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Лекция 1. Введение в дифференциальные уравнения

1.1 Базовые понятия

Определение 1.1. Обыкновенное дифференциальное уравнение n-го порядка - это функ-
ция от n + 2 переменных вида

F (x) = (x, y, y′, . . . , y(n))

Обыкновенным оно называется потому, что x - скалярная переменная (в отличие от урав-
нений в частных производных).

Определение 1.2. Решение дифференциального уравнения - это функция

y : I → Rm,

заданная на интервале I ≡ (α, β) ∈ R (α, β ∈ R̄ ≡ {−∞} ∪ {0} ∪ {∞}), и удовлетворя-
ющая тождеству

F (x, y(x), y′(x), . . . , y(n)(x)) = 0, x ∈ I

Функция задаётся на интервале, так как то множество, на котором она определена, должно 
быть открытым и связным, чтобы функция была дифференцируемой.
Следует обратить внимание на разность записи в определениях 1.1 и 1.2, а именно на y и 
y(x). В первом случае y - это переменная, во втором y(x) - функция.

Определение 1.3. Интегральная кривая - это график решения дифференциального урав-
нения.

Кривой данный график называется, так как он изображает функцию от скалярной пере-
менной. Интегральная кривая вовсе не связана с интегралом в прямом смысле, потому 
что дифференциальные уравнения не всегда решаются интегрированием, и называется 
так только по историческим причинам.

Определение 1.4. Обыкновенное дифференциальное уравнение порядка n считается ре-
шённым, если найдено его общее решение вида

Φ(x, y, C1, . . . , Cn) = 0

и выполнено два условия:
1) ∀ C1, …, Cn: если задана y(x), то y - решение;
2) ∀ решения y ∃ C1, …, Cn: задано y = φ(x,C1, . . . , Cn).

Надо понимать, что определение 1.4 не утверждает, что при любых C1, …, Cn данное
уравнение задаёт функцию y(x). Пример: x2 + y2 = C.
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ϕ(x,y) = 0

x

y

dx

dy

G

T (x,y)

∇ϕ(x,y)
∨(x,y)

l

Рис. 1: Направление, нормаль и градиент в точке

1.2 Поля направлений

Определение 1.5. Уравнение в дифференциалах - это уравнение вида

M(x,y)dx+N(x,y)dy = 0, (x, y) ∈ G ⊂ R2\{0},

где G - область (открытое связное множество).

Определение 1.6. Поле направлений - это отображение l : (x, y) 7→ прямая, где (x, y) ∈ G

и прямая принадлежит касательной плоскости Tx,y

На рис. 1 представлена область G (не всегда ограниченная). В точке (x, y) располо-
жена касательная плоскость, внутри которой лежат векторы. Совокупность касательных
плоскостей образует касательное расслоение. Внутри одной касательной плоскости мож-
но построить систему координат dx и dy. Уравнение в дифференциалах задаёт в касатель-
ной плоскости прямую l, проходящую через начало данных координат. В итоге в каждой
точке задана прямая.

Определение 1.7. Решению уравнения в дифференциалах соответствует интегральная кривая
поля направлений l
Γ ⊂ G такая, что ∀(x, y) ∈ Γ : Γ касается l(x, y).

Определение 1.8. Под кривой мы будем понимать только такие

Γ = {(x, y) ∈ G′|φ(x, y) = 0} ,

где скалярная функция φ ∈ C1 (G′) невырождена (имеет ненулевой градиент)
∇φ(x, y) ≡

(
φ′
x(x, y), φ

′
y(x, y)

)
̸= 0, (x, y) ∈ Γ
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y

η

x

φ

(1,− x)

Рис. 2: Иллюстрация примера Леммы 1.1

Введём поле нормалей ν(x, y) 7→ (M,N)(x, y) ∈ Tx,y, где вектор ν(x, y) служит нормалью
к прямой l(x,y). Из курса матанализа мы знаем, что уравнение касательной к φ(x, y) = 0

задаётся как dφ(x, y) ≡ φ′
xdx + φ′

ydy = 0. Мы всё ещё помним, что Γ касается l(x, y),
значит, касательная к прямой Γ должна совпадать с l(x, y). Совпадают ли прямые, можно
оценить по их нормалям. Если нормали параллельны, то прямые, к которым взяты эти
нормали, совпадают. Из этого следует Лемма 1.1.

Лемма 1.1. Γ - интегральная кривая ⇔ φ′(x, y)∥v(x, y), (x, y) ∈ Γ. Т.е. вектор нормали
прямой l (v(x, y)) параллелен вектору нормали кривой Γ (φ′(x, y)).

Пример: логарифмическое уравнение dx − xdy = 0 (см. рис. 2). Возьмём кривую, ко-
торая удовлетворяет этому уравнению, т.е. кривую, которая касается поля направлений,
заданного этим уравнением. Если провести касательную в точке (x, y) и отметить её точку
пересечения с осью y как η, то можно удостовериться, что y − η = const.

y − η = x tg(φ) = x · dy
dx

= 1

Нормаль - вектор с координатами (1,−x).
Проверим, является ли φ(x, y) ≡ x = 0 интегральной кривой. Градиент равен φ′(0, y) =

= (1,0) = (1,−x)|x=0 ≡ v(x, y)|x=0, значит, нормаль и градиент совпадают. Из этого
следует, что мы нашли решение при x = 0

Если уравнение (4) удовлетворяет дополнительному условию

N(x, y) ̸= 0, (x, y) ∈ G,

то f(x, y)dx− dy = 0, что с помощью операций деления преобразуется к виду

f(x, y) =
dy

dx
= y′, (x, y) ∈ G,
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где f ≡ −M/N . Случай M(x, y) ̸= 0 рассматривается аналогично. Ограничение на деле-
ние действует только в точке (0, 0), которой можно либо пренебречь, либо заметить, что
если dy

dx
рассматривать как пропорцию, то в данной точке она всё равно верна.

Итак, f(x, y)dx − dy = 0 ⇔ f(x, y) = dy
dx

. Разница между этими уравнениями в том,
что первое, в отличие от второго, не задаёт зависимости между x и y. Поэтому очевидно,
что решения второго уравнения будут удовлетворять первому уравнению. Обратное тоже
верно.

Лемма 1.2. Если f ∈ C1(G), то Γ является интегральной для уравнения в дифференциа-
лах⇔ Γ - график Γy некоторого решения дифференциального уравнения y.

Доказательство. Пусть кривая Γ удовлетворяет f(x, y)dx − dy = 0. Тогда по Лемме 1.2
φ′|Γ ∥(f,− 1) ⇒ φ′

y(x, y) ̸= 0. Следовательно, по теореме о неявной функции,
φ(x, y) = 0 ⇔ y =y(x) (т. о н.ф. носит локальный характер, в декартовых координатах
обобщение верно).
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Лекция 2. Виды дифференциальных уравнений

2.1 Уравнение первообразной

y′ = f(x), f : I → R, (x, y) ∈ G = I × R

G - вертикальная полоса, а именно циллиндрическая область по y.
f(x) - угловой коэффициент касательной к Γ, сохраняется для фиксированного x и про-
извольного y, так как не зависит от y. Значит, поле направлений выдерживает сдвиги по
вертикали. Это говорит о том, что и множество решений выдерживает сдвиги по вертика-
ли. Таким образом, при изменении y множество интегральных кривых переходит в себя.

y

x

Рис. 3: Поле направлений уравнения первообразной

Теорема 2.1. Если f ∈ C(I), то при любом фиксированном x0 ∈ I общее решение y′ =
= f(x) задаётся формулой

y =

∫ x

x0

f(ξ)dξ + C

Для примера вернёмся к логарифмическому уравнению, обсуждавшемуся в прошлой лек-
ции. Напомним, оно имеет вид dx − xdy = 0. Допустим, x > 0. Тогда обе части можно
разделить на x и получить обыкновенное дифференциальное уравнение y′ = 1

x
. Решая,

используя теорему 2.1, получаем y = ln |x|+ c (рис. 4).

2.2 Интеграл уравнения в дифференциалах

Определение 2.1. Функция φ ∈ C1(G) с ненулевым градиентом называется интегралом
уравнения M(x, y)dx+N(x, y)dy = 0, если ∀(x, y) ∈ G : φ′(x, y)∥v(x, y) ≡ (M,N)(x, y).
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Вспомним лемму 1.1, по которой решение Γ : φ(x, y) обладало тем свойством, что
φ′(x, y)∥v(x, y),(x, y) ∈ Γ.

То есть линия уровня, удовлетворяющая данному условию, - решение.
• Линия уровня φ(x, y) = C - интегральная кривая, так как её градиент равен φ′(x, y).
• C = C1, C = C2: две соответсвующие интегральные кривые не будут иметь общих

точек. Предельных точек также не будет из-за того, что функция φ непрерывна.

Теорема 2.2. Если φ - это интеграл уравненияM(x, y)dx+N(x, y)dy = 0, то его общее
решение задаётся уравнением φ(x, y) = C.

Доказательство. Докажем, что других интегральных кривых кроме тех, которые входят
в семейство линий уровня функции φ, не существует 1.
Пусть Γ - интегральная кривая. Уравнение M(x, y)dx + N(x, y)dy = 0 в силу леммы 1.1
можно записать в виде

φ′
x(x, y)dx+ φ′

y(x, y)dy = 0

в силу того, что пара коэфффициентовφ′
x(x, y), φ

′
y(x, y) пропорциональныM(x, y), N(x, y).

То, что градиент не равен нулю означает, что как минимум одно из слагаемых не равно
нулю. Рассмотрим случай

φ′
y (x0, y0) ̸= 0 ⇒ φ′

y (x, y) ̸= 0, (x, y) ∈ U(x0, y0)

Получаем уравнение
φ′
x(x, y) + φ′

y(x, y) · y′ = 0

Все интегральные кривые являются графиками функции y(x), в т.ч. и кривая Γ. От-
сюда y =y(x) вблизи x = x0. Нам нужно доказать, что φ(x,y(x)) = const. Докажем,
что производная по x равна нулю. Это очевидно из первого равенства. Следовательно,
φ(x, y(x)) = C, а значит, найдётся такое C, что вдоль интегральной кривой φ(x,y(x)) =
const, отсюда и получаем, что Γ лежит на линии уровня.

Вновь вернёмся к логарифмической функции dx− xdy = 0.
Первый интеграл: φ(x, y) = x · e−y. Проверим: φ′ = (e−y, x · e−y)∥(1,−x) = v.
Это означает, что решение уравнения: x·e−y = C. Ранее мы получили решение y−ln|x| =
= C. Оба уравнения задают одни и те же линии уровня. Этот пример показывает, что
интеграл дифференциального уравнения определяется неоднозначно.

1Заметим, что данное утверждение всё же не универсально, и существуют т.н. особые интегральные
кривые, о которых мы будем говорить в дальнейшем, но сейчас не рассматриваем.
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2.3 Уравнение в полных дифференциалах

Определение 2.2. УравнениеM(x, y)dx+N(x, y)dy = 0 называется уравнением в полных
дифференциалах, если существует его потенциал, то есть функция φ ∈ C1(G) такая, что
φ′ = v в G, то есть поле градиента совпадает с полем нормалей.

• Потенциал - это интеграл, так как (см. определение 2.1) равенство - более сильное
условие, чем параллельность, а также градиент равен v, которое по определению не равно
нулю.

• Если в полных дифференциалах ⇒ φ = C

• Обратное (то, что каждый интеграл есть потенциал) не верно. Уравнение имеет вид
dφ(x, y) = 0 (из M(x, y)dx + N(x, y)dy как полного дифференциала), это доказывает
предыдущий пункт.

• Домножим обе части уравнения в дифференциалах на µ(x, y) - коэффициент про-
порциональности вектора градиента функции φ и вектора поля нормалей. Если интеграл
существует, то можно подобрать множитель µ так, чтобы полученное уравнение было
уравнением в полных дифференциалах. То есть,{

µ(x, y) ·M(x, y)dx = φ′
x(x, y)

µ(x, y) ·N(x, y)dx = φ′
y(x, y)

Таким образом µ(x, y) называется интегрирующим множителем. Приведение к полным
дифференциалам полезно, потому это превращает поиск потенциала в чисто алгоритми-
ческую задачу.

• Можно узнать, является ли уравнение уравнением в полных дифференциалах. Пусть
M,N ∈ C1(G) - в полных дифференциалах, тогдаM = φ′

x,N = φ′
y. Продифференцируем

и получим, чтоM ′
y = φ′′

xy = N ′
x. То есть, если уравнение в полных дифференциалах, то его

коэффициенты должны удовлетворять полученному равенству. Обратное верно не во всех
случаях. Если область односвязная (любой замкнутый путь можно непрерывно стянуть в
точку, ”без дыр”), то верно, а если не односвязная - не верно.

2.4 Автономное уравнение

Определение 2.3. Автономное уравнение определено в горизонтальной полосе
G ≡ R× I , циллиндрической по x, и имеет вид

y′ = f(y), f : I → R

Автономное в переводе означает самостоятельное. Здесь производная y′ не зависит от x,
а зависит только от функции y. Это значит, что сам закон, которому эта функция подчи-
няется, при любом x один и тот же.
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Для случая, когда нет особых точек (точек, в которых функция f обнуляется):
пусть f(y) ̸= 0, y ∈ I . Тогда обе части можно поделить на f(y): dy

f ′(y)
= dx - это уравнение

первообразной. Общее решение:

x =

∫ y

y0

1

f(ξ)
dη + C

Если f(y) непрерывна, то общее решение неявно задаёт функцию y(x), потому что по y
она монотонна, а, значит, обратима.
Рассмотрим решение при наличии особой точки.

Определение 2.4. Точка (x, y) ∈ G:
1) точка существования ⇔ ∃ Γ ∋ (x, y)

2) точка единственности ⇔ ∀Γ1,Γ2 ∋ (x, y),Γ1
loc
= Γ2 вблизи точки (x, y)

3) точка неединственности ⇔ не точка единственности

Теорема 2.3. Если f ∈ C(I), то для y′ = f(y) ∀(x, y) - точка существования, причём
• если y - неособая точка, то (x, y) - точка единственности
• если y = a - изолированная особая точка, то (x, y) - точка единственности ⇔

расходятся оба интеграла
∫ a±0 dη

f(η)

Таким образом для того, чтобы точка горизонтальной прямой y = a была точкой един-
ственности, необходимо и достаточно, чтобы и сверху, и снизу, когда y → a, этот ин-
теграл расходился. Поведение интеграла изображено на рис. 4. Если интеграл сходится,
y → a − 0, x → const. y = a - это решение,т.е. интегральная кривая. В этом случае,
при достижении кривой точки x0 нарушится единственность, так как эта кривая и y = a

локально различны. Если интеграл расходится, то кривая уйдёт в бесконечность раньше,
чем достигнет y = a, и условие единственности выполняется.

x

y

y = a

x0

кривая сходящегося интеграла

кривая расходящегося интеграла

Рис. 4: Кривые сходящегося и расходящегося интегралов
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Доказательство. Возьмём точку (x0, a). Пусть f(y) > 0, y0 < y < a.
Докажем неединственность при сходимости интеграла.

x0 = lim
y→a−0

x(y) =

∫ a−0

y0

dη

f(η)
+ C0

x0 = x(a − 0),
∫ a−0

y0

dη

f(η)
равно определённому числу, пусть x1. Подбираем C0 = x0 −

x1, при котором через точку (x0, a) проходит интегральная кривая, которая слева от этой
точки совпадает с графиком возрастающей функции y, а справа идёт по прямой y = a.
Неединственность ещё не доказана, так как решение должно обязательно быть функцией
классаC1, и мы должны проверить, не является ли ломаной фунцкия слева от точки (x0, a),
то есть, что левосторонняя производная равна нулю при данном значении C0.

lim
x→x0−0

y′(x) = lim
x→x0−0

f(y(x)) = lim
y→a−0

f(y) = f(a) = 0
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a−h0

dη

f(η)
=

0

dh

f(a− h)
≥

Лекция 3. Задача Коши

3.1 Дифференциальный признак единственности

Лемма 3.1. f ∈ C(I), ∃f ′(a), f(a) = 0 - изолированная ⇒ ∀(x, a) - точка существования 
и единственности.

Доказательство. Для определённости рассмотрим случай f(y) > 0, y0 ≤ y < a.
По определению производной:

f(a + h) = f(a) + f ′(a) · h + o(h), h → 0

f(a) = 0, при малых h f ′(a) · h не более, чем линейна ⇒

0 < f(a − h) ≤ L · |h|, L = |f ′(a)| + 1, 0 < h < h0

Получаем ∫ a−0 ∫ h0 
∫ h0

0

dh

Lh
= ∞

3.2 Примеры

1) Остывание тела (закон Фурье)
y(x) - температура тела в момент x при фиксированной температуре окружающей среды
(без ограничения общности 0).

y′ = −ky (k > 0), (x, y) ∈ G ≡ R2

при начальном уловии y0 > 0

−kx =

∫ y

y0

dη

η
≡ ln

y

y0
⇐⇒ y = y0e

−kx

если бы тела остывали по этому закону, то их температура никогда бы не стала равна
температуре окружающей среды, так как интегралы расходятся.
2) Вытекание жидкости (закон Торричелли)

y′ = −k√y (k > 0), (x, y) ∈ G ≡ R× [0;∞)

где y(x) - высота уровня жидкости, вытекающей из сосуда с дыркой в дне, в момент x.
При условии y0 > 0

−kx =

∫ y

y0

dη
√
η
≡ 2 (

√
y −√

y0) ⇐⇒ y =

(
√
y0 −

kx

2

)2

,
kx

2
≤ √

y0

В данном случае интеграл сходится, и вода вытечет из сосуда полностью за конечное вре-
мя.
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3.3 Уравнение с разделяющимися переменными

Определение 3.1. Уравнение с разделяющимися переменными - это уравнение вида

P (x)Q(y)dx+R(x)S(y)dy = 0, G = {(x, y)|Q(y) ̸= 0, R(x) ̸= 0}

Область G можно было задать как просто область, в которой уравнения пар P (x), Q(y)
и R(x), S(y) одновременно не равны нулю. Однако наше уточнение верно, так как при
других случаях можно сразу найти частное решение Q(y0) = 0 ⇒ y = y0. Аналогично
R(x0) = 0 ⇒ x = x0.

Теорема 3.1. P,Q,R, S ∈ C(G) ⇒ общее решение:

φ(x, y) ≡
∫ x

x0

P (ξ)

R(ξ)
dξ +

∫ y

y0

S(η)

Q(η)
dη = C

Доказательство. Данное уравнение задаёт неявно заданную функцию, приравненную к
const, значит, линии уровня, которые задаются этим уравнением - будущие интеграль-
ные кривые (при определённых C). Функция φ(x, y) является интегралом для уравнения
с разделяющимися переменными. Примем, что

M(x) =
P (x)

R(x)
, N(y) =

S(y)

Q(y)

Тогда уравнение в дифференциалах M(x)dx + N(y)dy = 0 с данными коэффициентами
является уравнением в полных дифференциалах с потенциалом

φ(x, y) =

∫ x

x0

M(ξ)dξ +

∫ y

y0

N(η)dη

3.4 Однородное уравнение

Определение 3.2. Однородное уравнение - это уравнение вида

y′ = f
(y
x

)
, G =

{y
x
∈ I, x > 0

}
Вместо x > 0 можно использовать область, где x < 0, принимаем первый вариант для
определённости. G - это сектор с tgα =

y

x
• Если взять точки, на которых

y

x
= const, вдоль получившейся прямой угловой коэф-

фициент касательной один будет одним и тем же, то есть поле направлений будет прини-
мать одно и то же значение. Это значит, что при гомотетиях поле направлений переходит
в себя, как и множетсво интегральных кривых.

• При замене переменных z ≡ y

x
⇔ x · z = y
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y - решение, если y′(x) = f

(
y(x)

x

)
⇔ (xz(x))′ = f(z(x)) ⇔ z(x) + xz′(x) = f(z(x)) ⇔

z′(x) =
f(z(x))− z(x)

x
⇔ z - решение уравнения

f(z)− z

x
, которое является уравнением

с разделяющимися переменными.

Лемма 3.2. Замена z ≡ y

x
переводит y′ = f

(y
x

)
в
f(z)− z

x
так, что каждое решение

исходного уравнения является решением нового и обратно.

Подбор такой замены - важная задача, причём не всегда выполнимая, так как доказано,
что некоторые уравнения не решаются. Пример: формула Лиувилля. В некоторых случаях
для подобных уравнений решение объявляют новой элементарной функцией. Пример:
функции Бесселя.

Существование и единственность решений

Если до этого мы имели дело с двумерными функциями, то в данном разделе функции
могут быть многомерными, поэтому принимаются другие обозначения. n-мерное диффе-
ренциальное уравнение 1-го порядка, разрешённое относительно производной:

ẋ = f(t, x), (t, x) ∈ G ⊂ R× Rn ≡ R1+n, f : G→ Rn

x ∈ Rn; точкой принято обозначать производную по t. Разрешённость относительно про-
изводной подразумевает то, что ẋ выраженно явно.

3.5 Локальная теорема существования и единственности

Определение 3.3. Постановка задачи Коши: к уравнению ẋ = f(t, x) добавляется началь-
ное уловие:

x (t0) = x0 (t0, x0) ∈ G

Общая терминология (вне зависимости от реального смысла):
t - время;
x - фаза, или фазовая переменная;
x0 - начальное значение;
t0 - начальный момент;
x0 и t0 - начальные условия;
f(t, x) - правая часть уравнения;
f(t, x), x0 - правая часть задачи Коши.
Если в Rn фиксирован базис, то уравнение ẋ = f(t, x) записывается в виде:
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
ẋ1 = f 1 (t, x1, . . . , xn)

· · ·
ẋn = fn (t, x1, . . . , xn)

- нормальная система из n дифференциальных уравнений

Нормальной данная система называется потому, что она является разрешённой относи-
тельно производной x = (x1, . . . xn).

x

t

G

(t0, x0)

.
интегральная кривая

Рис. 5: Иллюстрация некоторых вопросов об интегральных кривых

Вопросы (см. рис. 5):
1) ∃? решение задачи Коши, хотя бы локально

Будем считать, что переменная x - одномерная (для удобства). Обозначим область G, в
которой отметим точку с координатами (t0, x0). Нам нужно найти решение, то есть инте-
гральную кривую, проходящую через эту точку. Вопрос: можно ли гарантировать, что в
окрестности точки (t0, x0) существует решение?

2) !? решение, хотя бы локально
3) ∃? продолжение решения

Как будет вести себя интегральная кривая на границе области G?
4) !? продолжение решения
5) непрерывно ли решение по правым частям?

При малых возмущениях исходной системы (небольших изменениях f или x0) будет ли
значительно изменяться решение?

6) дифференцируемость по начальным значениям.

18

https://vk.com/teachinmsu


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 1 
СЕРГЕЕВ ИГОРЬ НИКОЛАЕВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

На вопросы 1 и 2 мы уже отвечали в частных случаях. На два последних вопроса ответ
будет дан во второй части курса. В данном разделе мы полностью ответим на первые
четыре вопроса.
Локальная теорема существования и единственности отвечает положительно на первые
два вопроса.

Теорема 3.2. Пусть f, f ′ ∈ C(G), тогда для ∀(t0, x0) в некоторой окрестности U(t0) !∃
решение x : U (t0) → Rn задачи Коши.

Любая задача Коши сводится к эквивалетному ей интегральному уравнению, причём од-
ному.

Лемма 3.3. Пусть f ∈ C(G), x(t) ∈ C(I) ⇒ задача Коши⇔

x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ, t ∈ I

Доказательство. ⇒ Известно, что ẋ = f(t, x). Проинтегрируем обе части по τ :

x(t)− x(t0) =
∫ t

t0

f(τ, x(τ))dτ

Так как x(t0) = x0, получаем доказываемое уравнение.
⇐ Продифференцируем уравнение из леммы 3.3. Получаем ẋ(t) = f(t, x(t)). Также, если
подставить t = t0, получим x(t0) = x0.
Проблема состоит в том, что от функции x мы изначально требовали только непрерыв-
ности, а не дифференцируемости. Однако, если мы посмотрим на уравнение для x, то
увидим, что функция интеграла по верхнему пределу дифференцируема, так как в дан-
ном случае под ним стоит непрерывная функция по τ . Следовательно, дифференцируема
правая часть уравнения, а, значит, и левая тоже дифференцируема.
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Лекция 4. Задача Коши

4.1 Нормы в конечномерных пространствах
Понятие производной инвариантно, её можно представить в Rn как в абстрактном линей-
ном векторном пространстве, либо в Rn как в координатном линейном пространстве. Эти 
подходы приводят к одинаковому результату. Рассмотрим нормированное пространство 
Rn. Его норма задаёт топологию, то есть при помощи нормы можно задать некоторые 
свойства, благодаря которым можно переходить к пределу. Возьмём последовательность 
xn → a, по определению предела ∀ε > 0 ∃N : ∀n > N |xn − a| < ε. Это значит, что 
xn лежит в окрестности точки a с радиусом ε. В данном случае нам важна не конкретная 
норма, которая может быть при расчётах заменена метрикой или другой нормой, а суще-
ствование окрестностей. Вывод: топология не зависит от выбора конкретной нормы.

Лемма 4.1. Для любых двух норм ∥ · ∥1 и ∥ · ∥2 в Rn существует константа C:

∥x∥1 ≤ C∥x∥2, x ∈ Rn

То есть в конечномерном пространстве любые две нормы эквивалентны.
Рассмотрим эндоморфизм EndRn = {A : Rn → Rn} , где A - линейный оператор.

Определение 4.1. A ∈ EndRn. Пусть пространство Rn нормированное. Его норма инду-
цирует норму в пространстве линейных операторов и называется операторной нормой:

∥A∥ = sup
|x|̸=0

|Ax|
|x|

= sup
|x|=1

|Ax|,

где |Ax| - норма образа, а |x| - норма прообраза.

Иначе говоря,
|Ax|
|x|

- коэффициент растяжения. Значит, операторная норма - это наиболь-

ший коэффициент растяжения под действием оператора A.
Норма ∥A∥ обладает всеми свойствами нормы и дополнительными свойствами:

1) |Ax| ≤ ∥A∥ · |x|, x ∈ Rn

2) ∥A∥ <∞
3) ∥AB∥ ≤ ∥A∥ · ∥B∥, A,B ∈ End Rn - полумультипликативность (Банахова норма)

Рассмотрим g′(x) ∈ EndRn. Дифференцирование по вектору x даст матрицу Якоби. g′(x)
- линейный оператор, что видно из g(x+h)′ = g(x)+ g′(x) ·h+ o(x), где x и h - веткторы.

Обобщим теорему Лагранжа о конечных приращениях.

Лемма 4.2. Если g : B → Rn, где B - выпуклое подпространство, тогда

|g(y)− g(x)| ≤ sup
ξ∈B

∥g′(ξ)∥ · |y − x|, x, y ∈ B

Значит, разность образов меньше или равна разности прообразов, умноженных на коэф-
фициент.
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4.2 Равномерная метрика

Возьмём последовательность векторов xn ∈ X , где X - метрическое пространство. Дан-
ная последовательность фундаментальна, если lim

m>n→∞
p (xm, xn) = 0.

Определение 4.2. ПространствоX называется полным, если в нём всякая фундаменталь-
ная последовательность сходится.

Замкнутое подпространство Y ⊂ X , где X - полное, также полно.
Пример: C(K), где K - отрезок ⊂ Rn или любой другой компакт, а C(K) - множество
непрерывных на нём функций с равномерной нормой ∥x∥ ≡ sup

t∈K
|x(t)|. C(K) - полное

пространство.

Определение 4.3. Пусть X - полное пространство, тогда отображение g : X → X -
сжимающее отображение, если ∃ 0 ≤ q < 1, единое для ∀(x,y) :

ρ(g(x), g(y)) ≤ q · ρ(x, y), x, y ∈ X

Определение 4.4. Неподвижная точка отображения g - это любая точка x ∈ X , удовле-
творяющая равенству g(x) = x.

Теорема 4.1. (Теорема Банаха о неподвижной точке сжимающего отображения)
Пусть X - полное метрическое пространство, g - сжимающее отображение. Тогда !∃
неподвижная точка x ∈ X .

Доказательство. 1. Единственность. Предположим, есть две разные неподвижные точки
x, y, то есть ρ(x, y) > 0. Из того, что точки неподвижны, получаем ρ(x, y) = ρ(g(x), g(y)).
Но по условию q < 1 - противоречие.
2. Существование. Самостоятельно.

Доказательство локальной теоремы
Роль сжимающего отображения будет играть фунцкия A, которая каждой функции x (бу-
дущему решению) будет ставить в соответствие

A : x→ x0 +

∫ t

t0

f(τ, x(x))dτ

x ∈ C(KT ) ⊂ X , где T - это радиус окрестности точки t0. X - это полное метричесткое
пространство. Если x ∈ X , то и результат отображения должен принадлежать X . При
выполнении этих условий у отображения A будет ровно одна неподвижная точка:

x0 +

∫ t

t0

f(τ, x(x))dτ = x(t)

В результате получаем решение интегрального уравнения, которое эквивалентно задаче
Коши.
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Доказательство. ∃T0, R0:

C ≡ {(t, x)||t− t0 |≤ T0,|x− x| ≤ R0} ⊂ G

C - цилиндр, и надо выбрать цилиндр таких маленьких высоты и радиуса, чтобы он весь
поместился в области G. Такой цилиндр существует из того, что область открыта, следо-
вательно, в ней можно взять шар, содержащий точку (t0, x0). Введём обозначения

M ≡ sup
(t,x)∈C

|f(t, x)| <∞, L ≡ sup
(t,x)∈C

∥f ′
x(t, x)∥ <∞

Заметим, что C - компакт, из чего следует конечность M и L.
Выберем XT = {x ∈ C(KT )| |x− x0||T ≤ R0}. Берутся такие функции, что равномерная
норма разности меньше или равнаR0. На картинке это значит следующее: функция x−x0
в каждой точке отличается от x0 по норме меньше, чем R0, то есть её график лежит в
этом цилиндре. Значит, XT - это множество непрерывных на отрезке функций, графики
которых лежат в этом цилиндре. XT - замкнутое множетсво ⇒ XT - полное.

x

t

G

t0

T1T0

x0

Рис. 6: Иллюстрация доказательства локальной теоремы

∃T1 < T0,∀T <= T1 A : XT → XT

Ax - образ фунцкии x

|Ax(t)− x0| =
∣∣∣∣∫ t

t0

f(τ, x(τ))dτ

∣∣∣∣ ≤
∣∣∣∣∣
∫ t

t0

sup
(s,x)∈B

|f(s, x)|dτ

∣∣∣∣∣ ≤MT < R0

Причём T < T1 ≤ R0

M
. Если M = 0, тогда будем считать, что R0

M
= ∞.
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Сейчас мы доказали, что

||x− x0||T ≤ R0 ⇒ ||Ax− x0||T < R0

∃T2 ≤ T1 : ∀T < T2 A : XT → XT - сжимающее, то есть

||Ax− Ay||T ≤
∣∣∣∣∣∣∣∣∫ t

t0

|f(τ, x(τ))− f(τ, y(τ))| dτ
∣∣∣∣∣∣∣∣
T

≤ T · L · ||x− y||T < q · ||x− y||T

U(t0) = IT , T < T2
∃! неподвижная точка ≡ решение задачи Коши.

a) ∃ неподвижная точка x⇒ ∃x - решение задачи Коши
До этого в доказательстве была неподвижная точка на компакте, x : KT → RN , в данном
случае интервал, поэтому концы отрезка нужно исключить.

б) Пусть y - тоже решение задачи Коши, и оно определено на интервале IN как и x.
Следовательно, y - неподвижная точка оператора A. Ввиду единственности неподвижной
точки получаем противоречие. Проблема состоит в том, что, чтобы получить данное про-
тиворечие, надо принять, что y ∈ XT , а значит, что ||y − y0|| ≤ R0. Но функция y может
быть такова, что для неё это ограничение не выполнено.
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Лекция 5. Задача Коши

5.1 Разрешение противоречия из доказательства локальной теоремы

Рассмотрим функцию y такую, что sup
t∈IT

|y(t)− x0| < R0. При соблюдении этого условия

непрерывная функция y может быть доопределена до концов отрезка KT .
Пусть супремум больше, чем R0, и S < T . Возьмём равномерную норму на этом отрезке

φ(S) ≡ ||y − x0||KT

φ(S) непрерывна на S ∈ [0, T )

Рассмотрим случай, когда отрезок выродился в точку: φ(0) = 0, так как y(0) = x0 ⇒
∃S < T : φ(S) = R0. Возьмём наименьшее S, для которого это будет выполнено. Тогда
для T = S : y ∈ XS ⇒ AS : XS → XS получаем ASy = y.
Подставим полученное выражение:

φ(S) ≡ ||y − x0||KT
= ||Ay − x0||KS

< R0

Но в то же время φ(S) = R0 ⇒ противоречие. Идея состоит в том, что мы сделали так,
чтобы после действия оператора A функция не доходила до границы. Но если значение
самой функции y хотя бы в одной точке превосходитR0, то тогда она доходит до границы.
Мы применили часто используемый в дифференциальных уравнениях метод априорных
оценок.
• По доказанной выше теореме последовательность

x0(t) = x0

x1(t) = x0 +

∫ t

t0

f(τ, x0(τ))dτ

x2(t) = x0 +

∫ t

t0

f(τ, x1(τ))dτ

· · ·

сходится к неподвижной точке, которая будет решением задачи Коши. Эта последователь-
ность называется последовательностью приближений Пикара.

• T2 = min
{
T0,

R0

M
,
1

L

}
, U(t0) ≡ IT2

Это значит, что наибольший интервал, на котором теорема гарантирует существование и
единственность - это интервал размаха T2.
Пример {

ẋ = x2 + 1

x(0) = 0
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Правая часть определена на всей плоскости, ввиду этого можно взять произвольные T0 и

R0. Путь T0 = ∞, R0 = 1. Тогда T2 = min
{
∞,

1

2
,
1

2

}
. То есть ∃! решение на (−1

2
,
1

2
).

Решения данной системы уравнений:

x = tan(t+ C),

то есть решения принадлежат
(
−π
2
,
π

2

)
Попробуем применить приближения Пикара. В данном случае

x0 = 0,
x1 = 0 +

∫ t
0
(1 + 02)dτ = t

x2 = 0 +
∫ t
0
(1 + t2)dτ = t+

t3

3
Первые члены повторяют ряд Тейлора разложения тангенса, далее подобное наблюдаться
уже не будет, но всё же это свидетельствует о хорошем приближении ряда Пикара.

5.2 Вариации условий теоремы существования и единственности

1) f ∈ C1(G) ⇒ · · ·
Это ослабляет теорему, так как мы усилили предпосылку, что ослабило импликацию.
2) f ∈ C(G)∩ локально Lipx(G) ⇒ ·
Это позволяет упростить доказательство, причём данный факт ослабил условие и усилил
теорему
3) f ∈ C(G) ⇒ ∃x - решение, причём едиственность не обязательна (Теорема Пеано).
Можно ли снять требование непрерывности? Ответ: нет. Пример

ẋ = f(x) ≡

{
1,x > 0

−1,x ≤ 0

Докажем, что ни одного решения не существует. Решение должно пройти через начало
координат (рис. 7). Существенно, что мы определяем решение на интервале. Заметим, что
слева от начала координат решение не может быть определено. Например, если график
начинается выше оси t, тогда при x > 0 производная будет расти и не попадёт в начало
координат. Если ниже оси t, ситуация аналогичная. Это значит, что ни при каком значении
t < 0 решение не могло бы принимать ни положительного, ни отрицательного значения,
что невозможно.
Пусть даны два решения задачи Коши: x′, x′′. Можно ли сказать, что они локально един-
ственны? Применение теоремы без оговорок невозможно, так как, возможно, они опре-
делены не в U(t0), а в меньшей окрестности.
Следствие ∀x′, x′′ ∃U(t0) :

x′|U(t0)
= x′′|U(t0)

То есть существует окрестность, такая, что сужение x′ наU(t0) равно сужению x′′ наU(t0).
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x

t

Рис. 7: Не существование или не продолжаемость решений до границы

Данное следствие вытекает из самой теоремы. Пусть есть два решения, причём одно опре-
делено на окрестности U ′, а другое на окрестности U ′′ точки t0. Возьмём область

G′ ⊂ (U ′ ∩ U ′′)× Rn

По теореме ∃U ⊂ (U ′ ∩ U ′′), на которой x′, x′′ совпадают, то есть x′|U(t0)
= x′′|U(t0)

.

5.3 Теорема глобальной единственности

Пусть у нас есть два решения. Обязаны ли они полностью совпадать на общей области
определения? Ответ положительный.

Теорема 5.1. (Глобальная единственность) f, f ′
x ∈ C(G) ⇒ ∀x, y - решения задачи Коши,

верно:
x|I = y|I , I ≡ D(x) ∩D(y)

Доказательство. x ̸= y, ∃T > t0:x(T ) ̸= y(T ). Рассмотрим множество {t ⩾ t0|x(t) ̸= y(t)}.
Оно не пусто, из чего следует конечность инфинума

t0 ≤ s = inf({t ⩾ t0|x(t) ̸= y(t)}) ≤ T

⇒ x(s) = y(s) = x1 ⇒ ∃U(s) : x|U(s) = y|U(s) ⇒ inf > s. Противоречие.

5.4 Продолжаемость

Определение 5.1. Решение x - это
1) продолжение решения y ⇔ y = x|D(y), D(y) ⊂ D(x)

2) непродолжаемое решение ⇔ ∀y - продолжения x: y = x

Лемма 5.1. ∀ решение продолжаемо до непродолжаемого.
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Следствие Если задача Коши имеет единственное непродолжаемое решение x⇒ x - это
продолжение ∀ решения y этой задачи.

Теорема 5.2. ∀(t0, x0) ∈ G - точка существования и единственности.⇒ ∀(t0, x0) ∈ G ∃!
непродолжаемое решение.

Доказательство. Существование очевидно. Единственность. Пусть есть два непродол-
жаемых решения x, y, x ∈ I, y ∈ J ⇒

z(t) =


x(t) = y(t), t ∈ I ∩ J

x(t), x ∈ I\J
y(t), y ∈ J\I

z - решение, а именно продолжение обоих решений x и y. x = z = y, отсюда следует,
что решения совпадают.
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Лекция 6. Системы дифференциальных уравнений

6.1 Продолжаемость решения

Геометрически продолжаемость решения можно представить так: выделим компакт в об-
ласти G, и если решение приближается к границе области, то оно обязательно выйдет 
за пределы этого компакта. Тот факт, что окрестность границы - это внешность любого 
компакта, позволяет нам не указывать саму границу, которой может и не быть.

Теорема 6.1. (Теорема о продолжаемости решения) Если f ∈ C(G) ⇒ ∀ непродолжае-
мое решение x, ∀C ⊂ G (C - компакт) и ∃K - отрезок ⊂ D(x):

Γ x|D(x)\K 
⊂ (G\C)

То есть, если есть решение x и компакт C, то можно указать такой отрезок K, что некото-
рые дужки интегральной кривой x, примыкающие к левому и правому концам интервала 
определения, целиком лежат в окрестности границы области G.
Когда t попадает в окрестность крайних точек, тогда сама функция попадает в окрестность 
границы.

(t, x(t)) → ∂G, t → ∂D(x)

Доказательство. Решение x определено на интервале (α, t0] ⊂ D(x). Пусть нашлась по-
следовательность точек ti → α (ti, x(ti)) ∈ C, то есть точка при приближении к альфа не 
выходит из компакта. Пусть x(ti) → x0, тогда при i → ∞ (α, x0) ∈ C - предельная точка. 
Докажем, что существует предел

lim
t→α+0

x(t) = x0

Зададим ε > 0 такое, что

Cε ≡ {(t, x)|α ≤ t ≤ α + ε,|x− x0| ≤ ε} ⊂ G

Введём обозначения

M ≡ sup
(t,x)∈Cε

|f(t, x)| <∞, δ ≡ ε

M + 1
≤ ε

Тогда если t меняется в окрестности от α до α + δ, то x от x0 будет отличаться меньше,
чем на ε, и решение не покинет цилиндра Cε

(t, x(t)) ∈ Cε, t ∈ (α;α + δ)

∃ti ∈ (α;α + δ) |x(ti) − x0| <
δ

2
. Это возможно потому, что x(ti) → x0, значит, можно

выбрать такое i, что мы приблизим значение к x0. Получаем

|x(t)− x (ti)| =
∣∣∣∣∫ t

ti

ẋ(τ)dτ
∣∣∣∣ ≤ ∣∣∣∣∫ t

ti

|f(τ, x(τ))|dτ
∣∣∣∣ ≤Mδ ≤ ε− δ
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⇒ |x(t)− x0| ≤ |x(t)− x (ti)|+ |x (ti)− x0| ≤ δ\2 + ε− δ = ε− δ\2

Надо обратить внимание на небольшое допущение в доказательстве. Мы считаем, что
ẋ(τ) = f(t, x), и оно не превосходит M · δ только потому что (t, x) ∈ Cε. Вспомним, что
этот факт мы и доказываем. Мы используем его в ходе доказательства, потому что если
эта точка выйдет за пределы Cε, то супремум уже не будет равен M . Однако, посмотрим
на эту проблему с другой стороны. Пока точка t такова, что график x(t) не выходит за
пределы Cε, неравенсво

∣∣∣∫ tti ẋ(τ)dτ ∣∣∣ ≤Mδ верно. Более того, оно верно с зазором, то есть
для ε − δ\2. Это означает, что график решения не только не покинет области Cε, но и не
покинет области, меньшей, чем Cε. Если график решения покинет эту меньшую область,
то неравнество · · · ≤ ε− δ\2 будет нарушено.
Доопределим решение x в точку α до непрерывности. Рассмотрим одностороннюю про-
изводную

ẋ(α + 0) = lim
t→α+0

ẋ(t) = lim
t→α+0

f(t, x(t)) = f (α, x0)

То есть в предельной точке графика решения производная решения равна f (α, x0). Рас-
смотрим точку (α, x0) как точку задачи Коши, то есть рассмотрим решение задачи Коши,
которое в момент α принимает значение x0, которое назовём y. Положим x(t) = y(t) при
t < α. Но y будет определено и слева, и справа от α. При t < α продолжим решение
x(t) равенством x(t) = y(t). И левосторонняя, и правосторонняя производные будут рав-
ны f (α, x0). ⇒ ∃ẋ(α) = f (α, x0). Это означает, что мы продолжили решение влево ⇒
противоречие.

Пример необходимости условия непрерывности.

f(x) = sgn(x), x ∈ R

Одно из решений - ось t. В верхней полуплоскости решения будут располагаться под уг-
лом 45◦, аналогично снизу - под углом −45◦. Если взять отдельное решение в верхней
полуплоскости и рассмотреть компакт, расположенный по обе стороны оси t, то видим,
что решение не выходит за границы компакта.
Пример непродолжаемости на всю ось.

ẋ = x2 + a ∈ C∞ (R2
)

1) a > 0

Рассмотрим случай a = 1. Тогда x = tan(t + C). График тангенса выходит из любого
компакта

2) a = 0 ⇒
x(t) = − 1

t− C

Это уравнение называется уравнением взрыва, потому что за конечное время x уходит в
бесконечность.
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3) a < 0

Рассмотрим случай a = −1. Тогда ẋ = (x + 1)(x − 1). Можно ли сказать, что все ре-
шения определены на всей прямой? Да, можно, благодаря доказанной теореме. Возьмём
любое решение. Оно будет убывать, причём не может пересекать x = −1, x = 1, так как
эти прямые также являются решениями, и тогда будет нарушена единственность. Значит,
решение будет неогранничено определено сколь угодно вправо. Аналогично влево.

6.2 Непродолжаемые решения линейной системы

Определение 6.1. Линейная система:

ẋ = A(t)x+ F (t), (t, x) ∈ G ≡ I × Rn, A : I → End Rn, F : I → Rn

Теорема 6.2. Eсли A,F ∈ C(I) ⇒ ∀ непродолжаемого решения x: D(x) = I

То есть если A,F непрерывны, то решение принадлежит тому интервалу, на котором они
непрерывны (решение продолжается на весь интервал непрерывности коэффициентов).
Доказательству этой теоремы предпошлём леммы об интегральном и дифференциальном
неравенствах, полезные сами по себе, так как они позволяют получать априорные оценки
решений интегрального и дифференциального уравнений соответственно.

Лемма 6.1. (Гронуолла-Беллмана, лемма об интегральном неравенстве) Еслифункция u ∈
C(J), где J = [t0; β) удовлетворяет для некоторых чисел a, b ≥ 0 условию

0 ≤ u(t) ≤ a+ b

∫ t

t0

u(τ)dτ, t ∈ J,

то и оценке
u(t) ≤ aeb(t−t0), t ∈ J.

Доказательство. 1) Пусть a > 0, тогда
Поделим неравенство на правую часть (положительную) и умножим на b ≥ 0, заменив t
на s:

d

ds
ln
(
a+ b

∫ s

t0

u(τ)dτ

)
≡ bu(s)

a+ b
∫ s
t0
u(τ)dτ

≤ b

Проинтегрируем полученное равенство по s от t0 до t и получим оценку

ln
(
a+ b

∫ t

t0

u(τ)dτ

)
− ln a ≡ ln

(
a+ b

∫ s

t0

u(τ)dτ

)∣∣∣∣t
t0

≤ b (t− t0)

Из неравенства получаем

u(t) ≤ a+ b

∫ t

t0

u(τ)dτ ≤ aeb(t−t0), t ∈ J

2) Пусть a = 0. Тогда оценка будет верна при ∀a′ > a⇒ 0 ≤ u(t) ≤ a′eb(t−t0)

Если данное неравенство верно для любых ∀a′ > 0, очевидно, что u(t) = 0.
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Лемма 6.2. Если x ∈ C1(J), где J = (α, β) для некоторых чисел a, b ≥ 0 и t0 ∈ J удовле-
творяет условию

|ẋ(t)| ≤ a+ b|x(t)|, t ∈ J,

то и оценке
|x(t)| ≤ (|x (t0)|+ a |t− t0|) eb|t−t0|, t ∈ J.

Доказательство. Докажем, применив лемму Гронуолла-Беллмана. Примем, что s ∈ (t0, t).

u(s) = |x(s)| ⇒ u(s) ≤ |x(s)− x(t0)|+ |x(t0)| ≤

≤
∣∣∣∣∫ s

t0

|ẋ(τ)|dτ
∣∣∣∣ ≤ (|x (t0)|+ a |t− t0|) + b

∣∣∣∣∫ s

t0

u(τ)dτ

∣∣∣∣
(|x (t0)|+ a |t− t0|) ≡ const ⇒ находимся в условиях леммы об интегральном неравен-
стве ⇒ u(s) ≤ (x(t0)+a|t− t0|) ·eb(s−t0). При замене s на t неравенство не ухудшится.

Доказательство. (Доказательство теоремы продолжаемости для линейной системы)
Пусть справа D(x) ограничено T < β. Рассмотрим участок J = [t0, T ). ∀t ∈ J :

|ẋ(t)| ≤ a+ b|x(t)|, a ≡ sup
s∈J

|F (s)| <∞, b ≡ sup
s∈J

∥A(s)∥ <∞

По лемме о дифференциальном неравенстве:

|x(t)| ≤ (|x0|+ a |T − t0|) eb|T−t0| ≡ R <∞

Получается, что на всей области определения решение по модулю не превосходит кон-
станты R. Это значит, что решение никогда не покинет компакт, где |x| не превосходит
R. Противоречие.
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Лекция 7. Обобщенные дифференциальные уравнения

7.1 Определение обобщенного дифференциального уравнения n-го по-
рядка

Определение 7.1. Обобщённое дифференциальное уравнение n-го порядка, разрешённое
относительно старшей производной - это уравнение вида

y(n) = f
(
t, y, ẏ, . . . , y(n−1)

)
, f : G→ R, G ⊂ R1+n

Sf -множество решений обобщённого дифференциального уравнения.
Если добавим набор начальных значений

ȳ0 =


y(t0) = y0

ẏ(t0) = y1

. . .

yn−1(t0) = yn−1

получим задачу Коши. Тогда множество решений будем обозначать как Sf , ȳ0. Обозна-
чим через Sf и Sf (t0, y0) множества решений и задачи Коши для следующей нормальной
системы:

ẋ = f(t, x) ≡


x2
· · ·
xn

f (t, x1, . . . , xn)

 , x (t0) = y0 ≡


y0
y1
· · ·
yn−1

 .

7.2 Каноническая замена переменных

Определение 7.2. Каноническая замена - это формальная операция ϕ, переводящая ска-
лярную переменную y в векторную

ψy ≡


y

ẏ

· · ·
y(n−1)


Φ - это вектор-функции, определённые на интервалах.
Φn−1 - это множество всех скалярных функций, определённых на интервалах и диффе-
ренцируемых n− 1 раз.
В случае y ∈ Φn−1 и ψy ∈ Φ функция ψy называется (n − 1) - струёй функции y, так как
для фиксированной точки t0 ∈ D(y) отображение ψt0y ≡ (ψy) (t0) принимает одно и то
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же значение на целом классе эквивалентных функций. А график функции ψy - это (n− 1)

график функции y.
Свойства отображения ψ : Φn−1 → Φ:

1) корректно определено, так как переводит n− 1 раз дифференцируемую скалярную
функцию переводит в векторную;

2) сохраняет область определения функции, то есть

D(ψy) = D(y), y ∈ Φn−1

3) - инъекция, потому что если ψy1 = ψy2, то y1 = y2;
4) сохраняет операцию перехода к сужению

(y|I) = (ψy)|I , y ∈ Φn−1, I ⊂ D(y)

Теорема 7.1. Каноническое отображение осуществяет изоморфизмы множеств

sf
ψ→ Sf и Sf (t0, y0)

ψ→ Sf (t0, y0) ,

причём обратные отображения задаются формулой ψ−1x = x1.

Доказательство. 1) корректность: ∀y ∈ Sf ψy ∈ Sf̄
Подставим в ẋ = f̄(t, x).

(ψy)(t) =


y

· · ·
y(n−2)

y(n−1)

 (t) =


ẏ(t)

. . .

y(n−1)(t)

f
(
t, y(t), . . . , y(n−1)(t)

)
 = f(t, ψy(t))

2) докажем, что отображение ψ - изоморфизм = инъекция + сюрьекция, то есть что
∀x ∈ Sf̄ ∃y ∈ Sf : ψy = x

Возьмём y = x1. При всех t ∈ D(x)
ẏ(t) = ẋ1(t) = x2(t)

· · ·
y(n−1)(t) = ẋn−1(t) = xn(t)

y(n)(t) = ẋn(t) = f(t, x(t)) = f
(
t, y(t), . . . , y(n−1)(t)

)
Отсюда вытекает равенство ψy = x и то, что y ∈ Sf .

Теоремы существования, единственности и продолжаемости решений нормальной си-
стемы сохраняются для обобщённого уравнения n-го порядка благодаря изоморфизму.
Поэтому следующие теоремы приводятся без доказательства.

Теорема 7.2. (Локальнаятеорема существования и единственности) Если f, f ′
y, . . . , f

′
y(n−1) ∈

C(G), то для любого набора (t0, y0, . . . , yn−1) ∈ G в некоторой окрестности U (t0)точки
t0 существует единственное решение задачи Коши: y : U (t0) → R
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Теорема 7.3. (Теорема существования, Пеано) f ∈ C(G) ⇒ ∀(t0, ȳ0) ∈ G∃y - решение.

Теорема 7.4. (Глобальнаятеорема единственности)G - область единственности, тогда
∀(t0, ȳ0) ∈ G ∀y, x ∈ Sf,ȳ0 выполнено

y|I = z|I , I ≡ D(y) ∩D(z)

Теорема 7.5. (Теорема о существовании непродолжаемого решения) Если G - область
существования и единственности ⇒ ∀(t0, ȳ0) ∈ G ∃! непродолжаемое решение этой
задачи.

Теорема 7.6. (Продолжаемость до границы области) f ∈ C(G) ⇒ ∀ непродолжаемого
решения y и ∀C ⊂ G (C - компакт) ∃ отрезокK ⊂ D(y):

Γψy |D(y)\K ⊂ (G\C)

7.3 Продолжаемость решений линейного уравнения

Определение 7.3. Линейное неоднородное уравнение n-го порядка записывается в виде:

y(n) + a1(t)y
(n−1) + · · ·+ an(t)y = f(t), a1, . . . , an, f : I → R

Обозначим набор коэффициентов (a1, . . . , an) = a.
Тогда множество решений обозначим Sa,f . Множество решений ẋ = A(t)x+F (t) обозна-
чим как SA,f , где A - матрица уравнения, F - векторная неоднородность.
По неоднородности f можно построить векторную неоднородность F . Каноническая за-
мена осуществляет изоморфизм множеств Sa,f

ϕ→ SA,F . Пусть x = ψy.

ẋ =

 x2
· · ·

f(t, x)

 =


x2
· · ·
xn

−an(t)x1 − · · · − a1(t)xn + f(t)

 =

=

∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0

0 0 1 . . . 0

. . .

0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1

∣∣∣∣∣∣∣∣∣∣∣
·

 x1
· · ·
xn

+

 0

· · ·
f(t)

 ≡ A(t)x+ F (t), t ∈ I

Теорема 7.7. Если a, f ∈ C(I) ⇒ ∀ непродолжаемое решение определено на I и ∀(t0, ȳ0)∃!
непродолжаемое решение.
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7.4 Уравнение, не разрешённое относительно производной

Определение 7.4. Уравнение, не разрешённое относительно производной имеет вид

F (t, y, ẏ) = 0, (t, y, ẏ) ∈ H ⊂ R3

Рассмотрим точку (t0, y0). Из-за того, что ẏ задана не явно, в этой точке возможна неод-
нозначность. Поэтому для каждого решения рассматривается отдельная задача со своими
начальными условиями

y (t0) = y0, ẏ (t0) = y1,

определяющими расширенную задачу Коши.

Теорема 7.8. F, F ′
y, F

′
ẏ ∈ C(H), F (t0, y0, y1) = 0 и F ′

ẏ(t0, y0, y1) ̸= 0

⇒ ∃ U(t0) ∃!y : U(t0) → R, где y - решение расширенной задачи Коши.

В курсе данная теорема даётся без доказательства, но главная его идея заключается в при-
менении теоремы о неявной функции. А именно, в некоторой окрестности точки (t0, y0, y1)

существует и единственна функция вида ẏ = f(t, y), причём f, f ′
y ∈ C(G). Для доказатель-

ства единственности нужно убедиться, что вблизи точки (t0, y0, y1) решение не переско-
чит с заданной ветви правой части на другие её ветви. Будем пользоваться тем, что если
всё же перескочит, то ẏ резко поменяет значение в момент перескока, и теорема Дарбу о
промежуточном значении производной будет нарушена.

Определение 7.5. Для уравнения F (t, y, ẏ) = 0

• тройка (t0, y0, y1) называется точкой единственности⇔∃ loc ! решение задачи Коши.
• y - особое решение ⇔ ∀t ∈ D(y) (t, y(t), ẏ(t)) - точка неединственности
• (t0, y0) - точка дискриминантного множества⇔ ∃y1 :F (t0, y0, y1) = 0 иF ′

ẏ (t0, y0, y1) =

0. То есть дискриминантное множество - это множество точек, через которые проходят
локальные разные два решения, касающиеся друг друга.

Следствие из условий теоремы 7.8: если y - особое решение ⇒ Γy принадлежит дискри-
минантному множеству.
Первое условие принадлежности дискриминантному множеству выполнено в силу того,
что (t0, y0) принадлежит интегральной кривой, а второе - в силу того, что если кривая
особая, то (t0, y0, y1) - точка неединственности.

35

https://vk.com/teachinmsu


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 1 
СЕРГЕЕВ ИГОРЬ НИКОЛАЕВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Лекция 8. Линейные дифференциальные уравнения

8.1 Пример нахождения дискриминантного множества

Уравнение вытекания воды
ẏ = −√

y

Данное уравнение является негладким и разрешённым относительно производной. Рас-
смотрим сглаженный вариант, неразрешённый относительно производной.

ẏ2 − y = 0

Мы заранее знаем, что особые решения есть, так как знаем, как выглядят решения уравне-
ния до преобразования. А именно это нулевое решение, а также решения, спускающиеся
по параболе до нулевого. Но при сглаживании мы добавляем лишние кривые, это озна-
чает, что также решениями будут кривые, поднимающиеся по параболе (”втекание воды
обратно”). Если y > 0, тогда ẏ определяется двузначно, а если y = 0, то однозначно.
Найдём дискриминантное множество. Оно удовлетворяет{

ẏ2 = y

2ẏ = 0
=⇒ y = 0

В данном случае дискриминантное множество является в то же время особым решением.
• Рассмотрим три уравнения

ẏ = f(t, y) ÿ = f(t, y) y = f(t, ẏ)

Исследуем их графики на пересечение и касание.

f ∈ C1(R2) ẏ = f(t, y) ÿ = f(t, y) y = f(t, ẏ)

Пересечение

нет,
т.к. при одинаковых
начальных условиях

ẏ однозначно

  

да,
т.к. при выполнении условия
y(t0) = y0 пересекаться
будет столько решений,

сколько ∃y1

да

Касание   

нет,
т.к. при одинаковых

y0 задача Коши совпадает, но
f гладкая и имеет

единственное решение

  

нет,
т.к. касание в этом случае

означает, что решения
удовлетворяют

одной и той же з.Коши

да
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8.2 Уравнение колебаний маятника

Рассмотрим колебания маятника массы m, подвешенного на стержне длиной l и вращаю-
щегося вокруг точки опоры в фиксированной вертикальной плоскости, которые описыва-
ются уравнением

ÿ + pẏ + q sin y = f(t),

где y = y(t) - угол отклонения маятника от силы тяжести, а a(t), b(t) отвечают за длину и
вязкое трение соответственно, причём a(t) > 0, b(t) ≥ 0. f(t) отвечает за внешние силы,
действующие на маятник.

1) f(t) = 0 - свободные колебания, уравнение имеет решения y(t) = πn(n ∈ Z),
называемые положениями равновесия.

2) |f(t)| < ε⇒ sin y ∼ y, получаем линейное уравнение малых колебаний

ÿ + pẏ + qy = f(t)

8.3 Общая теория линейных уравнений и систем. Общее решение од-
нородной системы.

Уравнение неоднородной системы:

ẋ = A(t)x+ F (t), x ∈ Rn, t ∈ I

A : I → EndRn F : I → Rn, A, F ∈ C(I) ⇒ ∀xD(x) = I

SA,F - множество решений неоднородной системы.
SA ≡ SA,0 - множество решений однородной системы.
Φ(I) - множество n-мерных функций, определённых на интервале I , притомΦ(I) ⊃ SA,F , SA
(линейное пространство).
Рассмотрим F ≡ 0 - однородная система.

Теорема 8.1. (Об изоморфизме) SA - линейное пространство, SA ∼ Rn (изоморфно Rn),
то есть есть отображение, сохраняющее линейные операции. Изоморфизм линейных
пространств: ∀t0 ∈ I

φt0 : SA → Rn, где φt0x ≡ x (t0)

То есть отображение φt0 ставит в соответсвие решению его начальный вектор и в то же
время является изоморфизмом линейных пространств.

Доказательство. 1) Если SA - линейное пространство, то x1, x2 ∈ SA и C1, C2 ∈ R.

(C1x1 + C2x2)
′ = C1ẋ1 + C2ẋ2 =

=C1Ax1 + C2Ax2 = A (C1x1 + C2x2)
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Следовательно, SA - линейное пространство.
2) φt0 - биекция по теореме 7.7: ∀x0 ∈ Rn ∃!x ∈ SA x(t0) = x0
3) φt0 - гомоморфизм

φt0 (C1x1 + C2x2) = C1x1 (t0) + C2x2 (t0) = C1φt0 (x1) + C2φt0 (x2)

Следствие dim SA = n и x1, . . . , xn - базис в SA ⇒ x = C1x1(t) + · · · + Cnxn(t), где
C1, . . . Cn - произвольные постоянные. В теории дифференциальных уравнений базис в
пространстве решений называть фундаментальной системой решений.

8.4 Оператор Коши

Определение 8.1. Оператор Коши - это оператор

X (t, s) : Rn → Rn, t, s ∈ I,

который задаётся уравнением

X (t, s)x(s) = x(t), x ∈ SA

Таким образом оператор Коши действует на решение в момент s и даёт то же самое ре-
шение в момент t. Определение оператора Коши инвариантно и не зависит от базиса.

Лемма 8.1. Оператор Коши
1) корректно определён: линеен и невырожден
2) X (t, t) = I - тождественный оператор
X (t, s)X (s, r) = X (t, r)

3) X−1(t, s) = X (s, t)

Доказательство. Путь оператор Коши действует на некоторый вектор a.

X (t, s) = φt · φ−1
s − линейный оператор,

т.к. это композиция изоморфизмов линейных пространств и, следовательно, оператор Ко-
ши невырожден. Остальные пункты леммы доказываются аналогичными подстановка-
ми.

38

https://vk.com/teachinmsu


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 1 
СЕРГЕЕВ ИГОРЬ НИКОЛАЕВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Лекция 9. Методы решения дифференциальных уравнений

9.1 Матрица решений

Определение 9.1. Матрица решений - это матрица вида

X(t) = (x1(t), . . . , xn(t)) , t ∈ I,

где x1(t), . . . , xn(t) ∈ SA - решения.

Лемма 9.1. X - матрица решений, ∀t0 ∈ I обладает следующими свойствами:

1) определена однозначно по X(t0);
2) фундаментальна ⇔ x(t0) невырождена (x1, . . . , xn - фундаментальная система

решений)
3) X фундаментальна⇒ общее решение системы x = X(t) · c, c ∈ Rn

Доказательство. 1) столбцы матрицы X однозначно определяются своими начальными
значениями по теореме об изоморфизме, где оператор φt0 : SA → Rn, который каждому
решению ставит в соответствие его значение в момент t0

x1 (t0) = φt0x1, . . . , xn (t0) = φt0xn

2) т.к. отображение φt0 - изоморфизм, прообраз базиса будет базисом.
3)

x = x1(t)C1 + · · ·+ xn(t)Cn ≡ x(t)c, c ≡

 C1

· · ·
Cn

 ∈ Rn

9.2 Матрица Коши

Если в Rn фиксирован базис, то оператор Коши записывается как матрица. Матрица Коши
не идентична матрице решений, так как не зависит от базиса в отличие от последней.
Однако связь между этими матрицами существует.

Лемма 9.2. ∀X - фундаментальная матрица:
1) X(t, s) = X(t)X−1(s)

2) X(s) = E ⇒ X(t, s) = X(t)

Доказательство. 2) ⇐ 1)
1) (X(t)X−1(s))x(s) = X(t)c = x(t) ⇒ X(t, s) = X(t)X−1(s)
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9.3 Матричное дифференциальное уравнение

Дифференцирование матрицы в пространстве матриц Rn×n производится поокординатно,
в пространстве операторов производная операторной функции выражается как

Ẋ (t) = lim
h→0

X (t+ h)−X (t)

h

В результате получаем одно и то же, потому что линейные конечномерные топологические
пространства Rn и End Rn изоморфны, и если есть норма, то в обоих пространствах она
одинакова.

Ẋ = (ẋ1, . . . , ẋn) = (A(t)x1, . . . , A(t)xn) = A(t)X

Следствие 1) ∀ фундаментальная матрица X - решение уравнения Ẋ = A(t)X .
2) оператор Коши X (·, ·) - решение уравнения Ẋ (t, t0) = A(t)X (t, t0), X (t0, t0) = I -
единичный оператор.

9.4 Определитель Вронского

Определение 9.2. Определитель Вронского - это скалярная функция, определяемая вектор-
функциями f1, . . . , fn ∈ Φ(I)

Wf1,...,fn(t) = det (f1(t), . . . , fn(t)) , t ∈ I

Лемма 9.3. f1, . . . , fn линейно зависимы⇒ ∀t Wf1,...,fn(t) ≡ 0

Доказательство. φ(t0) : Φ(I) → Rn - гомоморфизм, который сохраняет линейные опе-
рации, в т.ч. линейную зависимость. Обратное вообще говоря не верно, так как линейную
независимоть гомоморфизм не сохраняет. Пример:

f1(t) =

(
1

0

)
, f2(t) =

(
t

0

)
, t ∈ R

Wf1,f2 ≡ 0, но f1, f2 линейно независимы.

Теорема 9.1. x1, . . . , xn ∈ SA ⇒ эквивалентны следующие утверждения:
• x1, . . . , xn линейно зависимы
•Wx1,...,xn(t) = 0 ∀t ∈ I

•Wx1,...,xn(t0) = 0 ∃ t ∈ I

Доказательство. 1) ⇒ 2) по лемме 9.3
2) ⇒ 3) очевидно
3) ⇒ 1), т.к. φ(t0) : SA → Rn - изоморфизм, значит, если столбцы в момент t0 линейно

зависимы, то и x1, . . . , xn линейно зависимы.
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9.5 Формула Лиувилля-Остроградского

Теорема 9.2. x1, . . . , xn ∈ SA ⇒

Wx1,...,xn(t) = Wx1,...,xn(t0) · e
∫ t
t0

trA(τ)dτ

Определитель матрицы, у которой по столбцам стоят векторы - это ориентированный объ-
ём параллелепипеда, натянутого на эти векторы. Таким образом, объём параллелепипеда,
натянутого на n решений, определяется следом матрицы A, и если след равен нулю, то
объём постоянен.

Доказательство. Докажем, что

Ẇ = trA(t) ·W, t ∈ I

Дифференцирование определителя - это дифференцирование полилинейной функции, то
есть

(detX(t))· = det


ẋ1

x2

. . .

xn

+ · · ·+ det


x1

· · ·
xn−1

ẋn


Вспомним, что Ẋ = AX . Первую строчку Ẋ можно получить, взяв первую строчку мат-
рицы A и умножив её на матрицу X . Получим

ẋi = aiX = ai1x
1 + · · ·+ ainx

n

Таким образом

Ẇ =

∣∣∣∣∣∣∣
ẋ1

· · ·
xn

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
x1

· · ·
ẋn

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a1X

· · ·
xn

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
x1

· · ·
anX

∣∣∣∣∣∣∣ =
=

∣∣∣∣∣∣∣
a11x

1 + · · ·+ a1nx
n

· · ·
xn

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
x1

· · ·
an1x

1 + · · ·+ annx
n

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a11x

1

. . .

xn

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
x1

. . .

annx
n

∣∣∣∣∣∣∣ =
=
(
a11 + · · ·+ ann

) ∣∣∣∣∣∣∣
x1

. . .

xn

∣∣∣∣∣∣∣ = trA ·W
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9.6 Общее решение неоднородной системы

есть общее решение соответстующей однородной системы плюс частное решение неод-
нородной ẋ = A(t)x+ F (t).

Теорема 9.3. ∀x0 ∈ SA,F - частное решение неоднородной системы

SA,F = x0 + SA ≡ {x0 + x|x ∈ SA}

Доказательство. Пусть y = x0 + x. Докажем, что y ∈ SA,F ⇔ x ∈ SA. Это выполнено,
если ẏ = Ay + F . Подставляем,

ẏ = Ay + F ⇐⇒ ẋ0 + ẋ = Ax0 + Ax+ F ⇐⇒ ẋ = Ax

Следовательно, x ∈ SA по определению.

Аффинное пространство
Φ(I) - линейное векторное пространство. Его можно представить как аффинное (точеч-
ное) пространство Φ̃, где все векторы прикрепляются к различным точкам. К точке из
аффинного пространства можно прибавить вектор из ассоциированного векторного про-
странства и получить точку аффинного пространства.
SA ⊂ Φ(I), SA,F ⊂ ˜Φ(i)

Теорему 9.3. можно переформулировать так: множество решений неоднородной систе-
мы - это аффинное пространство, ассоциированное с множеством решений однородной
системы.

9.7 Метод вариации постоянных

xoo - общее решение однородной системы
xoo = x1(t)c1 + . . . xn(t)cn = X(t)c

x1, . . . , xn - базис, фундаментальная система решений однородной системы
Нельзя ли, зная фундаментальную матрицу, найти решение неоднородной системы ẋ =

A(t)x+F (t)? Будем искать такую функцию c(t), что x0 = X(t)c(t). Если она существует,
то ответ положительный.

Теорема 9.4. (Метод вариации постоянных)

X(t)ċ(t) = F (t) ⇒ Xc ∈ SA,F , t ∈ I, c : I → Rn

То есть мы пишем некую систему X(t)ċ(t) (напомним, что X(t)c - общее решение одно-
родной системы) и приравниваем её к неоднородности. И если векторная функция c(t)
удовлетворяет этому уравнению, тогда получим Xc - частное решение неоднородной си-
стемы. Для теоремы 9.4. можно заметить, что верно и обратное.
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Доказательство.

Xċ = F =⇒ (Xc)· = Ẋc+Xċ = A(Xc) + F =⇒ Xc ∈ SA,F
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Лекция 10. Краевая задача для уравнения второго порядка

10.1 Доказательство эквивалентности уравнений

Линейное неоднородное уравнение

y(n) + a1(t)y(n−1) + · · · + an(t)y = f(t), t ∈ I, y ∈ R

Φn−1(I) - множество n − 1 непрерывно дифференцируемых функций, определённых на I . 
Множество решений данного линейного неоднородного уравнения Sa,f ⊂ Φ̇ n−1(I). 
Множество решений соответствующего однородного уравнения обозначим Sa ≡ Sa,0, Sa ⊂ Φn

−1(I).
Множество скалярных функций Φn−1(I) можно перевести в пространство векторных функ-
ций:

Φn−1(I) −ψ→ Φ(I)

В прошлый раз мы установили, что SA ⊂ Φ(I), SA,F ⊂ Φ̇(I).
Суммарно это можно записать в виде диаграммы:

Ψ(I) ∼ Ψ̃(I)

∪ ∪
SA ∼ SA,F

ψ−1

⇄
Φn−1(I) ∼ Φ̃n−1(I)

∪ ∪
Sa ∼ Sa,f

- это инъекция, т.к. при разных y получаются разные векторы:

ψy ≡


y

ẏ

· · ·
y(n−1)


Определим Ψ(I) как образ отображения ψ:

Ψ(I) ≡
(
Φn−1(I)

)
⊂ Φ(I)

Лемма 10.1. Отображение Φn−1(I)
ψ→ Ψ(I) - изоморфизм линейных пространств.

Доказательство. 1) ψ - инъекция, как и ψ : Φn−1 → Φ

2) - гомоморфизм, так как

(C1f1 + C2f2) =

 C1f1 + C2f2
C1ḟ1 + C2ḟ2

C1f
(n−1)
1 + C2f

(n−1)
2

 = C1 (ψf1) + C2 (ψf2)

3) - сюрьекция по определению
⇒ ψ - изоморфизм.
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10.2 Общее решение

Теорема 10.1. 1) Sa - линейное пространство размерности n, причём ∀t0 ∈ I отобра-
жение

ψt0 : Sa → Rn, где ψt0y = φt0 ◦ ≡ (ψy) (t0)

есть изоморфизм линейных пространств
2) Sa,f = y0 + Sa ∀y0 ∈ Sa,f

Таким образом общее решение линейного неоднородного уравнения есть общее решение
соответстующего однородного уравнения плюс частное решение неоднородного.
Следствие В Sa имеется фундаментальная система решений y1, . . . , yn ⇒ общее решение
имеет вид

y = C1y1(t) + · · ·+ Cnyn(t)

Sa,f имеет y0 - частное решение такое, что ∀y0 общее решение имеет вид

y = y0(t) + C1y1(t) + · · ·+ Cnyn(t) ≡ y0 + Y (t)c, Y ≡ (y1, . . . , yn) , c ≡

 C1

· · ·
Cn


10.3 Метод вариации постоянных

Постоянные C1, . . . , Cn примем за функции от t.

Теорема 10.2. y1, . . . , yn - фундаментальная система решений ⊂ Sa и для t ∈ I

Y (t)ċ(t) = 0

Ẏ (t)ċ(t) = 0

· · ·
Y (n−2)(t)ċ(t) = 0

Y (n−1)(t)ċ(t) = f(t)

⇒ Y c ∈ Sa,f - решение неоднородного уравнения.

Доказательство. Введём фундаментальную матрицу X для однородной системы:

X = ψY ≡ (ψy1, . . . , ψyn)

Домножим обе части на ċ и получим из условий теоремы 10.2 и по теореме 9.4, а также
из того, что Xc = ψ(Y c):

Xċ ≡ (ψY )ċ = F =⇒ Xc ∈ SA,F =⇒ Y c ≡ ψ−1(Xc) ∈ Sa,f , t ∈ I

При этом обратный переход невозможен.
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10.4 Определитель Вронского для скалярных функций

Определение 10.1. Определитель Вронского для скалярных функций f1, . . . , fn ∈ Φn−1(I)

- это функция

Wf1,...,fn(t) = Wψf1,...,ψfn(t) ≡

∣∣∣∣∣∣∣∣∣
f1(t) . . . fn(t)

ḟ1(t) . . . ḟn(t)

· · · fn(t)

f
(n−1)
1 (t) . . . f

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣
Лемма 9.3 сохраняется, при этом обратная импликация также вообще говоря не верна.
Контрпример того, что обратное не верно: возьмём функции

f1 = t3, f2 = |t|3

Функции линейно не зависимые, т.к.

C1t
3 + C2t

3 sgn t ≡ 0 ⇐⇒ C1 ≡ −C2 sgn t

Определитель Вронского равен 0:

Wf1,f2(t) =

∣∣∣∣∣ t3 t3 sgn t
3t2 3t2 sgn t

∣∣∣∣∣ = 0

Однако, согласно исследованиям 21 века, считается, что обратная импликация грубо го-
воря верна и рассмотренный пример ломаной, которая является контрпримером только в
нуле - это экзотика.
Так как Sa и SA изморфны, верна следующая теорема:

Теорема 10.3. (скалярный аналог теоремы 9.1. для вектор-функций)
y1, . . . , yn ∈ Sa ⇒ эквивалентны следующие утверждения:

• y1, . . . , yn линейно зависимы
•Wy1,...,yn(t) = 0 ∀t ∈ I

•Wy1,...,yn(t0) = 0 ∃ t ∈ I

Теорема 10.4. (Формула Лиувилля-Остроградского для скалярных функций) y1, . . . , yn ∈
Sa ⇒

Wy1,...,yn(t) = Wy1,...,yn (t0) · e
−

∫ t
t0

trA(τ)dτ

10.5 Восстановление линейного уравнения

Даны функции f1, . . . , fn ∈ Cn(I). Найдётся ли линейное однородное уравнение, для ко-
торых этот набор функций является фундаментальной системой решений?
Пусть известно, что

Wy1,...,yn(t) ̸= 0 ∀t ∈ I

Это означает, что f1, . . . , fn ∈ Cn(I) линейно независимы. Сформулируем теорему.
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Теорема 10.5. f1, . . . , fn ∈ Cn(I), Wy1,...,yn(t) ̸= 0 ∀t ∈ I ⇒ ∃ уравнение, для которого
f1, . . . , fn - фундаментальная система решений. Уравнение имеет вид:

1

Wf1,...,fn(t)
·

∣∣∣∣∣∣∣∣∣
f1(t) . . . fn(t) y

. . .

f
(n−1)
1 (t) . . . f

(n−1)
n (t) y(n−1)

f
(n)
1 (t) · · · f

(n)
n (t) y(n)

∣∣∣∣∣∣∣∣∣ = 0

Доказательство. Преобразуем уравнение, разложив определитель по последнему столб-
цу. Полученное уравнение - это и есть линейное однородное дифференциальное уравне-
ние n-го порядка. Докажем, что каждая из функций fi удовлетворяет полученному урав-
нению. Действительно, при подстановке y = fi(t) определитель обнуляется. К тому же
эта система решений фундаментальна, так как для этого достаточно, чтобы определитель
Вронского хотя бы в одной точке не был равен нулю.

10.6 Теорема о связи линейной зависимости и определителя Врон-
ского

Затронем теорему, доказанную в 21 веке.

Теорема 10.6. Wf1,...,fn(t) ≡ 0 иWf1,...,fn−1(t) ̸= 0, t ∈ I ⇒ f1, . . . , fn линейно зависимы

Это вытекает из доказательства теоремы 10.5. Вычеркнем из матрицы последние стол-
бец и строку и получим определитель для формулы в случае Wf1,...,fn−1(t). Тогда fn - это
частное решение линейного однородного уравнения (n− 1) порядка с фундаментальной
системой решений f1, . . . , fn−1. Это значит, что fn - линейная комбинация f1, . . . , fn−1.

10.7 Краевая задача

Линейное уравнение второго порядка:

Ly ≡ ÿ + p(t)ẏ + q(t)y = f(t), t ∈ K ≡ [t1; t2] , p, q ∈ C(J)

Краевая задача для линейного уравнения второго порядка имеет два краевых условия на
концах отрезка K:

liy ≡ αiy (ti) + βiẏ (ti) = φi, (αi, βi) ̸= (0,0), i = 1,2

Таким образом

ly ≡

(
l1y

l2y

)
= φ ≡

(
φ1

φ2

)
Таким образом можно выразить задачу Коши системой уравнений:{

Ly = f(t)

ly = φ
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Определение 10.2. Краевая задача:
• невырождена ⇔ ∀f, φ ∃! решение
• вырождена ⇔ ∀f, φ ∄ решение или их бесконечно много
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Лекция 11. Теорема об альтернативе

11.1 Теорема об альтернативе

Теорема 11.1. Краевая задача либо вырождена, либо невырождена.
Доказательство. y0 - частное решение уравнения, y1, y2 - фундаментальная система ре-

шений соответствующего однородного уравнения. Тогда общее решение имеет вид

y = y0(t) + Y (t)c, Y ≡ (y1, y2) , c ≡

(
C1

C2

)
Согласно краевым условиям

l (y0 + Y c) = φ⇐⇒ (lY )c = φ− ly0, lY ≡ (ly1, ly2)

1) lY - невырожден ⇒ ∀f, φ ∃! решение
2) lY - вырожден ⇒ ∄ решение или их бесконечно много

Следствие Краевая задача корректна ⇔ соответствующая однородная задача
(f(t) = 0, φ = 0) имеет только нулевое решение.

11.2 Уравнение равновесия струны

ÿ = f(t), t ∈ [0; 1]

Форма струны в равновесии как функция от координаты t точки струны, к которой по вер-
тикали приложена сила плотностью f(t). Рассмотрим случай, когда на концах приложена
какая-то сила:

ẏ(t1) = φ1, ẏ(t2) = φ2

Базис в пространстве:
y1(t) = 1, y2(t) = t

Рассмотрим соответсвующую однородную задачу:{
ÿ = 0

ẏ(t1) = ẏ(t2) = 0

Сюда подходят y = 0, 1,∀const⇒ задача некорректна.
Теперь пусть один конец закреплён.

y(t1) = φ1, ẏ(t2) = φ2

Рассмотрим соответсвующую однородную задачу:{
ÿ = 0

y(t1) = ẏ(t2) = 0

y = 0 ⇒ задача корректна.
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11.3 Нули решений уравнения второго порядка

ÿ + 2p(t)ẏ + q(t)y = 0, y ∈ R, t ∈ I, p, q ∈ C(I)

Нулевое решение не является тождественно нулевым.

Лемма 11.1. ∀y ∈ S на ∀[α, β] ⊂ I конечное число нулей.

Доказательство. Предположим, что есть бесконечное число нулей, а именно t1, t2, . . . .
Так как у этой последовательности есть предельная точка, возьмём подпоследователь-
ность, имеющую предел. Слева или справа от точки t0 ∈ [α, β] членов подпоследователь-
ности бесконечно много. Для определённости пусть это возрастающая последователь-
ность, стремящаяся к t0. y(t0) = 0. По теореме Ролля между нулями функции есть нуль
производной, и на каждом интервале (tk; tk+1) , k ∈ N существует точка sk: ẏ (sk) = 0.
Следовательно, если y(t0) = 0 и ẏ(t0) = 0, то y ≡ 0.

Определение 11.1. Нули решений y, z перемежаются, если
1) общих нулей не существует;
2) между ∀ нулями одного решения ∃ нуль другого.

Теорема 11.2. ∀y, z - решения, верно:
1) y, z линейно зависимы⇒ нули совпадают;
2) y, z линейно независимы⇒ нули перемежаются.

Доказательство. 1) y = cz ⇒ нули y совпадают с нулями z
2) y, z линейно независимы. Если нули перемежаются, то

• От противного, пусть ∃ общий нуль t0, тогда получаем противоречие оттого, что y, z
линейно зависимы:

W (t0) ≡ Wy,z (t0) =

∣∣∣∣∣ 0 0

ẏ (t0) ż (t0)

∣∣∣∣∣ = 0

• Пусть t1, t2 - соседние нули y(t), z(t) > 0, t ∈ (t1, t2) (без ограничения общности, при
z(t) < 0 можем рассматривать −z(t)). ẏ(t1) > 0, не равно нулю по теореме существования
и единственности, т.к. в этом случае решение было бы нулевым, причём ẏ(t1) > 0 > ẏ(t2).

Wy,z (ti) =

∣∣∣∣∣ 0 z (ti)

ẏ (ti) ż (ti)

∣∣∣∣∣ = −ẏ (ti) z (ti)

W (t1) = −ẏ (t1) z (t1) ≤ 0 ≤ −ẏ (t2) z (t2) = W (t2)

⇒ ∃t ∈ (t1, t2) : Wy,z(t) = 0 ⇒ y, z линейно зависимы. Противоречие.

Теорема 11.3. (сравнения, Штурм) Если коэффициенты уравнений

ÿ + r(t)y = 0

ż +R(t)z = 0
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удовлетворяют неравенству
r(t) ≤ R(t), t ∈ I,

то ∀ нулей решения y ∃ между ними нуль решения z.

Это значит, что теорема даёт оценку снизу: число нулей z не меньше, чем n − 1 нулей y.
При больших n это означает, что z колеблется не реже, чем y.

Доказательство. От противного. Пусть t1, t2 - соседние нули y, и строго между ними z
не обнуляется (y(t), z(t) > 0, t ∈ (t1, t2)), ẏ (t1) > 0 > ẏ (t2). По тем же рассуждениям,
что и при доказательстве теоремы 11.2, выполнено W (t1) ≤ 0 ≤ W (t2).
Возьмём производную от определителя Вронского, чтобы установить, растёт он или убы-
вает:

Ẇ = (yż − ẏz) = yz̈ − ÿz = (r −R)yz ≤ 0

Следовательно, на интервале (t1, t2) определитель Вронского нестрого убывает. Вспом-
ним неравенство W (t1) ≤ 0 ≤ W (t2)⇒W (t1) = 0 = W (t2) откуда

z (t1) = z (t2) = 0, r(t) = R(t), t1 ≤ t ≤ t2

Следствие Если коэффициенты уравнений

ÿ + r(t)y = 0

ż +R(t)z = 0

удовлетворяют неравенству
r(t) ≤ R(t), t ∈ I,

и строго между соседними нулями решения y нет ни одного нуля решения z
⇒ R(t) ≡ r(t).

Лемма 11.2. Для ÿ + 2p(t)ẏ + q(t)y = 0, ṗ, p, q ∈ C(I) существует подстановка

y = a(t)z, a(t) > 0, t ∈ I

такая, что
z̈ + r(t)z = 0, r = q − p2 − ṗ ∈ C(I)

Замечание: нули решения y и решения z общие, так как коэффициент a(t) ̸= 0.

Доказательство. Подставим

y = az, ẏ = ȧz + aż, ÿ = äz + 2ȧż + az̈

в исходное уравнение:

ÿ + 2pẏ + qy = az̈ + 2(ȧ+ pa)ż + (ä+ 2pȧ+ qa)z
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Коэфициент при ż должен быть равен нулю, то есть

ȧ+ pa = 0 ⇐⇒ a(t) = Ce
−

∫ t
t0
p(τ)dτ

> 0, t ∈ I

Вывод r:
ȧ = −pa, ä = p2a− ṗa =⇒ r =

ä+ 2pȧ+ qa

a
= q − p2 − ṗ

11.4 Оценки колеблемости

Следствие r(t) ≤ 0 ⇒ ∀y имеет ≤ 1 нуля.

Доказательство. Рассморим
ÿ + r(t)y = 0

z̈ + 0 · z = 0

Решения нижнего уравнения: z = c1 + c2t. Если бы y имел два нуля, то между ними
должен был бы быть хотя бы один нуль любого решения z. Однако решение z = 1 не
удовлетворяет этому условию ⇒ у y не может быть двух нулей.

Следствие r(t) ≤ ω2, t ∈ I, ω > 0 (или r(t) ≥ ω2, t ∈ I, ω > 0)
⇒ ∀t1, t2 соседних нулей решения y выполнено t2 − t1 ≥ π/ω (или, соответственно,
t2 − t1 ≤ π/ω).
То есть если нулей относительно мало (≤ ω2), то расстояние между ними больше, чем
π/ω.

Доказательство. Рассмотрим

ÿ + r(t)y = 0

z̈ + ω2z = 0
, r(t) ≤ ω2

Решения нижнего уравнения: z = c1 cosωt+c2 sinωt = A cos(ωt+φ)⇒ расстояние между
любыми соседними нулями решения z равны π/ω.
Предположим, что расстояния между t1 и t2 меньше, чем π/ω. Теорема Штурма утвер-
ждает, что между ними обязательно есть нуль решения z. Возьмём интервал длиной π/ω,
который содержит внутри отрезок (t1, t2). Получится, что решение z будет иметь нули в
концах интервала длиной π/ω. В результате теорема Штурма нарушена.

11.5 Колебание маятника

Уравнение колебания маятника:

ÿ + 2pẏ + q(t)y = 0, t ∈ R
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r = a− b2

При увеличении коэффициента b, отвечающего за трение, маятник будет колебаться реже.
Если a− b2 = r ≤ 0 ⇒ b2 ≥ a, то есть трение большое ⇒ нет двух нулей.
Это означает, что если отклонить маятник, то он либо будет медленно приближаться к
положению равновесия, либо, если мы приложим силу, он один раз проскочит положение
равновесия, а потом будет опять же медленно приближаться к положению равновесия. То
есть два колебания невозможны.
Если r ≥ ω2 ⇒ b2 ≤ a− ω ⇒ нулей бесконечно много.
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Лекция 12. Методы решения линейного
дифференциального уравнения

Линейные уравнения и системы с постоянными коэффициентами

12.1 Экспонента и логарифм оператора

Рассмотрим однородную линейную систему

ẋ = Ax, x ∈ Rn, t ∈ R, A ∈ End Rn(Cn

Определение 12.1. Экспонента оператора A определятся как

eA = I + A+
A2

2
+
A3

6
+ . . . ≡

∞∑
k=0

ϵk(A), ϵk(A) ≡
Ak

k!
, A0 ≡ I

• Так как ряды абсолютно сходящиеся:

∞∑
m=0

ϵm(a) ·
∞∑
k=0

ϵk(b) = ea · eb = ea+b =
∞∑
k=0

ϵk(a+ b)

• Дифференцирование рядов:(
∞∑
k=0

ϵk(at)

)·

=
(
eat
)·
= a · eat = a ·

∞∑
k=0

ϵk(at)

• Для комплексных чисел используем формулу Эйлера:

eα+iβ = eα(cos β + i sin β), cos β =
eiβ + e−iβ

2
, sin β =

eiβ − e−iβ

2i

Лемма 12.1. Ряд для экспоненты любого оператора A сходится абсолютно, причём для
любого ограниченного подмножетсваM ⊂ End Rn равномерно по A ∈M .

Доказательство. Формулировка леммы инвариантна относительно нормы, поэтому вы-
берем ту норму, которая нам нравится, например, операторную норму:

||A|| = sup
|x|=1

|Ax| ≤ a <∞

Она замечательна тем, что является полимультипликативной, то есть

||AB|| ≤ ||A|| · ||B||

Также верно, что
||Ak|| ≤ ||A||k
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Тогда нетрудно заметить, что ряд для экспоненты оператора мажорируется абсолютно
сходящимся рядом:

∥ϵk(A)∥ =

∥∥∥∥Akk!
∥∥∥∥ ≤ ak

k!
= ϵk(a)

⇒ по т. Вейерштрасса ряд
∥∥∥∥Akk!

∥∥∥∥ сходится абсолютно.

Теорема 12.1. eA = X (1, 0) - оператор Коши от 0 до 1.

Доказательство. Докажем, что eAt = X (t, 0)∀t
1) Заметим, что eA·0 = I по определению.
2) (eAt)· = AeAt

Из этих двух свойств следует, что eAt удовлетворяет системе Ẋ = A(t)X и, по следствию
в разделе 9.3, является оператором Коши.

Следствие det eA = etrA

Доказательство.
W (1) = W (0) · e

∫ t
t0

trA(τ)dτ

A(τ) = cost,W (0) = I,W (1) = det eA

Следствие eA невырождена, а логарифм вырожденного оператора не существует.

12.2 Действительные и комплексные решения

Комплексификация переводит оператор A ∈ End Rn в A ∈ End Cn.
Рассмотрим систему

ż = Az, z ∈ Cn

SA ≡ SA, так как по действительному оператору A мы построили пространство решений
комплексной системы.

Лемма 12.2. 1) SA = SA + iSA; 2) ReSA = ImSA = SA

Это означает, что если мы возьмём какое-либо комплексное решение и избавимся от мни-
мой части, то получим решение исходной системы до копмлесификации. Также все реше-
ния будут образовываться комбинациями решений исходной системы.

Доказательство. Пусть есть решение z:

z = x+ iy ∈ SA ⇔ (x+ iy)· = A(x+ iy) ⇔ ẋ+ iẏ = Ax+ iAy ⇔

{
ẋ = Ax

ẏ = Ay

⇒ x, y ∈ SA.
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12.3 Жорданова матрица

•Жорданова матрица - матрица комплексификацииA ∈ EndCn, имеет клеточно-диагональный
вид, то есть каждому собственному значению λ оператора A соответстует как минимум
одна жорданова клетка

Jλ,m =


λ 1 · · · 0

0 λ
. . . ...

...
... . . . 1

0 0 · · · λ


порождённая подсистемой h1, . . . , hm векторов базиса.
Если Jλ,m1 , . . . , Jλ,ml

- клетки, отвечающие собственному значению λ кратности k, то сум-
ма их размерностей равна кратности λ:

m1 + · · ·+ml = k

λ ∈ R ⇒ Jλ,m - действительная в базисе h1, . . . , hm ∈ Rn.
λ /∈ R, λ = α + iβ и λ = α − iβ ⇒ Jλ,m ≡ Jλ,m в комплексно сопряжённом базисе
h1, . . . , hm.

12.4 Вычисление экспоненты от матрицы

Приводим матрицу A к жордановой форме J . Жорданова матрица порождает клетки вида
Jλ,m. Возьмём от каждой жордановой клетки экспоненту и вернёмся к исходному базису:

A→ J → {Jλ,m} → {eJλ,m} → eJ → eA

Лемма 12.3. Если матрица

A =

 A1 · · · 0
... . . . ...
0 · · · Al


клеточно-диагональна, то

eA =

 eA1 · · · 0
... . . . ...
0 · · · eAl


Лемма 12.4. AB = BA⇒ eA · eB = eA+B

Лемма 12.5. ∀t ∈ R

eJλ,mt = eλt


1 t · · · ϵm−1(t)

0 1
. . . ...

...
... . . . t

0 0 · · · 1

 , ϵm−1(t) ≡
tm−1

(m− 1)!
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Доказательство. Jλ,m = λEt + Nt, где N - это нильпотентная матрица с нулями везде,
кроме косой диагонали из единиц над основной диагональю, причём Nm = 0.
Единичная матрица коммутирует с любой другой, мы находимся в условиях леммы 12.4:

eJλ,mt = eλtE+tN = eλtE · etN = eλt
(
E + tN + · · ·+ ϵm−1(t)N

m−1
)

Теорема 12.2. A ∈ End Rn → A ∈ End Cn:
1) комплексная фундаментальная система решений - собрание всех функций, кото-

рые строятся по жордановой матрице оператора A и соответствующему жорданову
базису так, что каждой клетке Jλ,m отвечает подсистема функций

z1(t) = eλth1, z2(t) = eλt (h2 + th1) , . . .

zm(t) = eλt (hm + thm−1 + · · ·+ ϵm−1(t)h1) (t ∈ R)

2) если λ - комплексное, но мы хотим получить действительные решения
Паре λ = α + iβ и λ = α − iβ соответствует пара клеток Jλ,m и Jλ,m в базисах h и
h1, . . . , hm соответственно. Надо выбрать действительный базис такой, что

x1 = Re z1, y1 = Im z1, . . . , xm = Re zm, ym = Im zm

- действительная фундаментальная система решений из 2m уравнений.

Доказательство.

eJt = diag(Jλ,mt) == eλt


1 t · · · ϵm−1(t)

0 1
. . . ...

...
... . . . t

0 0 . . . 1


- фундаментальная матрица, соответствующая матрице Коши, а значит, что по её столб-
цам стоят решения. В первом пунке теоремы записаны решения, которые получаются из
фундаментальной матрицы.
Два сопряжённых решения z1, z1 можем заменить на Re z1, Im z1. По лемме 12.2. это ре-
шения. Эту пару можно включить вместо z1, z1 в базис, так как комплексные линейные
оболочки у них одикаковые.

12.5 Метод неопределённых коэффициентов

Определение 12.2. Квазимногочлен степени deg q = k с показателем λ:

q(t) = eλtpk(t)
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Квазимногочлен может быть определён над полем действительных (λ ∈ R) или комплекс-
ных (λ ∈ C) чисел.
Qλ,k (Qλ,k) - множество всех действительных (комплексных) квазимногочленов c показа-
телем λ и степени, меньшей k.
Qα±iβ,k ≡ {q1(t) cos βt+ q2(t) sin βt|q1, q2 ∈ Qα,k} - возьмём комплексные функции, и бу-
дем брать от них действительные и мнимые части.
Qn

∗,∗
(
Qn
x,∗
)
, где звёздочки - фиксированные индексы - это множество всех векторных ква-

зимногочленов, то есть в некотором базисе (а, значит, любом) все координаты принадле-
жат множеству Q∗,∗ (Q∗,∗).

Лемма 12.6. Множества Qn
λ,k или Qn

λ,k, Q
n
α±iβ,k - линейные пространства, причём

dimQλ,k, dimQλ,k ≤ k, dimQα±iβ,k ≤ 2k

ReQα+iβ,k ⊂ Qα±iβ,k ⊂ Qα+iβ,k +Qα−iβ,k (β ̸= 0)
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Лекция 13. Однородные и неоднородные
дифференциальные уравнения

13.1 Вид общего решения

Теорема 13.1. Если ẋ = Ax, A ∈ EndRn, λ1, . . . , λl - все собственные значения опера-
тора А (комплексные), и в жордановой форме им соответствуют клетки максимальной
размерностиm1, . . . ,ml, то

SA ⊂
l∑

j=1

Qn
λj ,mj

То есть множество комплексных решений системы - это сумма (каждому собственному
значению соответствует слагаемое) векторных квазимногочленов. Эту сумму с неопреде-
лёнными коэффициентами можно подставить в систему, чтобы получить соотношения на
эти коэффициенты, которые и будут давать общее решение линейной системы. Поэтому
данная теорема служит для обоснования метода неопределённых коэффициентов.
Если, кроме того, λj ∈ R, j = 1, . . . , r, оставшиеся числа l − r = 2p разбиваются на p
пар комплексно сопряжённых:

λj = αj + iβj = λj+p (βj ̸= 0) , j = r + 1, . . . , r + p,

тогда

SA ⊂
r∑
j=1

Qn
λj ,mj

+

r+p∑
j=r+1

Qn
αj±iβj ,mj

Доказательство. Мы уже знаем, что каждой жордановой клетке Jλ,m соответствует некий
базис, причём линейная оболочка всех векторов этого базиса - Qn

λ,m. Возьмём все жорда-
новы клетки, λ1, . . . , λl, . . . , λl′ - собственные значения всех жордановых клеток ⇒

SA ⊂
l′∑
j=1

Qn
λj ,mj

⊂
l∑

j=1

Qn
λj ,mj

Заметим, что если мы ограничимся только наибольшими значениями (до l), то сумма не
изменится, так как каждой λ из λ1, . . . , λl соответствует λ из λl+1, . . . , λl′ , числоm которой
не меньше, чем число m второй λ.
По лемме 12.2 ReSA = SA, поэтому

SA = ReSA ⊂
r∑
j=1

ReQn
λj ,mj

+

r+p∑
j=r+1

Re
(
Qn
λj ,mj

+Qn
λj ,mj

)
⊂

r∑
j=1

Qn
λj ,mj

+

r+p∑
j=r+1

Qn
αj±iβj ,mj
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13.2 Характеристический многочлен

Рассмотрим линейное уравнение с постоянными коэффициентами

y(n) + a1y
(n−1) + · · ·+ any = 0, y, t ∈ R, a1, . . . , an ∈ R

С ним можно связать характеристический многочлен

L(λ) ≡ λn + a1λ
n−1 + · · ·+ an

Лемма 13.1. L(λ) = det(λE − A)

Доказательство. По индукции.
1) n = 1 : L(λ) = λ+ a1 = det(λE − A)

2) Пусть для n− 1 доказано, докажем для n: раскладываем определитель по первому
столбцу и пользуемся тем, что утверждение доказано для n− 1

det(λE − A) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 · · · 0 0

0 λ
. . . 0 0

0 0
. . . −1 0

0 0 · · · λ −1

an an−1 · · · a2 λ+ a1

∣∣∣∣∣∣∣∣∣∣∣∣
=

== λ

∣∣∣∣∣∣∣∣∣∣
λ

. . . 0 0

0
. . . −1 0

0 · · · λ −1

an−1 · · · a2 λ+ a1

∣∣∣∣∣∣∣∣∣∣
+ (−1)n−1an

∣∣∣∣∣∣∣∣∣∣
−1 · · · 0 0

λ
. . . 0 0

0
. . . −1 0

0 · · · λ −1

∣∣∣∣∣∣∣∣∣∣
=

= λ
(
λn−1 + a1λ

n−2 + · · ·+ an−1

)
+ (−1)n−1 · (−1)n−1an = L(λ)

13.3 Решение однородного уравнения

Для решения однородного уравнения с постоянными коэффициентами его можно комлек-
сифицировать, тогда множество решений Sa:

z(n) + a1z
(n−1) + · · ·+ anz = 0, z ∈ C, t ∈ R

Теорема 13.2. L(λ), λ1, . . . , λl - все попарно различные корни кратности k1, . . . , kl соот-
ветственно⇒

Sa =
l∑

j=1

Qλj ,kj , Sa =
r∑
j=1

Qλj ,kj +

r+p∑
j=r+1

Qαj±iβj ,kj
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Доказательство. Делаем каноническую замену, сводим уравнение к системе, решаем её,
а потом берём первую координату:

Sa = ψ−1 (SA) ⊂
l∑

j=1

Qλj ,mj
⊂

l∑
j=1

Qλj ,kj ,

причём

dim

(
l∑

j=1

Qλj ,kj

)
≤

l∑
j=1

kj = n

Так как размерность Sa равна n, все включения в формуле выше представляют собой ра-
венства.

Следствие kj = mj , то есть каждому корню соответствует клетка максимальной размер-
ности.
Следствие У матрицы уравнения все жордановы клетки максимального порядка.
К тому же dimQλj ,mj

= mj . mj функции представимы в виде eλt, teλt, . . . , tm−1eλt, их
линейная оболочка совпадает с базисом Qλj ,mj

= mj из чего вытекает следующее
Следствие eλt, teλt, . . . , tm−1eλt линейно независимы.

Пример: колебание маятника.
Уравнение свободных малых колебаний:

ÿ + 2pẏ + q2y = 0, p ≥ 0, q > 0

Характеристический многочлен имеет вид:

L(λ) = λ2 + 2pλ+ q2

Корни характеристического многочлена:

λ1,2 = −p±
√
p2 − q2 =


±iq, p = 0

−p± id, 0 < p < q

−p < 0, p = q

−p± d < 0, p > q

Общее решение:

y =


C1 cos qt+ C2 sin qt, p = 0

e−pt (C1 cos dt+ C2 sin dt) , 0 < p < q

e−pt (C1 + C2t) , p = q

e−pt
(
C1e

dt + C2e
−dt) , p > q
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13.4 Линейные неоднородные дифференциальные уравнения
с постоянными коэффициентами

y(n) + a1y
(n−1) + . . .+ any = f = f1 + . . .+ fl, y, t ∈ R, a1, . . . , an ∈ R

Лемма 13.2. Частное решение неоднородного уравнения - это сумма частных решений
таких, что:

z1 + . . .+ zl ∈ Sa,f1+...+fl

Доказательство. Правую часть линейного уравнения можно записать как L(D)y, где D
- дифференцирование, то есть характеристический многочлен от оператора дифференци-
рования действует на y:

L(D) ≡ Dn + a1Dn−1 + . . .+ anI

Подставим вместо y сумму частных решений:

L(D) (z1 + . . .+ zl) = L(D)z1 + . . .+ L(D)zl = f1 + . . .+ fl = f

Определение 13.1. Для f ∈ Qµ,m(Qα±iβ,m)

• есть резонанс кратности k ⇔ µ - корень L(λ) кратности k;
• нет резонанса кратности k(k = 0) ⇔ µ - не корень L(λ).

Обозначим множество функций, содержащее все функции из Q∗,∗(Q∗,∗), умноженные на
tk:

Q∗,∗,k ≡
{
tkq(t)|q ∈ Q∗,∗

} (
Q∗,∗,k ≡

{
tkq(t)|q ∈ Q∗,∗

})
Теорема 13.3. f ∈ Qµ,m, есть резонанс кратности k ⇒ ∃! z ∈ SA ∩Qµ,m,k.

Доказательство. Характеристический многочлен соответствующего однородного урав-
нения:

L(λ) = (λ− µ)k ·M(λ), где M(µ) ̸= 0

В многочлене выделяется бином, где µ - конкретное число, значит, что µ - это k-кратный
корень. У оставшегося многочлена M(λ) µ корнем не является, так как по условию µ -
корень кратности k.
Оператор L(D) - это суперпозиция двух операторов. λ в биноме заменяем на D, µ - на µI,
так как нельзя отнимать число от оператора.

L(D) =M(D) · (D − µI)k

L(D)z = f

L(D) : Qµ,m,k → Qµ,m
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Нужно доказать, что отображение L(D) - биекция. Так как L(D) - суперпозиция двух опе-
раторов, можно записать:

Qµ,m,k
(D−µI)k−→ Qµ,m

M(D)−→ Qµ,m

Рассмотрим функции eµt, teµt,
t2

2
eµt, . . . , ϵj(t)e

µt. Продифференцируем ϵj(t)e
µt:

D(ϵj(t)e
µt) = µeµtϵj(t) + ϵj−1(t)e

µt

То есть при действии оператора D на вектор j − 1 получаем его же, умноженного на µ
плюс предыдущий вектор. Матрица оператора D:

µ 1 · · · 0

0 µ
. . . ...

...
... . . . 1

0 0 · · · µ


в базисе e1, . . . , em, где ej(t) ≡ eµtϵj−1(t), есть жорданова клетка.
Матрица оператора M :  M(µ) · · · 0

... . . . ...
0 · · · M(µ)


Эта матрица будет осуществлять биекцию, т.к. она невырождена.
Возьмём в Qµ,m,k базис e1+k, . . . , em+k. Матрица оператора D не изменится.
Матрица оператора D − µI: 

0 1 · · · 0

0 0
. . . ...

...
... . . . 1

0 0 · · · 0


Диагональ единиц для (D−µI)k сдвигается вправо на k позиций. Таким образом оператор
(D − µI)k осуществляет биекцию, так как переводит базис e1+k, . . . , em+k пространства
Qµ,m,k в базис e1, . . . , em пространства Qµ,m.

Пример: колебание маятника.

ÿ + 2bẏ + a2y = cos(ωt), ω > 0

Примем, что b = 0. Известно, что cos(ωt) = Re(eiωt). Перейдём в комлексную область и
рассмотрим уравнение

z̈ + a2z = eiωt, y = Re(z)

Если резонанса нет (ω ̸= a), z = A · eiωt.
Если резонанс есть (ω = a), z = t · A · eiωt. Иными словами резонанс есть, когда частота
силы, прикладываемой к маятнику, совпадает с частотой внутренних колебаний системы.
И тогда из-за домножения на t амплитуда колебаний растёт до бесконечности.
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Лекция 14. Периодические системы
дифференциальных уравнений

14.1 Линейные периодические системы

Уравнение неоднородной системы (раздел 8.3):

ẋ = A(t)x+ F (t), x ∈ Rn, t ∈ R, A, F ∈ C(R)

Определение 14.1. Пусть A,F - T -периодические функции, тогда
• система называется T -периодической
• ∀t ∈ R матрица КошиX(t+T, t) (матрица Коши за время периода) соответсвующей

однородной системы называется матрицей монодромии
• каждое собственное значениеµ оператора монодромии называется мультипликатором

Лемма 14.1. Функция xT (t) = x(t+ T ) - это сдвиг функции x на значение T .
•x(t) ∈ SA,F ⇒ x(t+ T ) ∈ SA,F ;
•X(t+ T, s+ T ) = X(t, s) ∀s, t ∈ R;
• все операторы монодромии подобны (⇒ мультипликаторы не зависят от t).

Доказательство. Так как ẋ(t) = A(t)x(t) + F (t), рассмотрим

ẋT (t) = ẋ(t+ T ) = A(t+ T )x(t+ T ) + F (t+ T ) = A(t)xT (t) + F (t) ⇒ xT ∈ SA,F

Докажем второй пункт:

X(t+T, s+T )xT (s) = X(t+T, s+T )x(s+T ) = x(t+T ) = xT (t) ⇒ X(t+T, s+T ) ≡ X(t, s)

Докажем третий пункт:

X(t+ T, t) = X(t+ T, T )X(T, 0)X(0, t) = X(t, 0)X(T, 0)X−1(t, 0)

14.2 Задача о поиске периодичного решения

Краевое условие:
x(0) = x(T )

Задача невырождена ⇔ ∀F ∃! решение.
Задача вырождена ⇔ ∀F ∃ бесконечно много решений.

Теорема 14.1. Задача невырождена⇔ ∀µ : µ ̸= 1.
Задача вырождена⇔ ∃µ : µ = 1.
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Доказательство. Пусть x0(0) = 0, тогда

x(0) = x(T ) = x0(T ) + X (T, 0)x(0)

(X (T, 0)− I) · x(0) = −x0(T )

Вырожденность оператора монодромии определяется тем, является ли единица, как мно-
житель перед единичным оператором, собственным значением.

Однородная система в случае невырожденной задачи имеет только одно нулевое решение.

14.3 Логарифм от матрицы

Определение 14.2. Логарифм матрицы A, гдеA ∈ EndRn(Cn) - это матрицаB такая, что
eB = A.

У любой невырожденной матрицы логарифм есть, а любой вырожденной его нет.
По свойствам рядов:

ln(1 + a) = a− a2

2
+
a3

3
− · · · ≡

∞∑
k=1

∋k (a), ∋k (a) ≡ −(−a)k

k
, |a| < 1

∞∑
l=0

ϵl

(
∞∑
k=1

∋k (a)

)
= e

∑∞
k=1∋k(a) = eln(1+a) = 1 + a

Вычисление логарифма от матрицы
Приводим матрицу A к жордановой форме J . Жорданова матрица порождает клетки вида
Jλ,m. Возьмём от каждой жордановой клетки логарифм и вернёмся к исходному базису:

A→ J → {Jλ,m} → {ln(Jλ,m)} → ln(J) → ln(A)

Лемма 14.2.

ln Jλ,m =


lnλ 1/λ · · · ∋m−1 (1/λ)

0 lnλ . . . ...
...

... . . . 1/λ

0 0 · · · lnλ

 , ∋m−1 (a) ≡ −(−a)m−1

m− 1

Замечание: логарифм от комплексного числа равен:

ln(ρ(cosϕ+ isinϕ)) = lnρ+ iϕ, ρ > 0

Значит, если λ ∈ R, то и тогда lnλ определён не чётко.
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Доказательство.

elnλE+N /λ+N2∋1(1 /λ)+...+Nm−1∋m−1(1 /λ) = λ
∞∑
l=0

ϵl

(
∞∑
k=1

∋k (N /λ)

)
=

= λ(E +N /λ) = λE +N = Jλ,m

Теорема 14.2. (Флоке-Ляпунова) Для любой T -периодической однородной системы
ẋ = A(t)x ∃ ẏ = By и существует T -периодическое преобразование

L(t) = Y (t, 0)X(0, t)

При этом eBT = X(T, 0), и B =
1

T
lnX(T, 0). То есть любую периодическую систему

периодическим преобразованием координат можно свести к постоянной системе.
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