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Лекция 1

1.1. Скалярные и векторные поля. Основные понятия и
формулы

Определение: Пусть G область в трехмерном пространстве или на плоскости.
Если каждой точке М из G поставлено в соответствие число u(М), то говорят что
в области G задано скалярное поле и записывается: M ∈ G⇒ u(M)

Далее, если не оговаривается обратного, будем считать G областью в трехмерном
пространстве.

Физические примеры:
1) Скалярное поле температур. Температура меняется от точки к точке в какой-то

выбранной области области.
2)Поле плотности заряда. Предположим есть какое-то заряженное тело. В каж-

дой его точке плотность заряда является числом.
Физический скалярные поля не зависят от выбора системы координат,но могут

зависеть от времени,тогда они называются нестационарными.
Пусть задана прямоугольная система координат Oxyz в области G, тогда скаляр-

ное поле описывается функцией трех переменных: u = u(x, y, z), (x, y, z) ∈ G Неред-
ко приходится рассматривать ту часть области G, где u имеет одно и тоже значение
во всех точках. Это поверхность заданная уравнением u = u(x, y, z) = C = Const и
называется поверхностью уровня скалярного поля. Для двухмерного пространства
это линии уровня.

Примером может служить линии постоянной глубины океана или одинаковых
высот на географической карте.

Далее будем считать что функия u(x,y,z), описывающая скалярное(или вектор-
ное) поле, имеет непрерывные частные производные по всем аргументам необходи-
мого порядка.
Определение: Градиентом скалярного поля в точке M(x,y,z) называется вектор-

фунция:

gradu(M) =

{
∂u

∂x
(M),

∂u

∂y
(M),

∂u

∂z
(M)

}
(1)

Глядя на это определение можно подумать, что градиент зависит от выбора системы
координат, выбрав другую систему будут другие x,y,z и свои частные производные.
Но во II семестре было показанно что при смене системы координат, координаты
вектора gradu(M) изменяются, но сам вектор, то есть его длина и направление,
остаются без изменений. Направление вектора gradu(M) это направление наиболь-
шего роста функции, а модуль этого вектора |gradu(M)| это производная по этому
направлению. Направление наибольшего роста функции не меняется от выбоа ко-
ординат, а это и есть направление gradu(M).

Проведем произвольный единичнй вектор ~L = {cos(α), cos(β), cos(γ)} из точки
М, его координаты задаются направляющими косинусами, тогда производная по
направлению в точке M :

∂u

∂L
(M) = (gradu(M) · ~L) =

{
∂u

∂x
(M)cos(α) +

∂u

∂y
(M)cos(β) +

∂u

∂z
(M)cos(γ)

}
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Определение: Если каждой точке М области G поставлен в соответствие неко-
торый вектор ~a(M), то говорят, что в области G задано векторное поле и записы-
вается: M ∈ G⇒ ~a(M)

Физические примеры:
1)Электрическое поле. В каждой точке характеризуется вектором напряженности

~E(M).
2)Магнитное поле. В каждой точке характеризуется вектором магнитной индук-

ции ~B(M).
3)Поле Тяготение. Можно охарактеризовать в каждой точке силой ~F (M) с кото-

рой это поле действует на единчную массу помещенную в точку М.
4) Поле скоростей потока жидкостей. Стационарный поток можно характеризо-

вать в каждой точке вектором скорости ~v(M).
Векторное поле также не зависит от выбора системы координат. Если ввести

систему координат Oxyz, то векторное поле задается вектор-функцией трёх пере-
менных ~a(x, y, z), но часто мы будем рассматривать ее координаты и обозначать их
~a(x, y, z) = {P (x, y, z), Q(x, y, z), R(x, y, z)}

Если для скалярных полей вводятся поверхностей уровня, для векторных полей
вводится понятие векторной линии

Рассмотрим некоторую кривую L, она называется векторной линией векторного
поля ~a(M), если в каждой точке М кривой L вектор ~a(M) направлен по касательной
к этой кривой. (Рис. 1.1)

Рис. 1.1 – Кривая L и векторные ли-
нии в точках M и N .

Для электрического и магнитного полей,
а также для поля тяготения векторные ли-
нии называются силовыми линиями, для по-
ля скоростей — линиями тока.
Определение: Дивергенцией векторно-

го поля ~a = {P (x, y, z), Q(x, y, z), R(x, y, z)}
называется скалярная функция(или скаляр-
ное поле)

div ~a =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

Дальше будет показанно что дивергенция,
как и градиент, зависит только от вектор-
ного поля и не зависит от выбора системы
координат.

Посчитаем дивиргенцию поля точечного заряда e помещенного в начале коорди-
нат(рис.1.2). В каждой точке M(x,y,z) это поле характеризуется вектором электри-
ческой напряженности и этот вектор направлен так же как вектор ~OM если заряд
e положительный.

~E(M) =
ke

r3
~r

~r = ~OM r = |~r| =
√
x2 + y2 + z2 ~r = x ·~i+ y ·~j + z · ~k
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Рис. 1.2 – электрическое поле точечного заряда, помещeнного в начале координат.

Найдем в точке M дивергенцию векторного поля: ~E(M)

div ~E(M) = ke

(
∂

∂x

x

r3
+

∂

∂y

y

r3
+

∂

∂z

z

r3

)
(2)

Вычислив частные производные, получим:
div ~E = 0 при r 6= 0,
Если r = 0 вычислять частные производные по формуле (2) нельзя, но при r →
∞, div ~E →∞, так что можно считать что:
div ~E =∞ при r = 0
Физическая интерпретация этого примера говорит о том, что div ~a(M) характе-

ризует плотность источников векторного поля ~a в данной точке M. В любой точке
где r 6= 0 нет заряда и соответственно плотность равна нулю.
Определение: Ротором векторного поля ~a в точке M называется вектор-функция:

rot ~a(M) =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ =

(
∂R

∂y
− ∂Q

∂z

)
~i+

(
∂P

∂z
− ∂R

∂x

)
~j +

(
∂Q

∂x
− ∂P

∂y

)
~k

.
Далее будет доказано :
1) rot ~a также не зависит от выбора системы координат;
2) rot ~a(M) характеризует завихрeнность векторного поля ~a(M) в точке M.
Рассмотрим снова поле точечного заряда e помещенного в начале координат и

вычислим rot ~E(M). Если исходить из того что ротор характеризует завихрение, то
исходя из рисунка 1.2 видно что напряженность направлена из точки в радиальном
направлении и никакого завихрения нет, соответственно rot ~a(M) = ~0 , то же можно
получить с помощью вычислений.
Определение: Пусть векторное поле ~a(M) определенно в области G. Пусть Φ —

гладкая двусторонняя поверхность, лежащая в области G. Выберем одну из сторон
поверхности, зафиксировав непрерывное векторное поле единичных нормалей ~n =
{cosα, cos β, cos γ}. Поверхностный интеграл второго рода по выбранной стороне
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поверхности Φ : ∫∫
Φ

(~a · ~n) ds =

∫∫
Φ

(P cosα +Q cos β +R cos γ) ds

называется потоком векторного поля ~a(M) через выбранную сторону поверхности
Φ.

Если ~a(M) = ~v(M) — скорость движущейся жидкости в точке M, то∫∫
Φ

(~a · ~n) ds

представляет собой объем жидкости, протекающей через поверхность Φ за единицу
времени в выбранном направлении. Эта величина называется в физике потоком
жидкости через поверхность Φ, поэтому название «поток» используется и в случае
произвольного векторного поля ~a(M).

Отметим, что поток не зависит от выбора системы координат, так как векторное
поле и поверхность от этого не зависит.

Дадим инвариантное определение дивергениции потока векторного поля.
Пусть Φ гладкая поверхность ограничивающая тело G, напишем формулу Остро-

градского — Гаусса в компактном векторном виде:∫∫∫
G

div ~a dV =

∫∫
Φ

(~a · ~n) ds (3)

Зафиксируем какую-нибудь точку M области G и будем стягивать поверхность
Φ, оставляя ее гладкой, к точке M ,то есть будем диаметр области G стремить к
нулю d(G)→ 0,так что точка M всегда находится внутри области G

Применим к левой части равенства формулу среднего значения,вынесем за знак
интеграла некоторое среднее значение в некоторой точке M∗:∫∫∫

G

div ~a dV = div ~a(M∗)

∫∫∫
G

dV = div ~a(M∗) V (G)

Теперь перепишим формулу (3) поделив на объем обе части:

div ~a(M∗) =

∫∫
Φ

(~a · ~n) ds

V (G)

Сжимаем поверхность Φ окружающюю точку M d(G) → 0, тогда так функция
непрерывна, то M∗ →M Отсюда слудует что div ~a(M∗)→ div ~a(M)

Здесь важен выше упомянутый факт непрерывности частных производных.
Таким образом

div ~a(M) = lim
d(G)→0
M∈G

∫∫
Φ

(~a · ~n) ds

V (G)
(4)
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Мы отметили что поток,не зависит от системы координат, объем также не зависит
от системы координат, отсюда следует что дивергенция также не зависит от системы
координа. Формула (4) дает инвариантное определение дивергенции.

Рассмотрим опять случай, когда ~a(M) = ~v(M) — скорость движущейся жидко-
сти. Тогда

∫∫
Φ

(~a · ~n) ds это количество жидкости вытекающей(так как нормаль на-

правленна наружу) из области G ограниченной поверхностью Φ, поделив на объем,
поделив на объем облсти V(G) получим среднее количество жидкости, вытекающей
(либо втекающей) за единицу времени из единицы объёма области G. Естественно
назвать эту величину средней плотностью источников жидкости в области G.

Указанный физический смысл дивергенции векторного поля особенно ярко про-
является в известных уравнениях Максвелла, имеющих (в системе СИ) вид div ~D =

p div ~B = 0 Здесь ~D и ~B — векторы электрической и магнитной индукции, p — плот-
ность электрических зарядов. Первое уравнение выражает закон Кулона, а второе
уравнение — факт отсутствия магнитных зарядов.
Задача: Рассмотрим поле точечного заряда e помещенного в начале координат

и сферу радиуса R с центром в начале координат. Надо найти поток векторного
поля точеченого заряда через внешнюю поверхность сферы Φ радиуса R.

~E(M) =
ke

r3
~r

∫∫
Φ

( ~E · ~n) ds = 4πke (5)

Ответ не зависит от радиуса сферы, взяв сферу другого размера поток не изме-
нится. Если мы будем стягивать сферу к началу координат, то по формуле (5) видим
что числитель не меняется, а знаменатель стремится к нулю.Тем самым можно ска-
зать что дивергенция точечного заряда в самой точке заряда равна бесконечности.
Циркуляция векторного поля.

Рис. 1.3 – Вектор касательной t к кривой
AB

Пусть в области G задано вектор-
ное поле ~a и пусть AB — гладкая кри-
вая, лежащая в области G, кривая мо-
жет быть как замкнутой так и неза-
мкнутой(рис.1.3). Если она замкнута
необходмо выбрать направдение обхо-
да. Рассмотрим криволинейный инте-
грал второго рода по кривой AB :∫

AB

Pdx+Qdy +Rdz (6)

Этот криволинейный интеграл второ-
го рода и есть циркуляция векторное поля ~a вдоль кривой AB. Введем вектор
~dl = {dx, dy, dz}(рис.1.3). В каждой точке этот вектор направлен по касательной
кривой. Убедимся в этом на физическом примере. Рассмотрим параметрическое
уравнение кривой L : x = ϕ(t), y = ψ(t), z = χ(t), ta < t < tb если t трактовать
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как время, то ϕ′, ψ′, χ′ координаты вектора скорости, а вектор скорости направ-
лен по касательной. тогда циркуляцию, после введение вектора ~dl можно записать
в виде

∫
AB

(~a · ~dl) введем единичный вектор касательной ~t{cosα, cos β, cos γ}, тогда

~dl = ~t · |~dl|, где |~dl| =
√

(dx)2 + (dy)2 + (dz)2 = dl - элемент длины кривой. Тогда ту
же циркуляцию можно записать в виде криволинейного интеграла первого рода∫

AB

(~a · ~t) dl =

∫
AB

Pdx+Qdy +Rdz (7)

Так как векторы ~a и ~t, а также кривая AB, не зависят от выбора системы координат,
то и циркуляция векторного поля вдоль кривой AB не зависит от выбора системы
координат. Это свойство циркуляции позволит дать нам инвариантное определение
ротора.

Зафиксируем какую-нибудь точку M области G, проведём через неё произволь-
ную плоскость и рассмотрим гладкий замкнутый контур L, лежащий в этой плос-
кости и ограничивающий плоскую область Φ, такую, что точка M — точка этой
области (рис.1.4).

Рис. 1.4 – Контур L, ограничивающий область Φ, проведенный через зафиксиро-
ванную точку M области G.

Для поверхности Φ и ограничивающего ее контура L напишем формулу Стокса,
в удобном нам компактно-векторном виде.∮

L

(~a · ~dl) =

∫∫
Φ

(rot ~a · ~n) ds

От выбора направления вектора нормали ~n зависит направление обхода контура.
Так же как и с инвариантным определением дивергенции, применим формулу сред-
него значения для интеграла в правой части:∫∫

Φ

(rot ~a · ~n) ds = (rot ~a(M∗) · ~n) · S(Φ)
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получаем

(rot ~a(M∗) · ~n) =

∮
L

(~a · ~dl)

S(Φ)

Перейдем к пределу. Будем контур L стягивать к точке M так что эта точка оста-
ется внутри контура. Иначе говоря диаметр d(Φ) устримим к нулю. Ротор выража-
ется через частные производные наших функций P,Q,R эти частные производные
непрерывные функции значит:

(rot ~a(M) · ~n) = lim
d(Φ)→0
M∈Φ

∮
L

(~a · ~dl)

S(Φ)
(8)

так как циркуляция векторного поля и площадь области не зависят от выбора систе-
мы координат, то правая часть равенства (8) а, значит, и левая часть, которая пред-
ставляет собой проекцию вектора rot ~a(M) на вектор ~n( обозначается Πρ~nrot~a (M))
не зависит от выбора системы координат. Таким образом, формула (8) дает инва-
риантное определение проекции ротора векторного поля на произвольное направ-
ление.

Πρ~nrot~a (M) = lim
d(Φ)→0
M∈Φ

∮
L

(~a · ~dl)

S(Φ)
(9)

чтобы определить вектор rot ~a(M), пользуясь формулой (9), достаточно рассмот-
реть в точке M проекции rot ~a(M) на три некомпланарных направления. Эти три
проекции однозначно определяют вектор rot ~a(M).

Покажем что rot ~a(M) характеризует завихренность векторного поля. Рассмот-
рим циркуляцию вектора a по тому же замкнутуму контур L что и на рис.1.5.

Рис. 1.5 – Циркуляция вектора a.

Она равна
∮
L

(~a · ~t) она будет макси-

мальной в том случае когда ~a направ-
лен по касательной, то есть коллинеа-
рен вектору ~t, в этом случае лучше все-
го видно завихрение векторного поля.

Напишем еще два уравнения Макс-
велла в СИ, которые записываются с по-
мощью ротора:

1) rot ~H = ~j+ ∂D
∂t
, это уравнение явля-

ется обобщением закона Био-Савара и
выражает тот факт, что магнитное поле
~H порождается токами проводимости (j
— плотность тока) и токами смещения
∂D
∂t
, ~D — электрическая индукция
2) rot ~E = −∂B

∂t
, выражает закон электромагнитной индукции Фарадея и пока-

зывает, что одним из источников электрического поля является изменяющееся во
времени магнитное поле.
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Лекция 2

2.1. Потенциальные векторные поля
Определение: Векторное поле ~a(M) называется потенциальным в области G, 

если его можно представить в этой области как градиент некоторого скалярного 
поля u(M):

~a(M) = gradu(M)

функция u(M) называется скалярным потенциалом векторного поля ~a(M).

Пусть вектор ~a = P,Q,R равен градиенту скалярного поля u(M) ~a = {P,Q,R} =

gradu =
{
∂u
∂x
, ∂u
∂y
, ∂u
∂z

}
, тогда приравнивая соответствующие координаты получим

P = ∂u
∂x
, Q = ∂u

∂y
, R = ∂u

∂z
Рассмотрим выражение, фигурирующее в определении

циркуляции, тогда

Pdx+Qdy +Rdz =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz (10)

это выражение является полным дифференциалом функции u(M) в области G. Ле-
вая часть выражения (10) стоит под знаком криволинейного интеграла (6). Таким
образом выполнено условие 3 теоремы 5 об условиях независимости криволиней-
ного интеграла второго рода от пути интегрирования в пространстве,эта теорема
доказывалась во II семестре. Из условия 3 следует выполнение условий 1, 2 и 4 этой
теоремы, это и есть свойства потенциального векторного поля, установим их:

1) Для любого кусочно-гладкого контура L, лежащего в области G циркуляция
векторного поля равна нулю:∮

L

(~a · ~dl) =

∮
L

Pdx+Qdy +Rdz = 0

2) Для любых фиксированных точек A и B из области G циркуляция вдоль
кривой AB не зависит от выбора кривой соединяющей точки AB и равна разности
значений потенциала u(M) в точках A и B :∫

AB

(~a · ~t) = u(B)− u(A)

3)Любое потенциальное поле является безвихревым:

rot ~a = 0

Это вытекает из 4 условия теоремы 5.
Существует второе определение потенциального поля: Поле называется по-

тенциальным, если его циркуляция по любому замкнутому контуру равна нулю
Поставим вопрос: верно ли обратное, т. е. следует ли из условия rot ~a = ~0 что век-

торное поле ~a(M) является потенциальным? Ответ зависит от вида области G. Если
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область G поверхностно односвязна, то согласно упомянутой теореме 5 из условия
4 следует условие 3(из 3 всегда следует 4), а значит существует такая функция
u(x, y, z) : ∂u

∂x
= P, ∂u

∂y
= Q, ∂u

∂z
= R, значит ~a = P~i + Q~j + R~k = Pdx + Qdy + Rdz =

∂u
∂x
~i+ ∂u

∂y
~j + ∂u

∂z
~k = gradu, это и означает что векторное поле ~a(M) потенциално.

Пример:
~a = {P,Q,R}, где P = − y

x2+y2
, Q = x

x2+y2
, R = 0, x2 + y2 6= 0, плоское поле, вектор

~a параллелен плоскости Oxy, это поле неопределенно в точках x2 + y2 = 0 то есть
вся ось Oz. Возьмем в качестве области G всe пространство с выброшенной осью
Oz. Легко вычислить что для любой точки M из области G :

rot~a = 0

Покажем теперь что поле не является потенциальным, укажем такой контур L по
которому циркуляция не равна нулю, что протеворечит свойству 1. L : x = cos t, y =
sin t, z = 0, 0 < t < 2π это окружность радиуса 1 с центром в начале координат,
лежащая в плоскости Oxy, L ∈ G так как в эту область не входит только ось Oz, а
окружность не проходит через эту ось.

∮
L

Pdx+Qdy +Rdz =

2π∫
0

− sin t d cos t+ cos t d sin t dt =

2π∫
0

dt = 2π 6= 0

Следовательно, данное векторное поле не является потенциальным в области G
Физические примеры:

1)Электрическое поле ~E(M) точечного заряда e, помещенного в начале координат
равно

~E =
ke

r3
~r r = x~i+ y~j + z~k r = |r| =

√
x2 + y2 + z2

Это поле является потенциальным. В некоторых физических задачах удобно пред-
ставлять потенциального поле не как градиент некоторого скалярного, а как минус
градиент.

~E(M) = −gradu, u =
ke

r
- электрический потенциал

вычислим частные производные функции u:

−∂u
∂x

= ke

(
1

r2

)
x

r
= ke

x

r3

аналогично для −∂u
∂y

и −∂u
∂z
, координаты вектора ~E совпадают с полученным выра-

жение для частных производных, мы проверили что потенциалом электрического
поля является скалярная функция u.

2) Рассмотрим точечную массу m помещенную в начало координат, M(x, y, z)
гравитационное поле:

~F (M) = −γm
r3
~r
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Это векторное поле также является потенциальным.

~F (M) = gradu, u =
γm

r
- ньютонов потенциал

Электрическое поле и поле тяготения потенциальные поля, физичексий смысл
циркуляции вдоль некоторой кривой это работа по перемещний тела или заряда
вдоль этой кривой. Воспользуемся вторым свойством потенциальных полей и по-
лучим для поля тяготения:∫

AB

(~F · ~dl) = u(B)− u(A) = γm

(
1

rB
− 1

rA

)
эта формула выражает работу поля тяготения, аналогично для электрического

поля.

2.2. Соленоидальные векторные поля

Определение: Векторное поле ~a(M) называется соленоидальным в области G,
если во всех точках этой области

div ~a = 0

Так как div ~a характеризует плотность источников тока, то в области где поле со-
леноидально нет источников поля ~a(M).

Пример: Электрическое поле точеченого заряда ~E = ke
r3
~r, мы говорили что

div ~E = 0 при r 6= 0, то есть во всех точках не содержащих заряда поле ~E яв-
ляется соленоидальным.

Пусть векторное поле ~a(M) можно представить в области G в виде ротора другого
векторного поля:

~a(M) = rot~b(M)

В этом случае вектор-функция ~b(M) называется векторным потенциалом вектор-
ного поля ~a(M)

div ~a(M) = div rot~b(M) = 0

Проверьте это самостоятельно рассписав выражение для rot~b(M), а затем выразив
через этот вектор div rot b.

Определение:Область G является объёмно односвязной если для любой кусочно-
гладкой замкнутой поверхности Φ принадлежащей области G, ограниченная этой
поверхностью область, целиком принадлежит области G. Примеры односвязных об-
ластей: Шар, параллелепипед, тор, все пространство. Если из шара удалить какую-
нибудь внутреннюю точку, то получится область, не являющаяся объёмно односвяз-
ной (но являющаяся, как и шар, поверхностно односвязной).
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Если поле ~a(M) является соленоидальным в объёмно односвязной области G, то
для любой замкнутой кусочно-гладкой поверхности Φ лежащей в области G поток
векторного поля через эту поверхность равен 0.

Действительно, пусть кусочно-гладкая замкнутая поверхность Φ, расположенная
в объёмно односвязной области G, ограничивает область G1. По формуле Остро-
градского — Гаусса имеем∫∫

Φ

(~a · ~n) ds =

∫∫∫
G1

div ~a dx dy dz (11)

так как поле соленоидально div ~a = 0 правая часть формулы (11) равна нулю,
значит: ∫∫

Φ

(~a · ~n) ds = 0 (12)

иногда свойство (12) соленоидальных полей принимается за их определение.

Из этого свойства следует, что векторные линии соленоидального поля не могут
начинаться или заканчиваться внутри области соленоидальности, а начинаются и
заканчиваются либо на границе области, либо являются замкнутыми.
Примеры:
1)Рассмотрим электрическое поле точеченого заряда помещенного в центре ко-

ординат ~E = ke
r3
~r. В любой области, не содержащей точки О, векторные линии

этого поля лучи, начинаются и заканчиваются на границе области G.(рис.2.1 пра-
вая часть) Так же отметим что в любой такой области поле соленоидально, однако
поток поля через область содержащюю точку О не равен нулю. Поток через внеш-
нюю сторону сферы радиуса R с центром в точке О равен 4πke 6= 0. Это связано с
тем, что все пространство с выброшенной одной точкой не является объёмно одно-
связной областью.

2) Векторные линии прямого проводника с током замкнутые линии.(рис.2.1 левая
часть)

Для соленоидального поля имеет место закон сохранения интенсивности вектор-
ной трубки. Он состоит в следующем. Пусть ~a(M) — соленоидально поле в объёмно
односвязной области G. Через каждую точку области проходят векторные линии,
если мы возьмем сплошной(без пустот) пучок этих векторных линий, и отрежем
его с двух сторон сечениями Φ1 и Φ2, это будет векторная трубка, то есть боковая
поверхность Φ3 этой трубки состоит и векторнх линий(рис.2.2).

Поток соленоидального поля ~a(M) через поверхность Φ = Φ1 + Φ2 + Φ3 , ограни-
чивающую отрезок векторной трубки, равен нулю:∫∫

Φ

(~a · ~n) ds =

∫∫
Φ1+Φ2+Φ3

(~a · ~n) ds = 0

где вектор нормали ~n направлен наружу. По определению векторных линий вектор
~a(M) направлен по касательной к поверхности, а вектор ~n перпендикулярен ей,
значит на повеерхности Φ3 ~a(M) ⊥ ~n⇒ (~a(M) · ~n) и следоватльно
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Рис. 2.1 – Векторные линии точеченого заряда и прямого проводника с током.

∫∫
Φ3

(~a · ~n) ds = 0

Поэтому из всего интеграла по поверхности Φ останется только интеграл по поверх-
ности Φ1 + Φ2 ∫∫

Φ1

(~a · ~n) ds+

∫∫
Φ2

(~a · ~n) ds = 0

вектор ~n направлен наружу, значит на сечениях Φ1 и Φ2, вектор ~n имеет противо-
положенные направления, поменяем ~n на ~n1, тогда интеграл по Φ1 поменяет знак
и тогда имеем равенство ∫∫

Φ1

(~a · ~n1) ds =

∫∫
Φ2

(~a · ~n2) ds (13)

таким образом, поток соленоидального векторного поля через любое сечение век-
торной трубки имеет одно и то же значение. Формула (13) дает закон сохранения
интенсивности векторной трубки.
Замечание: что любое векторное поле ~a(M) можно представить в виде суммы

потенциального и соленоидального полей:

~a(M) = gradu(M) + rot~b(M)

причем такое представление не единственное, ведь поле может одновременно яв-
ляться и соленоидальным и потенциальным, а значит часть потенциального поля,
которое является соленоидальной можно перенести во второе слагаемое.
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Рис. 2.2 – Векторная трубка.

.
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∂x

Лекция 3

3.1. Оператор Гамильтона
Мы уже знакомы с некоторыми операторами, например оператор частной про-

изводной по x ∂ при действии на функцию u переводит ее в другую функцию
∂
∂x
u = ∂u

∂x
, аналогично ∂

∂y
и ∂

∂z
— операторы частных производных по y и z.

Определение: векторный оператор «набла» или оператор Гамильтона это:

5 =~i
∂

∂x
+~j

∂

∂y
+ ~k

∂

∂z
=

{
∂

∂x
,
∂

∂x
,
∂

∂x

}
с помощью этого оператора удобно записывать и выполнять операции векторного
анализа.

Градиент функции u получается в результате действия (умножения) векторного
оператора 5 на эту функцию:

gradu =~i
∂u

∂x
+~j

∂u

∂y
+ ~k

∂u

∂z
= 5u

дивергенция векторного поля ~a = {P,Q,R} получается как результат скалярного
умножения векторного оператора набла на ~a:

div ~a = (5 · ~a) =
∂P

∂x
+
∂Q

∂x
+
∂R

∂x

Ротор векторного поля ~a = {P,Q,R} представляет собой векторное произведение
векторного оператора 5 и вектор — функции ~a

rot ~a = [5 · ~a] =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
С оператором набла действия производяться как с обычными векторами.

Повторные дифференциальные операции:
1) rot gradu = [5 · 5u] = ~0,
(5 - вектор, u - скаляр, заметим если бы это простые вектора, векторное произ-

ведение вектора на тот же вектор умноженный на число равно 0.)
2) div rot~a = (5 · [5 · ~a]) = 0

3)div gradu = (5 · 5u) = 52u =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
u = 4u

Оператор div grad =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
называется оператором Лапласа, а уравне-

ние 4u = 0 уравнением Лапласа (это одно из классических фундоментльных урав-
нений математической физики). Функция u(x, y, z), удовлетворяющая уравнению
Лапласа в некоторой области, называется гармонической функцией в этой области.
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Примеры:
1)Пусть векторное поле ~a одновременно и потенциально, и соленоидально. Так

как оно потенциально его можн опредставить его можно представить ~a = gradu,
то что оно соленоидально означает div ~a = div gradu = 0, то есть это скалярный
потенциал u поля ~a удовлетворяет уравнению Лапласа 4u = 0, а значит скаляр-
ный потенциал одновременно и потенциального и соленоидального поля является
является гармонической функцией.

2)потенциал электрического поля точечного заряда, которое одновременно и по-
тенциальнно и соленоидальнно, u = ke

r
, где r =

√
x2 + y2 + z2, является гармониче-

ской функцией в любой области, не содержащей начала координат. То есть функция
u = ke

r
удовлетворяет уравнению Лапласа, это можно получить непосредственно из

вычислений:
4ke
r

= ke4 1

r
= 0

3)Пусть векторное поле ~a(P,Q,R) является в соленоидальным и безвихревым то
есть

div ~a =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
(14)

и
rot ~a = ~0⇒
∂P

∂y
=
∂Q

∂x
(15)

∂R

∂x
=
∂P

∂z
(16)

Продифференциируем (14) равенство по x

∂2P

∂x2
+

∂2Q

∂x∂y
+

∂2R

∂x∂z
(17)

Продифференциируем равенство (15) по y и равенство (16) по z:

∂2P

∂y2
=

∂2Q

∂x∂y
(18)

∂2R

∂x∂z
=
∂2P

∂z2
(19)

из (17), (18), (19) следует:(
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2

)
= 0⇐⇒4P = 0

аналогично 4Q = 0 и 4R = 0.
Вывод если поле ~a является соленоидальным и безвихревым, тогда координаты

вектора ~a являются гармоническими функциями.
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4) Рассмотрим плоское векторное поле ~a{P (x, y), Q(x, y)} которое является соле-
ноидальным и безвихревым

div ~a = 0⇒ ∂P

∂x
+
∂Q

∂y
= 0,

∂P

∂x
= −∂Q

∂y
(20)

rot ~a = ~0⇒ ∂P

∂y
=
∂Q

∂x
(21)

Равенства (20) и (21) являются условиями Коши—Римана для функции комплекс-
ной переменной:

z = x+ iy

f(z) = Q(x, y) + iP (x, y)

Выполнение этих равенств означает, что f(z)— аналитическая функция.

3.2. Операции векторного анализа в криволинейных
ортогональных координатах

Мы ввели понятия gradu, rot ~a, div ~a в прямоугольной системе координат, но по-
казали что результат не зависит от выбора системы координат. Во многих задачах
математической физики удобнее пользоваться выражениями для этих операций в
других системах координат, например, в цилиндрической или сферической.Мы вы-
ведем выражения для gradu, rot ~a, div ~a в криволинейных ортогональных коорди-
натах, частными случаями которых являются цилиндрические и сферические ко-
ординаты.

Пусть x, y, z прямоугольные координаты точки M , а q1, q2, q3 ее криволинейные
координаты. Формулы, связывающие криволинейные координаты с прямоугольны-
ми, запишем в виде:

x = x(q1, q2, q3) y = y(q1, q2, q3) z = z(q1, q2, q3) (22)

Зафиксируем значения координат q2 и q3 тогда уравнения (22) описывают па-
раметрически кривую(q1-параметр), которая называется координатная q1-линией.
Аналогично определяются координатные q2-линия и q3-линия. Через каждую точку
пространства проходят три координатные qi линии, (i=1,2,3). Криволинейные коор-
динаты q1, q2, q3 называются ортогональными, если в любой точке пространства три
координатные линии, проходящие через эту точку, попарно ортогональны(т.е. ка-
сательные к координатным линиям в этой точке попарно перпендикулярны). При-
меры:

1) цилиндрические координаты:

x = r cosφ, y = r sinφ, z = z

r ≥ 0, 0 ≤ φ ≤ 2π, −∞ < z <∞
2)сферические координаты:

x = r sin θ cosφ, y = z sin θ sinφ, z = r cos θ
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r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

Параметры Ламе. Рассмотрим отрезок координатной q1 — линии с длиной dl1
и точки M и M1 (рис.3.1).

Рис. 3.1 – отрезок координатной q1 — ли-
нии.

Прямоугольные координаты точкиM
обозначим (x, y, z), а точки M1 - (x +
dx, y+dy, z+dz). В силу уравнений (22):

dx = x(q1 + dq1, q2, q3)− x(q1, q2, q3)

Применим формулу Лагранжа конеч-
ных приращений:

dx =
∂x

∂q1

dq1

аналогично dy = ∂y
∂q1
dq1 и dz = ∂z

∂q1
dq1, будем считать что производные беруться

в точке M , тогда эти равенства верны с точностью до бесконечно малых второго
порядка.

dl1 =
√
dx2 + dy2 + dz2 =

√(
∂x

∂q1

)2

+

(
∂y

∂q1

)2

+

(
∂z

∂q1

)2

dq1 = H1dq1

dl1 = H1dq1, где H1 =

√(
∂x
∂q1

)2

+
(
∂y
∂q1

)2

+
(
∂z
∂q1

)2

Аналогично на q2-линии: dl2 =

H2dq2. На q3-линии: dl3 = H3dq3, где H2 =

√(
∂x
∂q2

)2

+
(
∂y
∂q2

)2

+
(
∂z
∂q2

)2

и H3 =√(
∂x
∂q3

)2

+
(
∂y
∂q3

)2

+
(
∂z
∂q3

)2

Величины Hi, i = 1, 2, 3 называются параметрами Ла-

ме или масштабными множителями криволинейных координат , он показывает на
сколько изменилась длина dli если параметр qi изменился на dqi.

Параметры ламе в цилиндрических координатах(r, φ, z):

H1 =

√(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

=

√
cos2 φ+ sin2 φ = 1

H2 = r H3 = 1

Эти значения можно получить геометрически.(рис.3.2 правая часть)

OM = r, HM = OC = z

MM1 = dl1 = dr ⇒ H1 = 1

MM2 = dl2 = rdφ⇒ H2 = r

MM3 = dl3 = dz ⇒ H3 = 1

Параметры Ламе сферических координат(r, θ, φ): Можно вывести из формул, а
так же геометрически(рис.3.2 левая часть)
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Рис. 3.2 – Геометрическая интрепретация цилиндрических и сферических коорди-
нат.

OM = r,

CM = r sin θ

MM1 = dl1 = dr ⇒ H1 = 1

MM2 = dl2 = rdθ ⇒ H2 = r

MM3 = r sin θdφ⇒ H3 = r sin θ

Из полученных ранее формул следует:

dl1dl2dl3 = H1H2H3dq1dq2dq3 (23)

Элементы dl1, dl2, dl3 ортогональны, это длины сторон прямоугольного параллеле-
пипеда, значит левая часть выражения (23) равна объему в декартовых координа-
тах, а dq1dq2dq3 равна объему в криволинейных координатах:

dVxyz = H1H2H3dVq1q2q3

С другой стороны:

dVxyz =

∣∣∣∣ D(x, y, z)

D(q1, q2, q3)

∣∣∣∣ dVq1q2q3 (24)

Поэтому ∣∣∣∣ D(x, y, z)

D(q1, q2, q3)

∣∣∣∣ = H1H2H3 (25)

Операция градиент в криволинейных ортогональных координатахПусть
(q1, q2, q3) криволинейные ортогональные координаты точки M , возьмем в качестве
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базиса свзанного в точкеM единичные векторы ~e1, ~e2, ~e3 направленные по касатель-
ным к координатным линиям в точке M в сторону возрастания соответствующей
координаты. Особенность этого базиса в том, что в разных точках он направлен по
разному(в отличие от векторов ~i,~j,~k), так как по разному направленны касатель-
ные. Напишем ралзожение gradu в точке M по базису ~e1, ~e2, ~e3 связанному с точкой
M :

gradu(M) = c1~e1 + c2~e2 + c3~e3 (26)

вычислим c1 умножив скалярно равенство (26) на вектор ~e1:

(gradu(M) · ~e1) =
∂u

∂ ~e1

(M) = c1 (27)

Здесь мы учли что скалярное произведение ортогональных векторов дает ноль.
∂u
∂ ~e1

(M) - это производная функции u(M) по направлению ~e1 в точке M(рис.3.3),

Рис. 3.3 – Производная функции u(M).

значит (27) можно записать:

∂u

∂ ~e1

(M) = lim
dl1→0

u(M1)− u(M)

dl1
=

1

H1

lim
dl1→0

u(q1 + dq1, q2, q3)− u(q1, q2, q3)

dq1

=
1

H1

∂u

∂q1

Аналогично:
c2 =

1

H2

∂u

∂q2

, c3 =
1

H3

∂u

∂q3

Подставив найденные значения c1, c2, c3 в выражение (26) получим выражение для
градиента в криволинейных координатах:

gradu(M) =
1

H1

∂u

∂q1

~e1 +
1

H2

∂u

∂q2

~e2 +
1

H3

∂u

∂q3

~e3 (28)

Величны H1, H2, H3 так же зависят от выбора точки M .
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Пример: Выражение для gradu в цилиндрических координатах(рис.):

gradu =
∂u

∂r
~er +

1

er

∂u

∂φ
~eφ +

∂u

∂z
~ez

Задание. Записать выражение для gradu в сферических координатах.

Дивергенция векторного поля в криволинейных ортогональных координатах за-
писывается в виде:

div ~a(M) =
1

H1H2H3

(
∂

∂q1

(a1H2H3) +
∂

∂q2

(a2H1H3) +
∂

∂q3

(a3H1H2)

)
(29)

Выражение (29) так же берется в точке M .
Пример: Пусть разложение вектора ~a по базису, связанному с цилиндрическими

координатами имеет вид
~a = ar ~er + aφ ~eφ + az ~ez

Так как H1 = 1, H2 = r,H3 = 1, то:

div ~a =
1

r

∂

∂r
rar +

1

r

∂aφ
∂φ

+
∂az
∂z

Ротор векторного поля в криволинейных ортогональных координатах:

rot ~a =
1

H1H2H3

∣∣∣∣∣∣
H1~e1 H2~e2 H3~e3
∂
∂q1

∂
∂q2

∂
∂q3

a1H1 a2H2 a3H3

∣∣∣∣∣∣ (30)
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Лекция 4

4.1. Числовой ряд. Критерий Коши сходимости числового
ряда

Под словом «ряд» в математическом анализе понимают сумму бесконечного чис-
ла слагаемых. пусть an некоторая числовая последовательность.Образуем формаль-
ное выражение:

a1 + a2 + ...+ an =
∞∑
k=1

ak (31)

выражение (31) назвается числовым рядом, а числа ak членами ряда. Оно фор-
мально потому что мы еще не ввели понятие суммы бесконечного числа слагаемых.
Сумма первых n слагаемых:

Sn =
n∑
k=1

ak (32)

называется частичной суммой (n-ой частичной суммой) ряда.
если существует предел:

lim
n→∞

Sn = S (33)

то ряд называется сходящимся, а число S называется суммой ряда.

Пример:
1)

1 + q + q2 + ...+ qn =
∞∑
k=1

qk−1

Сумма членов бесконечной геометрической прогрессии

Sn =
n∑
k=1

qk−1 =
1− qn

1− q

Чтобы установить для каких q ряд сходится надо рассмотреть предел частичных
сумм при n→∞

1.1) если |q| < 1, то limn→∞ q
n = 0 отсюда следует что

lim
n→∞

Sn =
1

q − 1
⇒ S =

1

q − 1

1.2) если |q| > 1, то qn - беконечно большаяя последовательность
limn→∞ Sn-не сущестует, ряд расходится.

1.3) Если q = 1, Sn = n⇒ряд расходится.
1.4)Если q = −1, то Sn = 1, 0, 1, 0, ...1, 0..-ряд рассходится.
2)Гармоническим ряд:

1 +
1

2
+

1

3
+ ...

1

n
=

n∑
k=1

1

k
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Докажем что этот ряд рассходится, сгруппировав члены ряда следующим образом:

1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ ...+

1

16

)
+

(
1

17
+ ...+

1

32

)
Сумма дробей в каждой из круглых скобок больше 1

2
, откуда вытекает, что Sn —

бесконечно большая последовательность и ряд рассходится.

Теорема 1 (критерий Коши сходимости числового ряда).
Для того, чтобы ряд

∑∞
k=1 ak сходился, необходимо и достаточно, чтобы было

выполнено следующее условие: ∀ε > 0 ∃N, такой, что ∀n > N и p ∈ N:∣∣∣∣∣
n+p∑

k=n+1

ak

∣∣∣∣∣ < ε

Доказательство. Сходимость числового ряда — это сходимость последовательно-
сти Sn его частичных сумм, а для сходимости последовательности Sn необходимо и
достаточно, чтобы она была фундаментальной, т.е. удовлетворяла условию:
∀ε > 0 ∃N, такой, что ∀n > N и p ∈ N: |Sn+p − Sn| < ε или:∣∣∣∣∣

n+p∑
k=n+1

ak

∣∣∣∣∣ < ε

что и доказывает теорему.
Следствие 1.(необходимое условие сходимости ряда) Если ряд

∑∞
k=1 ak

сходится, то an → 0 при n → ∞ Доказательство. Поскольку ряд сходится, то,
согласно критерию Коши, ∀ε > 0 ∃N, такой, что ∀n > N и p ∈ N:∣∣∣∣∣

n+p∑
k=n+1

ak

∣∣∣∣∣ < ε

Положим в этом неравенстве p = 1. Тогда получим, что ∀n > N выполняется нера-
венство |an+1| < ε. Это и означает, что an → 0 при n→∞.

Обозначим через rn сумму:

rn =
∞∑

k=n+1

ak

Эта величина называется остатком ряда.
Следствие 2. Если ряд

∑∞
k=1 ak сходится, то rn → 0 при n→∞

Доказательство. Пусть сумма ряда равна S, тогда rn = S−Sn, причем Sn → S
при n→∞, значит rn → 0 при n→∞.
Теорема 2. Пусть ряды

∑∞
k=1 ak и

∑∞
k=1 bk сходятся и их суммы равны SA И SB,

тогда для любых чисел α и β ряд:
∞∑
k=1

(αak + βbk)
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сходится и его сумма равна αSA + βSB

Доказательство. Для любого n справедливо равенство:
n∑
k=1

(αak + βbk) = α
n∑
k=1

ak + β
n∑
k=1

bk

Перейдем к пределу при n→∞. Первое слагаемое в правой части равенства стре-
мится к αSA, а второе — к βSB, значит:

lim
n→∞

n∑
k=1

(αak + βbk) = αSA + βSB

4.2. Ряды с положительными членами

Если все ak ≥ 0, то ряд:
∞∑
k=1

ak

называется рядом с положительными членами. Члены такого ряда часто будем обо-
значать pk(или qk) Последовательность Sn частичных сумм ряда с положительными
членами является неубывающей. Поэтому для сходимости ряда с положительными
членами необходимо и достаточно, чтобы последовательность его частичных сумм
была ограниченной.

Теорема 3(признак сравнения). Пусть даны два ряда с положительными чле-
нами: ∑∞

k=1 pk (Ряд P ) и
∑∞

k=1 qk (Ряд Q)
и пусть ∀ : pk ≤ qk
Тогда:
1) из сходимости ряда Q следует сходимость ряда P ;
2) из расходимости ряда P следует расходимость ряда Q. Доказательство.
Утверждения теоремы следуют из неравенств

SPn =
n∑
k=1

pk ≤
n∑
k=1

qk = SQn

если рядQ сходится, то последовательность {SQn } его частичных сумм ограничена, а
так как SPn ≤ SQn последовательность {SPn } частичных сумм ряда P также ограниче-
на и, следовательно, ряд P сходится. Аналогично доказывается второе утверждение
теоремы.
Пример. Рассмотрим обобщeнный гармонический ряд:

∞∑
k=1

1

kα

где α — положительное число. Если α < 1, то для ∀k : 1
kα
≥ 1

k
и по признаку

стравнения с гармоническим рядом следует, что обобщенный гармонический ряд
при α < 1 расходится.
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Теорема 4 . Пусть
∑∞

k=1 pk - ряд с положительными членами и ∀k : pk+1

pk
≤ q < 1(

pk+1

pk
≥ 1
)
, тогда ряд с сходится(расходится) Доказательство:

Воспользуемся признаком сравнения (теорема 3). Пусть pk+1

pk
≤ q < 1, тогда:

pk+1 ≤ q · pk ≤ q · q · pk−1 ≤ q2 · pk−1 ≤ q3 · pk−2 ≤ ... ≤ qk · p1

так как ряд
∑∞

k=1 q
k · p1 сходится, то ряд

∑∞
k=1 pk также сходится.

Если
(
pk+1

pk
≥ 1
)
, то pk+1 ≥ pk ≥ pk−1 ≥ ... ≥ p1 Все члены ряда больше или рав-

ны некоторого положительного числа q1, значит не выполнено необходимое условие
сходимости ряда и значит ряд расходится.

Следствие (признак Даламбера в предельной форме). Если существует

lim
k→∞

pk+1

pk
= q < 1

(
lim
k→∞

pk+1

pk
> 1

)
то ряд limk→∞

pk+1

pk
сходится(расходится).

Замечание 1. В условии теоремы 4 неравенство pk+1

pk
≤ q < 1 нельзя заменить

условием pk+1

pk
< 1

пример: Для гармонического ряда

∞∑
k=1

1

k

это условие выполнено, но ряд расходится.
Замечание 2. Если предел limk→∞

pk+1

pk
= 1, то ряда

∑∞
k=1 pk, может как сходиься,

так и расходиться.
примеры:

∞∑
k=1

1

k
и

∞∑
k=1

1

k2

Для этих рядов выполнено указанное условие,и при этом первый из рядов расхо-
дится, а второй — сходится.

Теорема 5 Пусть ряд
∑∞

k=1 pk, ряд с положительными членами, пусть ∀k : k
√
pk ≤

q < 1 ( k
√
pk > 1), тогда ряд сходится(расходится)

Доказательство:
Если k

√
pk ≤ q < 1, то pk ≤ qk.Так как ряд

∑∞
k=1 qk сходится(поскольку0 < q < 1),

значит ряд
∑∞

k=1 pk так же сходится.
Если k

√
pk ≥ 1, то pk ≥ 1, то не выполнено необходимое условие сходимости ряда,

и, значит, ряд
∑∞

k=1 pk расходится.

Следствие: Если существует limk→∞ k
√
pk = q < 1

(
limk→∞ k

√
pk > 1

)
, то ряд∑∞

k=1 pk сходится(расходится).
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Замечание 1. Неравенство k
√
pk ≤ q < 1 нельзя заменить на неравенство k

√
pk < 1

пример: Для гармонического и обобщенного гармонического ряда

∞∑
k=1

1

k
и

∞∑
k=1

1

k2

это условие выполнено: k

√
1
k
< 1 и k

√
1
k2
< 1, но первый ряд расходится, а второй

сходиться.
Замечание 2. Если предел limk→∞ k

√
pk = 1, то ряда

∑∞
k=1 pk, может как сходиься,

так и расходиться.
пример: В качестве примеров снова возьмем гармонический и обобщенный гар-

монический ряд, для которых указанное условие выполнено, и при этом первый ряд
сходится, а второй — расходится.
Замечание 3. Признак Коши имеет более широкую область применимости по

сравнению с признаком Даламбера.
Если k

√
pk ≤ q < 1, то начиная с некоторого номера будет выполненно нераввен-

ство pk+1

pk
≤ q1 < 1, то есть из выполнения признака Даламбера, следует выполнение

признака Коши. Обратное неверно. Рассмотрим пример:
∞∑
k=1

(−1)k + 2

2k

Для этого ряд limk→∞ k
√
pk = limk→∞

(−1)k+2
2

поэтому, начиная с некоторого номера,
выполнено неравенство pk+1

pk
≤ q < 1 и, следовательно, «работает» признак Коши,

согласно которому ряд сходится. Но при этом:

pk+1

pk
=

(−1)k+1 + 2

(−1)k + 2
· 1

2
=


1

6
, если k четное.

3

2
, если k нечетное.

Полученные соотношения показывают, что признак Даламбера в данном случае «не
работает» так как для нечетных k : pk+1

pk
> 1.

Теорема 6 (интегральный признак Коши – Маклорена).
Пусть

∑∞
k=1 pk ряд с положительными членами и пусть существует функция f(x),

определeнная при x ≥ 0 и удовлетворяющая условиям:
1)f(x) ≥ 0 при x ≥ 0;
2)f(x) не возрастающая функция при x ≥ 0;
3)∀k : f(k) = pk.
Тогда ряд

∑∞
k=1 pk сходится тогда и только тогда, когда существует

lim
n→∞

an, где an =

n∫
1

f(x) dx

Доказательство. если k − 1 ≤ x ≤ k, то

pk = f(k) ≤ f(x) ≤ f(k − 1) = pk−1 при k − 1 ≤ x ≤ k
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Поэтому
k∫

k−1

pk dx ≤
k∫

k−1

f(x) dx ≤
k∫

k−1

pk dx

то есть

pk ≤
k∫

k−1

f(x) dx ≤ pk−1 k = 2, 3, ...

Просуммируем эти неравенства по k от 2 до n:

Sn − p1 ≤
n∫

1

f(x) dx ≤ Sn−1 (34)

Так как
∑∞

k=1 pk ряд с положительными членами, то Sn неубывает, так как f(x)
неотрицательная, то an также неубывающая, следовательно для сходимости этих
последовательностей достаточно их ограниченности. Но из неравенства (34) следу-
ет, что последовательности либо ограниченны, либо неограниченны одновременно,
следовательно, последовательность Sn сходится (а значит, сходится и наш ряд an )
тогда и только тогда, когда существует limn→∞ an
Пример: Рассмотрим обобщенный гармонический ряд

∞∑
k=1

1

kα
при α > 1

В качестве функции f(x) возьмем f(x) = 1
xα
, x ≥ 1, эта функция убывающая и

неотрицательная при x ≥ 1, и f(k) = 1
kα
, поскольку

an =

n∫
1

dx

xα
=
x−α+1

1− α

∣∣∣∣n
1

=
n−α+1

1− α
− 1

1− α

первое слагаемое стремиться к нулю, значит

lim
n→∞

an =
1

1− α

Следовательно, согласно теореме 6, обобщенный гармонический ряд сходится при
α > 1.
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Лекция 5

5.1. Знакопеременные ряды

Рассмотрим ряд
∞∑
k=1

ak

(будем обозначать его A) Будем считать, что он содержит бесконечно много по-
ложительных и бесконечно много отрицательных членов. В таком случае ряд A
назовeм знакопеременным.
Определение. Ряд A:

∑∞
k=1 ak называется абсолютно сходящимся, если сходится

ряд
∑∞

k=1 |ak|(обозначим его ряд |A|)
Отметим, что если ряд A сходится абсолютно, то он сходится (докажите это с

помощью критерия Коши).
Пример.

∞∑
k=1

(−1)k−1

k2
=

1

12
− 1

22
+

1

32
− 1

42
+ ..

является абсолютно сходящимся, т.к. сходится ряд из модулей его членов:

∞∑
k=1

∣∣∣∣(−1)k−1

k2

∣∣∣∣ =
∞∑
k=1

1

k2

Определение. Ряд A называется условно сходящимся, если он сходится, а ряд
|A| расходится.
Пример.

∞∑
k=1

(−1)k−1

k
= 1− 1

2
+

1

3
− 1

4
+ . . .

не является абсолютно сходящимся, т.к. расходится ряд из модулей его членов:

∞∑
k=1

∣∣∣∣(−1)k−1

k

∣∣∣∣ =
∞∑
k=1

1

k2

Докажем что ряд
∑∞

k=1
(−1)k−1

k
является условно сходящийся доказав его сходи-

мость, для этого рассмотрим два выражения и два неравенства для его частичных
сумм S2n

S2n =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ ...+

(
1

2n− 1
− 1

2n

)
> 0,

Запишем эту сумму в другом виде

S2n = 1−
(

1

2
− 1

3

)
−
(

1

4
− 1

5

)
− ...−

(
1

2n− 2
− 1

2n− 1

)
− 1

2n
< 1

Из этих неравенств следует, что последовательность S2n ограниченная, поскольку
для любого n выполнены неравенства 0 < S2n < 1 . Кроме того, как показывает
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первое выражение, S2n — возрастающая последовательность. следовательно, суще-
ствует

lim
n→∞

S2n = S

Возьмем теперь частичную сумму с нечетными номерами

S2n+1 = S2n +
1

2n+ 1
→ S при n→∞

Любая последовательность частичных сумм с четными или нечетными номерами
сходится к одному и тому же пределу значит

lim
n→∞

Sn = S

Следовательно, данный ряд
∑∞

k=1
(−1)k−1

k
сходится условно.

Свойства абсолютно и условно сходящихся рядов Пусть
∑∞

k=1 ak(ряд A)
знакопеременный ряд, выпишим его положительные и отрицательные члены в том
порядке как они стоят в рядеA. p1, p2, ..., pn- положительные члены.−q1,−q2, ...,−qn-
отрицательные члены. И введем два ряда

∑∞
k=1 pk(Ряд P ) и

∑∞
k=1 qk (Ряд Q)

Теорема 7.
1) Если ряд A cходится абсолютно, то ряды P и Q сходятся, причем сумма ряда

A равна разности сумм рядов P и Q

SA = SP − SQ

2) Если ряд A сходится условно, то ряды P и Q расходятся.
Докозательство:
1)Пусть ряд A сходится абсолютно, т.е

∑∞
k=1 |ak| = SA, тогда

∀n :
n∑
k=1

|ak| ≤
∞∑
k=1

|ak| = SA (35)

Рассмотрим частичную сумму

SAn =
∞∑
k=1

ak

Пусть в эту сумму входят положительные слагаемые p1, p2, ..., pn1 и отрицательные
−q1,−q2, ...,−qn2 , n1 + n2 = n Введем обозначения сумм этих слагаемых, взяв qi:

Sn
P
1 =

n1∑
k=1

pk и Sn
Q
2 =

n2∑
k=1

qk

тогда SAn и SA|n| можно записать в виде:

SAn = SPn1
− SQn2

SAn = SPn1
− SQn2

, S|A|n = SPn1
+ SQn2

(36)
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Из (35) и (36) следует SPn1
≤ S|a| и SQn2

≤ S|a|, следовательно последовательности
частичных сумм P и Q ограниченны, и следовательно сходяться.

Перейдем к пределу в первом равенстве из (36)

lim
n→∞

SAn = SAn = SP − SQ

Первое утверждение доказанно.
2) Пусть ряд A сходится условно. Докажем что P и Q расходятся. Если бы они

сходились, т. е. существовали бы пределы:

lim
n1→∞

SPn1
и lim

n2→∞
SQn2

то в силу второго равенства (36) существовал бы и предел limn→∞ S
|A|
n т. е. сходился

бы ряд
∑∞

k=1 |ak|, что противоречит условию что ряд A сходится условно. Следова-
тельно, по крайней мере один из рядов P и Q расходится. Если допустить что один
из рядов P и Q сходится, а другой расходится, то первого равенства (36) следует
что расходился бы ряд A, а он по условию сходится. Итак, ряды P и Q расходятся.
Признак Дирихле
Этот признак относится к рядам вида

∞∑
k=1

akbk

Пусть

Sn =
n∑
k=1

ak

Теорема 8 (признак Дирихле).
1) Пусть последовательность bn не возрастающая и бесконечно малая.(∀k : bk ≥

0, bk−1 − bk ≥ 0)
2) Пусть последовательность

∑n
k=1 ak - ограниченна, т. е. ∃M > 0, ∀n : |Sn| ≤M

Тогда ряд
∑∞

k=1 akbk сходится.
Доказательство.
Для доказательства сходимости данного ряда воспользуемся критерием Коши.

Рассмотрим «отрезок» ряда, который фигурирует в критерии Коши, от k = n + 1
до k = n + p, и представим ak как ak = Sk − Sk−1. Преобразуем выражение для
указанного «отрезка» ряда следующим образом:

n+p∑
k=n+1

akbk =

n+p∑
k=n+1

bk(Sk−Sk−1) =

n+p∑
k=n+1

bkSk−
n+p∑

k=n+1

bkSk−1 =

n+p+1∑
k=n+2

bk−1Sk−1−
n+p∑

k=n+1

bkSk−1 =

bn+pSn+p+

n+p∑
k=n+2

bk−1Sk−1−bnSn−
n+p∑

k=n+1

bkSk−1 = bn+pSn+p−bnSn+

n+p∑
k=n+1

Sk−1(bk−1−bk)
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Зададим произвольное ε > 0. Так как bn → 0 при n→∞, то

∃N, такой, что ∀n > N : 0n <
ε

2M∣∣∣∣∣
n+p∑

k=n+1

akbk

∣∣∣∣∣ ≤ bn+pM + bnM +M((bn − bn+1)− (bn+1 + bn+2) + ...+ (bn+p−1 − bn+p)) =

= 2bn ·M <
2ε

2M
M < ε

Из полученного неравенства согласно критерию Коши следует, что ряд
∑∞

k=1 akbk
сходится.

Пример. Рассмотрим ряд
∞∑
k=1

sin kx

kα
(37)

x - фиксированное число. Если x = πm,m ∈ Z, то каждый sin kx равен нулю и
ряд сходится. Поэтому будем считать что x 6= πm. Если α ≤ 0 и x 6= πm, то ряд
расходится. Поэтому будем считать α > 0

Применим к этому ряду признак Дирихле. Положим ak = sin kx и bk = 1
kα
. По-

следовательность bk удовлетворяет условию 1) теоремы 8. Проверим выполнение
условия 2).

Sn =
n∑
k=1

ak =
n∑
k=1

sin kx = sinx+sin 2x+...+sinnx =
1

2 sin x
2

(
cos

x

2
− cos

3x

2
+ cos

3x

2
−

− cos
5x

2
+ cos

5x

2
− cos

7x

2
+ ...+ cos

(
n− 1

2

)
x− cos

(
n+

1

2

)
x

)
=

cos x
2
− cos

(
n+ 1

2

)
x

2 sin x
2

Здесь мы воспользовались равенством 2 sin x
2

sin kx = cos
(
k − 1

2

)
x− cos

(
k + 1

2

)
x

Из полученного выражения для Sn следует, что

|Sn| ≤
1

| sin x
2
|
, если x 6= πm, m ∈ Z

Значит последовательность Sn ограниченна и условие 2) выполняется, и, следова-
тельно, по признаку Дирихле ряд сходится, если x 6= πm, при x = πm ряд также
сходится, так как все члены ряда равны нулю.

∞∑
k=1

sin kx

kα
- сходится для ∀x при α > 0.

Если α > 1, то ряд сходится абсолютно, так как∣∣∣∣sin kxkα

∣∣∣∣ ≤ 1

kα
, а ряд

∞∑
k=1

1

kα
сходится
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Если 0 < α ≤ 1, то ряд сходится условно для этого докажем что ряд из модулей
расходится. ∣∣∣∣sin kxkα

∣∣∣∣ ≥ sin2 kx

kα
=

1− cos 2kx

2kα

При 0 < α ≤ 1 ряд расходится

∞∑
k=1

1− cos 2kx

2kα
=
∞∑
k=1

1

2kα
−
∞∑
k=1

cos 2kx

2kα

Первый ряд в равенстве расходится(обобщеный гармонический ряд,при 0 < α ≤ 1),
а второй сходится (это можно доказать с помощью признака Дирихле так же, как
это было сделано для ряда (37)) Следовательно

∞∑
k=1

∣∣∣∣sin kxkα

∣∣∣∣ расходится

Это означает, что при 0 < α ≤ 1, ряд (37) сходится условно.

Следствие 1 из теоремы 8 (признак Абеля). 1)Пусть последовательность bk
монотонная и ограниченная

2) ряд
∑n

k=1 ak сходится
Тогда ряд Sn =

∑n
k=1 ak сходится.

Доказательство.
Пусть (для определенности) последовательность {bk} — невозрастающая , огра-

ниченная, ее предел limk→∞ bk = b. Тогда bk − b стремится к нулю не возрастая.
Так как ряд

∑n
k=1 ak сходится, то последовательность его частичных сумм {Sn}

ограниченна. Тем самым ряд
∞∑
k=1

ak(bk − b)

сходится по признаку Дирихле.

∞∑
k=1

akbk =
∞∑
k=1

ak(bk − b) +
∞∑
k=1

akb

b как постоянный множитель можно вынести за сумму ряда ak, который по условию
сходится, тем самым сходится ряд

∑∞
k=1 akbk

Следствие 2 из теоремы 8 (признак Лейбница).
Рассмотрим знакочередующийся ряд

∞∑
k=1

(−1)k−1pk, pk > 0

пусть pk монотонно стремиться к нулю. Тогда ряд называется рядом Лейбница. Ряд
Лейбница сходится.
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Доказательсвто. Применим признак Дирихле. ak = (−1)k−1, а bk = pk, тогда

Sn = 1, 0, 1, 0, . . . 0, 1, . . . ограниченая

Поэтому, согласно теореме 8, ряд Лейбница сходится.
пример.

∞∑
k=1

(−1)k−1

k

Этот ряд сходится, так как является рядом Лейбница.
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Лекция 6

6.1. Свойства рядов.

Сочетательное свойство рядов.
Рассмотрим ряд

∑∞
k=1 ak (ряд A), объеденим члены этого ряда в группы следую-

щим образом
a1 + a2 + . . .+ an1 = b1

an1+1 + . . .+ an2 = b2

· · · · · · · · · · · · · · · · · · · · ·
ank−1+1 + . . .+ ank = bk

И составим ряд
∞∑
k=1

bk (ряд B)

Теорема 9. Если ряд A сходится, то ряд B также сходится и их суммы равны.
Доказательство.
Рассмотрим частичную сумму ряда B: SBk = b1 +b2 + . . .+bk = a1 + . . .+ank = SAnk .

Так как {SAn } → SA при n → ∞, а {SBk } подпосдедивательность {SAn }, и следова-
тельно сходится к тому же числу что и {SAn }, т.е. сумма ряда B равна сумме ряда
B.

Обратное утверждение неверно, достаточно рассмотреть контрпример.
Рассмотрим ряд 1−1+1−1+ . . .−1+1− . . . этот ряд рассходится его частичные

суммы чередуются 0 и 1, но слагаемые можно сгруппировать так что мы получим
ряд состоящий из нулей (1− 1) + (1− 1) + . . .+ (1− 1) + . . ., он сходится его сумма
равна нулю.
Перестановочное свойство рядов.
Рассмотрим ряды

∑∞
k=1 ak (ряд A) и

∑∞
k=1 a

′
k (ряд A′), где a′k = ank и ak = amk ,

nk,mk - какие-то номера.
Теорема 10. Если ряд A сходится абсолютно, то ряд A′ также сходится абсо-

лютно и их суммы равны: SA = SA′
a) Сначала рассмотрим случай, когда члены ряда A неотрицательны ak ≥ 0.

Ряд A сходится(значит сходится абслолютно т.к все членены неотрицательны) и
его сумма равна SA.

SAn =
n∑
k=1

ak ≤
∞∑
k=1

ak = SA

SA
′

k = a′1 + a′2 + . . .+ a′k = an1 + an2 + . . .+ ank ≤ SA

отсюда следует что {SA′} - ограниченная последовательность, поэтому ряд A′ схо-
дится. Кроме того

lim
k→∞

SA
′

K = SA
′ ≤ SA

С другой стороны ряд A можно рассматривать как ряд полученный путем переста-
новки членов ряда A′, поэтому

SA ≤ SA
′
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и значит SA = SA
′

б) Пусть рядA - знакопеременный и сходится абсолютно, т.е .сходится ряд
∑∞

k=1 |ak|.
Согласно доказанному в пункте а) ряд

∑∞
k=1 |a′k| полученный путем перестановки

членов из ряда
∑∞

k=1 |ak| сходится, и их суммы равны. По теореме 7: SA = SP −SQ,
SA
′

= SP
′ − SQ′(обозначения такие же как и в теореме 7). Ряды P ′ и Q′ получают-

ся путем перестановки членов рядов P и Q, поэтому по доказанному в пункте а)
SP
′
= SP и SQ′ = SQ и, следовательно, SA = SA′ .

Теорема 11 (Римана).
Если ряд A

∑∞
k=1 ak сходится условно,тогда для любого числа S можно так пред-

ставить члены ряда A что сумма полученного ряда A′ будет равна S. Доказатель-
ство. Пусть ряд A сходитс условно, есму соответствуют 2 ряда

∞∑
k=1

pk Ряд P
∞∑
k=1

qk Ряд Q

которые, согласно теореме 7, эти ряды расходятся.
Зададим произвольное число S, путь для определенности S > 0 и покажем, как

можно переставить члены ряда A, чтобы сумма полученного ряда A′ равнялась S.
равнялась S. Сначала будем брать члены ряда P , в том порядке как они стоят в

ряде A, до тех пор, пока не получится сумма, большая S:

p1 + p2 + . . .+ pn1−1 ≤ S, p1 + p2 + . . .+ pn1−1 + pn1 > 1.

Затем будем добавлять члены рядаQ со знаком минус до тех пор, пока не получится
сумма, меньшая S:

p1 + . . .+ pn1 − q1 − . . .− qn2 ≥ S

Здесь мы пользуемся тем что раз ряды P и Q расходяться на каждом этапе у нас
будет бесконечное число членов с помощью которые мы можем составить сумму
как большую, так и меньшую S.

В результате получим ряд с переставленными членами A′ частичные суммы ко-
торого "колеблятся"возле числа S, причем "амплитуда"этих колебаний стремится
к нулю при n→∞, так как pn → 0 и qn → 0, при n→∞, это означает что ряд A′
сходится и его сумма равна S.
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Лекция 7

7.1. Функциональные последовательности.
Пусть каждому натуральному числу поставленно в соответствие функция fn(x), 

определенная на множестве X, то говорят, что на множестве X задана функцио-
нальная последовательность и обозначается

{fn(x)} = f1(x), f2(x), . . . , fn(x), . . .
Зафиксируем какое-нибудь значение x0 ∈ X, тогда для этого значения x0 наша по-

следовательность является числовой последовательностью f(x0). если эта числовая 
последовательность сходится (расходится) в точке x0, то говорят что функциональ-
ная последовательность сходится (расходится) в точке x0 Если функциональная 
последовательность сходится в каждой точке X то говорят что она сходится на 
множестве X.

При этом предел последовательности будет зависить от x т.е. является функцией 
(обозначим ее f(x))

lim
n→∞

fn(x) = f(x)

или
fn(x) = f(x) при n→∞

Функция f(x) называется пределом или предельной функцией последовательности.
Пример. рассмотрим последовательность {xn} она определенна на всей числовой

прямой x ∈ (−∞,∞).

lim
n→∞

xn = f(x) =

{
0, −1 < x < 1

1, x = 1

Для ∀x 6= (−1, 1] последовательность расходится расходится, то есть область схо-
димости последовательности полуинтервал (−1, 1] и его сумма S(x) = x

1−x .
Отметим, что каждая функция fn(x) = xn непрерывна на (−∞,∞), а предел

последовательности разрывная функция в точке 1.
Возникает вопрос в каких случаях предел последовательностей непрерывных

функций будет непрерывной функцией. Ответ на этот вопрос связан с понятием
равномерной сходимости функциональных последовательностей.
Определене 1. Говорят что последовательность {fn(x)} сходится равномерно к

f(x) на множестве X, если для ∀ε > 0 ∃N, что ∀n > N и ∀x ∈ X :

|fn(x)− f(x)| < ε

Обозначается fn(x) ⇒ f(x) на X.
Главным моментом в этом определении является то, что номер N , один и тот же

для всех x из множества X.
Определене 2. Говорят что последовательность {fn(x)} сходится равномерно

к f(x) на множестве X, если sup
X
|fn(x) − f(x)| → 0 при n → ∞ (то есть ∀ε >

0 ∃N, что ∀n > N :
sup
X
|fn(x)− f(x)| < ε
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Эти определения эквивалентны,это следует из того, что если |fn(x)−f(x)| < ε для
всех x из множества X, то sup

X
|fn(x)−f(x)| ≤ ε и обратно: если sup

X
|fn(x)−f(x)| < ε

то |fn(x)− f(x)| < ε для все x ∈ X
Примеры.
1)fn(x) = xn, 0 ≤ x ≤ 1

2
= X На этом сегменте limn→∞ fn(x) = f(x) = 0 для

∀x ∈ [0, 1
2
]. Последовательность сходится на сегменте [0, 1

2
], выясним сходится ли

она равномерно, применим второе определение

sup
[0, 1

2
]

|fn(x)− f(x)| = sup
[0, 1

2
]

xn =

(
1

2

)n
→ 0 при n→∞

Это значит что последовательность xn ⇒ f(x) = o на сегменте [0, 1
2
].

2) fn(x) = xn, 0 ≤ x < 1 = X
На этом полуинтервале limn→∞ fn(x) = f(x) = 0 для ∀x ∈ [0, 1)

sup
[0,1)

|fn(x)− f(x)| = sup
[0,1)

xn = 1 9 0 при n→∞

последовательность {xn} сходится к f(x) = 0 на полуинтервале [0, 1) неравномер-
но.
Теорема 12 (критерий Коши равномерной сходимости функциональной

последовательности).
Для того, чтобы функциональная последовательность {fn(x)} равномерно схо-

дилась к f(x) на множестве X, необходимо и достаточно, чтобы было выполнено
следующее условие: ∀ε > 0 ∃N, что ∀n > N, ∀p ∈ N и ∀x ∈ X : выполняется нера-
венство

|fn+p(x)− f(x)| < ε (38)

Доказательство.
1)Необходимость. Пусть fn(x) ⇒ f(x) на X. Тогда (по определению 1 равномер-

ной сходимости) ∀ε > 0 ∃N, что ∀n > N и ∀x ∈ X выполняется неравенство

|fn(x)− f(x)| < ε

2

так как n+ p > n тогда ∀n > N, ∀p ∈ N и ∀x ∈ X : выполняется неравенство

|fn+p(x)− f(x)| < ε

2

Из двух написанных неравенств следует выполнения условия с (38)
Достаточноть. Пусть выполнено условие (38), тогда ∀x ∈ X : fn(x) - фундо-

ментальна и следовательно сходится, докажем что она сходится равномерно

lim
n→∞

fn(x) = f(x)

В условии (38) перейдем к пределу при p→∞, тогда fn+p → f(x), получаем

|f(x)− fn(x)| ≤ ε
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Таким образом, доказанно, что ∀ε > 0 ∃N, что ∀n > N, и ∀x ∈ X :

|fn(x)− f(x)| ≤ ε

Но это и означает согласно определению 1 равномерной сходимости, что fn(x) ⇒
f(x) на X.

7.2. Функциональные ряды.

Пусть u1(x), u2(x), . . . , un(x), . . . последовательность функций определенных на
одном множестве X, составим формальныую сумму

∞∑
k=1

uk(x) = S(x)

Зафиксируем значение x = x0 ∈ X, тогда наш ряд станет числовым рядом, если
числовой ряд сходится, то говорят что функциональный ряд сходится в точке x0,
если он сходится в каждой точке множества X, то говорят что он сходится этом
множестве.
Определение. Говорят что ряд

∑∞
k=1 uk(x) сходится равномерно на множестве

X, если последовательность его частичных сумм сходится равномерно к функции
S(x)
Теорема 12’ (критерий Коши равномерной сходимости функциональ-

ного ряда).
ункционального ряда). Для того чтобы функциональный ряд

∑∞
k=1 uk(x) сходил-

ся равномерно на множестве X, необходимо и достаточно, чтобы было выполнено
следующее условие: ∀ε > 0 ∃N, что ∀n > N, ∀p ∈ N и ∀x ∈ X выполняется неравен-
ство ∣∣∣∣∣

n+p∑
k=n+1

uk(x)

∣∣∣∣∣ < ε (39)

Доказательство. По определению ряд равномерно сходится, когда равномерно
сходятся последовательность частичных сумм, это следует из неравенства∣∣∣∣∣

n+p∑
k=n+1

uk(x)

∣∣∣∣∣ = |Sn+p(x)− Sn(x)| < ε

Пример. Рассмотрим ряд
∑∞

k=1 x
k, он сходится при |x| < 1, его сумма равна

S(x) =
x

1− x

Посомтрим сходится ли он равномерно на полуинтервал X = [0, 1).

Sn(x) =
n∑
k=1

xk =
xn

1− x
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Sn(x)− S(x) =
∞∑

k=n+1

xkx =
xn+1

1− x

sup
[0,1)

|Sn(x)− S(x)| = sup
[0,1)

xn+1

1− x
=∞

Это означает что на моножестве X = [0, 1) ряд сходится неравномерно.
Возьмем теперь другое множество X = [0, 1− δ], где 0 < δ < 1

sup
[0,1−δ]

|Sn(x)− S(x)| = sup
[0,1−δ]

xn+1

1− x
=

(1− δ)n+1

δ
→ 0, при n→∞

Это означает что на моножестве X = [0, 1− δ] ряд сходится равномерно.
Задача. Проверте сходится ли этот ряд на множестве (−1, 0] и [−1 + δ, 0]

Признаки равномерной сходимости функционалных рядов.
Определение. Числовой ряд

∑∞
k=1 pk, (pk ≥ 0) назвается мажорантным для

функционального ряда
∑∞

k=1 uk(x) на множестве X, если ∀k и ∀x ∈ X : |uk(x)| ≤ pk
Теорема 13 (признак Вейерштрасса). Если для функционального ряда

∑∞
k=1 uk(x)

на множествеX существует сходящийся мажорантный ряд
∑∞

k=1 pk, то ряд
∑∞

k=1 uk(x)
сходится равномерно на множестве X.
Доказательство. Зададим произвольное ε > 0. Согласно критерию Коши для

числовых рядов, ∃N, такой,что ∀n > N, ∀p ∈ N, выполняется неравенство∣∣∣∣∣
n+p∑

k=n+1

uk(x)

∣∣∣∣∣ ≤
n+p∑

k=n+1

|uk(x)| ≤
n+p∑

k=n+1

pk ≤ ε

Таким образом, для функционального ряда
∑∞

k=1 uk(x) выполнено условие Коши из
теоремы 12’ равномерной сходимости ряда, следовательно ряд сходится равномерно.
Замечание 1. Если выполненно условие теоремы 13, то функциональный ряд∑∞
k=1 uk(x) сходится абсолютно на множестве X.
Замечание 2. Обратное устверждение теоремы 13 неверно. Из равномерной схо-

димости на множестве X функционального ряда не следует существование сходя-
щегося мажорантного ряда для этого функционального ряда.
Пример. Рассмотрим функциональный ряд

∞∑
k=1

sin kx

kα

для α > 0 ряд сходится при ∀x ∈ R Надо установить сходится ли он равномерно.
пусть α > 1, в качестве мажорантного ряда возьмем

∞∑
k=1

1

kα

(он будет мажорантным для ∀α), этот ряд сходится при α > 1, следовательно наш
Рассмотрим функциональный ряд сходится равномерно на всей чилсловой прямой.
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Если 0 < α ≤ 1, то у нашего функционального ряда нет сходящегося мажорант-
ного ряда. Докажем от противного, если есть такой ряд есть , то сходился бы ряд∑∞

k=1
| sin kx|
kα

, а этот ряд, как было доказанно ранее, расходится. Значит при таких α
нельзя доказать равномерную сходимость по признаку Вейерштрасса.
Признаки Дирихле и Абеля.
Определение. Функциональная последовательность {fn(x)} назвается равно-

мерно ограниченной на множестве X, если ∃ число M > 0, такое, что ∀n и ∀x ∈ X
выполнено неравенство

|fn(x)| ≤M

Примеры.
1)

{fn(x)} =
sinnx

n

где x ∈ (−∞,+∞), в качестве M возьмем 1.

∀n и ∀x |fn(x)| ≤ 1

2)
{fn(x)} =

nx

n+ x

где x ∈ [0,+∞), для начала заметим что ∀n fn(x) ограниченна на [0,+∞):

{fn(x)} =
x

n+ x
≤1

· n ≤ n

∀n Функциональная последовательность fn(x) также ограниченна:

{fn(x)} =
n

n+ x
≤1

· x ≤ x

Несмотря на это последовательность не является равномерно ограниченной. Возь-
мем x = n

{fn(x)} =
n · n
n+ n

=
n

2

Всегда можно указать намер n, который будет больше ∀M .
Признаки Дирихле и Абеля относятся к рядам вида

∞∑
k=1

ak(x)bk(x) (40)

Теорема 14 (признак Дирихле равномерной сходимости)
1) последовательность {bn(x)} при любом x ∈ X является невозрастающей и

bn(x) ⇒ 0 на x
2) последовательность {Sn(x)} = {

∑∞
k=1 ak(x)} равномерно ограниченна на x( т.е

∃ число M > 0, ∀n и ∀x ∈ X : |fn(x)| ≤M)
Тогда ряд (40) равномерно сходится на множестве X.
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Доказательство. Проводится в точности так же, как и доказательство теоремы
8 о признаке Дирихле для числовых рядов, но только теперь нужно использовать
критерий Коши равномерной сходимости функционального ряда.
Теорема 14’ (признак Абеля равномерной сходимости ряда )
1) последовательность {bn(x)} равномерно ограниченна на xи монотонна при лю-

бом x ∈ X
2) последовательность {Sn(x)} = {

∑∞
k=1 ak(x)} сходится равномерно на x

Тогда ряд (40) равномерно сходится на множестве X.
Доказать эту теорему предлагается самостоятельно.
Пример. Снова рассмотрим ряд

∞∑
k=1

sin kx

kα
, 0 < α < 1

Приминим к нему признак Дирихле, ak(x) = sin kx, bk(x) = 1
kα

1){bn(x)} не зависит от x, поэтому

{bn(x)} =

{
1

nα

}
⇒ 0 на (−∞,+∞)

Последовательность {bn(x)} убывающая.
2)Для

Sn(x) =
n∑
k=1

sin kx

kα

Ранее была получена оценка

|Sn| ≤
1

| sin x
2
|
, если x 6= πm, m ∈ Z

Возьмем сегмент X = δ ≤ x ≤ 2π − δ, где 0 < δ < π, тогда

|Sn(x)| ≤ 1

| sin δ
2
|

= M ∀x ∈ [δ, 2π − δ]

По теореме 14 ряд Sn(x) =
∑n

k=1
sin kx
kα

сходится равномерно на сегменте [δ, 2π− δ].
Из доказанного следует что на любом сегменте принадлежащему интервалу (0, 2π)

ряд сходится равномерно. Это же утверждение справедливо для любого интервала
(2πm, 2πm+ 2π)

Докажем что на сегменте [0, 2π] ряд сходится неравноменрно. Воспользуемся
критерием Коши равномерной сходимости, для этого построим к нему отрицание
∃ε > 0,∀N,∃n > N,∃p ∈ N и x ∈ [0, 2π]:∣∣∣∣∣

n+p∑
k=n+1

sin kx

kα

∣∣∣∣∣ ≥ ε (41)
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Пусть 0 < ε < 1
2

sin 1, ∀N : n > N, p = n, x = 1
n
∈ [0, 2π] и рассмотрим левую часть

неравенства (41)∣∣∣∣∣
2n∑

k=n+1

sin k
n

kα

∣∣∣∣∣ >
2n∑

k=n+1

sin 1 · 1

2n
= sin 1 · n · 1

2n
=

1

2
sin 1 > ε

Здесь мы воспользовались вспомагательными неравенствами

1 +
1

n
≤ k

n
≤ 2⇒ sin

k

n
≥ sin 1 и

1

kα
≥ 1

k
≥ 1

2n

7.3. Свойства равномерно сходящихся функциональных
последовательностей и рядов

Равномерная сходимость и непрерывность.
Теорема 15. Пусть функциональная последовательность fn(x) сходится равно-

мерно к f(x) на промежуткеX и для ∀n fn(x) непрерывная функция на промежутке
X, тогда f(x) также непрерывна на X.
Доказательство. Докажем непрерывность функции f(x) в произвольной точке

x0 принадлежащую промежутку X. Для этого нужно даказать что ∀ε > 0∃δ >
0, ∀x ∈ X:

|f(x)− f(x0)| < ε при |x− x0| < δ

Зададим произвольное ε > 0, тогда ∃N, ∀n > N и x ∈ X:

|fn(x)− f(x)| <
∣∣∣ε
3
− f(x)

∣∣∣ < ε

3
(42)

В частности это выполненно для

|fn(x0)− f(x0)| < ε

3
(43)

Возьмем какую-нибудь функцию fn(x) с номером n > N , для нее выполнены
неравенства (42) и (43), а так как fn(x) непрерывна в точке x0, то по заданному ε
∃δ:

|fn(x)− fn(x0)| < ε при |x− x0| < δ (44)

Используя неравенства (42), (43), (43) получаем

|f(x)− f(x0)| ≤ |(f(x)− fn(x)) + (fn(x)− fn(x0)) + (fn(x0)− f(x0))| ≤

≤ |f(x)− fn(x)|
< ε

3

+ |fn(x)− fn(x0)|
< ε

3

+ |fn(x0)− f(x0)|
< ε

3

< ε при |x− x0| < δ

что и требовалось доказать.
Замечание. Равномерная сходимость последовательности непрерывных функ-

ций является только достаточным, но не необходимым условие непрерывности пре-
дельной функии. Приведем пример
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fn(x) =
n

n+ x
x ∈ [0,+∞)

fn(x)→ f(x) = 1, все fn(x) и f(x) непрерывны на полупрямой [0,+∞), но при этом
последовательность fn(x) сходится неравномерно к f(x).

sup
[0,+∞]

|fn(x)− f(x)| = sup
[0,+∞]

x

n+ x
= 1 9 0 при n→∞

Теорема 15’. Пусть все члены ряда
∑∞

k=1 uk(x) непрерывны на промежутке X и
ряд сходится равномерно на этом промежутке, тогда сумма ряд S(x) непрерывная
функция на промежутке X.
Доказательство Конечная сумма непрерывных функиций uk(x) является непре-

рывной суммой, поэтому частичная сумма Sn(x) является непрерывной. По условию
Sn(x) ⇒ S(x) на промежутке X. Поэтому, согласно теореме 15, S(x) непрерывная
функция на промежутке X.
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Лекция 8

8.1. Переход к пределу под знаком интеграла и почленное
интегрирование ряда.

Пусть limn→∞ fn(x) = f(x) на X и пусть все функции fn(x) и f(x) интегриру-
емы на любом сегменте, принадлежащем промежутку X. Возьмем две точки на
этом промежутке - точку x0 (зафиксируем ее) и точку x (она может пробегать весь
промежуток X) и рассмотрим 2 интеграла

x∫
x0

fn(t) dt и
x∫

x0

f(t) dt

Поставим вопрос: справедливо ли равенство
x∫

x0

fn(t) dt =

x∫
x0

f(t) dt

Это равенство можно записать в виде

lim
n→∞

x∫
x0

fn(t) dt =

x∫
x0

( lim
n→∞

fn(t)) dt (45)

Если это равенство справедливо, то говорят, что можно переходить к пределу под

знаком интеграла
x∫
x0

fn(t) dt.

Пример 1

fn(x) =

{
n sinnx, 0 ≤ x ≤ π

n

0, π
n
≤ x ≤ π

Посмотрим к чему стремится эта функциоальная последовательность, возьмем
0 < x ≤ π, тогда ∃N, ∀n > N : x > π

n
⇒ fn(x) = 0⇒ limn→∞ fn(x) = 0 значит

∀n : fn(0) = 0⇒ lim
n→∞

fn(0) = 0

Это значит что
∀x ∈ [0, π] : lim

n→∞
fn(x) = f(x) = 0

Возьмем x0 = 0 0 < x ≤ π

x∫
0

fn(t)
=0

dt =

x∫
0

( lim
n→∞

fn(t)) dt = 0

Но при этом

∀n > N :

x∫
0

fn(t) dt =

π
n∫

0

n sinnx dx = − cosnx

∣∣∣∣πn
0

= cosπ − cos 0 = 1 + 1 = 2⇒
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⇒ lim
n→∞

x∫
0

fn(t) dt = 2 6= 0

Тем самым равенство (45) не выполняется.
Теорема 16. Пусть {fn}⇒ f(x) и пусть все функции {fn} непрерывны на сегмен-

те [a, b], тогда для любых двух точек пренадлежащих [a, b] справедливо равенство
(45), более того

x∫
x0

fn(t) dt⇒

x∫
x0

f(t) dt (46)

Доказательство. Прежде всего отметим, что в силу теоремы 15 предельная
функция f(x) непрерывна на сегменте [a, b] и, следовательно, интегрируема на лю-
бом сегменте x0, x принадлежащему этом сегменту.

Для доказательства утверждения (46) воспользуемся определением 1 равномер-
ной сходимости функциональной последовательности. Нужно доказать что ∀ε >
0∃N,∀n > N и ∀x ∈ [a, b] : ∣∣∣∣∣∣

x∫
x0

fn(t) dt−
x∫

x0

f(t) dt

∣∣∣∣∣∣ < ε (47)

Зададим произвольное ε > 0 так как fn(x) ⇒ f(x), то ∃N,∀n > N и ∀x ∈ [a, b] :

|fn(t)− f(t)| < ε

b− a

Используя последднее неравенство получаем для ∀n и ∀x ∈ [a, b] :∣∣∣∣∣∣
x∫

x0

fn(t) dt−
x∫

x0

f(t) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫

x0

(fn(t)− f(t)) dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
b∫

a

|fn(t)− f(t)| dt

∣∣∣∣∣∣ < ε

b− a

b∫
a

dt = ε

Условие (47) выполнено, что и требовалось доказать.

Пусть ряд
∑∞

k=1 uk(x) сходится на промежутке X и его сумма равна S(x), пусть
все функции uk(x) и S(x) являются интегрируемыми функциями на любом сегменте
[x0, x] принадлежащему X, поставим вопрос верно ли равенство

x∫
x0

S(t) dt =
∞∑
k=1

x∫
x0

uk(t) dt

Это равенство можно записать в виде

x∫
x0

(
∞∑
k=1

uk(x)

)
dt =

∞∑
k=1

x∫
x0

uk(t) dt (48)
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Если это равенство справедливо, то говорят что ряд можно интегрировать почлен-
но. Покажем что равенство (48) не всегда выполняется.
Пример 2.

fk(x) =

{
k sin kx, 0 ≤ x ≤ π

k

0, π
k
≤ x ≤ π

Положим u1(x) = f1(x), u2(x) = f2(x)−f1(x), . . . , uk(x) = fk(x)−fk−1(x), . . . k ≥ 2
Частичая сумма этого ряда равна

Sn(x) =
n∑
k=1

uk(x) = fn(x)→ 0 при n→∞ ∀x ∈ [0, π]

fn(x)→ 0 при n→∞ это было выясненно в примере 1. Значит ряд сходится и
его сумма равна нулю для x ∈ [0, π], при этом

∞∑
k=1

x∫
0

uk(t) dt = 2

Тем самым равенство (48) не выполняется.
Теорема 16’. Если все функции uk(x) являются непрерывными на сегменте [a, b],

и ряд
∑∞

k=1 uk(x) сходится равномерно на этом сегменте, то для любых x0 и x из
сегмента [a, b] справедливо равенство (48).
Доказательство. Из условия теоремы следует, что сумма ряда S(x) непрерыв-

ная функция на сегменте [a, b](Теорема 15’), каждая частичная сумма Sn(x) непре-
рывная функция на [a, b], и Sn(x) ⇒ S(x) на [a, b], тем самым для последовательно-
сти Sn(x) выполнены все условия теоремы 16, значит

x∫
x0

Sn(t) dt⇒

x∫
x0

S(t) dt

Перепишем это утверждение в другом виде

n∑
k=1

x∫
x0

uk(t) dt⇒

x∫
x0

(
∞∑
k=1

uk(t)

)
dt

Последнее утверждение показывает, что последовательность частичных сумм схо-

дится равномерно на сегменте [a, b] и его сумма равна
x∫
x0

(
∑∞

k=1 uk(t)) dt, т.е. спра-

ведливо равенство (48).

8.2. Переход к пределу под знаком производной и
почленное дифференцирование ряда.

Пусть последовательность fn(x) сходится к функции f(x) на промежутке X и
пусть все функции fn(x) и f(x) дифференцируемы на промежутке X.
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Поставим вопрос: справедливо ли равенство

lim
n→∞

f ′n(x) = f ′(x)

Его можно записать в виде

lim
n→∞

f ′n(x) =
(

lim
n→∞

fn(x)
)′

(49)

Если это равенство справедливо, то говорят, что можно переходить к пределу под
знаком производной. Приведем пример, показывающий, что равенство (49) может
не выполняться.
Пример. Возьмем последовательность функций fn(x) = sinnx

n
рассмотрим ее на

промежутке X = (−∞,+∞), ее предел

lim
n→∞

fn(x) = f(x) = 0

Посмотрим выполняется ли равенство (49).

f ′(x) = 0, f ′n(x) = cosnx

Последовательность {cosnx} сходится в точках x = 2πm,m ∈ Z (при этом ее
предел равен 1 и расходится в остальных точках числовой прямой. Следовательно,
равенство (49) не выполнено ни в одной точке.
Теорема 17. Пусть выполнены условия:
1) все функции {fn(x} имеют непрерывные производные f ′n(x) на сегменте [a, b];
2) fn(x)→ f(x) на сегменте [a, b];
3) f ′n(x) ⇒ ϕ(x) на сегменте [a, b].
Тогда функция f(x) дифференцируема на сегменте [a, b] и справедливо равенство

f ′n(x) = ϕ(x), x ∈ [a, b]

то есть справедливо равентсво (49).
Доказательство. Прежде всего отметим что функция f(x) непрерывна на сег-

менте [a, b] по теореме 15. Отметим на [a, b] точки x0(ее зафиксируем) и x(любая
точка из сегмента), тогда по теореме 15

lim
n→∞

x∫
x0

f ′n(t) dt =

x∫
x0

ϕ(t) dt

Воспользуемся формулой Ньютона-Лейбница для интеграла в левой части

lim
n→∞

x∫
x0

f ′n(t) dt = fn(t)

∣∣∣∣x
xo

= fn(x)− fn(x0)

Тогда предел этого интеграла

lim
n→∞

(fn(x)− fn(x0)) = f(x)− f(x0)
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Получим

f(x) = f(x0) +

x∫
x0

ϕ(t) dt

Продифференциируем полученное равенство учитывая что при фиксированном x0

f(x0) = const, производная константы ноль, а производная интеграла с переменным

верхним пределом
x∫
x0

ϕ(t) dt равна подынтегральной функции взятой в этом верхнем

пределе, при условии что эта функция непрерывна.

(f(x0))′ = 0,

 x∫
x0

ϕ(t) dt

′ = ϕ(x)

Таким образом f ′(x) = ϕ(x). Теорема доказана.
Теперь рассмотрим функциональный ряд

∑∞
k=1 uk(x) сходится и его сумма S(x)

дифференцируемы на промежутке X, пусть все uk(x) также дифференцируемы на
промежутке X.

Поставим вопрос: справедливо ли равенство

S ′(x) =
∞∑
k=1

u′k(x)

Его можно записать в виде (
∞∑
k=1

uk(x)

)′
=
∞∑
k=1

u′k(x) (50)

Если это равенство справедливо, то говорят, что ряд можно дифференцировать
почленно.

Приведем пример, показывающий, что равенство (50) можетне выполняться.
Теорема 17’. Пусть выполнены условия:
1)все члены ряда

∑∞
k=1 uk(x) имеют непрерывные производные u′k(x) на сегменте

[a, b];
2)ряд

∑∞
k=1 uk(x) сходится на сегменте [a, b] и его сумма равна S(x);

3)ряд
∑∞

k=1 u
′
k(x) сходится равномерно на сегменте [a, b] к функции ϕ(x).

Тогда функция S(x) дифференцируема на сегменте [a, b] и справедливо равенство

S ′(x) = ϕ(x)

Его можно записать в виде (50).
Доказательство. Оно проводится на основе теоремы 17.
Замечание. В теореме 17’ условие 2) можно заменить на условие 2’) Ряд

∑∞
k=1 uk(x)

сходится хотя бы в одной точке. Тогда из условия 2’) и 3) следует равномерная схо-
димость ряда на сегменте [a, b].
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Лекция 9

9.1. Сходимость в среднем

Пусть все функции fn(x) и и функция f(x) интегрируемы на [a, b]
Определение. Говорят что функциональная последовательность fn(x) сходится

в среднем к f(x) на сегменте [a, b], если

b∫
a

(fn(x)− f(x))2 dx→ 0 при n→∞

Возникает вопрос: как связанны между собой эти виды сходимости?
Из равномерной сходимости функциональной последовательности на сегменте

[a, b] следует поточечная сходимость. Обратное, как мы знаем, не верно. Такого же
типа связь существует между равномерной сходимостью и сходимостью в среднем.
Теорема 18. Если все функции fn(x) и функция f(x) интегрируемы на сегменте

[a, b] и последовательность fn(x) ⇒ f(x) на [a, b], то fn(x) сходится в среднем к f(x)
на [a, b].
Доказательство. Зададим произвольное ε > 0. Так как fn(x) ⇒ f(x) на сегменте

[a, b], то ∃N , такой, что ∀n > N и ∀x ∈ [a, b] выполняется неравенство

|fn(x)− f(x)| <
√

ε

b− a

Используя это неравенство, получаем ∀n > N :

b∫
a

(fn(x)− f(x))2 dx <
ε

b− a

b∫
a

dx = ε

Это выполненно для ∀n > N , значит последовательность fn(x) сходится в среднем
к f(x) на сегменте [a, b].
Замечание.Мы потребовали в условии теоремы , чтобы функция f(x) была ин-

тегрируемой на сегменте [a, b]. Можно доказать, что если все функции fn(x) ин-
тегрируемы и fn(x) ⇒ f(x) на сегменте [a, b], то предельная функция f(x) также
будет интегрируемой на сегменте [a, b].

Теперь покажем на примерах что между поточенной сходимостью и сходимостью
в среднем нет никакой связи.
Пример 1. Для любого натурального числа k и любого натурального числа i,

такого, что 1 ≤ i ≤ k определим функцию (рис.) fki(x) на сегменте 0 ≤ x ≤ 1
следующим образом:

fki(x) =

{
1, если i−1

k
≤ x ≤ i

k

0, в остальных точках сегмента [0, 1]
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И составим последовательность f11(x), f21(x), f22(x), . . . , fk1(x), . . . , fkk(x), . . . До-
кажем что эта последовательность сходится в среднем к функции f(x) = 0 на
сегменте [0, 1]

1∫
0

(fki(x)− f(x))2 dx =

i−1
k∫
i
k

1 dx =
1

k
→ 0

Это значит что эта последовательность сходится в среднем к функции равном ну-
лю на сегменте [0, 1]. Вместе с тем данная последовательность не сходится ни в
одной точке сегмента [0, 1] , так как для любого фиксированного x из сегмента [0, 1]
бесконено много членов равны нулю и бесконечно много членов равны единице.

Таким образом, из сходимости в среднем не следует поточечная сходимость.
Пример 2. Рассмотрим на сегменте [0, π] функциональную последовательность

fn(x) =

{√
n sinnx, если 0 ≤ xπ

n

0, в остальных точках сегмента [0, π]

Похожую функцию мы рассматривали ранее, она стремилась к нулю во всех точ-
ка, ясно что корень из этой функции также стремится к нулю.

Докажем что в среднем она не сходится к f(x) = 0.

π∫
0

(fn(x)− f(x)
=0

)2 dx =

π
n∫

0

n sinnx dx = 2 9 0

Значит, что последовательность не сходится в среднем.
Таким образом, из поточечной сходимости не следует сходимость в среднем.
Теорема 19. Если все функции fn(x) и функция f(x) интегрируемы на сегменте

[a, b] и последовательность fn(x) сходится в среднем к f(x) на [a, b], то для любых
точек x0 и x из сегмента [a, b] справедливо равенство

lim
n→∞

x∫
x0

fn(t) dt =

x∫
x0

f(t) dt

т.е. можно переходить к пределу под знаком интеграла, причем

x∫
x0

fn(t) dt⇒

x∫
x0

f(t) dt на [a, b] (51)

Доказательство. Требуется доказать соотношение (51) или что тоже самое

x∫
x0

(fn(t)− f(t)) dt⇒ 0 на [a, b]
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Нам дано что
b∫

a

(fn(x)− f(x))2 dx→ 0 при n→∞ (52)

восспользуемся неравенство Коши-Буняковского∣∣∣∣∣∣
b∫

a

f(x)g(x) dx

∣∣∣∣∣∣ ≤
√√√√√ b∫

a

f 2(x)dx

b∫
a

g2(x)dx

применим это неравенство к интегралу
b∫
a

(fn(x)− f(x)) dx

∣∣∣∣∣∣
x∫

x0

(fn(x)− f(x)) · 1 dt

∣∣∣∣∣∣ ≤
√√√√√ x∫

x0

(fn(x)− f(x))2 dt

x∫
x0

12 dt ≤

√√√√√ x∫
x0

(fn(x)− f(x))2 dt · (b− a) (53)

Зададим произвольное ε > 0, тогда в силу (52) ∃N, что ∀n > N правая часть в
неравенстве (53) будет меньше ε, следовательно и левая часть будет меньше ε для
∀n > N и ∀x ∈ [a, b] ∣∣∣∣∣∣

x∫
x0

(fn(t)− f(t)) dt

∣∣∣∣∣∣ < ε

А это и означает, что
x∫
x0

fn(t) dt⇒
x∫
x0

f(t) dt на сегменте [a, b]. Теорема 19 доказана.

Рассмотрим ряд
∑∞

k=1 uk(x) и функцию S(x), которые определенны на сегменте
[a, b], так что все uk(x) и функция S(x) интегрируемы на этом сегменте.
Определение. Говорят что функциональный ряд сходится в среднем к функ-

ции S(x) на сегменте [a, b], если последовательность частичных сумм ряда Sn(x)
сходится в среднем к функции S(x) то есть

b∫
a

(
∞∑
k=1

uk(x)− S(x))2 dx→ 0 при n→∞

Отметим что если ряд сходится в среднем к функции S(x), то S(x) вовсе не
обязательно сумма ряда, он может рассходится во всех точках.
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Теорема 19’. Если все члены функционального ряда
∑∞

k=1 uk(x) и функция S(x)
интегрируемы на сегменте [a, b] и ряд сходится в среднем к функции S(x) на сег-
менте [a, b], то этот ряд можно интегрировать почленно, то есть

x∫
x0

S(t) dt =
∞∑
k=1

x∫
x0

uk(t) dt ∀x0, x ∈ [a, b]

Причем
∞∑
k=1

x∫
x0

uk(t) dt⇒

x∫
x0

S(t) dt на [a, b]

Доказательство. По условию последовательность {Sn(x)} = {
∑n

k=1 uk(x)} ча-
стичных сумм ряда сходится в среднем к функции S(x) на сегменте [a, b]. Поэтому,
согласно теореме 19,

x∫
x0

Sn(t) dt⇒

x∫
x0

S(t) dt на сегменте [a, b]

или, что то же самое,

n∑
k=1

x∫
x0

uk(t) dt⇒

x∫
x0

S(t) dt на сегменте [a, b]

Это и означает, что ряд сходится равномерно на сегменте [a, b]. Теорема 19’ доказа-
на.

9.2. Теорема Арцела

Мы знаем что если последовательность xn ограниченна то из нее можно выде-
лить сходящуюся подпоследовательность (теорема Больцано – Вейерштрасса). То-
же самое относится к последовательностям точек {Mn} m-мерного пространства.
Поставим вопрос: можно ли из равномерно ограниченной функциональной последо-
вательности выделить сходящуюся подпоследовательность функций? Теорема Ар-
цела дает при определенных условиях положительный ответ на этот вопрос.

Определение. функциональноная последовательность fn(x) называется равно-
степенно непрерывной на промежуте X, если для ∀ε > 0∃δ > 0, такое,что ∀n и ∀x′
и x′′ ∈ X, удовлетворяющих условию |x′ − x′′| < δ, выполняется неравенство

|fn(x′)− fn(x′′)| < ε

Из определения следует что каждая функция fn(x) является равномерно непре-
рывной на промежутке X. Обратное не верно.
Пример. Пусть fn(x) = sinnx на X = [0, 1], каждая функция fn(x) непрерывна

на промежутке X, а следовательно и равномерно непрерывна, по теореме Кантора.
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Покажем что эта последовательность не является равностепенно непрерывной. По-
строим отрицание к определению равностепенной непрерывности, Нужно доказать
что ∃ε > 0∃N , такое, что ∀δ > 0 ∃x′ и x′′ ∈ [0, 1] для которых |x′ − x′′| < δ но

|fn(x′)− fn(x′′)| ≥ ε

Возьмем ε = 1
2
и положим x′ = π

n
и x′′ = π

2n
, тогда ∀δ > 0,∃N : |x′ − x′′| = π

2n
< δ, но

при этом

|fn(x′)− fn(x′′)| = | sin π
2
− sinπ = 1 > ε =

1

2

Теорема 20 (Арцела). Если функциональная последовательность равномерно
ограничена и равностепенно непрерывна на сегменте [a, b], то из неe можно выде-
лить подпоследовательность, равномерно сходящуюся на этом сегменте. Доказа-
тельство. Можно посмотреть в учебнике.
Замечание. Вместо условия равномерной ограниченности последовательности

можно потребовать еe ограниченность хотя бы в одной точке сегмента.
Несобственные интегралы
Для определeнного интеграла от функции f(x) на сегменте [a, b] были существен-

ными два момента:
1) промежуток интегрирования, сегмент [a, b], — ограниченное множество(для

неограниченного промежутка введeнное определение интеграла не пригодно);
2) функция f(x) ограничена на сегменте [a, b] .(определeнный интеграл от неогра-

ниченной на сегменте функции не существует).
Различные задачи в математике и еe приложениях приводят к необходимости

обобщить понятие определенного интеграла на случаи, когда либо промежуток ин-
тегрирования — неограниченный, либо подынтегральная функция является неогра-
ниченной. В результате появляются понятия несобственных интегралов первого и
второго рода.

9.3. Несобственные интегралы первого рода

Пусть функция f(x) определена на полупрямой a ≤ x < ∞ и пусть ∀A > a

существует определeнный интеграл
A∫
a

f(x) dx, он является функцией переменной

A. Рассмотрим

lim
A→∞

A∫
a

f(x) dx

Этот предел может существовать и может не существовать. В любом случае он на-
зывается несобственным интегралом первого рода от функции f(x) по полупрямой
[a,+∞) и обозначается так:

+∞∫
a

f(x) dx
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и называть несобственным интегралом первого рода от функции Если указанный
предел существует (не существует), то говорят, что несобственный интеграл схо-
дится (расходится).

Аналогично определяются несобственный интеграл по полупрямой (−∞, a]

a∫
−∞

f(x) dx = lim
B→−∞

a∫
B

f(x) dx

и несобственный интеграл по всей числовой прямой:

+∞∫
−∞

f(x) dx = lim
A→+∞
B→−∞

A∫
B

f(x) dx

Примеры.
1) Пример сходящегося интеграла

+∞∫
0

dx

1 + x2
= lim

A→∞

A∫
0

dx

1 + x2
= lim

A→+∞

(
arctg x

∣∣∣∣A
0

)
= lim

A→+∞
arctgA =

π

2

2) Пример несходящегося интеграла

+∞∫
0

sinx dx = lim
A→+∞

A∫
0

sinx dx = lim
A→+∞

(1− cosA)− не существует

3)
+∞∫
a

dx

xα
, где α > 0, a — произвольное число.

+∞∫
a

dx

xα
= lim

A→+∞

A∫
a

dx

xα
= lim

A→+∞


x1−α

1−α

∣∣∣∣A
a

, α 6= 1

lnx

∣∣∣∣A
a

, α = 1

=


aα−1

1−α , α > 1

не существует, α ≤ 1

Во всех трех примерах первообразная для подынтегральной функции выража-
лась через элементарные функции, и это помогло легко установить сходимость
(или расходимость) несобственного интеграла. Однако первообразная для подынте-
гральной функции может быть не элементарной функцией. Например, рассмотрим
несобственный интеграл

+∞∫
0

sinx

x
dx
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Известно, что первообразная для подынтегральной функции не является элемен-
тарной. Но можно считать, что в точке x = 0 функция доопределена по непре-
рывности, в силу первого замечательного предела, значением 1, во всех остальных
точках она непрерывна, было доказанно что непрерывная функция имеет первооб-
разную. Пусть какая-то функция F ′(x) = sinx

x
является первообразной для нашей

функции при x ≥ 0, тогда

+∞∫
0

sinx

x
dx = lim

A→+∞

A∫
0

sinx

x
dx = lim

A→+∞
(F (A)− F (0)) dx

Но поскольку мы не знаем выражения для первообразной F (x), так как она не
является элементарной функцией, то для ответа на вопрос о существовании пре-
дела limA→+∞ F (A) dx необходимы признаки сходимости несобственных интегралов
первого рода.
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Лекция 10

10.1. Признаки сходимости несобственных интегралов
первого рода

Теорема 1 (критерий Коши сходимости несобственных интегралов пер-
вого рода).

Для того, чтобы несобственный интеграл
+∞∫
a

f(x) dx сходился, необходимо и до-

статочно, чтобы ∀ε > 0,∃A > a,такое, что для ∀A′ > A и ∀A′′ > A выполнялось
неравенство ∣∣∣∣∣∣

A′′∫
A′

f(x) dx

∣∣∣∣∣∣ < ε

Доказательство.
Доказательство. Введем обозначение

Φ(A) =

A∫
a

f(x) dx

Сходимость несобственного интеграла по определению означает существование пре-
дела limA→+∞Φ(A), в свою очередь для того чтобы этот предел существовал необ-
ходимо и достаточно, по критерию коши сходимости для функций при стремлении
аргумента к бесконечности, необходимо и достаточно чтобы ∀ε > 0,∃A > a, такое,
что для ∀A′ > A и ∀A′′ > A выполнялось неравенство

|Φ(A′′)− Φ(A′)| < ε то есть

∣∣∣∣∣∣
A′′∫
A′

f(x) dx

∣∣∣∣∣∣ < ε

Теорема 1 доказана.

Теперь чтобы установить сходимость несобственного интеграла
+∞∫
0

sinx
x
dx вос-

пользуемся критерием Коши, для этого рассмотрим интеграл

A′′∫
A′

sinx

x
dx =

cosx

x

∣∣∣∣A′′
A′
−

A′′∫
A′

d(− cosx)

x
=

A′′∫
A′

cosx

x2
dx

здесь мы воспользовались формулой интегрирования по частям∣∣∣∣∣∣
A′′∫
A′

sinx

x
dx

∣∣∣∣∣∣ ≤ 1

A′′
+

1

A′
+

∣∣∣∣∣∣
A′′∫
A′

dx

x2

∣∣∣∣∣∣ =
1

A′′
+

1

A′
+

∣∣∣∣∣− 1

x2

∣∣∣∣A′′
A′

∣∣∣∣∣ ≤ 2

A′
+

2

A′′
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Зададим произвольное ε > 0 и возьмeм A = 4
ε
тогда для ∀A′ > A и ∀A′′ > A :∣∣∣∣∣∣

A′′∫
A′

sinx

x
dx

∣∣∣∣∣∣ ≤ 2

A′
+

2

A′′
<

4

A
= ε

Признак сравнения. Пусть функция f(x) ≥ 0 на [a,+∞), интегрируема на
любом сегменте [a,A], обозначим этот интеграл

Φ(A) =

A∫
a

f(x) dx

Функция Φ(A) очевидно, неубывающей функцией переменной A, для существова-
ния предела limA→+∞Φ(A) дотаточно ограниченности функции Φ(A)
Теорема 2. Пусть функции f(x) и g(x) определены на полупрямой [a,+∞),

интегрируемы на любом сегменте [a,A], где A > a, и удовлетворяют неравенствам

0 ≤ f(x) ≤ g(x), ∀x ∈ [a,+∞)

Тогда из сходимости интеграла
+∞∫
a

g(x) dx (54)

следует сходимость интеграла

+∞∫
a

f(x) dx (55)

а из расходимости интеграла (54) следует расходимость интеграла (55).
Доказательство. Введeм обозначения:

Φ(A) =

A∫
a

f(x) dx, G(A) =

A∫
a

g(x) dx

Из условий теоремы следует ∀A ≥ a : выполняются неравенства

0 ≤ Φ(A) ≤ G(A).

Если интеграл (54) сходится, то функция G(A) ограничена на [a,+∞), поэтому в
силу последнего неравенства функция Φ(A) также ограничена и, значит, интеграл
(55) сходится. А если интеграл (55) расходится, то функция Φ(A) будет неогра-
ниченной на [a,+∞), поэтому в силу последнего неравенства функция G(A) также
будет неограниченной и, следовательно, интеграл (54) расходится. Теорема 2 до-
казана.
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Следствие 1. Если 0 ≤ x ≤ c
xα
, где c > 0, α > 1, то интеграл

+∞∫
a

f(x) dx при 0

сходится. Если x ≥ c
xα
, где c > 0, 0 < α ≤ 1 то интеграл

+∞∫
a

f(x) dx при 0 расходится.

Утверждение следует из теоремы 2, с учетом того факта, что интеграл
+∞∫
a

c
xα
dx

сходится при α > 1 и расходится при α ≤ 1
Следствие 2 (признак сравнения в предельной форме). Пусть функция

f(x) ≥ 0, g(x) ≥ 0 при x ∈ [a,+∞) Пусть эти функции интегрируемы на любом
сегменте [a,A], и пусть выполнено условие ∃ limx→∞

f(x)
g(x)

= k, тогда
1) Если k > 0, то несобственные интегралы (54) и (55) сходятся или расходятся

одновременно;
2) если k = 0, то из сходимости интеграла (54) следует сходимость интеграла

(55), а из расходимости интеграла (55) следует расходимость интеграла (54).
Примеры.

1) Рассмотрим интеграл и посмотрим при каких значений α он сходится

∞∫
1

xα ln
x+ 1

x
=f(x)

dx

Посмотрим как ведет себя эта логарифмическая функция на бесконечнности

ln
x+ 1

x
= ln 1 +

1

x
=

1

x
+ o

(
1

x

)
, при x→ 0

В качестве функции сравнения возьмем g(x) = xα · 1
x

= xα−1

∞∫
1

g(x) dx =

∞∫
1

1

x1−α dx =

{
сходится при α < 0

сходится при α ≥ 0

lim
x→∞

f(x)

g(x)
= lim

x→∞

xα
(

1
x

+ o
(

1
x

))
xα−1

= lim
x→∞

(
1 + x · o

(
1

x

))
= 1

Следовательно наш интеграл

∞∫
1

xα ln
x+ 1

x
dx =

{
сходится при α < 0

сходится при α ≥ 0

2) Исследуем, для каких значений α сходится интеграл

∞∫
1

xαe−x
=f(x)

dx
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В качестве функции сравнения возьмем g(x) = 1
x2
, интегра

∞∫
1

g(x) dx сходится,

так как показатель степени больше 1, теперь рассмотрим предел

lim
x→∞

f(x)

g(x)
= lim

x→∞
xα−2e−x = 0 для любого α

Согласно следствию 2, интеграл
∞∫
1

xαe−x dx сходится для любого α.

Признак Дирихле Он относятся к несобственным интегралам вида

∞∫
a

f(x)g(x) dx

Теорема 3 (признак Дирихле)
Пусть
1) функция f(x) непрерывна на полупрямой [a,+∞) и имеет на этой полупрямой

ограниченную первообразную F (x)
2) функция g(x) не возрастает на полупрямой [a,+∞), стремится к нулю при

x→∞ и имеет непрерывную производную g(x).

Тогда несобственный интеграл
∞∫
a

f(x)g(x) dx сходится.

Доказательство. Из условия 2) следует что g(x) ≥ 0, g′(x) ≤ 0. Воспользуемся

критерием Коши. С этой целью рассмотрим интеграл
A′′∫
A′
f(x)g(x) dx, где A′ > a и

A′′ > a, Преобразуя его по формуле интегрирования по частям

A′′∫
A′

f(x)g(x) dx =

A′′∫
A′

g(x) dF (x) = g(x)F (x)

∣∣∣∣A′′
A′

=

A′′∫
A′

F (x)g(x) dx

Теперь оценим последний интеграл. Так как функция F (x) ограничена (по условия),
то ∃M > 0 такое, что ∀x ∈ [a,+∞) : |F (x)| ≤ M , а из словия 2) следует что
g(x) ≥ 0, g′(x) ≤ 0. Пусть для определeнности A′′ ≥ A′. Получим∣∣∣∣∣∣
A′′∫
A′

f(x)g(x) dx

∣∣∣∣∣∣ ≤Mg(A′)+Mg(A′′)−
A′′∫
A′

Mg′(x) dx = Mg(A′)−Mg(A′′)+g(x)

∣∣∣∣A′′
A′

= Mg(A′)+Mg(A′′)−Mg(A′′)+Mg(A′) = 2Mg(A′)

= Mg(A′) +Mg(A′′)−Mg(A′′) +Mg(A′) = 2Mg(A′) (56)

Зададим произвольное ε > 0 так как g(x) ↓ 0(монотонно стремится к нулю) при
x→∞, то ∃A,∀A′ > A : g′(A′) < ε

2M
из (56) получаем∣∣∣∣∣∣

A′′∫
A′

f(x)g(x) dx

∣∣∣∣∣∣ ≤ 2Mg(A′) < ε, ∀A′ > a,A′′ > a
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а это и означает, согласно критерию Коши, что несобственный интеграл
∞∫
a

f(x)g(x) dx

сходится. Теорема 3 доказана.

Примеры. 1) Нужно исследовать, для каких значений α сходится интеграл

∞∫
1

sinx

xα
dx

Применим признак Дирихле, f(x) = sin x, непрерывна и имеет ограниченную пер-
вообразную на [1,+∞) g(x) = 1

xα
, пусть α > 0, тогда g(x) ↓ 0 при x → ∞ и

g′(x) = −αx−α−1 непрерывна на [1,+∞). Значит все условия теоремы 3 выполнен-

ны и интеграл
∞∫
1

sinx
xα

dx сходится при α > 0.

2) Рассмотрим интеграл

∞∫
0

sin (x2) dx

он называется интегралом Френеля. Представим его в вид суммы двух интегралов

∞∫
0

sin (x2) dx =

1∫
0

sin (x2) dx+

∞∫
1

sin (x2) dx

Первое слагаемое в правой части равенства — это определeнный интеграл от непре-
рывной функции (он существует), а во втором слагаемом сделаем замену перемен-
ной

x =
√
t, 1 ≤ t <∞

Тогда
x2 = t, dx =

1

2
√
t
dt

и для второго слагаемого получим

∞∫
1

sin (x2) dx =
1

2

∞∫
1

sin t√
t
dt

Интеграл в правой части равенств сходится (см. пример 1, здесь α = 1
2
> 0)

Замечание 1 Правомерно ли было производить замену переменных в несоб-
ственном интеграле? Ответ таков: при определeнных условиях имеет место теорема
о замене переменной в несобственном интеграле. Мы не будем рассматривать эту
теорему, отметим только, что сделанная в интеграле Френеля замена переменной
правомерна.
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Замечание 2 Когда мы рассматривали ряды
∑∞

k=1 ak необходимым условием
сходимости которого было an → 0 при n → ∞. Можно подумать (проводя анало-
гию между числовыми рядами и несобственными интегралами), что необходимым

условием сходимости несобственного интеграла
∞∫
a

f(x) dx является условие f(x)→ 0

при x→ +∞. Однако это не так, и контрпримером служит интеграл Френеля

10.2. Абсолютная и условная сходимость несобственных
интегралов первого род

Определение. Говорят что интеграл
∞∫
a

f(x) dx сходится абсолютно, если сходит-
ся интеграл

∞∫
a

|f(x)| dx

Несобственный интеграл
∞∫
a

f(x) dx называется условно сходящимся, если он схо-

дится, а интеграл
∞∫
a

|f(x)| dx расходится.

Пример. Рассмотрим интеграл
∞∫

1

sinx

xα
dx

он сходится при α > 0 при α > 1, данный интеграл сходится абсолютно, так как∣∣∣∣sinxxα
∣∣∣∣ ≤ 1

xα

Интеграл
∞∫
1

1
xα
dx сходится, если α > 0, значит признак сравнения работает и ин-

теграл сходится абсолютно. Докажем, что если 0 < α ≤ 1, то интеграл
∞∫
1

sinx
xα

dx

сходится условно.
1) способ. Воспользуемся неравентсвом∣∣∣∣sinxxα

∣∣∣∣ ≥ sin2 x

xα
=

1− cos 2x

2xα

Интеграл
∞∫

1

1− cos 2x

2xα
dx =

∞∫
1

dx

2xα
−
∞∫

1

cos 2x

2xα
dx

расходится, так как интеграл
∞∫
1

cos 2x
2xα

dx расходитя при 0 < α ≤ 1. Значит интеграл
∞∫
1

∣∣ sinx
xα

∣∣ dx расходится при 0 < α ≤ 1.
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2) способ. Воспользуемся критерием Коши, построим отрицание, ∃ε > 0, такое,
что ∀A, ∃A′ > A,A′′ > A : ∣∣∣∣∣∣

∞∫
1

∣∣∣∣sinxxα
∣∣∣∣ dx

∣∣∣∣∣∣ ≥ ε

Возьмем 0 < ε < 1
π
и для ∀A > 0 возьмем A′ = πn > A, A′′ = 2πn > A, тогда∣∣∣∣∣∣

∞∫
1

∣∣∣∣sinxxα
∣∣∣∣ dx

∣∣∣∣∣∣ ≥
2πn∫
πn

| sinx|
x

dx ≥ 1

2πn

2πn∫
πn

| sinx| dx =
1

2πn
· 2n =

1

π
> ε

Следовательно интеграл
∞∫
1

∣∣ sinx
xα

∣∣ dx расходится при 0 < α ≤ 1.
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Лекция 11

11.1. Несобственные интегралы второго рода
Пусть функция f(x) определена на полусегменте (a, b], где a < x ≤ b, не ограни-

чена на этом полусегменте, но ограничена на любом сегменте вида [a + δ, b] (здесь 
δ — произвольное положительное число, такое, что a < a + δ < b). Точку x = a 
назовeм особой точкой функции f(x).

Пример. Рассмотрим функцию полусегменте (0, 1]

f(x) =
1

xα
при α > 0

Она стремится к бесконечности при x→ +0. Теперь возьмем [δ, 1] на этом сегменте
0 < f(x) ≤ 1

δα
функция ограниченна. Точка x = 0 особая точка данной функции.

Пусть функция f(x) определена на полусегменте (a, b], где a особая точка функ-
ции. Пусть функция f(x) интегрируема любом сегменте вида [a + δ, b], то есть су-

ществует определенный интеграл
b∫

a+δ

f(x) dx, который является функией от δ, рас-

смотрим предел

lim
δ→+0

b∫
a+δ

f(x) dx

Он может существовать и может не существовать. В любом случае будем называть
его несобственным интегралом второго рода от функции f(x) по полусегменту (a, b]
и будем обозначать его так же, как определeнный интеграл:

lim
δ→+0

b∫
a+δ

f(x) dx =

b∫
a

f(x) dx

Аналогично определяются несобственный интеграл второго рода от функции f(x)
по полусегменту [a, b), где b — особая точка f(x):

lim
δ→+0

b−δ∫
a

f(x) dx =

b∫
a

f(x) dx

и несобственный интеграл второго рода от функции f(x) по интервалу (a, b), где
a и b — особые точки f(x) (и других особых точек на сегменте [a, b] у функции f(x)
нет):

lim
δ1→+0
δ2→+0

b−δ2∫
a+δ1

f(x) dx =

b∫
a

f(x) dx
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Пусть точка c принадлежит интервалу [a, b] и c особая точка функции f(x) как на
полусегменте [a, c), так и на полусегменте [c, b), и других особых точек на сегменте
[a, b] у функции f(x) нет, то несобственный интеграл по сегменту [a, b] определяется
как сумма двух пределов:

lim
δ1→+0

c−δ1∫
a

f(x) dx+ lim
δ2→+0

b∫
c+δ2

f(x) dx =

b∫
a

f(x) dx

Если оба предела существуют, то говорят, что несобственный интеграл сходится,
а если хотя бы один из пределов не существует, то — расходится.

Теорема 4 (критерий Коши сходимости несобственного интеграла вто-
рого рода). Пусть функция f(x) определена на полусегменте (a, b] и интегрируема
на любом сегменте вида [a+ δ, b], тогда для того чтобы несобственный интеграл от
функции f(x) на полусегменте (a, b] сходился необходимо и достаточно, чтобы было
выполнено условие: ∀ε > 0∃δ > o, такое, что ∀δ′ и δ′′ , удовлетворяющих условиям
0 < δ′ < δ и 0 < δ′′ < δ, выполняется неравенство∣∣∣∣∣∣

a+δ′′∫
a+δ′

f(x) dx

∣∣∣∣∣∣ < ε

Доказательство. Введем обозначение

Φ(δ) =

b∫
a+δ

f(x) dx

По определению сходимость несобственного интеграла
b∫
a

f(x) dx означает существо-

вание предела limδ→+0 Φ(δ). В свою очередь, для того, чтобы существовал этот
предел, необходимо и достаточно (согласно критерию Коши существования одно-
стороннего предела функции), чтобы было выполнено следующее условие: ∀ε >
0,∃δ > o, такое, что ∀δ′ и δ′′ , удовлетворяющих условиям 0 < δ′ < δ и 0 < δ′′ < δ,
выполнялось неравенство

|Φ(δ′′)− Φ(δ′)| < ε то есть

∣∣∣∣∣∣
a+δ′′∫
a+δ′

f(x) dx

∣∣∣∣∣∣ < ε

Теорема 4 доказана.
Пример. Рассмотрим несобственный интеграл

1∫
0

dx

xα
α > 0
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Посмотрим для какиех α интеграл сходится, Особой точкой функции dx
xα

является
точка x = 0. Поэтому, согласно определению,

lim
δ→+0

1∫
δ

dx

xα
= lim

δ→+0


x−α+1

1+α

∣∣∣∣1
δ

, α 6= 1

lnx

∣∣∣∣1
δ

, α = 1

= lim
δ→+0


1

1−α(1− δα−1)

∣∣∣∣1
δ

, α 6= 1

− ln δ, α = 1

=

=

{
1

1−α , 0 < α < 1

не существует, α ≥ 1

Значит интеграл
1∫
0

dx
xα

сходится при 0 < α < 1 и расходится при α ≥ 1.

Замечание. Аналогично доказывается что интегралы

b∫
a

dx

(x− a)α
и

b∫
a

dx

(b− x)α
α > 0

сходятся при 0 < α < 1 и расходится при α ≥ 1.

Теорема 5 (признак сравнения). Пусть функции f(x) и g(x) определена на
полусегменте (a, b], где a особая точка обеих функций, и интегрируемы на любом
сегменте вида [a+ δ, b], и удовлетворяют неравенствам

0 ≤ f(x) ≤ g(x) x ∈ (a, b] (57)

Тогда из сходимости интеграла
b∫

a

g(x) dx (58)

следует сходимость интеграла
b∫

a

f(x) dx (59)

а из расходимости интеграла (59) следует расходимость интеграла (58)

Следствие. Если вместо условия (57) выполнены условия f(x) ≥ 0, g(x) ≥
0 и ∃ limx→+0

f(x)
g(x)

= k > 0 то интегралы (59) и (58) сходятся или расходятся
одновременно. Докажите теорему 5 и еe следствие самостоятельно по аналогии с
теоремой о признаке сравнения интеграла первого рода.
Примеры.
1) Рассмотрим интеграл

1∫
0

dx√
1− x3
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Особая точка подынтегральной функции x = 1, f(x) = 1√
1−x3 , g(x) = 1√

1−x

1∫
0

dx

(1− x)
1
2

сходится, так как 0 < α < 1

Чтобы применить следствие из теоремы 5 рассмотрим предел

lim
x→−0

f(x)

g(x)
= lim

x→−0

√
1− x√
1− x3

= lim
x→−0

1√
1 + x+ x2

=
1√
3
> 0

согласно следствию из теоремы 5, интеграл
∞∫
0

dx√
1−x3 сходится.

2) Рассмотрим несобственный интеграл
∞∫

0

sinx

xα
dx

В этом интеграле есть несобственность первого и второго рода. Особая точка подын-
тегральной функции x = 0, при α > 1. Разобьем этот интеграл на два интеграла

I =

∞∫
0

sinx

xα
dx =

1∫
0

sinx

xα
I1

dx+

∞∫
1

sinx

xα
I2

dx

Интеграл I2 мы уже рассматривали ранее, он сходится при α > 0, интеграл I1

является определенным при 0 < α ≤ 1, и являеется несобственным при α > 1. Так
как при x→ 0 sinx

xα
∼ 1

xα−1 , возьмем в качестве g(x) = 1
xα−1 , интеграл

∞∫
1

1

xα−1
dx

Сходится при α− 1 < 1, то есть при α < 2, значит по признаку сравнения интеграл

I1 сходится при α < 2. В итоге интеграл
∞∫
0

sinx
xα

dx сходится при 0 < α < 2

11.2. Главное значение несобственного интеграла

Рассмотрим пример:

+∞∫
−∞

x dx = lim
A→+∞
B→−∞

A∫
B

x dx = lim
A→+∞
B→−∞

1

2
(A2 −B2)− не существует

Если B = −A, то

lim
A→+∞

A∫
−A

x dx = 0
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Определение. Если существует предел

lim
A→+∞

A∫
−A

f(x) dx

то он называется главным значением (в смысле Коши) несобственного интеграла

+∞∫
−∞

f(x) dx

и обозначается так:

V.p.

+∞∫
−∞

f(x) dx

(V.p. — начальные буквы французских слов «Valeur principal», означающих «Глав-

ное значение»). Если несобственный интеграл limA→+∞

A∫
−A

f(x) dx сходится, то его

значение равно, очевидно, главному значению этого интеграла. Но может быть так,
что несобственный интеграл расходится, но имеет конечное главное значение.

Пусть функция f(x) определенна на сегменте [a, b] и внутренняя точка сегмента
[a, b] является особой точкой функции f(x), тогда

b∫
a

f(x) dx = lim
δ1→+0

c−δ1∫
a

f(x) dx+ lim
δ2→+0

b∫
c+δ2

f(x) dx

Рассмотрим частный случай когда δ1 = δ2 = δ, тогда

lim
δ→+0

 c−δ1∫
a

f(x) dx+

b∫
c+δ2

f(x) dx

 = V.p.

b∫
a

f(x) dx

Последний интеграл называется главным значением (в смысле Коши) несобствен-

ного интеграла
b∫
a

f(x) dx

Отметим, что расходящийся интеграл второго рода может иметь главное значе-
ние.
Пример. Рассмотрим несобственный интеграл

2∫
−1

dx

x

71

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


Математический анализ Часть III •
Бутузов Валентин Федорович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Особой точкой функции 1
x
является точка x = 0 ∈ [−1, 2]. Рассмотрим интеграл

−δ1∫
−1

dx

x
+

2∫
δ2

dx

x
= ln |x|

∣∣∣∣−δ1
−1

+ lnx

∣∣∣∣2
δ2

= ln δ1 + ln 2− δ2 = ln 2 + ln
δ1

δ2

Рассмотрим предел

lim
δ1→+0
δ2→+0

(
ln 2 + ln

δ1

δ2

)
не существует

Это означает что
2∫
−1

dx
x

расходится. Но если положить δ1 = δ2 = δ, его главное

значение

V.p.

2∫
−1

dx

x
= ln 2

72

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


Математический анализ Часть III •
Бутузов Валентин Федорович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Лекция 12

12.1. Кратные несобственные интегралы.
Как и в случае одномерных интегралов, несобственный кратный интеграл — это 

либо интеграл от неограниченной функции, либо интеграл по неограниченной об-
ласти, либо одновременно и то, и другое.

Пусть G — ограниченная

Рис. 12.1 – Область ωδ в области G.

квадрируемая область на плоскости
(x, y) и пусть в области G (за исклю-
чением, быть может, точки M0(x0, y0))
определена функция f(x, y), неограни-
ченная в любой окрестности точки M0.
Тогда точка M0 называется особой точ-
кой функции f(x, y). Обозначим через
ωδ произвольную квадрируемую окрест-
ность точкиM0, диаметр которой равен
δ(рис.12.1).

Пусть для любой окрестности ωδ
функция f(x, y) интегрируема в области
G− ωδ. Рассмотрим предел

lim
δ→0

∫∫
G−ωδ

f(x, y) dx dy

Можно сказать, что это предел при условии что окрестность ωδ стягивается к точке
M0. Если указанный предел существует и не зависи от способа стягивания ωδ к точке
M0, то он называется несобственным интегралом от функции f(x, y) по области G.
И обозначается так же, как и двойной интеграл:∫∫

G

f(x, y) dx dy

Рис. 12.2 – ε-окрестность точки
M0.

Пример 1. Пусть M0(x0, y0) внутренняя
точка области G, и M произвольная точка
этой области, расстояние между ними rM0M =√

(x− x0)2 + (y − yo), зафиксируетм некоторое
положительное число α > 0 и рассмотрим ин-
теграл ∫∫

G

1

rαM0M

dx dy

Обозначим за Ωε ε-окрестность точки M0(это
круг с центром в точке M0 радиуса ε) и возь-
мем столь малое ε, чтобы область Ωε принадлежала G(рис.12.2)
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Теперь рассмотрим область G − Ωε. В этой области подынтегральная функция
неотрицательна 0 < 1

rαM0M
≤ 1

εα
и непрерывна, значит существует интеграл∫∫
G−Ωε

1

rαM0M

dx dy = I

Обозначим через Iε несобственный интеграл∫∫
Ωε

1

rαM0M

dx dy = Iε

Чтобы сходился интеграл I, необходимо и достаточно чтобы сходился интеграл
Iε. Для того чтобы установаить для каких α сходится интеграл Iε, рассмотрим

предел

lim
δ→0

∫∫
Ωε−Ωδ

1

rαM0M

dx dy

Если в несобственном интеграле по произвольной областиGфункция f(x, y) неот-
рицатльна, то интеграл сходится, если предел limδ→0

∫∫
G−Ωδ

1
rαM0M

dx dy существует хотя

бы для одного способа стягивания. Воспользуемся этим фактом и возьмем в качет-
ве Ωδ круг Ω δ

2
с радиусом δ

2
. Рассмотрим интеграл по области Ωε − Ω δ

2
(это кольцо

с центром в точке M0 (рис.11)).

Рис. 12.3 – Кольцо с центром в точке M0.

Для того чтобы его вычислить удобно перейти в полярные системы координат,
x− x0 = r cosϕ, y − y0 = r sinϕ, δ

2
≤ r = rM0M ≤ ε, 0 ≤ ϕ ≤ 2π

lim
δ→0

∫∫
Ωε−Ω δ

2

1

rαM0M

dx dy =

2π∫
0

dϕ

ε∫
δ
2

1

rα
· r dr =
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= 2π



r2−α

2−α

∣∣∣∣ε
δ
2

, α 6= 2

ln 2

∣∣∣∣ε
δ
2

, α = 2

= 2π


1

2−α

(
ε2−α −

(
δ
2

)2−α
)
, α 6= 2

ln 2ε
δ
, α = 2

Это означает что

lim
δ→0

∫∫
Ωε−Ω δ

2

1

rαM0M

dx dy =


2π

2−αε
2−α, 0 < α < 2

Не существует, α ≥ 2

Окончательно, интеграл∫∫
Ωε−Ω δ

2

1

rαM0M

dx dy =

{
Сходится, 0 < α < 2

Расходится, α ≥ 2

Замечание. Аналогично устонавливается, что тройной интеграл∫∫∫
Ωε−Ω δ

2

1

rαM0M

dx dy =

{
Сходится, 0 < α < 3

Расходится, α ≥ 3

Пусть функция f(x) определенна и ограничена в не ограниченной областиG(открытой).
Рассмотрим последовательность областей Gn удовлетворяющих следущим услови-
ям.

1) Пусть все Gn открыты и квадрируемы. ∀n : Gn ⊂ Gn+1(замкнутая область Gn

принадлежит открытой области Gn+1);
2)
⋃∞
n=1Gn = G

Про последовательность Gn говорят, что она монотонно исчерпывает область G.

Пример. Пусть область G вся плоскость. Последовательность открытых кругов
с радиусом 1, 2, 3, . . . n с центром в начале координат, монотонно исчерпывает всю
плоскость R2

Пусть функция f(x, y) интегрируема в любой ограниченной квадрируемой обла-
сти, содержащейся в области G. Рассмотрим интеграл

In =

∫∫
Gn

f(x, y) dx dy

И рассмотрим предел
lim
n→∞

In

Если этот предел существует и не зависит от выбора исчерпывающей последова-
тельности Gn, то говорят, что несобственный интеграл от функции f(x, y) по обла-
сти G сходится, в противном случае — расходится. И обозначается∫∫

G

f(x, y) dx dy
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Если функция f(x, y) неотрицательна, то для сходимости этого интеграла, доста-
точно чтобы существовал limn→∞ In хотя бы для одной последовательности {Gn}
монотонно исчерпывающей область G.
Пример 2. Отметим на плоскости точку M0(x0, y0) и проведем окружность ра-

диуса a с центром в этой точке, и возьмем в качестве области G = R2 − Ωa, где Ωa

область ограниченная нашей окружностью. Рассмотрим интеграл∫∫
G

1

rαM0M

dx dy

В этой области подынтегральная функция неотрицательна 0 < 1
rαM0M

≤ 1
aα

и
непрерывна, значит интегрируема в любой квадрируемой области. Рассмотрим по-
следовательность областей {Gn} = {(x, y) : a <

√
(x− x0)2 + (y − yo) < a + n} .

Рассмотрим интеграл в полярных координатах, x− x0 = r cosϕ, y− y0 = r sinϕ, a <
r = rM0M < a+ n, 0 ≤ ϕ ≤ 2π

In =

∫∫
Gn

1

rαM0M

dx dy = 2π


1

2−α ((a+ n)2−α − a2−α) , α 6= 2

ln a+n
a
, α = 2

=

=


2π
α−2

a2−α, α > 2

Не существует, 0 < α ≤ 2

Значит ∫∫
G

1

rαM0M

dx dy =

{
Сходится, α > 2

Расходится, 0 < α ≤ 2

Замечание. Аналогично устонавливается, что тройной интеграл∫∫∫
R3−Ωα

1

rαM0M

dx dy =

{
Сходится, α > 3

Расходится, 0 < α ≤ 3

Пример 3. Рассмотрим интеграл∫∫
R2

e−x
2−y2 dx dy

В качестве последовательности ограниченных квадрируемых областей Gn, моно-
тонно исчерпывающей всю плоскость R2, возьмeм последовательность концентри-
ческих кругов {Gn} = {(x, y) : x2 + y2 < n2}. Рассмотрим интеграл в полярных
координатах, x = r cosϕ, y = r sinϕ, 0 < r = rM0M < n, 0 ≤ ϕ ≤ 2π

In =

∫∫
Gn

e−x
2−y2 dx dy =

2π∫
0

dϕ

n∫
0

e−r
2 · r dr = π(1− e−n2

)

76

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


Математический анализ Часть III •
Бутузов Валентин Федорович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Рассмотрим предел

lim
n→∞

In = π ⇒
∫∫
R2

e−x
2−y2 dx dy = π

Теперь рассмотрим другую последовательность {G′n} = {(x, y) : −n < x <
n,−n < y < n} Поскольку последовательность неотрицательна предел по этой
последовательности будет тот же.

I ′n =

∫∫
G′n

e−x
2−y2 dx dy =

n∫
−n

e−x
2

dx

Kn

n∫
−n

e−y
2

dy

Kn

= K2
n

lim
n→∞

I ′n = π = lim
n→∞

k2
n

lim
n→∞

Kn = lim
n→∞

n∫
−n

e−x
2

dx = lim
n→∞

+∞∫
−∞

e−x
2

dx =: k

Тем самым

K =

+∞∫
−∞

e−x
2

dx =
√
π

Этот несобственный интеграл называется интегралом Пуассона.

Так как e−x2 — чeтная функция, то
+∞∫
−∞

e−x
2
dx = 2

+∞∫
0

e−x
2
dx =, и, следовательно

2

+∞∫
0

e−x
2

dx =

√
π

2

В математической физике важную роль играет функция

Φ(x) =
2√
π

x∫
0

e−t
2

dt

Она носит название «интеграл ошибок». Множитель 2√
π
необходим для нормиров-

ки, так как Φ(∞) = 1

Кратные несобственные интегралы обладают удивительным (на первый взгляд)
свойством, отличающим их от одномерных несобственных интегралов, а именно:
для несобственных кратных интегралов понятия сходимости и абсолютной сходи-
мости эквивалентны, т.е. если несобственный интеграл

∫∫
G

f(x, y) dx dy сходится, то

несобственный интеграл
∫∫
G

|f(x, y)| dx dy также сходится, и обратно. Возникает во-

прос: почему для кратных несобственных интегралов это свойство имеет место, а у
одномерных несобственных интегралов этого свойства нет?
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Ответ в том, что когда мы определяли кратные несобственные интегралы, то мы
допускали стягивание окрестностей ωδ к M0 произвольно, а в случае неограничен-
ной области допускали любую исчерпывающаю монотонно последовательность об-
ластей, чего нет для одномерных интегралов, там есть исключительно один способ,
когда полупрямая [a,+∞) монотонно исчерпывается расширяющимися сегментами
вида [a,A] при A→∞, но можно выбрать другой(недопустимый) способ, тогда од-
номерные интегралы будут иметь это же свойство кратных интегралов. Подробнее
об этом можно прочитать в учебнике.
Интегралы, зависящие от параметров
Рассмотрим интеграл

b∫
a

f(x, y) dx

Подынтегральная функция зависит от x и y. Пусть для ∀y ∈ Y этот интеграл
существует, он будет функцией y,

F (y) =

b∫
a

f(x, y) dx

Функция F (y) называется интегралом, зависящим от параметра y. Также вводится
понятие интеграла зависящего от нескольких параметров

F (y1, y2, . . . , yn) =

b∫
a

f(x, y1, y2, . . . , yn) dx

Аналогично вводятся n-кратные интеграл зависящие от нескольких параметров

F (y1, y2, . . . , yn) =

∫
. . .

∫
Gm

f(x1, x2, . . . , xm, y1, y2, . . . , yn) dx1 dx2 . . . dxm

Отметим, что интегралы, зависящие от параметров, играют важную роль в мате-
матической физике. С одним физическим примером — ньютоновым потенциалом
— мы познакомимся в конце главы.
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Лекция 13

13.1. Собственные интегралы, зависящие от параметра

Пусть функция f(x, y) определена в прямоугольнике Q = {(x, y) : a ≤ x ≤ b, c ≤

y ≤ d}, Пусть для ∀y ∈ [c, d] существует интеграл
b∫
a

f(x, y) dx, тем самым опреде-

ленна функция F (y) =
b∫
a

f(x, y) dx. Функцию F (y) мы называем собственным инте-

гралом, зависящим от параметра y. Займeмся исследованием свойств этой функции.
Теорема 1 (о непрерывности собственного интеграла, зависящего от па-

раметра).

Если функция f(x, y) непрерывна в прямоугольникеQ, то функция F (y) =
b∫
a

f(x, y) dx

непрерывна на сегменте [c, d].
Доказательство. По теореме Кантора функция f(x, y) равномерно непрерывна

в прямоугольнике Q. То есть ∀ε > 0,∃δ > 0, такое, что ∀M ′(x′, y′) и ∀M ′′(x′, y′′)
расстояние между которами ρ(M ′,M ′′) < δ выполняется неравенство

|f(x′′, y′′)− f(x′, y′)| < ε

В частности ∀x ∈ [a, b] и ∀y′, y′′ ∈ [c, d], таких что |y′ − y′′| < δ выполняется нера-
венство

|f(x, y′′)− f(x, y′)| < ε

b− a
Используя это неравенство получаем

|F (y′′)−F (y′)| =

∣∣∣∣∣∣
b∫

a

f(x, y′′) dx−
b∫

a

f(x, y′) dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
b∫

a

|f(x, y′′)− f(x, y′)| dx

∣∣∣∣∣∣ < ε

b− a

∣∣∣∣∣∣
b∫

a

dx

∣∣∣∣∣∣ = ε

Таким образом ∀ε > 0,∃δ > 0 и ∀y′, y′′ ∈ [c, d] таких что |y′ − y′′| < δ выполняется
неравенство

|F (y′′)− F (y′)| < ε

Это и означает, что функция F (y) равномерно непрерывна (а, значит, и просто
непрерывна) на сегменте [c, d]. Теорема 1 доказана.

Обобщением теоремы 1 является следующая теорема.

Теорема 1’. Пусть функция f(x, y) непрерывна в прямоугольнике Q, и пусть
x1(y) и x2(y) непрерывны на сегменте [c, d] и удовлетворяют неравенствам(рис. 13.1)

a ≤ x1(y) ≤ x2(y) ≤ b

тогда функция

g(y) =

x2(y)∫
x1(y)

f(x, y) dx

79

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


Математический анализ Часть III •
Бутузов Валентин Федорович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Рис. 13.1 – Функция f(x, y) непрерывная в прямоугольнике Q.

непрерывна на сегменте [c, d]. (Докажите это самостоятельно).
Теорема 2 (об интегрировании по параметру).Пусть функция f(x, y) непре-

рывна в прямоугольнике Q, тогда функция F (y) =
b∫
a

f(x, y) dx интегрируема на

сегменте [c, d] и справедливо равенство

d∫
c

F (y) dy =

d∫
c

 b∫
a

f(x, y) dx

 dy =

b∫
a

 d∫
c

f(x, y) dy

 dx (60)

в таком случае говорят, что можно изменить порядок интегрирования.
Доказательство. По теореме 1 функция F (y) непрерывна на сегменте [c, d] и,

следовательно, интегрируема на этом сегменте.
Функция f(x, y) непрерывна в прямоугольнике Q, поэтому существует двойной

интеграл
∫∫
Q

f(x, y) dx dy и существуют внутренние интегралы в повторных инте-

гралах, входящих в равенство (60). Следовательно(теорема второго семестра), су-
ществуют повторные интегралы и каждый из них равен двойному интегралу, а,
значит, эти повторные интегралы равны друг другу, т.е. выполняется равенство
(60). Теорема 2 доказана.
Теорема 3 (о дифференцировании по параметру).
усть функция f(x, y) и ее частная производная ∂f

∂y
(x, y) непрерывны в прямоуголь-

нике Q. Тогда функция F (y) =
b∫
a

f(x, y) dx имеет на сегменте [c, d] непрерывную

производную F (y) и справедливо равенство

F ′(y) =

b∫
a

∂f

∂y
(x, y) dx
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в таком случае говорят, что интеграл, зависящий от параметра, можно дифферен-
цировать по параметру под знаком интеграла.
Доказательство. Введeм функцию

G(y) =
∂f

∂y
(x, y)

По теореме 1 функция G(y) непрерывна на сегменте [c, d]. Нам нужно доказать,
что функция F (y) имеет непрерывную производную и F (y) = G(y). Рассмотрим
интеграл с переменным верхним пределом

y∫
c

G(t) dt =

y∫
c

 b∫
a

∂f

∂t
(x, t) dx

 dt

В силу теоремы 2 в повторном интеграле можно изменить порядок интегрирования:

y∫
c

G(t) dt =

b∫
a

 y∫
c

∂f

∂t
(x, t) dt

 dx

Внутренний интеграл в правой части равенства вычислим по формуле Ньютона -
Лейбница:

y∫
c

∂f

∂t
(x, t) dt = f(x, t)

∣∣∣∣y
c

= f(x, y)− f(x, c)

Откуда получаем

y∫
c

G(t) dt =

b∫
a

[f(x, y)− f(x, c)] = F (y)− F (c)

Следовательно

F (y) =

y∫
c

G(t) dt+ F (c)

Так как G(t) — непрерывная функция, то

d

dy

 y∫
c

G(t)

 = G(y)

(производная интеграла с переменным верхним пределом). Следовательно,

F ′(y) = G(y

Теорема 3 доказана.
Обобщением теоремы 3 является следующая теорема.
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Теорема 3’.
Пусть выполнены условия теоремы 3 и пусть x2(y) дифференцируемы на сегменте

[c, d] и удовлетворяют неравенствам

a ≤ x1(y) ≤ x2(y) ≤ b

Тогда функция

g(y) =

x2(y)∫
x1(y)

f(x, y) dx

дифференцируема на сегменте [c, d] и справедливо равенство

g′(y) =

x2(y)∫
x1(y)

∂f

∂y
(x, y) dx+ f(x2(y), y) · x′2(y)− f(x1(y), y) · x′1(y) (61)

Доказательство. Введeм функцию

Φ(x, y) =

x∫
a

f(t, y) dt

В силу теоремы 1

∂Φ

∂x
(x, y) = f(x, y) непрерывная функция

В силу теоремы 3

∂Φ

∂y
(x, y) =

x∫
a

∂f

∂y
(x, t) dt непрерывная функция

Значит Φ(x, y) имеет непрерывные частные производные, отсюда следует, по доста-
точному условию дифференциируемости, что Φ(x, y) дифференциируема. Исполь-
зуя Φ(x, y) получим

g(y) =

x2(y)∫
x1(y)

f(x, y) dx =

x2(y)∫
x1(y)

∂Φ

∂x
(x, y) dx = Φ(x, y)

∣∣∣∣x2(y)

x1(y)

= Φ(x2(y), y)− Φ(x1(y), y)

Вычислим производную g′(y) по правилу дифференцируемости сложной функции

g′(y) =
∂Φ

∂x
(x2(y), y)

f(x2(y),y)

· x′2(y) +
∂Φ

∂y
(x2(y), y)

x2(y)∫
a

∂f
∂y

(x,y) dx

− ∂Φ

∂x
(x1(y), y)

f(x1(y),y)

· x′1(y)− ∂Φ

∂y
(x1(y), y)

x1(y)∫
a

∂f
∂y

(x,y) dx

=
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=

x2(y)∫
a

∂f

∂y
(x, y) dx−

x1(y)∫
a

∂f

∂y
(x, y) dx+ f(x2(y), y) · x′2(y)− f(x1(y), y) · x′1(y)

так как
x2(y)∫
a

∂f

∂y
(x, y) dx+

a∫
x1(y)

∂f

∂y
(x, y) dx =

x2(y)∫
x1(y)

∂f

∂y
(x, y) dx

Таким образом формула (10) справедлива. Теорема 3’ доказана.

13.2. Несобственные интегралы первого рода, зависящие от
параметра

Рис. 13.2 – Полуполоса.

Пусть функция f(x, y) определена в
полуполосе {(x, y) : x ≥ a, c ≤ y ≤ d}
(рис.13.2)

и пусть для ∀y из сегмента [c, d] суще-
ствует несобственный интеграл первого

рода
∞∫
a

f(x, y) dx Тогда на сегменте [c, d]

определена функция

F (y) =

∞∫
a

f(x, y) dx

которая называется несобственным ин-
тегралом первого рода, зависящим от
параметра y.

Пример. Рассмотрим несобственный интеграл

F (y) =

∞∫
a

ye−xy dx

на полупрямой y ≥ 0. Если y = 0, то F (0) = 0, а если y > 0, то

F (y) = lim
A→∞

A∫
0

ye−xy dx = lim
A→∞

(−e−xy)
∣∣∣∣A
0

= lim
A→∞

(1− eAy) = 1

Значит

F (y) =

∞∫
a

ye−xy dx =

{
0, y = 0

1, y > 0
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f(x, y) = ye−xy непрерывна в {x ≥ 0, y ≥ 0}, а F (y) разрывна в точке y = 0. В связи
с этим отметим, что:

1) для собственного интеграла F (y) =
b∫
a

f(x, y) dx непрерывность f(x, y) гаран-

тировала непрерывность функции F (y) (теорема 1);
2) с аналогичной ситуацией мы встречались при изучении функциональных ря-

дов: сумма ряда, членами которого являются непрерывные функции, может быть
разрывной функцией. В теории функциональных рядов и последовательностей важ-
ную роль играло понятие равномерной сходимости. Например (как мы знаем), ес-
ли члены ряда — непрерывные функции и ряд сходится равномерно на некотором
промежутке, то и сумма ряда— непрерывная функция на этом промежутке. Введeм
понятие равномерной сходимости для несобственных интегралов первого рода, за-
висящих от параметра.

Определение. Будем говорить, что несобственный интеграл
∞∫
a

f(x, y) dx сходит-

ся равномерно по параметру y, на промежуке Y , если он сходится равномерно для
любого y из Y и ∀ε > 0,∃A > a и для ∀A′ > A и ∀y ∈ Y , выполняется неравенство∣∣∣∣∣∣

∞∫
a

f(x, y) dx−
A′∫
a

f(x, y) dx

∣∣∣∣∣∣ < ε

или, что то же самое, ∣∣∣∣∣∣
∞∫

A′

f(x, y) dx

∣∣∣∣∣∣ < ε (62)

Главным моментом в этом определении является то, что для заданного ε суще-
ствует A одно и то же для всех y из промежутка Y .

Вернeмся к рассмотренному примеру:

F (y) =

∞∫
a

ye−xy dx y ≥ 0

и исследуем этот несобственный интеграл на равномерную сходимость. Рассмотрим
неравентсво (62), для y > 0 и 0 < ε < 1∣∣∣∣∣∣

∞∫
A′

ye−xy) dx

∣∣∣∣∣∣ = e−A
′y < ε (63)

Это неравенство выполняется, если A′ > − ln ε
y
. Так как − ln ε

y
→ +∞ при y → +0

то для заданногоε ∈ (0 < ε < 1) не существует числа A (одного и того же для всех
y > 0), такого, чтобы ∀A′ > A и ∀y > 0

выполнялось неравенство (63). Это означает, что данный несобственный инте-
грал сходится неравномерно по параметру y на полупрямой (0,∞) (и также на
полупрямой [0,∞))
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Задание 1.Доказать, пользуясь определением равномерной сходимости, что этот
несобственный интеграл сходится равномерно по параметру y на Y = [y ≥ y0), где
y0 > 0.
Задание 2. Сформулируйте определение неравномерной сходимости по парамет-

ру y несобственного интеграла
∞∫
a

f(x, y) dx (т.е. отрицание равномерной сходимости)

и примените его для установления неравномерной сходимости при y > 0 рассмот-
ренного несобственного интеграла.
Признаки равномерной сходимости.
Перейдeм к признакам равномерной сходимости несобственных интегралов.

Теорема 4 (критерий Коши равномерной сходимости несобственных ин-
тегралов первого ряда, зависящих от параметра).

Пусть несобственный интеграл
∞∫
a

f(x, y) dx сходится при каждом y из промежутка

Y . Для того чтобы этот интеграл сходился равномерно по параметру y на проме-
жутке Y , необходимо и достаточно, чтобы было выполнено следующее условие:
∀ε > 0, ∃A > a и для ∀A′ > A и ∀A′′ > A и ∀y ∈ Y , выполнялось неравенство∣∣∣∣∣∣

A′′∫
A′

f(x, y) dx

∣∣∣∣∣∣ < ε (64)

Доказательство.

1) Необходимость. Пусть несобственный интеграл
∞∫
a

f(x, y) dx сходится равномер-

но по параметру y на промежутке Y . Тогда, согласно определению равномерной
сходимости, ∀ε > 0,∃A > a и для ∀A′ > A и ∀A′′ > A и ∀y ∈ Y , выполнялось
неравенство ∣∣∣∣∣∣

∞∫
A′

f(x, y) dx

∣∣∣∣∣∣ < ε

2
и

∣∣∣∣∣∣
∞∫

A′′

f(x, y) dx

∣∣∣∣∣∣ < ε

2

Используя эти неравенства, получаем:∣∣∣∣∣∣
A′′∫
A′

f(x, y) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∫

A′

f(x, y) dx−
∞∫

A′′

f(x, y) dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∫

A′

f(x, y) dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∞∫

A′′

f(x, y) dx

∣∣∣∣∣∣ < ε

2
+
ε

2
= ε

Тем самым утверждение о необходимости условия (64) доказано.
2) Достаточность. Пусть ∀ε > 0,∃A > a и для ∀A′ > A и ∀A′′ > A и ∀y ∈ Y

выполнено условие (64). Перейдем в неравентстве (64) к пределу при A′′ → ∞,
получим неравентство ∣∣∣∣∣∣

∞∫
A′

f(x, y) dx

∣∣∣∣∣∣ ≤ ε
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которое справедливо ∀A′ > A и ∀y ∈ Y . А это и означает, что несобственный инте-

грал
∞∫
a

f(x, y) dx сходится равномерно по параметру y на промежутке Y . Теорема

4 доказана.
Задание.

1) Доказать, что несобственный интеграл
∞∫
a

ye−xy dx y ≥ 0 сходится при y ≥ 0

неравномерно по параметру y пользуясь теоремой 4.

2) Доказать, что
∞∫
a

ye−xy dx y ≥ 0 при y ≥ y0, где y0 > 0, сходится при y ≥ 0

равномерно по параметру y пользуясь теоремой 4.

Теорема 5 (мажорантный признак Вейерштрасса). Пусть функция f(x, y)
определена в области G = {(x, y) : x ≥ a, y ∈ Y где Y — некоторый промежуток}

и пусть ∀y ∈ Y существует инетеграл
A∫
a

f(x, y) dx на любом сегменте вида [a,A]; в

области G выполняется неравенство |f(x, y)| ≤ g(x), где g(x) — такая функция, что

несобственный интеграл
∞∫
a

g(x) dx сходится. Тогда несобственные интегралы

∞∫
a

f(x, y) dx и
∞∫
a

|f(x, y)| dx

сходятся равномерно по параметру y на промежутке Y .
Доказательство. Зададим произвольное ε > 0. По критерию Коши для несоб-

ственных интегралов первого рода ∃A, такое, что ∀A′ > A и ∀A′′ > A будет выпол-
нено неравенство ∣∣∣∣∣∣

A′′∫
A′

g(x) dx

∣∣∣∣∣∣ < ε

Так как ∀x ≥ a, ∀y ∈ Y выполнены неравенство |f(x, y)| ≤ g(x), то∣∣∣∣∣∣
A′′∫
A′

f(x, y) dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
A′′∫
A′

|f(x, y)| dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
A′′∫
A′

g(x) dx

∣∣∣∣∣∣ < ε

Эти неравенства означают, что несобственные интегралы
∞∫
a

f(x, y) dx и
∞∫
a

|f(x, y)| dx

сходятся равномерно по параметру y на промежутке Y . Теорема 5 доказана.
Следующий признак равномерной сходимости относится к несобственным инте-

гралам вида
∞∫
a

f(x, y)g(x, y) dx (65)

Теорема 6 (признак Дирихле — Абеля).
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1)Пусть функция f(x, y) непрерывна в области G = {(x, y) : x ≥ a, y ∈ Y где Y —
некоторый промежуток} и имеет ограниченную первообразную по переменной x.(То
есть ∃F (x, y) : ∂F

∂x
(x, y) = f(x, y))

2)пусть функция g(x, y) ↓ 0(монотонно стремится к нулю) при x→∞ равномерно
относительно y ∈ Y и имеет непрерывную производную ∂g

∂x
(x, y) при x ≥ a, y ∈ Y

Тогда несобственный интеграл (65) сходится равномерно по параметру y на про-
межутке Y .
Доказательство. теоремы проводится в точности так же, как и доказательство

теоремы о признаке Дирихле для несобственного интеграла вида
∞∫
a

f(x)g(x) dx но

только теперь нужно воспользоваться критерием Коши равномерной сходимости
несобственных интегралов, зависящих от параметра (теорема 4 данного парагра-
фа).

Пример. Рассмотрим несобственный интеграл
∞∫

1

sinxy

x
dx

Он сходится ∀y ∈ (∞,∞) : при y = 0 он равен нулю, при y 6= 0 сходится по признаку
Дирихле(теорема 3 из главы 17). Докажем, что этот интеграл сходится равномерно
по параметру y на полупрямой [y0,∞), где y0 > 0.

Положим f(x, y) = sin xy, g(x, y) = 1
x
. Функция f(x, y) удовлетворяет условию 1)

теоремы 6: она непрерывна в области G = {(x, y) : x ≥ 1, y ≥ y0} и имеет в этой
области ограниченную первообразную F (x, y) по переменной x : F (x, y) = cosxy

y
,

|F (x, y)| ≤ 1
y0
. Функция g(x, y) удовлетворяет условию 2) теоремы 6: g(x, y) = 1

x

— убывающая функция на полупрямой [1,∞); g(x, y) → 0 при x → ∞, причeм
это стремление равномерно по y, поскольку g(x, y) не зависит от y; g(x, y) имеет
непрерывную производную ∂g

∂x
= − 1

x2
.

Следовательно, по признаку Дирихле—Абеля данный несобственный интеграл
сходится равномерно по параметру y на полупрямой [y0,∞).

Теперь докажем что интеграл сходится неравномерно по y на всей прямой y ∈ R
по критерию коши, построим отрицание, ∃ε > 0.∀A > 1∃A′ > A ∃A′′ > A и ∃y∣∣∣∣∣∣

A′′∫
A′

sinxy

x
dx

∣∣∣∣∣∣ ≥ ε

Мы взяли A > 1 так как нижний предел равен единице. Возьмем ε = sin 1
3
> 0, для

∀A возьмем A′ = n > A, A′′ = 3n, y = 1
3n
, тогда∣∣∣∣∣∣

A′′∫
A′

sinxy

x
dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3n∫
n

sin x
3n

x
dx

∣∣∣∣∣∣ ≥ sin
1

3

3n∫
n

dx

x
= sin

1

3
· ln 3 > sin

1

3
= ε

Это и означает в соответствии критерия коши что интеграл сходится неравномерно
по y на всей прямой y ∈ R.
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Лекция 14

14.1. О непрерывности, интегрировании и
дифференцировании по параметру несобственных
интегралов первого рода, зависящих от параметра

Обратимся ещe раз к примеру, рассмотренному ранее

F (y) =

∞∫
a

ye−xy dx =

{
0, y = 0

1, y > 0

В этом примере подынтегральная функция f(x, y) = ye−xy непрерывна в квад-
ранте {(x, y) : x ≥ 0, y ≥ 0}, а функция F (y)(несобственный интеграл, зависящий
от параметра y) разрывна в точке y = 0. Как мы установим, это обусловлено нерав-
номерной сходимостью несобственного интеграла по параметру y.
Теорема 7 (о непрерывности несобственного интеграла, зависящего от

параметра). Пусть функция f(x, y) определена в полуполосе {(x, y) : x ≥ a, c ≤

y ≤ d} и пусть несобственный интеграл F (y) =
∞∫
a

f(x, y) dx сходится равномерно по

параметру y на сегменте [c, d].
Тогда функция F (y) непрерывна на сегменте [c, d]. Доказательство. Для каж-

дого натурального числа n введeм функцию

Fn(y) =

a+n∫
a

f(x, y) dx

Для каждого n функция Fn(y) является собственным интегралом, зависящим от
параметра y. По теореме 1 каждая функция Fn(y) непрерывна на сегмете [c, d] .

lim
n→∞

Fn(y) =

∞∫
a

f(x, y) dx = F (y)

Докажем что Fn(y) ⇒ F (y) на сегмете [c, d]. Отсюда последует (в силу теоремы 15 из
главы 16), что функция F (y) непрерывна на сегменте [c, d]. Зададим произвольное

ε > 0, так как F (y) =
∞∫
a

f(x, y) dx сходится равномерно по параметру y на сегменте

[c, d], то ∃A > a, такое, что ∀A′ > A и ∀y ∈ [c, d] выполнено неравенство∣∣∣∣∣∣
∞∫

A′

f(x, y) dx

∣∣∣∣∣∣ < ε

Возьмем N такое что a+N > A, тогда ∀n > N : a+N > A, следовательно∣∣∣∣∣∣
∞∫

a+n

f(x, y) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∫
a

f(x, y) dx−
a+n∫
a

f(x, y) dx

∣∣∣∣∣∣ = |F (y)− Fn(y)| < ε
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То есть
∀n > N, ∀y ∈ [c, d] : |Fn(y)− F (y)| < ε

Это и означает, что Fn(y) ⇒ F (y) на сегменте [c, d], что и требовалось доказать.
Теорема 8 (об интегрировании несобственного интеграла по парамет-

ру). Пусть выполнены условия теоремы 7, значит функция F (y) непрерына на
сегменте [c, d]. Функция F (y) интегрируема на сегменте [c, d], и справедливо равен-
ство

d∫
c

F (y) dy =

d∫
c

 ∞∫
a

f(x, y) dx

 dy =

∞∫
a

 d∫
c

f(x, y) dy

 dx (66)

Доказательство. По теореме 7 функция F(y) непрерывна на сегменте [c, d] и,
следовательно, интегрируема на этом сегменте.

Несобственный интеграл в правой части равенства (66) — это limA→∞

A∫
a

[
d∫
c

f(x, y) dy

]
dx

(по определению несобственного интеграла первого рода), а так как в повторном
интеграле, стоящем под знаком предела, можно изменить порядок интегрирования
(в силу теоремы 2), то для доказательства равенства (66) нужно доказать, что

lim
A→∞

d∫
c

 A∫
a

f(x, y) dx

 dy =

d∫
c

 ∞∫
a

f(x, y) dx

 dy

или, что то же самое,

lim
A→∞

d∫
c

 A∫
a

f(x, y) dx−
∞∫
A

f(x, y) dx

 dy = 0

то есть

lim
A→∞

d∫
c

 ∞∫
a

f(x, y) dx

 dy = 0 (67)

Зададим произвольное ε > 0. Так как несобственный интеграл
∞∫
a

f(x, y) dx сходится

равномерно по параметру y на сегменте [c, d], то ∃A, такое, что ∀A′ > A и ∀y ∈ [c, d]
будет выполнено неравенство ∣∣∣∣∣∣

∞∫
A

f(x, y) dx

∣∣∣∣∣∣ < ε

d− c

Используя это неравенство, получаем, что ∀A′ > A:∣∣∣∣∣∣
d∫
c

 ∞∫
A′

f(x, y) dx

 dy

∣∣∣∣∣∣ ≤ ε

d− c

d∫
c

dy = ε
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а это и означает справедливость равенства (67), что и требовалось доказать.
Теорема 9 (о дифференцировании несобственного интеграла по пара-

метру). Пусть выполнены условия:
1) функция f(x, y) и еe частная производная ∂f

∂y
(x, y) непрерывны в полуполосе

{(x, y) : x ≥ a, c ≤ y ≤ d};

2) несобственный интеграл F (y) =
∞∫
a

f(x, y) dx сходится ∀y ∈ [c, d];

3) несобственный интеграл F (y) =
∞∫
a

∂f
∂y

(x, y) dx сходится равномерно по парамет-

ру y на сегменте [c, d].
Тогда функция F (y) дифференцируема на сегменте [c, d] и справедливо равенство

F ′(y) =

∞∫
a

∂f

∂y
(x, y) dx

т.е
d

dy

∞∫
a

f(x, y) dx =

∞∫
a

∂f

∂y
(x, y) dx

В таком случае говорят, что несобственный интеграл зависящий от параметра y,
можно дифференцировать по параметру под знаком интеграла.
Доказательство. Рассмотрим функциональную последовательность {Fn(y)},

где

Fn(y) =

a+n∫
a

f(x, y) dx

Для каждого n функция Fn(y) является собственным интегралом, зависящим от
параметра y. По теореме 3 каждая функция Fn(y) дифференциирума на сегмете
[c, d] и справедливо равенство

F ′n(y) =

a+n∫
a

∂f

∂y
(x, y) dx

Из условия 2) следует что Fn(y) → F (y), ∀y ∈ [c, d], а из условия 3) следует что

F ′n(y) ⇒
∞∫
a

∂f
∂y

(x, y) dx на сегмете [c, d].

Тем самым, для функциональной последовательности {Fn(y)} выполнены все
условия теоремы 17 из главы 16. Согласно этой теореме, функция F (y) диффе-
ренцируема на сегменте [c, d] и имеет место равенство

F ′(y) = lim
n→∞

F ′n(y) =

∞∫
a

∂f

∂y
(x, y) dx

Теорема 9 доказана.
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14.2. Вычисление несобственных интегралов с помощью
дифференцирования по параметру

Рассмотрим пример: вычислить несобственный интеграл

∞∫
0

sinx

x
dx

(в точке x = 0 считаем подынтегральную функцию равной 1). Мы знаем, что этот
интеграл сходится, и задача теперь состоит в том, чтобы найти его значение. С этой
целью рассмотрим несобственный интеграл первого рода, зависящий от параметра
y:

F (y) =

∞∫
0

e−xy
sinx

x
dx, y ≥ 0

Тогда

F (0) =

∞∫
0

sinx

x
dx

Разобьем наши вычисления на несколько этапов
а)Сначала докажем, что F (y) непрерывна при y ≥ 0.

F (y) =

1∫
0

e−xy
sinx

x
dx+

∞∫
1

e−xy
sinx

x
dx = F1(y) + F2(y)

По теореме 1 F1(y) непрерывна по параметру y при y ≥ 0. Чтобы доказать что F2(y)
непрерывна достаточно доказать (согласно теореме 7) что она сходится равномер-
но. Воспользуемся признаком Дирихле-Абеля (теорема 6). С этой целью положим
f̃(x, y) = sinx, g(x, y) = 1

x
e−xy.

1) f̃(x, y)- непрерывная и имеет ограниченную первообразную − cosx
2) Функция g(x) ↓ 0 при x → ∞ равномерно по y (доказывается с помощью

оценки g(x, y) ≤ 1
x
). Также производная

∂g

∂x
=
−ye−xy − e−xy

x2
= e−xy

(
1

x
+

1

x2

)
ограничена и непрерывна.(разбиение интеграла на 2 части потребовалось для огра-
ниченности частной производной, точка 0 не входит в предел интегрирования)

Итак, функции f̃(x, y) и g(x, y) удовлетворяют условиям теоремы 6 и, следова-
тельно, по признаку Дирихле-Абеля несобственный интеграл F2(y) сходится равно-
мерно по параметру y на полупрямой y ≥, что обеспечивает непрерывность F2(y).
Значит, и F (y) непрерывна на полупрямой y ≥ как сумма непрерывных функций.

б) Докажем что F (y) дифференциируема при y > 0 и еe производную F (y) можно
вычислить путeм дифференцирования под знаком интеграла. Возьмeм произволь-
ный сегмент [y0 ≤, y1], где y0 > 0. Мы берем сегмент, так как в теореме 9, был
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сегмент, но если мы докажем это для ∀y0, y1, то отсюда будет следовать что она
дифференциируема при y > 0. Проверим условия теоремы 9. 1) f(x, y) = e−xy sinx

x
и

∂f
∂y
− sinxe−xy непрерывны в полуполосе {(x, y) : x ≥ 0, y0 ≤ y ≤ y1}

2)
∞∫
0

f(x, y) dx сходится ∀y ∈ [y0, y1] (доказанно в пункте a))

3)
∞∫
0

∂f
∂y

(x, y) dx сходится равномерно по параметру y на сегменте [y0, y1]. (это до-

казывается с помощью мажорантного признака Вейерштрасса используя оценку:
| sinxe−xy| ≤ e−xy0 := g(x) в {(x, y) : x ≥ 0, y0 ≤ y ≤ y1}, а несобственный интеграл
∞∫
0

g(x) dx сходится — он равен 1
y0
.)

б) Теперь вычислим

∞∫
0

∂f

∂y
(x, y) dx = −

∞∫
0

sinxe−xy dx = lim
a→∞
−

A∫
0

sinxe−xy dx =

lim
a→∞

e−xy(y sinx+ cosx)

1 + y2

∣∣∣∣A
0

= − 1

1 + y2
(68)

б) В этом и состоит суть метода: несобственный интеграл F (y) не вычисляется
непосредственно, но, как оказалось, нетрудно вычислить несобственный интеграл
F (y). Из (68) следует, что

F (y) = −arctg y + C при y > 0 (69)

Найдем постоянную C, для чего воспользуемся оценкой

f(x, y) ≤ e−xy
∣∣∣∣sinxx

∣∣∣∣ ≤ e−xy

в силу которой

|F (y)| ≤
∞∫

0

e−xy dx =
1

y

Отсюда следует, что limy→∞ F (y) = 0. Переходя к пределу при y → ∞ в равенстве
(69), получаем:

F (y) =

∞∫
0

sinxe−xy dx = −arctg y +
π

2
при y > 0

а поскольку функция F (y) непрерывна при y ≥ 0 (это доказано в п. а)), то

F (0) = lim
y→0

F (y) =
π

2

Итак,

F (0) =

∞∫
0

sinx

x
dx = F (y) =

π

2
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Это классический пример как иногда можно вычислить "неберущийся"интеграл с
помощью дифференциирования по параметру.

Следствие. I(α) =
∞∫
0

sinαx
x

dx. Если α = 0, тогда I(0) = 0. Пусть α > 0, сделаем

замену αx = t, тогда
∞∫

0

sin t

t
dt =

π

2

Так как I(α) нечетная функция, то I(−α) = −I(α), значит при α < 0 I(α) = −π
2

Таким образом

I(α) =


π
2

α > 0

0 α = 0

−π
2

α < 0

Функция I(α) называется разрывным множителем Дирихле. Через эту функцию
можно выразить известную функцию Signα:

Signα =
2

π
I(α) =


1 α > 0

0 α = 0

−1 α < 0
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Лекция 15

О несобственных интегралах второго рода, зависящих от параметра
Пусть функция f(x, y) определенна в области G = {(x, y) : a < x ≥ b, y ∈ Y }, 

пусть ∀y ∈ Y функция f(x, y) неограничена в окрестности точки x = a, но огра-
ничена наа любом сегменте вида δ ≤ x ≤ b, где δ > 0. Рассмотрим несобственный 
интеграл второго рода по полусегменту (a, b]

b∫
a

f(x, y) dx, y ∈ Y

Если этот интеграл сходится для ∀y ∈ Y , то тем самым определенна функция

F (y) =

b∫
a

f(x, y) dx, y ∈ Y

Эта функция F (y) и называется несобственным интегралом второго рода, завися-
щим от параметра y.
Определение. Говорят, что несобственный интеграл второго рода сходится рав-

номерно по параметру y если он сходится для любого yY и ∀ε > 0,∃δ > 0, такое,
что ∀δ′ ∈ (0, δ) и для ∀y ∈ Y выполняется неравенство∣∣∣∣∣∣

a+δ′∫
a

f(x, y) dx

∣∣∣∣∣∣ < ε

Главный момент здесь в том что δ берется одно и то же для всех y.
Задание. Сформулировать критерий Коши равномерной сходимости по пара-

метру несобственных интегралов второго рода, зависящих от параметра.
Признаки Вейерштрасса и Дирихле-Абеля для интегралов второго рода, зави-

сящих от параметра, формулируются так же как и для интегралов первого рода,
зависящих от параметра.

15.1. Интегралы эйлера

Под этим названием в математическом анализе выступают две функции:

Γ(p) =

∞∫
0

xp−1e−x dx (70)

Это «гамма-функция» аргумента p, это несобственный интеграл, зависящий от па-
раметра p.

B(p, q) =

1∫
0

xp−1(1− x)q−1 dx (71)
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Это «бета-функция» аргументов p и q, это интеграл, зависящий от параметров p
и q. Мы рассмотрим некоторые свойства этих функций.
Свойства Γ — функции.
1) Область определения. Представим функцию Γ(p) в виде суммы двух сла-

гаемых

Γ(p) =

∞∫
0

xp−1e−x dx =

1∫
0

xp−1e−x dx+

∞∫
1

xp−1e−x dx = Γ1(p) + Γ2(p)

Интеграл Γ2(p) сходится для ∀p. Рассмотрим итеграл Γ1(p), если p < 1 то он явля-
ется несобственным интегралом второго рода, точка x = 0 является особой точкой
подынтегральной функции, и интеграл сходится, если 1− p < 1, т.е. p > 0. Значит
функция Γ(p) определена для ∀p > 0
2) Непрерывность. Для непрерывности есть достаточное условие равномерной

сходимости по параметру, но мы разбили функцию Γ(p) на два слагаемых, первое
из которых несобственный интеграл второго рода, но мы не формулировали доста-
точное условие для несобственных интегралов второго рода. Поэтому рассмотрим
лишь непрерывность Γ2(p).

Рассмотрим произвольный сегмент [p1p ≥ p2], где p1 > 0.. На этом сегменте
функция Γ2(p) сходится равномерно по параметру p, на [p1, p2] что можно доказать
по признаку Вейерштрасса.

0 < f(x, y) = xp−1e−x ≤ xp2−1e−x = g(x)

А интеграл
∞∫
1

g(x) dx сходится, значит по мажорантному признаку Вейерштрасса

равномерно сходится интеграл
∞∫
0

xp−1e−x dx Тем самым Γ2(p) непрерывна на [p1, p2],

а следовательно при любом p > 0. Также по признаку Вейерштрасса можно дока-
зать непрерывность Γ1(p). Сумма двух непрерывных функций является непрерыв-
ной функцией, следовательно Γ(p) непрерывна.
3) Дифференцируемость. С помощью теоремы 9 и аналогичной теоремы для

несобственных интегралов второго рода нетрудно доказать, что функции Γ2(p) и
Γ1(p) дифференцируемы любое число раз по параметру p на полупрямой p > 0 и их
производные можно вычислять путeм дифференцирования под знаком интеграла.
Для производной n–го порядка функции Γ(p) получается формула

Γn(p) =

∞∫
0

xp−1 lnn xe−x dx

Задание. Доказать это утверждение.
Замечани. Можно было бы начать с дифференциируемости, доказав его опира-

ясь на теорему 9, а из дифференциируемости следовала бы непрерывность.
4) Рекуррентная формула. Пусть p > 0, рассмотрим интеграл Γ(p + 1) при-

меним к нему формулу интегрирования по частям(можно доказать, что в данном
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случае эта формула применима)

Γ(p+ 1) =

∞∫
0

xpe−x dx =

∞∫
0

xpd(−e−x) = −xpe−x
∣∣∣∣∞
0

+

∞∫
0

pxp−1e−x dx = pΓ(p)

Итак, для p > 0 справедливо равенство

Γ(p+ 1) = pΓ(p) (72)

Это равенство называется формулой приведения. Пусть n − 1 < p ≤ n, где n —
натуральное число, то, применяя формулу (72) приведения несколько раз, получим:

Γ(p+ 1) = pΓ(p) = p(p− 1)Γ(p− 1) = . . . =

= p(p− 1) . . . p(p− n+ 1)Γ(p− n+ 1) (73)

Так как 0 < p− n+ 1 ≤ 1 то равенство (73) дает возможность свести вычисление
Γ(p) для любого p > 1 к вычислению Γ(p) для 0 < p ≤ 1 Полагая в равенстве (73)

p = n, где n — натуральное число, и учитывая, что Γ(1) =
∞∫
0

e−x dx = 1, приходим

к замечательной формуле

Γ(n+ 1) = n(n− 1) . . . 1 = n!

5) График функции. Из формулы (72) следует что

Γ(p) =
Γ(p+ 1)

p
∼ 1

p
при p→ +0

Если p → +0, то Γ(p + 1) → Γ(1) = 1. Более детальное исследование показывает,
что график функции имеет вид, представленный на рис.15.1
6) Функция при p<0. Как уже было отмечено, при p ≤ 0 несобственный ин-

теграл (70) расходится и поэтому формула (70) не может служить определением
функции Γ(p) для p < 0. Но можно определить Γ(p) для p < 0 иначе, а именно,
используя рекуррентную формулу.

Γ(p) =
Γ(p+ 1)

p
(74)

Пусть −1 < p < 0 ⇒ 0 < p + 1 < 1. Тогда мы можем определить Γ-функцию для
−1 < p < 0 по формуле (74). Возьмем теперь −2 < p < −1 ⇒ −1 < p + 1 < 0, а
для этих p числитель в формуле (74) определен на предыдущем шаге. Продолжая
этот процесс, мы определим функцию Γ(p) с помощью формулы (18.16) на любом
интервале (−n,−(n− 1)), где n — натуральное число.
Задание. Изобразите (качественно) график функции Γ(p) для p < 0.
7) Формула дополнения.

Γ(p)Γ(1− p) =
π

sin pπ
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Рис. 15.1

Свойства В — функции.
1) Область определения Представим функцию B(p, q) в виде суммы двух сла-

гаемых

B(p, q) =

1∫
0

xp−1(1−x)q−1 dx =

1
2∫

0

xp−1(1−x)q−1 dx+

1∫
1
2

xp−1(1−x)q−1 dx = B1(p, q)+B2(p, q)

Если p ≥ 1 и q ≥ 1, то B1(p, q) B2(p, q) являются собственными интегралами —
непрерывными функциями параметров p и q. Если же p < 1, то B1(p, q) является
несобственным интегралом второго рода по полусегменту (0, 1

2
], точка x = 0 явля-

ется особой точкой подынтегральной функции, и интеграл сходится, если 1p < 1,
т.е. p > 0. Аналогично, если q < 1, то B2(p, q) является несобственным интегралом
второго рода по полусегменту [1

2
, 1), x = 1 — особая точка подынтегральной функ-

ции, и интеграл сходится, если q > 0. Таким образом, функция B(p, q) определена
в квадранте {p > 0, q > 0}.
2) Симметрия. Справедливо равенство

B(p, q) = B(q, p)

Сделаем замену переменной x = 1− t, тогда

B(p, q) =

1∫
0

xp−1(1− x)q−1 dx = −
0∫

1

(1− t)p−1tq−1 dt =

1∫
0

tq−1(1− t)p−1 dt = B(q, p)
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3) Связь функций В(p,q) и Γ(p). имеет место равенство

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)

Из этой формулы следует, что раз функция B(p, q) выражается через дифференци-
ируемую функцию, то она имеет в квадранте {p > 0, q > 0} непрерывные частные
производные любого порядка.
4) Другая формула для В (p,q). В интеграле

B(p, q) =

1∫
0

xp−1(1− x)q−1 dx

сделаем замену переменной x = 1
1+t

, получим 1− x = t
1−t и dx = − 1

(1+t)2
. Тогда

B(p, q) =

∞∫
0

1

(1 + t)p−1
· tq−1

(1 + t)q−1
· 1

(1 + t)2
dt =

∞∫
0

tq−1

(1 + t)p+q
dt =

∞∫
0

xp−1

(1 + x)p+q
dx

Полученное выражение удобно для вычисления целого ряда интегралов.
Пример.

I =

∞∫
0

x
1
3

(1 + x)3
dx

Запишем интеграл в виде

I =

∞∫
0

x
4
3
−1

(1 + x)
4
3

+ 5
3

dx = B

(
4

3
,
5

3

)
=

Γ
(

4
3

)
Γ
(

5
3

)
Γ(3)

=
1

2
· 1

3
Γ

(
1

3

)
2

3
Γ

(
2

3

)
=

1

9
Γ

(
1

3

)
Γ

(
2

3

)
=

1

9

π

sin π
3

=
2π

9
√

3
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Лекция 16

16.1. Кратные интегралы, зависящие от параметров

Кратные интегралы, зависящие от параметров, — это функции следующего вида:

u(y1, y2, . . . , ym) =

∫
. . .

∫
G

f(x1, x2, . . . , xn, y1, y2, . . . , ym) dx1 dx2 . . . dxn

Мы ограничимся рассмотрением тройных интегралов, имеющих вид

U(M) =

∫∫∫
G

f(M,P )g(P )dVp (75)

где G — кубируемая область в пространстве, P (x, y, z) пробегает область G, dVp =
dxdydz, g(P )- ограниченная интегрируемая в области G функция,M(x0, y0, z0), при-
чем f(M,P ) = f(x0, y0, z0, x, y, z) непрерывна при M 6= P и неограничена при
P →M .(рис.16.1)

Важным примером интегралов такого типа является потенциал гравитационного
поля, создаваемого в точке M(x0, y0, z0) телом G с плотностью массы ρ(P ) в точ-
ке P (x, y, z). Этот потенциал называется объeмным потенциалом или ньютоновым
потенциалом и имеет вид

U(M) =

∫∫∫
G

ρ(P )

rMP

dVp

где rMP =
√

(x− x0)+(y − y0)2 + (z − z0)2, f(M,P ) = 1
rMP

, g(P ) = ρ(P )

Рис. 16.1 – Кубируемая область G в пространстве.

1) Рассмотрим случай когда точка M /∈ G, тогда rMP 6= 0,∀P ∈ G, следовательно
U(M) собственный интеграл, зависящий от точкиM , как от параметра. Тогда U(M)
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непрерывная функция и имеет производную любого порядка, которую можно вы-
числить дифференциируя под знаком интеграла. Вычислим частную производную

∂U

∂x0

(M) =

∫∫∫
G

ρ(P )
∂

∂x0

(
1

rMP

)
dVp =

∫∫∫
G

ρ(P )
x− x0

r3
MP

dVp

Аналогичные выражения получаются для ∂U
∂y0

(M) и ∂U
∂z0

(M) сила ~F (M), с которой
единичная точечная масса, помещeнная в точку M , притягивается телом G, запи-
сывается через частные производные

~F (M) = gradu(M) =

{
∂U

∂x0

(M),
∂U

∂y0

(M),
∂U

∂z0

(M)

}
Вычислим частные производные второго порядка

∂2U

∂x2
0

=

∫∫∫
G

ρ(P )

(
− 1

r3
MP

+
3(x− x0)2

r5
MP

)
dVp

Аналогичные выражения получаются для ∂2U
∂y20

(M) и ∂2U
∂z20

(M) Складывая вторые
частные производные получим

div gradu(M) =
∂2U

∂x2
0

(M) +
∂2U

∂y2
0

(M) +
∂2U

∂z2
0

(M) = 4U(M) =

∫∫∫
G

ρ(P )

(
− 3

r3
MP

+
3[(x− x0)+(y − y0)2 + (z − z0)2]

r5
MP

)
dVp = − 3

r3
MP

+
3

r3
MP

= 0

Это показывает что если точка M лежит вне области G, то потенциал гравита-
ционного поля удовлетворяет уравнению Лапласа 4U(M) = 0

2) Пусть точка M внутренняя точка области G. Тогда наш интеграл становит-
ся несобственным. Возникают вопросы о непрерывности, дифференциируемости и
сохранении уравнения 4U(M) = 0, чтобы ответить на эти вопросы нужно ввести
некоторые понятия.

Вернемся к интегралу (75) пусть точка M0 ∈ G, обозначим через Ωδ
M0

шар с
центром в точке M0 радиуса δ.
Определение. Несобственный интеграл (75) называется сходящимся равномер-

но относительно M (по параметру M) в точке M0, если ∀ε > 0, ∃δ > 0, такое, что
шар Ωδ

M0
целиком содержится в области G и для любой кубируемо области ω ∈ Ωδ

M0

∀M ⊂ Ωδ
M0

выполняется неравенство∣∣∣∣∣∣
∫∫∫
ω

f(M,P )g(P )dVp

∣∣∣∣∣∣ < ε

Теорема 10. Если несобственный интеграл (75) сходится равномерно относи-
тельно M в точке M0, то функция u(M) непрерывна в точке M0.
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Теорема 11. Если функия f(M,P ) удовлетворяет неравенству

|f(M,P )| ≤ c

rαMP

где c = const > 0 какое-то число 0 < α < 3(где 3 берется из-за размерности)
то несобственный интеграл (75) сходится равномерно относительно M в любой

внутренней точке M0 области G.

Здесь доказательства этих теорем представлены не будут, их можно прочитать в
учебнике.

Вернемся к примеру и применим теоремы 10 и 11 к ньютонову потенциалу.

U(M) =

∫∫∫
G

ρ(P )

rMP

dVp M ∈ G

Так как подынтегральная функция удовлетворяет неравенству∣∣∣∣ρ(P )

rMP

∣∣∣∣ ≤ c

rMP

Здесь α = 1 < 3, то по теореме 11 этот несобственный интеграл сходится равномерно
относительно M в любой внутренней точке M0 области G и, следовательно, по
теореме 10 функция U(M) — непрерывная функция внутри области G.

Можно доказать, что частные производные первого порядка функции U(M), как
и в первом случае, можно вычислять с помощью дифференцирования под знаком
интеграла

∂U

∂x0

(M) =

∫∫∫
G

ρ(P )
x− x0

r3
MP

dVp (76)

и аналогично производные по y0 и z0. Так как
∣∣∣x−x0r3MP

∣∣∣ ≤ c
r2MP

,(α = 2 < 3) то
опираясь на теорему 11 можно сказать что несобственные интегралы частных про-
изводных (76) сходятся равномерно относительно M в любой внутренней точке M0

области G и, следовательно, частные производные первого порядка функции U(M)
непрерывны внутри области G.

Оказывается, что частные производные второго порядка функции u(M) уже нель-
зя вычислять путем дифференцирования под знаком интеграла. Можно доказать
что если функция ρ(P ) имеет непрерывные частные производные первого порядка,
то U(M) имеет непрерывные частные производные второго порядка и справедливо
равенство

4U(M) = −4πp(M)

Это уравнение Пуассона.
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Лекция 17

17.1. Тригонометрический ряд Фурье
Определение. Функция f(x), определeнная на всей числовой прямой, называ-

ется периодической, если ∃ число T > 0, такое, что ∀x : f(x + T ) = f(x). Число T 
называется периодом функции f(x).

Заметим, что если число T — период функции, то числа 2T, 3T, . . . — также пе-
риоды этой функции. Обычно под периодом функции понимают наименьший пери-
од(если такой есть).

Известные примеры периодических функций — это sinx и cosx. Их период (наи-
меньший) равен 2π.

Пример периодической функции периодом которой является любое сколь угодно 
маленькое положительное число.

D(x) =

{
1, если x рациональное
0, если x иррациональное

Это функция Дирихле. Возьмем в качестве T любое положительное рациональное
число. Тогда если x рациональное, то x + T также рациональное и D(x) = 1, если
x иррациональное, то x+ T также иррациональное и D(x) = 0
Задание. Доказать что любое иррациональное число не будет периодом.

Рассмотрим последовательность функций

1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx, . . .

Она называется тригонометрической системой. Любая линейная комбинация функ-
ций тригонометрической системы, в том числе и бесконечная (т.е. ряд, если он схо-
дится) является периодической функцией с периодом 2π.

Теперь поставим обратную задачу. Пусть функция f(x) с периодом 2π. Встает
вопрос можно ли ее представить в виде линейной комбинации функций периоди-
ческой системы. Будет доказано что при определенных условиях функцию f(x)
можно разложить в тригонометрический ряд Фурье

f(x) =
a0

2
+
∞∑
n=1

an cosnx+ bn sinnx (77)

где an и bn — числа. Они называются коэффициентами Фурье функции f(x).
Пусть равенство (77) верно и ряд можно интегрировать почлено. Получим фор-

мулы для коэффициентов ряда Фурье. Чтобы их получить будем пользоваться
ортогональностью тригонометрической системы. Это свойство состоит в том что
интеграл от произведения любых двух функций тригонометрической системы по
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сегменту [−π, π] равен нулю. Например

π∫
−π

sinnx cosmxdx =

π∫
−π

1

2
(sin(n+m)x+ sin(n−m)x) dx = 0

Рассмотрим множество всевозможных непрерывных на сегменте [−π, π] функций
f(x), оно образует линейное пространство с обычными операциями сложения и
умножения на число. Введем скалярнеое умножение для элементов этого простран-
ства. Скалярным произведением функций f(x) и g(x) назовем число

(f, g) =

π∫
−π

f(x)g(x) dx

Легко проверить что все свойства скалярного умножения выполнены.Функции f(x)
и g(x) называются ортогональными если их скалярное произведение равно нулю.
Отсюда понятно почему свойство называется ортогональностью системы. Итак, по-
лучем формулы для коэффициентов. Проинтегрирем равенство (77)

π∫
−π

f(x) dx =

π∫
−π

a0

2
+ 0 dx = a0π ⇒ a0 =

1

π

π∫
−π

f(x) dx

Умножим равенство (77) на cos kx, где k произвольное натуральное число и проин-
тегрируем полученное равенство.

π∫
−π

f(x) cos kx dx = ak

π∫
−π

cos2 kx dx = π ⇒ ak =
1

π

π∫
−π

f(x) cos kx dx

Умножим равенство (77) на sin kx, получим аналогичную формулу для bk

bk =
1

π

π∫
−π

f(x) sin kx dx

Пусть теперь функция f(x) определена только на сегменте [−π, π]. Тогда по по-
лученным формулам можно найти коэффициенты Фурье для функции f(x0 и со-
ставить ряд Фурье. Возникают вопросы: 1) при каких условиях этот ряд сходится
на сегменте [−π, π]? 2) будет ли его сумма равна f(x)? Ответы на эти вопросы будут
даны в следующих параграфах.

Рассмотрим примеры.
Пример 1. f(x) = x на сегменте [−π, π]. Найдем коэффициенты Фурье

a0 =
1

π

π∫
−π

x dx = 0

и
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an =
1

π

π∫
−π

x cosnx dx = 0

так как интеграл от нечeтной функции в симметричных пределах равен

bn =
1

π

π∫
−π

x sinnx dx =
2

π

π∫
0

x sinnx dx = − 2

πn

π∫
0

xd cosnx =

− 2

πn

x cosnx

∣∣∣∣π
0

−
π∫

0

cosnx dx

0

 = − 2

πn
π cosnπ = 2

(−1)n+1

n

Итак, ряд Фурье для функции f(x) = x на сегменте [−π, π] имеет вид

x ∼ 2
∞∑
n=1

(−1)n+1

n
sinnx (78)

Знак ∼ означает, что найденный ряд Фурье поставлен в соответствие на сегменте
[−π, π] функции f(x), но пока мы не можем ответить на вопрос: сходится ли этот
ряд к f(x) = x на [−π, π]?

То, что он сходится, доказать нетрудно: ∀x ∈ (−π, π) это можно сделать с по-
мощью признака Дирихле (сделайте это), а для x = −π и для x = π все члены
ряда равны нулю, поэтому и сумма ряда равна нулю. Вопрос состоит в том, будет
ли сумма ряда равна x? Очевидно, что для x = π и x = π сумма ряда не равна
x. Позднее будет доказано, что ∀x ∈ (−π, π) сумма ряда равна x, т.е. ∀x ∈ (−π, π)
знак ∼ можно заменить на знак равенства.
Пример 2. f(x) = |x| определена на сегменте [−π, π]. Найдем коэффициенты

Фурье

a0 =
1

π

π∫
−π

|x| dx =
2

π

π∫
0

x dx = π

an =
1

π

π∫
−π

|x| cosnx dx =
2

π

π∫
0

x cosnx dx =
2

πn
x sinnx

∣∣∣∣π
0

− 2

πn

π∫
0

x sinnx dx =

=
2

πn2
cosnx

∣∣∣∣π
0

=
2

πn2
((−1)n − 1) = − 4

π

{
0, n = 2k

1
(2k−1)2

, n = 2k − 1, k = 1, 2, . . . , n

bn =
1

π

π∫
−π

|x| sinnx dx
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таким образом

|x| ∼ π

2
− 4

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
(79)

Позднее мы докажем, что знак ∼ можно заменить на знак равенства ∀x ∈ [−π, π].
Замечание 1. При x = 0 из равенства (79) получаем:

∞∑
n=1

1

(2n− 1)2
=

1

12
+

1

32
+ . . .+

1

(2n− 1)2
+ . . . =

π2

8

а из (78) при x = π
2
получается равенство

1− 1

3
+

1

5
− 1

7
+ . . . =

π

4

Замечание 2. При 0 ≤ x < π функция f(x) = |x| = x раскладывается как в ряд
(78) (по синусам), так и в ряд (79) (по косинусам).

Отметим еще одно свойство периодических функций: если функция f(x) — пери-
одическая с периодом T , то ∀a справедливо равенство

a+T∫
a

f(x) dx =

T∫
0

f(x) dx

т.е. интеграл от периодической функции по любому сегменту длиной в период имеет
одно и то же значение. Чтобы это доказать, представим интеграл в левой части в
виде

a+T∫
a

f(x) dx =

0∫
a

f(x) dx+

T∫
0

f(x) dx+

a+T∫
T

f(x) dx

и в последнем слагаемом сделаем замену переменной x = t+ T . Тогда

a+T∫
T

f(x) dx =

a∫
0

f(t+ T ) dt = −
0∫
a

f(t) dt

(поскольку f(t+ T ) = f(t)), и, следовательно, мы приходим к искомому равенству.

17.2. Кусочно-непрерывные и кусочно-гладкие функции.

Напомним, что функция f(x) называется кусочнонепрерывной на сегменте [a, b],
если она определена и непрерывна во всех точках этого сегмента, за исключением,
быть может, конечного числа точек, в которых она имеет разрывы первого рода.

Точка x0 называется точкой разрыва первого рода функции f(x), если существу-
ют левый и правый пределы этой функции в точке x0 (они обозначаются f(x0 − 0)
и f(x0 + 0)), не равные друг другу.
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Кусочно-непрерывную на сегменте [a, b] функция f(x) будем называть кусочно-
гладкой на этом сегменте, если еe производная f ′(x) существует и непрерывна во
всех точках сегмента [a, b], за исключением, быть может конечного числа точек, а
в этих точках (где f ′(x) не существует или разрывна) существуют левый и правый
пределы f ′(x), т.е. существуют f ′(x− 0) и f ′(x+ 0).

Отметим, что левый и правый пределы f ′(x) в точке x0 следует отличать от левой
и правой производной функции f(x) в точке x0.

f ′(x0 − 0) = lim
x→x0−0

f ′(x)

левый предел f ′(x) в точке x0,

f ′лев(x0) = lim
x→x0−0

=
f(x)− f(x0)

x− x0

левая производная функции f(x) в точке x0.
Пример 1.

f(x) =

{
x2 sin 1

x
, x 6= 0

0, x = 0

Рассмотрим функцию на сегменте x ∈ [−1, 1], существенно что этот сегмент содер-
жит точку нуль. Эта функция непрерывна и имеет производную в любой точке x,
при этом

f ′(x) =

{
2x sin 1

x
− cos 1

x
, x 6= 0

0, x = 0

В точке x = 0 производная f ′(x) не является непрерывной — в этой точке не
существуют левый и правый пределы f ′(x). Следовательно, согласно нашему опре-
делению, функция f(x) не является кусочно-гладкой на любом сегменте, содержа-
щем точку x = 0. Отметим , что левая и правая производные функции f(x) в точке
x = 0 существуют:

f ′лев(0) = f ′пр(0) = f ′(0) = 0

Пример 2.
f(x) = |x| x ∈ [−1, 1]

Эта функция непрерывна и ее производная есть во всех точках кроме нуля.

f ′(x) =


−1, x < 0

0, x = 0

1, x > 0

f ′(0) не существует, но при этом существуют пределы

lim
x→−0

f ′(x) = −1 lim
x→+0

f ′(x) = 1

Эта функция является кусочно-гладкой в соответсвии с определением.
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Задание. Проверить является ли функция sign x кусочно-гладкой.
Лемма 1. Пусть функция f(x) определена и дифференцируема в правой полу-

окрестности точки x0, и пусть в точке x0 существует правый предел производной:

f ′(x0 + 0) = lim
x→x0+0

f ′(x)

Тогда в точке x0 существует правый предел самой функции:

lim
ξ→x0+0

=
f(x0 + ξ)− f(x0 + 0)

ξ
(80)

и он равен f ′(x0 + 0) Смысл этой леммы состоит в следующем: если доопределить
f(x) в точке x0, положив f(x0) = f(x0+0), то предел (80) станет правой производной
функции f(x) в точке x0, и тогда утверждение леммы можно сформулировать так:
если в точке x0 существует правый предел производной, то в этой точке существует
правая производная функции, и они равны:

f ′пр(x0) = f(x0 + 0)

Лемма 2 (об аппроксимации непрерывной на сегменте функции непре-
рывной кусочно-гладкой функцией). Пусть функция f(x) непрерывна на сег-
менте [a, b]. Тогда ∀ε > 0 существует непрерывная кусочно-гладкая функция l(x),
такая, что ∀x ∈ [a, b] выполняется неравенство

|f(x)− l(x)| < ε

и, кроме того, l(a) = f(a), l(b) = f(b).
Доказательство. Зададим произвольное ε > 0, так как f(x) равномерно непре-

рывна на сегменте [a, b] (по теореме Кантора), то ∃δ > 0, такое, что ∀x′, x′′ из сег-
мента [a, b] удовлетворяющих условию |x′−x′′| < δ выполняется неравенство |f(x′)−
f(x′′)| < ε

2
. Разобьем сегмент [a, b] на частичные сегменты [x0, x1], [x1, x2], . . . , [xi−1, xi],

, . . . , [xn−1, xn] такие, что |xi − xi−1| < δ и построим ломаную, состоящую из n зве-
ньев, так что ее i–е звено соединяет точки (xi−1, f(xi−1)) и (xi, f(xi))(рис.17.1)

Уравнение ломаной запишем в виде y = l(x) a ≤ x ≤ b. Функция l(x) является
непрерывной и кусочно-гладкой.

Закончите доказательство самостоятельно.
Лемма 3. Если f(x) — кусочно-непрерывная функция на сегменте [a, b], тогда

J1(λ) :=

b∫
a

f(x) cosλx dx→ 0 при λ→∞

J2(λ) :=

b∫
a

f(x) sinλx dx→ 0 при λ→∞
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Рис. 17.1 – Ломанная линия из n-звеньев.

.
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Лекция 18

18.1. Теорема о сходимости ряда Фурье
Теорема 1. Пусть f(x) — кусочно-гладкая функция на сегменте [−π, π] Тогда 

ряд тригонометрический Фурье функции f(x)

a0

2
+
∞∑
n=1

an cosnx+ bn sinnx

cходится в каждой точке сегмента [−π, π] и для его суммы S(x) справедливо
равенство

∀x(−π, π) : S(x) =
1

2
(f(x− 0) + f(x+ 0)) (81)

в частности, S(x) = f(x) в точках непрерывности f(x)(рис18.1);

S(−π) = S(π) =
1

2
(f(−π + 0) + f(π − 0))

Рис. 18.1 – f(x) — кусочно-гладкая функция.

Доказательство. Продолжим функцию f(x) на всю числовую прямую пери-
одически с периодом 2π и рассмотрим частичную сумму Sn(x) ряда Фурье для
какой-нибудь точки x ∈ [−π, π]:

Sn(x) =
a0

2
+

n∑
n=1

ak cos kx+ bk sin kx

Для доказательства (81) нужно доказать что Sn(x)→ 1
2
(f(x− 0) + f(x+ 0)) при

→∞. Используя формулы для коэффициентов Фурье

ak =
1

π

π∫
−π

f(t) cos kt dt bk =
1

π

π∫
−π

f(t) sin kt dt

преобразуем выражение для Sn(x):

Sn(x) =
1

2π

π∫
−π

f(t) dt+
n∑
k=1

1

π

π∫
−π

f(t) [cos kt · cos kx+ sin kt · sin kx] dt =
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=

π∫
−π

1

π

[
1

2
+

n∑
k=1

cos k(t− x)

]
f(t) dt =:

π∫
−π

Dn(t− x)f(t) dt

где

Dn(ξ) =
1

π

[
1

2
+

n∑
k=1

cos kξ

]
(82)

Функция Dn(ξ) называется ядром Дирихле порядка n.
Сделав в интеграле замену переменной t = x+ ξ, получим:

Sn(x) =

π−x∫
−π−x

Dn(ξ)f(x+ ξ) dξ =

π∫
−π

Dn(ξ)f(x+ ξ) dξ

Так как Dn(ξ) и f(x + ξ) — периодические функции аргумента ξ с периодом 2π,
то, пределы интегрирования можно было заменить на −π и π.

Разобьeм последнее выражение на сумму двух слагаемых:

Sn(x) =

0∫
−π

Dn(ξ)f(x+ ξ) dξ +

π∫
0

Dn(ξ)f(x+ ξ) dξ = S−n (x) + S+
n (x)

вычислив интеграл

π∫
−π

Dn(ξ) dξ =

π∫
−π

1

π

[
1

2
+

n∑
k=1

cos kξ

]
dξ = 1

и учитывая, что Dn(ξ) — чeтная функция, приходим к равенствам

0∫
−π

Dn(ξ) dξ =

π∫
0

Dn(ξ) dξ =
1

2
(83)

Умножив второе из этих равенств (83) на f(x+ 0) и вычтя из S+
n (x), получим:

S+
n (x)− 1

2
f(x+ 0) =

π∫
0

[f(x+ ξ)− f(x+ 0)]Dn(ξ) dξ (84)

Преобразуем выражение (82) для Dn(ξ) . С этой целью, считая, что ξ 6= 0, умно-
жим равенство (82) на sin ξ

2
и воспользуемся формулой

sin
ξ

2
· cos kξ =

1

2

[
sin

(
kξ +

ξ

2

)
− sin

(
kξ − ξ

2

)]
Используя эту формулу, получаем:

Dn(ξ) sin
ξ

2
=

1

π

[
1

2
sin ξ +

1

2

(
sin

3ξ

2
− sin

ξ

2

)
+
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+
1

2

(
sin

5ξ

2
− sin

3ξ

2

)
+ . . .+

1

2

(
sin

(
n+

1

2

)
ξ − sin

(
n− 1

2

)
ξ

)]
=

=
1

2π
sin

(
n+

1

2

)
ξ

Следовательно,

Dn(ξ) =
1

2π

sin
(
n+ 1

2

)
ξ

sin ξ
2

при ξ 6= 0

а при ξ = 0 из (82) имеем

Dn(0) =
1

π

(
1

2
+ n

)
= lim

ξ→0
Dn(ξ)

Подставляя полученное выражение для Dn(ξ) в (84), приходим к равенствам

S+
n (x)− 1

2
f(x+ 0) =

1

π

π∫
0

[f(x+ ξ)− f(x+ 0)]
sin
(
n+ 1

2

)
ξ

sin ξ
2

dξ =

=
1

π

π∫
0

[
f(x+ ξ)− f(x+ 0)

ξ
·

ξ
2

sin ξ
2

]
· sin

(
n+

1

2

)
ξdξ =: J(x, n)

Функция, стоящая в квадратных скобках под знаком интеграла, является, очевид-
но, кусочно-гладкой на полусегменте (0 < ξ ≤ π), а поскольку предел limξ→0

f(x+ξ)−f(x+0)
ξ

существует (и равен f ′(x+ 0) в силу леммы 1) и также существует limξ→+0

ξ
2

sin ξ
2

= 1

(первый замечательный предел), то заключeнная в квадрадные скобки функция
является кусочно-непрерывной на сегменте [0 ≤ ξ ≤ π]. Поэтому, согласно лемме 3
J(x, n)→ 0 при n→∞ (параметр λ здесь n+ 1

2
) Это значит что

S+
n (x)− 1

2
f(x+ 0)→ 0 при n→∞

В точности так же доказывается, что S−n (x)− 1
2
f(x− 0)→ 0 при n→∞, а так

как Sn(x) = S+
n (x) + S−n (x), то

Sn(x)− 1

2
(f(x− 0) + f(x+ 0))→ 0 при n→∞

т.е.
S(x) = lim

n→∞
Sn(x) =

1

2
(f(x− 0) + f(x+ 0))

Тем самым доказана справедливость равенства (81).
В частности, если x—точка непрерывности f(x), то f(x − 0) = f(x + 0) = f(x)

и S(x) = f(x). Для точек x = π и x = π, учитывая периодическое продолжение
функции f(x), имеем:

f(−π + 0) = f(π + 0), f(−π − 0) = f(π − 0)

111

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


Математический анализ Часть III •
Бутузов Валентин Федорович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

поэтому

S(−π) =
1

2
(f(−π − 0) + f(−π + 0)) =

1

2
(f(−π + 0) + f(π − 0))

S(π) =
1

2
(f(π − 0) + f(π + 0)) =

1

2
(f(−π + 0) + f(π − 0))

Теорема 1 доказана.
Замечания 1. Кусочная гладкость функции на сегменте [−π, π] является толь-

ко достаточным, но не необходимым условием. Оказывается, это условие можно
ослаблабить. Однако, одной лишь кусочной непрерывности и даже непрерывности
функции f(x) на сегменте [−π, π] не достаточно для сходимости ряда Фурье в каж-
дой точке этого сегмента. Ряд Фурье непрерывной функции может расходиться на
бесконечном множестве точек. Более подробно об этом можно прочитать учебник.
Оказывается для рядов Фурье справедлив принцип локализации. Суть его состоит
в том, что сходимость или расходимость в данной точке x0 тригонометрического
ряда Фурье кусочно-непрерывной на сегменте [−π, π] функции f(x) определяется
лишь поведением функции в сколь угодно малой окрестности точки x0 и не зависит
от того, какова эта функция вне сколь угодно малой окрестности точки x0.
Замечания 2. Так как члены ряда Фурье периодические функции с периодом 2π,

то ряд Фурье сходится в любой точке числовой прямой. Его суммой на всей прямой
является периодическое продолжение на всю прямую функции S(x) — суммы ряда
на сегменте [−π, π].
Замечания 3. Если кусочно-гладкая функция f(x) имеет точки разрыва на сег-

менте [−π, π], и также если f(x) непрерывна на [−π, π], но f(−π)(π), то ряд Фурье
этой функции сходится на этом сегменте неравномерно.
Замечания 4. Если f(x) — нечeтная функция на сегменте [−π, π], то еe разло-

жение в ряд Фурье содержит только синусы, а если — чeтная функция, то — только
косинусы. Если f(x) задана на сегменте [0, π], то еe можно продолжить на сегмент
[−π, 0] как чeтным, так и нечeтным образом, и в результате получаются два разло-
жения f(x) на сегменте [0, π] — одно по косинусам, а другое — по синусам. Ранее
мы уже встречались с такой ситуацией

|x| = π

2
− 4

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
0 ≤ x ≤ π

и

x = 2
∞∑
n=1

(−1)n+1

n
sinnx 0 ≤ x ≤ π

Замечания 5. Мы рассмотрели вопрос о разложении в ряд Фурье функций, за-
данных на сегменте [−π, π]. В некоторых случаях приходится рассматривать функ-
ции, заданные на сегменте [−l, l], где l—какое-то число, и их периодические про-
должения с периодом 2l. Ортогональную тригонометрическую систему на сегменте
[−l, l] образуют функции

1, cos
πnx

l
, sin

πnx

l
n = 1, 2, . . .
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При l = π эта система функций совпадает с рассмотренной ранее тригонометриче-
ской системой. Ряд Фурье функции f(x) по этой системе функций имеет вид

f(x) =
a0

2
+
∞∑
n=1

an cos
πnx

l
+ bn sin

πnx

l

где

an =
1

l

l∫
−l

f(x) cos
πnx

l
dx, n = 0, 1, 2, . . .

bn =
1

l

l∫
−l

f(x) sin
πnx

l
dx, n = 1, 2, . . .

18.2. Ряд Фурье в комплексной форме

Рассмотрим ряд Фурье для функции f(x) заданной на сегменте [−π, π] в следу-
щем виде

f(x) =
a0

2
+
∞∑
n=1

an cosnx+ bn sinnx =

a0

2
+
∞∑
n=1

 1

π

π∫
−π

f(t) cosnt dt

 cosnx+

 1

π

π∫
−π

f(t) sinnt dt

 sinnx =

=
a0

2
+
∞∑
n=1

1

π

π∫
−π

f(t) cosn(t− x) dt

Так как cosα = 1
2
(eia + e−ia), i-мнимая единица, a0 = 1

π

π∫
−π
f(t) dt, тогда

f(x) =
1

2π

π∫
−π

f(t) dt+
∞∑
n=1

1

2π

π∫
−π

f(t)[ein(t−x) + e−in(t−x)] dt =

=
1

2π

π∫
−π

f(t) dt+
∞∑
n=1

 1

2π

π∫
−π

f(t)eint dt

 e−inx +
∞∑
n=1

 1

2π

π∫
−π

f(t)e−int dt

 einx

Введeм обозначения:

c0 =
1

2π

π∫
−π

f(t) dt, c−n =
1

2π

π∫
−π

f(t)eint dt

cn =
1

2π

π∫
−π

f(t)e−int dt n = 1, 2, . . .
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Тогда получим

f(x) = c0 +
∞∑
n=1

c−ne
−inx +

∞∑
n=1

cne
inx =

∞∑
n=−∞

cne
inx

Итак, ряд Фурье функции f(x) можно записать в комплексной форме:

f(x) =
∞∑

n=−∞

cne
inx (85)

где

cn =
1

2π

π∫
−π

f(t)e−inx dt n = 0,±1,±2, . . .

Равенство (85) является разложением f(x) по системе функция {einx, n = 0,±1,±2, . . .}
Эта система является ортогональной, если скалярное произведение комплексно-
значных функций f(x) и g(x) на сегменте [π, π] определить как

(f, g) =

π∫
−π

f(x)g(x) dx

где g(x) — комплексно сопряжeнная функция по отношению к g(x). В таком случае

(einx, eimx) =

π∫
−π

einxe−imx dx =

{
0, если n 6= m

2π, если n = m

то есть при n 6= m функции einx и eimx функции.
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Лекция 19

19.1. Ряд Фурье в бесконечномерном евклидовом
пространстве

Напомним, что линейное пространство называется бесконечномерным если в нeм
можно указать как угодно большое число линейно независимых элементов; линей-
ное пространство называется евклидовым, если в нeм введено скалярное произве-
дение элементов. Скалярное произведение элементов f и g будем обозначать так:
(f, g).
Пример. Рассмотрим множество всех кусочно-непрерывных на сегменте [a, b]

функций, таких, что значение любой функции f(x) в точке x0 разрыва равно 1
2
(f(x0−

0) + f(x0 + 0)). Это множество становится линейным пространством, если ввести
обычным образом операции сложения двух функций и умножения функции на ве-
щественное число. Обозначим это пространство Q[a, b]. Это линейное пространство
— бесконечномерное (∀n 1, x, x2, . . . , xn — линейно независимы). Скалярное произ-
ведение элементов f(x) и g(x) введeм по формуле

(f, g) =

b∫
a

f(x)g(x) dx

Задание. Проверить, что все требования, предъявляемые к скалярному произ-
ведению, при этом выполнены.

Линейное пространство называется нормированным, если каждому элементу f
этого пространства поставлено в соответствие неотрицательное число (оно называ-
ется нормой элемента f и обозначается ‖f‖ так, что при этом выполнены условия:

1) ‖f‖ > 0, если f 6= Θ(Θ - нулевой элемент) и ‖f‖ = 0 если f = Θ;
2) ∀ элемента f и ∀ числа α : ‖αf‖ = |α| · ‖f‖;
3)∀ элементов f и g: ‖f + g‖ ≤ ‖f‖ + ‖g‖ (это неравенство называется неравен-

ством треугольника или неравенством Минковского).

Во всяком евклидовом пространстве можно ввести норму элементов с помощью
скалярного произведения:

‖f‖ =
√

(f, f)

Задание. Проверьте, что все условия из определения нормы будут выполнены.

Пример.В частности, в пространстве Q[a, b] введeнная таким образом норма эле-
мента f(x) имеет вид

‖f‖ =

√√√√√ b∫
a

f 2(x) dx
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Пусть {fn} = f1, f2, . . . , fn, . . . — последовательность элементов нормированного
пространства.
Определение. Говорят, что последовательность {fn} сходится к элементу f по

норме данного пространства, если

‖fn − f‖ → 0 при n→∞

Норма ‖fn−f‖ называется также отклонением элемента fn от элемента f по норме
данного пространства.
Пример. Сходимость последовательности функций {fn(x)} к функции f(x) по

норме пространства Q[a, b] означает, что

‖fn − f‖ =

√√√√√ b∫
a

(‖fn(x)− f(x)‖)2 dx→ 0 при n→∞

Это есть ничто иное как сходимость в среднем последовательности {fn(x)} к
функции f(x) на сегменте [a, b].

Последовательность {ψn} = ψ1, ψ2, . . . , ψn, . . . элементов евклидова пространства
называется ортогональной системой, если еe элементы попарно ортогональны (т.е.
(ψi, ψj) = 0 при i 6= j). Ортогональная система {ψn} называется ортонормирован-
ной, если норма каждого еe элемента равна 1.

Любую ортогональную систему, в которой нет нулевых элементов, можно сделать
ортонормированной. Умножив каждый элемент на число 1

‖ψn‖ , получим ортонор-

мированную систему
{

ψn
‖ψn‖

}
Пример. В пространстве Q[−π, π] тригонометрическая система

{ψn} = {1, cosnx, sinnx, n = 1, 2, ..}

является ортогональной, а соответствующей ортонормированной системой является
последовательность {

1√
2π
,

1√
π

cosnx,
1√
π

sinnx, n = 1, 2, ..

}
Пусть в бесконечномерном евклидовом пространстве задана ортогональная си-

стема {ψn}, не содержащая нулевых элементов, f — какой-то элемент этого про-
странства. Составим (формально) ряд

f1ψ1 + f2ψ2 + . . .+ fnψn =
∞∑
n=1

fnψn (86)

где fn — числа, определяемые равенством

fn =
(f, ψn)

‖ψn‖2
n = 1, 2, .. (87)

Ряд (86) называется рядом Фурье элемента f по ортогональной системе {ψn}, а
числа fn называются коэффициентами Фурье элемента f .
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Укажем формальный способ получения формулы (87) (формальный потому, что
будем производить действия с рядами без каких бы то ни было обоснований). На-
пишем формальное равенство

f =
∞∑
n=1

fnψn

И скалярно умножим его обе части на ψk. Получим равенство

(f, ψk) =
∞∑
n=1

fn(ψn, ψk)

Так как система ортоганальна,то в правой части равенства ненулевым будет только
одно слагаемое

(f, ψk) = fk(ψk, ψk) = ‖ψk‖2 ⇒ fk =
(f, ψk)

‖ψk‖2

Тем самым мы получим формулу (87).
Из курса линейной алгебры известно, что в N-мерном евклидовом пространстве

любые N линейно независимых элементов {ψn, n = 1, 2, . . . , N} попарно ортогональ-
ных элементов, норма каждого из которых равна 1, образует ортонормированный
базис этого пространства. Любой элемент f можно разложить по этому базису:

f =
∞∑
n=1

fnψn где fk = (f, ψk) (88)

Разложение (88) и есть в данном случае ряд Фурье элемента f по ортонормиро-
ванной системе {ψn}, но только этот «ряд» содержит конечное число слагаемых.

В случае бесконечномерного евклидова пространства встаeт вопрос о сходимости
ряда Фурье элемента f по норме данного пространства к элементу f .
Определение. Говорят, что ряд Фурье

∑∞
n=1 fnψn сходится к элементу f по нор-

ме данного пространства, если

‖Sn − f‖ → 0 при n→∞

где
∑n

k=1 fkψk — n-я частичная сумма ряда Фурье элемента f .

зафиксируем номер n и будем рассматривать всевозможные линейные комбина-
ции вида

∑n
k=1 ckψk, где ck — произвольные числа.(Sn одна из таких сумм). Ока-

зывается, что среди этих линейных комбинаций n-я частичная сумма ряда Фурье
элемента f обладает следующим экстремальным свойством.
Теорема 2. При фиксированном n среди всех сумм вида

∑n
k=1 ckψk частичная

сумма
∑n

k=1 fkψk имеет наименьшее отклонение от элемента f по норме данного
евклидова пространства.
Доказательство. Используем ортогональность системы {ψn}, тогда:∥∥∥∥∥
n∑
k=1

ckψk − f

∥∥∥∥∥
2

=

(
n∑
k=1

ckψk − f,
n∑
k=1

ckψk − f

)
=

n∑
k=1

c2
k(ψk, ψk)−2

n∑
k=1

ck(f, ψk)+(f, f) =
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=
n∑
k=1

c2
k‖ψk‖2−2·

n∑
k=1

ckfk‖ψk‖2+‖f‖2 =
n∑
k=1

(ck−fk)2‖ψk‖2+‖f‖2−
n∑
k=1

f 2
k‖ψk‖2 (89)

Из вида правой части равенства следует, что норма∥∥∥∥∥
n∑
k=1

ckψk − f

∥∥∥∥∥
имеет наименьшее значение, если ck = fk, т.е. наименьшее отклонение от элемента

f по норме данного пространства даeт
∑n

k=1 fkψk частичная сумма ряда Фурье
элемента f . Теорема 2 доказана.
Следствие 1. Если {ψn, n = 1, 2, . . .} — ортонормированная система, то для

любого элемента f и для любого n справедливо равенство∥∥∥∥∥
n∑
k=1

fkψk

∥∥∥∥∥
2

= ‖f‖2 −
n∑
k=1

f 2
k

Оно следует из (89), если положить ck = fk и учесть, что ‖ψk‖ Это равенство назы-
вается тождеством Бесселя в честь немецкого астронома и математика Ф. Бесселя
(1784 - 1846).
Следествие 2. Если {ψn, n = 1, 2, . . .} — ортонормированная система, то для

любого элемента f , то ряд
∑∞

k=1 f
2
k (где fn = (f, ψn)) сходится и

∞∑
k=1

f 2
k ≤ ‖f 2‖

Это неравенство называется неравенством Бесселя.
Доказательство. Из тождества Бесселя следует, что ∀n выполняется неравен-

ство
∑n

k=1 f
2
k ≤ ‖f 2‖. Оно показывает, что последовательность частичных сумм

ряда
∑∞

k=1 f
2
k , члены которого — неотрицательные числа, ограничена числом ‖f 2‖.

Поэтому этот ряд сходится, и его сумма также не превосходит числа ‖f 2‖.
Пример. В пространстве Q[−π, π] рассмотрим ряд Фурье кусочно-непрерывной

функции f(x) по ортонормированной тригонометрической системе{
1√
2π
,

1√
π

cosnx,
1√
π

sinnx, n = 1, 2, ..

}
:

f(x) ∼ a0
1√
2π

+
∞∑
n=1

an

(
1√
π

cosnx

)
+ bn

(
1√
π

sinnx

)
Знак ∼ означает, что функции f(x) поставлен в соответствие еe ряд Фурье по дан-
ной системе, an и bn — коэффициенты этого ряда. Он может и не сходиться к f(x),
поскольку f(x) — только кусочно-непрерывная функция, а не кусочно-гладкая. Ес-
ли ввести обозначения

a0
1√
2π

=
a0

2
, an

1√
π

= an, bn
1√
π

= bn
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тогда этот ряд запишется так, как мы ранее записывали тригонометрический ряд
Фурье. В силу следствия 2

a2
0 +

∞∑
n=1

(a2
n + b2

n) ≤ ‖f‖2 =

π∫
−π

f 2(x) dx

Разделив это неравенство на π и используя введeнные обозначения, получаем нера-
венство для коэффициентов an, bn тригонометрического ряда Фурье кусочно-непрерывной
функции f(x):

a2
0

2
+
∞∑
n=1

(a2
n + b2

n) ≤ 1

π

π∫
−π

f 2(x) dx

Так выглядит неравенство Бесселя для тригонометрического ряда Фурье.

19.2. Замкнутые и полные ортогональные системы

Определение. Ортогональная система {ψn} в бесконечномерном евклидовом
пространстве называется замкнутой, если любой элемент этого пространства можно
приблизить с произвольной точностью по норме данного пространства с помощью
конечной линейной комбинации элементов системы {ψn}, т.е. для любого элемента
f и ∀ε > 0 существует линейная комбинация

∑n
k=1 ckψk, такая, что∥∥∥∥∥

n∑
k=1

ckψk − f

∥∥∥∥∥ < ε

Отметим, что это неравенство в силу теоремы 2 обеспечивает выполнение нера-
венства ∥∥∥∥∥

n∑
k=1

fkψk − f

∥∥∥∥∥ < ε

где fk — коэффициенты Фурье элемента f по системе {ψn}.
Теорема 3 (необходимое и достаточное условие замкнутости ортонор-

мированной системы). Для того чтобы ортонормированная система {ψn} была
замкнутой, необходимо и достаточно, чтобы для любого элемента f выполнялось
равенство

∞∑
k=1

f 2
k = ‖f‖2 (90)

где fk = (f, ψk) — коэффициенты Фурье элемента f по системе {ψn}. Равенство
(90) называется равенством Парсеваля в честь французского математика М. Пар-
севаля (умер в 1836 г.).
Доказательство. Воспользуемся тождеством Бесселя для ортонормированной

системы {ψn} и произвольного элемента f :
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∥∥∥∥∥
n∑
k=1

fkψk − f

∥∥∥∥∥ = ‖f‖2 −
n∑
k=1

f 2
k

1) Необходимость. Пусть ортонормированная система {ψn} — замкнутая и пусть
f — любой данный элемент. Согласно определению замкнутой системы ∀ε > 0,∃N ,
такой, что будет выполнено неравенство левая часть тождества Бесселя будет мень-
ше ε при n = N . Отсюда следует, что правая часть тождества будет меньше ε при
n > N :

‖f‖2 −
n∑
k=1

f 2
k < ε

Переходя к пределу при n→∞, получим неравенство

‖f‖2 −
∞∑
k=1

f 2
k ≤ ε

а так как левая часть этого неравенства неотрицательна (в силу неравенства Бес-
селя) и ε—любое положительное число, что

‖f‖2 −
∞∑
k=1

f 2
k = 0

То есть для любого элемента f выполняется равенство Парсеваля.
2) Достаточность. Пусть для любого элемента f выполнено равенство Парсеваля,

т.е. сумма ряда
∑∞

k=1 f
2
k равна ‖f‖2. Тогда ∀ε > 0,∃n, такое, что n-я частичная

сумма ряда будет отличаться от суммы ряда меньше, чем на :

‖f‖2 −
n∑
k=1

f 2
k < ε

Следовательно, и левая часть тождества Бесселя для элемента f меньше ε, а это и
означает, что система {ψn} — замкнутая. Теорема 3 доказана.
Следствие. Если система {ψn} — ортонормированная, замкнутая, то для любого

элемента f его ряд Фурье по системе {ψn} сходится к этому элементу по норме
данного пространства, т.е.∥∥∥∥∥

n∑
k=1

fkψk − f

∥∥∥∥∥→ 0 при n→∞ (91)

Доказательство. Если ортонормированная система {ψn} — замкнутая, то для
любого элемента f выполняется равенство Парсеваля (90), а это означает, что
‖f‖2 −

∑n
k=1 f

2
k → 0 при n → ∞. Отсюда в силу тождества Бесселя следует, что

выполняеется (91).
Геометрический смысл равенства Парсеваля. Рассмотрим линейное про-

странство линейных векторов. Пусть вектора ~e1, ~e2, ~e3 попарно ортогональных и
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имеют дливны равные единице. Для любого вектора ~f = f1 · ~e1 + f2 · ~e2 + f3 · ~e3

справедливо равенство

‖~f‖2 = (~f, ~f) = |~f |2 = f 2
1 + f 2

2 + f 2
3 =

3∑
k=1

f 2
k

Это и есть равенство Парсеваля в данном трeхмерном случае, его можно назвать
трeхмерной теоремой Пифагора.

Точно так же, равенство Парсеваля
∑∞

k=1 f
2
k = ‖f‖2 можно назвать теоремой

Пифагора в бесконечномерном евклидовом пространстве, а замкнутую ортонорми-
рованную систему можно назвать базисом в этом пространстве, поскольку любой
элемент пространства можно разложить в ряд по замкнутой системе (ряд Фурье),
сходящийся к этому элементу по норме пространства.

Докажите единственность такого разложения. От противного. Допустим, что
какой-то элемент f имеет два разложения в ряд по замкнутой (ортонормирован-
ной) системе {ψn}:

∞∑
k=1

f ′kψk

причeм оба ряда сходятся к элементу f по норме пространства. Задание. Закончите
доказательство этого утверждения.
Определение. Ортогональная (в частности, ортонормированная) система {ψn}

в бесконечномерном евклидовом пространстве называется полной, если единствен-
ным элементом, ортогональным ко всем элементам ψn данной системы, является
нулевой элемент.
Теорема 4. Любая замкнутая система является полной.
Доказательство. Пусть {ψn} — замкнутая система и пусть элемент f ортогона-

лен всем элементам системы {ψn}. Согласно определению полной системы требуется
доказать, что f — нулевой элемент.

Так как по условию (f, ψn) = 0 для любого n, то все коэффициенты Фурье эле-
мента f , т.е. числа fn = (f,ψn)

‖ψn‖2

равны нулю. Отсюда в силу равенств Парсеваля
∑∞

k=1 f
2
k‖ψn‖2 = ‖f‖2 следует,

что ‖f‖2 = 0, поэтому (согласно свойству нормы) f — нулевой элемент и значит
система {ψn} полная. Теорема 4 доказана.
Теорема 5. Если система {ψn} — полная, то два различных элемента не могут

иметь одинаковые ряды Фурье по этой системе.
Доказательство. Допустим, что элементы f и g имеют одинаковые ряды Фурье

по полной системе {ψn}, т.е. для любого k коэффициенты Фурье элементов f и g
одинаковы: fk = gk. Докажем, что тогда f = g. Рассмотрим разность f − g. Еe ко-
эффициенты Фурье равны fk = gk и, следовательно, они равны нулю для любого k.
Это означает, что элемент f − g ортогонален всем элементам полной системы {ψn}.
Отсюда в силу полноты системы {ψn} следует, что f − g = Θ — нулевой элемент,
поэтому f = g, что и требовалось доказать.

Замечание. Понятия замкнутой и полной систем можно ввести и для конеч-
номерных евклидовых пространств (с помощью таких же определений, как и для
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бесконечномерных пространств). Мы доказали, что в любом бесконечномерном ев-
клидовом пространстве замкнутая система является полной (теорема 4). Это утвер-
ждение верно и для конечномерных евклидовых пространств (доказательство та-
кое же). Более того, для конечномерных евклидовых пространств верно и обратное
утверждение: любая полная система является замкнутой. Но для бесконечномерных
пространств это не так: можно привести пример полной системы в бесконечномер-
ном евклидовом пространстве, которая не является замкнутой.

Среди бесконечномерных евклидовых пространств особое место занимают гиль-
бертовы пространства. Гильбертово пространство — это линейное бесконечномерное
евклидово полное сепарабельное пространство. Эпитеты «линейное», «бесконечно-
мерное», «евклидово» нам известны — мы знаем, что они означают.

Полное нормированное пространство — это такое пространство, в котором любая
фундаментальная последовательность элементов сходится по норме пространства
к некоторому элементу этого пространства.

Сепарабельность нормированного пространства означает, что в этом простран-
стве существует счeтное всюду плотное (в смысле нормы пространства) множество
элементов.

Множество называется всюду плотным в данном нормированном пространстве,
если любой элемент пространства можно представить как предел (по норме про-
странства) последовательности элементов этого множества.

Например, множество рациональных чисел является счeтным всюду плотным
множеством на числовой прямой. В отношении гильбертовых пространств справед-
ливы следующие утверждения.

1. В гильбертовом пространстве понятия замкнутости и полноты ортогональной
системы эквивалентны.

2. В гильбертовом пространстве существуют замкнутые системы.

От общих рядов Фурье вернeмся к тригонометрическому ряду Фурье.
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Лекция 20

20.1. Равномерная сходимость и почленное
дифференцирование тригонометрического ряда Фурье

Теорема 6 (о равномерной сходимости ряда Фурье). Пусть f(x) — непре-
рывная кусочно-гладкая функция на сегменте [−π, π] и пусть f(−π) = f(π). Тогда
тригонометрический ряд Фурье функции f(x) сходится равномерно и абсолютно на
сегменте [−π, π].
Доказательство. Согласно признаку Вейерштрасса для доказательства равно-

мерной сходимости на сегменте [−π, π] ряда Фурье функции f(x)

a0

2
+
∞∑
n=1

an cosnx+ bn sinnx (92)

достаточно доказать сходимость числового ряда
∞∑
n=1

(|an|+ |bn|) (93)

Одновременно отсюда последует, что ряд (92) сходится абсолютно.
Обозначим через αn и βn коэффициенты Фурье функции f ′(x), которая в силу

условия теоремы является кусочно-непрерывной на сегменте [−π, π]:

αn =
1

π

π∫
−π

f ′(x) cosnx dx, βn =
1

π

π∫
−π

f ′(x) sinnx dx

Непрерывная кусочно-гладкая функция f(x) является первообразной для кусочно-
непрерывной функции f ′(x). Учитывая это и применяя формулу интегрирования
по частям, получаем:

αn =
1

π

π∫
−π

cosnx df(x) =
1

π
f(x) cosnx

∣∣∣∣π
−π

+ n
1

n

π∫
−π

f(x) sinnx dx

Первое слагаемое в правой части равенства равно нулю, так как f(−π) = f(π)
и cos(−nπ) = cosnπ, а второе слагаемое равно n · bn, где bn — коэффициент Фу-
рье функции f(x). Итак, αn = n · bn, откуда следует, что bn = 1

n
|αn|. Аналогично

получается равенство an = 1
n
|βn| где

an =
1

π

π∫
−π

f(x) cosnx dx

Таким образом, ряд (93) можно записать в виде
∞∑
n=1

1

n
(|αn|+ |βn|) (94)
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Воспользуемся известным неравенством ab ≤ 1
2
(a2 + b2), в силу которого

|αn|
1

n
≤ 1

2

(
1

n2
+ α2

)
, |βn|

1

n
≤ 1

2

(
1

n2
+ β2

)
и, следовательно,

1

n
(|αn|+ |βn|) ≤

1

n2
+

1

2
(α2

n + β2
n)

Так как ряд
∑∞

n=1
1
n2 сходится и ряд

∑∞
n=1

1
2
(α2

n + β2
n) также сходится (поскольку

его члены — квадраты коэффициентов Фурье кусочно-непрерывной функции f ′(x)),
то числовой ряд

∞∑
n=1

1

n2
+

1

2
(α2

n + β2
n)

сходится, а поэтому, согласно признаку сравнения, сходится ряд (94), т.е. сходится
ряд (93), что и требовалось доказать. Теорема 6 доказана.
Теорема 7 (о почленном дифференцировании ряда Фурье). Пусть выпол-

нены условия: 1) функция f(x) и еe производные до m-го порядка включительно
непрерывны на сегменте [−π, π];

2) производная (m + 1)-го порядка fm+1(x) кусочно непрерывна на сегменте
[−π, π];

3)f(−π) = f(π),f ′(−π) = f ′(π), . . . , f (m)(−π) = f (m)(π)
Тогда тригонометрический ряд Фурье функции f(x)

a0

2
+
∞∑
n=1

an cosnx+ bn sinnx (95)

можноm раз дифференцировать почленно на сегменте [−π, π], т.е. ∀k = 1, 2, . . . ,m
и ∀x ∈ [−π, π] справедливо равенство

f (k)(x) =
∞∑
n=1

an · nk cos
(
nx+ k

π

2

)
+ bn · nk sin

(
nx+ k

π

2

)
Доказательство. Обозначим через αn и βn коэффициенты Фурье кусочно-непрерывной

функции f (m+1)(x)

αn =
1

π

π∫
−π

f (m+1)(x) cosnx dx, βn =
1

π

π∫
−π

f (m+1)(x) sinnx dx

Интегрируя по частям (m + 1) раз и учитывая условие 3) теоремы, приходим к
равенству (аналогично тому, как это было сделано в доказательстве теоремы 6):

|αn|+ |βn| = nm+1(|an|+ |bn|)

где an и bn — коэффициенты Фурье функции f(x). Из этого равенства следует, что

nm(|an|+ |bn|) =
1

n
(|αn|+ |βn|)
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и так как ряд
∑∞

n=1
1
n
(|αn| + |βn|) сходится (это доказывается так же, как была

доказана сходимость ряда (94)), то сходится ряд
∞∑
n=1

nm(|an|+ |bn|) (96)

Обратимся теперь к ряду Фурье функции f(x), т.е. ряду (95). Если этот ряд
продифференцировать почленно k раз, то получится ряд

∞∑
n=1

nk(an · cos
(
nx+ k

π

2

)
+ bn · sin

(
nx+ k

π

2

)
)

Для любого k = 0, 1, . . . ,m этот ряд мажорируется сходящимся числовым рядом
(96), поэтому ∀k = 0, 1, . . . ,m он сходится равномерно на сегменте [−π, π] (по при-
знаку Вейерштрасса).

Отсюда следует, согласно теореме 17’ главы 16, что ряд (95) можно дифферен-
цировать почленно на сегменте [−π, π] m раз. Теорема 7 доказана.
Пример 1. Пусть f(x) = (x2 − π2)2 на сегменте [−π, π] Тогда

f ′(x) = 4x(x2 − π2), f ′′(x) = 4(x2 − π2), 4(x2 − π2) + 8x2

откуда получаются равенства

f(−π) = f(π), f ′(−π) = f ′(π), f ′′(−π) = f ′′(π)

и неравенство
f ′′′(−π) 6= f ′′′(π)

Эти соотношения показывают, что для данной функции f(x) выполнены условия
теоремы 7 для m = 2. Следовательно, ряд Фурье этой функции можно дифферен-
цировать почленно на сегменте [−π, π] два раза.
Задание 1. Вычислить коэффициенты Фурье функции f(x) = (x2 − π2)2 на

сегменте [−π, π].
Задание 2.Доказать что ряд фурье можно дифференцировать почленно во внут-

ренних точках сегмента [−π, π]
Пример 2.
Пусть f(x) = sin(cos x) на сегменте [−π, π].
Так как sinx иcosx, а также их производные любого порядка являются перио-

дическими функциями с периодом 2π, то для данной функции условия теоремы 7
выполнены для любого m, и поэтому ряд Фурье этой функции можно дифферен-
цировать почленно на сегменте [−π, π] бесконечное число раз.

20.2. Равномерная аппроксимация непрерывной функции
тригонометрическими и алгебраическими
многочленами.

Алгеброическиv многочленом степени n называется функция вида

Pn(x) = a0x
n + a1x

n−1 + . . .+ an
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где n — натуральное число, ai(i = 0, 1, . . . , n) — какие-то числа (коэффициенты
многочлена).

Тригонометрическим многочленом на сегменте [−π, π] назовeм любую линейную
комбинацию конечного числа функций тригонометрической системы:

T (x) = A0 +
m∑
k=1

Ak cos kx+Bk sin kx

Теорема 8 (еe часто называют теоремой Вейерштрасса). Пусть функция
f(x) определена и непрерывна на сегменте [−π, π] и f(−π) = f(π), то эту функ-
цию можно аппроксимировать с любой точностью равномерно на сегменте [−π, π]
тригонометрическим многочленом, т.е. ∀ε > 0 существует тригонометрический мно-
гочлен T (x), такой, что ∀x ∈ [−π, π] выполняется неравенство

|f(x)− T (x)| < ε

Доказательство. Зададим произвольное ε > 0. В силу леммы 2 (см. §2 главы
19) существует непрерывная кусочно-гладкая функция l(x), такая, что

∀x ∈ [−π, π] : |f(x)− l(x)| < ε

2

и l(−π) = l(π)
По теореме 6 ряд Фурье функции l(x) сходится к этой функции равномерно на

сегменте [−π, π]. Поэтому для заданного ε существует номер n, такой, что

∀x ∈ [−π, π] : |l(x)− Sn(x)| < ε

2

где Sn(x) — частичная сумма ряда Фурье функции l(x) и, тем самым, Sn(x) —
тригонометрический многочлен.

Из этих двух неравенств следует, что

∀x ∈ [−π, π] : |f(x)− Sn(x)| < ε

что и требовалось доказать.
Замечание. Если функция f(x) непрерывна на сегменте [−l, l] и f(−l) = f(l), то

эту функцию можно аппроксимировать с любой точностью равномерно на сегменте
[−l, l] тригонометрическим многочленом вида

T (x) = A0 +
m∑
k=1

Ak cos
πkx

l
+Bk sin

πkx

l
(97)

Теорема 9 (еe также называют теоремой Вейерштрасса). Если функция
f(x) определена и непрерывна на сегменте [a, b], то еe можно аппроксимировать с
любой точностью равномерно на этом сегменте алгебраическим многочленом, т.е.
∀ε > 0 существует алгебраический многочлен Pn(x), такой, что ∀x ∈ [a, b] выполня-
ется неравенство

|f(x)− Pn(x)| < ε
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Доказательство.
1) Рассмотрим сначала произвольную функцию f(x), непрерывную на сегменте

[−l, l] и удовлетворяющую условию f(−l) = f(l), где l > 0 — какое-то число. Со-
гласно замечанию к теореме 8 для любого ε > 0 существует тригонометрический
многочлен T (x) вида (97), такой, что

∀x ∈ [−l, l] : |f(x)− T (x)| < ε

2

Разложим каждую из функций Ak cos πkx
l

и Bk sin πkx
l
, входящих в (97), по форму-

ле Маклорена и возьмeм в разложении каждой функции многочлен Тейлора такой
степени, чтобы остаточный член формулы Тейлора был по модулю меньше ε

4m
на

всeм сегменте [−l, l]. Объединяя все эти многочлены Тейлора и прибавляя слагаемое
A0, входящее в T (x), получим многочлен Pn(x), такой, что

∀x ∈ [−l, l] : |T (x)− Pn(x)| < 2m
ε

4m
=
ε

2

Из этих двух неравенств следует, что

∀x ∈ [−l, l] : |f(x)− Pn(x)| < ε

2) Пусть теперь функция f(x) определена и непрерывна на сегменте [a, b]. Возь-
мeм такое число l, что [a, b] ⊂ [−l, l], и продолжим функцию f(x) на сегмент [−l, l]
непрерывным образом.

Получим функцию F (x), непрерывную на сегменте [−l, l] и совпадающую с f(x)
на сегменте [a, b]. Очевидно, функцию F (x) можно выбрать так, что будет выпол-
нено равенство F (−l) = F (l).

Согласно доказанному в пункте 1), ∀ε > 0 существует алгебраический многочлен
Pn(x), такой, что ∀x ∈ [−l, l] выполняется неравенство |F (x) − Pn(x)| < ε. На сег-
менте [a, b] это неравенство принимает вид |f(x) − Pn(x)| < ε, что и требовалось
доказать.

20.3. Замкнутость тригонометрической системы

Теорема 10. Тригонометрическая система

{ψn} = {1, cosnx, sinnx, n = 1, 2, ..}

является замкнутой в пространстве Q[−π, π].
Доказательство. Согласно определению замкнутой системы нужно доказать,

что любую кусочно-непрерывную на сегменте [−π, π] функцию f(x) можно при-
близить с произвольной точностью по норме пространстве Q[−π, π] с помощью ко-
нечной линейной комбинации функций тригонометрической системы, т.е. ε > 0
существует тригонометрический многочлен T (x), такой, что

‖f(x)− T (x)‖ =

√√√√√ π∫
−π

(f(x)− T (x))2 dx < ε
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Прежде всего заметим, что для любой кусочно-непрерывной на сегменте [−π, π]
функции f(x) можно построить такую непрерывную функцию F (x), которая сов-
падает с f(x) за исключением малых окрестностей точек разрыва f(x) и, быть
может, малой окрестности точки x = π, а в этих окрестностях функция F (x) явля-
ется линейной функцией и, кроме того, она удовлетворяет условию F (−π) = F (π)
(рис. 20.1). В малых окрестностях точек x1 и x2 (это точки разрыва f(x) на рисун-
ке 20.1) и также в малой полуокрестности точки x = π функция f(x) заменена на
линейную функцию F (x).

Рис. 20.1 – Кусочно-непрерывная на сегменте [−π, π] функция f(x).

Зададим произвольное ε > 0. Указанные окрестности можно выбрать столь ма-
лыми, что будет выполнено неравенство

‖f(x)− F (x)‖ =

√√√√√ π∫
−π

(f(x)− F (x))2 dx <
ε

2
(98)

Функция F (x) удовлетворяет условиям теоремы 8. Согласно теореме 8 по задан-
ному ε найдeтся тригонометрический многочлен T (x), такой, что ∀x ∈ [−π, π] будет
выполнено неравенство

|F (x)− T (x)| < ε

2
√

2π

Из последнего неравенства следует

‖F (x)− T (x)‖ =

√√√√√ π∫
−π

(F (x)− T (x))2 dx <
ε

2
(99)

Из (98) и (99) следует, что

‖f(x)− T (x)‖ ≤ ‖f(x)− F (x)‖
< ε

2

+ ‖F (x)− T (x)‖
< ε

2

< ε

что и требовалось доказать.
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Следствие 1. Так как тригонометрическая система является замкнутой в про-
странствеQ[−π, π], то для любой кусочно-непрерывной на сегменте [−π, π] функции
f(x) выполняется равенство Парсеваля

a2
0 +

∞∑
n=1

(a2
n + b2

n) = ‖f(x)‖2 =

π∫
−π

f 2(x) dx

где an, bn — коэффициенты Фурье функции f(x) по ортонормированной тригоно-
метрической системе

{
1√
2π
, 1√

π
cosnx, 1√

π
sinnx, n = 1, 2, ..

}
Для коэффициентов Фурье an, bn функции f(x) по тригонометрической системе
{1, cosnx, sinnx, n = 1, 2, ..}

a2
0

2
+
∞∑
n=1

(a2
n + b2

n) =
1

π

π∫
−π

f 2(x) dx

Следствие 2. Согласно следствию из теоремы 3 для любой функции f(x) кусочно-
непрерывной на сегменте [−π, π] еe тригонометрический ряд Фурье сходится к f(x)
по норме пространства Q[−π, π], т.е. сходится в среднем к f(x) на сегменте [−π, π].
Это означает, что

π∫
−π

(
f(x)−

(
a0

2
+

n∑
n=1

ak cos kx+ bk sin kx

))2

dx→ 0 при n→∞

Следствие 3. Для любой кусочно-непрерывной на сегменте [−π, π] функции f(x)
еe тригонометрический ряд Фурье можно интегрировать почленно на этом сегменте,
т.е. для любых x0 и x из сегмента [−π, π] справедливо равенство

x∫
x0

f(t) dt =

x∫
x0

a0

2
dt+

∞∑
n=1

x∫
x0

(an cosnt+ bn sinnt) dt

Это следует из сходимости ряда Фурье к функции f(x) в среднем на сегменте
[−π, π] и теоремы 19’ главы 16.
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Лекция 21

21.1. Интеграл Фурье
Пусть функция f(x) определена на всей числовой прямой и является кусочно-

гладкой на каждом сегменте. Разложим функцию f(x) в тригонометрический ряд 
Фурье на произвольном чегменте [−l, l]:

f(x) =
a0

2
+
∞∑
n=1

an cos
πnx

l
+ bn sin

πnx

l
(100)

В физике функци cos πnx
l

и sin πnx
l

называют гармониками, а ряд (100) — разло-
жением функции f(x) по гармоникам. Амплитуды гармоник равны an и bn. Коэф-
фициенты при x это частоты гармоник λn = πn

l
они образуют бесконечно большую

последовательность. Разность двух соседних частот ∆λn = λn−λn−1 = π
l
тем мень-

ше, чем больше l, т.е. с увеличением l соседние частоты становятся всe ближе друг
к другу. В пределе при l → ∞ получается разложение функции f(x) по гармони-
кам с непрерывно изменяющейся частотой λ от 0 до +∞, а ряд Фурье переходит в
интеграл Фурье.

an =
1

l

l∫
−l

f(t) cos
πnt

l
dt bn =

1

l

l∫
−l

f(t) sin
πnt

l
dt

Подставим выражение для an и bn в равенство (100) и получим

f(x) =
1

2l

l∫
−l

f(t) dt+
1

π

∞∑
n=1

π

l

l∫
−l

f(t) cos
πn

l
(t− x) dt =

=
1

2l

l∫
−l

f(t) dt+
1

π

∞∑
n=1

 l∫
−l

f(t) cosλn(t− x) dt

∆λn

Прежде чем переходить к пределу потреуем чтобы функция f(t) была абсолютно
интегрируема на всей числовой прямой, т.е. считая, что несобственный интеграл

∞∫
−∞

|f(t)| dt

сходится. Тогда предел при l →∞ первого слагаемого в правой части равенства
равен нулю,в итоге получим

f(x) =
1

π

∞∫
0

dl

+∞∫
−∞

f(t) cosλ(t− x) dt (101)
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Руководствуясь такими эвристических (не строгих) рассуждений мы получили
выражение (101), которое называется представлением функции f(x) и виде инте-
грала Фурье. А сама правая часть этого выражения называется интегралом Фурье.

Записывая cosλ(t−x) в виде cos λt cosλx+sinλt sinλx, перепишем формулу (101)
в виде

f(x) =

∞∫
0

(a(λ) cosλx+ b(λ) sinλx)dλ (102)

где

a(λ) =
1

π

+∞∫
−∞

f(t)cosλt dt b(λ) =
1

π

+∞∫
−∞

f(t) sinλt dt

Формула (102) представляет собой разложение функции f(x) по гармоникам cosλx
и sinλx с частотой λ, изменяющейся непрерывно от 0 до +∞, и амплитудами a(λ)dλ
и b(λ)dλ.

Перейдeм теперь к строгому обоснованию справедливости равенства (101).
Теорема 11. Если функция f(x) определена на всей числовой прямой, является

кусочно-гладкой на любом сегменте и абсолютно интегрируема на всей числовой

прямой (т.е. несобственный интеграл
∞∫
−∞
|f(t)| dt сходится), то для любого x спра-

ведливо равенство

1

π

∞∫
0

dl

+∞∫
−∞

f(t) cosλ(t− x) dt =
1

2
[f(x− 0) + f(x+ 0)] (103)

в частности, в точках непрерывности f(x) правая часть равенства (103) равна f(x),
т.е. справедливо равенство (101).

Доказательство этой теоремы не входит в план курса, но все желающие могут
посмотреть это достаточно красивое и интересное доказательство в учебнике.

21.2. Преобразование Фурье

Пусть функция f(x) удовлетворяет условиям теоремы 11. Представим еe в виде
интеграла Фурье (будем считать, что в точках разрыва f(x) = 1

2
[f(x−0) +f(x+ 0)]

f(x) =
1

π

∞∫
0

dl

+∞∫
−∞

f(t) cosλ(x− t) dt (104)

Здесь мы для удобства написали x− t вместо t− x, так как cos четная функция
это не на что не повлияет.

131

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


Математический анализ Часть III •
Бутузов Валентин Федорович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

Обозначим внутренний интеграл F1(λ, x) и заметим, что он является чeтной функ-
цией λ, значит

1

π

∞∫
0

F1(λ, x)dl =
1

2π

+∞∫
−∞

F1(λ, x)dl

и равенство (104) можно записать в виде

f(x) =
1

2π

+∞∫
−∞

dλ

+∞∫
−∞

f(t) cosλ(x− t) dt (105)

Введем еще одну функцию

F2(λ, x) =

+∞∫
−∞

f(t) sinλ(x− t) dt

является нечeтной функцией λ, поэтому

1

2π

+∞∫
−∞

F2(λ, x)dl =
1

2π

+∞∫
−∞

dl

+∞∫
−∞

f(t) sinλ(x− t) dt = 0 (106)

если понимать этот интеграл в смысле главного значения, т.е.

∞∫
−∞

F2(λ, x)dl = lim
A→+∞

A∫
−A

F2(λ, x)dλ

Умножая равенство (106) на i (мнимую единицу), складывая с равенством (105)
и учитывая, что cosλ(x− t)+ i sinλ(x− t) = eiλ(x−t), приходим к комплексной форме
интеграла Фурье функции f(x):

f(x) =
1

2π

+∞∫
−∞

dλ

+∞∫
−∞

f(t)eiλ(x−t) dt (107)

Отметим ещe раз, что внешний интеграл (по переменной λ) понимается в смысле
главного значения. Перепишем равенство (107) в виде

f(x) =
1√
2π

+∞∫
−∞

 1√
2π

+∞∫
−∞

f(t)e−iλtdt

 eiλt dλ
Введeм обозначение для интеграла в квадратных скобках:

∧
f(λ) =

1√
2π

+∞∫
−∞

f(t)e−iλtdt (108)
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Тогда

f(x) =
1√
2π

+∞∫
−∞

∧
f(λ)eiλt dλ (109)

Функция
∧
f(λ) называется образом Фурье функции f(x), а переход от f(x) к

∧
f(λ)

по формуле (108) называется преобразованием Фурье функции f(x). Функция f(x)

по отношению к своему образу
∧
f(λ) называется оригиналом, а переход от образа

∧
f(λ) к оригиналу f(x) по формуле (109) называется обратным преобразованием
Фурье или восстановлением оригинала по его образу. Ещe раз отметим, что несоб-
ственный интеграл в обратном преобразовании Фурье понимается в смысле глав-
ного значения, а в преобразовании Фурье — как обычный несобственный интеграл,
т.е. как

lim
A1→−∞
A2→+∞

1√
2π

A2∫
A1

f(t)e−iλtdt

Преобразование Фурье используется в курсе методов математической физики,
которую вы будете изучать осенью будущего года. Например, чтобы решить урав-
нение теплопроводности, которое описывает распространение тепла в каждой точке
с течением времени по заданной начальной температуре.

Вернeмся к вещественной форме интеграла Фурье (формула (102)) и рассмотрим
два случая.
1) f(x) — чeтная функция, т.е. ∀x : f(−x) = f(x).
В этом случае f(t) cosλt — чeтная функция аргумента t, а f(t) sinλt — нечeтная

функция аргумента t, поэтому

a(λ) =
2

π

∞∫
0

f(t) cosλt dt, b(λ) = 0

и формулу (102) можно записать в виде

f(x) =

√
2

π

∞∫
0

√ 2

π

∞∫
0

f(t) cosλt dt

 cosλt dλ

Введeм обозначение
∧
fc(λ) =

√
2

π

∞∫
0

f(t) cosλt dt (110)

Тогда

f(x) =

√
2

π

∞∫
0

∧
fc(λ) cosλx dλ (111)
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Формула (110) называется косинус-преобразованием Фурье функции f(x), а фор-
мула (111) — обратным косинус-преобразованием Фурье.
1) f(x) — нечeтная функция , т.е. ∀x : f(−x) = −f(x).
В этом случае f(t) cosλt — нечeтная функция аргумента t, а f(t) sinλt — чeтная

функция аргумента t, поэтому

a(λ) = 0, b(λ) =
2

π

∞∫
0

f(t) sinλt dt

и формулу (102) можно записать в виде

f(x) =

√
2

π

∞∫
0

√ 2

π

∞∫
0

f(t) sinλt dt

 sinλt dλ

называется синус-преобразованием Фурье функции f(x), а формула

f(x) =

√
2

π

∞∫
0

∧
fs(λ) sinλx dλ

- обратным синус-преобразованием Фурье.
Если функция f(x) задана на полупрямой 0 ≤ x < +∞ то еe можно продол-

жить на полупрямую −∞ < x < 0 как чeтным, так и нечeтным образом, и в
соответствии с этим использовать либо косинус-преобразование Фурье, либо синус-
преобразование Фурье.
Пример 1. Рассмотрим функцию

1, если |x| < 1

0, если |x| > 1
1
2
, если |x| = 1

Эта функция — чeтная, найдeм еe косинус-преобразование Фурье:

∧
fc(λ) =

√
2

π

∞∫
0

f(t) cosλt dt =

√
2

π

1∫
0

1 · cosλt dt =

√
2

π

sinλ

λ

Обратное косинус-преобразование Фурье будет иметь вид

f(x) =
2

π

∞∫
0

sinλ

λ
cosλx dλ

Вычислим этот интеграл при x = ±1:

2

π

∞∫
0

sinλ

λ
cosλ dλ =

1

π

sin 2λ

λ
dλ =

1

π
· π

2
=

1

2
= f(±1)
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Задание. Вычислить Обратное косинус-преобразование Фурье для |x| < 1 и для
|x| > 1
Пример 2.

f(x) = e−ax при 0 ≤ x < +∞, a > 0

Продолжим эту функцию на отрицательную полуось нечeтным образом

f̃(x) =


e−ax, x > 0

−e−ax, x < 0

0, x = 0

Будем пользоваться синус-преобразованием Фурье:

∧
fs(λ) =

√
2

π

∞∫
0

e−at sinλt dt =

√
2

π
Im

∞∫
0

e(−a+iλ)t dt =

√
2

π
Im

1

−a+ iλ
e(−a+iλ)t

∣∣∣∣∞
0

=

=

√
2

π
Im

1

−a+ iλ
=

√
2

π
Im

a+ iλ

a2 + λ2
=

√
2

π

λ

a2 + λ2

Задание. Сделать обратное синус-преобразование Фурье. То есть вычислить ин-
теграл

f(x) =

√
2

π

∞∫
0

∧
fs(λ) sinλx dλ
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Лекция 22
Обобщенные функции
Понятие обобщeнной функции является обобщением классического понятия функ-

ции. Впервые обобщeнные функции были введены П. Дираком в 20-е годы прошло-
го столетия при исследовании задач квантовой механики. Математические основы 
теории обобщeнных функций были заложены советским математиком академиком 
С.Л. Соболевым (в 30-е годы прошлого века) и французским математиком Л. Швар-
цем (в начале 50-х годов прошлого века). В настоящее время обобщeнные функции 
находят широкое применение в математике и физике. Они позволяют выразить 
в математической форме такие идеализированные физические понятия, как плот-
ность массы материальной точки, плотность точечного электрического заряда, ин-
тенсивность мгновенного точечного источника, которые не могут быть выражены 
с помощью обычных функций.

22.1. Понятие обобщeнной функции. Пространство
обобщeнных функций

Будем рассматривать множество всевозможных функций ϕ(x), определeнных на
всей числовой прямой R и обладающих следующими двумя свойствами:

1) каждая функция ϕ(x) бесконечно дифференцируема (т.е. имеет производные
всех порядков) на всей числовой прямой; это обозначают так: ϕ(x) ∈ C∞(R);

2) каждая функция ϕ(x) является финитной, т.е. для каждой функции ϕ(x) су-
ществует интервал, вне которого она равна нулю.

Обозначим через Xϕ множество всех точек x, в которых ϕ(x) 6= 0, а через Xϕ —
замыкание множества Xϕ, т.е. Xϕ является объединением множества Xϕ и всех его
предельных точек.

МножествоXϕ называется носителем функции ϕ(x) и обозначается так: Suppϕ(x)
(от французского support). Очевидно, что функция ϕ(x) является финитной тогда
и только тогда, когда Suppϕ(x) — ограниченное множество.

Множество всех финитных бесконечно дифференцируемых функций назовeм мно-
жеством основных функций и обозначим буквой D.
Пример. Рассмотрим функцию(рис 22.1)

ωa(x) =

{
−e

a2

a2−x2 , |x| < a, a > 0

0, |x| = a

Эта функция называется "шапочка"
Задание. Докажите, что ω(n)

a = 0 для ∀n
Определение. Будем говорить, что последовательность {ϕn(x)} основных функ-

ций сходится к функции ϕ(x) из множества D, если: 1) существует интервал (−a, a),
такой, что ∀n

Suppϕn(x) ∈ (−a, a)

2) k = 0, 1, 2, . . . последовательность {ϕ(k)
n (x)} сходится равномерно к ϕ(k)(x) на

всей прямой R. (Заметим, что равномерная сходимость на всей прямой равносильна
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Рис. 22.1 – Функция "шапочка".

равномерной сходимости на интервале (−a, a)). Будем обозначить это

ϕn(x)→ ϕ(x) при n→∞ в пространстве D

Пример 1.

ϕn(x) =
1

n
ωa(x) где ωa(x)−шапочка

Докажем, что

ϕn(x)→ ϕ(x) при n→∞ в пространстве D

Требуется доказать что ∀k = 0, 1, 2, . . . {ϕ(k)
n (x)} = { 1

n
ω

(k)
a (x)} ⇒ 0 на R или

что тоже самое на [−a, a] Для этого воспользуемся определением равномерной схо-
димости связанным с супремумом

Sup
[−a,a]

|ϕ(k)
n (x)− ϕ(k)(x)

=0

| = 1

n
Sup
[−a,a]

|ω(k)
a (x)| ⇒ lim

n→∞
Sup
[−a,a]

|ϕ(k)
n (x)− ϕ(k)(x)| = 0

а это означает, что

{ϕ(k)
n }⇒ ϕ(k)(x) = 0 на [−a, a]

То есть ϕn(x)→ ϕ(x) при n→∞ в пространстве D
Определение. Будем говорить, что на пространстве D задан функционал, если

указано правило, по которому каждой функции ϕ(x) ∈ D ставится в соответствие
определeнное число u(ϕ). Функционал также будем обозначать u(ϕ).
Определение.Функционал u(ϕ) называется линейным, если для ∀ϕ1(x) и ∀ϕ2(x)

из пространства D и любых чисел α и β выполняется равенство

u(αϕ1(x) + βϕ2(x)) = αu(ϕ1) + βu(ϕ2)

Пример. Пусть функция f(x) определена на всей числовой прямой и интегри-
руема на любом сегменте. В таком случае будем называть функцию f(x) локально
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интегрируемой. С помощью функции f(x) определим на пространстве D функцио-
нал следующим образом: каждой функции ϕ(x) ∈ D поставим в соответствие число

u(ϕ(x)) =

+∞∫
−∞

f(x)ϕ(x) dx (112)

Отметим, что хотя этот интеграл имеет бесконечные пределы интегрирования и,
тем самым, является несобственным, на самом деле для каждой функции ϕ(x) это
обычный определeнный интеграл, поскольку любая функция ϕ(x) из пространства
D является финитной и, следовательно, равна нулю вне некоторого интервала.

Докажем что этот функционал является линейным

u(αϕ1(x) + βϕ2(x)) =

+∞∫
−∞

f(x)[α(ϕ1) + β(ϕ2)] dx =

= α

+∞∫
−∞

f(x)ϕ1(x) dx+ β

+∞∫
−∞

f(x)ϕ2(x) dx = αu(ϕ1) + βu(ϕ2)

Этот функционал в дальнейшем будем обозначать символом f̂ , а значение функ-
ционала f̂ на элементе ϕ(x) пространства D обозначим так: (f̂ , ϕ), т.е.

(f̂ , ϕ) :=

+∞∫
−∞

f(x)ϕ(x) dx (113)

Аналогичное обозначение будем использовать в дальнейшем и в том случае, ко-
гда линейный функционал не является интегралом вида (112). Символ (f, ϕ) будет
обозначать значение функционала f на элементе ϕ(x) пространства D.
Пример 2. Рассмотрим множество всех функций, определeнных на сегменте [a, b]

и имеющих на этом сегменте непрерывную первую производную. Это множество
обозначим C1[a, b]. Каждой функции ϕ(x) из этого множества поставим в соответ-
ствие число l(ϕ), равное длине кривой, являющейся графиком функции y = ϕ(x)
на сегменте [a, b]

l(ϕ) =

b∫
a

√
1 + ϕ′2(x) dx

Тем самым на множестве C1[a, b] задан функционал. Он не является линейным.
Если бы он был линейным, то это означало бы, с геометрической точки зрения, что
длина графика суммы функций равна сумме длин, но это явно не так.
Определение. Функционал f , определeнный на пространствеD основных функ-

ций, называется непрерывным, если для любой последовательности {ϕn(x)} основ-
ных функций, сходящейся вD к функции ϕ(x), числовая последовательность (f, ϕn)
сходится к (f, ϕ).
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Задание. доказать что
+∞∫
−∞

f(x)ϕ(x) dx

является непрерывным.
Определение. Обобщeнной функцией называется любой линейный непрерыв-

ный функционал, определeнный на пространстве основных функций.
Определение. Будем говорить, что последовательность {fn} обобщeнных функ-

ций сходится к обобщeнной функции f , если для любой функции ϕ(x) из простран-
ства D числовая последовательность (fn, ϕ) сходится к (f, ϕ).

Множество всех обобщeнных функций с введeнным понятием сходимости обозна-
чается D′ и называется пространством обобщeнных функций.

Сходимость последовательности {fn} обобщeнных функций к обобщeнной функ-
ции f называется слабой сходимостью. Говорят также, что последовательность
функционалов {fn} слабо сходится к функционалу f . Обозначение: fn → f при
n→∞ в пространстве D′.

Отметим что пространство D основных функций является линейным простран-
ством с обычными операциями сложения и умножения на число.

Введeм операции сложения двух обобщeнных функций и умножения обобщeнной
функции на число, то есть в пространстве D′.

Суммой двух обобщeнных функций f и g назовeм функционал (обозначим его
f + g), действующий по правилу:

∀ϕ(x) ∈ D : (f + g, ϕ) = (f, ϕ) + (g, ϕ)

Произведением обобщeнной функции f на число α назовeм функционал (обозна-
чим его αf), действующий по правилу:

∀ϕ(x) ∈ D : (αf, ϕ) = α(f, ϕ)

Задание 1. Доказать что f + g и αf являются линейными и непрерывными
функционалами, то есть обобщенными функциями.
Задание 2. Проверить выполнение аксиом линейного пространства для введен-

ных действий сложения и умножения.
В частности, роль нулевого элемента играет функционал, ставящий в соответ-

ствие каждой функции из пространства D число нуль.
Следовательно, множество обобщeнных функций становится линейным простран-

ством.

22.2. Регулярные и сингулярные обобщeнные функции

Пусть f(x) — локально интегрируемая функция. Она порождает линейный непре-
рывный функционал f̂ на пространстве D, т.е. порождает обобщeнную функцию,
определeнную формулой (113). Такая обобщeнная функция называется регулярной.

Сингулярная функция - это функция не являющаяся регулярной.
Классический пример обобщенной сингулярной функции является δ-функция
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∀ϕ(x) ∈ (δ, ε) = ϕ(0)

Иногда будем обозначать ее δ(x)
Теорема 1. δ-функция является линейным непрерывным функционалом, то есть

обобщeнной функцией.
Доказательство. Докажем сначала, что δ–функция – линейный функционал.

В самом деле, ∀ϕ1(x) и ϕ1(x) из пространства D и для любых чисел α и β имеем
(согласно определению δ–функции):

(δ, αϕ1 + βϕ2) = αϕ1(0) + βϕ2(0) = α(δ, ϕ1) + β(δ, ϕ2)

а это и означает, что δ–функция – линейный функционал.
Докажем теперь, что δ–функция – непрерывный функционал. Для этого, соглас-

но определению непрерывного функционала, нужно доказать, что для любой по-
следовательности {ϕn(x)} основных функций, сходящейся в D к функции ϕ(x), со-
ответствующая числовая последовательность (δ, ϕn) сходится к (δ, ϕ). Но (δ, ϕn) =
ϕn(0), (δ, ϕ) = ϕ(0) (по определению δ–функции), поэтому нужно доказать, что если

ϕn(x)→ ϕ(x) при n→∞ в пространстве D (114)

то

ϕn(0)→ ϕ(0) при n→∞
Из (114) по определению сходимости в пространстве D следует, что ϕn(x) ⇒ ϕ(x) на
всей числовой прямой, в частности, ϕn(0) ⇒ ϕ(0) при n→∞. Теорема 1 доказана.
Теорема 2. δ-функция является сингулярной обобщeнной функцией.
Доказательство. Предположим, что δ-функция является регулярной обобщeн-

ной функцией. То есть существует локально интегрируемая функция f(x), такая,
что

∀ϕ(x) ∈ D : (δ, ϕ) =

+∞∫
−∞

f(x)ϕ(x) dx = ϕ(0)

Возьмeм в качестве ϕ(x) «шапочку» Для неe выполнены соотношения

0 ≤ ωa(x) ≤ e−1, ωa(0) = e−1

По определению δ-функции (δ, ωa) = ωa(0) = e−1 Тогда

(δ, ωa) =

+∞∫
−∞

f(x)ωa(x) dx =

+a∫
−a

f(x)ωa(x) dx

И следовательно
+a∫
−a

f(x)ωa(x) dx = e−1 (115)
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Так как функция f(x) локально интегрируема, то она ограничена на любом от-
резке, поэтому

+a∫
−a

f(x)ωa(x) dx→ 0 при a→ 0

Но это противоречит равенству (115) и, следовательно, наше предположение невер-
но, а значит, δ-функция является сингулярной обобщeнной функцией. Теорема 2
доказана.
Теорема 3. δ-функцию можно представить как предел в пространстве D′ после-

довательности регулярных обобщeнных функций.
Доказательство. Для любого a > 0 введeм функцию

δa(x) =

{
1
a
, |x| ≤ a

2

0, |x| > a
2

Каждая функция δa(x) порождает функцию δ̂a, которая действует следущим об-
разом

∀ϕ(x) ∈ D : (δ̂a, ϕ) =

+∞∫
−∞

δa(x)ϕ(x) dx =
1

a

a
2∫

−a
2

ϕ(x) dx

Докажем что

δ̂a → δ −функции при a→ +0 в пространстве D′

Для этого нужно доказать

∀ϕ(x) ∈ D : (δ̂a, ϕ)→ (δ, ϕ) = ϕ(0) при a→ +0

Или, что тоже самое

∀ϕ(x) ∈ D : (δ̂a, ϕ)− ϕ(0)→ 0 при a→ +0 (116)

По определению предела нужно доказать что ∀ε > 0,∃a0 > 0, такое, что

|δ̂a, ϕ)− ϕ(0)| < ε при 0 < a < a0 (117)

Зададим произвольное ε > 0. Так как ϕ(x) непрерывна в точке x = 0, найдется
a0 > 0 :

|ϕ(x)− ϕ(0)| < ε при |x| < a0

Используя это неравентсво оценим выражение (117)

|(
∧
δa, ϕ)− ϕ(0)| =

∣∣∣∣∣∣∣
1

a

a
2∫

−a
2

ϕ(x) dx− 1

a

a
2∫

−a
2

ϕ(0) dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

a

a
2∫

−a
2

(ϕ(x)− ϕ(0)) dx ≤ |
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≤

∣∣∣∣∣∣∣
1

a

a
2∫

−a
2

|ϕ(x)− ϕ(0)|
<ε

dx

∣∣∣∣∣∣∣ <
1

a
ε

a
2∫

−a
2

dx = ε при 0 < a < a0

Тем самым выполнено неравенство (116) и значит теорема 3 доказана.
Замечания. Оказывается, любую сингулярную обобщeнную функцию можно

представить как предел в пространстве D последовательности регулярных обоб-
щeнных функций. Положим a = 1

n
, тогда a → +0 при n → ∞. Из теоремы 3

следует что δ̂ 1
n
→ δ при n→∞ в пространстве D′
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Лекция 23
Локальные свойства обобщeнных функций.
Обобщeнные функции, в отличие от обычных функций, не имеют значений в 

отдельных точках. Тем не менее можно говорить об обращении в нуль обобщeнной 
функции на каком-то интервале.
Определение. Говорят, что обобщeнная функция f равна нулю на интервале I, 

если ∀ϕ(x) ∈ D, носитель которой Suppϕ(x) ∈ I, выполняется равенство (f, ϕ) = 0.
Иногда это записывают так: f = 0 на интервале I или f(x) = 0 при x ∈ I. 

Нужно только понимать условность последней записи – f(x) не имеет значений в 
отдельных точках x из интервала I, а равенство f(x) = 0 при x ∈ I понимается в 
смысле данного определения.
Определение. Обобщeнные функции f и g называются равными на интервале 

I, если f(x) − g(x) = 0 при x ∈ I.
Объединение всех интервалов, на которых обобщeнная функция f равна нулю, 

называется нулевым множеством обобщeнной функции f , обозначается Of . Допол-
нение множества Of до всей прямой, то есть разность R−Of , называется носителем 
обобщeнной функции f (обозначение: Suppf). Если Suppf — ограниченное множе-
ство, то обобщeнная функция f называется финитной.
Примеры. Рассмотрим δ-функцию. Для любого интервала I не содержащего 

точку x = 0 δ(x) = 0. Действительно, возьмем любую функцию ϕ(x) носитель 
которой принадлежит интервалу I, отсюда следует что ϕ(0) = 0 и значит (δ, ϕ) = 
ϕ(0) = 0. Нулевое множества δ-функции это Oδ = (x < 0) ∪ (x > 0). Это значит 
носитель Suppδ δ-функции является единственная точка x = 0

23.1. Действия над обобщeнными функциями
1. Умножение обобщeнной функции на бесконечно дифференцируемую

функцию. Пусть f(x) — локально интегрируемая функция, f̂ — порождаемая
функцией f(x) регулярная обобщeнная функция, a(x) — бесконечно дифференци-
руемая функция на всей прямой R (a(x) ∈ C∞(R)). Рассмотрим регулярную обоб-
щенную функцию âf , она также локально интегрируемая. Тогда

∀ϕ(x) ∈ D : (âf , ϕ) =

+∞∫
−∞

a(x)f(x)ϕ(x) dx = f̂ , aϕ)

Итак, для любой регулярной обобщeнной функции f̂ и для любой функции a(x) ∈
C∞(R) справедливо равенство

(âf , ϕ) = (f̂ , aϕ)

Определение. Произведением обобщeнной функции f на бесконечно диффе-
ренцируемую функцию a(x) называется обобщeнная функция (обозначим еe af),
действующая по правилу:

∀ϕ(x) ∈ D : (af, ϕ) = f, aϕ)
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Подчеркнeм, что для регулярных обобщeнных функций это равенство было обос-
новано, а для сингулярных обобщeнных функций оно принимается в качестве опре-
деления произведения на дифференцируемую функцию.
Пример. a(x)δ(x) — это такая (по определению) обобщeнная функция, что (aδ, ϕ) =

(δ, aϕ) = a(0)ϕ(0) = a(0)(δ, ϕ), т.е. умножение δ-функции на бесконечно диффе-
ренцируемую функцию a(x) равносильно умножению δ–функции на число a(0) :
a(x)δ(x) = a(0)δ(x). Отметим, что произведение двух обобщeнных функций не опре-
деляется.

Отметим, что произведение двух обобщeнных функций не определяется.
2. Линейная замена переменных в обобщeнных функциях Пусть f(x) —

локально интегрируемая функция, a и b — произвольные числа, a 6= 0. Рассмотрим
функцию f(ax+ b) и порождаемую ею регулярную обобщeнную функцию, которую
обозначим f̂(ax+ b). Для любой функции ϕ(x) ∈ D имеем равенство

(f̂(ax+ b), ϕ(x)) =

+∞∫
−∞

f(ax+ b)ϕ(x) dx (118)

Сделаем в интеграле замену переменной t = ax+ b. Тогда dx = 1
a
dt, x = t−b

a

+∞∫
−∞

f(ax+ b)ϕ(x) dx =
1

|a|

+∞∫
−∞

f(t)ϕ

(
t− b
a

)
dt =

=
1

|a|

+∞∫
−∞

f(x)ϕ

(
x− b
a

)
dx =

1

|a|

(
∧

f(x), ϕ

(
x− b
a

))
(119)

Отметим что при a < 0 и при a > 0 получаются, на самом деле, разные интегралы,
но так как в них различны лишь пределы интегрирования они оба уложились в одну
запись

1

|a|

+∞∫
−∞

f(t)ϕ

(
t− b
a

)
dt

Из (118) и (119) следует, что для любой регулярной обобщeнной функции
∧
f(x) и

любых чисел a 6= 0 и b справедливо равенство

(
∧
f(ax+ b), ϕ(x)) =

1

|a|

(
∧
f(x), ϕ

(
x− b
a

))
Для сингулярных обобщeнных функций примем это равенство в качестве опреде-

ления линейной замены переменных. Таким образом, мы вводим следующее опре-
деление.
Определение. Обобщeнная функция f(ax+ b) — это функционал, действующий

по правилу:

144

ВОЛЬНОЕ ДЕЛО
Ф О Н Д

https://vk.com/teachinmsu


Математический анализ Часть III •
Бутузов Валентин Федорович

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU

∀ϕ(x) ∈ D : (f(ax+ b), ϕ(x)) =
1

|a|

(
f(x), ϕ

(
x− b
a

))
Частные случай 1. При a = 1, b = −c получаем формулу сдвига аргумента

обобщeнной функции:

(f(x− c), ϕ(x)) = (f(x), ϕ(x+ c))

Частные случай 2. При b = 0, a 6= 0 — формулу растяжения аргумента обоб-
щeнной функции:

(f(ax), ϕ(x)) =
1

|a|

(
f(x), ϕ

(x
a

))
Примеры.
1)

(δ(x− c), ϕ(x)) = (δ(x), ϕ(x+ c)) = ϕ(x+ c)

∣∣∣∣
x=0

= ϕ(c)

2)

(δ(ax), ϕ(x)) =
1

|a|

(
δ(x), ϕ

(x
a

))
=

1

|a|
ϕ(0) =

1

|a|
(δ(x), ϕ(x))

т.е. растяжение аргумента обобщeнной функции δ(x) с коэффициентом a равно-
сильно умножению δ(x) на число 1

|a| :

δ(ax) =
1

|a|
δ(x)

В частности, при a = −1 получаем равенство δ(−x) = δ(x) (чeтность δ–функции).
3. Дифференцирование обобщeнных функций. Пусть f(x) ∈ C∞(R) и

является интегрируемой на любом сегменте. Операцию дифференцирования будем
обозначать либо штрихом (как это делалось раньше), либо буквой D (так принято
в теории обобщeнных функций):

f ′(x) = D(x), f ′′(x) = (f ′(x))′ = D(Df(x)) = D2f(x), . . . , f (k)(x) = D(k)(x)

Функция Df(x) порождает регулярную обобщeнную функцию D̂f , действие ко-
торой на произвольную функцию ϕ(x) из пространства D выражается равенством

(D̂f, ϕ) =

+∞∫
−∞

f ′(x)ϕ(x) dx

Применяя к интегралу формулу интегрирования по частям

+∞∫
−∞

f ′(x)ϕ(x) dx = f(x)ϕ(x)

∣∣∣∣+∞
−∞

=0

−
+∞∫
−∞

f(x)ϕ′(x) dx = −(f̂ , ϕ′) = −(f̂ , Dϕ)
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Для регулярной обобщенной функции приходим к равенству

(D̂f, ϕ) = −(f̂ , Dϕ) (120)

Аналогично получается равенство (путeм k–кратного применения формулы ин-
тегрирования по частям)

(D̂kf, ϕ) = (−1)k(f̂ , Dkϕ), k = 1, 2, 3, . . . (121)

Равенства (120) и (121) получены для регулярной обобщeнной функции. Для син-
глулярных обобщeнных функций примем эти равенства в качестве определения ее
производных.
Определение. Производной n-го порядка обобщeнной функции f называется

обобщeнная функция (она обозначается Dnf), действующая по правилу:

∀ϕ(x) ∈ D : (Dnf, ϕ) = (−1)n(f,Dnϕ), n = 1, 2, 3, . . .

Это означает, что любая обобщeнная функция бесконечно дифференцируема, т.е.
имеет производные всех порядков.
Пример 1. Найдeм производную обобщeнной функции Хевисайда(Θ(x))

Θ(x) =

{
1, x ≥ 0

0, x < 0

∀ϕ(x) ∈ D : (Θ̂, ϕ) =

+∞∫
0

ϕ(x) dx

поэтому, согласно определению производной обобщeнной функци

(DΘ̂, ϕ) = −(Θ̂, Dϕ) = −(Θ̂, ϕ′) = −
+∞∫
0

ϕ′(x) dx = ϕ(x)

∣∣∣∣+∞
0

= ϕ(0) = ((δ(x), ϕ(x)))

Следовательно, DΘ̂ = δ(x), т.е. производная обобщeнной функции Хевисайда
равна δ-функции
Пример 1. Найдeм производную δ-функции.

∀ϕ(x) ∈ D : (Dδ(x), ϕ(x)) = −(δ(x), Dϕ(x)) = −(δ(x), ϕ′(x)) = −ϕ′(0)

Таким образом, производная δ-функции ставит в соответствие каждой функции
ϕ(x) из пространства D число – ϕ(0). Аналогичным образом получаем:

∀n ∈ N : (Dnδ(x), ϕ(x)) = (−1)n(δ(x), Dnϕ(x)) = (−1)nϕ(n)(0)

Пример 2. Рассмотрим обобщeнные функции ŝinx и ĉosx, порождeнные функ-
циями sinx и cosx
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∀ϕ(x) ∈ D : (ŝinx, ϕ) =

+∞∫
−∞

sinx · ϕ(x) dx

Найдем производную обобщeнной функции ŝinx

(Dŝinx, ϕ) = −(ŝinx,Dϕ) = −
+∞∫
−∞

sinx·ϕ′(x) dx = − sinxϕ(x)

∣∣∣∣+∞
−∞

+

+∞∫
−∞

cosx·ϕ(x) dx = (ĉosx, ϕ)
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