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Семинар 1

Условие регулярности

Важным элементом дифференциальной геометрии является параметризация кри-
вых. На плоскости R2 кривая представляет собой две функции от параметра t:

x(t), y(t).

Требования непрерывности таких кривых будет недостаточно. Потребуем, чтобы
выполнялось условие регулярности, то есть x, y должны быть дифференцируемы
и1

ẋ2 + ẏ2 6= 0.

Начнем с тривиальной вещи. График функции задается на плоскости множеством
точек x, f(x). Введя тривиальную параметризацию{

x = t,

y = f(t),

получим, что ẋ = 1, ẏ = f ′, и условие

ẋ2 + ẏ2 = 1 + (f ′)
2 6= 0

всегда выполняется. Таким образом, график любой функции является гладкой кри-
вой.

Рассмотрим простейший пример, когда кривая задается неявным образом – окруж-
ность радиуса2 1, задаваемая, как мы помним, уравнением

x2 + y2 = 1.

Параметризация кривой имеет вид{
x = cos t,

y = sin t.

Легко убедиться, что

ẋ2 + ẏ2 = (− sin t)2 + (cos t)2 = 1 6= 0.

Пример задачи на параметризацию

Типичная задача на параметризацию выглядит так: имеется некоторое прави-
ло, по которому движется точка. Требуется ввести параметризацию, которая бы
описывала это движение.

1Под ẋ подразумевается дифференцирование по параметру t.
2Здесь и далее, где это возможно, будем обходиться минимальным количеством параметров,
чтобы не усложнять запись.
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Рис. 1.1. Движение точки с пово-
ротом

Пусть луч вращается со скоростью ω, а по нему движется точка со скоростью v
(рис. 1.1).

Часто используется следующий прием. Бывает удобно параметризовать не задан-
ных (в данном случае евклидовых) координатах, а в каких-то других.

Очевидно, в нашей задаче траектории будут разными, если точка стартует из
разного положения, ее текущее положение на луче

r = vt+ r0, r0 ≥ 0.

Помимо этого, сам луч движется по окружности, которую можно параметризовать
с помощью cosωt+ ω0, sinωt+ ω0. Будем считать, что начальный угол поворота ω0

равен 0, то есть луч расположен горизонтально. Итак, получаем параметризацию
кривой {

(vt+ r0) cosωt = x(t),

(vt+ r0) sinωt = y(t).

Итак, траектория движения точки – спираль Архимеда (рис. 1.2, красным показано
равное расстояние между витками).

Обсудим следующий момент. С точки зрения описания траекторий задача бы-
ла сделана правильно – учтены скорости поворота и движения по лучу, начальное
положение точки. Задача параметризации кривой чуть проще, так как можно опу-
стить или положить равными 1 часть условий. Введем новый параметр τ = ωt.
Тогда уравнения для координат имеют вид{

(τv/ω + r0) cos τ = x(τ),

(τv/ω + r0) sin τ = y(τ).

Проверим теперь, как изменение параметров кривой отражается на ее регулярно-
сти. Обозначим v/ω = a. Получим{

ẋ = a cos τ − (aτ + r0) sin τ,

ẏ = a sin τ + (aτ + r0) cos τ.
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Рис. 1.2. Спираль Архимеда
Рис. 1.3. Логарифмическая спи-
раль

Тогда квадрат скорости

ẋ2 + ẏ2 = a2 cos2 τ + (aτ + r0)2 sin2 τ+

+a2 sin2 τ + (aτ + r0)2 cos2 τ − 2a cos τ sin τ(aτ + r0)+

+2a cos τ sin τ(aτ + r0) = a2 + (aτ + r0)2.

Как и следовало ожидать, при всех значениях параметрах кривая остается регу-
лярной.

Решим теперь эту же задачу заново, используя полярную систему координат. В
полярной системе координаты имеют вид{

r = vt+ r0, v0 ≥ 0,

ϕ = ωt,

откуда сразу получаем ответ, использовав для перехода{
x = r cosϕ,

y = r sinϕ.

Пример более сложной параметризации кривой

Будем описывать траекторию точки на катящейся окружности радиуса 1. Сра-
зу можем представить, как будет выглядеть траектория точки (рис. 1.4). Такая
траектория называется циклоидой.

В отличие от предыдущей задачи, замены системы координат здесь будет недо-
статочно. Будем рассматривать отдельно, как меняются x и y. Кроме этого, будем
пользоваться теми же соображениями, что и в прошлой задаче.

Независимо от того, как движется окружность, множество точек движения, то
есть траектория, будет оставаться той же. Выберем поэтому самый простой слу-
чай, равномерное движение без проскальзывания, скорость окружности положим
равной 1.

6

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Рис. 1.4. Циклоида

За время t координаты центра приняли значение{
xц = t,

xц = 1.

Если за время t центр проехал расстояние t, то угол, на который повернулся круг,
принимает значение t. Логично предположить, что

xвр = sin t, yвр = cos t.

Пользуясь такими же соображениями, как в предыдущей задаче, получим3{
x(t) = t+ sin t,

y(t) = 1 + cos t.

Перейдем к условию регулярности.{
ẋ = 1 + cos t,

ẏ = − sin t,

откуда получим, что

ẋ2 + ẏ2 = (1 + cos t)2 + sin2 t = 2 + 2 cos t = 0

при cos t = −1, то есть в точках, где y равен 0.4

Вектор скорости

Итак, ранее разобрали несколько примеров параметризации кривых γ, задавае-
мых координатами x(t), y(t) в пространстве R. Поговорим теперь о векторе скорости
(ẋ, ẏ) = γ̇. Длина вектора скорости γ̇ задается формулой

|γ̇| =
√
ẋ2 + ẏ2.

3Полезно проверить некоторые базовые вещи. Например, при t = 0 получаем те значения x и y,
которые имели место вначале.

4Заметим, что циклоида нерегулярна всего в счетном числе точек.
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Так, например, у окружности |γ̇| = 1, а e циклоиды

|γ̇| =
√

2 + 2 cos t.

Параметр, при котором
|γ̇| = const,

называется натуральным параметром.
Ранее уже работали с заменой параметра t(τ): γ(t)→ γ(τ). Достаточным услови-

ем однозначности является
∣∣ dt
dτ

∣∣ 6= 0. Обозначим

γ′ = γ̇
dt

dτ
,

то есть дифференциал5 по τ от γ(t(τ)). Будем искать параметризацию такую, чтобы
длина вектора скорости стала постоянной, то есть√

(x′)2 + (y′)2 = 1 =
√
ẋ2 + ẏ2

dt

dτ
.

Сделаем обратное. Найдем
dτ

dt
=
√
ẋ2 + ẏ2,

откуда найдем

τ =

∫ √
ẋ2 + ẏ2,

то есть зависимость τ(t).
Так как требуется найти зависимость t(τ), могут возникнуть проблемы, так как

не всегда берется интеграл и не всегда обратные зависимости могут быть выражены
в элементарных функциях.

Параметризация спирали

Запишем уравнения спирали в упрощенном виде:{
x(t) = at cos t,

y(t) = at sin t.

Отсюда {
ẋ = a cos t− at sin t,

ẏ = a sin t+ at cos t,√
ẋ2 + ẏ2 =

√
a2 + a2t2.

Тогда
dτ

dt
= a
√

1 + t2,

5Здесь это векторное выражение.
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τ = a

∫ √
1 + t2dt.

Сделаем замену t = sh p. Получим

τ = a

∫ √
1 + t2dt = a

∫ √
1 + sh2 p ch pdp =

∫
ch2 pdp =

=
e−2p + e2p + 2

4
dp = −1

8
e−2p +

1

8
e2p +

p

2
. (1)

Сделаем теперь обратную замену. Так как

t =
ep − e−p

2
,

получим, что
e2p − 2tep − 1 = 0,

D = 4t2 + 4,

откуда положительный корень

ep = t+
√
t2 + 1.

Таким образом,
p = ln t+

√
t2 + 1.

Далее можем подставить получившееся выражение в (1). Так как взять обратную
функцию затруднительно, получаем уже в таком простейшем примере трудности
выражения t через τ .

Параметризация логарифмической спирали

Рассмотрим логарифмическую спираль (рис. 1.3), задаваемую системой{
x(t) = et cos t,

y(t) = et sin t.
(2)

Найдем производные {
ẋ = et cos t− et sin t,

ẏ = et sin t+ et cos t.

Оказывается, что длина вектора скорости имеет гораздо более удобный вид:√
ẋ2 + ẏ2 =

(
e2t cos2 t− 2e2t cos t sin t+ e2t sin2 t+

+e2t sin2 t+ 2e2t cos t sin t+ e2t sin2 t
)1/2

=
√

2et.

Отсюда получим, что
τ(t) =

√
2et,

t(τ) = ln
(
t/
√

2
)
.
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Подставляя получившееся выражение в (2), получим{
x(τ) = τ√

2
cos ln

(
τ/
√

2
)
,

y(τ) = τ√
2

sin ln
(
τ/
√

2
)
.

Убедимся, что при такой параметризации длина вектора скорости действительно
равна 1. Вычислим{

x′(τ) = 1√
2

cos ln
(
τ/
√

2
)
− 1√

2
sin ln

(
τ/
√

2
)
,

y′(τ) = 1√
2

sin ln
(
τ/
√

2
)

+ 1√
2

cos ln
(
τ/
√

2
)
.

Отсюда, действительно, √
(x′)2 + (y′)2 =

√
1/2 + 1/2 = 1.
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Семинар 2

Краткое повторение материала

В прошлый раз речь шла о кривых на плоскости

γ : [a, b]→ R. (3)

У кривой есть натуральный параметр, для которого

(γ̇, γ̇) = 1.

Отображения (3) эквивалентны, если кривые, которые они образуют, совпадают. Та-
ким образом, все отображения разбиваются на классы эквивалентности, в каждом
из которых можно выбрать так называемого канонического представителя класса.
Обсудим свойства такой кривой. Во-первых,

(γ̈, γ̇) = 0.

Кривизна параметризации

Для натурального параметра можем определить кривизну

(γ̈, γ̈) = k.

Рассмотрим, например, окружность{
x = R cos t/R,

y = R sin t/R.

Тогда {
ẋ = − sin t/R,

ẏ = R cos t/R,{
ẍ = − 1

R
cos t/R,

ÿ = − 1
R

sin t/R,

откуда √
(γ̈, γ̈) =

1

R
.

Для прямой, очевидно, кривизна равна 0.
Итак, для вычисления кривизны требуется знать натуральный параметр. В про-

шлый раз обсуждали, что его нахождение может быть сопряжено с различными
трудностями. Обсудим, как можно обойти это требование. Итак, хотим, чтобы

• Кривизна в натуральной параметризации была равна
√

(γ̈, γ̈).

• При замене параметризации кривизна не менялась.
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Для двумерного пространства такая формула имеет вид

ẍẏ − ẋÿ
(ẋ2 + ẏ2)3/2

= k. (4)

Проверим требования, представленные выше. Предположим, работаем в натураль-
ной параметризации. Тогда ẋ2 + ẏ2 = 1. В числителе (4) стоит определитель∣∣∣∣ ẍ ÿ

ẋ ẏ

∣∣∣∣ (5)

Из линейной алгебры известно, что это площадь параллелограмма, «натянутого»
на вектор скорости и вектор ускорения. Для натуральной параметризации эти два
вектора ортогональны, т.е. параллелограмм является прямоугольником. Его пло-
щадь равна |γ̇||γ̈|, причем |γ̇| = 1.

Проверим теперь, что при замене координат значение (4) не меняется. Сделаем
замену t(τ), то есть перейдем

(x(t), y(t))→ (x(t(τ)), y(t(τ))).

Тогда {
x′ = ẋ dt

dτ
,

y′ = ẏ dt
dτ
,

(6)

{
x′′ = ẍ

(
dt
dτ

)2
+ ẋ d

2t
dτ2
,

y′′ = ÿ
(
dt
dτ

)2
+ ẏ d

2t
dτ2
.

Вычислим

x′′y′ − x′y′′ =
∣∣∣∣ x′′ y′′

x′ y′

∣∣∣∣ =

∣∣∣∣ ẍ ( dtdτ )2
+ ẋ d

2t
dτ2

ÿ
(
dt
dτ

)2
+ ẏ d

2t
dτ2

ẋ dt
dτ

ẏ dt
dτ

∣∣∣∣ .
Легко заметить, что такая матрица получается из матрицы (5) умножением на
число и добавлением к первой строке линейной комбинации второй. Определитель
матрицы при этом не меняется. Получим, что∣∣∣∣ x′′ y′′

x′ y′

∣∣∣∣ =

(
dt

dτ

)3 ∣∣∣∣ ẍ ÿ
ẋ ẏ

∣∣∣∣ .
Отсюда с учетом (6) получим, что

ẍẏ − ẋÿ
(ẋ2 + ẏ2)3/2

=
x′′y′ − x′y′′

(x′2 + y′2)3/2
.

Кривизна эллипса

Уравнение эллипса, как известно,

x2

a2
+
y2

b2
= 1.
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Система для эллипса имеет вид{
x = a cos t,

y = b sin t,
a 6= b, a > b > 0.

Тогда {
ẋ = −a sin t,

ẏ = b cos t,

{
ẍ = −a cos t,

ÿ = −b sin t.

ẋ2 + ẏ2 = a2 sin2 t+ b2 cos2 t,∣∣∣∣ −a cos t −b sin t
−a sin t b cos t

∣∣∣∣ = −ab cos2 t− ab sin2 t = −ab.

Кривизна эллипса равна

K(t) = − ab

a2 sin2 t+ b2 cos2 t
= − ab

b2 + (a2 − b2) sin2 t
.

Все значения K(t) расположены в промежутке [−a/b,−b/a]. На эллипсе точки экс-
тремума6 кривизны K(t) расположены в самых крайних точках сверху/снизу и
справа/слева.

Кривизна прямой

Ранее говорили, что у прямой кривизна равна 0. Покажем теперь, что, если

k ≡ 0,

кривая является прямой. Отметим, что, если k = 0, то∣∣∣∣ ẍ ÿ
ẋ ẏ

∣∣∣∣ = 0,

а значит, вектора скорости и ускорения сонаправлены.
Без ограничения общности будем считать, что имеем дело с натуральной пара-

метризацией. Тогда
(γ̈, γ̈) = 0,

откуда γ̈ = 0, то есть

γ(t) = (x(t), y(t)),

{
x(t) = a1t+ b1,

y(t) = a2t+ b2,

причем a2
1 + a2

2 = 1.

6Такие точки называются вершинами.
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Репер Френе

Будем работать с натуральной параметризацией. Обозначим вектор скорости

v =

(
ẋ
ẏ

)
.

Введем также вектор нормали

n =
1

k

(
ẍ
ÿ

)
.

Так, имеем условия
(v, v) = 1, (v, n) = 0, (n, n) = 1. (7)

Получается, с каждой точкой кривой связан ортонормированный базис (рис. 2.1).

Рис. 2.1. Ортонормированный ба-
зис, связанный с кривой

Из условий легко получить формулы Френе

v̇ = kn,
ṅ = −kv. (8)

Выведем второе. Заметим, что
(dotn, n) = 0.

Продифференцировав второе из (7), получим

(v̇, n) + (v, ṅ) = 0,

откуда
(v, ṅ) = −k.

Формальную систему (8) можно записать развернуто7
v̇1

v̇2

ṅ1

ṅ2

 =


0 0 k 0
0 0 0 k
−k 0 0 0
0 −k 0 0




v1

v2

n1

n2

 .

7Такой вид системы справедлив только для натуральной параметризации.
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Как и в случае с кривизной кривой, в определении используется нормальный па-
раметр, но найти вектора v, n мы можем для любой системы координат. Например,
для параболы {

x = t,

y = t2
, тогда

{
ẋ = 1,

ẏ = 2t

и вектор скорости имеет вид

v =

(
1√

1+4t2
2t√

1+4t2

)
.

Так как работаем в R2, а v и n ортогональны,

n =

(
− 2t√

1+4t2
1√

1+4t2

)
.

Геометрический смысл кривизны

Кривая в точке раскладывается в ряд

γ(t) = γ(0) + γ̇t+ γ̈(0)
t2

2
+ . . .

Из аналитической геометрии известно, что предел положения секущей является
касательной.

Равенство
γ(t)− at− b = o(t2),

будет справедливо, если at + b является касательной прямой. Такое определение
касательной является инвариантным относительно перехода к другой системе ко-
ординат.

Применим теперь такие же рассуждения к кривизне. Обозначим окружность в
натуральной параметризации, проходящую через начало координат, как

β(t) =

{
x(t) = R cos t/R−R,
y(t) = t sin t/R.

Рассмотрим кривую, проходящую через начало координат (то есть γ(0) = 0),

(γ̇, γ̇) = 1.

Тогда разложение

γ(t)− β(t) = (γ̇(0)− β̇(0))t+
(
γ̈(0)− β̈(0)

)
t2 + . . . = O(t3),

где
β̇(0) = (0, 1)T , β̈(0) = (−1/R, 0)T ,

справедливо, если γ̈(0) = (k, 0)T , k = −1/R. Получили, что кривизна является
величиной обратной радиусу окружности, касающейся кривой.

Вспомним задачу с эллипсоидом. Касательные окружности с минимальным ра-
диусом, действительно, приходятся на точки максимума кривизны, и наоборот, в
точке с наименьшей кривизной касательная окружность максимальна.
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Задача о четырех вершинах

Рассмотрим произвольную замкнутую кривую без самопересечений

γ : [a, b]→ R2, γ(a) = γ(b).

Так как кривизна зависит от t и принимает в точках a, b одинаковые значения,
можем считать ее периодической функцией. Тогда на отрезке [a, b] кривизна имеет
хотя бы два экстремума: минимум и максимум.

Теорема 2.1. (О четырех вершинах) Пусть задана замкнутая выпуклая кривая
без самопересечений. Тогда экстремумов кривизны как минимум четыре.

Рис. 2.2. Пример к теоре-
ме о 4 вершинах Рис. 2.3. К доказательству теоре-

мы о 4 вершинах

Прежде, чем перейти к доказательству, рассмотрим контрпример (рис. 2.2). Из
графика видно, что данная кривая имеет всего одну точку максимума и одну точку
минимума кривизны (так как в одной точке касательная окружность будет иметь
минимальный и максимальный радиус соответственно).

Доказательство Будем пользоваться упрощенным понятием выпуклости. Пред-
положим, что прямая, проведенная через две точки на кривой, пересекает эту кри-
вую только в этих точках.

Кроме того, будем считать, что кривая натурально параметризована. Предполо-
жим (от противного), что точек экстремума всего две (рис. 2.3).

Будем считать, что выше прямой (то есть в области Ax + By + C > 0 кривизна
растет, то есть k̇ > 0, а ниже – убывает, то есть k̇ < 0. Отсюда

k̇(Ax+By + C) ≥ 0,

причем равенство 0 достигается в двух точках: max и min кривизны.
Проинтегрируем выражение∫ b

0

k̇x = kx
∣∣∣b
a
−
∫ b

a

kẋ = −
∫ n

a

kv1 =

∫ b

a

ṅ1 = n1
∣∣∣b
a

= 0.
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Здесь воспользовались первой из формул Френе (8).
Аналогично получим, что∫ b

a

ky = 0, C

∫ b

a

k = Ck
∣∣∣b
a

= 0,

откуда следует, что ∫ b

a

k(Ax+By + C) = 0.

Так как подынтегральное выражение положительно на всем отрезке за исключени-
ем двух точек (по предположению), получаем противоречие.

Доказательство того, что вершин не может быть три, предлагается в качестве
упражнения.

Кривые в трехмерном пространстве

Обсудим особенности отображений

γ : [a, b]→ R3.

Очевидно, что соображения, данные для натурального параметра, остаются спра-
ведливыми и в трехмерном случае. Обсудим кривизну. По аналогии с двумерным
случаем,8

k =
|[γ̇, γ̈]|
|γ̇|3

.

Заметим, что этой формулы недостаточно, чтобы характеризовать все кривые, как
это делали в двумерном случае.

Воспользуемся соображениями, сходными с теми, которыми пользовали при зада-
нии формул Френе. В трехмерном случае у нас есть γ̇ – вектор скорости, < γ̇, γ̈ > –
плоскость, натянутая на вектора скорости и ускорения. При замене параметризации
вектора меняются следующим образом:

γ′ = γ̇
dt

dτ
, γ′′ = γ̈

(
dt

dτ

)2

+ γ̇

(
d2t

dτ 2

)
,

поэтому плоскость, натянутая на эти вектора, совпадет9 с < γ̇, γ̈ >. Определим
также в произвольной параметризации вектор бинормали

b = [γ̇, γ̈]
1

|γ̇||γ̈|
.

В нормальной параметризации

(γ̈, γ̇) = 1, (n, n) = 1, (γ̇, n) = 0, b = [γ̇, n].

8В двумерном случае в числители дроби стояла площадь параллелограмма, образованного век-
торами скорости и ускорения. Для того, чтобы числить такую площадь в общем виде, нужно
вычислять определитель матрицы Грама. В трехмерном случае, как известно, площадь может
быть вычислена как модуль векторного произведения.

9Такая плоскость называется соприкасающейся.
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Как и в двумерном случае,
v̇ = −kn.

Найдем, чему равен ṅ. Знаем, что

(ṅ, n) = 0.

Тогда
ṅ = Av +Bb.

При этом, продифференцировав (γ̇, n) = 0, получим

(v̇, n) + (v, ṅ) = 0,

откуда
k + (v, ṅ) = 0,

то есть A = −k. Обозначим коэффицент B через κ, то есть

ṅ = −kv6κb.

Кроме того, можно найти выражение для ḃ. Всего получим три формулы Френе
в натуральном параметре:

v̇ = kn,

ṅ = −kv + κb,

ḃ = −κn.

Параметр κ называется кручением и вычисляется по формуле

κ =
〈γ̇, γ̈,

...
γ 〉

|[γ̇, γ̈]|
.
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Семинар 3

Примеры в трехмерном пространстве

В прошлый раз говорили о характеристиках кривой в трехмерном пространстве.
Так, кривизна вычисляется по формуле

k =
|[γ̇, γ̈]|
|γ̇|3

,

где10

|[γ̇, γ̈]| =

√∣∣∣∣ ẋ ẏ
ẍ ÿ

∣∣∣∣2 +

∣∣∣∣ ẋ ż
ẍ z̈

∣∣∣∣2 +

∣∣∣∣ ẏ ż
ÿ z̈

∣∣∣∣2.
Кроме этого, ввели параметр кручения, вычисляемый по формуле

κ =
〈γ̇, γ̈,

...
γ 〉

|[γ̇, γ̈]|
.

Попробуем, используя приведенные выше формулы, вычислить характеристики
некоторой кривой 

x(t) = et sin t,

y(t) = et cos t,

z(t) = et.

Вектор скорости будет иметь вид

γ̇ =

 et sin t+ et cos t
et cos t− et sin t

et

 ,

а его длина

|γ̇| =
√
e2t − 2e2t sin t cos t+ e2t − 2e2t sin t cos t+ e2t =

√
3et. (9)

Вектор ускорения

γ̈ =

 et sin t+ et cos t+ et cos t− et sin t
et cos t− et sin t− et sin t− et cos t

et

 =

 2et cos t
−2et sin t

et

 .

Третья производная имеет вид

...
γ =

 2et cos t− 2et sin t
−2et sin t− 2et cos t

et

 .

10Заметим, что в общем случае, когда n > 3, площадь между γ̇ и γ̈ вычисляется по формуле√
(γ̇, γ̇)(γ̈, γ̈)− (γ̇, γ̈)2.
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Вычислим векторное произведение. Для этого воспользуемся записью i j k
et sin t+ et cos t et cos t− et sin t et

2et cos t −2et sin t et

 .

Отсюда вычислим координаты

e2t cos t− e2t sin t+ 2e2t sin t = e2t cos t+ e2t sin t,

−e2t sin t− e2t cos t+ 2e2t cos t = e2t cos t− e2t sin t,

−2e2t sin2 t− 2e2t cos t sin t− 2e2t cos2 t+ 2e2t cos t sin t = −2e2t.

Получим, что

|[γ̇, γ̈]| =
√
e4t + 2e4t cos t sin t+ e4t − e4t cos t sin t+ 4e4t =

√
6e2t. (10)

Воспользовавшись (9) и (10), получим

k =

√
6e2t

3
√

3e3t
=

2

3

1

et
.

Теперь,

(2et cos t− 2et sin t)(e2t cos t+ e2t sin t) + (2et cos t+ 2et cos t)(e2t cos t− e2t sin t)− 2e3t =

= 2e3t cos2 t− 2e3t sin t cos t+ 2e3t sin t cos t− 2e3t sin2 t− 2e3t(cos2 t− sin2 t)− 2e3t =

= 2e3t(cos2 t− sin2 t)− 2e3t(cos2 t− sin2 t)− 2e3t = −2e3t.

Отсюда кручение

κ =
−2e3t

6e4t
= −1

3

1

et
.

Задача на доказательство формы кривой

Покажем теперь, что если
κ ≡ 0,

то кривая плоская. В таком случае

〈γ̇, γ̈,
...
γ 〉 = 0,

а значит, ...
γ = Aγ̇ +Bγ̈,

где A, B – некоторые функции. Следовательно, четвертая производная будет вы-
ражаться как ....

γ = A′γ̇ + Aγ̈ + Ḃγ̈ +B
...
γ = Ãγ̇ + B̃γ̈.

Наша гипотеза состоит в том, что плоскость, в которой лежит кривая – плоскость,
натянутая на ее вектора скорости γ̇ и ускорения γ̈.
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Рассмотрим натуральную параметризацию. Для нее

|γ̇| = 1, |γ̈| = k, (γ̇, γ̈) = 0,

1

k
[γ̇, γ̈] = b, (b, b) = 1.

Отсюда
〈γ̇, γ̈,

...
γ 〉 = k(b,

...
γ ) ≡ 0

по условию. Посмотрим, как устроена третья производная γ. Известно, что

γ̈ = kn,

откуда ...
γ = k̇n+ kṅ.

Умножим теперь это выражение на бинормаль

b = [γ̇, n].

Так как b ортогонален n,
(
...
γ , b) = k(ṅ, b) = 0.

Про ṅ знаем, что
(ṅ, n) = 0,

так как (n, n) = 1. Рассмотрим b.

ḃ = [γ̈, n] + [γ̇, ṅ] = [kn, n]︸ ︷︷ ︸
=0

+[γ̇, ṅ] = κ[v, b] = 0

так как в натуральной параметризации по формуле Френе

ṅ = −kv + κb,

а κ ≡ 0 по доказанному выше. Значит, вектор b постоянен:

b = (A,B,C).

Из
(b, v) = 0 = Aẋ+Bẏ + Cż

следует, что
Ax+By + Cz = D = const.
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Поверхности

Поверхность – это отображение

r : R2 → R3

то есть три функции от двух переменных

x(u, v), y(u, v), z(u, v).

Как и в случае с кривыми, будем изучать характеристики поверхностей. Рассмот-
рим кривую u(t), v(t):

R→ R2 → R3.

Сквозное отображение имеет вид

x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t)).

Вектор скорости обозначется
ruu̇+ rvv̇,

где

ru =

 x′u
y′u
x′u

 , rv =

 x′v
y′v
x′v

 .

Примеры 1. График функции
x = u,

y = v,

z = f(u, v).

Здесь

ru =

 1
0
f ′u

 , rv =

 0
1
f ′v

 .

Видно, что ранг матрицы производных всегда 2. График функции задает «хоро-
шую» непрерывную поверхность.

2. Поверхность вращения. Пусть задана плоская кривая

x(u), y = 0, z(u).

Поверхность вращения получается путем вращения этой кривой вокруг оси z. Мат-
рица вращения имеет вид  cos v − sin v 0

sin v cos v 0
0 0 1

 .

22

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Итого параметризация поверхности имеет вид

r(u, v) =

 x(u) cosu
x(v) sin v
z(u)

 .

Найдем

ru =

 x′ cos v
x′ sin v
z′

 , rv =

 −x sin v
x cos v

0

 .

Вспомним, что векторное произведение имеет длину 0 тогда и только тогда, когда
вектора линейно зависимы. Вычислим, используя∣∣∣∣∣∣

i j k
x′ cos v x′ sin v z′

−x sin v x cos v 0

∣∣∣∣∣∣ ,
[ru, rv] = (xz′ cos v,−xz′ sin v, xx′).

Так как первые две компоненты одновременно не обращаются в 0, при xz′ 6= 0
поверхность регулярна.

В случае, когда xz′ = 0, вектора rv и ru линейно зависимы, если x = 0 или z′ = 0,
x′ = 0.

Параметризация поверхности

Поговорим теперь о неявно заданных поверхностях

F (x, y, z) = 0. (11)

Такие поверхности можно параметризовать, если(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
6= 0.

Рассмотрим в качестве примера сферу

x2 + y2 + z2 − 1 = 0.

Вектор (
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
= (2x, 2y, 2z) = 0

при
x = y = z = 0.

Точка с такими коориднатами не принадлежит заданной поверхности (не удовле-
творяет ее уравнению). Поверхность регулярна в окрестности каждой точки.
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По теореме о неявно функции, координату в (11) можно выразить через две дру-
гие, только если частная производная по этой координате не обращается в 0. В
случае сферы получаем, что параметризация

F (x, y, z(x, y)) = 0

возможна, если {
∂F
∂x

+ ∂F
∂z
z′x = 0,

∂F
∂y

+ ∂F
∂z
z′y = 0

Производные из выражений выше выражаются, только если ∂F
∂z

и ∂F
∂z

не обращаются
в 0. На сфере же есть целая окружность, где каждая из этих производных равна 0.

Задание поверхности в 4-мерном пространстве

В пространстве R4 расмотрим поверхность

(cosu, sinu, cos v, sin v).

Найдем вектора

ru =


− sinu
cosu

0
0

 , rv =


0
0

− sin v
cos v

 .

Так как rv и ru линейно независимы, такая поверхность регулярна.
Рассмотрим еще один способ задания поверхности в R4. Положим

R4 (x, y, a, b) = C2 (z, w),

где
z = x+ iy, w = a+ ib.

Рассмотрим многочлен
w2 − P (z) = 0, (12)

где у P (z) нет кратных корней. Рассмотрим, когда

(−P ′(z), 2w) = 0. (13)

Это выполняется, если w = 0 и P ′(z) = 0. В таком случае и P (z) должен = 0.
Можно проверить, что если (13) не обращается в 0, то и (12) не обращается в 0.
Подставив представления для w в (12), получим вещественную систему{

a2 − b2 −<P = 0,

2ab−=P = 0.

Из (13) следует, что все производные такой системы тоже должны обращаться в 0.
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Первая квадратичная форма

Рассматриваем, как и раньше, поверхность r(u, v),

r : R2 → R3.

Найдем, чем равен вектор скорости кривой u(t), v(t), которая располагается на по-
верхности:

(γ̇, γ̇) = (ru, ru)u̇
2 + 2(ru, rv)u̇v̇ + (rv, rv)v̇

2.

Перед нами квадратичная форма от вектора скорости. Можем записать ее в виде
матрицы Грама

I =

(
(ru, ru) (ru, rv)
(ru, rv) (rv, rv)

)
.

Пример Рассмотрим график функции
x = u,

y = v,

z = f(u, v)

Тогда

ru =

 1
0
f ′u

 , rv =

 0
1
f ′v

 .

Матрицы Грама имеет вид

I =

(
1 + (f ′u)

2 f ′uf
′
v

f ′uf
′
v 1 + (f ′v)

2

)
.

Пример Рассмотрим теперь поверхность вращения

(x(u) cos v, x(u) sin v, z(u)).

ru =

 x′ cos v
x′ sin v
z′

 , rv =

 −x sin v
x cos v

0

 .

Матрица Грама

I =

(
(x′)2 + (z′)2 0

0 x2

)
.

Рассмотрим частный случай, поверхность вращения, где x = cosu, z = sinu. Квад-
ратичная форма имеет вид

I =

(
1 0
0 cos2 u

)
.

Отметим, что кажется, что при u → π/2 определитель матрицы I → 0. Однако
скалярное произведение в смысле касательного пространства по-прежнему положи-
тельно определено. Такое вырождение возникает из-за особенности параметризации
на сфере.
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Рассмотрим еще один частный случай. Если

z = u, x = a chu/a,

I =

(
ch2 u/a 0

0 ch2 u/a

)
.

Пусть теперь поверхность вращения является тором (рис. 3.1),

x = R + r cosu, z = r sinu,

и матрица Грама в таком случае

I =

(
r2 0
0 (R + r cosu)2

)
.

Рис. 3.1. График тора

В качестве последнего примера возьмем вращение гиперболоида. Здесь

x = chu, z = shu.

Тогда

I =

(
ch2 u+ sh2 u 0

0 ch2 u

)
.

Пример Рассмотрим эллипсоид

x2

a2
+
y2

b2
+
z2

c2
= 1.

Параметризация имеет вид 
x = a cosu cos v,

y = b cosu sin v,

a = c sinu.
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Вычислим

ru =

 −a sinu cos v
−b sinu sin v

c cosu

 , rv =

 −a cosu sin v
b cosu cos v

0

 ,

тогда

I =

(
a2 sin2 u cos2 v + b2 sin2 u sin2 v + c2 cos2 u (a2 − b2) cosu cos v sinu sin v

(a2 − b2) cosu cos v sinu sin v a2 cos2 u sin2 v + b2 cos2 u cos2 v

)
.
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Семинар 4

Первая квадратичная форма в случае неявной
параметризации

Пусть поверхность задана неявно:

F (x, y, z) = 0,

и пусть ∂F/∂z 6= 0, а значит, можем выразить z(x, y). Тогда в окрестности точки
решения можно выразить

F (x, y, z(x, y)) = 0

Квадратичная форма имеет вид

I =

(
1 + z2

x zxzy
zxzy 1 + z2

y

)
.

С учетом уравнений {
∂F
∂x

+ ∂F
∂z
zx = 0,

∂F
∂y

+ ∂F
∂z
zy = 0

можем записать квадратичную форму в виде

I =

 1 +
(
∂F
∂x

)2
/
(
∂F
∂z

)2 ∂F
∂x

∂F
∂y
/
(
∂F
∂z

)2

∂F
∂x

∂F
∂y
/
(
∂F
∂z

)2
1 +

(
∂F
∂y

)2

/
(
∂F
∂z

)2

 .

Например, обсудим случай сферы

x2 + y2 + z2 − 1 = 0.

Как обсуждалось ранее, в этом случае

df = (2x, 2y, 2z),

I =

(
1 + x2/z2 xy/z2

xy/z2 1 + y2/z2

)
.

Проверка регулярности поверхности

Пусть матрица X ∈ gl(n), где gl(n) линейной пространство размерности n2, и
пусть задано уравнение11

F = detX = 1. (14)

Покажем, что это регулярная поверхность. Для этого должно выполняться условие(
∂F

∂x1
1

,
∂F

∂x1
2

, . . . ,
∂F

∂xnn

)
6= 0, (15)

11Такие матрицы образуют группу, обозначаемую SL(n).
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где xij – элементы заданной матрицы

X =

 x1
1 x1

2 . . . x1
1

...
...

xn1 . . . . . . xnn

 .

Запишем условие (14) в виде

F =
∑
σ∈Sn

(−1)σx
σ(1)
1 . . . xσ(n)

n = x1
1

∑
σ∈Sn−1

(−1)σx
σ(2)
2 . . . xσ(n)

n + F0.

Таким образом,
∂F

∂xij
= Mij,

где Mji – соответствующий минор. Отсюда получается, что (15) обращается в 0,
когда все миноры = 0, то есть определитель X равен 0. Получили противоречие.

Итак, поверхность (14) регулярная, ее размерность n2 − 1.

Вторая квадратичная форма

Пусть дана поверхность r(u, v), u(t) и v(t). Находим вектор скорости

γ̇ = ruu̇+ rvv̇

и ускорения
γ̈ = ruuu

2 + 2ruvu̇v̇ + rvvv̇
2 + rvü+ rvv̈.

Заметим, что в формулу для ускорения входят и первые, и вторые производные.
Напомним, что вектор нормали к поверхности определяется формулой

~n =
[ru, rv]

|[ru, rv]|
.

Умножая вектор ускорения на нормаль, получим

(γ̈, n) = (ruu, n)u2 + 2(ruv, n)u̇v̇ + (rvv, n)v2

– билинейную форму.
Вторая квадратичная форма определяется как

II =

(
(ruu, n) (ruv, n)
(ruv, n) (rvv, n)

)
. (16)

Поговорим о геометрическом смысле второй квадратичной формы.
1. II = 0 ⇐⇒ регулярная поверхность – это плоскость.
Остановимся на этом свойстве подробнее. Вторая квадратичная форма = 0, если

(ruu, n) = 0, (ruv, n) = 0, (rvv, n) = 0.
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Вспомним, что вектор нормали
(n, n) = 1.

Продифференцировав по u, получим, что

(n, nu) = 0.

Аналогично,
(n, nv) = 0.

Из условия
(ru, n) = 0

получим, что
(ruu, n) + (ru, nu) = 0,

откуда получим, что
(ru, nu) = 0,

то есть nu ортогонален ru и (см. выше) n. Тогда nu ≡ 0, Проведя аналогичные
рассуждения, получим, что и nv ≡ 0. Значит, n – постоянный вектор, то есть

n = (A,B,C).

Аналогично задаче из предыдущего семинара, можно получить, что тогда

Ax+By + Cz = D.

Вычисление второй квадратичной формы

1. Дан график функции 
x = u,

y = v,

z = f(u, v).

Напомним, что

I =

(
1 + f 2

u fufv
fufv 1 + f 2

v

)
.

Вычислим теперь II. Производные имеют вид

ru =

 1
0
fu

 , rv =

 0
1
fv

 .

Тогда вторые производные

ruu =

 0
0
fuu

 , ruv =

 0
0
fuv

 , rvv =

 0
0
fvv

 .
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Вычислим n.

[ru, rv] =

∣∣∣∣∣∣
i j k
1 0 fu
0 1 fv

∣∣∣∣∣∣ = (−fu,−fv, 1),

тогда
n =

1√
1 + f 2

u + f 2
v

(−fu,−fv, 1).

Тогда, по формуле (16),

II =

 fuu√
1+f2u+f2v

fuv√
1+f2u+f2v

fuv√
1+f2u+f2v

fvv√
1+f2u+f2v

 .

2. Задана кривая x(u), z(u) и поверхность вращения r(u, v)

(x(u) cos v, x(u) sin v, z(u)).

Напомним, первая квадратичная форма имеет вид

I =

(
(x′)2 + (z′)2 0

0 x2

)
.

Перейдем к вычислению II. Производные имеют вид

ru =

 x′ cos v
x′ sin v
z′

 , rv =

 −x sin v
x cos v

0

 .

Вторые производные

ruu =

 x′′ cos v
x′′ sin v
z′′

 , ruv =

 −x′ sin vx′ cos v
0

 , rvv =

 −x cos v
−x sin v

0

 .

Теперь,

[ru, rv] =

∣∣∣∣∣∣
i j k

x′ cos v x′ sin v z′

−x sin v −z cos v 00

∣∣∣∣∣∣ = (−xz′ cos v,−xz′ sin v, xx′),

|[ru, rv]| =
√
x2((x′)2 + (z′)2),

и вектор нормали равен

n =

(
− z′ cos v√

(x′)2 + (z′)2
,− z′ sin v√

(x′)2 + (z′)2
,

x′√
(x′)2 + (z′)2

)
.

Вторая квадратичная форма имеет вид

II =

 x′z′′−z′x′′√
(x′)2+(z′)2

0

0 xz′√
(x′)2+(z′)2

 .
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Из линейной алгебры можно вспомнить утверждение, что, если есть две били-
нейные формы, можно обе привести к «хорошему» виду: первая приводится к еди-
ничному виду, а вторая – к диагональному, где на диагонали стоят собственные
значения оператора

I−1II =

(
x′z′′−z′x′′

((x′)2+(z′)2)3/2
0

0 z′

x
√

(x′)2+(z′)2

)
.

Как легко увидеть, первое собственное значение представляет собой кривизну. Кро-
ме того, оба собственных значения не зависят от v.

3. Вычислим вторую квадратичную форму для сферы
x = cosu cos v,

y = cosu sin v,

z = sinu.

Вычислим производные

ru =

 − sinu cos v
− sinu sin v

cosu

 , rv =

 − cosu sin v
cosu cos v

0


и вторые производные

ruu =

 − cosu sin v
x′′ sin v − cosu sin v

− sin v

 , ruv =

 sinu sin v
− sinu cos v

0

 , rvv =

 − cosu cos v
− cosu sin v

0

 .

Векторное произведение

[ru, rv] =

∣∣∣∣∣∣
i j k

− sinu cos v − sinu sin v cosu
− cosu sin v cosu cos v 0

∣∣∣∣∣∣ = (− cos2 u cos v,− cos2 u sin v,− cosu sinu),

тогда нормаль
n = (− cosu cos v,− cosu sin v,− sinu).

Вторая квадратичная форма

II =

(
1 0
0 cos2 u

)
.

Упраженение Предположим, что

λI = II, (17)

где λ 6= 0 – постоянная. Покажем, что в таком случае r(u, v) – кусок сферы.
Запишем (17) в виде

λ(ru, ru) = (ruu, n),
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λ(ru, rv) = (ruv, n),

λ(rv, rv) = (rvv, n).

Напомним, что, так как
(n, n) = 1,

(n, nu) = 0, и (n, nv) = 0.

Кроме этого, всегда выполнено
(ru, n) = 0.

Продифференцировав, получим

(ruu, n) + (ru, nu) = 0,

откуда из условий (17) получим

(ru, λru) + (ru, nu) = 0,

или, по-другому,
(ru, λru + n) = 0.

Обозначим b = λr + nu. Тогда

(ru, bu) = 0, (n, bu) = 0. (18)

Кроме того,
(rv, bu) = 0, (19)

так как
(rv, n) = 0,

а значит, производная
(rvv, n) + (rv, nu) = 0,

(rv, λrv) + (rv, nu) = 0.

Из (18), (19) следует, что bu ≡ 0. Аналогично показывается, что bv ≡ 0. Отсюда
следует, что

λr + n = (A,B,C)

– постоянный вектор. Тогда

λ(r, ru) = (Aru +Bru + Cru),

λ(r, rv) = (Arv +Brv + Crv).

Значит,
λ(r, r) = (λr + n, r) + v0,

что совпадает с уравнением для сферы

(r − w, r − w) = R2,
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или, по-другому,
(r, r)− 2(r, w) + (w,w) = R2.

4. Вычислим II для геликоида:

(u cos v, u sin v, v).

Вычислим

ru =

 cos v
sin v

0

 , rv =

 −u sin v
u cos v

1

 .

Первая квадратичная форма имеет вид

I =

(
1 0
0 1 + u2

)
.

Вторые производные

ruu =

 0
0
0

 , ruv =

 −sinvcos v
0

 , rvv =

 −u cos v
−u sin v

0

 .

Векторное произведение

[ru, rv] =

∣∣∣∣∣∣
i j k

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣ = (sin v,− cos v, u),

тогда нормаль

n =
1√

1 + u2
(sin v,− cos v, u).

Вторая квадратичная форма

II =

(
0 − 1√

1+u2

− 1√
1+u2

0

)
.

5. Трубчатые поверхности. Пусть задана кривая γ(x(u), y(u), z(u)). В каждой
точке берем сечение, перпендикулярное вектору скорости, и рисуем окружность
радиуса, например, 1 (рис. 4.1).

Из пройденного ранее помним, что есть вектора b и n = 1
k
γ. Поверхность задается

уравнением
r(u, v) = γ(u) + n cos v + b sin v.

Запишем  v̇
ṅ

ḃ

 =

 0 k 0
−k 0 κ
0 −κ 0

 v
n
b

 .

Отсюда
ṅ = −kv + κb,
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Рис. 4.1. Трубчатая поверхность

b = −κn.

Найдем производные

ru = γ̇ + ṅ cos v + ḃ sin v = v + (−kv + κb) cos v − κn sin v =

= (1− k)v + (−κ sin v)n+ (κ cos v)b.

Аналогично,
rv = (− sin v)n+ cos vb.

Найдем
(ru, ru) = (1− k)2 + κ2,

(ru, rv) = κ,

(rv, rv) = 1.

Первая квадратичная форма имеет вид

I =

(
(1− k)2 + κ2 κ

κ 1

)
.
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Семинар 5

Маятник Гюйгенса

Ранее на семинарах уже разбиралась кривая, называемая циклоидой (рис. 1.4).
Обсудим некоторые ее свойства.

Запишем уравнение кривой, представляющую собой перевернутую циклоиду{
x(u) = R(u+ π + sinu),

y(u) = R(1− cosu),
(20)

где u ∈ [−π, π]. Построим ее график (рис. 5.1). Будем считать, что у нас есть желоб
в форме такой циклоиды, трение отсутствует. На некоторой высоте h0 расположим
шарик. Шарик будет совершать колебания без потери энергии.

Рис. 5.1. Циклоида. Постановка
задачи с шариком

Рис. 5.2. График s(t)

Оказывается, что у циклоиды период колебаний шарика не зависит от начальной
высоты h0. Это свойство циклоиды называется таутохронностью.

Докажем его. Запишем закон сохранения энергии:

mgh0 = mgh+
mv2

2
, h ≤ h0,

откуда получаем
v =

√
2g(h0 − h). (21)

Найдем скорость в параметре u:{
x′ = R(1 + cosu),

y′ = R sinu,√
(x′)2 + (y′)2 = R

√
1 + 2 cosu+ cos2 u+ sin2 u =

= R
√

2(1 + cosu) = R
√

4 cos2 u/2 = 2R| cosu/2| = 2R cosu/2,
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так как u ∈ [−π, π] по условию. Вычислим длину кривой. Будем считать, что на-
чальная точка – самая нижняя (точка максимальной скорости). Получим

s =

∫ u

0

2R cos τ/2dτ = 4R sin τ/2
∣∣∣u
0

= 4R sinu/2,

откуда
sinu/2 = s/4R.

Преобразуем y(u) из (20) как

y(u) = 2R sin2 u/2.

Тогда можем найти

h = y = 2R sin2 u/2 = 2R
s2

16R2
=

s2

8R
.

Подставив в (21), получим

v =

√
2g

(
s2

0

8R
− s2

8R

)
.

Заметим, что в нашем случае
v = −ds/dt.

Наконец, получим дифференциальное уравнение

−ds/dt =

√
2g

8R
(s2

0 − s2).

Решим его. Получим

−
∫

ds√
s2

0 − s2
=

∫ √
g

4R
dt.

Для интеграла в левой части сделаем замену s = s0 cosx, тода

arccos(s/s0) =
√
g/4Rt+ t0,

откуда получаем
s = s0 cos(

√
g/4Rt+ t0).

В момент t = 0
s = s0 = s0 cos t0,

откуда t0 = 0. Окончательно решение имеет вид

s = s0 cos(
√
g/4Rt).

Построим график зависимости s(t) (рис. 5.2). Получим, что период

T = 4

√
R

g
π,

то есть независит от h.
Прежде, чем обсудить, как заставить шарик двигаться по циклоиде, рассмотрим

следующую тему.
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Соприкасающаяся окружность. Эволюта

Две кривые r1 и r2, заданные в натуральном параметре, касаются в точке s0, если

r1(s0) = r2(s0),

r′1(s0) = r′2(s0).

Говорят, что у этих кривых касание порядка не ниже m, если у них совпадают
производные до m включительно:

r
(i)
1 (s0) = r

(i)
2 (s0), 0 ≤ i ≤ m,

и касание порядка m, если, помимо этого,

r
(m+1)
1 (s0) 6= r

(m+1)
2 (s0).

Пусть есть кривая r, кривизна которой k 6= 0. Хотим найти окружность, касаю-
щуюся данной кривой с максимальным порядком касания. Поступим следующим
образом. В точке s0 проведем касательную к кривой, отложим от s0 вектор нор-
мали n, перпендикулярный образующему вектору касательной (рис. 5.3). Продол-
жим прямую для вектора n и отложим от s0 расстояние, равное радиусу кривизы
R = 1/k. Полученная точка называется центром кривизны.

Окружность с радиусом R и центром в центре кривизны касается r не ниже 2
порядка.

Рассмотрим теперь центр кривизны для каждой точки кривой r. Множество всех
центров кривизны кривой образуют свою кривую, называемую эволютой бирегу-
лярной кривой.

Рис. 5.3. Эволюта кривой

Будем предполагать, что исходная кривая r(s) бирегулярна, параметризована
натурально. Эволюта

~ρ(s) = ~r(s) +R(s)~n(s) = ~r(s) +
1

k(s)
~n(s).

Проверим, является ли эволюта регулярной. Найдем

ρ̇ = ṙ +
˙(1

k

)
n+

(
1

k

)
ṅ = v +

˙(1

k

)
n+

(
1

k

)
(−kv) =

1

k2
k̇n.
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Пусть производная кривизны k̇ исходной привой r не равна 0 на отрезке [s1, s2].
1. Тогда эволюта является регулярной кривой.
2. Касательная прямая к эволюте в точке ρ(s) перпендикулярна исходной кривой

в точке r(s).
3. Вычислим∫ s2

s1

∣∣∣∣∣− k̇(s)

k2(s)

∣∣∣∣∣ ds =

∣∣∣∣∣
∫ s2

s1

k̇(s)

k2(s)
ds

∣∣∣∣∣ =

∣∣∣∣ 1

k(s2)
− 1

k(s1)

∣∣∣∣ = |R(s2)−R(s1)| .

Вычисление эволюты циклоиды

Хотим найти эволюту циклоиды{
x(u) = R(u+ π + sinu),

y(u) = R(1 + cosu).

Вычислим вторые производные:{
x′′ = −R sinu,

y′′ = R cosu.

Тогда кривизна

k =
|x′′y′ − x′y′′|√

(x′)2 + (y′)2
=
| −R2 sin2 u−R2(1 + cosu) cosu|

8R3| cosu/2|3
=

=
R2|1 + cosu|
8R3| cosu/2|3

=
1

4R| cosu/2|
.

Тогда радиус кривизны равен 4R| cosu/2|.
Так как работаем на плоскости,

~n =
(−2 sinu,R(1 + cosu))

2R| cosu/2|
=

(− sinu, (1 + cosu))

2| cosu/2|
.

Тогда уравнение эволюты

ρ(s) =

(
R(1 + π + sinu)
R(1− cosu)

)
+ 4R| cosu/2|

(
− sinu/(2| cosu/2|)

1 + cosu/(2| cosu/2|)

)
=

=

(
R(1 + π + sinu− 2 sinu)
R(1− cosu+ 2 + 2 cosu)

)
=

(
R(u+ π − sinu)
R(3 + cosu)

)
.

Введем новый параметр t = u+ π. Тогда

ρ(t) =

(
R(u+ π − sinu)
R(3 + cosu)

)
=

(
R(t− π + π − sin (t− π))

R(3 + cos (t− π))

)
=

(
R(t+ sin t)
R(3− cos t)

)
.

Таким образом, эволюта имеет вид сдвинутой циклоиды (рис. 5.4).
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Рис. 5.4. Эволюта циклоиды Рис. 5.5. Эволюта астроиды

Астроида

Система уравнений для астроиды имеет вид{
x(t) = a cos3 t,

y(t) = a sin3 t.

Астроида является частным случаем так называемой гипоциклоиды, получаемой в
результате «запуска» окружности меньшего радиуса внутри большой. При некото-
рых соотношениях радиусов такая кривая будет замкнута.

В частности, это условие выполняется при r/R = 1/4, это и будет астроида (рис.
5.5). Так как астроида симметрична, будем рассмотривать значения t ∈ (0, π/2).

Вычислим эволюту астроиды по алгоритму, использованному ранее. Производ-
ные имеют вид{

x′(t) = −3a cos2 t sin t

y′(t) = 3a sin2 t cos t
,

{
x′′(t) = 6a cos t sin2 t− 3a cos3 t

y′′(t) = 6a sin t cos2 t− 3a sin3 t
.

Теперь,
|x′′y′ − y′′x′| = |(6a cos t sin2 t− 3a cos3 t)3a sin2 t cos t+

+(6a sin t cos2 t− 3a sin3 t)3a cos2 t sin t| =

= |9a2(2 cos t sin4 t− sin2 t cos4 t+ 2 cos4 t sin2 t− cos2 t sin4 t| =

= 9a2|(cos2 t sin4 t+ cos4 t sin2 t| = 9a2 cos2 t sin2 t;√
(x′)2 + (y′)2 = 3a| sin t cos t|.

Отсюда

k =
9a2 sin2 t cos2 t

27a3| cos t sin t|3
=

1

3a sin t cos t
,

и радиус кривизны
R = 3a sin t cos t.
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Вектор нормали имеет вид12

~n = (sin t, cos t).

Наконец, эволюта астроиды

ρ(t) =

(
a cos3 t
a sin3 t

)
+ 3a sin t cos t

(
sin t
cos t

)
=

=

(
a cos3 t+ 3a sin2 t cos t
a sin3 t+ 3a sin t cos2 t

)
.

Получившаяся кривая в данных координатах выглядит сложнее исходной астрои-
ды. Убедимся, что при некоторых преобразованиях координат (рис. 5.5) получим
повернутую астроиду.

Перейдем к новым координатам:{
x̃ =

√
2

2
x−

√
2

2
y,

ỹ =
√

2
2
x+

√
2

2
y.

Кроме этого, введем замену параметра τ = t+ π/4. Тогда новые координаты

x̃ =

√
2

2
a(cos3 t+ 3 sin2 t cos t− sin3 t− 3 sin t cos2 t) =

=

√
2

2
a((cos t− sin t)(1 + cos t sin t)− 3 sin t2 cos t(cos t− sin t)) =

=

√
2

2
a(cos t− sin t)(1− 2 cos t sin t) =

√
2

2
a(cos t− sin t)3 =

√
2

2
a

(
2√
2

)3

(cos t cos π/4− sin t sin π/4)3 = 3 cos3 (t+ π/4) = 2a cos3 τ.

Аналогично можно показать, что

ỹ = 2a sin3 τ.

Таким образом, в новых координатах эволюта имеет вид астроиды с двое большим
размахом.

Эвольвента

Предположим, есть кривая r(s), на которую намотали нитку опредленной длины.
Когда эту нитку сматываем с кривой, отрезки нитки натянуты и образуют каса-
тельные с исхожной кривой (рис. 5.6). В результате конец нитки образует кривую,
называемую эвольвентой. Уравнение эвольвенты имеет вид

ρ(s) = r(s) + v(s0 − s),

где s0 − s – длина отрезка «сматываемой нитки».
12Так как можем сразу сократить ~v на его длину.
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Рис. 5.6. Эвольвента

Найдем, является ли эвольвента кривой регулярной.

ρ̇(s) = ṙ(s) + v̇(s0 − s) + v(−1).

Воспользуемся формулой Френе v̇ = kn и получим

ρ̇(s) = k(s0 − s)n.

Получается, что, если r(s) была бирегулярна, то ее эвольвента является регулярной
при s 6= s0.

Исследуем теперь ρ(s) на бирегулярность:

ρ̈ = k̇(s0 − s)~n− k~n+ k(s0 − s)~̇n = k̇(s0 − s)~n− k~n− k2(s0 − s)~v.

Тогда
‖[ρ̇, ρ̈]‖
‖ρ̇‖3

=
k3(s0 − s)2

k3(s0 − s)3
=

1

s0 − s
,

то есть при s 6= s0 ρ(s) бирегулярна.
Вычислим эволюту ρ̃ эвольвенты ρ кривой r:

ρ̃ = ρ+ 1/kρnэв. = r(s) + v(s0 − s) + (s0 − s)(−v) = r(s),

то есть эволюта от эвольвенты является исходной кривой.
Вернемся к исходной задаче. Построим эволюту исходной циклоды. Подвесим ша-

рик в вершину этой эволюты так, чтобы нитка шарика шла вдоль (то есть образовы-
вала эвольвенту). Пользуясь соображениями выше, получим, что шарик двигается
по исходной циклоиде.
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Семинар 6

Риманова метрика

Расстояние между двумя точками (x1, y1) и (x2, y2) обычно вычисляется при по-
мощи теоремы Пифагора: √

(x1 − x2)2 + (y1 − y2)2.

В случае же, если требуется найти длину кривой, нужно взять касательный вектор
к этой кривой и проинтегрировать его вдоль нее. При этом его длину мы понимаем
в смысле евклидовой метрики. Говорят, что метрика евклидова, если существуют
локальные координаты, в которых она принимает вид

ds2 = dx2 + dy2.

Рассмотрим несколько задач для случаев, когда метрика не такая.

1. Пусть метрика имеет вид
ds2 = dx2 + 2dy2,

то есть матрица метрики (
1 0
0 2

)
.

Требуется найти угол между кривыми

v = 2u, v = −2u

в точке их пересечения (очевидно, (0, 0)).

Найдем касательные вектора. Первая прямая имеет параметризацию{
u = t,

v = 2t,

и касательный вектор имеет вид v1 = (1, 2). Вторая прямая задается парамет-
ризацией {

u = t,

v = −2t,

касательный вектор v2 = (1,−2).

Скалярное произведение вычисляется по формуле

〈v1, v2〉 = ‖v1‖‖v2‖ cosϕ,

откуда

cosϕ =
〈v1, v2〉
‖v1‖‖v2‖

.
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Найдем

〈v1, v2〉 = (1, 2)

(
1 0
0 2

)(
1
−2

)
= 1− 8 = −7.

〈v1, v1〉 = (1, 2)

(
1 0
0 2

)(
1
2

)
= 9,

откуда ‖v1‖ = 3. Аналогично найдем, что ‖v2‖ = 3. Тогда

cosϕ = −7/9.

Возьмем острый из углов между прямыми. Ответ: arccos(7/9).

2. Возьмем метрику
ds2 = du2 + (u2 + a2)dv2.

Дан треугольник, образованный кривыми (рис. 6.1)

2u = ±av2, и v = 1.

Требуется найти периметр и углы треугольника.

Рис. 6.1. Треугольник, задача 2

Найдем углы. Сначала найдем угол A. Для этого найдем касательные вектора.

v1A = (1, 0),

что можно получить из параметризации u = t, v = 1. Теперь,

v2A = (a, t),

что получается из параметризации13 u = at2/2, v = t с учетом t = 1 в точке
A. Запишем квадратичную форму

G =

(
1 0
0 u2 + a2

)
. (22)

13Заметим, что касательный вектор кривой

(u̇, v̇) = (at, 1)

то есть зависит от точки на прямой.
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В точке A(a/2, 1)

GA =

(
1 0
0 5a2/4

)
.

Аналогично предыдущей задаче, получим, что

‖v1A‖ = 1, ‖v2A‖ = 3a/2, < vA1, vA2 >= a.

Отсюда
cos∠A =

a

1 · 3a/2
= 2/3.

Угол C будет равен углу A, так как метрика симметрична оотносительно за-
мены u на −u.
Найдем угол B. Касательные вектора кривых BA и BC имеют вид (at, 1) и
(−at, 1) соответственно. В точке B они оба принимают значение (0, 1). Отсюда
следует, что

cos∠B = 0.

Найдем теперь стороны. Чтобы найти квадратичную форму вдоль BA, под-
ставим в матрицу (22) параметризацию u = at2/2, v = t:

GBA =

(
1 0
0 a2t4/4 + a2

)
, t ∈ [0, 1].

Касательный вектор имеет вид

χ = (u̇, v̇) = (at, 1),

тогда

‖χ‖2 = (at, 1)

(
1 0
0 a2t4/4 + a2

)(
at
1

)
=

= a2t2 + a2t4/4 + a2 = a2(t4/4 + t2 + 1) = a2(t2/2 + 1)2,

откуда
‖χ‖ = a(t2/2 + 1).

Длина

AB =

∫ 1

0

a(t2/2 + 1)dt = a(t3/6 + t)
∣∣∣1
0

= 7/6a.

Ввиду симметричности метрики относительно u получим, что

BC = AB = 7/6a.

Найдем длину AC. Параметризация имеет вид

u = t, v = 1, t ∈ [−a/2, a/2].
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Касательный вектор имеет координаты

η = (1, 0)

и длину ‖η‖ = 1. Матрица

GCA =

(
1 0
0 t2 + a2

)
.

CA =

∫ a/2

−a/2
1dt = a.

Значит, периметр равен

P = 7/6a+ 7/6a+ a = 10a/3.

3. Возьмем ту же метрику

ds2 = du2 + (u2 + a2)dv2.

Дан треугольник, образованный кривыми (рис. 6.2)

2u = ±av, и v = 1.

Требуется найти площадь треугольника.

Рис. 6.2. Задача 3

Площадь фигуры Ω в римановой метрике считается как

S =

∫
Ω

√
detG.

В нашем случае √
detG =

√
u2 + a2.

Воспользовавшись симметричностью метрики и фигуры, будем искать только
левую половину треугольника.

S1 =

∫ a

0

∫ 1

u/a

√
u2 + a2dvdu =

∫ a

0

√
u2 + a2(1− u/a)du =
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=

∫ a

0

√
u2 + a2du−

∫ a

0

√
u2 + a2u/adu.

Сделав замену u = a sh t, возьмем интеграл

I =

∫ √
u2 + a2du =

∫
a2 ch tdt =

a2

2

∫
(1 + ch 2t)dt =

=
a2

2

(
t+

sh 2t

2

)
+ C =

a2

2
(t+ sh t ch t) + C.

Сделав обратную замену

t = ln
(
u/a+

√
u2/a2 + 1

)
,

получим

I =
a2

2

(
ln
(
u/a+

√
u2/a2 + 1

)
+
u
√
u2 + a2

a2

)
+ C.

Соответствующий определенный интеграл в S1 равен

a2

2

(
ln(1 +

√
2) +

a2
√

2

a2

)
.

Вычислим теперь интеграл∫ √
u2 + a2u/adu =

1

2a

∫ √
u2 + a2d(u2 + a2) =

(u2 + a2)
√
u2 + a2

3a
+ C.

Соответствующий определенный интеграл в S1 равен

2a2
√

2a

3a
− a3

3a
.

Отсюда

S1 =
a2

2

(
ln(1 +

√
2) +

√
2− 4

√
2

3
+

2

3

)
.

Окончательно получим, что

S = a2

(
ln(1 +

√
2) +

2

3
−
√

2

3

)
.

4. Дан параболоид вращения (рис. 6.3)
x = u cos v,

y = u sin v,

z = u2/2.
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Рис. 6.3. Параболоид вращения Рис. 6.4. Постановка задачи 4

Найти уравнения линий, которые делят пополам углы между координатными
линиями.

Всего два семейства линий (по направлениям). Будем искать линии перво-
го семейства. Переформулируем задачу понятным языком (рис. 6.4). Нужно,
чтобы были равны углы между вектором касательной к кривой линии, и ко-
ординатные вектора. Углы будут равны, когда

〈v1, γ̇〉
‖v1‖

=
〈v2, γ̇〉
‖v2‖

.

Для того, чтобы решить уравнение, надо знать, как считается скалярное про-
изведение на поверхности. На самом деле, для этого нужно найти индуциро-
ванную метрику.

∂u = (cos v, sin v, u),

∂v = (−u sin v, u cos v, 0),

откуда квадратичная форма (
1 + u2 0

0 u2

)
,

а значит, метрика имеет вид

ds2 = (1 + u2)du2 + u2dv2.

Зададим на искомой кривой γ параметризацию v(u), то есть

u = t, v = v(t).

Тогда касательный вектор
γ̇ = (1, vt).

Вдоль кривой квадратичная форма

Gγ =

(
1 + t2 0

0 t2

)
.
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Скалярное произведение

(1, 0)

(
1 + t2 0

0 t2

)(
1
vt

)
= 1 + t2

а
‖v1‖ =

√
1 + t2.

Для вектора v2 скалярное произведение

(0, 1)

(
1 + t2 0

0 t2

)(
1
vt

)
= t2vt,

‖v2‖ = t.

Получаем дифференциальное уравнение

1 + t2√
1 + t2

=
t2vt
t
,

√
1 + t2 = tvt,

dv

dt
=

√
1 + t2

t
,

v =

∫ √
1 + t2

t
dt =

∫
1 + t2

t2
t√

1 + t2
dt.

Сделаем замену x =
√

1 + t2. Тогда

dx =
tdt√
1 + t2

,

и
v =

∫
x2 − 1 + 1

x2 − 1
dx = x+

dx

x2 − 1
+ C1 = x+

1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣ =

=
√

1 + t2 +
1

2
ln

∣∣∣∣∣
√

1 + t2 − 1√
1 + t2 + 1

∣∣∣∣∣ =
√

1 + t2 + ln

√
1 + t2 − 1

t
+ C.

Итак, полный ответ

v(t) = ±

(
√

1 + u2 + ln

√
1 + u2 − 1

u
+ C

)
,

причем нужный нам (рис. 6.4) будет со знаком «−».
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Изометрия

Предположим, даны метрики или поверхности заданы абстрактно. Если суще-
ствует преобразование, переводящее одну поверхность в другую так, чтобы рассто-
яния между точками сохранялись, говорят, что поверхности изометричны.14

Решим несколько задач.
Рассмотрим плоскую кривую ρ(t), произвольный вектор ~e и поверхность

~r(t, v) = ~ρ)t+v~e.

Такая поверхность называется цилиндрической.
Докажем, что, если взять кусочек из поверхности, какая бы ρ(t) ни была, его

всегда можно положить на эту плоскость (рис. 6.5) 6.5).15

Рис. 6.5. Коническая поверх-
ность

Рис. 6.6. Сечения перпендикуляр-
ными к ~e поверхностями

Вычислим
~∂t = ρ′, ~∂v = ~e.

Матрица метрики имеет вид

G =

(
(ρ′, ρ′) (ρ′, e)
(ρ′, e) (e, e)

)
.

Если взять вектор e единичной длины и выберем натуральную параметризацию ρ,
получим

(ρ′, ρ′) = (e, e) = 1,

но оставшиеся два значения остаются неизвестными.
Поступим по-другому. Пусть длина ~e равна 1. Рассмотрим сечение цилиндра плос-

костями α, перпендикулярными ~e (рис. 6.6). Выберем для кривых γ(t) на пересече-
нии плоскости и цилиндра натуральную параметризацию,

〈γ̇, γ̇〉 = 1.

14То есть, несмотря на громоздкость формул, возможно подобрать (может быть, локально) коор-
динаты так, что метрика перепишется в другом виде.

15То есть что локально поверхность изометрична плоскости.
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В этом случае цилиндрическую поверхность можно записать как

r(t, v) = γ(t) + v~e.

Тогда
〈γ̇, e〉 = 0,

и метрика примет вид
ds2 = dt2 + dv2.

Итак, получили свойство локальной изометричности цилиндра плоскости.
Докажем аналогичный факт для конической поверхности. Возьмем точку (для

упрощения пусть это будет начало координат O), кривую ρ(t) и каждую точку кри-
вой соединим с началом координат. Запишем параметризацию такой поверхности:

~r(t, v) = v~ρ(t).

Тогда
∂t = vρ′, ∂v = ρ,

а их скалярные произведения получаются неудобными для вычислений.

Рис. 6.7. Цилиндрическая поверх-
ность

Поступим следующим образом. Рассмотрим единичную сферу с центром в точке
O (рис. 6.7). Она высечет на конической поверхности некоторую кривую γ(t). 16

Заметим, что
|γ(t)| = 1.

Тогда параметризация примет вид

~r(t, v) = v~γ(t).

Скалярные произведения
〈∂t, ∂t〉 = v2〈γ̇, γ̇〉 = v2,

〈∂t, ∂v〉 = v〈γ, γ̇〉,
16Будем считать γ(t) параметризованной натурально.
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〈∂v, ∂v〉 = 〈γ, γ〉 = 1.

Продиффиренцировав
〈γ, γ〉 = 1,

получим, что
2〈γ, γ̇〉 = 0.

Таким образом, получаем, что в такой параметризации

ds2 = v2dt+ dv2.

Заметим, что если на плоскости с евклидовой метрикой

ds2 = dx2 + dy2

перейти к полярным координатам{
x = r cosϕ,

y = r sinϕ,

получим
dx = cosϕdr − r sinϕdϕ,

dy = sinϕdr + r cosϕdϕ,

и метрика примет вид

ds2 = (cosϕdr − r sinϕdϕ)2 + (sinϕdr + r cosϕdϕ)2 = dr2 + ϕ2dϕ2.

Вернемся к задаче. Итак, можно считать, что коническая поверхность локально
плоская.

В качестве последнего упражнения покажем изометричность катеноида и гели-
коида. Параметризация катенода имеет вид

r = (chu cos v, chu sin v, u),

~∂u = (shu cos v, shu sin v, 1),

~∂v = (− chu sin v, chu cos v, 0),

и метрика
ds2 + ch2 udu2 + ch2 udv.

У геликоиды
r = (ũ cos ṽ, ũ sin ṽ, ṽ),

~∂ũ = (cos ṽ, sin ṽ, 0),

~∂ṽ = (−ũ sin ṽ, ũ cos ṽ, 1),

ds2 = dũ2 + (ũ2 + 1)dṽ2.

Положим
ũ = shu, ṽ = v.

Тогда
ds2 = ch2 udu2 + ch2 udv2,

то есть катеноид и геликоид локально изометричны.
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Семинар 7

Неевклидовы геометрии

Из курса школьной геометрии нам всем известен постулат Евклида, говорящий,
что через точку, не лежащую на прямой, можно провести только одну прямую,
параллельную данной.

Заменой этого постулата, например, могло бы быть утверждение, что через такую
точку можно провести как минимум две разных прямых, параллельных данных,
или что через точку вне прямой нельзя провести ни одной прямой, параллельной
данной (т. е. что параллельных прямых не существует).

Геометрия без параллельных прямых

Возьмем двумерную сферу S2 единичного радиуса

x2 + y2 + z2 = 1

в тремерном евклидовом пространстве с метрикой

ds2 = dx2 + dy2 + dz2.

Введем сферические координаты
x = sinϕ cosψ,

y = sinϕ sinψ,

z = cosϕ,

тогда координаты касательных векторов равны

rϕ = (cosϕ cosψ, cosϕ sinψ,− sinϕ),

rψ = (− sinϕ sinψ, sinϕ cosψ, 0),

и индуцированная метрика имеет вид

ds2 = dϕ2 + sin2 ϕdψ2.

Обсудим, как будут выглядеть прямые17 в этой геометрии. Возьмем на сфера точки
A(t1) и B(t2), причем предположим, что они лежат на одном меридиане (в против-
ном случае сферу можно повернуть). Покажем, что линия с минимальной длиной
– сам меридиан.

Предположим обратное. Пусть линия с минимальной длиной – некоторая γ, за-
параметризованная ϕ(t) и ψ(t). Найдем ее длину.

γ̇ = (ϕ̇, ψ̇),

〈γ̇, γ̇〉 = ϕ̇2 + sin2 ϕψ̇2.

17Линии кратчайшей длины.
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Оценим длину γ:

|γ| =
∫ t2

t1

√
dotϕ2 + sin2 ϕψ̇2dt ≥

∫ t2

t1

√
ϕ̇2dt =

∫ t2

t1

ϕ̇dt = ϕ(t2)− ϕ(t1)

в предполжении, что ϕ возрастает от t1 к t2. Физический смысл угла ϕ – угол
между осью z и радиус-вектором в точке. Таким образом, вышеполученная оценка
означает, что длина γ всегда будет не меньше, чем разность значений таких углов,
то есть длина меридиана.

Заметим, что минимальная длина достигается, если ψ̇ = 0.
Прямые в данной геометрии выглядят, как линии сечения сферы центральными

плоскостями. Любые две таких линии пересекаются в двух точках. Отсюда следует,
что параллельных прямых в данной геометрии нет.

Геометрия с двумя параллельными прямыми

Рис. 7.1. Гиперболоид Рис. 7.2. Окружности на гипербо-
лоиде

Будем рассмотривать гиперболоид (рис. 7.1)

x2 + y2 − z2 = −1,

метрику
ds2 = dx2 + dy2 − dz2 (23)

с матрицей  1 0 0
0 1 0
0 0 1

 .

Введем параметризацию верхней половины гиперболоида
x = shχ cosψ,

y = shχ sinψ,

z = chχ.
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Тогда
rχ = (chχ cosψ, chχ sinψ, shχ),

rψ = (− shχ sinψ, shχ cosψ, 0),

〈rχ, rχ〉 = ch2 χ− sh2 χ = 1,

〈rχ, rψ〉 = 0,

〈rψ, rψ〉 = sh2 χ

и индуцированная метрика имеет вид

ds2 = dχ2 + sh2 χdψ2.

Хотим показать, что минимальное расстояние между точками получается, если ид-
ти вдоль меридиана.

Предположим, что это не так. Тода существует кривая γ : χ(t), ψ(t), ˙ = (χ̇, ψ̇),

〈γ̇, γ̇〉 = χ̇2 + sh2 χψ̇2.

Ее длина ∫ t2

t1

√
χ̇2 + sh2 χψ̇2 ≥

∫ t2

t1

χ̇dt = |χ(t2)− χ(t1)|,

что достигается на меридиане, т.е. при ψ = const.
Докажем следующее утверждение: прямые в данной геметрии – это централь-

ные сечения.
Найдем такое преобразование, которое бы переводило точку A линии AB в се-

верный полюс (0, 0, 1). Тогда точки A и B окажутся на одном меридиане.
Рассмотрим гиперболический поворот с матрицей 1 0 0

0 chu shu
0 shu chu

 .

Проверим, что такая матриа сохраняет метрику (23). Вычислим 1 0 0
0 chu shu
0 shu chu

 1 0 0
0 1 0
0 0 −1

 1 0 0
0 chu shu
0 shu chu

T

=

=

 1 0 0
0 chu − shu
0 shu − chu

 1 0 0
0 chu shu
0 shu chu

 =

 1 0 0
0 1 0
0 0 −1

 .

Применим теперь матрицу поворота на −χ0 к точке A: 1 0 0
0 chχ0 − shχ0

0 − shχ0 chχ0

 0
shχ0

chχ0

 =

 0
0
1

 .
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Задача Пусть дана окружность с центром в точке N т радиусом ρ (рис. 7.2).
Найти ее длину и площадь ограниченного ей круга.

Введем параметризацию. Вдоль радиуса окружности χ ∈ [0χ0], ϕ = constψ0.
Положим

χ = t, ψ = ψ0.

Тогда
γ̇ = (1, 0), 〈γ̇, γ̇〉 = 1,

ρ =

∫ ψ0

0

dt = ψ0.

Найдем теперь длину окружности. Положим

χ = ρ, ψ = t, t ∈ [0, 2π].

γ̇ = (0, 1),

длина окружности равна

L =

∫ 2π

0

sh ρdt = 2π sh ρ.

И, наконец, площадь

S =

∫
Ω

√
detG =

∫ 2π

0

∫ ρ

0

shχdχdψ = 2π(ch ρ− 1) = 4π sh2 ρ

2
.

Модель Пуанкаре

Продолжаем работу с гиперболоидом. Напомним, что прямые – центральные се-
чения. Хотим от модели гиперболоида перейти к какой-нибудь плоской модели, с
которой будет удобно работать. Рассмотрим стереографическую проекцию верхней
половины гиперболоида на плоскость xOy, где центр этой проекции – южный полюс
S (рис. 7.3).

Справедливо следующее соотношение:

u

x
=

1

z + 1
,
v

y
=

1

z + 1
.

Подставим x = u(z + 1) и y = v(z + 1) в уравнение гиперболоида

x2 + y2 − z2 = −1.

Получим
(u2 + v2)(z + 1)2 − z2 = −1,

z2(u2 + v2 − 1) + 2z(u2 + v2) + (u2 + v2 + 1) = 0.

Заметим, что u2 + v2 > 1, иначе линия не будет пересекать гиперболоид. Проекция
– внутренность единичного круга.
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Рис. 7.3. Проекции точек гиперболоида

Вычислим дискриминант

D = (u2 + v2)2 − (u2 + v2 − 1)(u2 + v2 + 1) = 1,

тогда

z1 =
−(u2 + v2) + 1

u2 + v2 − 1
= −1

z2 =
−(u2 + v2)− 1

u2 + v2 − 1
=
u2 + v2 − 1

1− u2 − v2
.

Корень z1, очевидно, не подходит.

z + 1 =
2

1− u2 − v2
.

Окончательно получим 
x = 2u

1−u2−v2 ,

y = 2v
1−u2−v2 ,

z = u2+v2−1
1−u2−v2 .

Вычислим
∂x

∂u
=

2(1− u2 − v2)− (2u)2u

(1− u2 − v2)2
=

2(1 + u2 − v2)

1− u2 − v2
,

∂y

∂u
=

2u2v

(1− u2 − v2)2
=

4uv

(1− u2 − v2)
,

∂z

∂u
=

2u(1− u2 − v2) + 2u(u2 + v2 − 1)

(1− u2 − v2)
=

4u

(1− u2 − v2)
.
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Тогда
ru =

2

(1− u2 − v2)2

(
1 + u2 − v2, 2uv, 2u

)
.

Так как формулы для координат практически симметричны для u и v,

ru =
2

(1− u2 − v2)2

(
2uv, 1 + u2 − v2, 2v

)
.

Вычислим скалярные произведения

〈ru, ru〉 =
4

(1− u2 − v2)4

(
(1 + u2 − v2)2 + 4u2v2 − 4u2

)
=

4

(1− u2 − v2)4

(
1 + u4 + v4 − 2u2 + 2u2v2 − 2v2

)
=

4(1− u2 − v2)

(1− u2 − v2)4
=

4

(1− u2 − v2)2
.

〈ru, rv〉 =
4

(1− u2 − v2)2

(
2uv(1 + u2 − v2) + 2uv(1− u2 − v2)− 4uv

)
= 0.

Наконец, метрика

ds2 =
4(du2 + dv2)

(1− u2 − v2)2
= f(u, v)(du2 + dv2).

Такой вид метрик называется комфорно-евклидовым. Такие метрики хороши, на-
пример, тем, что значение угла между двумя кривыми в таких метриках будет
совпадать со значением в евклидовой.

Вернемся к вопросу о прямых. Найдем, во что перешли центральные сечения.
Уравнение секущей плоскости имеет вид

−ax+ by + cz = 0,

или, в координатах u, v

2au+ 2bv + c(u2 + v2 + 1) = 0.

Рассмотрим два случая.
1. c = 0, то есть уравнение

au+ bv = 0.

Это означает, что нормаль к плоскости лежит в xOy. Результатом пересечения
такой плоскости с гиперболоидом будет меридиан, которые переходят в диаметры
в единичном круге (рис. 7.4).

2. c 6= 0. Тогда уравнение умеет вид

u2 +
2a

c
u+ v2 +

2b

c
v = −c,

или, по-другому,

(u+ a/c)2 + (v + b/c)2 =
a2 + b2 − c2

c2

– окружность с центром в точке (u0, v0) = (−a/c,−b/c) (рис. 7.5).18

В завершение семинара остановимся на сумме углов треугольника Лобачевского
в модели Пуанкаре (рис. 7.6). По построению видно, что она меньше 180◦.
18Заметим, что a2 + b2 > c2, иначе плоскость пройдет по касательной к гиперболоиде.
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Рис. 7.4. Проекции при c = 0 Рис. 7.5. Проекции при c 6= 0

Рис. 7.6. Треугольник Лоба-
чевского

Семинар 8

Модель Пуанкаре (повторение)

В прошлый раз работали в пространстве с метрикой

ds2 = dx2 + dy2 − dz2,

где рассматривали геометрию на верхней половине гиперболоида

x2 + y2 − z2 = −1.

Показали, что прямые – меридианы или центральные сечения. Кроме того, рас-
смотрели стереографическую проекцию гиперболоида на xOy из южного плюса S
гиперболоида. Полученная проекция будет единичным кругом, который называется
абсолютом (рис. 7.4, 7.5).

Такая модель называется моделью Пуанкаре. В прошлый раз выяснили, что мет-
рика такой модели имеет вид

ds2 =
4(du2 + dv2)

(1− u2 − v2)2
. (24)
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Модель верхней полуплоскости

Перепишем (24) в комплексных координатах

z = u+ iv, z = u− iv,

тогда
dz = du+ idv, dz = du− idv,

dzdz = du2 + dv2.

Тогда

ds2 =
4dzdz

(1− zz)2
.

Перейдем теперь из сферы в верхнюю полуплоскость с помощью линейного пре-
образования

w =
z + i

iz + 1
. (25)

Прямые в модели Пуанкаре перешли либо в прямые, перпендикулярные абсолюту,
либо в дуги окружностей с центром на абсолюте (рис. 8.1).

Рис. 8.1. Прямые после преобразования

Осталось понять, как в такой модели будет записана метрика. Выразим из (25)
w:

wzi+ w = z + i,

откуда

z =
w − i
1− wi

,

z =
w + i

1 + wi
.

Тогда

dz =
(1− wi)dw − (d(−wi)) (w − i)

(1− wi)2
=

(1− wi)dw + i(w − i)dw
(1− wi)2

=
2

(1− wi)2
dw,

dz =
(1 + wi)dw − i(w + i)dw

(1 + wi)2
=

2dw

(1 + wi)2
.
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Тогда

dzdz =
16dwdw

(1− wi)2(1 + wi)2
,

1− zz = 1− (w − i)(w + i)

(1− wi)(1 + wi)
=

2i(w − w)

(1− wi)(1 + wi)
,

и метрика имеет вид

ds2 =
16dwdw

4i2(w − w)2
=
−4dwdw

(w − w)2
.

Заметим, что, если
w = x+ iy, w = x− iy,

то
w − w = 2iy, (w − w)2 = −4y2.

Кроме того,
dwdw = dx2 + dy2.

Тогда

ds2 =
dwdw

(Imw)2
=
dx2 + dy2

y2
.

Итак, работаем с моделью в верхней полуплоскости. Метрика модели19

ds2 =
dx2 + dy2

y2
=

dwdw

(Imw)2
=
−4dwdw

(w − w)2
.

Движение геометрии Лобачевского

Будем рассмотривать преобразования, которые сохраняют метрику Лобачевско-
го. Хотелось бы рассматривать, во-первых, преобразования вида

z → az + b

cz + d
, ad− bc > 0, a, b, c, d ∈ R,

и, во-вторых, преобразования вида20

z → az + b

cz + d
, ad− bc < 0, a, b, c, d ∈ R,

Задача Найти преобразование, сохраняющие метрику, которое приводит прямую

x2 + y2 = 1

в прямую x = 0.

19Заметим, что y 6= 0, так как точки не лежат на абсолюте по определению, то есть метрика
корректно определена везде.

20Можно показать, что преобразования первого типа сохраняют ориентацию, а преобразования
второго типа – меняют.
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Таких преобразований существует много. Потребуем дополнительно, чтобы, на-
пример, точка (−1, 0) переходила в (0,+∞), а точка (1, 0) в (0, 0). Линейное преоб-
разование имеет вид

f(z) =
az + b

z + 1
.

Подставим точку (1, 0). Получим условие

a+ b

2
= 0.

И, наконец, найдем, что преобразование

f(z) =
z − 1

z + 1
.

Задача Найти преобразование, которое приводит прямую

(x− 1)2 + y2 = 4

в прямую x = 3, а точку (1, 2) в (3, 2).
Будем искать преобразование, которое точку 3 оставляет на месте, а −1 преоб-

разует в (3,∞). Линейное преобразование будет иметь вид

f(z) =
az + b

cz + d
=
az + b

z + 1
.

По условию, 1 + 2i должна перейти в 3 + 2i. Запишем это как

3 + 2i =
a(1 + 2i) + b

1 + 2i+ 1
,

2 + 10i = (a+ b) + 2ai,

откуда a = 5, b = −3.
Преобразование имеет вид

f(z) =
5z − 3

z + 1
.

Задача Найти преобразование симметрии относительно прямой

(x− 1)2 + y2 = 4.

Будем искать преобразование в виде

f(z) =
az + b

cz + d
.

Так как точка 1 должна перейти в ∞,

f(z) =
az + b

z − 1
.
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Точка 3 должна остаться на месте, то есть

3a+ b

2
= 3.

Потребуем, чтобы точка 1 + 2i переходила в 1 + 2i. Тогда

(1− 2i)a+ b

1− 2i− 1
= 1 + 2i,

откуда a = 1, b = 3. Преобразование будет иметь вид

f(z) =
z + 3

z − 1
.

Расстояние между точками

В общем случае, чтобы в рассматриваемой модели найти расстояние между двумя
точками, нужно подобрать такую окружность (т.е. прямую для модели), которая
бы проходила через обе этих точки, потом найти касательный вектор и посчитать
расстояние. Процедура получается довольно громоздкой.

Выведем формулу, которая поможет находить расстояние между точками.

ch d = 1 +
|z − w|2

2ImzImw
, (26)

где d – расстояние между точками.
Пусть две точки лежат на какой-то прямой. Всегда существует преобразование,

переводящее эту прямую в прямую x = const.
Обсудим, меняет ли линейное преобразование правую часть (26). По сути, преоб-

разование

f(z) =
az + b

cz + d

является композицией преобразований

z → az, (27)

z → z + b, (28)

z → −1/z. (29)

Покажем, что относительно таких преобразований правая часть формулы не меня-
ется. Действительно, для (27)

z → az, w → aw.

Тогда
a2|z − w|

2Im(az)Im(aw)
=
|z − w|2

2ImzImw
.
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Утверждение для (28) очевидно. Проверим утверждение для (29). Для знаменателя∣∣∣∣−1

z
+

1

w

∣∣∣∣2 =
|z − w|2

|z|2|w|2
.

Для числителя
2Im(−1/z)Im(−1/w) = 2ImzImw/(|z|2|w|2),

так как для z = x+ iy
−1

z
= − 1

x+ iy
=
−(x− iy)

x2 + y2
.

Итак, так как преобразования не меняют (26), достаточно проверить формулу для
случая, когда точки лежат на прямой x = const. Запараметризуем такую прямую
как {

x = c,

y = t,

и пусть точки имеют координаты (c, t1) и (c, t2) соответственно. Касательный вектор
прямой будет иметь координаты (0, 1), а длина21

d =

∫ t2

t1

dt

t
= ln(t2)− ln(t1) = ln

t2
t1
.

Тогда

ch d =
eln(t2/t1) + e− ln(t2/t1)

2
=
t2/t1 − t1/t2

2
= fract22 − t212t1t2.

Пусть
z = c+ it1, w = c+ it2.

Тогда правая часть формулы (26)

1 +
|it1 − it2|2

2t1t2
= 1 +

(t1 − t2)2

2t1t2
=
t21 + t22
2t1t2

.

Таким образом, убедились в справедливости формулы (26).
Пусть теперь дана точка w0. Хотим найти уравнение, описывающее все точки,

лежащие на расстоянии ρ от w0 (то есть окружность). Пусть w0 = x0+iy0, а искомые
точки z = x+ iy. Воспользуемся формулой (26):

ch ρ = 1 +
(x− x0)2 + (y − y0)2

2yy0

,

(x− x0)2 + y2 − 2yy0 + y2
0 + 2yy0 − 2y0y ch ρ = 0,

(x− x0)2 + (y − y0 ch ρ)2 = y2
0 ch2 ρ− y0,

отуда получаем
(x− x0)2 + (y − y0 ch ρ)2 = y2

0 sh2 ρ.

Получается, множество искомых точек будет выглядеть как евклидова окружность.
21Здесь учли, что метрика

ds2 =
dx2 + dy2

y2
,

а под интегралом стоит
√
detG.
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Аналог теоремы Пифагора

Пусть в нашей модели дан прямоугольный треугольник. Тогда

ch c = ch a ch b, (30)

tha = sh btgα. (31)

Прежде, чем заняться формулами, расположим треугольник удобным способом
(рис. 8.2). Это возможно, так как преобразования f(z) переводят прямые и дуги
в прямые и дуги.

Рис. 8.2. Прямоугольный тре-
угольник Рис. 8.3. Нахождение угла α

Воспользовавшись (26), вычислим

ch a = 1 +
cos2 ϕ+ (1− sinϕ)2

2 sinϕ
=

2

2 sinϕ
=

1

sinϕ
,

ch b = 1 +
(h− 1)2

2h
=
h2 + 1

2h
,

ch c = 1 +
cos2 ϕ+ (h− sinϕ)2

2h sinϕ
=
h2 + 1

2h

1

sinϕ
.

Формула (30) доказана. Теперь,

ch2 x− sh2 x = 1.

sh2 b = ch2 b− 1 =
(h2 + 1)2

4h2
− 1 =

h4 + 2h2 + 1− 4h2

4h2
=

(h2 − 1)2

4h2
.

Значит,

sh b =
h2 − 1

2h
.

sh2 a =
1

sin2 ϕ
− 1 =

cos2 ϕ

sin2 ϕ
,

откуда
tha = cosϕ.
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Обсудим, как разобраться с углом α (рис. 8.3). Если в точке A провести касательную
к окружности, она пройдет как раз под углом α. По построению ∠ANO = α.

(NA)2 = x2
0 + h2 = (x0 − cosϕ)2 + sin2ϕ = (NB)2.

x2
0 + h2 = x2

0 − 2x cosϕ+ cos2 ϕ+ sin2 ϕ,

2x0 cosϕ = 1− h2,

x0 =
1− h2

2 cosϕ
.

Тогда

tgα =
h

|x0|
=

2h cosϕ

h2 − 1
.

Отсюда легко можно показать (31).

Аналог теоремы синусов

Для данной задачи нам удобнее будет пользоваться моделью для гиперболои-
да. Расположим на нем треугольник так, чтобы одна вершина лежала в вершине
гиперболида, сторона на меридиане, а остальное произвольным образом.

На прошлом занятии говорили о преобразованиях, сохраняющих метрику в такой
задаче: поворот

R(ϕ) =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


и гиперболический поворот

H(χ) =

 0 0 1
0 chχ shχ
0 shχ ch ξ

 .

Сделаем шесть преобразований, приведя треугольник в себя. Выполним последова-
тельно преобразования

H(−c) ◦R(π − β) ◦H(−a) ◦R(π − γ) ◦H(−b)R(π − α) = Id.

Перемножать 6 матриц неудобно, поэтому выполним обратные преобразования и
получим

R(π − γ) ◦H(−b) ◦R(π − α) = H(a) ◦R(β − π) ◦H(c).

Начнем с преобразования H(a) ◦R(β − π) ◦H(c). Его результатом будет матрица − cos β − sin β ch c − sin β sh c
sin β ch a − ch a cos β ch c − sh c ch a cos β + sh a ch c
sh a sin β − sh a cos β ch c+ ch a sh c − sh c sh a cos β + ch a ch c

 .
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Результатом R(π − γ) ◦H(−b) ◦R(π − α) будет матрица cos γ cosα− sinα sin γ ch b − cos γ sinα− cosα sin γ ch b − sin γ sh b
sinα cosα + sinα cos γ ch b − sinα sinα + cosα cos γ ch b cos γ sh b

sh b sinα sh b cosα ch b

 .

Приравняем первые элементы данных матриц. Получим

cos γ cosα + cos β = sinα sin γ ch b.

То есть, если знаем углы, можем определить сторону. Отсюда следует, что два
треугольника геометрии Лобачевского равны, если у них равны углы. Приравняя

ch b = − sh c sh a cos β + ch a ch c,

получим, что по трем сторонам можем найти угол. Рассмотрим еще равенство эле-
ментов

sin β sh c = sin γ sh b.

С учетом симметрии, можем записать

sh b

sin β
=

sh c

sin γ
=

sh a

sinα
.

Площадь треугольника

Будем рассматривать модель верхней полуплоскости. Пусть дан треугольник с
углами α, β, γ. Докажем, что

S = π − α− β − γ.

Рассмотрим сначала треугольник конкретного вида (рис. 8.4).
По стандартной схеме вычисления площади,

√
detG = 1/y2,

S =

∫ cosβ

0

∫ ∞
√

1−x2

1

y2
dxdy =

∫ cosβ

0

1√
1− x2

dx =

= −arccos(x)
∣∣∣cosβ

0
= −β + π/2 = π − π/2− β − 0.

Для треугольника с углами α, β и 0 (рис. 8.5) площадь равна

S = π/2− β + π/2− α = π − α− β − 0.

Теперь вычислим площадь в общем случае. Введем дополнительные построения
(рис. 8.6). Здесь угол D равен 0, так как это дуги окружностей в одной точке.
Тогда

S = SABC − SDBA = π − γ − (θ + β)− (π − (π − α)− θ) = π − α− β − γ.
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Рис. 8.4. Первый шаг. Треуголь-
ник с углами 0, π/2, β

Рис. 8.5. Второй шаг. Треуголь-
ник с углами 0, α, β

Рис. 8.6. Треугольник с дополни-
тельным углом

Семинар 9

Определение гладкого многообразия

Ранее в курсе встречалось понятие многообразия, или топологического многооб-
разия. Напомним, что топологическое пространство называется топологоическим
многообразием, если у каждой точки p этого пространства есть окрестность u, ко-
торая гомеоморфна Bn – открытому шару в евклидовом пространстве Rn.

Отметим, что топологическое многообразие является свойством самого простран-
ства. Гладкое многообразие, о которых речь пойдет дальше – это уже некоторая
структура, введенная на данном пространстве.

Пусть дано пространство X. Так как у каждой точки есть окрестность, гомео-
морфная шару, все пространство можно покрыть объединением гомеоморфных Rn

подмножеств:
X = ∪αUα.

Предположим, фиксируем два таких подмножества Uα и Uβ и соответствующие им
гомеоморфизмы ϕα и ϕβ. Пара

(Uα, ϕα)

называется картой, а множество таких пар

{(Uα, ϕα)}

– атласом. Точка p, попавшая в пересечение карт, имеет два набора координат
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(ϕα(p) и ϕβ(p)). Рассмотрим отображение22

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)︸ ︷︷ ︸

⊂Rn

→ ϕβ(Uα ∩ Uβ)︸ ︷︷ ︸
⊂Rn

.

На такие отображения накладывается следующее требование. Для любой пары
пересекающихся карт Uα и Uβ отображение

ϕβ ◦ ϕ−1
α

является гладким, то есть если записать это отображение в координатах

y1(x1, . . . , xn), . . . , yn(x1, . . . , xn),

то эти функции должны быть гладкими.23

Рис. 9.1. Гладкое многообразие

Заметим, что получившаяся таким образом схема (рис. 9.1) называется гладким
многообразием размерности n.

Примеры

1. Область в Rn (все Rn).
2. Двумерная сфера24 S2, задаваемая уравнением

x2 + y2 + z2 = 1.

Представим такую сферу в виде объединения двух карт

S2 = U1 ∪ U2.

22Такие отображения часто называют функциями склейки.
23То есть бесконечно дифференцируемыми.
24Заметим, что двумерную сферу нельзя покрыть единственной картой. В противном случае бы

получалось, что S2 гомеоморфна R2, что невозможно. Например, сфера, в отличие от про-
странства, компактна.
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Возьмем точки N и S (северный и южный полюс) и положим

U1 = S2N, U2 = S2S.

В качестве соответствующих гомеоморфизмов ϕ1 и ϕ2 возьмем проекции точек сфе-
ры на плоскость x0y из точек N и S соответственно (рис. 9.2).

Рис. 9.2. Атлас S2 из двух карт Рис. 9.3. Карта U+
3 сферы S2

3. Покроем сферу
S2 =

{
x2 + y2 + z2 = 1

}
шестью картами. В качестве подмножеств возьмем полусферы, образуемые при пе-
ресечении S2 с плоскостями координат:

U+
3 =

{
(x, y, z) ∈ S2 | z > 0

}
,

U−3 =
{

(x, y, z) ∈ S2 | z < 0
}
,

U+
2 =

{
(x, y, z) ∈ S2 | y > 0

}
,

U−2 =
{

(x, y, z) ∈ S2 | y < 0
}
,

U+
1 =

{
(x, y, z) ∈ S2 | x > 0

}
,

U−1 =
{

(x, y, z) ∈ S2 | x < 0
}
.

В качестве ϕ{+,−}i возьмем проекции кординат на плоскость. Так, например, ϕ+
3 (p)

положим равной координатам (x, y) соответствующей точки (рис. 9.3).
Нетрудно проверить, что выражения одних координат через другие задается

гладкими функциями. Например, для U+
3

z =
√

1− x2 − y2,

а для U−3
z =

√
1− x2 − y2.

Данный пример является частным случаем более общей ситуации, обсуждаемой
на лекциях.
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Теорема 9.1. Пусть в Rn подмножество M задано уравнениями

M =


f1(x1, . . . , xn) = 0,

. . . . . .

fk(x
1, . . . , xn) = 0,

k < n.

Если в каждой точке p ∈M ранг матрицы
∂f1
∂x1

. . . ∂f1
∂xn... . . . ...

∂fk
∂x1

. . . ∂fk
∂xn


∣∣∣∣∣∣∣
p

(32)

равен k, то M – гладкое многообразие размерности n− k.

Скажем пару слов о геометрической интерпретации данной теоремы. Пусть в (34)
за минор порядка k отвечают первые k столбцов. Из курса математического ана-
лиза известно, что тогда все координаты можно выразить через оставшиеся n − k
координат. Геометрически это значит, что проекция окрестности U точки p на ко-
ординаты xk+1, . . . , xn будет взаимно однозначной (рис. 9.4). При условиях теоремы
и гладкости функций f i функции

xi(xk+1, . . . , xn), i = 1, . . . , k

будут гладкими функциями.

Рис. 9.4. Иллюстрация к теореме 34

Гладкие отображения на гладких многообразиях

Пусть есть гладкое многообразие M . Рассмотрим функцию:

f : M → R.

Рассмотрим карту Uα, содержащую точку p, и отображение ϕα в Rn.
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Определение 9.1. Функция f на гладком многообразии M называется гладкой в
т. p, если для любой карты Uα, содержащей p, функция

f ◦ ϕ−1
α

– гладкая25 (на ϕα(Uα)), то есть если запись f в координатах

f(x1, . . . , xn)

– гладкая функция.

Заметим, что для проверки, является ли функция на многообразии гладкой, до-
статочно расмотреть какую-то одну карту. Если условие выполняется, для осталь-
ных карт оно следует автоматически. Предположим, в окрестности p есть две карты
Uα и Uβ и f ◦ ϕ−1

α является гладкой. Можно представить

f ◦ ϕ−1
α = f ◦ ϕ−1

β︸ ︷︷ ︸ ◦ϕβϕ−1
α︸ ︷︷ ︸ . (33)

Так как имеем дело с гладким многообразием, композиции в правой части (33)
являются гладкими отображениями, а значит, и их композиция тоже.

Рассмотрим более общую ситуацию.

Определение 9.2. Отображение

F : X → Y

называется гладким отображением гладких многообразий X и Y в точке p, если
для любых карт p ∈ Uα, F (p) ∈ Vβ отображение

φβ ◦ F ◦ ϕ−1
α : Rn → Rk

гладкое, то есть
yi(x1, . . . , xn)

– гладкие функции.

Примеры гладких отображений

1. Пусть дана сфера S2, (θ, ϕ), R = 1 – сферические координаты на ней (рис. 9.5).
Рассмотрим две непрерывные функции на сфере26

f1 = cos θ, f2 = sin θ.

Проверим, будут ли они гладкими.

25Здесь речь идет о гладкой функции на пространстве Rn, определение же дается для гладкости
функции на некотором топологическом пространстве, поэтому противоречия нет.

26Заметим, что сферические координаты не будут покрывать северный и южный полюса сферы.
В этих точках можем доопределить функции так, чтобы они были непрерывны.

72

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ
ФАКУЛЬТЕТ
МГУ ИМЕНИ М.В. ЛОМОНОСОВА

https://vk.com/teachinmsu


КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Рис. 9.5. Сфера S2

Для этого нужно проверить две точки: северный и южный полюса. Так как сфе-
рические координаты в окрестности этих точек не действуют, необходимо выбрать
другую карту.

Рассмотрим f1 в окрестности точки N в координатах (x, y). Заметим, что cos θ –
просто величина проекции, равной величине z, которую можно выразить из урав-
нения сферы

x2 + y2 + z2 = 1.

Таким образом, в окрестности точки N , которая в выбранной карте имеет коорди-
наты (0, 0),

f1(x, y) =
√

1− x2 − y2.

Можно проверить, что эта функция является гладкой в окрестности точки (0, 0).
Например, убедимся, что частные производные

∂f1

∂x
=

−x√
1− x2 − y2

,
∂f1

∂y
=

−y√
1− x2 − y2

непрерывны в нуле.
Аналогичным образом проведем рассуждения для

f2(x, y) =
√
x2 + y2.

Частные производные

∂f1

∂x
=

x√
x2 + y2

,
∂f1

∂y
=

y√
x2 + y2

не являются непрерывными в (0, 0). Таким образом, f2 не будет гладкой.
2. Положим M = R – числовую прямую,

U1 = R, U2 = R.

Положим ϕ1(a) = a для любой точки a, ϕ2(a) = a2.
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Замечание (M,U1 ∪ U2) не является гладким многообразием, так как

ϕ1 ◦ ϕ−1
2 : y → 3

√
y.

Прежде чем перейти к второму замечанию, введем следующее определение.

Определение 9.3. Отображение

F : X → Y

гладких многообразий X и Y называется диффеоморфизмом, если, во-первых, F –
биекция, во-вторых, F – гладкое, и, в-третьих, F−1 тоже гладкое.

Если для X и Y существует диффеоморфизм, то они называются диффеоморф-
ными.

Замечание
M1 = (M, (U1, ϕ1)), M2 = (M, (U2, ϕ2))

– два одномерных многообразия, они диффеоморфны, отображение

F : M1 →M2,

F : x→ x = y(x).

Вторая запись имеет в виду разные координаты.

Ориентируемость

Определение 9.4. Гладкое многообразиеM называется ориентируемым, если для
него существует такой атлас27 {(Uα, ϕα)}, что якобиан функций склейки ϕβ ◦ ϕ−1

α

положителен для любой пары пересекающихся карт Uα и Uβ.

Иными словами, рассмотрим две карты Uα с соответствующими наборами коор-
динат x1, . . . , xn и Uβ и y1, . . . , yn. Определение означает, что если для любых таких
двух карт определитель Якоби

det


∂y1

∂x1
. . . ∂y1

∂xn... . . . ...
∂yn

∂x1
. . . ∂yn

∂xn

 > 0.

Второе определение связано с понятием переноса ориентации для пути. Пусть
есть две точки P , Q и кривая γ(t), 0 ≤ t ≤ 1, соединяющая эти точки (рис. 9.5)
и есть касательное пространство в точке P и касательное пространство в точке Q.
Можем выбрать базис28 e1, . . . , en.
27Конечно, определение гладкого многообразия уже задает атлас для него, но в этот атлас можно

добавлять новые карты не противоречащим с определением гладкого многообразия образом.
Именно в таком смысле имеется в виду, что атласов для гладкого многообразия может быть
несколько.

28Здесь положим ei(0) = ei.
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Рис. 9.6. Перенос ориентации вдоль
незамкнутой кривой

Рис. 9.7. Перенос ориентации вдоль
замкнутой кривой

Рассмотрим базис в касательном пространстве в точке γ(t)

e1(t), . . . , en(t),

причем ei(t) непрерывно зависит от t.
Предположим, деформировали базис по-другому: в каждой точке γ(t) базис

e′1(t), . . . , e′n(t),

причем ei(0) = e′i(0). Хотим понять, что оба репера

e1(1), . . . , en(1)

и
e′1(1), . . . , e′n(1)

задают одну и ту же ориентацию в касательном пространстве к точке Q.
Пусть f(t) – функция на отрезке [0, 1], равная определителю матрицы перехода

от
e1(t), . . . , en(t)

к
e′1(t), . . . , e′n(t).

Так как в точке t реперы совпадают, f(0) = 1. Кроме того, f(t) 6= 0. Отсюда следует,
что f(1) > 0, что и означает согласованность ориентации.

Рассмотрим теперь случай замкнутой кривой (рис. 9.7), то есть P = Q. Путь γ не
меняет ориентацию, если результат от переноса ориентации вдоль него совпадает с
исходной ориентацией.

Дадим теперь другое определение ориентируемости.29

29Отметим, что с помощью нижеприведенного определения бывает удобно доказывать, что глад-
кое многообразие не является ориентируемым (достаточно показать, что для некоторой кривой
условие не выполняется). С помощью же определения выше удобно бывает доказывать ориен-
тируемость гладкого многообразия.
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Определение 9.5. Гладкое многообразиеM называется ориентируемым, если лю-
бой замкнутый путь γ на M не меняет ориентации.

Рис. 9.8. Ориентируемость вдоль лен-
ты Мёбиуса (развертка)

В качестве примера неориентируемого многообразия можно рассматривать лен-
ту Мёбиуса. Действительно, представим ленту Мёбиуса в виде прямоугольника,
на противоположных сторонах которого выбраны в противоположные стороны на-
правленные стрелки (рис. 9.8), которые затем соединены в одном направлении. В
качестве контура достаточно взять кривую, идущую вдоль ленты Мёбиуса. Выбе-
рем в качестве базиса два вектора, один из которых направлен вдоль траектории, а
другой перпендикулярно ему (вектора e1(0) и e2(0). Тогда при прохождении полного
пути вдоль прямой вектор, направленный вдоль траектории, совпадет с начальным
вектором, а перпендикулярный окажется направленным в противоположную сто-
рону.

Вернемся к теореме 9.1. В формулировку можно добавить, что при выполнении
условий M будет гладким ориентируемым многообразием.

Теорема 9.2. Пусть в Rn подмножество M задано уравнениями

M =


f1(x1, . . . , xn) = 0,

. . . . . .

fk(x
1, . . . , xn) = 0,

k < n.

Если в каждой точке p ∈M ранг матрицы
∂f1
∂x1

. . . ∂f1
∂xn... . . . ...

∂fk
∂x1

an2 . . .
∂fk
∂xn


∣∣∣∣∣∣∣∣∣
p

(34)

равен k, то M – гладкое ориентируемое многообразие размерности n− k.

Обсудим идею доказательства ориентируемости получившегося гладкого много-
образия. Будем пользоваться определением 9.4. Для простоты рассмотрим случай
k = 1. Уравнение

f(x1, . . . , xn) = 0
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Рис. 9.9. Иллюстрация к теореме 9.2

задает множество M . Тогда условие, что ранг матрицы частных производных ра-
вен k, означает, что в каждой точке есть вектор частных производных функции,
который можно обозначит gradf .

Рассмотрим замкнутый путь γ вM . В касательном пространстве выберем некото-
рый репер e1, . . . , en−1. Тогда в каждой точке γ есть перенесенный e1(t), . . . , en−1(t) и
gradf , который можно рассматривать как n-ый вектор базиса (рис. 9.9). В конечной
точке вектор градиента совпадет с начальным значением, а ориентация векторов
e′1, . . . , e

′
n−1 совпадет с e1, . . . , en−1. Это следует из того, что матрица перехода будет

иметь вид 
0

(∗) ...
0

0 . . . 01

 .

Так как Rn ориентируемо, ее определитель будет > 0, а значит, и определитель
подматрицы (*) будет > 0.
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Семинар 10

Примеры гладких ориентируемых многообразий

Рассмотрим несколько примеров.
1. Области в Rn, Sn – гладкие ориентируемые многообразия (случай сферы сле-

дует из теоремы 9.2).
2. RP n – n-мерное проективное пространство, определяемое как множество набо-

ров в Rn+1 с точностью до пропорциональности

{(x0 : x1 : . . . : xn)|∃i, xi 6= 0} = RP n.

Зададим для этого пространства атлас. Положим30

Ui = {(x0 : x1 : . . . : xn)|xi 6= 0} ,

ϕi : (x0 : x1 : . . . : xn)→
(
x0

xi
,
x1

xi
, . . . ,

xn
xi

)
.

Очевидно,
∪ni=0Ui = RP n.

Убедимся, что отображения являются гладкими. Для двух карт Ui и Uj с наборами
координат y1, . . . , yn и z1, . . . , zn соответственно

(y1, . . . , yn) →
ϕj◦ϕ−1

i

(
y1

yj
, . . . ,

yj−1

yj
,

1

yj
,
yj+1

yj
, . . . ,

yn
yj

)
,

здесь в правой части записаны координаты (z1, . . . , zn).
При n = 1 RP n = S1 – ориентируемое гладкое многообразие. При n = 2 получим

двумерный диск D2/
x∼−x

, противоположные точки на границе которого «склеены».
В прошлый раз обсуждалось, что окрестность пути, соединяющего точки x и −x
будет листом Мёбиуса, то есть неориентируемым гладким многообразием.

Таким образом, видим, что ориентируемость RP n зависит от значения n.31

Рассмотрим отдельно случай n = 3. Проверим, что можно ввести согласованный
атлас. Выпишем отображения

ϕ0 : (x0 : x1 : x2 : x3)→
(
x1

x0

,
x2

x0

,
x3

x0

)
,

ϕ1 : (x0 : x1 : x2 : x3)→
(
x0

x1

,
x2

x1

,
x3

x1

)
,

30Заметим, что обратное отображение ϕ−1
i существует и будет иметь вид

ϕ−1
i (y1, . . . , yn)→ (y1 : y2 : . . . : yi−1 : 1 : yi+1 : . . . : yn).

31При нечетных n гладкое многообразие будет ориентируемо, при четных – неориентируемо.
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ϕ2 : (x0 : x1 : x2 : x3)→
(
x0

x2

,
x1

x2

,
x3

x2

)
,

ϕ3 : (x0 : x1 : x2 : x3)→
(
x0

x3

,
x1

x3

,
x2

x3

)
.

Вычислим, например,

ϕ1 ◦ ϕ−1
0 : (y1, y2, y3)→

(
1

y1
,
y2

y1
,
y3

y1

)
,

якобиан равен

det

 −
1

(y1)2
0 0

− y2

(y1)2
1
y1

0

− y3

(y1)2
0 1

y1

 = − 1

(y1)4
< 0.

Аналогично,

ϕ2 ◦ ϕ−1
0 : (y1, y2, y3)→

(
1

y2
,
y1

y2
,
y3

y2

)
.

В этом случае якобиан равен

det

 0 − 1
(y2)2

0
1
y2
− y1

(y2)2
0

0 − y3

(y2)2
1
y2

 =
1

(y2)4
> 0.

Для наглядности изобразим таблицу со знаками якобианов функций перехода:

U0 U1 U2 U3

U0 − + −
U1 − − +
U2 + − −
U3 − + −

(35)

Обсудим теперь следующий момент. Пытаемся показать, что гладкое многообра-
зие ориентируемо, используя определение 9.4.

Возьмем карту Ui и соответствующее отображение ϕi. Каждой точке p ∈ Ui сопо-
ставляется точка ϕi(p) с координатами x1, . . . , xn. Определим операцию изменение
ориентации на карте. Например, заменим отображение ϕi на ϕ̃i такое, что

(x1, . . . , xn)→ (−x1, . . . , xn).

Вместо карты (Ui, ϕi) будем рассматривать карту (Ui, ϕ̃i). Ясно, что якобиан функ-
ции склейки на пересечении измененной карты и какой-либо другой поменяет знак.
Вернемся к задаче. Можно подобрать изменения ориентаций на некоторых Ui так,
чтобы все якобианы (35) оказались положительными. Таким образом, все карты
оказываются согласованными, а значит, гладкое многообразие RP n, n = 3 ориенти-
ровано.
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Матричные многообразия

Напомним некоторые обозначения.

GL(n,R) = { вещественные матрицы A n× n, detA 6= 0} ,

SL(n,R) = { вещественные матрицы A n× n, detA = 1} ,

O(n,R) =
{
вещественные матрицы A n× n, ATA = E

}
,

SO(n,R) =
{
вещественные матрицы A n× n, ATA = E, detA = 1

}
,

SU(n,R) =
{
комплексные матрицы A n× n, ATA = E, detA = 1

}
.

Оказывается, что вышеперечисленные группы являются гладкими ориентируе-
мыми многообразиями. Проверим это утверждение для некоторых из них.

1. GL(n,R) гомеоморфно открытому подмножеству32 в Rn
2 , то есть GL(n,R) –

гладкое многообразие размерности n2.
2. SL(n,R) задается уравнением f(A) = 1, где f(A) = detA. Воспользуемся тео-

ремой 9.2. Найдем, как выглядит градиент f . Частные производные

∂f

∂xij
=

∂

∂xij

 . . .︸︷︷︸
не зависит от xij

+xij( . . .︸︷︷︸
α

)

 .

Здесь α – алгебраическое дополнение к элементу A в i строке j столбце, не зависит
от xij. При взятии частной производной по xij получим ровно α.

Так как detA = 1 6= 0, найдется минор порядка n− 1, не равный 0. Это означает,
что

gradf 6= 0

в любой точке матрицы A ∈ SL(n,R).
Получаем, что SL(n,R) – гладкое многообразие размерности n2 − 1.
3. SO(2) – множество матриц вида(

cosϕ sinϕ
sinϕ cosϕ

)
является гомеоморфным S1.

4. SO(3) =
{

3× 3 матрицы A|ATA = E, detA = 1
}
. Запишем

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

32Так как {A|detA = 0} является замкнутым подмножеством.
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Заметим, что элемент (ATA)ij – скалярное произведение i и j столбцов A. Условия
группы дают 9 + 1 уравнений (причем уравнение для i и j столбцов совпдают с
уравнением для j и i стобца, то есть уникальных уравнений 7). Выпишем их:

a2
11 + a2

21 + a2
31 = 1

a2
12 + a2

22 + a2
32 = 1

a2
13 + a2

23 + a2
33 = 1

a11a12 + a21a22 + a31a32 = 0

a11a13 + a21a23 + a31a33 = 0

a12a13 + a22a23 + a32a33 = 0

detA = 1

(36)

Рис. 10.1. Структура O(n)

Последнее уравнение можно не учитывать, так как на множестве ортогональных
матриц O(3) функция f(A) = detA локально постоянна и принимает либо значение
либо 1, либо −1 в зависимости от подмножества O(3) (рис. 10.1). Для наглядности
запишем значения градиентов для функций, задающих систему уравнений (36):

a11 a21 a31 a12 a22 a32 a13 a23 a33

λ1 2a11 2a21 2a31 0 0 0 0 0 0 gradf1

λ2 0 0 0 2a12 2a22 2a32 0 0 0 gradf2

λ3 0 0 0 0 0 0 2a13 2a23 2a33 gradf3

λ4 a33 a12 a22 a32 a11 a21 a31 0 0 gradf4

λ5 a13 a23 a33 0 0 0 a11 a21 a31 gradf5

λ6 0 0 0 a13 a23 a33 a12 a22 a32 gradf6

Докажем, что ранг этой матрицы равен 6. Если это не так, существует линейная
комбинация строк c λi, равная 0. Так, например, для первых трех столбцов должно
выполняться

2λ1(a11, a21, a31) + λ4(a12 + a22 + a32) + λ5(a13 + a23 + a33) = 0.

Так как столбцы исходной матрицы A линейно независимы, получим, что

λ1 = λ4 = λ5 = 0.
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Аналогично получаем, что
λ2 = λ4 = λ6 = 0,

λ3 = λ5 = λ6 = 0.

Отсюда получаем, что O(3) и SO(3) – гладкие многообразия размерности 9−6 = 3.

5. SO(n) является подмножеством пространства всех мтариц Rn
2 . В частности,

единичная матрица E ∈ SO(n).

Рис. 10.2. Схема для A(t) из
SO(n)

Попытаемся понять, как устроено касательное пространство к этому подмноже-
ству в точке E (рис. 10.2). Рассмотрим кривые A(t) ∈ SO(n) такие, что A(0) = E и
их вектора скорости X, где

X =
d

dt

∣∣∣
t=0
A(t).

Заметим, что33 A(t) ⊂ O(n) тогда и только тогда, когда

AT (t)A(t)t
≡
E. (37)

Продифференцировав (37) в точке t = 0, получим(
d

dt

∣∣∣
t=0
A(t)

)T
· A(0) + AT (0)

(
d

dt

∣∣∣
t=0
A(t)

)
= 0,

откуда
XT +X = 0,

то есть вектора скорости рассматриваемых кривых A(t) – кососимметрические мат-
рицы.

33Ранее обсудили, что множество O(n) разбивается на два непересекающихся подмножества (рис.
10.2). Все кривые из O(n), содержащие E, автоматически будут принадлежать SO(n).
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Убедимся, что наоборот данное утверждение тоже будет верно. Пусть X – про-
извольная кососимметричная матрица. Построим кривую A(t) такую, что

AT (t) · A(t) ≡ E,

A(0) = E,
d
dt

∣∣∣
t=0
A(t) = X.

(38)

Рассмотрим

A(t) = exp {tX} = E + tX +
(tX)2

2
+

(tx)3

3!
+ . . .+

(tX)n

n!
+ . . .

Последние два условия (38), очевидно, при таком выборе A(t) выполняются. Убе-
димся, что

(exp {tX})T · exp {tX} ≡ E.

Заметим, во-первых, что

(exp {tX})T = exp
{
tXT

}
= exp {−tX} ,

а во-вторых,
eA · eB = eA+B,

если AB = BA. Тогда

(exp {tX})T = exp {−tX} exp {tX} =

= exp {−tX + tX} = exp {0} = E.

Итак, построенная кривая A(t) удовлетворяет свойствам (38).
Из рассуждений выше можно сделать следующий вывод. Множество векторов

скорости кривых, лежащих в O(n) и начинающихся в E – это множество кососим-
метричных матриц. Осталось показать, что O(n) является гладким многообразием.
Нетрудно проверить, что отображение exp(X) матриц X, будет являться гомеомор-
физмом, который отображает кососимметрические матрицы X в окрестности нуля
на окрестность единицы ортогональных матриц.

Обсудим, как быть с точкамиO(n), отличными от E. ПустьB ∈ O(n). Рассмотрим
отображение

LB : O(n)→ O(n),

LB : A→ BA. (39)

В частности, LB(E) = B. LB будет являться гомеоморфизмом, обратное к нему есть
LB−1 . Поэтому окрестность матрицы B в O(n) устроена точно так же, как окрест-
ность E в O(n). Итак, рассматривая карту в окрестности E, можем с помощью
таких отображений переносить ее в другие точки. В итоге получим атлас на всем
O(n). Можно проверить согласованность карт.

Отметим, что O(n) – гладкое многообразие размерности (n2 − n)/2.
Задача Доказать, что касательное пространство в точкеE к многообразию SL(n,R)

состоит из матриц X таких, что trX = 0.
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Ориентированность матричных групп

Для матричных групп задать ориентацию можно следующим образом. Можно
построить несколько векторных полей v1, . . . , vn, которые будут линейно незави-
симы и в каждой точке будут задавать ориентацию касательного пространства.
Рассмотрим по аналогии с (39) отображение

LB : G→ G,

LB : A→ BA.

Напомним определение дифференциала отображения. Пусть есть гладкое отобра-
жение f гладких многообразий X и Y , в них точки p и f(p) соответственно. Тогда,
если возьмем вектор v из касательного многообразия к точке p многообразия X
TpX, то есть

v =
d

dt

∣∣∣
t=0
γ(t),

где γ(0) = p), ему сопоставляется вектор

dpf(v) =
d

dt

∣∣∣
t=0
f(γ(t)).

Итак, дифференциал отображения переводит касательные:

dELB : TEG→ TBG.

Таким образом, взяв некоторый касательный базис в точке E, имеем возможность
«разнести» его по всему многообразию.

Понятия погружения и вложения

Определение 10.1. Гладкое отображение f гладких многообразий

f : Xm → Y n, m ≤ n

называется погружением, если ранг дифференциала отображения f в любой точке
P ∈ X равен m, то есть

ker (dpf) = {0} .

Определение 10.2. Погружение f : X → Y называется вложением, если f явля-
ется гомеоморфизмом X и f(X).

Пример Рассмотрим гладкое отображение f интервала X = (a, b) на плоскость
Y = R2 (рис. 10.3). Так как концы интервала не рассматриваются, отображение
вазимно однозначно, но гомеоморфизмом не является. Поэтому f не является вло-
жением, хотя f – погружение и взаимно однозначно с образом.

Утверждение Если X компактно и f : X → Z – непрерывная биекция, где Z –
хаусдорфово, то f−1 : Z → X тоже непрерывно.
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Рис. 10.3. Контрпример вло-
жения

Определение 10.3. Подмножество X в Rn является подмногообразием, если для
любой точки x ∈ X существует окрестность U (в Rn) и координаты x1, . . . , xn в ней
такие, что

X ∩ U =
{
x1 = . . . = xk = 0

}
.

Напомним, что на лекциях обсуждалась слабая теорема Уитни, утверждающая,
что любое многообразие можно вложить в евклидово пространство большей раз-
мерности.

Задача То, что S2 ⊂ R3, является известным фактом. Можно ли вложить S2 в
R2?

Убедимся в том, что нельзя. Пусть на S2 заданы локальные координаты (u, v).
Отображение

F : S2 → R2

можно рассматривать как пару функций

f, g : S2 → R,

f(P ) = x(F (P )), g(P ) = y(F (P )). (40)

Заметим, что f и g достигают своих минимальных и максимальных значений, так
как определены на компактном множестве. Матрица Якоби отображения(

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

) ∣∣∣
p

должна иметь ранг не меньше 2, чтобы быть вложением. Так как в матрице Якоби
фактически построчно записаны градиенты функий (40), в точке максимума f она
будет иметь вид (

0 0
∗ ∗

)
.

Таким образом, есть точки, в которых матрица вырождена, а значит, ее ранг меньше
размерности пространства.

Вопрос Существует ли погружение в R2 M2

{p}, где M2 – компактное двумерное многообразие?
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Задачи

Обсудим две задачи.

1. Найти матрицу B вида (
1 1
1 λ

)
,

являющуюся касательным вектором к многообразию SL(2,R) в точке

p =

(
1 0
2 1

)
.

2. Найти образ этой матрицы B при дифференциале отображения

f : SL(2,R)→ Mat(2,R),

где Mat – пространство матриц, заданном формулой

f(X) = X2 −X.

1. Поймем, как устроено касательное пространство многообразия SL(2,R) в дан-
ной точке. Рассмотрим кривые A(t) такие, что

det(A(t)) ≡ 1 (41)

и
A(0) =

(
1 0
2 1

)
.

Запишем A(t) в виде

A(t) =

(
a(t) b(t)
c(t) d(t)

)
.

Тогда условие (41) имеет вид

a(t)d(t)− c(t)b(t) ≡ 1.

Взяв d/dt в точке t = 0 от этого выражения, получим

da

dt

∣∣∣
t=0
· 1 + 1 · d

dt

∣∣∣
t=0
d(t)− dc

dt

∣∣∣
t=0
· 0− 2 · db

dt

∣∣∣
t=0

= 0. (42)

С искомой матрицей B кривая A(t) связана как

dA

dt

∣∣∣
t=0

= B.

Обозначим
B =

(
α β
γ δ

)
.
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Тогда (42) можно записать в виде

α + δ − 2β = 0.

По условию задачи, α = 1, γ = 1 и δ = 1, откуда

2− 2β = 0,

то есть β = 1. Матрица B имеет вид

B =

(
1 1
1 1

)
.

2. По условию, матрица X(2,R) переходит под действием отображения в X2−X.
Требуется найти dpf(B). Представим

B =
d

dt

∣∣∣
t=0
A(t),

где A(t) ⊂ SL(2,R), A(0) = P из условия задачи.
Отображаем кривую

f(A(t)) = A(t)2 − A(t).

Найдем вектор скорости полученной кривой. Дифференцируем:

d

dt

∣∣∣
t=0

(f(A(t))) =

(
dA

dt

∣∣∣
t=0

)
A(0) + A(0)

(
dA

dt

∣∣∣
t=0

)
−
(
dA

dt

∣∣∣
t=0

)
=

=

(
1 1
1 1

)(
1 0
2 1

)
+

(
1 0
2 1

)(
1 1
1 1

)
−
(

1 1
1 1

)
=

=

(
3 1
3 1

)
+

(
1 1
3 3

)
−
(

1 1
1 1

)
=

(
3 1
5 3

)
.
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