гомеоморфную диску. 
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Рассмотрим все точки, где функция f  неотрицательна. Тогда множество 

  10 kf M    называется многообразием M  с краем V . 

2. «Воротник» многообразия с краем (рисунок 20). 

Рассмотрим многообразие с краем в смысле предыдущего определения. Выберем точки 

 :  0x f x   , 

где   –  малая величина в 1kW  . 

 
Рисунок 20. «Воротник» 

3. Индуцированная ориентация на краю. 

Рассмотрим точку x  на краю 1k kV M    (рисунок 21). Возьмем окрестность (шар) nD  
этой точки в воротнике. Введем координаты: 

на краю –  1, , kx x… , 

по нормали – 1kx  . 

Рассмотрим поле внешних нормалей в каждой точке края и касательную плоскость 
k

xT V . Возьмем репер  

 1, , k

k xe e T V…  

и построим по нему расширенный репер  

 1, , ,ke e n…  

Определение. Фиксируем ориентацию на всем многообразии 1kM  . Репер  1, , ke e…  

назовем положительным в крае V  , если расширенный репер – положителен 
(относительно ориентации M ). 

Тем самым мы ввели ориентацию на границе, которая называется индуцированной. 
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Рисунок 21. Индуцированная ориентация 

Утверждение. Это определение корректно, т.е. край ориентируемого многообразия 
всегда ориентируем. 

Доказательство: пусть край не ориентируем. Возьмем в точке x  репер  e x  и 

внешнюю нормаль 1ke  . По предположению, найдется путь   в крае, такой, что 

деформация репера  e x  вдоль него меняет ориентацию. Но вектор 1ke   ориентации не 

поменял, а значит поменялась ориентация всего репера   1, ke x e  , чего не может 

быть, ибо многообразие M  –  ориентируемо.  
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Лекция 6. Теорема Стокса и её следствие 

Утверждение. Край неориентируемого многообразия может быть как ориентируемым, 
так и неориентируемым. 

Рассмотрим примеры. 

1. Лист Мёбиуса – очевидно, неориентируемое многообразие, однако его край – 

окружность 1S  –  ориентируем. 

2. Рассмотрим неориентируемое многообразие 3 1M D   – прямое произведение 

листа Мёбиуса на отрезок. 

Утверждение.      X Y X Y X Y        

Доказательство: на рисунке 22 

 
Рисунок 22 

Применим это утверждение. 

       3 1 1 1 1 0M D D S D S             

Мы получили объединение кольца (первая скобка) и двух листов Мёбиуса (вторая 
скобка). «Заклеив» границы цилиндра (что то же самое – кольца) двумя листами 
Мёбиуса мы получим ни что иное, как бутылку Клейна14. Итак, мы получили, что у 

неориентированного многообразия 3M  край (бутылка Клейна) – тоже неориентируем. 

Ограничение формы на край 

Рассмотрим многообразие 1kM  , его край kV M   и форму  k . Рассмотрим также 
вложение  

:  i V M  

                                                 
14 Феликс Христиан Клейн (Кляйн) (нем. Felix Christian Klein; 1849—1925) — немецкий математик и 
педагог. Первым строго доказал непротиворечивость геометрии Лобачевского. Внёс значительный вклад 
в общую алгебру (особенно в теорию групп и теорию непрерывных групп), теорию эллиптических и 
автоморфных функций. 
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и обратное отображение 

*   i    

:  f P M  

   *   k k
f    

В локальных координатах x  и y  это можно записать, как 

 :  f y y x  

         
1

1 1

1 1 1 ][

k

k k

k k k

ii
k ii

i i i i

y y
y dy dy y y x y x dx dx

x x


  



 
           

 … …… …�������  

Теорема Стокса 

Теорема (Стокса).  Пусть дано гладкое связное компактное ориентируемое 

многообразие 1kM   с не обязательно связным краем kV M  , произвольная форма 
 k . Тогда 

     

1

1
k k

kk k

V M M

d 


   , 

при этом ориентация на краю индуцированна заданной ориентацией M . 

 
Рисунок 23. Карты на многообразии                  Рисунок 24. Карта II типа 

Доказательство:  

1. Покрытие M  (конечное ввиду компактности многообразия). 

k

iM u∪ , 

где iu  – открытые карты следующих двух типов (рисунок 23): 

I:  iu M   
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II:   ,   k
i iu M u D    (рисунок 24) 

2. Локализация. 

Построим по покрытию iu  разбиение единицы: 

    i iu x , 

причем 

1)  ,  0,  suppi i i iC u     , 

2)   1ix x   

Запишем доказываемое равенство в таком виде: 

      
1

?

1 1 1
k k

kk k

V M M

d 


      

          
1

?

1
k k

kk k

i i

V M M

x d x   


       

Покрытие конечно, поэтому и сумма конечна. 

Ввиду аддитивности интеграла, получим 

   
?

1
k

i i

i iM M

d   


       

Таким образом, нам нужно доказать, что 

   
?

  1
i i

k

i i

M u u

i d   
 

      , 

то есть мы свели общую задачу к локальной, а именно – к формуле Стокса на каждой 
карте iu . 

Для краткости положим 

i     

iu u  

В новых терминах будем помнить, что 

 supp u   
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 
?

1
k

M u u

d 
 

    

3. Карты типа I. 

u V   

Запишем общий вид формы  k  на nM : 

    �
1

1 1

1

k
k p k

p

p

a x dx dx dx






     … …  

    �
1 1?

1 1 1 1

1 1

1
k k

k pp k p p k

p p
p pM u u

a
a x dx dx dx dx dx dx dx

x

 
 

  


          

  … … … …  

�1 10 ,   p p k
a

dx dx dx dx p
x


  

        
… …  

I :  0
M



  

Ввиду этого сумма интегралов в левой части равенства обращается в ноль. 
Преобразуем правую часть: 

  �
1

1 1

1

1
k

k p p p k

p
p u

a
dx dx dx dx

x







      

  … …  

   
1

1 1 1

1

1 1
k

k p p p k

p
p u

a
dx dx dx

x


 




         

  … …  

 
�1 1

1
1 1 1

1

1
pp k

k
k p p p k

p
p xx x x

a
dx dx dx

x



  



 
        
  

… …

… …  

 
Рисунок 25 

Ссылаясь на формулу Лейбница, можно записать 
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    0 0 0
p

p p

p pp

x

a
dx a B a A

x


    

  (рисунок 25) 

Таким образом, правая часть также обращается в 0. 

Мы получили, что суть формулы Стокса – на краю, так как внутри, как было показано, 
имеет место равенство 0 0 . 

4. Карты типа II (рисунок 26). 

  �
1 ?

1 1

1

k
p k

p

p M u

a x dx dx dx




  

      … …  

   
�1 1

1
1 1 1

1

1 1
pp k

k
k p p p k

p
p xx x x

a
dx dx dx

x



 



 
          

  
… …

… …  

Ограничим форму на край kD . Напомним, что уравнение края имеет вид 

1 0kx    

Подставим это условие в сумму. Как видно, все слагаемые, для которых 1p k   

обращаются в ноль. Тогда в левой части остается одно слагаемое 

 
1

1

1 1
1

   
   0

,0
k

k

k

k k

k

D M u

x x

x

a x x dx dx





 



 
…

… …  

Как и в пункте 3, интеграл из правой части можно расписать по формуле Лейбница: 

   
p

p p

p pp

x

a
dx a B a A

x


 

  

 
Рисунок 26 

Рассмотрим два случая. 

1) 1p k   
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    0 0 0p pa B a A    , 

т.е. каждое слагаемое справа при 1p k   равно нулю (как и в п. 3). 

2) 1p k   

В этом случае правая часть обращается в 

        
1 1

2 1 1 1
11 ,0

k k

k k k k

p p k

x x x x

a B a A dx dx a x x dx dx        
… …

… … … , 

что совершенно неожиданно равно выражению левой части. Теорема доказана. 

Частный случай формулы Стокса 

 

Рисунок 27 
Следствие 1.  

1 1M D  (рисунок 27) 

1D a b    

   

1 1

0 0

D D

d 


   

     
? b

a b a

f b f a f x df


     

 
Рисунок 28 

Следствие 2.  

D    (рисунок 28) 
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 y x

D

Pdx Qdy P Q dxdy


       

Зададим вектор скорости 

,
x y

t t

       

 

 ,V P Q  

   , roty x

D D

V dt P x Q y dt Pdx Qdy P Q dxdy V dxdy
  


             

       

Замечание. В правой части равенства стоит т.н. циркуляция векторного поля по 
контуру.  

Теорема. Циркуляция любого векторного поля по замкнутому контуру равна интегралу 
его ротора по области, ограниченной контуром. 

Следствие 3. 

Рассмотрим пространство 3ℝ  с декартовыми координатами  , ,x y z . Возьмем контур 

  и поверхность (часто называемую «пленкой») S , затягивающую контур. 

S    

, y z x z

S

V dt Pdx Qdy Rdz P dy dx P dz dx Q dx dy Q dz dy
 




                

     x y x y x z y z

S

R dx dz R dy dz Q P dx dy R P dx dz R Q dy dz                  

Возьмем в произвольной точке на многообразии бесконечно малую площадку d  и 
нормаль n  к ней. 

      cos cos cos rot ,x y z x z y y z x

S S

Q P R P R Q d V n d                   

Итак, мы получили, что 

, rot ,
S

V dt V n d


 


   

Теорема. Циркуляция любого векторного поля по замкнутому контуру 3V  равна 
потоку его ротора через любую пленку с данной границей  . 

Следствие. Поток ротора с фиксированной границей не зависит от выбора пленки. 
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Следствие. Поток ротора любого векторного поля V  через любую замкнутую 
поверхность равен нулю. 

Следствие 4. 

Рассмотрим пространство 3ℝ  с декартовыми координатами  , ,x y z . Возьмем 

некоторую область D  с гладкой границей S D  . 

 z y x

S D

Pdxdy Qdxdz Rdydz P Q R dxdydz       

Напишем одномерную форму при помощи уже известной нам операции * (стр. 9): 

   2 , ,Rdx Qdy Pdz V R Q P          

Снова возьмем бесконечно малую площадку d  с нормалью 

 cos ,cos ,cosx y zn     

Тогда, с одной стороны, 

 cos cos cos ,z y x

S S S

Pdxdy Qdxdz Rdydz P Q R d V n d               , 

а с другой – 

   3divz y x

D D

P Q R dxdydz V d     , 

где 
1

div
in

i
i

V
V

x




   –  дивергенция векторного поля. 

Теорема. Поток любого векторного поля через любую замкнутую поверхность равен 
интегралу от его дивергенции по объему, ограниченному этой поверхностью.  
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Лекция 7. Приложения теоремы Стокса. Ковариантное 

дифференцирование 

Геометрический смысл дивергенции 

Рассмотрим евклидово пространство nℝ , отнесенное к декартовым координатам 

 1, , nx x… , и векторное поле       1 , , nV x a x a x … . С другой стороны, это 

векторное поле можно задать дифференциальным уравнением  

 

1

i
idx

a x
dt

i n





  

 

Оно описывает поток (жидкости). 

Рассмотрим решение этого уравнения  

    ix t x t  

 0x x  

Возникает интегральная траектория  . Зафиксируем время t . Рассмотрим 

естественное преобразование 

   :   0tf x x x t  , 

называемое однопараметрической группой диффеоморфизмов, порожденное данным 
полем V . 

Рассмотрим сдвиг области nD  ℝ  вдоль траектории поля V  на время t  (рисунок 29). 
Считаем, что  

 0D D  

 

 
Рисунок 29. Сдвиг области D 
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Теорема. 

 
0

vol div
n

t D

D t V d
t







  , 

где 
1

div
in

i
i

a
V

x




  – дивергенция (в декартовых координатах). 

 
Рисунок 30. Сдвиг параллелепипеда 

Доказательство: в силу аддитивности интеграла (справа) и производной (слева) 
достаточно доказать формулу для случая, когда D  есть бесконечно малый 
параллелепипед (рисунок 30). Сдвинем D  на бесконечно малую величину t  . Тогда 

i
i i i idx

y x t x a
dt

      … …  

Запишем связь между объемами параллелепипедов: 

�vol det voln n

y

x

     
, 

где 
y

x

 
  

 –  матрица Якоби. 

�

1

1
1

vol det vol vol

1

n n n

n

n

a

x
y

x
a

x

 

 

 
                 

 

⋱  
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1

1 vol vol div vol
in

n n ni
i

a
V

x
 



 
          

 …  

Преобразуем полученное равенство: 

�vol vol
div voln n

nV


  
   

Переходя к пределу при 0  , получим 

vol divn

d
V d

dt
    

Суммируя это выражение по всем параллелепипедам, получим искомое равенство. 

Комментарий. Из теоремы видно, что дивергенция векторного поля измеряет 
искажение объема области. 

Определение. Жидкость (векторное поле) называется несжимаемой, если div 0.V 
Если плотность жидкости 1  , то n-мерный объем области D  –  попросту масса 

жидкости в данном объеме D . 

Следствие. В несжимаемой жидкости массы (объемы) областей не меняются вдоль 
линий тока жидкости (интегральных траекторий потока V ). 

Формула Коши (еще одно приложение формулы Стокса) 

Рассмотрим  2 1 zℝ ℂ , z x iy  . 

Определение. Функция f  называется мероморфной в области D , если она 

комплексно-аналитическая за исключением, быть может, особых точек, в которых она 
является полюсом. 

Итак, пусть f  –  мероморфная функция. Возьмем компактную область D , её границу 

D   .  

Теорема (Коши).  

   
 1

 

Res
N

x
x

f z dz f




 

  

Доказательство: окружим все особые точки непересекающимися дисками (открытыми 

окрестностями)  2D x  . Обозначим  

 2

1
\

N

M D D x 
   
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По определению гомеоморфной функции, на области M функция f  – комплексно-

аналитическая. 

Рассмотрим регулярную на M форму 

   1
f z dz   

Эта форма замкнута, так как 

�0
0

0
f f

d dz dz d z dz
z z






 
    
 ���  

По теореме Стокса для области М 

0 0
M M

d 


     

Отметим, что стандартная ориентация M индуцирует на граничных окружностях  

1 2S D    ориентацию, противоположную ориентации  . Тогда 

     
1 1

0
S S

f z dz f z dz f z dz

 
 

  

      

   
11

N

S

f z dz f z dz


 

   

Мы, таким образом, свели задачу к подсчету интеграла для каждой особой точки в 
отдельности. 

Введем на окружности 1S  полярные координаты с углом   и запишем ir r e   . 

  n

n

n

f z a z




   –  ряд Лорана15 

 

 

1

2 2
11

0 0  
,

i nn n in i n

n n n

n n nS
r

a z dz a r e i r e d a ir e d

 
 



           16 1 2i a     

                                                 
15 Пьер Альфонс Лоран (фр. Pierre Alphonse Laurent; 1813 —1854) — французский математик, наиболее 
известен фундаментальным результатом в теории функций комплексной переменной о разложении 
аналитической в круговом кольце функции в сумму двух степенных рядов, названную рядом Лорана. 
16 Ввиду периодичности подынтегральной функции, из всей суммы остается одно слагаемое (n+1=0). 
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Полученная величина и называется вычетом мономорфной функции  f z  в особой 

точке: 

  1Res 2f z i a     

Ковариантное дифференцирование 

Запишем в пространстве nM  некоторое дифференциальное уравнение 

 D f… …  

В массе задач важно иметь инвариантную (сохраняющуюся при регулярной замене 
координат) запись уравнения. Существует ли такая операция дифференцирования? 

Утверждение. В общем случае операция частной производной – «плохая» (не 
обладающая свойством инвариантности). 

Доказательство: в самом деле, рассмотрим поле iT  и найдем его частную 
производную. 

Прежде условимся для краткости писать 

x

x













 

Перейдем к новым координатам: 

   x x  

2

0тензор

i i p
i i i

i p

i i T x x
T T T

i ix x x x x x   

 
 




 



      
              ������������

 

Как видно, в общем случае второе слагаемое в выражении ненулевое, а значит данный 
закон не является тензорным. 

Теорема. Зададим в nℝ  обычные декартовы координаты  x  и рассмотрим 

произвольные регулярные криволинейные координаты  x . Тогда 

  = :    

1) 
дек x
 


 


 

2) операция   –  тензорная (инвариантная при регулярной замене координат) 
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Доказательство: 

1. Найдем в явном виде iT


 . 

   тензор

   
x x

i i i k

p

i i i p i
T T T T

i i i kx x
  

  
   


 

 

      
            

 

2 2k i k i
k p i p k

kp p k p p k

i p i i p iT x T x
T T

i k i ix x x x x x
 

 
  

   

 
    

       

       
    

       
 

2

i
k

i i i i
k i k

ki p k

T x x T
T T

x x x x x



 


 

  
  

    



   
    
    �����

 

Замечание. Г называются символами Кристоффеля17. 

2. Теперь ищем явный вид оператора наблы на ковекторных полях. 

   
   тензор

  
x x

k
i i kp p

i i p k i p k T
T T T

i i i i ix x x
 

  
    




   

      
             

 

�

2 2 2

k
i

k k i k
p k k i

k i k ki p i i i

i iT Tx x x x x
T T T

i ix x x x x x x x x x





    

 
 

 

 

  
   

       



     
    

            
�������

 

Таким образом, 

  � k
i

ii k

T
T T

x
 




   


   


 

Лемма. 

� k
k

i i 

 
       

Доказательство: как нам уже известно, 

p i
p

ki k

x x
const

x x






 
 

 
 

Продифференцируем это выражение: 

                                                 
17 Эльвин Бруно Кристо́ффель (нем. Elwin Bruno Christoffel, 1829 — 1900) — немецкий математик. 
Известен работами в области теории функций, теории дифференциальных уравнений с частными 
производными, теории инвариантов алгебраических форм и теории дифференциальных квадратичных 
форм, где Кристоффелем введен символ, носящий его имя. 



 

 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И ТОПОЛОГИЯ 
 ФОМЕНКО АНАТОЛИЙ ТИМОФЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                          
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                      

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

68 
 
 

 

2 2

0
p i q p i p i

q i k q q i k i q k

x x x x x x x

x x x x x x x x x x

  

     

        
             

 

Как легко заметить первое слагаемое есть � , а второе –  , откуда и следует условие 
леммы. 

3. Явный вид наблы на поле смешанного вида типа  1,1 . 

   
   тензор

  
x x

i i k

j j qp

i j i j p i q
T T T

i j i j k jx x
 

 
  


 

  

     
           

 

2 2i q
k k k

q q qp p k j

i j p i q i j p q i j ix x
T T T

i j k j i j j i j kx x x x x

  

    


  
    

        
   

           
 

2 2k i q
qp i q p q k i k

k j j q k qp p k j

T i jx x
T T

i jx x x x x
  


     



 
       

         

  
   

      
 

2 2

i q
k j

i i j q
i k i

j j qi k j j

Г

x x x x x
T T T

x x x x x x x x

 



   

 
   

 
  
      

 

     
  
       

����� �������

 

Таким образом, 

   i i i k q i

j j k j j qT T T Г T
x

  
     

        


    


 

4. Рассмотрим произвольную регулярную криволинейную систему координат  x  в 
nℝ . Запишем в ней общую формулу: 

(*)   1 1 1 1

1 1 1 1

   

   1 1

 
s

p p p ps

q q q r q

r

ip q
i i i i i i i ii

k j j j j k j j k j j jk
js r

T T T T
x

 
 



 


     

  … … … … …

… … … … …  

Резюмируя, мы доказали теорему и нашли общий вид формулы для наблы. 

Лемма.  

При замене координат 

   x x  

(#)   
2i i

i i

j k jk i j k

i j k x x

i j k x x x



   

   
   

   
 

Доказательство проведите самостоятельно. 
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Замечание. i

j k


   – не тензор. 

Замечание. Тензорность операции набла обеспечена нетензорностью Г. 
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Лекция 8. Ковариантное дифференцирование. Параллельный 

перенос 

Общее понятие аффинной связности (ковариантного дифференцирования) на 
любом многообразии 

Определение. Будем говорить, что на nM  задана аффинная связность (ковариантное 
дифференцирование), если в каждой регулярной криволинейной системе координат 

 x  задан набор гладких функций   i

jk x , называемых символами Кристоффеля, 

который при регулярной замене координат преобразуется по форме (#), а сама 
операция набла задается формой (*). 

Комментарий. Если nM  ℝ , то получаем теорему о существовании связности на nℝ . 

Замечание. Если nM  ℝ , то 

2i i
i

j k i j k

x x

x x x



   

 
 

  
 

Определение. Связность Г называется симметричной на M, если i i

jk kj   . 

Определение. Функции вида 

i i i

jk jk kj      

называются кручением данной связности. 

Теорема.   –  тензор. 

Доказательство очевидно вытекает из формы (#), т.к. нетензорный добавок в ней 
исчезает при альтернировании Г. 

Комментарий. Связность симметрична, если и только если 0  . 

Определение. Пусть nM  – гладкое многообразие,  k  –  аффинная связность на 

многообразии. Тогда регулярные координаты называются декартовыми для данной 

связности, если   0i

jk x  . 

Комментарий. На M  таких декартовых координат может не быть. 

Утверждение. Пусть связность набла несимметрична, т.е. 0  . Тогда для нее нет 
локальных декартовых координат. 

Доказательство: предположим существование локальных декартовых координат. Тогда 
по определению в них  

   0    0i i

jk jkx x      
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Как мы знаем,   –  тензор, а значит она равна нулю во всех координатах. Тогда 
связность симметрична, что есть противоречие. 

Аксиоматика связности 

Теорема.  

a) Пусть на гладком многообразии nM задана связность  k . Тогда справедливы 

следующие пять аксиом связности: 

1. k  –  линейный оператор. 

2.    –  тензорная операция. 

3. k k

f
f

x


 


 

4. 

i
i i

k kk

i
k i kik

T
T T

x

T
T T

x







 
    


   
 

 

5.      k k kT P T P T P       

б) Верно обратное, т.е. операция, обладающая свойствами 1–5 обязательно имеет вид 
(*). 

Доказательство: 

а) Свойства 1–4 очевидно вытекают из формы (*). 

5.    
по (*)

ij

i j
i j i j i j j i j i i j

k k k kk k k

Q

T P
T P T P T P T P P T T P

x x x

  
  

  
           

  �����
 

   
i j

j i i j i j i j i j

k k k k kk k

T P
T P T P T P T P T P

x x

  
  

    
                 

 

б) Найдем вид операции k  над полем ijT , считая данными аксиомы 1–5. Для этого 

запишем поле ijT  как полилинейное отображение. 

1 1

1 1

p q

q p

i i jj

j j i iT T e e e e     …

… … …  

Отсюда видно, что произвольное тензорное есть линейная комбинация произведений 
тензорных полей ранга 1 (векторов и ковекторов), называемых разложимыми. 
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   
св.  1 св. 4,5 i j i

ij i j i j i j j i j

k k k k kk k k

T P T
T T P T P T P P T P

x x x

  
  

     
                    

 

   
j

i j i i j i j j i ij i j j i

k k k k k kk k

P
T T P T P T P T P T T P T P

x x

    
    

 
              

 
 

Итак, мы получили, что применение операции набла как раз и дает форму (*). Теорема 
доказана. 

Римановы связности 

Пусть на многообразии nM  задана связность  k  и риманова метрика  ijg x . 

Определение. Связность  k    называется римановой или согласованной с данной 

метрикой, если 0k ijg  , т.е. метрический тензор постоянен относительно данной 

наблы. 

Комментарий. В общем случае ijg  –  некоторые функции, не обязательно постоянные. 

Теорема. Пусть дано риманово многообразие nM  с метрикой  ijg x . Тогда 

существует и единственна симметричная связность, согласованная с ijg . 

Доказательство: по формуле (*) 

0ij

ki j kj ik

g
g g

x

 
 


    


 

Докажем для начала единственность. Для этого перепишем систему два раза, сдвинув 
циклически индексы. 

0ki
jk i ji kj

g
g g

x

 
 


    


 

0jk

ij k ik ji

g
g g

x

 
 


    


 

Сложим три системы: первую – с минусом, а остальные две – с плюсом. Ввиду 
симметричности индексов, часть слагаемых сократится. Получим: 

2 ij jkki
ij k k j i

g gg
g

x x x




 
    

  
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1

2
ij jkak ki

ij k j i

g gg
g

x x x

   
        

 

Итак, мы в явном виде нашли ij

 , чем показали ее единственность. 

Возможность доказать существование предоставляется читателю. Отметим лишь, что 
для этого достаточно задать Г по формуле выше и повторить цепь проделанных шагов 
в обратном порядке. В конечном счете, вы получите, что 

0k ijg   

Параллельный перенос в аффинной связности 

Пусть на многообразии nM  задана аффинная связность  k  и пусть T  и   –  

векторные поля. 

Определение. Ковариантной производной поля T  по направлению поля   называется 

i iопр
i k i k i k i k

k k kk k

T T
T T T T

x x

 
     

  
           

 

Рассмотрим на многообразии точки P  и Q . Пусть  t  – гладкий путь из одной точки 

в другую, причем 

 0P   

 1Q   

Наша цель – построить векторное поле, параллельное вдоль пути  . Пусть 

 t 


  –  векторное поле скоростей вдоль траектории  . 

Определение. Векторное поле T  параллельно вдоль   относительно данной 

связности, если его ковариантная производная равна нулю. 

Уравнение параллельного переноса 

Выберем в определении ковариантной производной 

 


  

k
k d x

d t
   
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  ix t   

Тогда 

0
k i k

i

kk

d x T d x
T

d t x d t





  


 

(!)    0
i k

i

k

dT d x
T

d t d t


     –  уравнение параллельного переноса. 

Его решение – поле T  – называется параллельным вдоль   данной связности. 

Как параллельно перенести вектор вдоль пути? 

 
Рисунок 31. Перенос вектора вдоль пути 

Возьмем в точке Q  вектор n

xa T M  и найдем параллельный ему вектор .Qb T M

Напишем уравнение (!) вдоль   (рисунок 31). В нем нам уже известны функции Г и 

скорости данного пути. В таком случае нам предстоит найти iT  с гладкими 
коэффициентами. Как видно, это система обыкновенных уравнений первого порядка в 
количестве n штук. Начальное условие задается уравнениями 

   10 , , nT a a a  …  

По теореме из диффуров, в силу гладкости коэффициентов и компактности пути  , 

система имеет решение, единственное с данным начальным условием на всем пути. 
Тогда в каждой точке возникает решение 

  T t  

и в момент времени 1t   мы получим искомый вектор 

  1b T   
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Замечание. Если n nM ℝ  и связность набла – евклидова, то мы, очевидно, получаем 

обычное понятие параллельного переноса в nℝ . 

Параллельный перенос в римановой связности 

Пусть дано многообразие M  с римановой связностью  , симметричной и 
согласованной с данной метрикой ijg . 

Рассмотрим, как и ранее, две точки P  и Q , путь  t  между ними (рисунок 32). 

Возьмем в точке P  два касательных вектора a  и b  (из плоскости PT M ). Построим 

для каждого из них по вышеизложенному алгоритму параллельное векторное поле: 

   a t вдоль   

   b t вдоль   

 
Рисунок 32. Перенос в римановой связности  
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Лекция 9. Параллельный перенос. Геодезические 

Теорема. Параллельный перенос в римановой связности сохраняет скалярное 
произведение векторов, в частности – их длины и углы между ними. 

Доказательство: возьмем произвольную точку t , от которой отложены два вектора – 

 a t  и  b t . Умножив их скалярно, получим гладкую вдоль пути функцию 

  ,f t a b  

Нам нужно показать, что 

 
0

df t

dt
  

   
ф. Лейбница

, 0i j i j i j i j

ij ij ij ij

df t
a b g a b g a b g a b g a b

dt     
    

                    
     

 

Последнее равенство справедливо ввиду того, что набла согласована с метрикой, а поля 
ia  и jb  – параллельные. 

Геометрический смысл символов Кристоффеля 

Пусть на многообразии M  задана связность символами Кристоффеля i

jk . Рассмотрим 

локальные координаты 1, , nx x…  и гладкие векторные поля 
x

 


 


 на многообразии. 

Эти векторные поля линейно независимы (образуют базис в касательной плоскости к 
многообразию M  в точке x ). 

       
0

i k i k i i p k p i i

k kp kpkx          



 
 

                
 
�����

 

Теорема.  i i

i        

Геодезические. 

Замечание. Параллельный перенос вектора скорости вдоль прямой в nℝ  оставляет его 
вектором скорости. 

Определение. Пусть на произвольном гладком многообразии nM  задана связность  . 

Траектория nM   называется геодезической относительно данной наблы, если 

ковариантная производная вектора скорости вдоль его самого равна нулю. 
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Проще говоря, вектор скорости при его параллельном переносе в данной связности 
остается вектором скорости. 

Уравнения геодезических 

Как мы уже знаем, уравнение параллельного переноса имеет вид 

0
i p

i k

pk

dT d x
T

d t d t
    

px

t

  
  

 
 

Возьмем теперь T 


 . Тогда 

i
i x

T
t





 

(*)    
2

2
0

i p k
i

pk

d x d x d x

d t d t d t
    

Решения системы (*) –  геодезические. 

Комментарий. Это обыкновенный диффур второго порядка с n уравнениями. 

Замечание. Начальные условия задаются точкой p  и вектором  0a 


 . 

Теорема (о геодезических).  

1. Пусть p  – произвольная точка на многообразии M , a  – произвольный касательный 

вектор в этой точке к многообразию. Тогда 

 
 

 

    ! :

0

0

p a t

p

a








  






 

2. Более того, параметр t  («время») определен однозначно с точностью до сдвига, т.е. 
решение системы есть параметризованная кривая. 

3. Любые две достаточно близкие точки на многообразии всегда соединяются 
единственной «короткой» геодезической. Формально это утверждение записывается 
так: 

         :  ,   ! x M U x P Q U x t U x        

Комментарий. Такие шарики  U x  называются геодезически выпуклыми. 
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Комментарий. Акцент на том, что   –  «короткая» геодезическая был сделан ввиду 

того, что могут существовать и другие, «длинные» геодезические. 

Пример. На сфере 2S  экватор – геодезическая (мы это скоро докажем). Если взять на 
нем две близкие точки ,P Q , то между ними, очевидно, будет геодезическая короче. 

4. Теорема Хопфа18 – Ринова19. 

Пусть M  –  гладкое связное компактное замкнутое многообразие без края. Тогда 
любые две его точки соединяются по крайней мере одной геодезической. 

Комментарий. Единственность  , вообще говоря, не обеспечена. 

Пример. На сфере 2S  возьмем две диаметрально противоположные точки. Тогда 
геодезическими являются все меридианы, соединяющие полюса (их – континуум). 

Комментарий. Компактность существенна. 

Пример. Рассмотрим плоскость 2 \ 0ℝ . Проведем прямую через ноль и рассмотрим две 
точки ,P Q  по разные стороны от прокола. Ввиду того, что геодезические на плоскости 

есть прямые линии и только они (этот факт мы докажем позднее), геодезической между 
,P Q  не существует. 

5.1. Здесь, в отличие от пунктов 1 – 4, набла – риманова связность, т.е. задан 
метрический тензор ijg . Тогда каждая геодезическая в этой связности – локально 

минимальна, т.е. минимизирует расстояние между любыми своими достаточно 
близкими точками ,P Q . Формально это можно записать как 

   l l     (рисунок 33) 

 
Рисунок 33 

 

 

 

 

                                                 
18 Хайнц Хопф (нем. Heinz Hopf; 1894 — 1971) — немецкий и швейцарский математик, исследователь в 
области алгебраической и дифференциальной топологии, а также теории дифференциальных уравнений. 
19 Вилли Людвиг Август Ринов (нем. Willi Ludwig August Rinow; 1907 — 1979) — немецкий математик, 
внёсший существенный вклад в дифференциальную геометрию и топологию. 
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5.2. Для римановой связности параметр t  вдоль геодезической – натуральный, т.е. 
равный длине дуги. 

Эту теорему мы оставляем без доказательства. 

Параллельный перенос в римановой связности на двумерном многообразии 

Рассмотрим произвольный путь  , соединяющий точки ,P Q  многообразия 2M . 

Возьмем вектор 2
pa T M . Мы хотим сделать его параллельный перенос вдоль   в 

точку Q . 

Пусть   –  геодезическая. По теореме из начала лекции, параллельный перенос вдоль 

любого пути сохраняет длины векторов и углы между ними. Возьмем в точке P  вектор 

скорости 


 и постоим векторное поле скоростей вдоль   (рисунок 34). Таким образом, 

мы получим параллельный вектор b  с той же длиной и углом, что и у a . 

 
Рисунок 34. Параллельный перенос на геодезической 

Теперь рассмотрим произвольную кривую (рисунок 35). Разобьем   на малые звенья 

длины  . Тогда по п. 3 теоремы близкие точки соединяются единственным отрезком 
короткой геодезической.  

 
Рисунок 35. Параллельный перенос на произвольной кривой 

Таким образом, последовательно делая перенос через каждый из отрезков, получим в 
точке Q  некоторый вектор.  
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При 0   измельчим разбиение.  

Лемма. Предел в точке Q  существует. Он называется результатом параллельного 

переноса из точки P  в точку Q . 

Примеры геодезических 

1. Многообразие nℝ  с декартовыми координатами. 

Как мы знаем, 

0i

jk  , 

а значит из уравнения (*) вытекает, что 

2

2
0

id x

dt
  

Решения ix  этого уравнения – линейные функции, следовательно, геодезические – это 
прямые. 

2. Конус – многообразие 2 3M ℝ  с выколотой вершиной. 

Лемма. Метрика ijg , индуцированная на этом конусе объемлющей евклидовой, 

является локальной евклидовой, т.е. конус локально изометричен плоскости. 

Рассмотрим плоскую развертку конуса. Геодезические на ней – прямые линии и их 
отрезки (рисунок 36).  

 

Рисунок 36. Развертка конуса 

2.1. Частный случай конуса – цилиндр. Геодезические в нем – все образующие, 
окружности и винтовые линии. 

3. Сфера 2 3S  ℝ  

Введем на ней сферические координаты  ,  , где   меняется вдоль меридиан,   –  

вдоль параллелей. 
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Теорема. Геодезические на стандартной сфере в 3ℝ  –  это экваторы и только они. 

Доказательство:  

Лемма. В переменных ,   риманова связность относительно стандартной метрики на 

сфере дает следующие уравнения (*): 

 

2••

•••

1
sin 2 0

2

ctg 0

  

  





      


 

 

Пусть теперь 0  –  меридиан, проходящий через северный и южный полюса сферы 

(рисунок 37). 

 

Рисунок 37. Геодезическая, проходящая через полюса сферы 

Покажем, что 0  –  геодезическая. Для этого запишем ее уравнение в переменных ,  : 

0

s

 







 

Очевидно, это решение уравнения (*) для сферы. 

Покажем, более того, что произвольный экватор – также геодезическая. 

Факт. Существует вращение сфер, переводящее 0  . 

Пусть дано вращение 

0:  g    

Это вращение – элемент группы  3SO     сохраняет метрику в 3ℝ     сохраняет 

индуцированную метрику 2 3S  ℝ     сохраняет связность набла (поскольку набла – 
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функция от ijg )    сохраняются уравнения геодезических   решение 0  переходит в 

решение  . 

Данная цепочка рассуждений и доказывает, что   –  геодезическая. 

Покажем, наконец, что других геодезических на сфере быть не может. Положим 
противное: пусть в некоторой точке P   нашлась геодезическая  , которая не экватор. 

Возьмем в этой точке вектор скорости 


. Очевидно, что через точку P  в направлении 




 проходит экватор  . Таким образом, мы получили две геодезические в точке, и по 

известной теореме из диффуров они совпадают. 

4. Хвост Лобачевского20 2L  

Теорема. Геодезические следующие: в модели Пуанкаре (рисунок 38) – все диаметры, 
проходящие через центр, либо дуги окружностей, выходящие под углом 2  на 

абсолют; в модели верхней полуплоскости – все прямые, ортогональные оси x  и дуги 
окружностей, выходящие под углом 2  на абсолют. 

 
Рисунок 38. Модель Пуанкаре и верхняя полуплоскость 

5. Плоский тор 2T  – двумерная компактная замкнутая поверхность без края. 

Лемма. На торе существует локальная евклидова метрика (т.е. локально симметричная 
плоскости). 

Доказательство: пусть 

   2 1 1i iT S e S e   , 

где ,   –  локальные регулярные координаты. 

Запишем в этих координатах метрику 

 2 2 2 2dS T d d     

                                                 
20 Никола́й Ива́нович Лобаче́вский (1792 — 1856) — российский математик, один из создателей 
неевклидовой геометрии, деятель университетского образования и народного просвещения. 
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Рисунок 39. Тор и факторизация 

Как мы помним, тор в переменных ,   – это квадрат. Рассмотрим отображение 

   2 2:   , ,i ip T e e   ℝ   (рисунок 39) 

Таким образом, мы получаем, что 

2 2 2T  ℝ ℤ  –  фактор двумерной плоскости по группе 2ℤ . 

Замечание. Отображение p  – локальная изометрия, поэтому геодезические на торе – 

это образы прямых на плоскости при проекции p . 

Возникает два случая геодезических на торе. 

1) Рациональная (или периодическая, резонансная). 

Прямая l  при этом попала в угол решетки с координатами   2,m n   ℤ ℤ ℤ . Она, 

очевидно, замкнута, т.к. все углы решетки при проекции p  переходят в ноль. 

2) Иррациональная (или условная периодическая, нерезонансная). 

В этом случае    ,l m n  . 

Лемма. В случае 2 геодезическая всюду полна на торе. 

Комментарий. Случаи 1 и 2 различаются рациональностью (иррациональностью) 
тангенса, т.е. от него зависит тип геодезической.  
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Лекция 10. Геодезические 

Где встречаются геодезические? 

Пример 1. 

Рассмотрим риманово многообразие nM , на нем – точки ,P Q . Возникает задача найти 

оптимальный (т.е. на наименьшее время) путь из P  в Q . При скорости движения, 

равной единице, оптимальным будет путь наименьшей длины или геодезическая. 

Пример 2. 

Луч света (например, от звезды), проходя через слои атмосферы разной плотности, 
преломляется, поэтому наблюдатель видит излучающий объект превратно (рисунок 40). 
Как понять, какой путь проходит свет? Согласно принципу Ферма, луч света движется 
в прозрачной среде по оптимальному пути.  

 

Рисунок 40. Прохождение света через атмосферу планеты 

Более того, это геодезическая следующей метрики: 

   2 2 2
2

1

,
ds dx dy

c x y
  , 

где c  –  скорость света в среде. 

Примеры параллельного переноса 

1. Рассмотрим произвольный путь   из точки P  в точку Q  в nℝ  с заданными 

декартовыми координатами. Возьмем в точке P  вектор a  и построим векторное поле 

вдоль пути. Получаем вектор ||b a . Поскольку 0i

jk  , компоненты вектора b  равны 

компонентам вектора a . 

2. Рассмотрим параллельный перенос на конусе (рисунок 41). Пусть на конусе отмечена 
точка P . Обозначим   сечение конуса в этой точке. Понятно, что   не геодезическая. 

Отложим от точки вдоль образующей вектор a  и сделаем его параллельный перенос. 
Как видно из рисунка, такой перенос поворачивает вектор a  на угол  . 
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Рисунок 41. Параллельный перенос в конусе 

3. Сфера (рисунок 42). 

Рассмотрим для начала параллельный перенос вдоль экватора. Как мы уже доказывали, 
экватор – геодезическая, а значит вектор b a . 

 

Рисунок 42. Перенос на сфере 

Сделаем теперь перенос по параллели  , которая не является экватором. Поскольку это 
не геодезическая, вектор начнет поворачиваться. 

Теорема.  

Пусть в 3ℝ  дано две касающихся друг друга поверхности вдоль какой-то кривой: 

M P    

Возьмем на поверхностях две, вообще говоря, отличных метрики ijg  и ij . Тогда 

параллельные переносы на M  и P  вдоль линии касания совпадают. 
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Рисунок 43. Перенос на сфере с геодезической, отличной от экватора 

Применим эту теорему к вопросу о сфере. Для этого построим конус, который касается 
сферы вдоль параллели (рисунок 43). Очевидно, такое построение возможно. Тогда 
параллельный перенос на сфере сводится к параллельному переносу на конусе, 
который мы уже рассматривали: вектор повернется на некоторый угол  . 

4. Плоскость Лобачевского 2L . 

Возьмем, например, реализацию на верхней полуплоскости. Напомним, метрика 
Лобачевского в этом случае имеет вид 

2 2
2

2

dx dy
ds

y


  

Возьмем прямую на евклидовой плоскости и рассмотрим ее как траекторию   на 2L . 

Это, как мы знаем, не геодезическая.  

Мы хотим сделать перенос из точки P  в точку Q . Для этого разобьем путь на ужасно 

маленькие отрезки, и на каждом из них найдем геодезическую. Сделать это несложно: 
достаточно опустить перпендикуляр на абсолют и положить точку пересечения 
центром окружности, проходящей через две точки рассматриваемого отрезка (рисунок 
44).  

 
Рисунок 44. Перенос на Лобачевском 
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Повторяя эту операцию для каждого из отрезков, найдем траекторию следа конца 
вектора a  (рисунок 45) 

 

Рисунок 45. Траектория конца вектора а 

 Теорема о группе изометрий 

Напомним некоторые сведения из прошлого семестра. 

Мы изучали три основные примера двумерных геометрий:  

2 2 2, ,S Lℝ , 

а также группы их изометрий. 

Пусть nM  – риманова метрика. 

Определение. Изометрия – диффеоморфизм многообразия на себя, сохраняющий 
метрику. 

Совокупность всех таких диффеоморфизмов называется группой изометрий. 

Обозначение: 

   :  Iso nf M M M   

В этой группе есть выделенный элемент и на этом основании ее связную компоненту 
обозначают иногда  

   0
Iso Iso nM M  

Теорема.  

        
1

22 2 2

0
где

2
:  Iso ,   2 ,  , ,  dim 3

0 0 1

b
SO

baz b A SO b b b

  
  

        
  
  

ℝ ℝ   

   2 2 3

0
:  Iso 3 ,  dim 3S S SO P ≃ ℝ  
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     2 2
20

:  Iso 2, ,  dim 3L L SL E   ℝ ℤ  

В последнем пункте  2,SL ℝ  –  группа всех вещественных матриц вида 

:   - 1
a b

ad bc
c d

 
 

 
 

Докажем более сильное утверждение. 

Теорема. В предыдущей теореме имеют место равенства: 

        
1

22 2 2

0
где

2
:  Iso ,   2 ,  , ,  dim 3

0 0 1

b
SO

baz b A SO b b b

  
  

        
  
  

ℝ ℝ  

   2 2 3

0
:  Iso 3 ,  dim 3S S SO P ≃ ℝ  

     2 2
20

:  Iso 2, ,  dim 3L L SL E   ℝ ℤ  

Комментарий. Для доказательства этого факта потребуются геодезические, которых 
ранее у нас не было. По этой причине эта неочевидная теорема не доказывалась. 

Сформулируем и докажем еще более сильную теорему. 

Теорема. Пусть nM  –  риманово многообразие. Для его группы изометрий 
справедливо: 

1)  Iso nM  –  конечномерна; 

2)     1
dim Iso

2
n

n n
M


  

Напомним, мы считаем, что 

 2 2 2, ,nM S L ℝ  – гладкое связное замкнутое компактное многообразие без границы. 

Доказательство: рассмотрим произвольную точку 0x  и рассмотрим изометрии 

 

   0 0

0

Iso
Iso

n

n

h x x
H M G

h M

   
   

  
 

Определение.  0H x  называется стационарной группой точки. 

Рассмотрим касательную плоскость 
0

n

x
T M  и дифференциал 
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0 00
λ :  n n

x xx
dh T T   

0
λ :  

x
h dh  

Лемма.   

1.  λ :  , ,  det 0H GL n ℝ , 

λ  –  гомоморфизм; 

2.    λ :  ,H SO n GL n  ℝ ; 

3. λ  –  мономорфизм; 

Доказательство: 

1.    
0

λ ,
x

h dh GL n  ℝ , 

так как   диффеоморфизм  невырожден   h dh  . 

Покажем теперь, что λ  –  гомоморфизм. По сути, нам нужно доказать, что 

     
?

1 2 1 2λ λ λh h h h �  

Это так, поскольку  λ h  – матрица Якоби, а значит 

x x z

y z y

  


  
 

2. Вспомним, что h  – изометрия, а значит сохраняет метрику  0ijg x . В точке 0x  эта 

матрица симметричная, положительная и невырожденная, следовательно, по теореме из 
алгебры, она может быть приведена к единичной. Сделаем нужную замену координат 

вблизи точки. Таким образом, мы получили  i

jE d  –  евклидову форму, при этом dh  

ее сохраняет. Это и означает, что dh  –  ортогональная матрица из группы  SO n . 

3. Нам нужно доказать, что если образ отображения 

00
0λ :   :  xx

h dh T T   

тождественен, то и его прообраз тождественен, т.е. что 

 :   x M h x x    

Возьмем на многообразии произвольную точку x . Тогда по теореме Хопфа – Ринова 
для компактного M  всегда существует геодезическая, соединяющая две точки x  и 0x . 
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Комментарий. Для случая трех предложенных выше метрик теорема Хопфа – Ринова 
не нужна. 

Итак, допустим противное: пусть мы нашли точку  

 :  x h x x  

Рассмотрим траекторию 

 h    

Поскольку h  – изометрия,  – геодезическая, соединяющая 0x  и  h x . 

Ввиду того, что  

0
id

x
dh  , 

в 0x  геодезические   и   касаются друг друга: 

   
0 0

0 0
x x

dh dh 
       

   
 

Тогда по теореме из диффуров эти два решения совпадают тождественно (рисунок 46). 

В этом случае  h x  лежит на  , а поскольку расстояние до 0x  то же самое,  h x x . 

 

Рисунок 46. Совпадение геодезических 

Продолжим теперь доказательство теоремы. Пусть 

  
0

0  ,
x

g g x dg , 

где  0 00
:  x g xx

dg T T  
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Утверждение. Это соответствие взаимно-однозначно. 

Доказательство: рассмотрим 

  
0

1 1 0 1  ,
x

g g x dg  

  
0

2 2 0 2  ,
x

g g x dg  

Предположим, что два кода совпали, т.е. 

   

0 0

1 0 2 0

1 2x x

g x g x

dg dg


 

 

Хотим показать, что совпали и изометрии. Рассмотрим отображение 

1
2 1g g   –  изометрию как композицию двух изометрий. 

   

0

1
0 2 1 0 0

id
x

x g g x x

d





  



 

Тогда по предыдущей лемме   –  тождественно на всем многообразии, что и означает 
тождественное равенство изометрий. 

Найдем размерность. 

Утверждение.     21
dim

2 n

n n
SO n C


    

Попробуйте доказать это самостоятельно. 

Тогда общая размерность кода будет равна 

   1 1

2 2

n n n n
n

 
   

Это и было обещано в теореме. 

Докажем теорему для сферы и плоскости Лобачевского. 

   2 3

0
Iso 3 ,   dim 3S SO P ≃ ℝ  

Учитывая нашу оценку, эта размерность не превышает 3. 

Утверждение.  3SO  – одновременно открыто и замкнуто в группе изометрий. 

Доказательство: 



 

 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И ТОПОЛОГИЯ 
 ФОМЕНКО АНАТОЛИЙ ТИМОФЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                          
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                      

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

92 
 
 

 

Замкнутость вытекает из того, что предел вращения в 3ℝ  –  снова вращение в 3ℝ . 

Докажем открытость. Возьмем произвольную точку в  3SO . Утверждается, что 

существует маленький трехмерный шарик с центром в этой точке, целиком лежащий в 

группе вращений, что очевидно, т.к. у 3Pℝ  нет края. 

Утверждение. Открытое и замкнутое подмножество в связной компоненте совпадает 
со всем связным куском. 

Кривизна многообразий. Тензор кривизны Римана 

Пусть дано многообразие nM  со связностью  ,  

1, , nx x…  –  локальные регулярные координаты. 

Рассмотрим операцию 

  ?i

k l l k T      

Запишем это выражение для краткости как 

 
 

i

k li

k l l k

T
T

k l

 
     

 
 

       

 
0

i
i i i i i i i i q

k l k l l kp l kl p lqk k l

T
T T T T T T

x x x

k l



    
                      

 

�����  

 

2 ip i q p
lqi p q q i i i p q

kp lq lq kp kp lql k l k k l

T T T T
T T T

x x x x x x

k l

     
                     
 

 

,

i i

lq kqq i p i p i q

kp lq lp kq q klk l
T R T

x x

  
            

 

Итак, полученная величина 

 ,
i q i

q kl k l l kR T T      

называется тензором Римана. Его тип –  1,3  и ранг – 4. 

Теорема. R – тензор, измеряющий искривленность многообразия. 
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Следствие. Предположим, тензор Римана не нулевой. Тогда для связности набла не 
существует локальных евклидовых координат. 

Доказательство: положим противное, тогда 

 
0

i

i

jk

x

  , 

а значит и R в этих координатах нулевой, т.к. является комбинацией   и производных. 
Наконец, поскольку R – тензор, он нулевой в любых координатах.  
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Лекция 11. Свойства тензора кривизны Римана 

Геометрический смысл 

На прошлой лекции мы ввели тензор кривизны следующим образом: 

  ,
i p i

k l l k p klT T R      

Возьмем частный случай 

s

sT x      

Напомним, что поля 1, , n …  образуют базис в касательной плоскости к 

многообразию. 

Тогда равенство примет вид 

 , , , ,

pp i i p i i

p kl s p kl s p kl s klT R R R R     

Таким образом, мы получили, что 

  ,
i

k l l k s s kl iR       , 

откуда видно, что вектор кривизны – это коэффициенты разложения по базису 
операции коммутатор. 

Инвариантное определение тензора кривизны 

Комментарий. Нам потребуются следующие доказанные на предыдущих лекциях 
формулы: 

,

i i

pl pki i q i q

p kl qk pl ql pkk l
R

x x

 
       
 

 

1

2
p pli i l

pl l p

g gg
g

x x x

 


  
       

 

Пусть на многообразии nM  задана произвольная связность   и пусть , ,X Y Z  – 

произвольные векторные поля на многообразии. Тогда рассмотрим операцию 

   ,, X Y Y X X Y
R X Y Z Z Z Z       

Комментарий. Иногда в правой части этого выражения ставят знак минус. 

Теорема. Операция R  задает тензор кривизны Римана. 
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Теорема. Операция R  –  трилинейное отображение на полях , ,X Y Z , т.е. задает 

тензорное поле. 

Доказательство: очевидно, что операция R  линейна по отношению к комбинации 
векторных полей , ,X Y Z  с постоянными коэффициентами, поэтому нужно доказать, 

что эта операция линейна и по отношению к умножению на функции. 

1. Умножим аргумент Z  на гладкую функцию. Мы хотим доказать, что 

    , ,R X Y f Z f R X Y Z  

Замечание.  i i

Y i i

f
f Y f Y Y f

x


    


  

С учетом этого запишем 

             ,, X Y Y X X YX Y
R X Y f Z f Z f Z f Z Y f Z f Z            

             ,,Y x X YX Y
X f Z f Z X Y f Z f Z XY f Z Y f Z X f Z             

         X Y Y X Y Xf Z Y X f Z X f Z Y f Z f Z XY f Z Y X f Z               

      , , ,X Y Y XX Y X Y
f Z f Z Z Z f R X Y Z          

Итак, мы показали линейность функции по отношению к аргументу Z . 

2. Покажем линейность для аргументов ,X Y . 

Замечание. В силу косой симметрии ,X Y , достаточно показать линейность для одной 

из этих переменных. 

Замечание.     i i

f X i i Xf X f X f        

Замечание.             , ,f X Y f X Y Y f X f XY Y f X fY X f X Y Y f X        

      ,, f X Y Y f X X Y Y Xf X Y
R f X Y Z Z Z Z f Z f Z             

             ,, X Y X Y X XX Yf X Y Y f X
Z f Z Y f Z f Z f Z Y f Z               

      , ,X Y Y X X Y
f Z Z Z f R X Y Z        

Таким образом, трилинейность операции R  доказана. 
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Теорема. Определения 1 и 2 тензора кривизны Римана совпадают21. 

Доказательство. 

Рассмотрим векторные поля , ,X Y Z , на которых определена операция R  по второму 

определению. В каждой точке x  в касательном к многообразию nM  пространстве 
рассмотрим базис 1, , n … .  

Напишем разложение полей по базису: 

i

iX X   

j

jY Y   

k

kZ Z   

Подставим эти значения в формулу: 

       , , ,i j k i j k

i j k i j kR X Y Z R X Y Z X Y Z R         

Следовательно, совпадение определений 1 и 2 достаточно определить на базисных 
полях. 

Замечание.   
i i i i

 
          

Замечание.  , 0i j i j j i
            

   ,

опр. 1

,
i j j i i j j ii j

i j k k k k kR           
                 

���������
 

Алгебраические свойства тензора кривизны (его симметрии) 

Теорема. Пусть на гладком многообразии M  задана симметричная аффинная 
связность  . Тогда 

1. На произвольных векторных полях справедливо, что 

   , ,R X Y Z R Y X Z   

2. Теорема Якоби. 

     , , , 0R X Y Z R Z X Y R Y Z X    

                                                 
21 Определение 1 было в предыдущей лекции. 
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Замечание. Для следующих пунктов 3–4 связность   –  риманова и симметричная. 
Треугольные скобки – скалярное произведение относительно данной метрики ijg . 

3.    , , , ,R X Y Z W R X Y W Z   

4.    , , , ,R X Y Z W R Z W X Y  

Доказательство: 

1. Очевидно из определения R . 

2.  

Лемма.  Для симметричной связности справедливо 

 ,X YY X X Y    

Доказательство: 

j
i i j i i j

X i ii

Y
Y X Y X X Y

x





     


 

Поменяем в этом равенстве X  и Y  местами и вычтем полученное выражение из 
исходного. Тогда второе слагаемое сократится и мы получим 

 ,
j j

ii i i i

X Y i i

Y Y
Y X X Y X Y

x x

 
    

 
 

Лемма доказана. 

В силу линейности R  по всем аргументам, проверку достаточно сделать для базисных 
векторных полей, от которых требуется только свойство коммутативности. 

В случае, если поля коммутируют, 

0  X Y X YY X Y X        

 , X Y Y XR X Y Z Z Z      

Дважды циклически сдвинем аргументы: 

 , Z X X ZR Z X Y Y Y      

 , Y Z Z YR Y Z X X X      
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Сложив все три равенства, получим ноль в правой части, что и подтверждает условие 
пункта 2 теоремы. 

3. Как мы знаем из алгебры, утверждение будет доказано, если и только если 

 :   , , 0Z W R X Y Z Z   

Рассмотрим гладкую функцию  

,f Z Z  

Как и в прошлом пункте, считаем, что поля коммутируют. 

?

, 0X Y Y XZ Z Z      

?

, ,X Y Y XZ Z Z Z      

Продифференцируем функцию f  вдоль поля Y . Отметим, что на гладких функциях 

ковариантная производная совпадает с обычной, поэтому 

, , , , 2 ,Y Y Y YY f Y Z Z Z Z Z Z Z Z Z Z          

2 , 2 , 2 ,X Y X Y Y XXY f Z Z Z Z Z Z          

Мы получили тождество, в котором левая часть и второе слагаемое правой части 
симметрично, а значит и первое слагаемое правой части также симметрично. Таким 
образом, пункт 3 доказан. 

  

Рисунок 47. Октаэдр 
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4. Рассмотрим октаэдр (рисунок 47). 

Лемма. Сумма величин в вершинах граней ,  ,  ,  db ca cb ab     (заштрихованные 

области) равна нулю. 

Докажем, например, для грани db . Ввиду билинейности формы, получим 

     
п.2

, , , , 0b d R X Y Z R Y Z X R Z X Y W        

Доказательство для других граней аналогично, разве что, в некоторых случаях нужно 
воспользоваться симметрией. 

Запишем теперь фундаментальное равенство 

0 0 0 0    

Распишем каждый из нулей: 

    b d a c d b c a                   

Симметрия тензора кривизны в координатной записи 

Теорема.  

1. , ,
i i

j kl j lkR R   

2. , , , 0i i i

j kl l jk k ljR R R    (теорема Якоби) 

3. , ,ij kl ji klR R   

4. , ,ij kl kl ij
R R  

Докажите эти утверждения самостоятельно, опираясь на приемы предыдущей теоремы. 

Применение тензора кривизны 

Гауссова кривизна поверхности сохраняется при изометриях. 

Определение. Тензором Риччи22 называется 

,
i

jl j il
R R  

Определение. Скалярной кривизной данной метрики называется 

jl

jlR g R  

                                                 
22 Грегорио Риччи-Курбастро (итал. Gregorio Ricci-Curbastro; 1853 — 1925) — итальянский математик. 
Его важная научная заслуга заключается в создании «абсолютного дифференциального исчисления» 
(тензорного исчисления), широко используемого в общей теории относительности, дифференциальной 
геометрии, теории многообразий и т. д. 
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Теорема. Пусть 2 3M ℝ  –  гладкая двумерная поверхность и пусть в 3ℝ  задана 
обычная евклидова метрика ij . Построим последовательно: 

 ijg x (индуцированная поверхностью 2M  метрика) (симметричная риманова 

связность) ,
i

j klR (тензор Римана)  R x  (скалярная кривизна). 

Тогда  

2R K , 

где K  –  гауссова кривизна. 

Следствие. Рассмотрим изометрию поверхности 2M  в 3ℝ  (т.н. изгибание, т.е. 
деформацию, сохраняющую метрику). Тогда гауссова кривизна не меняется. 

Доказательство23: по определению изометрия сохраняет  ijg x . Тогда, исходя из 

предыдущей теоремы, сохраняется и кривизна Гаусса. 

Пример. Изогнем плоскость 2  в цилиндр 2M . Тогда гауссова кривизна K, в отличие 
от средней кривизны H, не меняется (рисунок 48). 

 
Рисунок 48. Изометрия плоскости и цилиндра 

Доказательство:  

1. Выбор подходящих локальных координат. 

Рассмотрим произвольную точку P  на поверхности 2M  (рисунок 49). Все подсчеты в 
дальнейшем будут локальными в малой окрестности этой точки. 

                                                 
23 Следствия. 
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Рисунок 49. Поверхность 2

M              Рисунок 50. Окрестность точки 

Выберем в касательной плоскости pT M  две координатные декартовы оси ,x y , а 

третью ось z  направим по нормали к поверхности и зададим поверхность 2M  около 
точки P  с помощью графика функции f  (рисунок 50). Таким образом, 

 2 :  ,
лок

M z f x y  

Метрика в этом случае имеет вид 

i jij ij x x
g f f   

Отметим, что 

0ix P
f   

Тогда 

ij ijg   

Вычислим выражение 

0
i j

j i

ij x x

k k kx x

P

f fg
f f

x x x

 
  

  
 

Символ Кристоффеля i

pl  в точке P , очевидно, тоже равен нулю.  
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Лекция 12. Скалярная кривизна. Степень отображения 

Напомним пару важных для нас формул из предыдущих лекций. 

,

i i

pl pki i q i q

p kl qk pl ql pkk l
R

x x

 
       
 

 

1

2
p pli i l

pl l p

g gg
g

x x x

 


  
       

 

Докажем сформулированную на прошлой лекции теорему. 

Теорема. Пусть дана гладкая поверхность 2 3M ℝ . Тогда 

2R K , 

где pq

pqg R   –  тензор Риччи.  

Доказательство: вычислим скалярную кривизну в данной точке P. Как мы уже 
отмечали, 

0ix P
f   

0
i j

j i

ij x x

k k kx x

P

f fg
f f

x x x

 
  

  
 

Итак, 

2 2 2 22 2

,

1

2
p pl p pki i l k

p kl k l k p k l k l p l

g g g gg g
R g

x x x x x x x x x x x x

   
 

     
                    

 

2 22 21

2
pl pki l k

k p k l p l

g gg g
g

x x x x x x x x

  
 

   
             

 

Умножим все выражение на матрицу, обратную к ig  , т.е. опускаем верхний индекс 

тензора R : 

2 22 2

,

1

2
pk pll k

p kl k p l k l p

g gg g
R

x x x x x x x x

 
  

   
             

 

По теореме о симметрии в тензорах Римана, есть только одна существенная 

компонента 12,12R , а остальные – равны либо нулю, либо ей самой со знаком, 

задаваемым симметрией тензора. 
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     
2 2 2 2

2 212 21 22 11
, 2 2

1 1 1

2 2 2p kl x y y xxy xx yy

g g g g
R f f f f

x y y x x y


    
              

 

      2 2
xx y x xy y xy x xy xxy y xx yy xy x xyy xy y xxyy x y

f f f f f f f f f f f f f f f f f f            

2 2 xx xy

xy x xyy xx yy xy

xy yy

f f
f f f f f f K

f f
       

Найдем теперь скалярную кривизну поверхности. 

1
, , 12,12 12,12 2detpq pq i pq i pq i

pq p iq p iqR g R g R g g R R g g R G 




        

Ввиду того, что в точке P  метрический тензор – единичная матрица, а значит 

1
12,12

1

2det 2R R G K



   ���  

Таким образом, теорема полностью доказана. 

Следствие. Рассмотрим сферу 2S  и плоскость Лобачевского 2L  со стандартной 
метрикой. Для них скалярная кривизна будет равна 

2

2

сфера

плоскость Лобачевского

2
0  

2
2

0  

r
R K

a

    
  


 

Теорема. Стандартная метрика сферы и Лобачевского не изометрична евклидовой. 

Доказательство почти очевидно, так как 

,0  0  i

j kl ij ijR R g       

Уравнение Эйнштейна – Гильберта в общей теории относительности 

Рассмотрим многообразие  4 , , ,M x y z t  – т.н. пространство-время. Как устроена 

метрика нашей вселенной? Согласно модели теории относительности, эта метрика есть 
решение уравнения Эйнштейна – Гильберта: 

1
λ

2ij ij ijR g R T   , 

где ijT  – тензор энергии-импульса, задаваемый экспериментально. 

На данный момент некоторые частные решения этого уравнения найдены, а общее 
решение неизвестно. 
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Степень гладкого отображения 

Рассмотрим отображение 

:   m nf M P , 

где ,M P  –  гладкие связные многообразия; ,m n  – произвольные размерности. 

Рассмотрим касательные плоскости m

xT M  и  n

yT P  в точках x  и  y f x  

соответственно. Тогда дифференциал этого отображения задается как 

:   m n

x yx
df T M T P  

Этот дифференциал, как мы знаем, однозначно задается матрицей Якоби  

i

j

m n

y

x


 
  

 

Определение. Точка x  называется регулярной (правильной), если ранг матрицы Якоби 
– максимально возможный: 

   min ,
x

rg df m n  

В противном случае точка называется критической (нерегулярной). 

Определение. Точка ny P  называется регулярным (правильным) значением для f , 

если либо все точки из полного прообраза  1f y  –  регулярные в многообразии M , 

либо прообраз пуст. 

Выделим для дальнейшего частный случай. Пусть 

:   ,   m nf M P m p  , 

и пусть y  –  регулярное значение. 

Рассмотрим прообраз  

 1 mf y M   

Теорема (частный случай теоремы о неявных функциях). 

 1f y
 –  гладкое подмногообразие в mM  размерности m n . 

Теорема (Сарда). Пусть дано гладкое отображение  

:   m nf M P  
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Выделим специальное множество в nP : 

    1:   :  rgn

x
f y P x f y df n     

Тогда 

  vol 0n f   

Комментарий.  

a) Пусть m n . Тогда 

 f  – множество всех критических значений отображения. 

б) Пусть m n . Тогда 

   f f M  

Определение.  f  называется бифуркационной диаграммой отображения f . 

Комментарий. В общем случае  f  не обязана быть замкнута. Например, можно 

взять некомпактные многообразия 1M  и 2 2P ℝ .  

Комментарий. Если ,M P  –  компактны, то  f  –  замкнута, имеет нулевую меру 

и, более того,  P f  –  открыто и всюду плотно. 

Комментарий. Эта теорема верна только для образа – мера точек прообраза не обязана 
быть равной нулю.  

Очевидный пример – отображение многообразия M  в одну точку. В этом случае все 

точки многообразия будут критическими, но   vol 0n f  . 

Пусть теперь дано отображение 

 :   n nf M P f  , 

причем многообразие M  –  компактно. 

Возьмем точку  y P f   и ее полный прообраз   1 nf y M  . 

Лемма. Полный прообраз регулярного значения на компактном многообразии состоит 
из конечного числа точек. 

Доказательство: допустим противное. Пусть точек прообраза бесконечно много, тогда, 

ввиду компактности, существует предельная точка x . Иными словами, 
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   1U x f y     

В силу гладкости (а значит непрерывности) отображения, 

   1    x f y f x y    

Так как y  –  регулярная точка, то x  –  регулярна по определению, а значит  

rg
x

df n  

Тогда по теореме о неявной функции, f  –  локальный диффеоморфизм, т.е. 

      
f

U x V y   

Таким образом, мы получили противоречие, поскольку на  U x  есть склейки. 

Определение степени 

Возьмем гладкое связное компактное замкнутое ориентируемое многообразие nM   и 

его отображение f  в гладкое замкнутое ориентируемое многообразие nP . Пусть y  – 

регулярное значение (таких, по теореме Сарда, полная мера). Его прообраз, по 
предыдущей лемме, состоит из конечного числа точек: 

   1
1,  ,  ,   Nf y x x N   …  

В точке y  в касательной плоскости к многообразию nP  возьмем положительный базис 

 e y . Выберем произвольную точку  1
ix f y  и построим в ней касательную 

плоскость. В ней возникает прообраз базиса: 

     
1

i
i x

e x df e y


  

Зададим на этом базисе индуцированную ориентацию. Сравним ориентацию 

многообразия nM  с индуцированной ориентацией  ie x . 

Комментарий. Степенью отображения f  относительно регулярного значения y  

называется  

   1

deg 1
i

y

x f y

f


   

Единица здесь означает, что ориентация в точке совпала, а минус единица – что она 
различна. 

Теорема. Пусть дано гладкое отображение  
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:   n nf M P  

Тогда 

a) Степень от регулярного значения не зависит, т.е. 

deg degy f f  

б) Степени гомотопных отображений совпадают. 

Доказательство: 

б) По определению гомотопии, 

           1
:   ,    ,0 ,     ,1 ,    0,1 0

n n
F M I P f x f x f x g x I M


        

По теореме Сарда, множество регулярных значений для отображения F  –  открыто, 
всюду плотное и имеющее меру нуль.  

Аналогично эту теорему можем применить для отображений ,f g . Тогда пересечение 

множеств регулярных значений функций , ,F f g  –  также открыто и всюду плотно. Это 

значит, что существует точка y  из пересечения, которая является регулярной для всех 

трех отображений. 

Возьмем полный прообраз 

 1F y M I    

По теореме о неявных функциях, это гладкое одномерное подмногообразие.  

Возьмем в точке y  базис и рассмотрим его прообраз на верхних и нижних точках 

кривых типа , ,I II III  (рисунок 51). 

 

Рисунок 51 
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В каждой точке кривой I  рассмотрим вектор скорости  t  и прообраз базиса. 

Получаем, что при скольжении базиса вдоль  t  его ориентация, очевидно, не 

меняется. При этом ориентации верхнего и нижнего касательных базисов совпадают. 

Проведем ту же операцию для кривых ,II III . 

Утверждение. Ориентации касательных базисов для кривых типа II  –  различны. 

Комментарий. Кривые типа III  нас не интересуют, так как они не выходят за край 
цилиндра и в формировании степени не участвуют. 

Сравним, наконец степени отображений. 

Комментарий. Крайние точки кривых типа II  –  сокращаются ввиду 
противоположности знаков, т.е. в создании степени они не участвуют. 

Комментарий. Все кривые типа I  задают взаимно-однозначное соответствие между 
точками прообраза с сохранением знаков. 

Таким образом, суммы степеней вверху и внизу совпали, и пункт б) доказан. 
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Лекция 13. Степень отображения. Приложения. 

Докажем теперь пункт a) теоремы. 

Рассмотрим две регулярные точки ,y y . Мы хотим доказать, что 

deg degy yf f  

Соединим эти точки гладким отрезком  t  и рассмотрим маленькую трубчатую 

окрестность  u  . Рассмотрим гладкую гомотопию 

 вне

:  

   
t

t

P P

id u



 





 

«Вдавим» диск, проходящий через точку y , слева направо. Тогда остальные диски 

также будут вдавливаться, и тем слабее, чем ближе к правой стенке цилиндра. Таким 
образом, получим 

   :  

0 1
t u u

t

   

 

 

1y y   

Рассмотрим отображение  

t tg f  

0 0g f f   

1 1g f  

По уже доказанному пункту 2) теоремы и ввиду того, что диффеоморфизм не меняет 
степени, получим 

   
1 1deg deg deg degy y yy

f f g f       

Таким образом, теорема полностью доказана. 

Степень комплексного отображения 

Рассмотрим случай отображения комплексных многообразий: 

:   n nf M P  

Овеществим его: 
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   :   n nf M P
ℝ ℝℝ  

Зададим и фиксируем ориентацию на этих многообразиях24. 

Рассмотрим регулярную точку y  из образа и степень f ℝ . 

Теорема. Степень f ℝ  равна числу прообразов любой регулярной точки (все якобианы 

положительны). 

Доказательство: возьмем регулярную по определению точку  

  1
x f y


 ℝ  

      :   n n

x y f x
df T M T P

ℝℝℝ
 

Изначально дифференциал отображал комплексное пространство в комплексное, а 
значит имел вид 

df A iB  , 

где ,A B  –  вещественные матрицы. 

Тогда, как мы уже обсуждали, после овеществления матрица примет вид 

 
2 2n n

A B
df

B A


 
   

ℝ
 

   
2

det det 0df A iB  
ℝ

, 

что и требовалось показать. 

Приложения 

1. Теорема Гаусса 

Рассмотрим отображение 

   2 2:   f S z S w  

   nf z P z  

Тогда 

а)    2
0 0:   nw S w P z w     –  имеет хотя бы один корень. 

                                                 
24 Комплексные многообразия всегда ориентируемы. 
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б) Для почти всех 0w  число корней в точности равно n. 

Доказательство: все условия для степени выполнены – многообразия гладкие 
компактные ориентируемые. Рассмотрим полином 

  1
1:   n n

n nf P z z a z 
  …  

Тогда 

    1
11

0 1

n n

t n nP z z t a z

t

 


    

 

…
 

 
0

1
n

n

id

P z z









 

Таким образом, 

гом
nf z∼ , 

а значит по ранее доказанной нами теореме 

 deg deg nf z z   

Посчитаем степень правой части. Множество ее прообразов есть 

 0
n W  

Пусть 0W  – регулярное значение. Тогда из предыдущей теоремы следует, что 

 deg 0nz z n   , 

поскольку прообразов ровно n штук. 

Докажем теперь, что  

 1
0f W   

Пусть это не так. Тогда 

   2 1
0 0:   W S W f W    

По определению степени, точка 0W  с пустым прообразом – регулярна и, более того, 

степень равна нулю. Получили противоречие с тем, что степень (равная n) 
положительна. 
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Докажем теперь второй пункт теоремы. В самом деле, по теореме Сарда, множество 
регулярных значений всюду плотно и открыто в образе, а значит, учитывая 
предыдущую теорему и пункт 1 настоящей, для почти всех 0W  корней ровно n штук. 

Задача. Почему нельзя домножать на  1 t  максимальную степень? 

2. Теорема Брауэра25 

Любое непрерывное отображение замкнутого диска в себя имеет хотя бы одну 
неподвижную точку. 

Комментарий. Если диск открыт, это утверждение неверно. Для иллюстрации возьмем 
отображение одномерного интервала в себя. Очевидно, в этом случае нет неподвижных 
точек. 

Доказательство: 

Замечание. Определение степени переносится на случай непрерывных отображений с 
помощью теоремы Вейерштрасса. 

Предположим, что таких точек нет. Тогда любая точка диска отлична от её образа и 
возникает отрезок, соединяющий точку и образ. Продлим этот отрезок до пересечения с 

границей сферы и обозначим  g x  точку пересечения. Получим отображение 

  1:   
nng x g x S D     

Отметим, что оно того же типа, что и f . Если точка x  лежит на границе, то под 

действием g  она неподвижна. Рассмотрим композицию 

1 1
      

ni gn n

влож
S D S    

Тогда, с одной стороны, 

λ i g id �  

degλ 1  

а с другой – существует гомотопия, стягивающая диск в точку, т.е. отображение по 
верхней строке диаграммы гомотопно отображению в точку, и, значит, степень 
отображения нулевая, поскольку гомотопия степени не меняет. Получили 
противоречие. 

3. Теорема 

                                                 
25 Лёйтзен Э́гберт Ян Бра́уэр (нидерл. Luitzen Egbertus Jan Brouwer; 1881 — 1966) — 
голландский философ и математик, выпускник университета Амстердама, работавший в 
таких областях математики, как топология, теория множеств, математическая логика, 
теория меры и комплексный анализ. 
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Пусть дано отображение 

:   n nf M P , 

где M  и P – связные гладкие компактные замкнутые ориентируемые многообразия, и 
пусть    –  форма объема максимальной степени на P : 

deg n   

  1λ ny dy dy    …  

*

на M
  f     

Рассмотрим точку x  на многообразии M  и касательную плоскость xT M  в ней. 

Возьмем векторы 1, , na a…  в этой плоскости. При отображении f   

n nM P  

n

x yT M T P  

   
df

n n

x i i yT M a df a T P ∋  

Напомним, что 

      *
1 1

на Pна M
, , : , ,n nf a a df a df a  … …  

Теперь формулировка самой теоремы. 

*

на на 

deg
n nM P

f f      

Доказательство: рассмотрим на P  множество  f . Оно открыто, всюду плотно и 

имеет меру 0 (см. предыдущую лекцию). Как мы знаем, интеграл Римана формы   по  

P  к множеству меры 0 не чувствителен, поэтому 

\на n PP 

     

Слева тогда  

 1

* *

на \

 
n

M M f

f f
 

     
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Отметим, что в общем случае – мы это обсуждали – мера прообраза  1f    может 

быть ненулевая. Поэтому рассмотрим 

 1f A B    , 

где A  – из множества регулярных, а B  – из множества критических точек для f . 

Очевидно, что при f  регулярные точки могут попасть в критические значения в 

образе. 

Утверждение. * 0f    на множестве B . 

Доказательство:  

        *
1 1 ранг, , , , 0n n z

z B

f a a df a df a df n

     … …  

Таким образом, удаление B  на интеграл слева не влияет. Покажем, что его не меняет и 
удаление A .  

Пусть x  – регулярная точка, тогда для неё отображение f  – локальный 

диффеоморфизм. Поскольку   в B  имеет меру 0, около регулярной точки ее прообраз 
тоже имеет меру 0.  

Итак, мы показали, что и часть A  прообраза  1f    имеет меру 0 в M . 

Вернемся к доказательству теоремы. Теперь нам достаточно показать, что 

 1

*

\\

 
PM f

f
 

     

По определению, множество \P   состоит из регулярных точек. Рассмотрим открытое 

покрытие этого множества шариками (из регулярных точек): 

\ i

i

P U ∪  

Рассмотрим соответствующее этому покрытию разбиение единицами  

:  supp

1
i i

i

u 



 


 

и сведем задачу к локальной: 
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 
 

 
1

*

\\

 degi i

PM f

f f 
 

       

Ввиду сходимости интеграла на компактном многообразии, и, следовательно, 
сходимости ряда по iu : 

 
 

 
1

*

\\

degi i

i i PM f

f f 
 

       

Обозначим i   через   с малым носителем (supp iu ).          

Тогда осталось показать, что 

 1

*  deg
ii

uf u

f f


      

 
Рисунок 52 

Пусть  

 1
if u V



 ∪  (рисунок 52) 

Ввиду того, что f  – локальный диффеоморфизм (регулярная замена координат), 

*  
V u

f



      

Таким образом, все слагаемые в левой сумме одинаковые с точностью до знака. 
Возникает сумма знаков – степень отображения. Теорема доказана. 

4. Теорема Гаусса – Бонне26. 

Сформулируем ее только для двумерного случая. 

                                                 
26 Боннé Пьер Оссиан (фр. Bonnet Pierre Ossian; 1819 — 1892) — французский математик, член 
Парижской АН (1862), с 1878 профессор Парижского университета. Основные труды по 
математическому анализу и дифференциальной геометрии. 
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Рассмотрим гладкую двумерную ориентируемую поверхность 2
M , вложенную (или, 

быть может, гладко погруженную) в 3ℝ . Пусть  K P  – гауссова кривизна 

поверхности. Тогда 

 
2

21
2 2

2
M

Kd M g 


   , 

а интеграл гауссовой кривизны – гомотопический инвариант, т.е. не меняется при 

любой гладкой деформации 2
M  в 3ℝ . Это так, поскольку справа стоит род 

многообразия g , которые при деформации не изменяется. 

Доказательство: пусть 2S – сфера единичного радиуса с центром в нуле. Рассмотрим 

2 2:  f M S  –  гауссово отображение (рисунок 53). 

Пусть   – двумерная форма площади на сфере, инвариантная при вращении. По 
предыдущей теореме, 

2 2 2

* *1
 deg deg 4      2deg

2
M S M

f f f f f


            

Покажем, что 

 
2

* 21
 2deg 2 2

2
M

f f M g


     , 

т.е. что *f Kd   

Изобразим гауссово отображение 2
M  в  3ℝ : 

  2 ,M z g x y   

 
Рисунок 53 

Найдем координаты нормали на сфере: 
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 1
, , 1x y

gradf
n g g  

… …
 

   1
:  ,   ,x yf x y g g

…
 

Поскольку частные производные ,x yg g  в точке P  равны нулю, 1
P
… ,  

   :  ,   ,x yf x y g g  

Вернемся к тому, что требуется доказать.  

  * detf df f d  ,    

df  – матрица Якоби 

 det det xx xy

yx yy

g g
df K

g g

 
  

 
 

Таким образом, часть теоремы доказана.  
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Лекция 14. Степень отображения. Приложения 

Продолжим доказательство теоремы Гаусса – Бонне. Нам необходимо показать, что 

 
2

21
2 2

2
M

Kd M g 


    

 2 2 ручM S g   

1. Пусть 2 2 3M S  ℝ  

Гладко деформируем ее в стандартную единичного радиуса сферу 2S . Отметим, что 
при такой деформации гауссово отображение заменяется на гомотопное, а значит 
степень его не меняется. Таким образом, мы свели задачу к подсчету интеграла для 
более простой стандартной сферы. 

Мы знаем, что на такой сфере   1K x  . Тогда  

 
2

21 4
2 2deg

2 2
M

Kd f S


 
 

     

0g   

2. Сделаем еще одну гладкую гомотопию сферы: сожмем экватор до малого размера, в 
результате чего получим две сферы A  и B , соединенные перемычкой  . 

2

1 1 1 1
2 2 2    2

2 2 2 2
A BS

Kd Kd Kd Kd x x


   
   

           ≃ ≃  

3. Рассмотрим случай произвольного рода 0g  . Аналогичным образом деформируя 

сферу, получим две сферы, соединенные 1g   перемычками. 

 
 

2 1

1 1 1 1
2 2 2 1 2 2 2

2 2 2 2
g

A g BM

Kd Kd Kd Kd g g


   
   

            ≃  

Замечание. Имеется многомерный аналог формулы Гаусса – Бонне. 

Индекс векторного поля на многообразии 

Пусть на многообразии n
M  задано гладкое векторное поле   n

xV x T M . 

Определение. Точка x  называется особой для  V x , если   0V x   
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Индекс особой точки векторного поля 

Рассмотрим точку x , такую, что   0V x  , и рассмотрим сферу  1nS x
  (рисунок 54). 

Поскольку многообразие гладкое, точка x  лежит в некоторой окрестности U , 
диффеоморфной стандартному диску, поэтому будем считать, что эта окрестность 

отображена на стандартный шар � nU D . Точка x  тогда перейдет в начало координат, 

 1nS x
  –  в поверхность, ей гомеоморфной.  

 
Рисунок 54 

U  возьмем малой настолько, что   0V x   в \U x . Тогда рассмотрим ограничение 

векторного поля на сферу. Составим отображение – аналог отображению Гаусса: 

   1 1
1:   0   0n nf S S

   

   
 

 1
1 0nV x

f x S
V x

   

Определение. Степень этого отображение называется индексом особой точки x  для 
векторного поля V  

Лемма. Индекс точки корректно определен (не зависит от выбора локальных 
координат и эпсилон). 

Доказательство: замена координат и изменение   приводит к гомотопии сферы, а, 
значит, и к гомотопии f , которая не меняет степень отображения (см. теорему о 

сохранении степени при гомотопии). 

Возьмем векторное поле V  на «хорошем» многообразии M  и отметим все его 
изолированные особые точки, коих конечное число. 

Определение. Индексом векторного поля V  называется сумма индексов всех его 
особых точек. 
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Теорема (об индексе векторного поля). 

Пусть V  – гладкое векторное поле на «хорошем» многообразии M . Тогда 

 ind nV M  

Напомним прежде определения эйлеровой характеристики. 

1. Определение через гомотопии: 

     
0

1 dim ,
n

i i n

i

H M M


  ℝ  

2. Комбинаторное определение. Рассмотрим гладкую триангуляцию многообразия M : 

n i

i

M  ∪ , 

где 0  – точка, 1  – отрезок, 2  – треугольник, 3  – тетраэдр и т.д. 

Утверждение. На любом гладком компактном многообразии существует конечная 
гладкая триангуляция. 

Утверждение. Триангуляция правильная, если симплексы могут пересекаться только 
по одной общей грани. 

Теорема.    
0

1 #
n

i i n

i

M


    

В частности,  

 2 # # #вершин ребер треугольниковM     

Комментарий. Если характеристика векторного поля многообразия отлична от нуля, 
то его индекс, согласно теореме, не равен нулю, а значит существует хотя бы одна 
особая точка. С точки зрения диффуров, это положение равновесия (стационарная 
точка). 

Итак, докажем теорему для частного случая. 

Рассмотрим гладкую, с гладкой границей область n
M  в nℝ . Пусть  V x – векторное 

поле на этом многообразии. Предположим, что у поля лишь конечное нулей (т.е. 
особые точки изолированы), а также что векторное поле всюду на границе отлично от 
нуля. Рассмотрим аналог отображения Гаусса: 

 1 1
1:   0n nf V S   
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   
 

 1
1 0nV x

f x S
V x

   

Теорема (частный случай). В этих предположениях, 
на M

ind degV f  

Следствие. Пусть даны два векторных поля 1V  и  2V  с этим предположением, и пусть 

они гомотопны на границе, т.е. 

1 2:    ,   0 1t V V t     

При этом, 

  1
1 0   , n

tV x t x V      

Тогда 1 2ind indV V  

Комментарий. Отсюда видно, что индекс поля полностью определяется его 
поведением на границе области. Неважно, какое количество особых точек внутри, и 
какие у них индексы. 

Доказательство: отметим все особые точки поля внутри (по предположению теоремы, 
на границе их нет). Окружим эти точки малыми сферами радиуса   таким образом, 
чтобы диски, ограниченные этими сферами, не пересекались (рисунок 55). Рассмотрим 
многообразие 

 \n n n

i

i

W M D x ∪  

  0   nV x x W    

 
Рисунок 55 

Возьмем индуцированные ориентации на V  и на сферах. Как в теореме Стокса, они 
отличаются знаком. Тогда 

 1 1n n n

i

i

W V S x
   ∪   (1) 
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Рассмотрим аналог отображения Гаусса: 

   
 nx W

V x
f x

V x

  

 1
1:    0n nf W S   

На сфере рассмотрим стандартную форму объема 1n , инвариантную при вращениях. 

*

1
1

* *

  

  
n n

f

на W на S

f f


    

Применим к форме *f   формулу Стокса на nW : 

 * 1 * 1 * 1 0
n n n

n n n

W W W

f d f f d  



         

Тогда из равенства (1) следует, что 

   1 1 1 1

* * *

  

0  
n n n n

i i

i

iV S x V S x

f f f

 
   

       
∪

 

По теореме из предыдущей лекции, 

 
1

1

* 1
1 1

 

deg vol 0
n

n

n

n
на V

V

f f S





    

   
 

1
1

* 1
1 1

 

deg vol 0
n

n i
i

n

n
на S xi iS x

f f S








     

Из этих равенств вытекает, что 

 
 

 
1 1

1 1
1 1 1 1

  

deg vol 0 deg vol 0
n n

i

n n

n n
на V на S xi

f S f S


 

 
     

Окончательно имеем 

 
 

1 1     

deg deg ind ind
n n n

i

i
на Vна V на S xi i на W

f f x V


 

     

Приложения 

Теорема (о еже). Четномерного ежа нельзя причесать. 

Запишем теорему формально. 

Пусть V  –  гладкое векторное поле на сфере nS  с конечным числом особенностей. 
Тогда 
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 
 

2,  
ind 1 1

0,  n

n

на S

четное

нечетное

n
V

n






    


 

Другими словами, на четномерной сфере любое гладкое поле обязательно имеет хотя 
бы один ноль. 

Комментарий. Для нечетного n  такие поля есть. Например, на окружности 1S  есть 
всюду ненулевое векторное поле V (вращение вокруг нуля). 

Задача. Постройте такое поле для трехмерной сферы. 

Доказательство проведем для 2n  . 

 

1 способ (через теорему об индексе).  

 
2

2

 
ind 2 0

на S
V S    

2 способ. 

Пусть дано гладкое векторное поле  V x  на сфере 2S . 

 2
0 0:   0x S V x    

Рассмотрим на сфере точку x , в которой векторное поле отлично от нуля (рисунок 56). 

Пусть 2D  – маленький диск с центром в этой точке. Векторное поле гладкое, поэтому 

можно считать, что в точках диска оно параллельно вектору в центре. Отметим 4 точки 

на граничной окружности. Обозначим дополнение к диску 2
D . Введем на нем 

декартовы координаты. Развернем диск 2
D  при помощи диффеоморфизма на плоский 

диск D . Изобразим исходное поле V на диске D . По доказанной теореме 

2 2 1  

ind deg
на D на D S

V f
 

  

 1     deg 2f A A C f      
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Рисунок 56 
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Лекция 15. Примеры особых точек векторных полей. 

Уравнения Эйлера – Лагранжа 

Рассмотрим евклидову плоскость как комплексную прямую z x iy   и рассмотрим 

разложение комплексной аналитической функции от z : 

     , ,f z a x y ib x y   

Возьмем два гладких векторных поля 

 grad ,x yV a a a   

 grad ,x yW b b b   

Напомним, что в комплексной аналитической функции вещественная и мнимая часть 
связаны условием Коши – Римана: 

x y

y x

a b

a b




 
 

Лемма 1. Поля V и W  –  ортогональны. 

Доказательство следует из условия Коши – Римана: 

, 0x x y y y x x yV W a b a b b b b b      

Лемма 2.     0V b W a   

Доказательство:  

  0x x y y x x y yV b V b V b a b a b      

Аналогично можно показать, что и   0W a   

Примеры 

1. ,  0nf z n   

2. ,  0nf z n   

3. lnf z  

4. 
1

f z
z

   – функция Жуковского 

Точка 0z   во всех этих полях, очевидно, особая. 
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Замечание. Функция f  из пунктов 1–2 называется комплексным потенциалом полей. 

Рассмотрим линии уровня 

a const

b const




 

По доказанной лемме 2 эти линии – в точности интегральные траектории (линии тока) 
полей V  и W  

1.   cos sin
n

n i n n

a b

f z re r n i r n     
����� �����

 

cosnr n C const    

cos
n

C
r

n
  

 
Рисунок 57 

 
Ограничим поле на окружность и посчитаем его вращение. Из рисунка 57 видно, что 
когда точка сделает полный оборот по окружности, вектор повернется на 

 2 2 1n n
n


       
 

 

Таким образом, 

 ind 0 1n    

При 2n   получаем невырожденное седло с индексом, равным минус единице. 

2.   cos sin
n

n i n n

a b

f z re r n i r n  
     
����� �����

 

cosnr n C const    
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cos
n

n
r

C


  

 
Рисунок 58 

Аналогично первому примеру получаем, что угол поворота равен  

 2 2 1n n
n


     
 

 (рисунок 58) 

 ind 0 1n   

Для частного случая 1n   получаем, что  ind 0 2  

Задача. Проделайте эти операции для примеров 3 – 4 самостоятельно. 

Задача. Пусть    1 2С z S z   – пополнение комплексной прямой. Изобразить для 

этого случая поведение полей из предыдущих примеров. 

Элементы вариационных задач. Функционалы. Уравнения Эйлера – Лагранжа 

Критические точки гладких функций. Функции Морса27 

Рассмотрим гладкую функцию  f x  на многообразии n
M . 

Определение. Точка x  называется критической для функции f , если  

   
grad 0  0,    1

i

f x
f x i n

x


    


 

Лемма. Понятие критической точки не зависит от выбора локальных координат. 

                                                 
27 Марстон Морс (англ. Marston Morse; 1892 —1977) — американский математик. Широко известен 
прежде всего благодаря своим выдающимся результатам в анализе, вариационном исчислении и 
дифференциальной топологии, описывающим связь алгебро-топологических свойств топологического 
пространства с критическими точками функционалов, заданных на нём, называемым сейчас теорией 
Морса. 
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Доказательство: перейдем    x x , тогда  

0 0
i

ii i

f x f

xx x

  
  

  
 

Рассмотрим гессиан функции f : 

2

Hess
i j

n n

f
f

x x


 
    

 

Определение. Критическая точка x  называется невырожденной (точкой Морса), если 

 det 0i jx x
f   

Лемма. Понятие критической невырожденной точки корректно определено, т.е. от 
выбора локальных координат не зависит. 

Доказательство:  

�

2 2 2 2

0

i j i i j

i j i i ji j i j i j i j

f x x f f x x x f

x x x x xx x x x x x x x


        
  

                  
 

Определение. Функция называется функцией Морса, если все её критические точки –
невырожденные. 

Теорема. Функции Морса всюду плотны в пространстве  nC M , т.е. любая гладкая 

функция сколь угодно малым возмущением может быть сделана функцией Морса. 

В этом смысле функции Морса – это функции «общего положения», т.е. типичные 
гладкие функции. 

Рассмотрим другой подход к пониманию критической точки. 

Возьмем вектор n

xa T M  и рассмотрим 

    
0

0

lim
i

i

i it
x x

f x t f xdf f dx f
a

da t x dt x 

  
  

 
∼

, 

где  x t  – гладкая траектория из многообразия n
M , такая, что 

 
0

0     
i

idx
x a a

dt



    

Утверждение. Точка x  –  критическая для f , если и только если её производная по 

любому касательному направлению равна нулю: 
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0   n

x

x

df
a T M

da
    

Понятие функционала 

Заменим многообразие n
M  на некоторое бесконечномерное пространство F . Тогда 

функции f  будет соответствовать функционал J  – ее обобщение на 

бесконечномерный случай. 

Рассмотрим евклидово пространство kℝ , отнесенное к декартовым координатам 

 1, ,k ku u u … . В нем рассмотрим диск  kD u . В этом диске возникает, как мы 

знаем, ортогональная сетка декартовых координат. 

Пусть n
M  –  конечномерное многообразие с локальными координатами 

 1, , nx x x …  

   :     k ng D u M x  

   1, ,
:       

1

i i kx x u u
g x x u

i n

 
  

 

…
 

В этом случае, 

 ,k nF C D M  

Зададим на отображениях g  функционал  

 
 

1, , ;
k

i
n

D u

x
J g L x x du

u

  
   

  
 … , 

где L  –  некоторая гладкая функция, называемая лагранжианом. 

Для краткости будем писать 

 
 

,
k

i
i

D u

x
J g L x du

u

 
   
  

По аналогии с конечномерным случаем, введем понятие критической точки, т.е. 
критического отображения g  для данного функционала. 

Рассмотрим возмущение отображения  g u , где   мало и имеет малый носитель: 

  0,   ku u D    
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 supp kD   

Тогда  
   

0
lim

J g J gdJ

d 


 

 
   –  производная функционала вдоль возмущения   

или её инвариация. 

Определение. Отображение g  называется критическим (сингулярным) для данного 

функционала J , если  0
dJ

d
  для любого малого значения  . 

Замечание. В конечномерном случае, очевидно, получаем уже знакомое нам понятие 
критической точки. 

Теорема. Отображение g  –  критическое для функционала J , ежели g удовлетворяет 

системе уравнений Эйлера – Лагранжа.  

Комментарий. Уравнения Эйлера – Лагранжа – аналог уравнения  

grad 0f   

в конечномерном случае. 

Доказательство: 

    
   

0 ; ;
k k

i i i i i i i i

i iu u u u

D u D u u

dJ L L
L x x L x x du du

d x x
   



   


  
          

 ∼  

 k

i i i

i i i

D u u u

L L L
du

x u x u x 
 

 

   
        

                   
   

   k k

i i

i i i

D u D uu u

L L L
du du

x u x u x 
 

 

   
        

                  
    

Покажем, что второе слагаемое обращается в ноль. 

  1

1

ˆ

ˆ
k k

i i k

i i

D u u u u uu u

L L
du du du u u

u x u x  

 
 

 

 
       

                
   

… …

… …  

Интеграл в квадратных скобках представим по формуле Лейбница в виде 

B

i

i

u A

L

x 


 
   

 

Это выражение равно нулю, поскольку А и B – точки на границе. 
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Таким образом, получаем 

 

0
k

i

i i

D u u

dJ L L
du

d x u x 




 


    
          

  

Поскольку интеграл должен быть равен нулю для любых малых  ,  

1

0
k

i i

u

L L

x u x 




   
      
  

Эта система уравнений и называется уравнениями Эйлера – Лагранжа. 

Замечание. Для конечномерной функции эта система превращается в систему равенств 
нулю градиента. 

Экстремальность геодезических. Экстремальность минимальных поверхностей. 

Пусть на римановом многообразии задана положительно определенная риманова 

метрика  ijg x . Рассмотрим всевозможные кривые     it x t  . 

Пусть дан одномерный шар  1D t . Отобразим его в риманово многообразие: 

 :   0,1   M   

Рассмотрим функционалы 

     
1 1

0 0

i j

ijS t dt g x x x dt 
 

     –  длина геодезической 

     
21 1

0 0

i j

ijE t dt g x x x dt 
 

     –  действие пути («энергия» пути) 

Теорема. Экстремальные функционалы E  (т.е. критические пути) – это геодезические 
данной метрики и только они. 

Доказательство: запишем уравнения Эйлера – Лагранжа. 

2 0ij i j j

kjk
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x x g x

x t

    
     

 

2 2 0ij kji j i j j

kjk i

g g
x x x x g x

x x

     
  

 
 

1
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2
ij kjj i jki

kj k i j

g g g
g x x x

x x x

    
        
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символы Кристоффеля

1
0

2
ij kjk i jki

k i j

g g g
x g x x

x x x

 
    
        �����������

 

0i j

ijx x x 
  

    –  уравнение геодезических 

Таким образом, уравнения Эйлера – Лагранжа для функционала энергии эквивалентны 
уравнению геодезических.  
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Лекция 16. Экстремальность геодезических и минимальных 

поверхностей 

Теорема. Экстремальные функционалы длины – это все траектории  , которые 

получаются из геодезических путем произвольной гладкой замены параметра, и только 
они. 

Доказательство: вновь запишем уравнения Эйлера – Лагранжа. 

 
 1

D t

S Ldt    

1

0
k

p p

u

L L

x u x 




   
      
  

 
 

 
 1 1

0i j i j

ij ijp
pi j i j

ij ij

g x x x g x x x
x t

xg x x x g x x x

   

   

 
      

          
 

 

Пусть  t  –  решение этой системы уравнений. Введем на экстремали натуральный 

параметр t s . С удивлением обнаруживаем, что 

    1i j

ijt g x x x
 

   

Покуда это так, наша система превращается в систему из предыдущей теоремы, 
решениями которой являются геодезические. 

Комментарий. Мы воспользовались тем, что при замене  s s t  длина не меняется. 

Минимальные поверхности как экстремали функционала объема (площади) 

Рассмотрим касательную плоскость xT V  к гиперповерхности 1n nV   ℝ  (рисунок 59). 

Локально зададим V  в виде графика функции. Для этого выберем на плоскости 

декартовы координаты 1, , nx x…  и рассмотрим ось nx , нормальную к поверхности. 

Тогда 

 1 1, ,n nx f x x  …  

 1 1

1
1 2 1 1

1, ,

vol 1 , ,i

n

n
n n

x
iD x x

V f dx x



 



 
…

…  
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    Рисунок 59 

Рассматриваем это отображение как функционал: 

1 1
1  voln n

nV V 
  

  
1

2

1

1 i i

n

x x
i

f L f




   

Теорема.  

1. Экстремальными функционалами объема являются минимальные поверхности и 
только они. 

2. Каждая минимальная поверхность является локальным минимумом функционала 
объема. 

Доказательство:  

1. Внезапно выпишем уравнения Эйлера – Лагранжа для этого функционала. 
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Поскольку первое слагаемое в уравнении равно нулю, 
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Рассмотрим случай, когда 3n  , т.е. 2 3V  ℝ : 
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2 2 2 2 2 2 0xx xx x xx y x xx x y xy yy yy x yy y y yy x y xyf f f f f f f f f f f f f f f f f f f f           

   2 21 2 1 0xx y x y xy yy xf f f f f f f      

Методом пристального взгляда находим, что у нас получилось уравнение минимальных 
поверхностей для графика. 

Таким образом, уравнение Эйлера – Лагранжа для данного функционала эквивалентно 
уравнению минимальных поверхностей. 

2. Чтобы упростить выкладки, проведем доказательство для 3n   (случай с 
произвольным n  доказывается аналогично). 

 

2 2 2
2

,

vol 1 x y

D x y

V f f dxdy    

Возьмем малое возмущение 2Vɶ  с малой амплитудой и малым носителем (рисунок 60).  

                   
                                     Рисунок 60                                                  Рисунок 61 

Тогда  

f f  ɶ  

2 0
D




  
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Рассмотрим всевозможные возмущения поверхности. На рисунке 61  B   – линейное 

пространство всех возмущений нашей функции, поскольку 
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Все возмущения функции получаются сдвигом  B   на f . Ограничим наш 

функционал на линейное пространство  f B  . 

Утверждение. Эта функция выпукла вниз в пространстве  f B  . Более того, 

лагранжиан L  есть функция, также выпуклая вниз. 

Доказательство: рассмотрим две произвольные точки в пространстве  f B   

1

2

r f

g f





 

 
 

Возьмем отрезок, соединяющий эти две точки и содержащий точку f . 

Рассмотрим произвольную точку r g   (коэффициенты в сумме дают единицу). 

Тогда нам нужно показать, что 

     L r g L r L g        (рисунок 62) 

 
Рисунок 62 

 ,F f x y z   

 2 2 2 21 grad , 1 1x y x y x yf f F f f f f         

Ввиду этого, запишем 

        grad gradL r g r g z r z g z               

           grad grad grad gradr z g z r z g z L r L g                

Таким образом, теорема полностью доказана.  
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