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Лекция 1 
Зависимость решений от параметров 

( ) ( )
( )

1

0 0

, ,   , nx f t x t x G

x t x

•
+ = ∈ ⊂


=



Эту задачу Коши называем исходной (соответственно решение – исходным). 

( )
( )0 0

,y g t x

y t y

• =


=
– возмущенная задача (решение)

Все описанные решения – непродолжаемые. 

Зададимся вопросами: 

1) ( ) ( )
?

D y D x , 

т.е. будет ли похожа в каком-то 
смысле область определения y  на 
область определения x ; 

2) Если на первый пункт ответ
положительный, то

( ) ( )
?

y t x t , 

т.е. будет ли решение y  хоть  
где-нибудь близко к решению x . 

Как ни странно, ответы на оба этих 
вопроса – положительны. 

Теорема (о непрерывной зависимости решения задачи Коши от правых частей). 

( )
исходное решение

,   ,
 xf f C G M

x
′ ∈

⇒
−

( ) ( )
( )0 0  0  0 :  ,  y

G K

y x D y K
K D x g g C G

g f y x

δ
ε δ

δ ε

 − < ⊃ ′∀ ∈ ∀ > ∃ > ∀ ∈ ⇒ 
− < − < 

Прежде, чем доказывать, вспомним некоторые факты из других разделов математики. 

Пусть в метрических пространствах заданы множества ,   m kX y⊂ ⊂  . 

Рисунок 1 
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Определение.  ( ) ( ), inf , 0
x X
y Y

X Y x yρ ρ
∈
∈

≡ ≥  

Лемма.  Если X – компакт, Y – замкнуто и { }X Y∩ = ∅ , то ( ), 0X Yρ >

Определение.  Множество ( )( ) ( ) ( ){ },   , ,  KU x t y t K y x tε ε= ∈ − < , где K – 

отрезок, 0ε > , называется трубкой-ε . 

Лемма.  Если ( )X C K∈ , то ее граница состоит из боковой поверхности и торцов.

Доказательство теоремы:  

I. [ ] ( ),K D xα β= ⊂

10 ,
K

n
xГε ρ +< < ( )G

( ),,   Kx C
L f C U x Gε′= = ⊂

II.  
( ) ( )2 1 Le β α

εδ ε
β α −

= <
+ −

 

0 0   
C

y x
z y x

g f

δ

δ

 − < ⇒ = −
− <

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ), , , ,z t y t x t g t y t f t x t g t y t f t y t
• • •

= − = − ≤ − +

( )( ) ( )( ) ( ) ( ) ( ) 0, , ,  f t y t f t x t L y t x t L z t t tδ δ+ − ≤ + − = + ≥  

( ) ( )( ) ( )0
0 0 1

2
L t t Lz t z t t t e e β α εδ δ β α ε− −≤ + − ≤ + − < <  

III. ( )
,

2

   
2y K

Г U x y zε
ε

∈ ⇒ − < ⇒

( )y t  не принадлежит боковой поверхности трубки и, значит, ( )D y K⊃

Теорема доказана. 

Введем некоторые обозначения: 

1) ( ) ( ){ }0,1 :  ,n
xC G f G f f C G′= → ∈

Рисунок 2 
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( ) ( ){ }0,1
G

U f g C G g fδ δ= ∈ − <

2)  ( )
0 0

n
tG x⊃  –  сечение области G  гиперплоскостью 0t t=

Например, ( ) { }00 0 0 0tU x y G y xδ δ= ∈ − <

3) ( )S G  –  всякие непродолжаемые решения всяких задач Коши при 
( )

0

0,1

0

  

t

g C G
y G

 ∈
 ∈

( ) ( ){ },K K
U x y S G y xε ε= ∈ − <  – функциональная - трубкаε  решений x  на 

компакте K  

Следствие 1. 

Отображение ( ) ( ) ( )
0

0,1
0tC G G x S G× → , т.е. ( ) ( )0,   f x x   – непрерывно. 

1.1)  В пространстве 0,1C , как выяснилось, можно завести компактно-открытую 
топологию: 

( ) ( ){ }0,1
,С C

U f g C G g fδ δ= ∈ − <

Следствие 2. 

Утверждение верно в смысле пункта 1.1. 

Пусть дана функция ( ), ,   ,   m kf x y x X y Y∈ ⊂ ∈ ⊂  . Она может быть непрерывна:

1) по паре ( )x,y ;

2) и по x, и по y;

3) по x и по y равномерно по x;

4) по x и по y равномерно на компактах K X⊂  по x.

Упражнение.  Докажите импликации 1 2,  3 1 4⇒ ⇒ ⇔

https://vk.com/teachinmsu
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Лекция 2 
Непрерывность 

В прошлый раз мы рассматривали задачу Коши и доказывали, что решение этой задачи 
непрерывно зависит от правых частей самой задачи.  

Рассмотрим применение этой теоремы. 

( ) ( )
( ) ( )

1

0 0

, , ,   , ,   n mx f t x t x G M

x t x

µ µ

µ

•
+ = ∈ ⊂ ∈ ⊂


=

   

00 :  n
tx M G→ ∈ , где 

0t
G – сечение области G  гиперплоскостью 0t t= . 

Напомним, что мы рассматриваем только непродолжаемые решения. 

GM S→

( )  ,xµ µ→   

В области M  есть топология, индуцированная пространством m . Эта топология не 
зависит от выбора нормы в m , так как все нормы в конечномерном пространстве 
эквивалентны. 

GS  – пространство всяких решений, получаемых от всяких задач. В нем 
рассматривается компактно-открытая топология на любом компакте. 

Запись второго уравнения системы несколько парадоксальна, ведь x  зависит не только 
от t , но и от µ . Несмотря на это, она является общепринятой. 

Теорема (о непрерывной зависимости решений от параметра). 

( )
( ) ( )( )* *

0

,   ,
  ,     ,xf f C G M

M K D x
x C M

µ µ
′∈ ⇒ ∀ ∈ ∀ ∈

∈
  

( ) ( )* *0  0 :      ,   ,
K

x xε δ µ µ δ µ µ ε∀ > ∃ > − < ⇒ − <   

Доказательство: построим сквозное отображение. 

( )
0

0,1
t GM C G G S→ × →

Если мы докажем, что отображения в его составе непрерывны, то и все отображение 
будет непрерывным. 

https://vk.com/teachinmsu
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( ) ( )( ) ( )0  ,   , ,   ,f x xµ µ µ µ      

Функция f , вообще говоря, не обязательно равномерно непрерывна по паре ( ),t x G∈ ,

но если положить, что ( ),t x С G∈ ⊂ , то по доказанной на прошлой лекции лемме она
будет равномерно непрерывной по этой паре. 

Из следствия леммы получим, что ( )
0

0,1
t GC G G S× →  – непрерывно. 

Таким образом, мы показали непрерывность обоих отображений. 

Рассмотрим решение как функцию двух переменных: 

( ) ( ) ( )  ,   :   , ,x t x tµ µ    – решение семейства задач Коши.

Теорема.  В условиях предыдущей теоремы справедливо, что 

1) ( )( )  ,   D x    – область1 в 1 m+

2) ,x x
•

– непрерывны по ( ),t µ

Доказательство: 

1) Рассмотрим рисунок. Каждому Mµ∈  и 0t  ставится в
соответствие функция D .

Очевидно, что оно связно. Для некоторого отрезка K , 
содержащего *t  и целиком лежащего в области 
определения, точка ( )* *,t µ  будет содержать целый

прямоугольник, т.е. это множество открыто. 

2) x  непрерывна по µ  равномерно по t K∈  и по лемме она непрерывна по паре ( ),t µ

3) ( ) ( )( ), , , ,x t f t x tµ µ µ=  – непрерывна по паре ( ),t µ

Теорема (о непрерывности решений по начальному значению). 

( )
( ) ( )( )0

* *
0 0

0

,   
  0,   ,     ,x

t

f f C G
x G K D x x

x C M
ε

′∈ ⇒ ∀ > ∀ ∈ ∀ ∈
∈



1 Открытое связное множество. 

Рисунок 3 
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( ) ( )* *
0 0 0 00 :       ,   ,

K
x x x x x xδ δ ε∃ > − < ⇒ − <   

Доказательство: это следствие доказанной в предшествующей лекции первой теоремы. 

Теорема.  В условиях предыдущей теоремы справедливо, что 

1) ( )( )  ,   D x    – область в 1 n+

2) ,x x
•

– непрерывны по ( )0,t x

Пример.  Рассмотрим уравнение 
взрыва: 

( )

2

00
x x
x x

• =


=

2
dx dt
x

=

2
1  dx dt t c

x x
= ⇒ − = −∫ ∫

( )0

0

1, 1x t x
t

x

=
−

Фиксируем значение *
0 1x =  и будем изучать решения на интервале ( )1,1− . Из теоремы

следует, что в ε − трубке будут лежать все решения при достаточно близком к *
0x  

значении 0x . 

Мы не можем гарантировать, что на этом интервале будет близость, даже если решение 
существует, и не можем гарантировать, что соседние решения на нем будут 
существовать. Пример показывает, что данная теорема по сути своей близка к 
критерию. 

Дифференцируемость 

( )
( ) ( )0 0

, ,x f t x

x t x

µ

µ

• =


=

Теорема* (о дифференцируемости решений по параметру). 

Рисунок 4 
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Справедливо, что 

( )
( )

( ) ( )1
0

,   ,  
   ,  ,    xf f f C G M
x x x

x C M
µ

µ µ
µ

•• ′′ ′ ∈ ×  ′ ′⇒ ∃ ∃ ≡  
∈  



и все три функции непрерывны по ( ) ( )( ),   ,  t D xµ ∈   .

xµ′  называется производной решения по параметру µ  вдоль решения ( )  ,x µ

Доказывать теорему мы не будем из-за довольно сложных и объемных требуемых 
выкладок, отметим лишь основную идею: 

( ) ( ) ( ) ( ), ,
, ,         ,

x t x t
z t x tν µ

µ

ν µ
ν µ µ

ν µ
→−

′= →
−

 

↓ ↑  

( ) ( )
( ) ( )

( ) ( )
( ) ( )0 0 0 0

, , , , , , , , , ,       
, ,

z t g t z z t g t z

z t z z t z
ν µν µ ν µ µ µ µ µ

ν µ µ µ

• •

→
  = =→ 

= =  

Как же найти производную fµ′ ? 

Оказывается, механизм получения производной в доказательстве теоремы нам не 
нужен – достаточно лишь информации, содержащейся в формулировке. 

Рассмотрим ( ) ( )    ,z xµ µ′≡   – матрицу размера n m× . Алгоритм нахождения: 

1) подставить ( )    ,x x µ←  ;

2) продифференцировать по µ  всё, что можно;

3) положить *µ µ= . 

Продемонстрируем: 

( ) ( )( )
( ) ( )0 0

, , , ,

,

x t f t x t

x t x

µ µ µ

µ µ

• =

 =

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )0 0

, , , , , , , ,

,
xx t f t x t x t f t x t

x t x
µ µ µ

µ

µ µ µ µ µ µ

µ µ

• ′ ′ ′ ′= ⋅ +

′ ′=
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( ) ( ) ( ) ( )
( ) ( )*

0 0 где

,

,  

z t A t z t F t

z t x µ

• = +


′=

( ) ( )( )* *, , ,xA t f t x t µ µ′= , 

( ) ( )( )* *, , ,F t f t x tµ µ µ′= . 

( )z t
•

называется системой в вариациях по параметру вдоль решения ( )*  ,x µ

Рассмотрим теперь такую систему: 

( )
( )0 0

,x f t x

x t x

• =


=

Нельзя ли продифференцировать ее прямо по 0x ? 

( ) ( )0

*
0    ,xz x x′=

( ) ( ) ( )
( )0

система в вариациях по начальному значению  z t A t z t

z t E

• = −


=

( ) ( )*
0 0, ,z t Z t t x=  – матрица Коши. 

Заметим, что система в вариациях по начальному значению одинакова для 
дифференцирования по любым координатам. 

Рассмотрим частный случай: 

( ) ( )x A t x F t
•

= +

( )z A t z
•

=  – не зависит от *
0x

Высказывание.  

( ) ( ) ( ) ( )
00 0 0, , ,xx t x h x t x x t x h o h′+ = + ⋅ +

Это равенство можно преобразовать: 

( ) ( ) ( )0 0 0, , ,x t x h x t x X t t h+ = + , где X  – оператор Коши. 
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Лекция 3 

На прошлой лекции мы рассматривали задачу 

( ) ( )
( ) ( )0 0

, , ,   , ,   x f t x t x G M

x t x

µ µ

µ

• = ∈ ∈


=
 

При естественных предположениях гладкости от правых частей, мы полагали, что 

( ) ( )0  ,     ,x xηµ η µ→+ →   

( ) ( ) ( )
( )1

, , ,
o

x t x t tµ η µ α η+ = +


 

( ) ( )( )0  ,   0     ,
K

K D xηα η µ→→ ∀ ⊂   

Таким образом, мы разложили исходное решение в ряд с нулевым членом ( ),x t µ  и

остатком ( ),tα η . Однако его можно разложить и подробнее.

Следствие.  В условиях теоремы о дифференцируемости, справедливо разложение 

( ) ( ) ( ) ( )
( )

( )

1

, , , , ,   0
o

o

x t x t x t tµ

η

µ η µ µ η α η η η′+ = + ⋅ + ⋅ →



 

Доказательство: нам необходимо показать, что бесконечно малая функция равномерна 
по t . 

1) ( )( ) ( ) ( ) ( ) ( )( )  ,          ,K D x U U D x Kµ µ µ η µ µ η∀ ⊂ ∃ ∀ + ∈ + ⊃

Видно, что функция x  определена на ( )K U µ× . Введем величину

( )
( )sup ,

K U
L x tµ

µ
µ η

•

×
′≡ + < ∞

Производная из тождества существует ввиду доказанной теоремы. 

2) Осталось определить

( )
( ) ( ) ( )

( )
0

, , ,
,   0

,
lim , 0,   0

x t x t x t

t
t

µ

η

µ η µ µ η η
η

ηα η
α η η

→

′+ − − + ⋅
≠= ⇒

 = =
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( ) ( ) ( ) ( ), , ,
 0 :  ,  

x t x t x t
t µµ η µ µ η η

η α η
η

•• •
• ′+ − − + ⋅

⇒ ≠ = ⇒

( )
( ) ( ) ( ), , ,

 :  , 2
x t x t x t

t t L L L
µµ η µ µ η η

α η
η

•• •

•
′+ − + + ⋅

⇒ ∀ ≤ ≤ + =

3) α  – липшицева2 по t  и непрерывна по η  и, значит, она непрерывна по паре ( ),t η .
Отсюда следует, что α  – непрерывна по η  равномерно по t K∈ .

Уравнения, зависящие от параметра 



( ) ( )

( ) ( )

( ) ( )

( ) ( 1)

0 0

0 1

( 1)
0 1

, , ,  , ,

G
M

n n

n
n

y f t y y y

y t y

y t y

y t y

µ

µ

µ

µ

∈
∈•

−

•

−
−

  
  

=  
  

 
 =

 =


 =











1

2

( 1)n n

y x
xyx y

xy

ψ
•

−

   
   
   = = =   
       


– каноническая замена.

( ) ( )
( ) ( )0 0

, , ,   , ,   x f t x t x G M

x t y

µ µ

µ

• = ∈ ∈

 =

 

2 Отображение f  метрического пространства ( ), XX ρ  в метрическое пространство ( ), YY ρ

называется липшицевым, если ( ) ( )( ) ( ) :   , ,Y XL f x f y L x yρ ρ∃ ≤ ⋅  
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( )

( )
( ) ( )

2

0 0

, ,

, ,
n

x

x f t x
x

f t x

x t y

µ

µ

µ

•

  
  
  = =       
 =



Итак, задачу Коши для скалярной функции y  мы превращаем в задачу для векторной 
функции x . 

fS  – решения первого уравнения, fS  – решения второй системы, причем 

f fS Sψ→  и  
1

f fS Sψ −

←

Какая будет близость решений? 

( ) ( ) ( )( ) ( )
,

0
 sup     i i

k f Ki n
U y z S z yε ε

≤ <

 = ∈ − < 
 

  3

Теорема.  Пусть 

( )
( )

( ),   ,
,  0, -1

iy

i

f f C G M
i n

y C M

′ ∈ =
∈

, 

т.е. f  имеет производную по x (все частные производные по y), непрерывна по 

совокупности аргументов и по x, а также вектор y  – непрерывен. 

Тогда 

( )( )0      ,   0 :    M K D yε µ µ δ ν µ δ∀ > ∀ ∈ ∀ ∈ ∃ > − < ⇒

( ) ( ) 1
  ,   ,

n

K
y yν µ ε

−
⇒ − <   

Доказательство: очевидно при построении сквозного отображения 
1

ffM S Sϕ−

→ → , 

непрерывного, ввиду непрерывности и первого отображения (доказано ранее), и 
второго (по построению). 

3 ( ) ( ) 1( ) ( )

0

sup     ni i

KK
i n

z y z k −

≤ <

− = −  – норма в 1nC −
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Пример.  Уравнение колебания маятника: 

( ) ( )

2 cos ,   0,   0

0 0 0

y a y t a

y y

ω ω
••

•

 + = > >

 = =

2 i tz a z e ω
••

+ =  

Такой переход называется методом комплексных амплитуд. 

( )0

,   
,   

i t

i t

Ae a
z t

Ate a

ω

ω

ω

ω

 ≠= 
=

Дифференцируем: 

1) 2 2i t i t i tAe a Ae eω ω ωω− + =  

2 2
1A

a ω
=

−

2) 22 i t i ti a e Ateω ωω ω⋅ ⋅ ⋅ − ⋅ 2 i ta tAe ω+ i te ω=  

1
2

A
iω

= ( )
( )

( )

2 2 2 2

0

1 1Re cos sin cos ,   

1Re cos sin sin ,   
2 2

t i t t a
a a

y t
tt t i t t a

i i

ω ω ω ω
ω ω

ω ω ω ω
ω ω

  + = ≠  − −  = 
  + = =   

Рисунок 5 Рисунок 6 
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Поскольку первое уравнение не удовлетворяет условию ( ) ( )0 0 0y y
•

= = , дополним 
его, вычтя частное решение: 

( )
( )2 2

0

1 cos cos ,   

sin ,   
2

t at a
ay t

t t a
i

ω ω
ω

ω ω
ω

 − ≠ −= 
 =


 sin

cos cos 2 sin sin
2 2

at

a at at t tω ωω

≈

+ −   − = ⋅ ⋅   
   



 (см. рисунок) 

Рисунок 7 

Рассмотрим теперь ( ),y t µ  – функцию двух переменных.

Следствие.  В условиях предыдущей теоремы справедливо, что 

1) ( )( )  ,   D y    – область в 1 m+

2) ( )( )   ,   ,   0,iy i n=   – непрерывны по паре ( ),t µ

Следствие.  Пусть 

( )
( )

( )

1

,   ,
,  0, -1

iy

i

f f f C G M
i n

y C M
µ′ ′ ∈ × =

∈
 

Тогда ( ) ( )( )непрерывные в ,        ,   y y y D yµ µ µψ ψ ψ ′ ′ ′∃ ∃ = − 
 

 
    или 
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( ) ( ) ( )( )( )( ) непрерывные в ,   0,      ,   
iiy y i n D yµµ

′ ′∃ = = − 

Следствие.  В стандартных условиях справедливо, что 

( ) ( ) ( ) ( )
0

, , , ,   0y t y t y tµµ η µ µ η α η η η
→

′+ = + ⋅ + ⋅ →  

( ) 1 0  ,   0
n

K
ηα η

− →→ , 

т.е. мала не только сама функция, но и ее производная. 
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Лекция 4 
Устойчивость по Ляпунову 

Постоянные системы 

Понятие устойчивости было известно и ранее, но впервые строго математически 
описано именно Ляпуновым4. 

( ) ( ) 1, ,   , nx f t x t x G
•

+= ∈ ⊂ 

0x  – исходное решение, ( ) [ )0 0 ,D x t+⊂ ≡ ∞

0:  x x x≠  будем считать возмущенным непродолжаемым решением 

Определение.  0x  называется устойчивой по Ляпунову, если 

( ) ( ) ( ) ( )0 0 0 00  0      ,   fx S x t x t x t x t tε δ δ ε +∀ > ∃ > ∀ ∈ − < ⇒ − < ∈  

Рисунок 8 

Устойчивость используется, например, при выводе спутника на орбиту. Понятно, что 
заставить тело двигаться по расчетной траектории проблематично, но можно 
гарантировать по крайней мере то, что оно не выйдет за пределы орбиты. 

Определение.  0x  называется асимптотически5 устойчивой, если 

4 Алекса́ндр Миха́йлович Ляпуно́в (1857 – 1918) – русский математик и механик, академик 
Петербургской Академии наук. 
5 В некоторых учебниках с двумя «с». 
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1) она устойчива по Ляпунову;

2) ее решения асимптотически приближаются к исходному решению:
( ) ( ) ( ) ( )0 0 0 0 00    lim 0

t
x t x t x t x tδ δ

→∞
∃ > − < ⇒ − =

Определение.  Функция 0x  называется неустойчивой по Ляпунову, если она не 
устойчива по Ляпунову. 

С топологической точки зрения устойчивость по Ляпунову означает, что существует 

непрерывное отображение 

0t fG S→ , 

т.е. отображение из множества начальных значений во множество всех решений. 

( ) ( )0  , :   ,x x x x t x x→ =

( ) { }0 0 0,
,   n

t f fG S x x S x x
ε

ε++⊂ ⊂ = ∈ − <


 

Таким образом, устойчивость – непрерывность функции ( )  ,x x  в точке ( )0 0 0x x t=  в 

топологии fS , равномерной на + . 

Отметим, что здесь нам не требуется вся топология – только окрестности с центром в 
0x . Такое множество называется фильтром. Более того, нас интересуют не всякие 

окрестности точки 0x , а только конкретные, называемые базой фильтра. 

Рассмотрим уравнение. 

( ) ( 1)

0 исходное решение

, , ,  ,

  

y x

n ny f t y y y

y

ψ =

•
−

  
  

=  
  
  
 −





Можно ли говорить об устойчивости этого решения? Конечно. Стандартный способ 
состоит в том, чтобы свести это уравнение к системе 

( )
0 0

,x f t x
x yψ

• =


=
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1

2

( 1)n
n

y x
xyx y

xy

ψ

−

   
   
   = = =   
       




– каноническая замена.

Тогда 0y  – устойчиво (асимптотически устойчиво, неустойчиво) тогда и только тогда, 
когда 0 0x yψ=  – устойчиво (соотв. асимптотически устойчиво, неустойчиво). 

Определение.  ( ) ( ) 00 1 1, ,  ,   , ,   ,  n t fY Yy y y y y y G S− ≡ ∈ ∈  

0y  –  устойчиво по Ляпунову ⇔  отображение 
0t fG S→  непрерывно в точке 

( )0 0 0y y tψ=

( ) { }1
0 0,

:   n
f fS y y S y y

ε
ε++

−= ∈ − <


Рассмотрим условия устойчивости. 

Упрощения: 

1) «забыть» про удаленные решения;

2) «забыть» про норму в n ;

3) «забыть» про 0t ;

4) свести задачу к неподвижной точке: ( )0x t const= . 

Лемма.  Устойчивость (асимптотическая устойчивость, неустойчивость) сохранится, 
если: 

1) ( ) ( )0 0 0 ,   0x t x t r r− < ∀ >   (очевидно, если взять rδ < ); 

2) выбрать любую норму в n  (очевидно, т.к. топология та же самая и все нормы
эквивалентны);

3) устойчивость для 0t  равносильна устойчивости для 0t′ , если выполнена непрерывная
зависимость решений от начальных значений;

4) сдвинуть начало координат в n  в заданную точку ( )a t 6 ( ) ( )( )0даже a t x t= . 

Доказательство: 

6 Эта функция – гладкая. 
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4) Сделаем замену ( )   y x a t t= − ∀

( ) ( )( ),y a t f t y a t
• •

+ = +

( )( ) ( ) ( ), ,y f t y a t a t g t y
• •

= + − ≡

( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0  a t x t x t x t y t y t
≡

= ⇒ − = − ,

т.е. исходное решение в новых терминах y  будет равно нулю (соответственно разность 
– отклонение от нуля).

3) Пусть есть устойчивость для 0t . По данному ε  выберем δ , а по нему – δ ′ . Тогда

( ) ( )0 0 0 0  x t x t x xδ ε+− < ⇒ − <


( ) ( ) [ ] [ ]( )0 0 0 0 0 0 0 0или  ,   ,   ,
K

x t x t x x K t t t tδ δ′ ′ ′ ′ ′− < ⇒ − < =

Из этих двух известных нам импликаций следует, что 

( ) ( )0 0 0 0  
K

x t x t x xδ δ ε+∪
′ ′ ′− < ⇒ − < ≤


, 

а значит есть устойчивость для 0t′ . 

Рассмотрим линейную систему (или, быть может, линейное уравнение, так как – мы 
выяснили – оно сводится канонической заменой к линейной системе). 

( ) ( ) ,   x A t x F t t
•

+= + ∈  (подумайте, почему t  именно такое)

( ) ( ) ( )( ) ( 1)
1

n n
ny a t y a t y f t−+ + + =

,A FS  – множество решений системы ( ),при в комплексном случае  0,    A A FS F = S

,a fS  – множество решений системы ( ),при в комплексном случае  0,    a a fS F = S

Лемма. 

1) решение 0 ,A Fx S∈  –  устойчиво (асимптотически устойчиво, неустойчиво) тогда и 

только тогда, когда 0 AS∈  –  соответственно устойчиво (асимптотически устойчиво, 
неустойчиво). 
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Практически это позволяет при проверке на устойчивость произвольного решения 
исследовать вместо него нулевое. 

Таким образом, все решения системы либо устойчивы, либо нет. 

2) 0 AS∈  –  устойчив (асимптотически устойчив) ⇔  любое решение Ax S∈  – 
ограничено (и стремится к нулю при t →∞ ) ⇔  1 ,  ,  nx x∃   –  фундаментальная 
система решений, ограниченная (и стремящаяся к нулю при t →∞ ). 

Получается, для устойчивости нуля необходимо и достаточно проверить 
ограниченность элементов некоторого базиса в пространстве решений. 

3) 0 AS∈  –  устойчив ⇔  0 A∈S  –  устойчив. 

Доказательство: 

1) 0 ,A Fx S∈  – устойчиво 0 Ay S⇔ ∈  – устойчиво (из 4-го пункта предыдущей леммы). 

2) 

• 0 AS∈  –  асимптотически устойчив ⇒  любое решение Ax S∈  – ограничено. 
Это очевидно, так как все решения, которые близко начинаются, ограничены: 

( ) ( )0     x t xδ ε+< ⇒ <


 , 

а остальные решения, получаемые умножением близко начинающихся решений на 
некоторую константу k , ограничены числом kε . 

• Любое решение Ax S∈  – ограничено ⇒  1 ,  ,  nx x∃   –  ограниченная 
фундаментальная система решений. Очевидно. 

• 1 ,  ,  nx x∃   –  ограниченная фундаментальная система решений ⇒  0 AS∈  – 
асимптотически устойчив. 

Пусть 1,  ,  nx x  –  ограниченная фундаментальная система решений. Рассмотрим 
значения этих векторов в точке 0t : 

( ) ( )1 0 0,  ,  n
nx t x t ∈ 

Они образуют базис в n . Примем его за основной. Свяжем норму с этим базисом (это 

можно сделать ввиду пункта 1 прошлой леммы): 
1

 
n

i
i

c
=

= ∑

( ) ( ) ( ) ( ) ( ) ( )1 1 0 0 0 1 1
1

  
n

i n n n n
i

c c x t c x t x t x t c x t c x tδ
=

= + + = < ⇒ = + + ≤∑  
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1 1 n nc x c x≤ ⋅ + + ⋅ ≤ 7 ( )1 nc c M Mδ ε≤ + + ≤ <  

3) A A AS i S= + ⋅S  (доказано на одной из прошлых лекций) 

Из ограниченности и действительной, и мнимой части комплексного числа следует 
ограниченность всего числа. Поэтому третий пункт, очевидно, вытекает из второго. 

Напомним формулу Лиувилля-Остроградского: 

( ) ( )
( )

0

1 1, , , , 0

t

t

n n

tr A d

x x x xW t W t e
τ τ  

… …

∫
= ⋅

Следствие. 

Система A  –  устойчива ⇒  {т.к. определитель Вронского ограничен} ⇒  

( )
0

sup
t

t t

tr A dτ τ
∈

< ∞  ∫


 

Если же система A  – асимптотически устойчива, то функции в столбцах определителя 
стремятся к нулю, значит, сам определитель стремится к нулю, значит, показатель 
экспоненты стремится к −∞ : 

( )
0

 
t

t

t

trA dτ τ →∞→ −∞∫

Таким образом, мы получили необходимое условие устойчивости. 

Следствие. 

Линейное однородное уравнение a  –  устойчиво ( )( )
0

1 sup  
t

t t

a dτ τ
∈

⇒ − < ∞ ⇒∫


( )
0

1 inf
t

t
t

a dτ τ
∈

⇒ > −∞∫

Линейное однородное уравнение a  –  асимптотически устойчиво ⇒

( )
0

1  
t

t

t

a dτ τ →∞⇒ → ∞∫

7
1 ,  ,  nx x  –  ограничены, значит, их нормы ограничены. Подберем такое число M, которое больше 

каждой нормы ix . 
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Пример.  Уравнение колебания маятника: 

( ) 0y a t y
••

+ =  (трения нет, т.к. коэффициент при y
•

 равен нулю)

В этом примере интеграл равен нулю ввиду того, что 1 0a = , и, следовательно, 
уравнение не асимптотически устойчиво. 
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Лекция 5 

Рассмотрим линейную систему с постоянными коэффициентами. 

( ) ,   ,   nx Ax F t x t
•

+= + ∈ ∈ 

Напомним, что отображение ( )F t  не влияет на устойчивость, поэтому будем считать,
что его нет. Итак,  

,   nx Ax x
•

= ∈

Теорема.   

Система A  асимптотически устойчива ⇔  все собственные значения матрицы A  
имеют отрицательные действительные части. 

Система A  устойчива ⇔  
[ ]

0 λ ,для

0

0  1    

Re λ

Re λ
i

i mm J

∀



≤

 =



 = ⇒



 

Доказательство: будем рассматривать стандартный базис в пространстве решений AS
( )она устойчива одновременно с AS . Тогда 

( ) ( )λ 1,

1

1 ,   1,
1 !

  
j

t i t
j j jmJ mtz t e e h th h j

j
α β

−

−

 
= ⋅ + + + = − 

→   

Заметим теперь, что 1i te β =  – не влияет на ограниченность. 

Теперь если 0α < , то, очевидно, функция будет экспоненциально убывать. 

Если 0α > , то функция возрастает и неограничена. 

Если 0α = , то 1teα =  и при 1m =  степень многочлена – нулевая, поэтому многочлен 

ограничен, а значит и вся функция ограничена. 

Пример.  Уравнение колебания маятника: 

0y b y a y
•• •

+ + = ,  0,   0a b> ≥

( ) 2λ λL b aλ = + +

1) [ ]( ), 0  Re λ  0ia b <> ⇔ ∀ ⇒ асимптотически устойчив;
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2) [ ]120   Re λ 0b a= < ⇒ =  –  есть устойчивость.

См. теорему Рауса8–Гурвица9, позволяющую определить по коэффициентам 
многочлена, в какой полуплоскости лежат его комплексные корни. 

Периодические системы 

( ) ( ) периодическая.,   ,   ,  nx A t x F t x t T
•

+= + ∈ ∈ −   

Полагаем, что 

1. 0F = ;
2. A → A ;

3. ( )   y L t x y By
•

= → = ,

где ( )L t  –  Т-периодичное разложение (сохраняет ограниченность и стремление к
нулю), B  –  константа. 

( ),0 TBX T e=  – оператор монодромии (также оператор Коши).

λTeµ =  –  мультипликатор (собственное значение оператора монодромии). 

Следствие.  Для периодической системы верно: 

1)   есть асимптотическая устойчивость1  µ < ⇔ ; 

2) есть устойчивость, если  1
1

1 
m

µ

µ

≤
⇔

∃ =

 =


. 

Остальные системы. Второй метод Ляпунова 

( ) ( ) ( ), ,   , ,   0xx f t x f f C G G U
•

+′= ∈ ⊃ ×

0x ≡  –  исходное решение при 0t t≥  (мы можем это полагать без ограничения 
общности, т.к. начало координат можно пустить вдоль заданного решения и оно 
превратится в ноль), т.е.  

( )  ,0 0f =

Определение.   Функцией Ляпунова называется 

8 Э́двард Джон Ра́ус (1831, Квебек – 1907, Кембридж) – английский механик и математик, член 
Лондонского королевского общества. 
9 Адо́льф Гу́рвиц (1859, Хильдесхайм – 1919, Цюрих) – немецкий математик. 
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( ) ( )( ) ( )1:  0 ,   0 0V U V C U C U → ∈ ∩  
 



 , при этом выполнены условия: 

1) ( )0 0V = ;

2) условие на ( ) ,   0V x x ≠ ;

3) условие на ( ) ,   0V x x
•

≠ . 

Определение.   ( )tV x
•

 называется производной функции V  в силу системы: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1, , ,

n
t x x nV x V x f t x V x f t x V x f t x

•

′ ′ ′≡ ⋅ = ⋅ + ⋅

( )( ) ( )( ) ( )( ) ( )t

t

dV x
V x t V x t x t

d
τ

τ
τ

• •

=

′= = ⋅

Лемма Ляпунова (об устойчивости). 

Пусть существует V  –  функция Ляпунова и ( ),   0t x U+∀ ∈ ∀ ∈


  выполнено:

( )
( )

( )

устойчиво

0 0

0   0  

0t

V

V x x

V x
•

 =
 > ⇒ = −

 ≤

 

Проиллюстрируем эту лемму. 

Во-первых, можно считать, что 
( )0G U+= × .

Во-вторых, окрестность ( )0Uε  лежит 

внутри ( )0U  (вместе с границей).

В окрестности ( )0Uε  положим 

min
Г

V α≡ . Теперь возьмем ( )0Uδ , в которой V α< . Тогда некоторое решение x  из 

этой окрестности не может выйти за пределы ( )0Uε , при этом ( )D x +=  .

Доказательство: итак, 

Рисунок 9 

Рисунок 10 
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0) ( ) ( )0 0U Uε∃ ⊂  (вместе с замыканием) 

1)
( )

( )
0

min 0
x U

V x
ε

α
∈∂

≡ >  (существует на компакте) 

2) 
( )

( )
0

: sup
x U

V x
δ

δ α
∈

∃ <  (непрерывность V в нуле) 

3) ( ) ( ) ( ) ( ) ( )0 0   0   x t U x t U t D xδ ε∈ ⇒ ∈ ∀ ∈

Пусть это не так, тогда 

( ) ( ) ( )( )1 10   x t U V x tεδ α∃ ∈ ⇒ ≥ , но 

( )
( ) ( )( ) ( )( )0 1

0
sup

x U
V x V x t V x t

δ

α α
∈

> > > ≥  

4) ( )D x +=   (по теореме о продолжаемости до границы любого компакта)

( ) ( ) [ ]( )
2 0 1 2 10 ,   x tГ U t t t tεδ∈ ∩ ⇒ =

Следствие.  Если ( ) 0tV x
•

= , то устойчивость есть, но она не асимптотическая. 

Доказательство: 

∀  решения 0x ≠  ⇒  ( ) 0
t

x t
→∞

→ , иначе:

( ) ( )( ) ( )( ) ( )( ) ( )0 0 0lim 0  0 lim lim 0 0
V const

t t t
x t V x t V x t V x t V

=

→∞ →∞ →∞
= ⇒ < = = = =  

Пример.  Уравнение колебаний маятника: 

sin 0y y
••

+ =  

1 2

2 1sin

x x

x x

•

•

 =

 = −

( )
2
2

1 2 1, 1 cos
2
xV x x x= − +

( )1 2 2 1sin sin 0V x x x x
•

= ⋅ + ⋅ − =  

Таким образом, маятник без трения не приближается к своему положению равновесия. 
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Лемма Ляпунова (об асимптотической устойчивости). 

Пусть существует V  –  функция Ляпунова и ( ),   0t x U+∀ ∈ ∀ ∈


  выполнено: 

( )
( )

( ) ( )

асимптотически устойчиво

0 0

0   0  

0t

V

V x x

V x W x
•

 =
 > ⇒ = −

 ≤ <

Доказательство (нестрогое): из рисунка 
видно, что 

( )( ) ( )( ) ( )( )
1

1 lim lim
t t t

V x t V x t V x t γ
≥ →∞ →∞

≥ = >  

( ){ }V x V xγ γ= ≥

( )( ) ( )( )20  0V x t W V x tβ
•

≤ ≤ − < ⇒ < , 

что есть противоречие. 

Рисунок 11 
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Лекция 6 
Первый метод Ляпунова 

( ) ( )( )
0

, ,     ,n
x

x

x Ax F t x A End A Ax F t x
•

=

′= + ∈ ⇒ = +

( ) ( ), ,   0xF F C G G U+′∈ ⊃ ×

( ) ( )  , ,   0F x o x x= →

( ) ( )  ,F x o x+ =


Системы, информация с линейной части которых переносится на всю систему, стали 
называть правильными по Ляпунову. 

Теорема (об устойчивости по первому приближению). 

1) ( ) асимптотическая устойчивостьReλ 0   i A∀ < ⇒ ;

2) ( )0 неустойчивостьReλ 0   A∃ > ⇒ . 

Доказательство: 

1) введем обозначение max Reλ 2 0j α≡ − <  

( ) ( ) ( ) ( ), ,   , ,Rez zz t z t z F t z o
•

= + = =A F F

2) { }

1 2

2

λ 0
0 λ

,   0,1

0 0 λ

i
n

n

α

α
α

 
 
 = ∈
 
 
 



 

  



A

Для того, чтобы рассматривать { }0,iα α∈ , используем алгебраический факт: 
j

j j jh e hα→ = , 

т.е. можно подобрать такой базис, в котором элементы диагонали будут умножаться на 
α  в соответствующей степени.10 

* ,= ∆+ Λ +A A  

10 Изобретатели назвали это β - преобразованием. 

https://vk.com/teachinmsu


  ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 2  
 СЕРГЕЕВ ИГОРЬ НИКОЛАЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ        
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ           

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

32 

2

2

0 0
0

2 Reλ ,   

0 0

j
n

n

a
α

α
α

 
 
 Λ ∆ =
 
 
 



 


  



 

2 2 2 2

2 2 2 2

0 0

  2

0 0
n n n n

n n n n

z z
z z

z z z
z z

z z

α α
α α

α
α α

α α

      
      
      ∆ = + ⇒ ∆ ≤ + ≤
      
      

      

 

 

Таким образом, je  – ортонормированный базис в n . 

3) Построим функцию Ляпунова.

( )
1

*

n

z
V z z z

z

 
 = = ⋅ 
 
 


0,  0
0,  0

z
z

> ≠
= =

Очевидно, априорным свойством функции Ляпунова, эта функция обладает и, более 
того, выполнено первое свойство. Осталось проверить остальные два. 

 ( ) ( ) ( ) ( )( ) ( )( )* * * * * * *, ,tt
t t

V z z z z z z z z Az F t z z A F t z z
• •• •

= ⋅ = ⋅ + ⋅ = + + + =

( ) ( ) ( ) ( ) ( )

2
2

* * * * * * *, , 2 Re

z

j j j
j

z z z z z F t z F t z z z z z z z o z o z z

αα

λ

≤ ⋅≤−

= Λ + ∆ + + = ⋅ ⋅ + ∆ + ⋅ + ⋅ ≤∑


( )

2 2 2 22 2 2 0  0

W z

z z z z zα α α α≤ − ⋅ ⋅ + ⋅ + ⋅ ≤ − ⋅ < ⇒ =


 – асимптотически устойчиво.

Отметим, наконец, что выполненное на большем пространстве будет выполнено и на 

меньшем, т.е. для сужения функции ( )0UV  доказанный факт справедлив. 

Вдумчивый читатель задастся вопросом: как же это мы оцениваем комплексные числа? 
Оказывается, слагаемые будут действительны ввиду того, что сумма  

2 Re j
j

λ∑  – действительна, и, значит, оставшаяся сумма тоже действительна.

Пример.  Уравнение колебаний маятника: 

sin 0y by a y
•• •

+ + =  
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1

cos0 0x b x a x
=•• •

+ + ⋅ =  

( ) 2λ λ λL b a= + +

1) [ ], 0  Re λ  0ia b <> ⇒ ∀ ⇒ асимптотически устойчив;

2) [ ]120   Re λ 0a b> = ⇒ =  –  есть устойчивость, но не асимптотическая. 
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Лекция 7 
Автономные системы 

( ) ,   nx f x x G
•

= ∈ ⊂ 

Здесь переменная x называется фазовой, а отсутствующая в правой части переменная – 
временем. 

fx S∈  – множество всех непродолжаемых решений. 

Напомним, что такая система называется автономной (самостоятельной) оттого, что 
закон, связывающий переменные и их образы, одинаков в каждый момент времени.  

Пусть х – решение. Область значений этой функции 

( ) ( ) ( ){ }E x x t t D x= ∈

называется фазовой кривой (траекторией). 

( ) ( ) ( )( )
t

dx
x t f x t

d
τ

τ
τ

•

=

= = – вектор

фазовой скорости в точке ( )x t .

( )
:   

C G
nf G

∈

→   –  векторное поле. 

( ) ,   x xx f x T T∈  –  касательная 
плоскость в точке x. 

Лемма.  Пусть ( )fx S G∈ . Тогда ( )cx x c≡ +  – сдвиг решения на время t – тоже из 

области ( )fS G .

Доказательство:  ( ) ( )
( ) ( ) ( )( ) ( )( )c c

dx t c
x t x t c f x t c f x t

d t c
• •+

= = + = + =
+

Лемма.  Пусть ( ) ( )1 ,   , ff C G x y S G∈ ∈ . Тогда

( ) ( ) ( ) ( )0 0 0 0  x t y s x t t y t s= ⇒ + = +

Рисунок 12 
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Доказательство: рассмотрим функции ( )
0

  tx   и ( )
0

  sy   – значения решений в нулевой

момент времени. Тогда ( ) ( )
0 0 0 0

0 0   t t t sx y x y= ⇒ =  и по теореме о единственности они

совпадут везде. 

Определение.  Фазовая кривая ( )E x 11:

1) незамкнута, если ( ) ( ) ,   x s x t s t≠ >

2) замкнута (циклична), если ( ) ( )
( )
( )

период цикла
,   ,   

:   
,   ,   

x t s t T t
T x s

x t t s t T t





= = + ∀ ∈
∃

≠ < < + ∀ ∈





3) называется точкой покоя (неподвижной точкой), если ( )0 0:   ,   x G x t x t∃ ∈ = ∀ ∈

Теорема (о трёх типах фазовых кривых). 

Пусть ( )1f C G∈ . Тогда ( )  fx S E x∀ ∈  – либо незамкнута, либо циклична, либо 

является неподвижной точкой. 

Доказательство: 

рассмотрим непустое множество ( ) ( ) ( ){ }0 :  T t D x x t T x tℑ= > ∃ ∈ + = .

1) T – период фазовой кривой ( )E x , так как
 

( )  
s s

x t T x t D xτ τ
   

+ + = + ⇒ =      
   



2) { }периодT T ⊃ ℑ℘= ∈ −

3) ( )
m

m
∈

⊃ ℑ℘



4) ℘ – замкнуто на 

Рассмотрим подпоследовательности :  k
k kT T T→∞→ . Тогда 

( ) ( ) ( ) ( )lim limkt t
x t T x t T x t x t

→∞ →∞
+ = + = =

Таким образом, 

( ) -периодично и имеет место цикл

всюду плотно в точка покоя

0    
inf

0      

x Т
T

x

> ⇒ −= ℑ
= ⇒ − ⇒ = ⇒ − ℘ ℘



 
. 

11 Часто говорят просто «фазовая кривая x», подразумевая, что она соответствует решению x. 
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Рассмотрим положение равновесия: 

( ) ( )0 00  f x x t x= ⇔ =  – решение

Выпрямление фазовых кривых 

( )0 0 f x = ⇔

y xϕ= , где ϕ – диффеоморфизм12 

( ) ( ) ( ) ( )( ) ( ){ },  E y y t y t x t t D xϕ= = ∈

( )( ) ( )( ) ( )
( )( ) ( ) ( ) ,   

t t

d x
g x g y t y x f x x G

dτ τ

ϕ τ
ϕ τ ϕ

τ

•

= =

′≡ = = = ⋅ ∈  

( )1  g f g fϕ ϕ ϕ ϕ−′ ′= ⋅ ⇔ = ⋅ 

Таким образом, отображение ϕ′  переводит одну касательную плоскость в другую. 

Определение.  Диффеоморфизм :  G Hϕ →  
называется выпрямляющим диффеоморфизмом 
поля f . 

ng e≡

Так мы задали простейший вид векторного поля, 
который только мыслится. 

Выясним, в каких случаях можно выпрямить 
поле. 

Назовем точку 0x  векторного поля особой, если 

( )0 0f x =  

12 Гладкое взаимно-однозначное отображение, для которого обратное отображение – тоже гладкое. 

Рисунок 13 

Рисунок 14 
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Теорема (о выпрямляющем диффеоморфизме или о локальном выпрямлении 
векторного поля). 

Пусть ( ) ( )0
1 ,   0f xf C G ≠∈ (точка не особая). Тогда существует окрестность 

( )0U x G⊂  такая, что U V
ϕ

→ , где ϕ  – выпрямляющий диффеоморфизм. Отметим, что 

( )0f x  называется трансверсальным (т.е. не касающимся плоскости S ). 

Но на этом мы не остановимся! 

Пусть ( ) ( ){ }0 0n n
S U x x x= =  – гиперплощадка, ( )0 0nf x ≠ . Тогда 

S
Idϕ = . 

Доказательство: пусть для начала 0 0x = . 

1ϕ χ −=   

( ) ( ),ny x y yχ π=  

( )
( )( )

( )( ) ( )

0

0

0, ,   
0

,0 0 ,   

i
i

i

n
n

i i iy
y

y

n y
y

x y e e i n

x y f i n
χ

=

=

 ′ = <
′ = 

′ = =


Наконец, заметим, что матрица χ′  в координатах 1, , ne e  –  невырождена, а значит 
отображение χ  в достаточно маленькой окрестности нуля будет диффеоморфизмом (в 
силу доказанной ранее теоремы), равно как и обратное к нему отображение. 

             Рисунок 15   Рисунок 16 
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Лекция 8 
Первый интеграл 

Определение.  Первым13 интегралом называется функция ( )1:   ,   G C Gϕ ϕ→ ∈ , 

такая, что ( ) ( )( )  fx S G x t constϕ∀ ∈ =

Лемма (дифференциальный признак). 

( )1C Gϕ∈  – первый интеграл ⇔  ( ) ( ) ( ) 0,   x x f x x Gϕ ϕ
•

′≡ ⋅ = ∀ ∈ . 

Доказательство:  ( )( ) ( )( ) ( )( )0 d x t x t f x t
d t
ϕ ϕ′= = ⋅ . 

Пример.  Рассмотрим автономную Гамильтонову систему: 

( )

( )

, ,

, ,

y

x

x H x y

y H x y

•

•

 ′=

 ′= −

2H C∈  – гамильтониан, , nx y∈  

Покажем, что H – первый интеграл: 

( ) 0x y y xH H H H′ ′ ′ ′⋅ + ⋅ − =

Иногда бывает удобно рассматривать первые интегралы в подобласти G G′ ⊂ . 

Пример.   

2,   x x x
•

= ∈

1) 2
*G′ =   (без нуля) 

ϕ  – постоянна вдоль любого луча 

2) G′  – изгибается и на каждом интервале имеет свою
константу

3) { }0   G constϕ∈ ⇒ =

13 Слово «первый» здесь выступает в качестве прилагательного – первых интегралов может быть много. 

Рисунок 17 

https://vk.com/teachinmsu


  ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 2  
 СЕРГЕЕВ ИГОРЬ НИКОЛАЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ        
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ           

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

39 

Определение.  Для скалярных функций 1, , kϕ ϕ  справедливо: 

1) 1, , kϕ ϕ  называются независимыми в точке 0x G∈ , если векторы 

( ) ( )1 0 0, , kx xϕ ϕ′ ′  – линейно независимы; 

2) ψ  зависит от этих функций в G′ , если

( ) ( ) ( )( )1
1:  , , ,   kF C x F x x x Gψ ϕ ϕ ′∃ ∈ = ∈ , 

т.е. ϕ  выражается как достаточно гладкая функция от 1, , kϕ ϕ . 

Лемма.  Если ψ  зависит от первых интегралов 1, , kϕ ϕ  в G′ , то ψ  – тоже первый 
интеграл. 

Доказательство:  ( ) ( )( ) ( )( ) ( )( )
1

1  , ,
kcc

f kx S G x t F x t x t constψ ϕ ϕ
 
 ′∀ ∈ = =
 
 

 


Теорема (об универсальной системе первых интегралов).  

Пусть ( ) ( )1
0 0,   ,   0F C G x G f x∈ ∈ ≠ . Тогда 

( ) ( )0 1 1 0первые интегралы в   , , :nU x G U xϕ ϕ −∃ ⊂ ∃ −  

1) независимые в точке 0x ; 

2) любой другой первый интеграл ψ  в  ( )0U x  – зависит от них. 

Доказательство: 

0) покажем, что 1 1, , nϕ ϕ −  – координаты выпрямляющего диффеоморфизма:

  Рисунок 18 

( ) ( ) ( )( )( ) 0i i n i
x f x e xϕ ϕ ϕ

•
′= ⋅ = =
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1) они линейно независимы в точке 0x , поскольку ( ) ( )1 0 1 0, , nx xϕ ϕ −′ ′  образуют 
первые 1n −  строк матрицы Якоби J , которая невырождена; 

2) предъявим функцию ψ :

( ) ( )
( )

( ) ( ) ( )( ) ( ) ( )( )1 1 0 1 1, , , , ,
x

n nn
x y x x y F x x

ϕ

ψ ψ π ψ ϕ ϕ ϕ ϕ− −= = =   

Вопрос поиска выпрямляющего диффеоморфизма поможет разрешить следующая 

Теорема (о локальной системе независимых первых интегралов).   

Пусть ( ) ( )1
0 0,   ,   0F C G x G f x∈ ∈ ≠  и пусть 1 1, , nϕ ϕ −  – первые интегралы в

области G′ , независимые в точке 0x G′∈ . Тогда для любого первого интеграла ψ  

( )0 :U x∃  ψ  – зависит от 1 1, , nϕ ϕ −  уже в этой окрестности ( )0U x . 

Доказательство: нам известно, что 

( ) ( )1 0 1 0, , nx xϕ ϕ −′ ′  – линейно независимы

Тогда, если мы покажем, что 

( ) ( ) ( )1 0 1 0 0, , ,nx x xϕ ϕ ψ−′ ′ ′  – линейно зависимы,

это будет означать, что функция ψ  в достаточно малой окрестности линейно 
выражается через функции ϕ . 

Положим матрицу Якоби ( ) ( ) ( )( )1 0 1 0 0, , ,nJ x x xϕ ϕ ψ−′ ′ ′=  . Если умножение этой 

матрицы на некоторый ненулевой вектор даст нулевой вектор, это будет означать её 

вырожденность. Этим вектором будет – внезапно! – ( )0f x : 

( )0

0

0
J f x

 
 ⋅ =  
 
 



Пример.  Уравнение малых колебаний маятника: 

0x ax
••

+ =  
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x y

y ax

•

•

 =

 = −

 Эта автономная система, оказывается, и Гамильтонова, если взять 

( )
2 2

,
2 2
y xH x y a= + – первый интеграл

y

x

x y H

y ax H

•

•

 ′= =

 ′= − = −

Так как 2n = , доказанная теорема гарантирует один независимый первый интеграл 

1 Hϕ =  и тогда любой первый интеграл F Hψ =   
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Лекция 9 

Рассмотрим фазовое пространство единичной размерности. 

( ) ( ),   ,   nx f x f C G x G
•

= ∈ ∈ ⊂ 

1) Фазовая кривая – интервал на прямой.

2) Нет циклов.

3) Если есть соседние неподвижные точки 1 2,x x , то ( ) ( )1 2,   x x x f x∀ ∈  – 
фиксированного знака. 

Теорема. 

Пусть ( ) ,   ,   f C G G I G∈ ⊂ ⊂ . Тогда

1) если I  не содержит неподвижных точек и ( )fx S I∈ , то ( )I E x= ;

2) если a  – единственная неподвижная точка на интервале I , то следующие
высказывания эквивалентны:

• a – устойчива по Ляпунову
• a – асимптотически устойчива

• ( )
0,   
0,   
0,   

x a
f x x a

x a

= =
> <
< >

Доказательство: 

2) очевидно, следует из пункта 1, т.к. если точка проходит весь интервал
(см. рисунок), то она либо стремится к a , либо покинет любую её малую
окрестность;

1) будем доказывать от противного. Пусть ( )fx S I∈  – некоторое 
непродолжаемое решение. Зафиксируем его начальное значение 

( )0 0x t x I= ∈ . Для определенности положим, что движение происходит в 

сторону увеличения, то есть ( ) 0f x > . Пусть теперь есть недостижимая

точка 1 0x x> :  ( ) 1x t x≠ . 

• ( ) [ )0 ,D x t⊃ ∞ , 

т.к. график функции x не обязательно выйдет за пределы компакта 

Рисунок 19 

Рисунок 20 
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[ ] [ ]0 1 0 1, ,t t x x×  в силу произвольности 1t .

• ( )
[ ]

( )
0 0 1,

inf inf 0
t t x x x

x t f x β
•

≥ ∈
≥ ≡ >

( ) ( ) ( )0 0
tx t x t t tβ →∞≥ + − → ∞ , что есть противоречие. 

Пример. 

2 ,   x x a x
•

= + ∈

1) 0 a > ⇒  неподвижных точек нет;

2) 0 a = ⇒  неподвижная точка 0 0x = ; 

3) 0 a < ⇒  неподвижных точек две: 1,2x a= ± − .

Заметим, что здесь имело место раздвоение или бифуркация14. 

Рассмотрим теперь плоскость ( )2n = .

( )

( )

, ,

, ,   

x f x y

y g x y

•

•

 =

 =

( ) ( )1, ,   ,nx y G f g C G∈ ⊂ ∈

( ) ( )( ) ( ){ }, , , 0,0G x y G f g x y
•

= ∈ ≠ – открытое множество

Запишем уравнение в дифференциалах: 

( ) ( ), ,g x y dx f x y dy=

Теорема.  

Пусть ( )1,f g C G∈ . Тогда любая фазовая кривая Г – это интегральная кривая

( ) ( ):   , ,g x y dx f x y dyγ =
и наоборот. 

14 Резкая перестройка фазового портрета при плавном изменении коэффициентов. 

Рисунок 21 
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Доказательство: 

1) фазовая кривая Г  задает область значений решения 
( )
( )

x x t

y y t

=


=
Пусть для определенности ( )0 0, 0f x y ≠ , где ( ) ( )0 0 0 0,   x x t y y t= = . Отсюда 

( )0 0x t
•

≠  и задана функция ( )t t x= . Введем функцию ( ) ( )( )Y x y t x= . Покажем, что

она является решением исходного уравнения. 

( ) ( )
( )

( )
( )

0 0 0
0

0 0
0

,
  

,
y t g x y

Y x Г
f x yx t

γ

•

•
′ = = ⇒ = ,

т.е. мы показали, что фазовая кривая есть интегральная кривая. 

2)  Пусть γ – интегральная кривая, ( )0 0,x y γ∈ . Эта кривая локально совпадает с 

фазовой кривой системы, поскольку фазовая кривая в точке ( )0 0,x y  совпадает с 

единственной (по теореме) интегральной кривой.

Коль скоро это так, то можно сказать, что Гγ ≡ . Это следует из теорем матанализа: 
покрываем γ  интервалами, в которых она  совпадает со своими интегральными 
кривыми. Выделяем конечное подпокрытие. Тогда у двух соседних пересекающихся 
интервалов – одна и та же фазовая кривая и из них можно составить Г . 

Система Лотки15–Вольтерры16 

Пусть ( ) 0x t >  –  число жертв в момент t , ( ) 0y t >  –  число хищников.

  

x x xy

y y xy

α β

γ δ

•

•

 = −

 = − +

Количество детей здесь пропорционально количеству семей, при этом есть опасность 
быть съеденным хищником, пропорциональная и числу жертв (чем их меньше, тем 
сложнее поймать), и числу хищников. 

15 Альфред Джеймс Лотка (1880 – 1949) – американский математик, физикохимик, статистик, демограф. 
16 Ви́то Вольте́рра (1860, Анкона – 1940, Рим) – итальянский математик и физик. Член-корреспондент 
Физико-математического отделения Петербургской академии наук, почётный член АН СССР. 
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Число хищников убывает (скорость связана с их количеством) с некоторым 
коэффициентом, но также и возрастает от достатка пищи, зависящего от числа встреч 
хищников с жертвами. 

Считаем, что каннибализма нет. 

Найдем неподвижную точку: 

0

0

 
  

yx xy
y xy

x

α
α β β
γ δ γ

δ

 == ⇔ =  =


Уравнение в полных дифференциалах: 

( ), 0d x y dx dy
x y
γ αϕ δ β  = − + − =      

Потенциал:  ( ) ( )
( )

( )
( )

( )0 0, ln ln ,
f x g y

x y x x y y x yϕ δ γ β α ϕ= − + − ≥
 

:   cγ ϕ =  – линии уровня потенциала 

Утверждается, что минимум функций ( )f x  и ( )g y  достигается в точках 0x  и 0y
соответственно. 

Функция ( ),x yϕ  – возрастает и, значит, достигнет значения c  единожды. Таким

образом, фазовые кривые будут окружать точку ( )0 0,x y .

Если условных карасей в достатке, то щуки начинают размножаться и интенсивнее 
поедать карасей. В конце концов карасей становится критически мало и хищники 
начинают вымирать. Воспользовавшись этим, караси опять начинают размножаться до 
тех пор, пока их не станет достаточно для того, чтобы возобновить размножение щук. 
Этот процесс, как видно из рисунка, продолжается циклически. 

Кстати, отсюда видно и то, что карасей и щук можно отлавливать без вреда для 
экологии. Просто произойдет на некоторое время переход к меньшей окружности 
(выделено на рисунке жирным). 

Рисунок 22 
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Уравнение Ньютона 

( )
( )

( )0       0
x y

x f x f x dx ydy
y f x

•
••

•

 =+ = ←→ ←→ + =
 = −

У этого уравнения есть потенциал ( ) ( )
0

( )

2

,
2

U x

x

x

yx y f dϕ ξ ξ= +∫


, 

называемый интегралом энергии. Он представляет собой сумму потенциальной и 

кинетической энергии. 

Следствие.   Интеграл энергии – константа вдоль решения. 

( ) ( )( ), 0x yx y y f xϕ ϕ ϕ
•

′ ′= + − =  – производная в силу системы. 

Она равна нулю в силу того, что эта система – гамильтонова, т.к. 

( ) ( ), ,H x y x yϕ=  – гамильтониан.

( ) ( ) ( )
0

2

0 ,
2

x

x

x
x x f x x f d x xξ ξ ϕ

••
•

•• • • •
 

    = ⋅ + ⋅ = + =        
 

∫

Механики, таким образом, умножают уравнение на x
•

 и один раз интегрируют его, 

получая, что ,x x constϕ
•  = 

 
. Отсюда и происходит название «первый интеграл». 

https://vk.com/teachinmsu


  ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 2  
 СЕРГЕЕВ ИГОРЬ НИКОЛАЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ        
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ           

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

47 

Лекция 10 

Рассмотрим пример использования уравнения Ньютона. 

sin 0x a x
••

+ =  

( ) ( ) ( )
2

, 1 cos 0,   0,0 0
2
x

x x a xϕ ϕ

•

•  = − + ≥ = 
 

  

( )
( )

( )( )
2

1 cos   2
2

U x

ya x с y c U x− + = ⇒ = ± −


В окрестности точки 0x−  функция
будет иметь вид  

( ) ( )2
0 0x x x xα β− + − + , 

при этом 0α > , поэтому имеют место 
вертикальные касательные. 

В точке же π−  коэффициент 0α = , 
0β >  и функция будет линейная. 

Таким образом, маятник либо 
неподвижен, либо качается, либо 
проворачивается вокруг оси 
(«солнышко»). Все это отображено на 
рисунке. 

Особые точки Пуанкаре17 
2,   ,   0z Az z z

•

= ∈ =  – изолированная особая точка, поэтому A  – невырождена. 

I. Собственные значения 1,2λ  – действительные, A  – диагональная. 

1

2

λ

λ

x x

y x

•

•

 =

 =

17 Жюль Анри́ Пуанкаре́ (1854, Нанси, Франция – 1912, Париж, Франция) – французский математик, 
механик, физик, астроном и философ. 

Рисунок 23 
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2

1

λ 0
λ

µ = ≠

1) 0µ <  –  седло

Устойчивости здесь, вообще говоря, нет. 

y c x µ= ⋅

2) 0µ >  –  узел, при этом

1µ >  – обыкновенный,

1µ =  – дикритический,

1µ <  можно превратить в случай, когда 1µ > , если 
поменять местами собственные значения. 

II. Собственные значения 1,2λ  – действительные, A  – 
недиагональная. 

1,2λ λ=

λ

λ λ

x x

y x y

•

•

 =

 = +

0µ >  –  вырожденный узел

III.  Собственные значения 1,2λ  – недействительные, A  –
диагональная.

λ iα β= ±   

λtz e h=  –  решение в комплексной плоскости, 

( )1 2h h ih= +  –  собственный вектор. 

[ ] ( )λ λ
1 2Re Re Imt tz e h e h   = ⋅ + ⋅ −     –  одно действительное решение функции.

Пусть 1h  символизирует действительную единицу, а 2h  –  мнимую, [ ]Re zζ = .

( )λ λ λRe 1 Im cos sint t t te e i e e t i tαζ β β   = ⋅ + ⋅ = = +     

Рисунок 24 

Рисунок 25 

Рисунок 26 

Рисунок 27 
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Рисунок 28 

3) 0α =  –  центр (всегда неасимтотически устойчив)

4) 0α ≠  –  фокус

Тем самым мы разобрали все 4 случая в классификации 
Пуанкаре. 

Пример.  Уравнение маятника: 

22 sin 0,   0x b x a x b
•• •

+ + = ≥  

2 2

x y

y a x by

•

•

 =

 = − −

2 2λ 2 λb a+ +  – характеристический многочлен 

1. 0b =  – центр (корни характеристического многочлена
– мнимые);
2. 0 b a< <  – фокус;
3. b a=  – вырожденный узел;
4. b a>  – обыкновенный узел. 

Рисунок 29 

Рисунок 30 

Рисунок 31 

Рисунок 32 
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Динамические системы 

Пусть ( ) ( ) ( ) ( )1,   ,   ,  ,   n
fx f x x G f C G x S G D x

•

= ∈ ⊂ ∈ ∈ =  . 

( ),x t x  –  решение, такое, что ( )0,x x x= .

( ),   :   x t G G→  –  сдвиг вдоль решения на время t.

Это отображение есть ни что иное, как отображение 
Коши. Опишем его свойства. 

1. ( )0,   Gx I=  - тождественное отображение 

2. ( )( ) ( ), ,   ,   x t x s x t s= +

3. ( ) ( ), , , ,x x xx x x x x C G
• • •′ ′ ′= ∈ 

Определение.  Динамической системой называется отображение 

:   ,   tF G G t→ ∈ , такое, что 

1. 0
GF I=  

2. t s t sF F F +=

3. ( ),F C G∈ 

Определение.  Фазовым потоком называется динамическая система, в которой 

4. nG ⊂   с евклидовой18 топологией

5. ( )1,   t tF F C G t
•

∈ ∀

Утверждение.  tF  – диффеоморфизм. 

Доказательство:   

1) обратимость следует из пункта 2 определения: 0t t t tF F F F− −= = ;

2) ( )1tF C G− ∈  – очевидно из пункта 5.

Определение.  Орбитой точки x G∈  называется

{ } ( )F x t F xτ ∈ =

18 Со скалярным произведением. 

Рисунок 33 
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Определение.  Каскадом называется динамическая система (фазовый поток), в 
которой(ом) ( )t∈  .

Свойство.  ( )( ) ( )( )t tF F x F F xτ τ=  и при сдвиге орбита не меняется.

Определение.  Векторное поле f  называется генератором фазового потока ( )tF x ,

если ( ),   :  tF x t G G= →

Лемма.  Любое векторное поле генерирует фазовый поток. 

Доказательство: следует из выполнения аксиом фазового потока. 

https://vk.com/teachinmsu
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Лекция 11 

Лемма.  Для любого фазового потока tF  существует единственный генератор 
( )1f C G∈ .

Докажем единственность: 

( )( ) ( )
0

,   F x f x x Gτ

τ

•

=
= ∈

Существование: 

( )( ) ( )( ) ( )( )
0

t
t t

dF F x
F x f F x

d

τ

τ
τ

•

=

= =

Помните, как раньше мы диффеоморфно отображали одну область в другую? Эх, 
хорошие были времена. Новая область g  тогда задавалась уравнением 

( )( ) ( ) ( )g x x f xϕ ϕ′= 

Ничего вам не напоминает? Действительно, 

( )( ) ( )( ) ( )t t

x
f F x F x f x′= ⋅ , где tFϕ = ,

то есть отображение фазового потока сохраняет векторное поле. 

Пример.  Пусть фазовый поток задан отображением 

( ) ,   t At nF x e x x= ∈

( ) ( )
00

A Ae x Ae x Ax f xτ τ

ττ

•

==
= = = – его генератор.

Пример.  Уравнение колебаний маятника: 

2 0,   0y a y a
••

+ = >   

( )1 2 0cos sin cos ,   0y C at C at A at Aϕ= + = ⋅ + ≠

( ) ( )( )0 0cos , siny A at a atψ ϕ ϕ= ⋅ + − ⋅ +  

Нормируем: ( ) ( )( )0 0
1 1, cos ,siny y at at
A a

ϕ ϕ
• − = + + 

 
 

Рисунок 34 
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Этот вектор, понятно, лежит на единичной окружности S и тогда 

0 atϕ ϕ= +  

( ) :   tF at S Sϕ ϕ≡ + →

Ввиду того, что угол неоднозначно определяется точкой окружности, будем считать, 
что это равенство – по модулю 2π . 

Такой фазовый поток называется поворотом окружности, 

2
aω
π

≡ – время, за которое точка сделает полный оборот.

Если ω∈ , то поворот называется рациональным, в противном случае – 
иррациональным. 

Свяжем с поворотом окружности каскад ( ) ,  kF kϕ ∈ .

Лемма.  Орбита поворота окружности ( )F ϕ  –  замкнута ⇔  ω∈ .

Доказательство:  ( )   2   
2

k a mF ka ka m
k

ϕ ϕ ϕ π ω
π

= = + ⇒ = ⇒ = = ∈

Теорема (Вейля19). 

  Sω ϕ∉ ⇒ ∀ ∈  

1) ( )F ϕ  – всюду плотна20 в S ;

2) ( )M Mχ ϕ χ= ,  

где M  –  конечная дуга из S , 

( )
1,   ,
0,   ,M

M
M

ϕ
χ ϕ

ϕ
∈

=  ∉

( )
2

0

1
2M M d

π

χ χ ϕ ϕ
π

= ∫  –  относительная мера дуги на окружности (фазовое среднее),

( ) ( )( ) ( )( )( )11lim m
M M Mm

F F
m

χ ϕ χ ϕ χ ϕ
→∞

= + +   – частота попадания в дугу

(временное среднее). 

19 Ге́рман Кла́ус Гу́го Вейль (1885 – 1955) – немецкий математик и физик-теоретик. Лауреат премии 
Лобачевского. 
20 Хоть раз попадет в любую наперед заданную окрестность. 
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Такой предел, кстати говоря, называется пределом по Чезаро. 

Пример.  Пара маятников: 

2
1 1 1

2
2 2 2

0

0

y a y

y a y

••

••

 + =

 + =

Фазовых переменных здесь 4 – 1 1 2 2, , ,y y y y
• •

. Изобразить их на плоскости немыслимо, 
поэтому возникает закономерный вопрос: как сократить число этих переменных? Один 
из способов – выразить производные через основные переменные. Если изображать эти 
переменные на плоскости, получатся так называемые фигуры Лиссажу.  

Однако для более полной картины уместнее избавиться от амплитуд: 

1 1

2 2

a

a

ϕ

ϕ

•

•

 =

 =

Каждая из этих функций «бегает» по окружности S ,  а пара по произведению S S× , то 
есть тору (стоит заметить, что ни одного еврея здесь не задействовано): 

S Sℑ = ×

Изображать мы его будем на квадрате: когда точка выходит на границу, она как бы 
появляется с другой стороны. Такое представление называется обмоткой тора. Угловой 
коэффициент 

2

1

a
a

ω =

может быть рациональным и иррациональным. Обмотка 
при этом называется соответствующе. 

( ) ( )1 2 1 1 2 2, ,tF a t a tϕ ϕ ϕ ϕ= + +

Свяжем с обмоткой каскад Пуанкаре. 

0 0S S= ×

( ) 2

1

2k a k
a
πϕ ϕ ⋅

℘ = + ⋅  –  поворот окружности. 

Он будет рациональным тогда и только тогда, когда отношение скоростей – 
рационально. 

Лемма.  Орбита ( )1 2,F ϕ ϕ  – замкнута ⇔  ω∈ . 

Рисунок 35 
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Доказательство: 

( ) ( )0
1 2 1 2, ,TF Fϕ ϕ ϕ ϕ=  

Обозначим за S  время, которое необходимо, чтобы добраться от нулевой окружности 
до точки тора и отнимем его от обеих частей. 

( ) ( )0
1 2 1 2 0, ,   T S SF F Sϕ ϕ ϕ ϕ ω− −= ∈ ⇔ ∈

Лемма.  ( )1 2  ,tFω ϕ ϕ∉ ⇒  – всюду плотна в ℑ . 

Доказательство: 

возьмем точку ( )0
1 2 0,SF Sϕ ϕ− ∈  и орбиту ( )1 2,t SF ϕ ϕ−  от нее. Берем только те t, при 

которых она попадает на окружность. Осталось спроектировать какую-нибудь 
окрестность на нулевую окружность – на ней найдутся точки каскада Пуанкаре – и при 
сдвиге назад они будут и вблизи исходной точки. 
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Лекция 12 
Цикл в фазовом пространстве 

Рассмотрим цикл Г  с периодом 0T > . 

( ) ( )0 0,tГ F x x t x= ≡

( )x f x
•

=  – генератор.

Система в вариациях по начальному значению вдоль Г : 

( ) ( ) ( ) ( )0, , t
xz t x x t x F x′′= =

( ) ( ) ( )( )0,   t
xz A t z A t f F x

•

′= ⋅ =

( ) ( )0,0;Z t x z t=  – оператор Коши. 

Теорема. 

Система в вариациях z
•

 –  Т-периодична, причем существует мультипликатор 1nµ = . 

Доказательство: 

1) ( ) ( )( ) ( )( ) ( )0 0
t T t

x xA t T f F x f F x A t+′ ′+ = = =

2) ( ) ( ) ( ) ( )( ) ( )0 0 0 01   1T T
nF x f x f F x f x µ′ ⋅ = = ⋅ ⇒ =  

Определение.  Остальные мультипликаторы 1 1, , nµ µ −  называются орбитальными или
мультипликаторами цикла. 

Теорема. 

Если ( )0  ,x x –  задает цикл, то он не асимптотический.

Доказательство: 

( ) ( )0 1    ,U x x x∀ ∃   – Т-периодичное решение: 

( ) ( )( ) ( ) ( )( ) ( )1 0 1 0 1 0, , , 0, , 0, , 0,   x kT x x kT x x x x x x x kρ ρ ρ= = > →∞  

и, таким образом, расстояние между исходным и возмущенным решением есть 
положительная константа, что противоречит стремлению 1x  к 0x . 

Определение.  Отображение Пуанкаре (отображение последования). 
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Зафиксируем некоторую гиперплощадку в пространстве. Если на 
ней взять точку 0x  и двигаться по орбите, то мы вернемся в эту 
точку через время T . Что будет, если двигаться по орбите из 
соседней точки x ? В этом случае мы не обязательно попадем на 
гиперплощадку, но если это случилось, результат попадания 
называется ( )x℘ .

Теорема.  Пусть :  tF G G→  – фазовый поток, S  – трансверсальна к ( )0f x , Г – цикл 

( )0
tF x . Тогда ( ) ( ) ( ) 1

0 0  :   :  U x S S U x S S C′ ′∃ ∃ = ∩ ℘ → ∈ . 

Следствие.  Окрестность ( )0U x  можно уменьшить так, чтобы ( )0  T x Tε ε∀ > − < . 

Следствие.  Все орбитальные мультипликаторы суть собственные значения ( )0x′℘ . 

Определение.  Орбита ( )tF x  имеет ( )ω α - предельную точку 0x  тогда и только

тогда, когда ( )
( )

( ) 0:   lim kt
k k

t F x x
→∞ −∞

∃ →∞ −∞ = .

Множество таких предельных точек обозначается { }ωΩ = .

Примеры.  

1) ( )  tF x x= ⇒  одна ω  - предельная точка x ;

2) ( )  tF x Г= ⇒  ω  - предельные точки есть все точки цикла;

3) eсли траектория имеет предел, то это и есть ω  - предельная точка.

Теорема.  Множество Ω  обладает свойствами:

1) замкнуто и инвариантно относительно tF ;

2) ( )  
t

tF x G
→∞

Ω =∅ ⇔ → ∂ ;

3) ограничено и связно ⇐   при ( )  tt T F x K G≥ ∈ ⊂ .

Плоский цикл 

Пусть 2Г G⊂ ⊂  . 

Определение.  Плоский цикл называется: 

1) изолированным, если ( )U Г∃ , в которой нет других циклов;

Рисунок 36 
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2) устойчивым снаружи (внутри), если существует наружная (внутренняя) траектория
( ) :   tF x ГΩ = ;

3) неустойчивым снаружи (внутри), если он устойчив при t →−∞  (то есть если A Г= ,
где { }A α=  –  альфа-предельное множество);

4) полуустойчивым, если он устойчив снаружи, но не устойчив внутри (или наоборот);

5) предельным, если ( )tF x∃ , для которой цикл либо омега-предельный, либо альфа-
предельный.

Заведем на гиперплощадке отображение :  I Sσ →  и 
применим теорему Пуанкаре: 
( ) ( ) ( )1p s sσ σ −= ℘ ,

то есть некоторому числу ставим в соответствие точку x , на 
нее действуем отображением Пуанкаре и определяем, какую 
координату будет иметь образ. 

Определение.  Отображение :  p I I′→  обладает 
следующими свойствами: 

1) ( )0 0p = ;

2) ( )
( ) ( )

0  0s p s
< <

> ⇒ > ;

3) ( )   0p s s s= ⇔ = ;

4) ( )( )p s s−  –  фиксированного знака при ( )0 0s s> < .

Теорема.

Если цикл Г – изолирован и ( )0 :  0 s p s s∃ > − < ⇒  он устойчив
снаружи.21  

Заштрихованная область называется мешком Бендиксона22. 

Доказательство: пусть ( )p s s< . Рассмотрим убывающую
положительную последовательность 

21 Аналогично формулируются утверждения для знаков «меньше нуля». 
22 Ивар Отто Бендиксон (1861 – 1935) – шведский математик, наиболее известен благодаря теореме 
Пуанкаре — Бендиксона. 

Рисунок 37 

Рисунок 38 
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( )
( )

1

2 1

3 2

0
0

0

0

s s
s s

s s

= >

=℘ >

=℘ >

↓


 

Тогда 0lim 0ii
s s

→∞
∃ = ≥ . Покажем, что он равен нулю. Если перейти к пределу введенной 

последовательности, получим 

( )0 0p s s= , 

что равносильно равенству 0 0s = . 

Таким образом, 0   x Г∈Ω ⇒ ⊂Ω . 

Осталось показать, что предельных точек, окромя Г, больше нет, т.е. что справедливо 
обратное включение: Г ⊃Ω . Это следует из теоремы о непрерывной зависимости 
решений от начальных значений: близость начальных значений влечет близость 
траектории. 

Теорема доказана. 

Пример.  Рассмотрим систему 

( )
( )

2 2

2 2

1

1

x y a x y x

y x a x y y

•

•

 = + + −

 = − + + −

1) 0a =  – циклы все неизолированные;

2) 0a <
2 2:  1Г x y+ =  – фазовая кривая.

Неустойчив и снаружи, и внутри.

3) 0a >

Устойчив и снаружи, и внутри.

Рисунок 39 

Рисунок 40 
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Лекция 13 
Уравнения в частных производных первого порядка 

(*)   ( ) ( )
11 0

nx n xf x u f x u′ ′⋅ + + ⋅ =  – линейное однородное уравнение в частных 

производных первого порядка, где ( ) 0f x ≠ .

( )1, , nu u x x=   –  решение: G′→  , nx G∈ ⊂ 

Отметим, что это решение задает интегральную 
поверхность (см. рисунок). 

( ) ( ) 0,   xu x f x x G G′ ′⋅ = ∈ ⊂

(**)   ( ) ,   x f x x G
•

= ∈  – характеристическая система 
(для уравнения). 

Фазовые кривые при этом будут называться 
характеристиками. 

Теорема. 

Пусть ( )1f C G∈ . Тогда следующие утверждения равносильны:

• u  – решение (*);
• ( )u u x=  – интегральная поверхность;

• u  – первый интеграл для (**);
• u const=  вдоль фазовых кривых (**).

Доказательство:  

1 2⇔  следует из определения интегральной поверхности; 

1 3⇔  следует из доказанной леммы – критерия того, что функция u  есть первый 
интеграл; 

3 4⇔  следует из определения первого интеграла. 

Как найти все решения уравнения (*)? Так же, как и найти все первые интегралы – 
брать независимые в точке 0x G∈  первые интегралы 1 1, , nϕ ϕ − , которые порождают
все остальные: 

Рисунок 41 
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( )1 1первого интеграла  , , nFϕ ϕ ϕ ϕ −∀ − − =   в некоторой существующей 

окрестности ( )0U x . 

Пример. 

( ) ( ), ,y x x yH x y u H x y u′ ′ ′ ′⋅ = ⋅  – уравнение первых интегралов гамильтоновой системы 

y

x

x H

y H

•

•

 ′=

 ′= −

– гамильтонова система

( ) ( )1,   u F H F C D= ∈

Задача Коши для этого уравнения 

0 :  u S →   –  начальная функция

0S
u u=  –  начальная гиперповерхность в G

( )U x  –  решение задачи Коши, если оно

удовлетворяет уравнению (*) в G G′ ⊂  и 

( ) ( )0 ,   
x S

u x u x S S G
′∈

′ ′= = ∩  

Возникает проблема: как определить гладкость 
функции 0 ?u  
Заведем координаты на .S  
Пусть некоторое отображение σ  переводит область 1nD −⊂   в область nS ⊂  . 

Полагаем, что: 

1) ( )1С Dσ ∈ ;

2) σ  – биекция (т.е. она обратима);

3) ( )1 1
, ,

ny yσ σ σ σ
−

′ ′ ′ ′=   – невырождена (набор векторов линейно независим). 

Теперь мы можем сказать, что 

( ) ( )1 1
0 0  u C S u C Dσ∈ ⇔ ∈ ,

Рисунок 42 
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0u

D S
σ
→ →   

Теорема (о существовании и единственности решения задачи Коши). 

Пусть ( ) ( ) ( ) ( ) ( )
1 1

1
0 0 0 0 0,   ;  , , ,

ny yf C G y x y y f xσ σ σ
−

′ ′∈ =   – линейно независимы.

Тогда ( ) ( )0 0:   ! :  U x G u U x∃ ⊂ ∃ →   –  решение задачи Коши. 

Следствие. 

Если в условиях теоремы 1 2,u u  –  решения задачи Коши, то 1 2

loc
u u=  вблизи 0x  или, что 

то же самое, ( ) ( ) ( ) ( )0 1 2 0:  ,   U x u x u x x U x∃ = ∈ . 

Доказательство следствия: пусть ( )1 0U x  –  область определения первого решения, 

( )2 0U x  –  второго, причем обе они содержат точку 0x . Гарантировать, что решения 
совпадают в пересечении окрестностей нельзя. 
Однако можно выбрать меньшую окрестность 
( )0U x , в которой они таки будут совпадать. Это 

справедливо, так как если мы положим G  равным 
пересечению окрестностей, то 

( ) ( )0 0

!

1 2U x U x
u u u= =

Приведем пример, который иллюстрирует, что 
решения не совпадают в области пересечения. 

Рассмотрим область G′ , в которой задано решение. 
Решения здесь трансверсальны по отношению к 
гиперповерхности S ′ , т.к. вектор трансверсален в точке 

0x  и, в силу непрерывности, в её окрестности. Заданы ли 
(однозначно ли) функции – зависит от конкретной 
области. Например, функция будет не задана, если 
добавить к этой области «аппендикс» или исключить ее часть (см. рисунки ниже). 

Рисунок 43 

Рисунок 44 

Рисунок 45 Рисунок 46 
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Существенна ли в теореме линейная независимость? Да. Рассмотрим пример. 

(**) 
x y

y x

•

•

 =

 = −

(*) 0x yy u x u′ ′⋅ − ⋅ =

:  1S x =  

Будет ли выполнено в точке ( ) ( )0 0, 1,0x y =  условие трансверсальности? Нет, так как

f  здесь лежит в гиперплоскости. Выберем некоторую окрестность точки ( )0 0,x y . 

Часть гиперплоскости, лежащей в этой окрестности обозначим S ′ . 

( )0:  S u y′

Рассмотрим характеристику, 
изображенную на рисунке. Она 
дважды пересекает гиперплоскость, 
и значения в точках пересечения 
одинаковы. Таким образом, эти 
точки симметричны относительно 
нуля, а значит функция – четная. 
Рассмотрим любую нечетную 
функцию:  

( )0u y y=

Понятно, что в этом случае наши 
значения будут разного знака, хотя должны быть одинаковыми. 

Существование мы не гарантируем, так, быть может, гарантируется единственность? 
Приведем четную функцию: 

0 ≡ ( ) ( )2

0,   1
,

1 ,   1

r
u x y

r x

≥=  − ≤

Таким образом, даже если решение существует, то оно не единственно. 

Доказательство теоремы (да-да, мы ее все еще не доказали): отобразим одну 
поверхность в другую таким образом, чтобы вторая оказалась прямолинейной, а поле 
f  – выпрямленным. 

( )0:  U x Vψ →

Рисунок 47 
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Рисунок 48 

1ψ ϕ σ −=   

( )1 1, , ,n ny y y y−= 

( )0nD S y′ = = =

( ) ( ) ( )0ny y y f xσ σ= + ⋅

( ) ( )1 0y e f xσ ′ =

( ) ( )( )
0

1
0 nx

f x eσ − ′ =

( ) 1 0n n
e = ≠
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