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Лекция 1  
В этой лекции будут рассмотрены несколько моментов: предметы и порядки величин в 

атомной физике, а также экспериментальные свидетельства недостаточности 

классического описания, приведшие к появлению квантовой физики. К ним относятся: 

ультрафиолетовая катастрофа (1900 г, работы Планка по получению формулы для 

описания спектральной плотности излучения абсолютно черного тела), фотоэффект 

(1905 г, работа Альберта Эйнштейна, который продолжил идеи квантования, развитые 

в работах Планка), проблемы строения и стабильности атома (1913г, т.е. проблема 

дискретности спектральных линий, дискретности энергетических уровней в атоме и его 

строение), и корпускулярно-волновой дуализм (1924-27гг, гипотеза Де-Бройля о том, 

что и частицы обладают волновыми свойствами).  

Современное представление о фундаментальных взаимодействиях. 
Существует 4 типа фундаментальных взаимодействий: гравитационное, слабое, 

электромагнитное и сильное взаимодействия. Взаимодействия характеризуются 2-мя 

типами частиц: фермионами и бозонами. Фермионы составляют основу материи, а 

энергия между этими частицами переносится с помощью бозонов. 

Таблица 1. Взаимодействия. http://www.cpepweb.org/ 

Частицы, испытывающие и переносящие взаимодействие:  

• Гравитационное взаимодействие испытывают все частицы, бозоны, которые 

переносят это взаимодействие, – гравитоны.  

• Слабое взаимодействие испытывают кварки и лептоны, а переносят его 

𝑊𝑊+,𝑊𝑊−,𝑍𝑍0-бозоны. 

• Электромагнитное взаимодействие действует на электрические заряды (или 

https://vk.com/teachinmsu
http://www.cpepweb.org/
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тела, которые заряжены), переносят это взаимодействие γ-кванты. 

• Сильные взаимодействия переносят глюоны, испытывают его кварки. 

Силы взаимодействия. За единицу принимается электромагнитное взаимодействие, 

т.е. взаимодействие между зарядами. Гравитационное взаимодействие слабо зависит от 

расстояния, но из-за незначительной силы этого взаимодействия в данном курсе лекций 

оно учитываться не будет. Сильное взаимодействие значительно зависят от расстояния, 

поэтому данным взаимодействием также пренебрегаем, так как масштабы 

рассматриваемых величин выходят за радиус взаимодействия. 

Строение атома. u и d-кварки образуют нейтроны и протоны, составляющие область 

размером порядка 10−14 − 10−15 метра – ядро. Область атома - 10−10 метра. Размер 

Рисунок 1. Строение атома. http://www.cpepweb.org/ 

https://vk.com/teachinmsu
http://www.cpepweb.org/
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электрона меньше 10−19 метра и в теории рассматривается как точечная частица, как и 

все фундаментальные частицы.  

Порядки физических величин в атомной физике. 
Размер атома порядка 1 ангстрема. Характеризуется 1-ым Боровским радиусом – 

радиусом основного состояния атома водорода в теории Бора. Энергия этого состояния 

13.6 эВ. 

Постоянная Планка h=6.63 10-34 Дж с 
Приведенная постоянная Планка ћ=1.05 10-34 Дж с 
Элементарный заряд e=1.60 10 -19 Кл 
Масса электрона m=0.91 10-30 кг 
Масса протона M=1.67 10-27 кг 
Постоянная Больцмана k=1.38·10-23 Дж/К 
Скорость света с = 3.00 108 м/с 
Гравитационная постоянная G = 6.67 10-11 м3/(кгс2) 
Постоянная Авогадро NA=6.02 1023 моль-1 
Атомная единица массы 1 а.е.м. = 1.67 10-27 кг 
Электронвольт 1эВ   1.6 10 19 Дж 
Тепловая энергия (T=293K) kT=0.025эВ=1/40 эВ 
Энергия покоя электрона mc2=0.51 MэВ 
Таблица 2. Значения некоторых постоянных. 

Естественные единицы атомной физики. Принципы использования: единица массы – 

масса электрона, единица энергии – энергия покоя электрона, единица длины – 

Комптоновская длина волны электрона ( ℏ
𝑚𝑚𝑚𝑚

 = 3.86 10-13 метра), единица времени – ( ℏ
𝑚𝑚𝑐𝑐2

). 

Другая важная величина, использующаяся в лекции - постоянная тонкой структуры α, 

которая характеризует величину электромагнитного взаимодействия. 

 𝛼𝛼 =
𝑒𝑒2∕ ℏ

𝑚𝑚𝑚𝑚
𝑚𝑚𝑐𝑐2

= 𝑒𝑒2

ℏ𝑐𝑐
≈ 1

137
 

Перевод в систему СИ: 𝑒𝑒2 → 𝑒𝑒2

4𝜋𝜋𝜀𝜀0
 

Представление о материи в классической физике. Недостаточность 

классического описания. 
Ультрафиолетовая катастрофа. Классическая физика предсказывала расходимость в 

мощности излучения при малых динах волн. Эта проблема носила название 

ультрафиолетовой катастрофы. В 1900 году Макс Планк успешно решил данную 

https://vk.com/teachinmsu
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проблему, получив формулу для спектральной плотности излучения абсолютно 

чёрного тела. Основная гипотеза – энергия излучателя (осциллятора) пропорциональна 

некой константе и частоте этого осциллятора 𝐸𝐸𝑛𝑛 = 𝑛𝑛ℏ𝜔𝜔, 𝑛𝑛 = 1,2, … В результате были 

объяснены микроскопически наблюдаемые экспериментальные законы - закон 

смещения Вина (максимум спектральной плотности сдвигается в зависимости от 

температуры по закону 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 = 𝑏𝑏, где постоянная Вина  𝑏𝑏 = 2,9 ⋅ 10−3 мК) и закон 

Стефана-Больцмана (энергетическая светимость 𝑅𝑅 = 𝜎𝜎𝑇𝑇4, где 𝜎𝜎 = 5,67 ⋅ 10−8 Вт/м2 

K4). 

Фотоэффект. В 1905 году Альберт Эйнштейн объяснил закономерности фотоэффекта, 

записав уравнение (ℏ𝑤𝑤 = 𝐴𝐴 + 𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
2

2
). Энергия фотона (𝐸𝐸𝜙𝜙 = ℏ𝜔𝜔), импульс фотона (𝑝𝑝 =

ℏ𝑘𝑘), где 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

 – волновой вектор. Отсюда следует, что в квантовой концепции нельзя 

одновременно уменьшать длину волны фотона и энергию его взаимодействия с 

системой. 

Проблема строения и стабильности атома. Оценка размера атома. Возьмём 

плотность вещества 𝜌𝜌 = 𝑚𝑚
𝑉𝑉

= 𝑀𝑀
𝑁𝑁𝐴𝐴𝑉𝑉0

 и простейшую модель строения тела – каждый атом 

находится в кубике с ребром 2R. Тогда 𝑉𝑉0 = (2𝑅𝑅)3, следовательно 𝑅𝑅 = 1
2 �

𝑀𝑀
𝜌𝜌𝑁𝑁𝐴𝐴

3 . Если 

подставить плотности и массы разных атомов, заметим, что размеры атомов не зависят 

от плотности и атомного веса. В 1987 году была измерена масса электрона, что 

считается его открытием. Размер электрона можно получить из следующей оценки 

𝑚𝑚𝑐𝑐2 = 𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟𝑒𝑒
⇒ 𝑟𝑟𝑒𝑒 = 𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑚𝑚𝑐𝑐2
= 2,8 ⋅ 10−15 м.  

В 1903 году Томсон предложил модель атома. Она представляет собой электрон и 

положительно заряженный шар, размером порядка 1 ангстрема. Поэтому атом в целом 

нейтрален и обладает следующим свойством: если вывести электрон из положения 

равновесия на величину 𝑥𝑥, тогда на электрон будет действовать возвращающая сила, 

которая определяется зарядом внутри сферы, согласно теореме Гаусса ∮ 𝐸𝐸�⃗ 𝑑𝑑𝑠𝑠 = 𝑞𝑞
𝜀𝜀0

. 

Электрическое поле везде нормально к поверхности, поэтому данную формулу можно 

записать как 𝐸𝐸 ⋅ 4𝜋𝜋𝑥𝑥2 =
𝑒𝑒⋅43𝜋𝜋𝑥𝑥

3

4
3𝜋𝜋𝑅𝑅

3𝜀𝜀0
. Таким образом кулоновская сила, являющаяся 
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возвращающей, равна 𝐹𝐹 = −𝑘𝑘𝑘𝑘 = 𝐸𝐸𝑒𝑒. Тогда частота колебаний 𝜔𝜔2 = 𝑘𝑘
𝑚𝑚

. Ещё 1 свойство 

атома – устойчивость. Если вывести электрон из положения равновесия, он начнёт 

колебаться и будет излучать энергию за счёт того, что движется заряд с ускорением. 

Мощность такого излучения 𝑃𝑃 = 2
3
𝑒𝑒2𝑎𝑎2

𝑐𝑐3
, −𝑑𝑑𝐸𝐸

𝑑𝑑𝑡𝑡
= 𝑃𝑃. Получаем затухающие колебания, и 

оценка времени жизни такой системы даёт порядок 10-8 секунды. 

Несостоятельность модели Томпсона в том, что она даёт только 1 спектральную линию. 

Но решающими были опыты Ганса Гейгера и Эрнстон Марсдена, которые обнаружили 

отклонения альфа-частиц на большие углы при прохождении через тонкую, порядка 1 

мкм, золотую фольгу. На углы больше 90 градусов, т.е. обратное рассеивание, 

рассеивалась, приблизительно, одна из 8 тысяч альфа-частиц. Рассмотрим простейшую 

модель взаимодействия альфа-частицы с положительно заряженным шаром, который 

мы рассматриваем. Если это положительно заряженное облако, то область 

взаимодействия мы можем грубо оценить, как 𝐿𝐿 = 2𝑅𝑅 (диаметр этого облака). 

Вычислим нормальную составляющую изменения импульса. Найдём угол отклонения, 

как отношение нормальной составляющей изменения импульса к импульсу. Получаем 

значение порядка 3 ⋅ 104 рад, которое должно было наблюдаться экспериментально. Но 

отклонения больше этого значения и даже обратное рассеивание объяснил Резерфорд в 

1911 году, предложив иную модель атома – планетарную. Но в модели, предложенной 

Резерфордом, движущийся по орбите электрон, должен излучать, следовательно, время 

жизни такого атома порядка 10-10 10-11 секунды. Таким образом планетарная модель 

атома оказалась несостоятельной с классической точки зрения. 

Дискретность атомных спектров. 
Постулаты Бора (1913 год): 

• Атом может находиться в определённых стационарных состояниях, которые 

характеризуются дискретными уровнями энергии E1, E2, и т.д. В этих состояниях 

атом не излучает и не поглощает энергию. 

• При переходе атома из одного стационарного состояния в другое он излучает 

(поглощает) квант света (фотон) с энергией ℏ𝜔𝜔 = 𝐸𝐸2 − 𝐸𝐸1 
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Правило квантования Бора. Энергия электрона на орбите |𝐸𝐸| = �𝑚𝑚𝑣𝑣2

2
− 𝑒𝑒2

𝑟𝑟
� = �− 𝑒𝑒2

2𝑟𝑟
� =

𝑚𝑚𝑣𝑣2

2
= 𝑚𝑚

2
(𝜔𝜔𝑟𝑟)2. Это следует из уравнения движения 𝑚𝑚𝑣𝑣2

𝑟𝑟
= 𝑒𝑒2

𝑟𝑟2
. Из уравнения Планка: 

𝐸𝐸𝑛𝑛 = 𝛼𝛼𝛼𝛼ℏ𝜔𝜔, из правила квантования Бора: пусть 𝛼𝛼 = 1
2
, тогда момент импульса 𝐿𝐿 =

𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑛𝑛ℏ. И правило квантования Бора:  𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑛𝑛ℏ, где n = 1, 2, 3, и т.д.  

Энергия атома водорода 𝐸𝐸𝑛𝑛 =  −𝑅𝑅𝑅𝑅 1
𝑛𝑛2

, где Ридберг – внесистемная единица 𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑒𝑒4

2ℏ2
. 

Если использовать для записи выражений единицы для атомной физики, то можно 

записать соответствующие единицы через постоянную тонкой структуры α. 

Соотношения для Ридберга и для энергии позволяют получить обобщённую формулу 

Бальмера, используя микроскопические величины.  1
𝜆𝜆

= 𝑅𝑅( 1
𝑘𝑘2
− 1

𝑛𝑛2
), где k – 

характеризует конечную орбиту, а n – начальную. Данное выражение можно 

переписать в виде ℏ𝜔𝜔 = 𝑅𝑅𝑅𝑅( 1
𝑘𝑘2
− 1

𝑛𝑛2
) и тогда можем получить соотношение между 

постоянной Ридберга и Ридбергом, который определяет энергию основного состояния. 

Подставив 𝜔𝜔 = 2𝜋𝜋𝜋𝜋
𝜆𝜆

, получим 1
𝜆𝜆

= 𝑅𝑅𝑅𝑅
2𝜋𝜋𝜋𝜋ℏ

( 1
𝑘𝑘2
− 1

𝑛𝑛2
). Данная формула позволяет решать 

задачи для водородоподобных атомов, используя модель Бора. Для водородоподобных 

атомов необходимо привести массу в приведённую массу 𝜇𝜇 = 𝑚𝑚1𝑚𝑚2
𝑚𝑚1+𝑚𝑚2

, а заряд 𝑒𝑒4 в 𝑧𝑧2𝑒𝑒4

(4𝜋𝜋𝜀𝜀0)2
 

и подставить в формулы выше.   

Аналогично ситуация будет для изотопов водорода (дейтерий и тритий), и таким 

образом константа Ридберга для них будет разной, т.к. 𝜇𝜇 будет разной для всех 

изотопов, а следовательно, и длины волн будут разные. 

Кроме спектральных закономерностей, данную модель подтверждают эксперименты 

Франка и Герца (1913 год).  

Объяснение правила квантования Бора с позиции волновых свойств частиц. В атоме 

водорода электрон движется по круговым орбитам, тогда этому электрону можно 

сопоставить длину волны де Бройля 𝜆𝜆 = ℎ
𝑝𝑝

= 2𝜋𝜋ℏ
𝑝𝑝

. Тогда из волновых свойств можно 

заключить, что на длине орбиты должно умещаться целое число длин волн де Бройля, 

т.е. 2𝜋𝜋𝑟𝑟𝑛𝑛 = 𝑛𝑛𝑛𝑛. Отсюда получаем условие, что момент импульса квантуется в 

соответствии с правилом квантования Бора 𝐿𝐿 = 𝑛𝑛ℏ. 
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Данная полуклассическая-полуквантовая теория очень полезна для оценок характерных 

размеров, скоростей и энергий в такого типа атомарных системах, но она не работает 

для более сложных систем, которые не являются водородоподобными.  
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Лекция 2. Введение в квантовую механику. Строение атома. 

Постулаты квантовой механики. 
Состояние, описываемое вектором в линейном векторном пространстве, заданном на 

поле комплексных чисел с размерностью, не обязательно равной трём, будет 

обозначать как кет вектор |𝛹𝛹⟩. Чтобы задать данное пространство необходимо 

определить скалярное произведение для кет вектора. Оно будет определяться 

следующим образом – введём сопряжённый кет вектору бра вектор ⟨𝜒𝜒|, и тогда 

скалярное произведение будет выглядеть как ⟨𝜒𝜒|𝛹𝛹⟩. Простейший вектор в таком 

линейном пространстве – просто комплексное число с размерностью единица, т.к. 

имеет только одну компоненту. Одномерному вектору z сопоставим сопряжённый ему 

вектор 𝑧𝑧∗. Если размерность не единичная, то вектора можно представить как столбцы 

|𝑎𝑎⟩ → �
𝑎𝑎1
𝑎𝑎2�, то сопряжённый ему вектор будет равен ⟨𝑎𝑎| → (𝑎𝑎1∗𝑎𝑎2∗). Введём вектор ⟨𝑏𝑏| →

(𝑏𝑏1∗𝑏𝑏2∗), тогда векторное произведение определяется как ⟨𝑏𝑏|𝑎𝑎⟩ = 𝑏𝑏1∗𝑎𝑎1 + 𝑏𝑏2∗𝑎𝑎2 и ⟨𝑎𝑎|𝑏𝑏⟩ =

⟨𝑏𝑏|𝑎𝑎⟩∗. Норма вектора ⟨𝑎𝑎|𝑎𝑎⟩ = 𝑎𝑎1∗𝑎𝑎1 + 𝑎𝑎2∗𝑎𝑎2.  

Рассмотрим линейные операторы, действующие на вектор кет. Такой оператор можно 

записать следующим образом 𝐴̂𝐴|𝑎𝑎⟩ = |𝑏𝑏⟩. Запишем это соотношение для сопряжённого 

вектора ⟨𝑎𝑎|𝐴̂𝐴+ = ⟨𝑏𝑏|. Класс операторов, которые равны своему сопряжённому вектору, 

называется самосопряжённым или эрмитовым 𝐴̂𝐴+ = 𝐴̂𝐴. Именно с этими операторами 

мы будем работать из-за их особенностей.  

Во-первых, собственными значениями эрмитовых операторов являются 

действительные числа. Для доказательства этого, подействуем оператором на вектор 

𝐴̂𝐴|𝑎𝑎⟩ = 𝑎𝑎|𝑎𝑎⟩ и получим уравнение на собственные функции и значения. Для 

сопряженного вектора получаем ⟨𝑎𝑎|𝐴̂𝐴 = ⟨𝑎𝑎|. Умножим данные выражения на ⟨𝑎𝑎| для 

первого и |𝑎𝑎⟩ получим 𝑎𝑎⟨𝑎𝑎|𝑎𝑎⟩ = 𝑎𝑎∗⟨𝑎𝑎|𝑎𝑎⟩. Таким образом 𝑎𝑎 = 𝑎𝑎∗, а следовательно, 

собственные значения эрмитова оператора – вещественные.  

Во-вторых, если имеются различные собственные значения, которые отвечают 

различным собственным векторам для эрмитова оператора, то соответствующие 

собственные вектора ортогональны друг другу, т.е. их скалярное произведение равно 

нулю. Таким образом возможно записать следующее 𝐴̂𝐴�𝑎𝑎1⟩ = 𝑎𝑎1|𝑎𝑎1⟩ и 𝐴̂𝐴�𝑎𝑎2⟩ = 𝑎𝑎2|𝑎𝑎2⟩. 

Умножив первое уравнение на ⟨𝑎𝑎2|, получим 𝑎𝑎1⟨𝑎𝑎2|𝑎𝑎1⟩, а из второго выражения, 
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Умножив его на ⟨𝑎𝑎1|, получим  𝑎𝑎2⟨𝑎𝑎1|𝑎𝑎2⟩ = 𝑎𝑎2⟨𝑎𝑎2|𝑎𝑎1⟩. Теперь вычитая одно значение из 

другого получим (𝑎𝑎1 − 𝑎𝑎2)⟨𝑎𝑎1|𝑎𝑎2⟩ = 0. Таким образом ⟨𝑎𝑎1|𝑎𝑎2⟩ = 𝛿𝛿12, и если 1 ≠ 2 (в 

общем случае n и m), то ⟨𝑎𝑎1|𝑎𝑎2⟩ = 0, т.е. вектора ортогональны.  

В-третьих, можно использовать условие полноты такой системы, т.е. произвольный 

вектор может быть представлен в виде разложения по базисным векторам 

соответствующего эрмитова оператора |𝛹𝛹⟩ = ∑ 𝐶𝐶𝑛𝑛|𝜑𝜑𝑛𝑛𝑛𝑛 ⟩, где 𝐶𝐶𝑛𝑛 = ⟨𝜑𝜑𝑛𝑛|𝛹𝛹⟩. Тогда 

получаем следующую формулу |𝛹𝛹⟩ = ∑ |𝜑𝜑𝑛𝑛𝑛𝑛 ⟩⟨𝜑𝜑𝑛𝑛|𝛹𝛹⟩,  где ∑ 𝐶𝐶𝑛𝑛|𝜑𝜑𝑛𝑛𝑛𝑛 ⟩⟨𝜑𝜑𝑛𝑛| = 𝐼𝐼 – 

единичный оператор. Данное соотношение удобно использовать для разложения по 

дискретному спектру, но для непрерывного спектра соответствующие условия 

меняются. Условие ортогональности для собственных векторов оператора 

записываются следующим образом ⟨𝜑𝜑𝑛𝑛|𝜑𝜑𝑚𝑚⟩ = 𝛿𝛿𝑛𝑛𝑛𝑛 – символ Кронекера, если n и m – 

совпадают, то 𝛿𝛿𝑛𝑛𝑛𝑛 = 1, иначе 𝛿𝛿𝑛𝑛𝑛𝑛 = 0. Также  |𝛹𝛹⟩ = � 𝐶𝐶𝜉𝜉|𝜑𝜑𝜉𝜉⟩ 𝑑𝑑𝜉𝜉𝜉𝜉
 и условие 

нормировки �𝜑𝜑𝜉𝜉′�𝜑𝜑𝜉𝜉′′� = 𝛿𝛿(𝜉𝜉′ − 𝜉𝜉′′). 

Постулаты квантовой механики: 

1. Наблюдаемой величине A ставится в соответствие оператор 𝐴̂𝐴, причём 

измеряемые значения этой величины определяются уравнением на собственные 

значения 𝐴̂𝐴𝜑𝜑𝑎𝑎 = 𝑎𝑎𝜑𝜑𝑎𝑎; 

2. Если измерение наблюдаемой величины даёт значение a, то состояние системы 

сразу после измерения определяется собственной функцией, соответствующей 

этому собственному значению 𝐴̂𝐴𝜑𝜑𝑎𝑎 = 𝑎𝑎𝜑𝜑𝑎𝑎; 

3. Состояние квантовой системы описывается волновой функцией 𝛹𝛹(𝑥𝑥, 𝑡𝑡), причём 

средние значения любой наблюдаемой A вычисляются по формуле: ⟨𝐴𝐴⟩ =

∫ 𝛹𝛹∗𝐴̂𝐴𝛹𝛹 𝑑𝑑𝑥𝑥; 

4. Волновая функция 𝛹𝛹(𝑥𝑥, 𝑡𝑡) находится из уравнения Шредингера:  𝑖𝑖ℏ 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

=

𝐻𝐻�𝛹𝛹(𝑥𝑥, 𝑡𝑡). 
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Физический пример. 
Рассмотрим оператор 𝑥𝑥� → 𝑥𝑥. Проводим 

измерения координаты x. Если выпало 

значение 𝑥𝑥′, то тогда не может быть никакого 

другого значения рядом с 𝑥𝑥′. Т.е. волновая 

функция должна быть дельта-функцией 

Дирака (𝛹𝛹𝑥𝑥′ = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)), потому что она 

должна давать 0 везде, кроме одной точки 𝑥𝑥′, 

т.к. 𝑥𝑥𝛹𝛹𝑥𝑥′ = 𝑥𝑥′𝛹𝛹𝑥𝑥′.  

𝛿𝛿 -функция Дирака обладает следующими свойствами:  ∫ 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝑑𝑑𝑑𝑑∞
−∞ = 1 (это 

означает, что функция может быть представлена в виде прямоугольника с шириной 𝜀𝜀 и 

высотой 1
𝜀𝜀
, при стремлении 𝜀𝜀 к 0, тогда амплитуда будет стремиться к бесконечности) и 

∫ 𝑓𝑓(𝑥𝑥)𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝑑𝑑𝑑𝑑∞
−∞ = 𝑓𝑓(𝑥𝑥′). Также 𝛿𝛿-функцию можно представить как:  ∫ 𝑒𝑒𝑖𝑖𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑∞

−∞ =

2𝜋𝜋𝜋𝜋(𝑥𝑥) и ∫ 𝑒𝑒𝑖𝑖𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑∞
−∞ = 2𝜋𝜋𝜋𝜋(𝑘𝑘). 

Условие ортогональности функций: ∫ 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝛿𝛿(𝑥𝑥 − 𝑥𝑥′′)𝑑𝑑𝑥𝑥 = 𝛿𝛿(𝑥𝑥′ − 𝑥𝑥′′).  Ещё одно 

свойство: 𝛿𝛿 �𝑥𝑥
𝑎𝑎
� = 𝑎𝑎𝛿𝛿(𝑥𝑥), где 𝑎𝑎 > 0.  

Рассмотрим оператор импульса 𝑝̂𝑝 → −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

. Уравнение на собственные значения и 

собственные функции получим следующим образом −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝛹𝛹𝑝𝑝′(𝑥𝑥) = 𝑝𝑝′𝛹𝛹𝑝𝑝′(𝑥𝑥). Из 

данного уравнения следует, что 𝛹𝛹𝑝𝑝′(𝑥𝑥) = 𝐴𝐴𝑒𝑒−𝑖𝑖
𝑝𝑝′

ℏ 𝑥𝑥.  Условие нормировки данной 

функции записывается как ∫ 𝛹𝛹𝑝𝑝′
∗ (𝑥𝑥)𝛹𝛹𝑝𝑝′′(𝑥𝑥)𝑑𝑑𝑥𝑥 = |𝐴𝐴|2∫ 𝑒𝑒𝑖𝑖

�𝑝𝑝′′−𝑝𝑝′�
ℏ 𝑥𝑥𝑑𝑑𝑑𝑑 =  𝛿𝛿(𝑝𝑝′ − 𝑝𝑝′′). 

Подставив одно из выражений 𝛿𝛿 -функции, получим 𝐴𝐴22𝜋𝜋ℏ = 1, отсюда 

нормировочный множитель 𝐴𝐴 = 1
√2𝜋𝜋ℏ

.  

Теперь можно записать собственную функцию, отвечающую собственному значению p 

𝛹𝛹𝑝𝑝(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑖𝑖
𝑝𝑝
ℏ𝑥𝑥. 

Рассмотрим эксперимент. В нём была измерена координата 𝑥𝑥′, тогда соответствующая 

волновая функция 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′) = 𝛹𝛹𝑥𝑥′(𝑥𝑥). Если было получено значение 𝑥𝑥′, значит 

Рисунок 2. Измерение координаты. 

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

17 
 
 

 

система, в соответствии с постулатами, 

осталось в состоянии, соответствующему 

значению 𝑥𝑥′. После этого было проведено 

измерение значения p. Чтобы узнать, какие 

будут получаться значения, необходимо 

разложить собственную функцию 𝛹𝛹𝑝𝑝′(𝑥𝑥) по 

базисным функция оператора p: 𝛹𝛹𝑥𝑥′(𝑥𝑥) =

∫ 𝐶𝐶𝑝𝑝𝑒𝑒
𝑖𝑖𝑝𝑝ℏ𝑥𝑥𝑑𝑑𝑑𝑑. 𝐶𝐶𝑝𝑝 – волновая функция в p 

представлении - определяется как проекция собственной функции на оператор p: 𝐶𝐶𝑝𝑝 =

1
√2𝜋𝜋ℏ

∫ 𝑒𝑒−𝑖𝑖
𝑝𝑝
ℏ𝑥𝑥𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝑑𝑑𝑑𝑑. Тогда 𝛹𝛹�(𝑝𝑝) = 𝐶𝐶𝑝𝑝 = 1

√2𝜋𝜋ℏ
𝑒𝑒−𝑖𝑖

𝑝𝑝
ℏ𝑥𝑥

′
. 

Найдём плотность вероятности нахождение какого-нибудь значения p, которая 

определяется квадратом данной функции: 𝜌𝜌(𝑝𝑝) = 1
2𝜋𝜋ℏ

∫ 𝑒𝑒−𝑖𝑖
𝑝𝑝
ℏ𝑥𝑥

′
𝑒𝑒𝑖𝑖

𝑝𝑝
ℏ𝑥𝑥

′
𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋ℏ
. 

Полученный результат означает, что плотность вероятности в p пространстве, т.е. в 

импульсном пространстве, равномерно распределена по всему диапазону значений p. 

Это означает, что если до этого было получено чёткое значение 𝑥𝑥′, то значение p может 

быть абсолютно любым. 

Ещё одна задача на собственные значения оператора момента импульса.  

Момент импульса 𝐿𝐿�⃗ = [𝑟𝑟𝑝⃗𝑝]. В квантовой механике необходимо вектора заменить на 

соответствующие операторы. Такие образом 𝐿𝐿� = �
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑥𝑥 𝑦𝑦 𝑧𝑧

−𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

−𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

−𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

�, 

соответственно 𝐿𝐿�𝑧𝑧 = −𝑖𝑖ℏ𝑥𝑥 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑖𝑖ℏ𝑦𝑦 𝜕𝜕
𝜕𝜕𝜕𝜕

. В сферической системе координат 𝐿𝐿�𝑧𝑧 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

.  

Запишем уравнения на общие вектора и значения в данном случае −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝛹𝛹𝐿𝐿𝑧𝑧(𝜑𝜑) =

𝐿𝐿𝑧𝑧𝛹𝛹𝐿𝐿𝑧𝑧(𝜑𝜑), следовательно, 𝛹𝛹𝐿𝐿𝑧𝑧 = 𝐴𝐴𝑒𝑒𝑖𝑖
𝐿𝐿𝑧𝑧
ℏ 𝜑𝜑. Функция 𝛹𝛹𝐿𝐿𝑧𝑧 является периодической с 

периодом 2π, поэтому 𝛹𝛹𝐿𝐿𝑧𝑧(𝜑𝜑) = 𝛹𝛹𝐿𝐿𝑧𝑧(𝜑𝜑 + 2π) = 𝐴𝐴𝑒𝑒𝑖𝑖
𝐿𝐿𝑧𝑧
ℏ (𝜑𝜑+2π). Отсюда получаем, что 

2𝜋𝜋 𝐿𝐿𝑧𝑧
ℏ

= 2𝜋𝜋𝜋𝜋, следовательно, 𝐿𝐿�𝑧𝑧 – квантуется (𝐿𝐿𝑧𝑧 = 𝑚𝑚ℏ, где 𝑚𝑚 = 0, ±1, ±2, . . ). Таким 

образом 𝛹𝛹𝐿𝐿𝑧𝑧 = 𝛹𝛹𝑚𝑚(𝜑𝜑) = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝜑𝜑. 

Рисунок 3. Распределение плотности 
вероятности. 
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Определим нормировочную постоянную A. Она определяется из условия 

|𝐴𝐴|2 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝜑𝜑𝑒𝑒𝑖𝑖𝑖𝑖𝜑𝜑𝑑𝑑𝜑𝜑2𝜋𝜋
0 = 1, откуда 𝐴𝐴 = 1

√2𝜋𝜋
. 

Окончательная запись собственной функции 𝛹𝛹𝑚𝑚(𝜑𝜑) = 1
√2𝜋𝜋

𝑒𝑒𝑖𝑖𝑖𝑖𝜑𝜑, а собственное значение 

𝐿𝐿𝑧𝑧 = 𝑚𝑚ℏ, где m – целое число. 

Пусть существует функция 𝛹𝛹(𝜑𝜑) = cos2 𝜑𝜑. Тогда для того, чтобы найти собственные 

значения, необходимо функцию разложить по базисным функциям. Для этого 

представим функцию в другом виде 𝛹𝛹(𝜑𝜑) = cos2 𝜑𝜑 = �𝑒𝑒
𝑖𝑖𝜑𝜑+𝑒𝑒−𝑖𝑖𝜑𝜑

2
�
2

= 1
4

(𝑒𝑒2𝑖𝑖𝜑𝜑 + 2𝑒𝑒20𝜑𝜑 +

𝑒𝑒−2𝑖𝑖𝜑𝜑). Таким образом было получено разложение данной функции пропорционально 

базисным функциям, т.к. данная функция не удовлетворяет условию нормировки, и 

значения 𝐿𝐿𝑧𝑧 = ±2ℏ, 0. Таким образом, с помощью разложения по базисным функциям, 

можно определить соответствующие значения и соответствующие функции, которые 

будут входить в произвольную функцию, зависящую от угла 𝜑𝜑. 
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Лекция 3. Понятие волновой функции. Стационарные состояния. 

Определение значения средней энергии. 

Средняя энергия ⟨𝐸𝐸⟩ = �𝛹𝛹�𝐻𝐻��𝛹𝛹�, где ⟨𝛹𝛹| = ∑ 𝐶𝐶𝑚𝑚∗𝑚𝑚 ⟨𝜑𝜑𝑚𝑚| и |𝛹𝛹⟩ = ∑ 𝐶𝐶𝑛𝑛|𝜑𝜑𝑛𝑛𝑛𝑛 ⟩ . Тогда ⟨𝐸𝐸⟩ =

∑ ∑ 𝐶𝐶𝑚𝑚∗ 𝐶𝐶𝑛𝑛𝐸𝐸𝑛𝑛⟨𝜑𝜑𝑚𝑚|𝜑𝜑𝑛𝑛⟩𝑚𝑚𝑛𝑛  , где ⟨𝜑𝜑𝑚𝑚|𝜑𝜑𝑛𝑛⟩ = 𝛿𝛿𝑚𝑚𝑚𝑚 , где 𝛿𝛿 = 1, если 𝑚𝑚 = 𝑛𝑛;  и 𝛿𝛿 = 0, если 𝑚𝑚 ≠

𝑛𝑛  

Тогда ⟨𝐸𝐸⟩ = ∑  𝐶𝐶𝑛𝑛∗𝐶𝐶𝑛𝑛𝑛𝑛 𝐸𝐸𝑛𝑛 . Эта формула аналогична определению среднего значения E. 

Если имеется дискретный ряд значений E1, E2 и т.д., тогда среднее значение энергии ⟨𝐸𝐸⟩ 

равно 

⟨𝐸𝐸⟩ = ∑ 𝑃𝑃(𝑛𝑛)𝐸𝐸𝑛𝑛𝑛𝑛 , где P(n) –вероятность, показывающая, как часто появляется значение 

En в данном спектре.  

Физический смысл  𝐶𝐶𝑛𝑛∗𝐶𝐶𝑛𝑛 – вероятность n-ого состояния. Получаем важную формулу: 

𝐶𝐶𝑛𝑛∗𝐶𝐶𝑛𝑛 = |𝐶𝐶𝑛𝑛|2 =  𝑃𝑃(𝑛𝑛) 

Таким образом, смысл величины Cn – амплитуда вероятности. Также коэффициенты Cn 

должны удовлетворять следующему условию: сумма всех вероятностей должна быть 

равна 1. Для этого ⟨𝛹𝛹|𝛹𝛹⟩ = 1. Аналогично по формулам выше получаем 

∑ ∑ 𝐶𝐶𝑚𝑚∗ 𝐶𝐶𝑛𝑛⟨𝜑𝜑𝑚𝑚|𝜑𝜑𝑛𝑛⟩ = 1𝑚𝑚𝑛𝑛 , и тогда � |𝐶𝐶𝑛𝑛|2
𝑛𝑛 = 1. В общем случае ⟨𝜑𝜑|𝛹𝛹⟩амплитуда 

вероятности перехода из состояния 𝜑𝜑 в состояние 𝛹𝛹. 

Волновая функция. 
По определению 𝛹𝛹(𝑥𝑥) = ⟨𝑥𝑥|𝛹𝛹⟩ – волновая функция в x представлении. В импульсном 

представлении - 𝛹𝛹�(𝑝𝑝) = ⟨𝑝𝑝|𝛹𝛹⟩. 

Определение скалярного произведение 𝛹𝛹 на 𝜑𝜑 (⟨𝜑𝜑|𝛹𝛹⟩) через волновые функции. Для 

непрерывного случая |𝜑𝜑⟩ = ∫ ⟨𝑥𝑥|𝛹𝛹⟩|𝑥𝑥⟩ 𝑑𝑑𝑥𝑥𝑥𝑥 , где ⟨𝑥𝑥|𝛹𝛹⟩|𝑥𝑥⟩ = 𝐼𝐼. Тогда  ⟨𝜑𝜑|𝛹𝛹⟩ =

∫ ⟨𝜑𝜑|𝑥𝑥⟩⟨𝑥𝑥|𝛹𝛹⟩𝑑𝑑𝑥𝑥𝑥𝑥 . ⟨𝜑𝜑|𝑥𝑥⟩ = ⟨𝑥𝑥|𝜑𝜑⟩∗ = 𝜑𝜑∗(𝑥𝑥). 

𝛹𝛹(𝑥𝑥) = ⟨𝑥𝑥|𝛹𝛹⟩ =  �⟨𝑥𝑥|𝑝𝑝⟩⟨𝑝𝑝|𝛹𝛹⟩𝑑𝑑𝑝𝑝
𝑝𝑝

=
1

√2𝜋𝜋ℏ
∫ 𝑒𝑒𝑖𝑖

𝑝𝑝
ℏ𝑥𝑥𝛹𝛹�(𝑝𝑝)𝑑𝑑𝑝𝑝 

 𝛹𝛹�(𝑝𝑝) = ⟨𝑝𝑝|𝛹𝛹⟩ = �⟨𝑝𝑝|𝑥𝑥⟩⟨𝑥𝑥|𝛹𝛹⟩𝑑𝑑𝑥𝑥
𝑥𝑥

=
1

√2𝜋𝜋ℏ
∫ 𝑒𝑒𝑖𝑖

𝑝𝑝
ℏ𝑥𝑥 𝛹𝛹(𝑥𝑥)𝑑𝑑𝑑𝑑 
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Данные формулы очень важны, т.к. дают связь волновой функции в x представлении и 

волновой функции в p представлении. 

Рассмотрим пример из предыдущей лекции. 

Для него были получены следующие выражения: 𝛹𝛹𝑥𝑥′ = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′), 𝛹𝛹�(𝑝𝑝) = 1
√2𝜋𝜋ℏ

𝑒𝑒−𝑖𝑖
𝑝𝑝
ℏ𝑥𝑥

′
 и 

𝜌𝜌(𝑝𝑝) = 1
2𝜋𝜋ℏ

. В примере было точно измерено значение 𝑥𝑥′ и было установлено, что с 

одинаковой вероятностью мы можем получить любое значение импульса. Физика 

неопределённости в квантовой механике состоит в том, что функции  𝛹𝛹𝑥𝑥′ и 𝛹𝛹�(𝑝𝑝) – 

разные, т.е. собственные функции оператора p не являются собственными функциями 

оператора x. Это означает то, что после измерения некоторого значения 𝑥𝑥′, для 

получения значения p, необходимо разложить 𝛹𝛹𝑥𝑥′ по базисным функциям оператора p. 

Это разложение будет включать в себя большое количество p, и чтобы получить 

бесконечно узкое разложение, необходимо собрать бесконечно много p. Величина, 

определяющая наличие общих функций у операторов, - коммутатор этих двух 

операторов. 

Суть неопределённости.  

Пусть существует оператор 𝐴̂𝐴, который действуя на собственный вектор 𝜑𝜑𝑎𝑎 даёт 

значение 𝜑𝜑𝑎𝑎: 𝐴̂𝐴�𝜑𝜑𝑎𝑎⟩ = 𝑎𝑎|𝜑𝜑𝑎𝑎⟩. В соответствии со 2 постулатом, после проведения 

эксперимента было получено значение 𝑎𝑎(𝜑𝜑𝑎𝑎 − 𝑎𝑎). Система осталась в состоянии 𝜑𝜑𝑎𝑎. 

Теперь для другой измеряемой величины, которой сопоставлен оператор b, и 𝜑𝜑𝑎𝑎 не 

является собственной функцией оператора b, тогда необходимо разложить данную 

функцию по собственным функциям оператора b, т.к. возможно наблюдать только 

Рисунок 4. Распределение плотности 
вероятности. Рисунок 5. Измерение координаты. 
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𝐵𝐵��𝜑𝜑𝑏𝑏⟩ = 𝑏𝑏|𝜑𝜑𝑏𝑏⟩. 𝜑𝜑𝑎𝑎 – суперпозиция 𝜑𝜑𝑏𝑏, тогда для дискретного спектра 𝜑𝜑𝑎𝑎 

раскладывается в 𝜑𝜑𝑏𝑏1, 𝜑𝜑𝑏𝑏2, 𝜑𝜑𝑏𝑏3, 𝜑𝜑𝑏𝑏4 и т.д. В результате получается некое среднее 

значение и некий разброс относительного этого среднего, т.е. получается отличная от 0 

величина стандартного отклонения, которое определяется как 𝐷𝐷𝑏𝑏 = 〈𝑏𝑏2〉 − 〈𝑏𝑏〉2. Данная 

неопределённость не связана с процессом измерения. 

Зависимость неопределённости от коммутатора. Коммутатор определяется как �𝐴̂𝐴𝐵𝐵�� =

𝐴̂𝐴𝐵𝐵� − 𝐵𝐵�𝐴̂𝐴. A и B имеют общие функции. 𝐴̂𝐴𝜑𝜑 = 𝑎𝑎𝑎𝑎,𝐵𝐵�𝜑𝜑 = 𝑏𝑏𝑏𝑏. Тогда  𝐵𝐵�𝐴̂𝐴𝜑𝜑 = 𝑎𝑎𝑏𝑏𝜑𝜑, а 

𝐴̂𝐴𝐵𝐵�𝜑𝜑 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ⇒ [𝐴𝐴𝐴𝐴] = 0. Следствие: если есть общие функции, то коммутатор = 0. 

Обратное утверждение: если коммутатор = 0, то оператор имеет общие собственные 

функции. 𝐴̂𝐴𝜑𝜑𝑎𝑎 = 𝑎𝑎𝜑𝜑𝑎𝑎,𝐵𝐵�𝐴̂𝐴𝜑𝜑𝑎𝑎 =  𝐵𝐵�𝜑𝜑𝑎𝑎 и [𝐴𝐴𝐴𝐴] = 0, тогда 𝐴̂𝐴�𝐵𝐵�𝜑𝜑𝑎𝑎� = 𝑎𝑎�𝐵𝐵�𝜑𝜑𝑎𝑎�, т.е. вектор 

𝐵𝐵�𝜑𝜑𝑎𝑎- собственный вектор оператора 𝐴̂𝐴. 

Коммутаторы используются в соотношении Робертсона — Шредингера: 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 ≥
1
2

|⟨�𝐴̂𝐴𝐵𝐵��⟩|. Проверим данное соотношение. Возьмем выражение вида 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 ≥ ℏ
2
, [𝑥𝑥�𝑝̂𝑝] =

𝑖𝑖ℏ. Тогда подставив x и p в выражение, мы получим данную формулу. 

Нестационарное уравнение Шредингера: 𝑖𝑖ℏ 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝐻𝐻�𝛹𝛹(𝑥𝑥, 𝑡𝑡), где 𝐻𝐻� =  𝑝𝑝�
2

2𝑚𝑚
+ 𝑈𝑈(𝑥𝑥) =

ℏ2𝜕𝜕2

2𝑚𝑚𝑚𝑚𝑥𝑥2
+ 𝑈𝑈(𝑥𝑥), 𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇(𝑡𝑡) + 𝜑𝜑(𝑥𝑥), тогда 𝜑𝜑(𝑥𝑥)𝑖𝑖ℏ 𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝑇𝑇(𝑡𝑡)𝐻𝐻�𝜑𝜑(𝑥𝑥) ⇔

𝑖𝑖ℏ𝜕𝜕𝜕𝜕(𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑇𝑇(𝑡𝑡)
=

𝐻𝐻�𝜑𝜑(𝑥𝑥)
𝜑𝜑(𝑥𝑥)

= 𝐸𝐸. Решим уравнения. 𝑖𝑖ℏ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐸𝐸𝐸𝐸 ⇒ 𝑇𝑇(𝑡𝑡) = 𝑒𝑒−𝑖𝑖
𝐸𝐸
ℏ𝑡𝑡.  

Второе уравнение – стационарное уравнение Шредингера: 𝐻𝐻�𝜑𝜑(𝑥𝑥) = 𝐸𝐸 𝜑𝜑(𝑥𝑥). Тогда 

решив это уравнение, можем записать 𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥)𝑒𝑒−𝑖𝑖
𝐸𝐸
ℏ𝑡𝑡. 

Решение задачи о частице в бесконечном потенциале. 

Найдём волновую функцию внутри ямы из соответствующего уравнения: 𝐻𝐻�𝜑𝜑(𝑥𝑥) =

𝐸𝐸 𝜑𝜑(𝑥𝑥). Тогда уравнение Шредингера записывается как  −ℏ
2𝜕𝜕2

2𝑚𝑚𝑚𝑚𝑥𝑥2
 𝜑𝜑(𝑥𝑥) = 𝐸𝐸 𝜑𝜑(𝑥𝑥). 

Перепишем данное уравнение в другом виде 𝜑𝜑′′ + 𝑘𝑘2𝜑𝜑 = 0, где 𝑘𝑘2 = 2𝑚𝑚𝑚𝑚
ℏ2

.  Общее 

решение данного уравнения 𝐴𝐴𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥 + 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖. Из условия, что функция 𝜑𝜑 = 0 в точке 0, 

можно получить решение 𝜑𝜑(𝑥𝑥) = 𝐴𝐴 sin𝑘𝑘𝑘𝑘, 𝜑𝜑(0) = 0, 𝜑𝜑(𝑎𝑎) = 0 ⇒ 𝑘𝑘𝑎𝑎 = 𝑛𝑛𝑛𝑛, где 𝑛𝑛 =
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1,2,3, … Отсюда 𝑘𝑘𝑛𝑛 = 𝜋𝜋
𝑎𝑎
𝑛𝑛. Тогда подставив полученное 

значение в выражение выше получим выражение для 

дискретного ряда энергии 𝐸𝐸𝑛𝑛 = ℏ2𝜋𝜋2

2𝑚𝑚𝑎𝑎2
𝑛𝑛2. Для того, чтобы найти 

константу A, напишем условие нормировки ∫ 𝛹𝛹∗𝛹𝛹 𝑑𝑑𝑥𝑥 =

∫ 𝐴𝐴2 sin2 𝑘𝑘𝑛𝑛𝑥𝑥 𝑑𝑑𝑥𝑥
𝑎𝑎
0 ⇒ 𝐴𝐴 = �2

𝑎𝑎
. Тогда волновая функция в общем 

виде будет записываться как 𝛹𝛹𝑛𝑛(𝑥𝑥, 𝑡𝑡) = �2
𝑎𝑎

sin(𝜋𝜋
𝑎𝑎
𝑛𝑛𝑛𝑛) 𝑒𝑒−𝑖𝑖

𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡. 

Нарисуем вид этих функций при 𝑡𝑡 = 0. При 𝑛𝑛 = 1 и 𝐸𝐸1 = ℏ𝜋𝜋2

2𝑚𝑚𝑎𝑎2
. 

При 𝑛𝑛 = 2, 𝐸𝐸2 = 4𝐸𝐸1. При 𝑛𝑛 = 3, 𝐸𝐸2 = 9𝐸𝐸1. 

Очень важное свойство волновой функции, которое справедливо и 

для волновых функций других частиц, которые находятся в 

определённой области, т.е. когда будет получаться дискретный 

спектр, - функция имеет 𝑛𝑛 − 1 узлов. Функция, которая не имеет 

узла, - функция основного состояния. Данное свойство называется 

осцилляционной теоремой, и оно общее для всех волновых функций.  

Также функции удовлетворяют условию нормировки и 

ортогональны друг другу, т.е. ∫ 𝛹𝛹𝑛𝑛∗𝛹𝛹 𝑑𝑑𝑥𝑥𝑎𝑎
0 = 0, т.к. это собственные 

функции оператора Гамильтона, который является эрмитовым 

оператором. Докажем данную теорему. Пусть 𝐻𝐻�|𝜑𝜑𝑛𝑛⟩ = 𝐸𝐸𝑛𝑛|𝜑𝜑𝑛𝑛⟩ и 

⟨𝜑𝜑𝑚𝑚|𝐻𝐻� = 𝐸𝐸𝑚𝑚∗ ⟨𝜑𝜑𝑚𝑚|. Умножив первое уравнение на ⟨𝜑𝜑𝑚𝑚|, а второе 

уравнение на |𝜑𝜑𝑛𝑛⟩, и вычтя из первого второе, получим (𝐸𝐸𝑛𝑛 −

𝐸𝐸𝑚𝑚∗ )⟨𝜑𝜑𝑚𝑚|𝜑𝜑𝑛𝑛⟩ = 0. Это доказывает, что функции ортогональны, и что у данного 

оператора значения действительные. 

Важно, что волновая функция стационарного состояния зависит от времени, но 

плотность вероятности не зависит от времени. Также в стационарном состоянии любое 

среднее от любой переменной не зависит от времени, и дисперсия средней величины с 

стационарном состоянии равна нулю, и принимает одно точное значение.  

  

Рисунок 4. Яма с 
бесконечным 
потенциалом. 

Рисунок 5. 
Волновые 
функции 
частицы в яме с 
бесконечным 
потенциалом. 
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Лекция 4. Нестационарные состояния. Эволюция волновых 

пакетов. 
В прошлых лекциях были получены несколько выражений, применяющихся для 

решение квантово-механических задач. Нестационарное уравнение Шредингера: 

𝑖𝑖ℏ 𝜕𝜕|𝛹𝛹⟩
𝜕𝜕𝜕𝜕

= 𝐻𝐻�|𝛹𝛹⟩, где общий вид волновой функции (или вектора состояния) |𝛹𝛹⟩ =

∑ 𝐶𝐶𝑛𝑛𝑛𝑛 |𝛹𝛹𝑛𝑛(𝑥𝑥)⟩𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡, где 𝐶𝐶𝑛𝑛 = ⟨𝜑𝜑𝑛𝑛|𝛹𝛹(𝑥𝑥, 0)⟩. Собственные функции были получены из 

стационарного уравнения Шредингера 𝐻𝐻�|𝜑𝜑𝑛𝑛⟩ = 𝐸𝐸𝑛𝑛|𝜑𝜑𝑛𝑛⟩. Тогда общий вид стационарной 

функции |𝛹𝛹𝑛𝑛⟩ = |𝜑𝜑𝑛𝑛(𝑥𝑥)⟩ 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡. Среднее значение любой переменной ⟨𝐴𝐴⟩ = �𝛹𝛹�𝐴̂𝐴�𝛹𝛹�, 

или через интеграл ⟨𝐴𝐴⟩ = ∫ 𝛹𝛹∗(𝑥𝑥)𝐴̂𝐴𝛹𝛹(𝑥𝑥)𝑑𝑑𝑥𝑥. 

Зависимость волновой функции от времени.  

Условие нормировки.  
Пусть волновая функция при равновероятных нахождениях системы в одном и другом 

состоянии 𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 1
√2
𝜑𝜑1(𝑥𝑥)𝑒𝑒−𝑖𝑖

𝐸𝐸1
ℏ 𝑡𝑡 + 1

√2
𝜑𝜑2(𝑥𝑥)𝑒𝑒−𝑖𝑖

𝐸𝐸2
ℏ 𝑡𝑡. Проверим, удовлетворяет ли 

данная функция условию нормировки. 

⟨𝛹𝛹|𝛹𝛹⟩ = ( 1
√2
⟨𝜑𝜑1|𝑒𝑒𝑖𝑖

𝐸𝐸1
ℏ 𝑡𝑡 + 1

√2
⟨𝜑𝜑2|𝑒𝑒𝑖𝑖

𝐸𝐸2
ℏ 𝑡𝑡) × ( 1

√2
|𝜑𝜑1⟩𝑒𝑒

−𝐸𝐸1ℏ 𝑡𝑡 + 1
√2

|𝜑𝜑2⟩𝑒𝑒
−𝐸𝐸2ℏ 𝑡𝑡) = |𝐶𝐶1|2 + |𝐶𝐶2|2 = 1. 

Таким образом доказали, что если функция удовлетворяла условию нормировки, то с 

течением времени данная функция остается нормированной. Аналогично доказывается, 

что функции, ортогональные в нулевой момент времени, остаются ортогональными и в 

момент времени отличный от нулевого. 

Средние значения.  

Среднее значение энергии в стационарном состоянии одно и тоже. В данном случае 

𝑃𝑃(1) = 1
2

,   𝑃𝑃(2) = 1
2
, тогда по определению ⟨𝐸𝐸⟩ = ∑ 𝑃𝑃(𝑛𝑛)𝐸𝐸𝑛𝑛𝑛𝑛 = 1

2
𝐸𝐸1 + 1

2
𝐸𝐸2 = 𝐸𝐸1+𝐸𝐸2

2
. 

Определим дисперсию в нестационарном состоянии 𝐷𝐷𝐸𝐸 = ⟨𝐸𝐸2⟩ − ⟨𝐸𝐸⟩2, где ⟨𝐸𝐸2⟩ =
1
2
𝐸𝐸12 + 1

2
𝐸𝐸22. Тогда 𝐷𝐷𝐸𝐸 = 𝐸𝐸12+𝐸𝐸22

2
− (𝐸𝐸1+𝐸𝐸2)2

4
= 𝐸𝐸12

4
+ 𝐸𝐸22

4
− 2𝐸𝐸1𝐸𝐸2 = 1

4
(𝐸𝐸2 − 𝐸𝐸1)2. И 𝛥𝛥𝛥𝛥 =

1
2

|𝐸𝐸2 − 𝐸𝐸1|. Таким образом получаем не точно значение какой-нибудь энергии, а одно 

или другое значение, но среднее значение будет сохраняться. 

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

24 
 
 

 

Плотность вероятности системы.  
Если плотность вероятности зависит от времени, то и среднее значение x тоже зависит 

от времени. Плотность вероятности 𝜌𝜌 = 𝛹𝛹∗𝛹𝛹 = � 1
√2
𝜑𝜑1∗𝑒𝑒

𝑖𝑖𝐸𝐸1ℏ 𝑡𝑡 + 1
√2
𝜑𝜑2∗𝑒𝑒

𝑖𝑖𝐸𝐸2ℏ 𝑡𝑡� ×

� 1
√2
𝜑𝜑1𝑒𝑒

−𝑖𝑖𝐸𝐸1ℏ 𝑡𝑡 + 1
√2
𝜑𝜑2𝑒𝑒

−𝑖𝑖𝐸𝐸2ℏ 𝑡𝑡� = 1
2

|𝜑𝜑1|2 + 1
2

|𝜑𝜑2|2 + 1
2
𝜑𝜑1∗𝜑𝜑2𝑒𝑒

−𝑖𝑖(𝐸𝐸2−𝐸𝐸1)
ℏ + 1

2
𝜑𝜑1𝜑𝜑2∗𝑒𝑒

𝑖𝑖(𝐸𝐸2−𝐸𝐸1)
ℏ  . 

Обозначим 𝜑𝜑1∗𝜑𝜑2𝑒𝑒
−𝑖𝑖(𝐸𝐸2−𝐸𝐸1)

ℏ = 𝑧𝑧, 𝜑𝜑1𝜑𝜑2∗𝑒𝑒
𝑖𝑖(𝐸𝐸2−𝐸𝐸1)

ℏ = 𝑧𝑧∗ и учитывая, что 𝑧𝑧 + 𝑧𝑧∗ = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 +

𝑥𝑥 − 𝑖𝑖𝑖𝑖 = 2 Re 𝑧𝑧, получим 𝜌𝜌 = 1
2

|𝜑𝜑1|2 + 1
2

|𝜑𝜑2|2 + |𝑧𝑧| cos 𝐸𝐸2−𝐸𝐸1
ℏ

𝑡𝑡. Следовательно, 

𝜌𝜌(𝑥𝑥)~ cos 𝐸𝐸2−𝐸𝐸1
ℏ

𝑡𝑡 и, следовательно, ⟨𝑥𝑥⟩ = ∫ 𝜌𝜌(𝑥𝑥)𝑥𝑥 𝑑𝑑𝑥𝑥 зависит от времени.  

Плотность вероятности основного и возбуждённого состояния – стационарные 

состояния, они не зависят от времени. А плотность вероятности состояния, 

являющегося суперпозицией этих двух стационарных состояний, начинает меняться во 

времени. Это означает, что если по x движется ускоренно заряженная частица, то с 

классической точки зрения эта частица должна излучать на частоте 𝐸𝐸2 − 𝐸𝐸1, которая 

определяется разностью уровней. Т.е. переход со второго уровня на первый 

характеризуется энергией 𝐸𝐸2 − 𝐸𝐸1 или разностной частотой. По сути, наблюдаются 

биения, возникающие из-за сложения двух волновых функций: первого и второго 

стационарного состояния. Частоты, с которыми они меняются, разные, поэтому при 

сложении векторов получается максимум, а при вычитании – минимум. 

Правило дипольных переходов. 

Из проведённого рассмотрения вытекает очень важное правило. Если умножить ⟨𝑥𝑥⟩ на 

заряд электрона, если был электрон, то получим дипольный момент. Таким образом 

дипольный момент определяется некоторыми константами в квадрате и матричным 

элементом, который определяет амплитуду колебаний ⟨𝑥𝑥⟩ = � 𝑥𝑥{1
2

|𝜓𝜓1(𝑥𝑥)|2 +
𝑎𝑎
2

−𝑞𝑞2
1
2

|𝜓𝜓2(𝑥𝑥)|2 + 𝜓𝜓1(𝑥𝑥)𝜓𝜓2(𝑥𝑥) cos(𝜔𝜔𝜔𝜔)}𝑑𝑑𝑑𝑑. Когда x умноженный на матричный элемент, а 

затем проинтегрированный, будет давать 0, то никакого перехода и никаких колебаний 

не будет. Рассмотрим чётности соответствующих функций. Если взять те же функции 

n=1 и n=2, удобно перейти к системе координат от −𝑎𝑎
2
  до 𝑎𝑎

2
. Тогда чётности функций 

будут хорошо видны. �2
𝑎𝑎

cos �𝜋𝜋
𝑎𝑎
𝑥𝑥𝑥𝑥�  при 𝑛𝑛 = 1,3,5, … ; и �2

𝑎𝑎
𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋

𝑎𝑎
𝑥𝑥𝑥𝑥�  при 𝑛𝑛 = 2,4,6, …. 
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Таким образом получается чередование чётных и нечётных функций, соответствующих 

собственному оператору Гамильтона для соответствующего потенциала.  

Рассмотрим возможные переходы. 𝑥𝑥 – нечётная функция, поэтому при переходах к 𝜓𝜓1 и 

𝜓𝜓3, которые имеют одинаковую чётность, их произведение будет тоже чётной 

функцией. Поэтому при интегрировании чётной функции на нечётную в симметричных 

пределах, интеграл будет равен 0. 

Если в выражении 𝜓𝜓1(𝑥𝑥)𝜓𝜓2(𝑥𝑥) cos(𝜔𝜔𝜔𝜔) стоят функции одинаковой чётности, то такой 

дипольный переход будет запрещён. Это можно сформулировать как правило отбора 

для дипольных переходов. 

Правило отбора для дипольных переходов: переходы возможны только между 

состояниями с разной чётностью. 

Определение типа величины. Сравнение выражений “классики” и квантовой 

механики. 
Для того, чтобы понять, какие величины являются интегралами движения, какие 

сохраняются, а какие изменяются во времени для такого типа состояний, рассмотрим 

производную от среднего значения некоторой измеряемой величины A: 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝐴̂𝐴� =

�𝛹̇𝛹�𝐴̂𝐴�𝛹𝛹�+�𝛹𝛹�𝐴̂𝐴�𝛹̇𝛹� (в данном случае считаем, что 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝐴̂𝐴� = 0). 𝑖𝑖ℏ 𝜕𝜕|𝛹𝛹⟩

𝜕𝜕𝜕𝜕
= 𝐻𝐻�|𝛹𝛹⟩, −𝑖𝑖ℏ 𝜕𝜕 ⟨𝛹𝛹|

𝜕𝜕𝜕𝜕
=

𝐻𝐻� ⟨𝛹𝛹|, таким образом 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝐴̂𝐴� = 1

−𝑖𝑖ℏ
�𝛹𝛹�𝐻𝐻�𝐴̂𝐴�𝛹𝛹� + 1

𝑖𝑖ℏ
�𝛹𝛹�𝐴̂𝐴𝐻𝐻��𝛹𝛹� = 𝑖𝑖

ℏ
�𝛹𝛹�𝐻𝐻�𝐴̂𝐴�𝛹𝛹� −

𝑖𝑖
ℏ
�𝛹𝛹�𝐴̂𝐴𝐻𝐻��𝛹𝛹� = 𝑖𝑖

ℏ
��𝐻𝐻�, 𝐴̂𝐴�� 

Полученная формула 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝐴̂𝐴� = 𝑖𝑖

ℏ
��𝐻𝐻�, 𝐴̂𝐴�� очень важна, т.к. позволяет определять какие 

средние зависят от времени, а какие нет. 

Свойства коммутатора: �𝐴̂𝐴, 𝐴̂𝐴� = 0; �𝐴̂𝐴,𝐹𝐹(𝐴𝐴)� = 0; �𝐴̂𝐴 + 𝐵𝐵� ,𝐶𝐶� = �𝐴̂𝐴,𝐶𝐶� + [𝐵𝐵,𝐶𝐶]; �𝐴̂𝐴𝐵𝐵� , 𝐶̂𝐶� =

𝐴̂𝐴�𝐵𝐵� , 𝐶̂𝐶� + �𝐴̂𝐴, 𝐶̂𝐶�𝐵𝐵� . 

Пользуясь этими свойствами, покажем свойства некоторых величин. Изменение 

средней энергии равно 0, или значение средней энергии является константой: 𝑑𝑑
𝑑𝑑𝑡𝑡
⟨𝐸𝐸⟩ =

0. 
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 𝑑𝑑
𝑑𝑑𝑡𝑡
⟨𝑥𝑥⟩ = 𝑖𝑖

ℏ
��𝐻𝐻�, 𝑥𝑥���. Т.к. 𝐻𝐻� =  𝑝𝑝�

2

2𝑚𝑚
+ 𝑈𝑈(𝑥𝑥), получаем 𝑖𝑖

2𝑚𝑚ℏ
[𝑝̂𝑝2, 𝑥𝑥�] = 𝑖𝑖

2𝑚𝑚ℏ
{𝑝̂𝑝[𝑝̂𝑝, 𝑥𝑥�] + [𝑝̂𝑝, 𝑥𝑥�]𝑝̂𝑝} =

− 𝑖𝑖
2𝑚𝑚ℏ

2𝑖𝑖ℏ𝑝𝑝. Т.е. было получено уравнение аналогичное уравнению динамики Ньютона: 

𝑑𝑑
𝑑𝑑𝑡𝑡
⟨𝑥𝑥⟩ = ⟨𝑝𝑝⟩

𝑚𝑚
. Таким образом получаем для средних значений, вычисленных по какому-то 

состоянию, такое же уравнение, какое бы мы имели в классике. Но здесь необходимо 

использовать соответствующие средние значения, которые берутся по определённому 

состоянию 𝛹𝛹. 

Проверим другое важное соотношение: 𝑑𝑑𝑝⃗𝑝
𝑑𝑑𝑡𝑡

= 𝐹⃗𝐹 = −𝑣⃗𝑣𝑈𝑈. Вычислим квантово-

механическое значение 𝑑𝑑𝑝⃗𝑝
𝑑𝑑𝑡𝑡

. Т.е. необходимо вычислить значение 𝑑𝑑⟨𝑝𝑝⟩
𝑑𝑑𝑡𝑡

= 𝑖𝑖
ℏ
��𝐻𝐻�, 𝑝̂𝑝��. Для 

координаты x: 𝑑𝑑𝑝𝑝𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝐹𝐹𝑥𝑥 = − 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑈𝑈; тогда  �U�, 𝑝̂𝑝�f(x) = U �− 𝑖𝑖

ℏ
∂f
∂x
� − �− 𝑖𝑖

ℏ
∂
∂x

(Uf)� =

−�𝑈𝑈 𝑖𝑖
ℏ
∂f
∂x
� + 𝑖𝑖

ℏ
�𝑓𝑓 ∂U

∂x
+ U ∂f

∂x
� = 𝑖𝑖

ℏ
𝑓𝑓 ∂U
∂x

, т.е. �𝑈𝑈�, 𝑝̂𝑝�=𝑖𝑖
ℏ
∂U
∂x

 и тогда 𝑑𝑑⟨𝑝𝑝⟩
𝑑𝑑𝑑𝑑

= �𝑖𝑖
ℏ
𝑖𝑖ℏ𝛻𝛻𝛻𝛻� = ⟨−𝛻𝛻𝛻𝛻⟩ =

�𝐹⃗𝐹�. Т.е. было получено такое же классическое уравнение, как и для динамики 

Ньютона, но только для соответствующих средних. 

Хоть выражения выглядят похоже для квантового и классического случая, но на самом 

деле, ситуация резко отличается. Во-первых, средние вычисляются по квантовому 

состоянию, поэтому для того, чтобы определить среднее, необходимо решить квантово-

механическую задачу. При этом может оказаться, что 𝛻𝛻𝛻𝛻 зависит от x, и с классической 

точки зрения, необходимо было бы подставлять 𝛻𝛻𝛻𝛻 от ⟨𝑥𝑥⟩. Но полученная скобка 

совершенно другая, т.к. это среднее значение градиента потенциала. 

Если потенциал меняется медленно, а волновая функция узкая, тогда реализуется 

классическая ситуация. Но если по сравнению с быстрым изменением потенциала, 

волновая функция достаточно широкая, то тогда соответствующее среднее значение не 

будет соответствовать среднему значению от потенциала. 

Хоть соответствие между классикой и механикой условное, можно сформулировать 

теорему, которая называется теоремой Эренфеста, о том, что среднее значение 

квантово-механических переменных удовлетворяют тем же уравнениям движения, что 

соответствующие классические переменные, если волновая функция 𝛹𝛹, для которой 

вычисляется среднее, удовлетворяет уравнению Шредингера.  
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Оператор чётности. 
Пусть существуют некоторые функции, которые представляют собой собственные 

функции 𝐻𝐻�, и эти функции могут быть чётными и нечётными. Введём оператор 

чётности ℙ�𝑓𝑓(𝑥𝑥) = 𝑓𝑓(−𝑥𝑥). Найдём собственные значения данного оператора ℙ�𝑓𝑓(𝑥𝑥) =

𝜆𝜆𝑓𝑓(𝑥𝑥) = 𝑓𝑓(−𝑥𝑥) и ℙ�2𝑓𝑓(𝑥𝑥) = 𝜆𝜆2𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥). Отсюда получаем, что 𝜆𝜆2 = 1, 𝜆𝜆1,2 = ±1. 

Теперь найдём собственные функции данного оператора. Возьмём любую функцию, 

которая отвечает значению +1, тогда ℙ�𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)= 𝑓𝑓(−𝑥𝑥), т.е. собственному 

значению +1 отвечают чётные функции. Аналогично доказывается, что значению -1 

соответствуют нечётные функции.  

Проверим, что оператор чётности коммутирует с 𝐻𝐻�. 𝐻𝐻� =  𝑝𝑝�
2

2𝑚𝑚
+ 𝑈𝑈(𝑥𝑥). Данный оператор 

коммутирует с 𝐻𝐻�, только когда 𝑈𝑈(𝑥𝑥) = 𝑈𝑈(−𝑥𝑥). Докажем это из физического смысла 

амплитуды вероятности или плотности вероятности. Пусть есть некоторый 

симметричный потенциал, т.е. функция 𝑈𝑈(𝑥𝑥) – чётная. Тогда относительно оси 

симметрии |𝛹𝛹|2 волновой функции должно быть одинаково, что в области справа, от 

оси симметрии, что в области слева. Таким образом 𝛹𝛹(𝑥𝑥) = ±𝛹𝛹(𝑥𝑥). Тогда при 

возведении в квадрат будет получено одно и то же значение для отрицательного и 

положительного значения x. Таким образом, если 𝑈𝑈(𝑥𝑥) – чётная, тогда 𝑑𝑑
𝑑𝑑𝑡𝑡
⟨𝑝𝑝⟩ = 0 – 

чётность сохраняется. 

Вычисление чётности для бесконечной ямы. 

Возьмём такую же волновую функцию, которую брали для вычисления ⟨𝑥𝑥⟩, но немного 

её видоизменим. Будем вычислять значение в момент времени равный нулю. 𝛹𝛹(𝑥𝑥, 0) =

3𝜑𝜑1 + 4𝜑𝜑2. Чётность первого состояния +1, второго состояния -1. Для того, чтобы 

определить вероятности, с которыми входят соответствующие значения чётности, 

необходимо чтобы данная функция удовлетворяла условию нормировки 𝛴𝛴𝑛𝑛|𝐶𝐶𝑛𝑛| = 1. 

Перейдём к функции, удовлетворяющей условию нормировки 𝛹𝛹(𝑥𝑥, 0) = 3
√25

𝜑𝜑1 +

4
√25

𝜑𝜑2. Вычислим среднее значение чётности, подставив вероятность нахождения 
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состояния 1 или состояния 2. Тогда ⟨ℙ⟩ = 9
25
⋅ 1 + 16

25
⋅

(−1) = − 7
25

 – среднее значение чётности, которое будет 

сохраняться.  

Величины координата и импульс будут зависеть от 

времени, а те величины, которые коммутируют с 𝐻𝐻�, в 

соответствии с полученной формулой, будут являться 

интегралами движения и будут сохраняться во времени.  

 

  

Рисунок 6. Волновые функции 
различной чётности 
частицы в яме с бесконечным 
потенциалом. 
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Лекция 5. Частица в потенциальной яме. Гармонический 

осциллятор. 
Рассмотрим волновую функцию, которая задана для момента времени t = 0. Пусть в 

этот момент волновая функция представляет собой основное состояние для ямы 

размером L. Теперь в этот же момент времени резко увеличим размер ямы до 3L. 

Рассмотрим изменение во времени заданной функции. Для этого разложим волновую 

функцию для произвольного момента времени по волновым функциям утроенной ямы 

𝛹𝛹(𝑥𝑥, 𝑡𝑡) = ∑ 𝐶𝐶𝑛𝑛𝜑𝜑𝑛𝑛(𝑥𝑥)𝑛𝑛 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡, где 𝐶𝐶𝑛𝑛 = ∫ 𝜑𝜑𝑛𝑛∗𝛹𝛹(𝑥𝑥, 0)𝑑𝑑𝑥𝑥. Рассмотрим, как сходится 

приближение в нулевой момент времени. При малом количестве волновых функций 

расхождение с начальной функцией очень велико, но при количестве функций 

разложения порядка 10-20 получается хорошее согласие. Таким образом 10-20 

волновых функций тройной ямы достаточно точно аппроксимируют волновую 

функцию изначальной ямы. Рассмотрим изменение данной функции со временем. 

Заметим, что ⟨𝑥𝑥⟩ отлично от нуля, т.к. это не стационарное состояние. Также в 

некоторые моменты времени сумма функций точно совпадает с изначальным 

значением, а иногда отображается симметрично, при том это происходит 

периодически. Объясним наблюдаемые явления. 𝐸𝐸𝑛𝑛 = ℏ2𝜋𝜋2

2𝑚𝑚𝑎𝑎2
𝑛𝑛2, 𝜔𝜔 = 2𝜋𝜋

𝑇𝑇
= 𝐸𝐸𝑛𝑛

ℏ
= ℏ𝜋𝜋2

2𝑚𝑚𝑎𝑎2
𝑛𝑛2. 

Тогда 𝑇𝑇𝑛𝑛 = 4𝑚𝑚𝑎𝑎2

ℏ𝜋𝜋2𝑛𝑛2
= 𝑇𝑇

𝑛𝑛2
, т.е. все периоды будут меньше полученной величины в целое 

число раз. Т.е. волновая функция периодическая с периодом  𝑇𝑇 = 4𝑚𝑚𝑎𝑎2

ℏ𝜋𝜋2
, т.е. волновая 

функция через такой промежуток времени принимает исходное положение. 

Задача с ямой конечной глубины. 
Напишем уравнение Шредингера для этой ямы, а яму выберем симметричную. Будем 

рассматривать энергии меньше 𝑈𝑈0, т.к. это будет обеспечивать связанные состояния, 

которые дают дискретный спектр. Если энергия будет больше 𝑈𝑈0, то волновой 

функцией будет некая плоская волна, которая будет простираться до бесконечности. В 
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общем случае необходимо решить стационарную задачу 

𝐻𝐻�𝜑𝜑𝑛𝑛 = 𝐸𝐸 𝜑𝜑𝑛𝑛. В данной задаче необходимо рассмотреть 2 

типа состояний: с чётной и нечётной функцией. 

Перепишем выражение выше для внутренней части ямы: 

− ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝜑𝜑(𝑥𝑥) = 𝐸𝐸 𝜑𝜑𝑛𝑛. Тогда получаем следующее 

выражение 𝜑𝜑′′(𝑥𝑥) + 𝑘𝑘2𝜑𝜑(𝑥𝑥) = 0, где 𝑘𝑘2 = 2𝑚𝑚𝑚𝑚
ℏ2

. 

Аналогичная ситуация, когда x превышает 𝑎𝑎
2
 или меньше 

−𝑎𝑎
2
: 𝐴𝐴𝑒𝑒−𝑖𝑖𝑘𝑘� 𝑥𝑥 + 𝐵𝐵𝑒𝑒𝑖𝑖𝑘𝑘� 𝑥𝑥 – решение волновой функции справа 

от ямы. 𝑘𝑘�2 = 2𝑚𝑚(𝐸𝐸−𝑈𝑈0)
ℏ2

⇒ 𝑘𝑘 = 𝑖𝑖𝛼𝛼. Тогда решения будут в 

виде затухающих экспонент 𝐴𝐴𝑒𝑒−𝛼𝛼𝛼𝛼 + 𝐵𝐵𝑒𝑒𝛼𝛼𝛼𝛼. Данная 

функция спадает на бесконечности.  

Рассмотрим решения внутри ямы.  

Чётные функции. 

Чётные решения: 𝐶𝐶 cos(𝑘𝑘𝑛𝑛𝑥𝑥). Теперь необходимо 

сшить решения внутри ямы, с решением вне ямы, 

например, справа на границе 𝑎𝑎
2
: 𝐴𝐴𝑒𝑒−𝛼𝛼𝛼𝛼. Решение 

𝐵𝐵𝑒𝑒𝛼𝛼𝛼𝛼было отброшено, т.к. даёт увеличивающуюся 

к бесконечности волновую функцию. Для того, 

чтобы сшить решения запишем следующее 

условие 𝐶𝐶 cos �𝑘𝑘 𝑎𝑎
2
� = 𝐴𝐴𝑒𝑒−𝛼𝛼

𝑎𝑎
2. Также должны быть 

сшиты и производные 𝑘𝑘𝑘𝑘 �− sin �𝑘𝑘 𝑎𝑎
2
�� =

−𝛼𝛼𝛼𝛼𝑒𝑒−𝛼𝛼
𝑎𝑎
2. Заметим, что при делении первого 

выражения на второе, получим 𝑎𝑎
2
𝑘𝑘𝑘𝑘𝑘𝑘 �𝑘𝑘 𝑎𝑎

2
� = 𝛼𝛼 𝑎𝑎

2
. 

Отсюда получаем 𝜉𝜉 tg 𝜉𝜉 = 𝜂𝜂. Учитывая, что 𝛼𝛼2 = 2𝑚𝑚(𝑈𝑈0−𝐸𝐸)
ℏ2

, получим 𝜉𝜉2 + 𝜂𝜂2 = 𝑚𝑚𝑈𝑈0𝑎𝑎2

2ℏ2
=

𝑅𝑅2 – уравнение окружности. Решим полученную систему уравнений графически. 

Заметим, что для чётных функций существует хотя бы 1 решение. Если радиус 

маленький, то такая яма называется мелкой и содержит хотя бы 1 уровень для чётных 

Рисунок 7. Частица в яме 
с конечным потенциалом. 

Рисунок 8. Графическое решение 
системы уравнений для чётных 
функций. 
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решений. Для получения большего количества решений необходимо увеличивать 

радиус. Заметим, что энергии в конечной яме будут меньше, чем энергии в 

бесконечной яме, и будет наблюдаться конечное количество уровней. 

Нечётные функции. 
Получим решение для нечётных функций. Тогда 

𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑘𝑘 𝑎𝑎
2
� = 𝐴𝐴𝑒𝑒−𝛼𝛼

𝑎𝑎
2, 𝑘𝑘𝑘𝑘 �𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘 𝑎𝑎

2
�� = −𝛼𝛼𝛼𝛼𝑒𝑒−𝛼𝛼

𝑎𝑎
2. 

Поэтому получим, что 𝑎𝑎
2
𝑘𝑘с𝑡𝑡𝑡𝑡 �𝑘𝑘 𝑎𝑎

2
� = −𝛼𝛼 𝑎𝑎

2
. Тогда 

�
−𝜉𝜉 сtg 𝜉𝜉 = 𝜂𝜂

𝜉𝜉2 + 𝜂𝜂2 = 𝑚𝑚𝑈𝑈0𝑎𝑎2

2ℏ2
= 𝑅𝑅2

. Появляются нечётные 

решения, 1-ое из них появляется при 𝑅𝑅 = 𝜋𝜋
2
. 

В конечной яме всегда существуют отличные от 0 

убывающие экспоненты за границами ямы, т.е. 

существует конечная вероятность наблюдать 

частицу вне ямы. 

Гармонический осциллятор. 

Эрмитовы полиномы. 
Запишем выражение для уравнения Шредингера с квадратичным по x потенциалом 

�− ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑥𝑥2
+ 𝜔𝜔2𝑚𝑚𝑥𝑥2

2
�𝜑𝜑 = 𝐸𝐸𝜑𝜑. Рассматриваем связанные состояния, значит волновая 

функция и энергия проквантованы, т.е. появился дискретный спектр. Удобно ввести 

безразмерную переменную вместо x: 𝜉𝜉 = 𝑥𝑥
𝑎𝑎

, где 𝑎𝑎 = � ℏ
𝑚𝑚𝑚𝑚

. Тогда � 𝑑𝑑
2

𝑑𝑑𝜉𝜉2
− 𝜉𝜉2 + 𝜀𝜀�𝜓𝜓(𝜉𝜉) =

0, где 𝜀𝜀 = 𝐸𝐸
𝐸𝐸0

,𝐸𝐸0 = ℏ𝜔𝜔
2

. 

Найдём асимптотику данного решения: 𝜉𝜉 → ±∞ ⇒ 𝑑𝑑2𝜓𝜓
𝑑𝑑𝜉𝜉2

− 𝜉𝜉2𝜓𝜓 ≈ 0 ⇒ 𝜓𝜓~𝑒𝑒−
𝜉𝜉2

2 . 

Продифференцируем выражение и убедимся, что это на самом деле так. 𝜑𝜑(𝑥𝑥) = 𝑒𝑒−
𝜉𝜉2

2 , 

тогда 𝜑𝜑′(𝑥𝑥) = −𝜉𝜉𝑒𝑒−
𝜉𝜉2

2  и 𝜑𝜑′′(𝑥𝑥) = �−𝑒𝑒−
𝜉𝜉2

2 + �−𝜉𝜉 �−𝜉𝜉𝑒𝑒−
𝜉𝜉2

2 ���. Тогда 𝜑𝜑′′(𝑥𝑥) − 𝜉𝜉2𝑒𝑒−
𝜉𝜉2

2 , 

следовательно, выражение выполняется при 𝜉𝜉 → ±∞, и асимптотика является 

Рисунок 9. Графическое решение 
системы уравнений для нечётных 
функций. 

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

32 
 
 

 

правильной. Таким образом данная асимптотика, возможно, является функцией 

основного состояния, т.к. она чётная и не имеет узлов. Используем данную волновую 

функцию в виде волновой функции основного состояния. Для этого подставим 

асимптотику в выражение � 𝑑𝑑
2

𝑑𝑑𝜉𝜉2
− 𝜉𝜉2 + 𝜀𝜀�𝜓𝜓(𝜉𝜉) = 0, откуда получим, что 𝐸𝐸0 =

ℏ𝜔𝜔
2

,при 𝜀𝜀 = 1. Таким образом были получены волновая функция основного состояния и 

энергия основного состояния.  

Для других состояний запишем 𝛹𝛹𝑛𝑛(𝑥𝑥) в виде некоторых полиномов: 𝛹𝛹𝑛𝑛(𝑥𝑥) =

𝑁𝑁𝑛𝑛𝐻𝐻𝑛𝑛 �
𝑥𝑥
𝑎𝑎
� 𝑒𝑒−

𝑥𝑥2

2𝑎𝑎2. Отсюда получается уравнение 𝐻𝐻′′ − 2𝜉𝜉𝐻𝐻′ + (𝜀𝜀 − 1) = 0, которое 

приводится к дифференциальному уравнению Эрмита 𝐻𝐻′′ − 2𝜉𝜉𝐻𝐻𝑛𝑛′ + 2𝑛𝑛𝐻𝐻𝑛𝑛 = 0, при 

𝐸𝐸𝑛𝑛 = ℏ𝜔𝜔 �𝑛𝑛 + 1
2
�. Решениями данного уравнения являются полиномы Эрмита. Тем 

самым мы нашли выражение для энергии n-ого уровня гармонического осциллятора и 

нашли волновые функции.  

Запишем формулы для полиномов и их соотношений. Выражение для полинома n-ой 

степени: 𝐻𝐻𝑛𝑛(𝜉𝜉) = (−1)𝜂𝜂𝑒𝑒𝜉𝜉2 𝑑𝑑𝑛𝑛

𝑑𝑑𝜉𝜉𝑛𝑛
𝑒𝑒−𝜉𝜉2. Выражение для нормировки полиномов 

� 𝐻𝐻𝑛𝑛(𝜉𝜉)𝐻𝐻𝑚𝑚(𝜉𝜉)𝑒𝑒−𝜉𝜉2 𝑑𝑑𝜉𝜉
∞

−∞
= 2𝑛𝑛𝑛𝑛!√𝜋𝜋𝛿𝛿𝑚𝑚𝑚𝑚. 𝐻𝐻𝑛𝑛′ = 2𝑛𝑛𝐻𝐻𝑛𝑛−1 – выражение для понижения 

степени, и 𝜉𝜉𝐻𝐻𝑛𝑛 = 1
2
𝐻𝐻𝑛𝑛+1 + 𝑛𝑛𝐻𝐻𝑛𝑛−1. 

Найдём значения полиномов разных степеней: 𝐻𝐻0 = 1, 𝐻𝐻1 = −2𝜉𝜉. 

С помощью данного способа можно получить уравнения стационарных состояний 

гармонического осциллятора. Поскольку функция симметрична относительно начала 

координат, то наблюдаются чётные и нечётные решения. 

Рассмотрим классический осциллятор 𝑚𝑚𝜔𝜔2𝑥𝑥02

2
= ℏ𝜔𝜔 1

2
, тогда 𝑥𝑥02 = ℏ

𝑚𝑚𝑚𝑚
= 𝑎𝑎2. Таким 

образом физический смысл константы 𝑎𝑎 – амплитуда классических колебаний. Но 

волновые функции выходят за это значение.  

Операторный метод. 
Он позволяет упростить часть задач для гармонического осциллятора. Введём 2 

эрмитово-сопряжённых оператора 𝑎𝑎�𝑎𝑎�+ = 1
√2
�𝜉𝜉 ± 𝜕𝜕

𝜕𝜕𝜕𝜕
�, 𝜉𝜉 = 𝑥𝑥

𝑎𝑎
= 𝑥𝑥

� ℏ
𝑚𝑚𝑚𝑚

, 𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 𝑝𝑝�
−𝑖𝑖ℏ

=
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𝑖𝑖𝑝𝑝�
√ℏ𝑚𝑚𝑚𝑚

. Тогда 𝑎𝑎�𝑎𝑎�+ = 1
√2

( 𝑥𝑥�

� ℏ
𝑚𝑚𝑚𝑚

± 𝑖𝑖𝑝𝑝�
√ℏ𝑚𝑚𝑚𝑚

). Получим соотношения коммутации для этих 

операторов [𝑎𝑎�𝑎𝑎�+] = 1
√2
� 𝑖𝑖[𝑥𝑥�𝑝𝑝�]

� ℏ
𝑚𝑚𝑚𝑚√ℏ𝑚𝑚𝑚𝑚

− 𝑖𝑖�𝑝𝑝𝑥𝑥�� �

� ℏ
𝑚𝑚𝑚𝑚√ℏ𝑚𝑚𝑚𝑚

� = 1. Данное соотношение позволяет 

показать, что 𝐻𝐻� = 𝑝𝑝�2

2𝑚𝑚
+ 𝑚𝑚𝜔𝜔2𝑥𝑥2

2
= ℏ𝜔𝜔 = �𝑎𝑎�+𝑎𝑎� + 1

2
�. Обозначим 𝑎𝑎�+𝑎𝑎� = 𝑁𝑁�. Запишем 

уравнение на собственные функции и собственные значения 𝑁𝑁�𝜑𝜑𝑛𝑛 = 𝑛𝑛𝜑𝜑𝑛𝑛. Причём 

неизвестно, целая ли величина n или нет. Заметим, что гамильтониан коммутирует с 

𝑎𝑎�+𝑎𝑎�, значит у них общие волновые функции, поэтому если найти волновые функции, 

соответствующие 𝑁𝑁�, то также будут известны волновые функции, соответствующие 

гамильтониану. Т.е. это будут волновые функции в виде полинома Эрмита.  

Рассмотрим свойства операторов. 𝑁𝑁�𝑎𝑎�+𝜑𝜑 = �𝑎𝑎�+𝑁𝑁� − 𝑎𝑎�+𝑁𝑁� + 𝑁𝑁�𝑎𝑎�+�𝜑𝜑 = (𝑛𝑛 + 1)𝑎𝑎�+𝜑𝜑. Таким 

образом 𝑎𝑎�+ обладает свойством повышения, т.е. 𝑎𝑎�+𝜑𝜑 = 𝜑𝜑𝑛𝑛+1. Также показывается, что 

𝑎𝑎� – понижающий оператор, т.е. 𝑎𝑎�𝜑𝜑 = 𝜑𝜑𝑛𝑛−1.  

Найдём границу n. ⟨𝐻𝐻⟩ ≥ 0, �𝑛𝑛 + 1
2
� ≥ 0 ⇒ 𝑛𝑛 ≥ −1

2
. Поэтому если n не удовлетворяет 

соотношению, то волновая функция даёт 0, т.е. 𝑎𝑎�𝜑𝜑0 = 0. Теперь 𝑁𝑁�𝜑𝜑0 = 0𝜑𝜑0, 𝜑𝜑0 → 𝑛𝑛 =

0. Таким образом собственные значения 𝑁𝑁� – целые числа, и 𝐸𝐸0 → 𝑛𝑛 = 0 и 𝐸𝐸𝑛𝑛 =

ℏ𝜔𝜔 �𝑛𝑛 + 1
2
�. 

Получим волновые функции. 1
√2
�𝜉𝜉 + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜑𝜑0 = 0, т.е. 𝜉𝜉𝜑𝜑0 + 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜑𝜑0 = 0, следовательно, 

𝜑𝜑0 = 𝑒𝑒−
𝜉𝜉2

2  – волновая функция основного состояния. Для получения волновой функции 

n-ого состояния, необходимо на волновую функцию основного состояния n раз 

действовать 𝑎𝑎�+. Таким образом 𝜑𝜑𝑛𝑛 = �𝑎𝑎�+�𝑛𝑛

√𝑛𝑛!
𝜑𝜑0.  
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Лекция 6. Операторы рождения и уничтожения. Частица в 

трёхмерном потенциале. 

Вычисление средних. 

Операторы рождения и уничтожения. 

Запишем операторы 𝑎𝑎� = 1
√2
�𝜉𝜉 + 𝜕𝜕

𝜕𝜕𝜕𝜕
�, где 𝜉𝜉 = 𝑥𝑥

� ℏ
𝑚𝑚𝑚𝑚

  и  𝑎𝑎�+ = 1
√2
�𝜉𝜉 − 𝜕𝜕

𝜕𝜕𝜕𝜕
�. Тогда 𝑥𝑥� =

� ℏ
𝑚𝑚𝑚𝑚

√2
(𝑎𝑎� + 𝑎𝑎�+) и  𝑝̂𝑝 = −𝑖𝑖 √ℏ𝑚𝑚𝑚𝑚

√2
(𝑎𝑎� − 𝑎𝑎�+), также [𝑎𝑎�𝑎𝑎�+] = 1. Следовательно  ⟨𝜑𝜑𝑛𝑛|𝑥𝑥�|𝜑𝜑𝑛𝑛⟩ =

� ℏ
𝑚𝑚𝑚𝑚

√2
⟨𝜑𝜑𝑛𝑛|𝑎𝑎� + 𝑎𝑎�+|𝜑𝜑𝑛𝑛⟩ = 0, ⟨𝜑𝜑𝑛𝑛|𝑝̂𝑝|𝜑𝜑𝑛𝑛⟩ = −𝑖𝑖 √ℏ𝑚𝑚𝑚𝑚

√2
⟨𝜑𝜑𝑛𝑛|𝑎𝑎� − 𝑎𝑎�+|𝜑𝜑𝑛𝑛⟩ = 0. То, что среднее 𝑥𝑥� и 𝑝̂𝑝 

= 0 очевидно из полученных формул. Оператор 𝑎𝑎�, действуя на волновую функцию 𝜑𝜑𝑛𝑛, 

переведёт её в функцию 𝜑𝜑𝑛𝑛−1, тогда скалярное произведение 𝜑𝜑𝑛𝑛 на 𝜑𝜑𝑛𝑛−1 даст 0. 

Оператор 𝑎𝑎�+ переведёт 𝜑𝜑𝑛𝑛 в 𝜑𝜑𝑛𝑛+1, тогда при умножении этих функций, их скалярное 

произведение будет = 0, по условию из ортонормированности.  

Дисперсия: ⟨𝜑𝜑𝑛𝑛|𝑥𝑥�2|𝜑𝜑𝑛𝑛⟩ =
ℏ

𝑚𝑚𝑚𝑚
2
�𝜑𝜑𝑛𝑛|𝑎𝑎�2 +  𝑎𝑎�𝑎𝑎�+ + 𝑎𝑎�+ 𝑎𝑎� + 𝑎𝑎�+2|𝜑𝜑𝑛𝑛�.Т. к.  [𝑎𝑎�𝑎𝑎�+] = 𝑎𝑎�𝑎𝑎�+ −

𝑎𝑎�+𝑎𝑎� = 1 ⇔ 𝑎𝑎�𝑎𝑎�+ = 1 + 𝑁𝑁�, следовательно ⟨𝜑𝜑𝑛𝑛|𝑥𝑥�2|𝜑𝜑𝑛𝑛⟩ =
ℏ

𝑚𝑚𝑚𝑚
2

(2𝑛𝑛 + 1) и 𝛥𝛥𝛥𝛥 =

�⟨𝑥𝑥2⟩ − ⟨𝑥𝑥⟩2 = � ℏ
𝑚𝑚𝑚𝑚

(𝑛𝑛 + 1
2
) 

⟨𝜑𝜑𝑛𝑛|𝑝̂𝑝2|𝜑𝜑𝑛𝑛⟩ = −ℏ𝑚𝑚𝑚𝑚
2
⟨𝜑𝜑𝑛𝑛| − ( 𝑎𝑎�𝑎𝑎�+ + 𝑎𝑎�+ 𝑎𝑎�)|𝜑𝜑𝑛𝑛⟩ = ℏ𝑚𝑚𝑚𝑚 �𝑛𝑛 + 1

2
� и 𝛥𝛥𝛥𝛥 = �ℏ𝑚𝑚𝑚𝑚(𝑛𝑛 + 1

2
). 

Следовательно, 𝛥𝛥𝛥𝛥𝛥𝛥𝑝𝑝 = ℏ �𝑛𝑛 + 1
2
� – произведение стандартных отклонений для 

гармонического осциллятора определяется данной формулой и является стандартным 

отклонением, вычисленным по n-ому состоянию. Min = ℏ
2
 при n = 0 – минимальное 

значение, которое допускает принцип неопределённости Гейзенберга. 

Также, из формул выше можно найти среднее значение кинетической энергии ⟨𝑇𝑇⟩ =
�𝑝𝑝2�
2𝑚𝑚

= ℏ𝜔𝜔
2
�𝑛𝑛 + 1

2
� = ⟨𝐸𝐸⟩

2
 – половина среднего значения полной энергии, и потенциальной 

⟨𝑈𝑈⟩ = 𝑚𝑚𝜔𝜔2�𝑥𝑥2�
2

= ℏ𝜔𝜔
2
�𝑛𝑛 + 1

2
� = ⟨𝐸𝐸⟩

2
 – также половина среднего значения полной энергии. 
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Дальше будет рассмотрено квантование электромагнитного поля. Пусть электрон 

находится в некотором стационарном состоянии. Но эксперимент показывает, что он 

находится в нём очень недолго (для макро-масштаба – 10-8-10-9 секунды). Потом он 

оказывается в основном состоянии, хотя по теории он должен находиться там всё 

время. Значит ещё есть неучтенные взаимодействия электрона. Для спонтанного 

перехода – это взаимодействие с электромагнитным вакуумом, т.е. необходимо 

проквантовать электромагнитное поле. Осциллятор модель даже более важная, чем 

модель атома водорода, потому что на основании этой модели может быть рассмотрена 

квантовая динамика твердого тела и, введено понятия фононов – колебаний, которые 

имеют кванты энергий. И тогда энергия для моды соответствующей частоты будет 

записана как сумма таких квантов колебаний (сумма числа фононов). И при такой 

записи, будет получено, что каждой соответствующей моде для какой-либо частоты, 

будет соответствовать 𝑎𝑎�+ 𝑎𝑎�, т.е. оператор числа частиц 𝑁𝑁�. И энергия будет 

пропорциональна числу частиц и 𝜔𝜔 (с учётом константы) – это энергия вакуума, т.е. 

энергия основного состояния. Тоже самое будет получено и при квантовании 

электромагнитного поля. С классической точки зрения электромагнитное поле может 

быть разбито на плоские волны, которые характеризуются частотой и поляризацией. С 

квантовой точки зрения необходимо просуммировать энергии соответствующих 

фотонов. Эта энергия пропорциональна ℏ𝜔𝜔, т.е. в моде на частоте 𝜔𝜔, энергия будет 

пропорциональна числу фотонов ℏ𝜔𝜔𝑁𝑁
�

2
 . И эта энергия соответствует энергии 

электромагнитного вакуума. Даже когда нет возбуждённых фотонов, то эта энергия в 

квантовой механике отлична от 0. Именно она приводит к спонтанному переходу из 

стационарного состояния электрона в некотором возбуждённом состоянии к 

стационарному основному. При квантовании электромагнитного поля в гамильтонианы 

будут входить операторы 𝑎𝑎�+ и  𝑎𝑎�, и тогда оператор 𝑎𝑎�+ соответствует рождению фотона 

или фонона, и увеличению числа частиц, а оператор 𝑎𝑎�− =   𝑎𝑎� – уничтожению фотона 

или фонона, и понижению числа частиц. Поэтому a ̂^+ - оператор рождения, а a ̂̂ -=  a ̂ – 

оператор уничтожения. 

Принцип соответствия для гармонического осциллятора.  
Сравним классическую плотность вероятности с плотностью вероятности квантовой. 

Возьмём волновую функцию 𝛹𝛹102 . Классическая плотность вероятности 𝑑𝑑𝑃𝑃 = 𝑑𝑑𝑡𝑡
𝑇𝑇

= 𝑑𝑑𝑥𝑥
𝑥̇𝑥𝑇𝑇

, 
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где 𝑥𝑥 = 𝐴𝐴 cos𝜔𝜔𝜔𝜔 , 𝑥̇𝑥 = −𝐴𝐴 sin𝜔𝜔𝜔𝜔 (𝑑𝑑𝑡𝑡 – время нахождения частицы в некотором x, T – 

период колебания, A – амплитуда). Тогда 𝑑𝑑𝑃𝑃
𝑑𝑑𝑥𝑥

= 𝜌𝜌(𝑥𝑥) =

1
2𝜋𝜋√𝐴𝐴2−𝑥𝑥2

. Найдём амплитуду из выражения 𝐸𝐸𝑛𝑛 =

ℏ𝜔𝜔 �𝑛𝑛 + 1
2
� = 𝑚𝑚𝜔𝜔2𝐴𝐴𝑛𝑛2

2
⇒ 𝐴𝐴𝑛𝑛2 = 2ℏ

𝑚𝑚𝑚𝑚
�𝑛𝑛 + 1

2
�. Важно, что 

классическая плотность вероятности имеет расходимость 

при x = A, из-за того, что это точка возврата, 

следовательно, в ней скорость равна нулю, а 

следовательно, плотность вероятности уходит на 

бесконечность. Заметим, что при увеличении n, 

гармонический квантовый осциллятор имеет плотность 

вероятности всё более похожую на классическую 

плотность вероятности. Самым непохожим оказывается 

основное состояние, т.к. в классической физике частица 

не может выйти за границы осциллятора, а в квантовой 

физике возможен эффект туннелирования.  

Таким образом наблюдается принцип соответствия – при больших квантовых числах 

система начинает соответствовать классической.  

Нестационарные состояния. 
Нестационарные состояния могут быть образованы суперпозицией стационарных 

состояний, поэтому возможно следующее разложение 𝜓𝜓(𝑥𝑥1𝑡𝑡) = ∑ 𝐶𝐶𝑛𝑛𝜑𝜑𝑛𝑛(𝑥𝑥)𝑛𝑛 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡. 

Соберём суперпозицию 4-ёх волновых функций со случайными коэффициентами. Тем 

самым получим некогерентное состояние. Если же взять эти функции с 

коэффициентами равными корню соответствующих вероятностей, подчиняющихся 

распределению Пуассона, получим когерентное состояние, т.е. суперпозиция 

соответствует когерентному движению. Это состояние называется - Глауберовским 

когерентным состоянием. В нём произведение неопределённостей координаты и 

импульса принимает минимально возможные значения. В этом состоянии волновой 

пакет не расплывается, и его центр тяжести движется по классической траектории.  

Рисунок 10. Классическая и 
квантовая плотности 
вероятности. 
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Решение 3-ёх мерных уравнений Шредингера.  
Рассмотрим простейшую задачу. Возьмём большой макро-ящик. Электрон в ящике 

обладает тремя степенями свободы. Данное движение электрона будет описываться 

плоской волной – волной де Бройля. Уменьшая один из размеров, получим двухмерную 

ситуацию как для электрона в яме – квантовую яму. Тогда выражение для движения 

𝜑𝜑𝑥𝑥𝜑𝜑𝑦𝑦𝜑𝜑𝑧𝑧, где 𝜑𝜑𝑥𝑥𝜑𝜑𝑦𝑦~𝑒𝑒𝑖𝑖�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦�, а 𝜑𝜑𝑧𝑧~ sin 𝑘𝑘𝑘𝑘
2

. Сжимая по второй оси квантовую яму, 

будет получен квантовый провод, в котором электрон движется с 1 степенью свободы. 

Сжимая по последней оси квантовый провод, будет получена квантовая точка, с нулём 

степеней свободы. Заметим, что задача в 3-ёх мерном случае разбивается по осям x, y, 

z. 

Запишем уравнение для трёхмерного случая – для квантовой точки. 

Спектр квантовой точки. 

𝐻𝐻�𝛹𝛹(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐸𝐸𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑧𝑧), −ℏ
2𝛻𝛻2

2𝑚𝑚
𝛹𝛹 = 𝐸𝐸𝐸𝐸(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝛻𝛻2 = 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
, 𝛹𝛹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =

𝜑𝜑𝑥𝑥𝜑𝜑𝑦𝑦𝜑𝜑𝑧𝑧. Следовательно −ℏ
2

2𝑚𝑚
(𝜑𝜑𝑥𝑥

′′

𝜑𝜑𝑥𝑥
+ 𝜑𝜑𝑦𝑦′′

𝜑𝜑𝑦𝑦
+ 𝜑𝜑𝑧𝑧′′

𝜑𝜑𝑧𝑧
) = 𝐸𝐸 и ℏ

2

2𝑚𝑚
𝜑𝜑𝑥𝑥′′ = 𝐸𝐸𝑥𝑥𝜑𝜑𝑥𝑥 (для y, z аналогично). 

Тогда 𝐸𝐸𝑥𝑥 + 𝐸𝐸𝑦𝑦 + 𝐸𝐸𝑧𝑧 = 𝐸𝐸. Решение уравнений 𝜑𝜑𝑥𝑥′′ + 𝑘𝑘𝑥𝑥2𝜑𝜑 = 0, 𝑘𝑘𝑥𝑥2 = 2𝑚𝑚𝐸𝐸𝑥𝑥
ℏ2

, тогда 𝐸𝐸𝑥𝑥 =

ℏ2π2𝑛𝑛𝑥𝑥2

2ma2
. Тогда 𝛹𝛹 = 3

2
�2
𝑎𝑎
� sin𝑘𝑘𝑥𝑥𝑥𝑥 sin 𝑘𝑘𝑦𝑦𝑦𝑦 sin 𝑘𝑘𝑧𝑧𝑧𝑧 и 𝐸𝐸 = ℏ2π2

2ma2
(𝑛𝑛𝑥𝑥2 + 𝑛𝑛𝑦𝑦2 + 𝑛𝑛𝑧𝑧2). 

Рассмотрим энергетические уровни, вычисляя степень вырождения g.  

𝑛𝑛𝑥𝑥 𝑛𝑛𝑦𝑦 𝑛𝑛𝑧𝑧 E g 

1 1 1 3𝐸𝐸1 1 

2 1 1 6𝐸𝐸1 

 

3 

1 2 1 

1 1 2 

2 2 1 9𝐸𝐸1 3 

2 1 2 

1 2 2 

и т.д. 
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Таблица 3. Степень вырождения g 

на различных энергетических 

уровнях. 

Квантование атома водорода. 

Запишем уравнение Шредингера 𝐻𝐻� = −ℏ2𝛻𝛻2

2𝑚𝑚
+ 𝑈𝑈(𝑟𝑟). 

Рассматриваем поле кулоновских сил, следовательно, 

кулоновский потенциал зависит только от длины радиус 

вектора, и данный потенциал сферически симметричен. 

Представим в общем виде кинетическую энергию как 

𝑇𝑇 = 𝑃𝑃𝑟𝑟2

2𝑚𝑚
+ 𝐿𝐿2

2𝑚𝑚𝑟𝑟2
. Рассмотрим случай симметричного 

решения, при котором момент импульса равен нулю. 

При рассмотрении движения, необходимо учитывать 

изменение положения ортов в сферических 

координатах. Тогда 𝐻𝐻� = �−ℏ
2

2𝑚𝑚𝑟𝑟
𝜕𝜕2

𝜕𝜕𝑟𝑟2
𝑟𝑟 − 𝑒𝑒2

𝑟𝑟
�𝛹𝛹(𝑟𝑟) = 𝐸𝐸𝐸𝐸(𝑟𝑟) 

– уравнение на собственные значения. Возьмём 𝑈𝑈(𝑟𝑟) =

𝑟𝑟𝑟𝑟(𝑟𝑟). Будем искать решение данного уравнения, 

соответствующее симметричному решению. Тогда 

получаем −ℏ
2

2𝑚𝑚𝑟𝑟
𝜕𝜕2

𝜕𝜕𝑟𝑟2
𝑈𝑈 − 𝑒𝑒2

𝑟𝑟
𝑈𝑈 = 𝐸𝐸𝐸𝐸. Найдём 

асимптотическое решение при 𝑟𝑟 → ∞, тогда 𝑈𝑈′′ + 𝑘𝑘�2𝑈𝑈 = 0, где 𝑘𝑘�2 = 2𝑚𝑚𝑚𝑚
ℏ2

< 0. Введём 

𝑘𝑘� = 𝑖𝑖𝛼𝛼, тогда 𝛼𝛼2 = −2𝑚𝑚𝑚𝑚
ℏ2

. Кулоновский потенциал выбирается так, чтобы он на 

бесконечности был равен нулю. Отсюда получаем асимптотику 𝑈𝑈 = 𝑒𝑒−𝛼𝛼𝛼𝛼. Заметим, что 

при 𝑥𝑥 → 0, решение должно стремиться к −∞. Введём полином 𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑒𝑒−𝛼𝛼𝛼𝛼. Такое 

решение удовлетворяет обоим условиям. Проверим, является ли данное решение – 

решением для уравнения, описывающего сферически-симметричное состояние 

электрона в кулоновском потенциале: −ℏ
2

2𝑚𝑚
� 𝜕𝜕2

𝜕𝜕𝑟𝑟2
(𝑟𝑟𝑒𝑒−𝛼𝛼𝛼𝛼)� − 𝑒𝑒2

𝑟𝑟
𝑟𝑟𝑒𝑒−𝛼𝛼𝛼𝛼 = 𝐸𝐸𝑟𝑟𝑒𝑒−𝛼𝛼𝛼𝛼. 

Перепишем данное выражение в виде −ℏ
2

2𝑚𝑚
(−2𝛼𝛼 + 𝑟𝑟𝛼𝛼2)𝑒𝑒2 = 𝐸𝐸𝐸𝐸. Тогда 𝛼𝛼ℏ

2

𝑚𝑚
− 𝑒𝑒2 = 0. 

Подставим 𝛼𝛼: ℏ
2

𝑚𝑚
�−2𝑚𝑚𝑚𝑚

ℏ2
= 𝑒𝑒2, и 𝐸𝐸 = −𝑚𝑚𝑒𝑒4

2ℏ2
= −𝑅𝑅𝑅𝑅. Таким образом было получено 

решение, соответствующее волновой функции 𝛹𝛹𝑟𝑟 = 𝑈𝑈𝑈𝑈. Было получено основное 

Рисунок 11. Решение 
уравнения, описывающего 
сферически-симметричное 
состояние электрона в 
кулоновском потенциале. 
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состояние атома водорода, которое отвечает сферически-симметричному решению 

волновой функции, момент импульса равен нулю, и энергия такого состояния 

равняется −𝑅𝑅𝑅𝑅. Запишем волновую функцию 𝛹𝛹 = 𝐴𝐴𝑒𝑒−𝛼𝛼𝛼𝛼, где 𝛼𝛼 = �−2𝑚𝑚𝑚𝑚
ℏ2

= 𝑚𝑚𝑒𝑒2

ℏ2
 – 

величина обратная Боровскому радиусу. Тогда волновая функция 𝛹𝛹 = 𝐴𝐴𝑒𝑒−
𝑟𝑟
𝑎𝑎0, где 𝑎𝑎0 – 

Боровский радиус. Волновая функция основного состояния – единственная волновая 

функция, которая не равна нулю, в точке 𝑟𝑟 = 0. Это будет показано в следующей 

лекции. Для нахождения постоянной A необходимо пронормировать волновую 

функцию. 
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Лекция 7. Частица в центральном поле. Атом водорода. 

Частица в центральном поле. 

В прошлой лекции было использовано выражение 𝐻𝐻�𝛹𝛹(𝑟𝑟) = 𝐸𝐸𝐸𝐸(𝑟𝑟), но в общем случае 

уравнение Шредингера 𝐻𝐻�𝛹𝛹(𝑟𝑟, 𝜃𝜃,𝜑𝜑) = 𝐸𝐸𝐸𝐸(𝑟𝑟, 𝜃𝜃,𝜑𝜑).  

Координаты точки: 𝑧𝑧 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜃𝜃, 𝑥𝑥 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑, 𝑦𝑦 =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆𝜑𝜑. Включим в Гамильтониан угловую часть: 

𝐻𝐻� = − ℏ2

2𝑚𝑚
1
𝑟𝑟
𝜕𝜕2

𝜕𝜕𝜕𝜕
𝑟𝑟 + 𝐿𝐿�2

2𝑚𝑚𝑟𝑟2
+ 𝑉𝑉(𝑟𝑟), 1

𝑟𝑟
𝜕𝜕2

𝜕𝜕𝜕𝜕
𝑟𝑟 = 1

𝑟𝑟2
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑟𝑟2 𝜕𝜕

𝜕𝜕𝜕𝜕
 – 

радиальная часть, L - момент количества движения.  

Проекция 𝐿𝐿�𝑧𝑧 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

, тогда уравнение на собственные 

значения и собственные функции 𝐿𝐿�𝑧𝑧𝛹𝛹(𝜑𝜑) = 𝐿𝐿𝑧𝑧𝛹𝛹(𝜑𝜑), и 

нормированная функция для 𝐿𝐿�𝑧𝑧 имеет вид 1
√2𝜋𝜋

𝑒𝑒𝑖𝑖
𝐿𝐿𝑧𝑧
ℏ 𝜑𝜑 =

1
√2𝜋𝜋

𝑒𝑒𝑖𝑖𝑚𝑚𝜑𝜑, где m = 0,±1,±2… 

Существуют коммутационные соотношения между 𝐿𝐿�𝑥𝑥, 𝐿𝐿�𝑦𝑦, 𝐿𝐿�𝑧𝑧 – данные компоненты не 

коммутируют друг с другом: �𝐿𝐿�𝑥𝑥𝐿𝐿�𝑦𝑦� = 𝑖𝑖ℏ𝐿𝐿�𝑧𝑧, �𝐿𝐿�𝑧𝑧𝐿𝐿�𝑥𝑥� = 𝑖𝑖ℏ𝐿𝐿�𝑦𝑦, �𝐿𝐿�𝑦𝑦𝐿𝐿�𝑧𝑧� = 𝑖𝑖ℏ𝐿𝐿�𝑥𝑥. Отсюда 

следует, что невозможно одновременно точно измерить компоненты импульса. 

Рассмотрим величину 𝐿𝐿2 = 𝐿𝐿𝑥𝑥2 + 𝐿𝐿𝑦𝑦2 + 𝐿𝐿𝑧𝑧2  и 

покажем, что 𝐿𝐿2 – коммутирует с любой из 

проекций. Выберем состояние, когда 𝐿𝐿2 

коммутирует с какой-нибудь из проекций 

(обычно выбирается 𝐿𝐿𝑧𝑧), но тогда поскольку 

𝐿𝐿𝑧𝑧 не коммутирует с 𝐿𝐿𝑥𝑥 и 𝐿𝐿𝑦𝑦, это означает, что 

нет общих волновых функций у �𝐿𝐿�2𝐿𝐿�𝑦𝑦� и 

�𝐿𝐿�2𝐿𝐿�𝑥𝑥�. Для �𝐿𝐿�2𝐿𝐿�𝑧𝑧� существуют общие 

волновые функции �𝐿𝐿�2𝐿𝐿�𝑧𝑧� = 0. Данная 

ситуация называется в квантовой механике – 

пространственным квантованием. 

Рисунок 12. Координаты 
точки в сферической 
системе координат. 

Рисунок 13. Положение в 
пространстве вектора момента 
количества движения L. 
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Пространственное квантование. 
Изобразим классическим образом на картинке данную ситуацию. В ней будет 

определён 𝐿𝐿2, соответственно и длина вектора, и его проекция на ось z, но само его 

положение в пространстве не определено, т.к. неизвестны проекции на оси x и y. 

Решим уравнение на собственные функции и собственные значения 𝐿𝐿�2𝑌𝑌(𝜃𝜃,𝜑𝜑) =

𝐿𝐿2𝑌𝑌(𝜃𝜃,𝜑𝜑), где 𝐿𝐿2 =  ℏ2𝑙𝑙(𝑙𝑙 + 1), 𝑙𝑙 = 0,1,2, …, 𝑙𝑙 – орбитальное квантовое число. Покажем, 

что собственные значения 𝐿𝐿2, определяются данным выражением. 

Для этого рассмотрим среднее значение 𝐿𝐿2. Поскольку работаем в состоянии, в котором 

�𝐿𝐿�2𝐿𝐿�𝑧𝑧� имеют общие волновые функции, то 𝐿𝐿2 и 𝐿𝐿𝑧𝑧 имеют определённые точные 

значения. Поэтому ⟨𝐿𝐿2⟩ = 𝐿𝐿2 = ⟨𝐿𝐿𝑥𝑥2 ⟩ + �𝐿𝐿𝑦𝑦2 � + ⟨𝐿𝐿𝑧𝑧2⟩. В силу симметрии ⟨𝐿𝐿2⟩ = 3⟨𝐿𝐿𝑧𝑧2⟩. 

Найдём ⟨𝐿𝐿𝑧𝑧2⟩ =
2ℏ� 𝑚𝑚2𝑙𝑙

𝑚𝑚=1
2𝑙𝑙+1

= 2ℏ𝑙𝑙(𝑙𝑙+1)(2𝑙𝑙+1)
6(2𝑙𝑙+1)

= ℏ𝑙𝑙(𝑙𝑙+1)
3

. Тогда ⟨𝐿𝐿2⟩ = 𝐿𝐿2 = 3⟨𝐿𝐿𝑧𝑧2⟩ = ℏ2𝑙𝑙(𝑙𝑙 + 1). 

Данное значение можно было получить и из выражения 𝐿𝐿�2𝑌𝑌(𝜃𝜃,𝜑𝜑) = 𝐿𝐿2𝑌𝑌(𝜃𝜃,𝜑𝜑), где 

𝑌𝑌(𝜃𝜃,𝜑𝜑) – сферические функции. 

Сферические функции. 
Сферические функции представляют собой 

произведение присоединённого полинома 

Лежандра (𝑃𝑃𝑙𝑙
(𝑚𝑚)(cos𝜃𝜃)) на экспоненциальную 

функцию, которая зависит от угла 𝜑𝜑: 𝑌𝑌(𝜃𝜃,𝜑𝜑) =

𝑃𝑃𝑙𝑙
(𝑚𝑚)(cos𝜃𝜃)𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚. Рекурсивные формулы для 

вычисления данных функций – формулы 

Родригеса. Сначала получим полином 

Лежандра 𝑃𝑃𝑙𝑙(cos𝜃𝜃) = 1
2𝑙𝑙𝑙𝑙!

𝑑𝑑𝑙𝑙�cos2 𝜃𝜃−1�𝑙𝑙

𝑑𝑑(cos𝜃𝜃)𝑙𝑙
, а затем 

присоединённый полином Лежандра 

𝑃𝑃𝑙𝑙𝑚𝑚(cos 𝜃𝜃) = sin𝑚𝑚 𝜃𝜃 𝑑𝑑𝑚𝑚

𝑑𝑑(cos𝜃𝜃)𝑚𝑚
𝑃𝑃𝑙𝑙(cos𝜃𝜃). 

Подставив 𝑙𝑙 = 0 и 𝑚𝑚 = 0, получим, что 𝑌𝑌00 = 1
√4𝜋𝜋

. 

Данное значения получается из соотношения для нормировки сферических функций 

∫ 𝑌𝑌𝑙𝑙′𝑚𝑚′
∗ 𝑌𝑌𝑙𝑙𝑙𝑙 𝑑𝑑𝛺𝛺 = 1, где 𝑑𝑑𝛺𝛺 – элемент телесного угла.  𝑑𝑑𝛺𝛺 = 𝑟𝑟2𝑆𝑆𝑆𝑆𝑆𝑆𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃

𝑟𝑟
= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃. 

Рисунок 14. Телесный угол 𝑑𝑑𝐴𝐴= 𝑑𝑑𝛺𝛺 
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Если Y пропорционален константе, тогда ∫ 𝑁𝑁002 𝑑𝑑𝛺𝛺 = 1. Данный интеграл распадается 

на 2: 𝑁𝑁002 ∫ 𝑑𝑑𝜑𝜑2𝜋𝜋
0 ∫ sin𝜃𝜃 𝑑𝑑𝜃𝜃𝛱𝛱

0 = 𝑁𝑁002 4𝜋𝜋, т.е 𝑁𝑁002 = 1
√4𝜋𝜋

. 

В квантовой механике момент импульса не имеет определённого направления, а точно 

могут быть определены в данном состоянии, которое характеризуется квантовыми 

числами l и m, только квадрат момента импульса и его проекция на ось z и не 

определены одновременно значения 𝐿𝐿𝑥𝑥 и 𝐿𝐿𝑦𝑦. 

Квантование атома водорода с угловой частью. 
Уравнение Шредингера и квантование атома водорода с угловой частью, не считая, что 

решение является сферически симметричной функцией. Запишем Гамильтониан в 

сферических координатах: 𝐻𝐻� = − ℏ2

2𝑚𝑚
𝛻𝛻2 + 𝑉𝑉(𝑟𝑟), где Лапласиан записывается в виде 

𝛻𝛻2 = 1
𝑟𝑟
𝜕𝜕2

𝜕𝜕𝜕𝜕
𝑟𝑟 + 𝐿𝐿�2

2𝑚𝑚𝑟𝑟2
= 1

𝑟𝑟
𝜕𝜕2

𝜕𝜕𝜕𝜕
𝑟𝑟 + 1

𝑟𝑟2
� 1
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 1

𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃
𝜕𝜕2

𝜕𝜕𝜑𝜑2
� – выражение в сферических 

координатах, где 𝛥𝛥𝜃𝜃,𝜑𝜑 = � 1
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 1

𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃
𝜕𝜕2

𝜕𝜕𝜑𝜑2
− ℏ2

2𝑚𝑚
�огда − ℏ2

2𝑚𝑚
1
𝑟𝑟2
𝛥𝛥𝜃𝜃,𝜑𝜑 = 𝐿𝐿�2

2𝑚𝑚𝑟𝑟2
⇒ 

выражение в сферических координатах для 𝐿𝐿�2 = −ℏ2𝛥𝛥𝜃𝜃,𝜑𝜑 – уравнение на собственные 

функции и собственные значения. Преобразуем уравнение, используя свойство того, 

что существует радиальная и угловая часть, поэтому можно искать решения методом 

разделения переменных, считая, что волновая функция равна 𝛹𝛹(𝑟𝑟,𝜃𝜃,𝜑𝜑) = 𝑅𝑅(𝑟𝑟)𝑌𝑌(𝜃𝜃,𝜑𝜑). 

Заметим, что �𝐻𝐻�𝐿𝐿�2� = 0, также �𝐻𝐻�𝐿𝐿�𝑧𝑧� = 0 и �𝐻𝐻�𝐻𝐻�� = 0. Формула, дающая производную 

среднего значения измеряемой величины A: 𝑑𝑑
𝑑𝑑𝑡𝑡
⟨𝐴𝐴⟩ = 𝑖𝑖

ℏ
��𝐻𝐻�𝐴̂𝐴��. Если �𝐻𝐻�𝐴̂𝐴� = 0, то A = 

const, и тогда можно выбрать систему волновых функций общую для операторов 𝐿𝐿�2, 𝐿𝐿� и 

𝐻𝐻�. Тогда интегралами движения будут являться энергия, 𝐿𝐿2 (или модуль L) и проекция 

L на ось z. 

Подставим 𝛹𝛹 в выражение для 𝐻𝐻�, тогда �− ℏ2

2𝑚𝑚𝑟𝑟
𝜕𝜕2

𝜕𝜕𝑟𝑟2
𝑟𝑟 − ℏ2𝛥𝛥𝜃𝜃𝜃𝜃

2𝑚𝑚𝑟𝑟2
+ 𝑉𝑉(𝑟𝑟)�𝛹𝛹 = 𝐸𝐸𝐸𝐸. Умножим 

выражение на −2𝑚𝑚𝑟𝑟2

ℏ2𝑅𝑅𝑅𝑅
: 
𝑟𝑟 𝜕𝜕

2

𝜕𝜕𝑟𝑟2
𝑟𝑟𝑟𝑟(𝑟𝑟)

𝑅𝑅(𝑟𝑟)
+ 2𝑚𝑚𝑟𝑟2

ℏ2
(𝐸𝐸 − 𝑉𝑉) = − 𝛥𝛥𝜃𝜃𝜃𝜃𝑌𝑌

𝑌𝑌(𝜃𝜃,𝜑𝜑)
= 𝜆𝜆, т.к. уравнение разбито на 

2 части, которые зависят от разных переменных и должны совпадать при произвольных 

значениях r и 𝛥𝛥𝜃𝜃𝜃𝜃, то это возможно только тогда, когда выражение равно некоторой 

константе.  

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

43 
 
 

 

Угловая часть. 

Из предыдущего выражения получаем уравнение для угловой части: −ℏ2𝛥𝛥𝜃𝜃𝜃𝜃𝑌𝑌 =

𝜆𝜆ℏ2𝑌𝑌(𝜃𝜃,𝜑𝜑). Таким образом были получены сферические функции 𝐿𝐿�2𝑌𝑌(𝜃𝜃,𝜑𝜑) = ℏ2𝑙𝑙(𝑙𝑙 +

1)𝑌𝑌(𝜃𝜃,𝜑𝜑), и значение 𝜆𝜆 уже определено 𝜆𝜆 = 𝑙𝑙(𝑙𝑙 + 1). А собственные функции являются 

сферическими, зависят от угла 𝜑𝜑 и являются собственными функциями 𝐿𝐿�𝑧𝑧. Поэтому 

возможно записать 𝐿𝐿�𝑧𝑧𝑌𝑌(𝜃𝜃,𝜑𝜑) = ℏ𝑚𝑚𝑙𝑙𝑌𝑌(𝜃𝜃,𝜑𝜑), где 𝑚𝑚𝑙𝑙 – магнитное квантовое орбитальное 

число. 𝑌𝑌(𝜃𝜃,𝜑𝜑) может быть представлена в виде полинома 𝑌𝑌(𝜃𝜃,𝜑𝜑) = 𝑃𝑃𝑙𝑙𝑙𝑙(cos𝜃𝜃)𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚. 

Таким образом были получены более конкретные сферические функции в виде 

зависимости от углов 𝜃𝜃 и 𝜑𝜑. С учётом нормировки сферических функций на телесный 

угол, можно получить следующее выражение для нормировочного коэффициента 

𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑) = (−1)𝑚𝑚 �(2𝑙𝑙+1)
4𝜋𝜋

(𝑙𝑙−𝑚𝑚)!
(𝑙𝑙+𝑚𝑚)!

�
1
2 𝑃𝑃𝑙𝑙𝑚𝑚(cos 𝜃𝜃)𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚,𝑚𝑚 ≥ 0. 

Удобно изображать сферические функции в полярных координатах.  

Радиальная часть. 
Радиальную часть можно записать в виде 
−ℏ2

2𝑚𝑚𝑟𝑟
𝜕𝜕2

𝜕𝜕𝑟𝑟2
(𝑟𝑟𝑅𝑅(𝑟𝑟)) + ℏ2𝑙𝑙(𝑙𝑙+1)

2𝑚𝑚𝑟𝑟2
𝑅𝑅(𝑟𝑟) + 𝑉𝑉(𝑟𝑟)𝑅𝑅(𝑟𝑟) = 𝐸𝐸𝐸𝐸(𝑟𝑟), 

𝑢𝑢(𝑟𝑟) = 𝑟𝑟𝑟𝑟(𝑟𝑟). Тогда −ℏ
2

2𝑚𝑚
𝜕𝜕2𝑢𝑢(𝑟𝑟)
𝜕𝜕𝑟𝑟2

+ 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟)𝑢𝑢(𝑟𝑟) =

𝐸𝐸𝐸𝐸(𝑟𝑟), где 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) = −𝑍𝑍𝑒𝑒2

𝑟𝑟
+ ℏ2𝑙𝑙(𝑙𝑙+1)

2𝑚𝑚𝑟𝑟2
, где ℏ

2𝑙𝑙(𝑙𝑙+1)
2𝑚𝑚𝑟𝑟2

 – 

добавка возникающая при учёте угловой части 

Лапласиана, и она определяется моментом 

импульса. Поэтому было получено радиальное 

уравнение в виде одномерного уравнения 

Шредингера, только вместо потенциальной 

энергии, необходимо брать эффективную энергию, которая зависит как от 

кулоновского потенциала, так и от центробежного потенциала. Решением данного 

уравнения является полином Лягерра 𝑅𝑅𝑛𝑛𝑛𝑛(𝑟𝑟) = 𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟𝑙𝑙𝑒𝑒
− 𝑧𝑧𝑧𝑧
𝑛𝑛𝑎𝑎0𝐿𝐿𝑛𝑛𝑟𝑟−𝑙𝑙−1

2𝑙𝑙+1 (2𝑍𝑍𝛤𝛤
𝑛𝑛𝑎𝑎0

), где 𝑛𝑛 = 𝑛𝑛𝑟𝑟 + 𝑙𝑙 +

1, при чём степень полинома определяется значением радиального квантового числа. 

Рисунок 15. Зависимость 
эффективной энергии от 
величины r. 
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𝐸𝐸 = − 𝑧𝑧2𝑅𝑅𝑅𝑅
(𝑛𝑛𝛤𝛤+𝑙𝑙+1)2

. Общий вид радиальной волновой функции 𝑅𝑅𝑛𝑛𝑛𝑛(𝑟𝑟) =

�� 2𝑍𝑍
𝑛𝑛𝑎𝑎0

�
3 (𝑛𝑛𝑟𝑟)!
2𝑛𝑛[(𝑛𝑛+𝑙𝑙)!]3

�
1
2
𝑒𝑒−

𝜌𝜌
2𝜌𝜌𝑙𝑙𝐿𝐿𝑛𝑛𝑟𝑟−𝑙𝑙−1

2𝑙𝑙+1 (𝜌𝜌), где 𝜌𝜌 ≡ � 2𝑍𝑍
𝑎𝑎0𝑛𝑛

� 𝑟𝑟, Z – заряд ядра.  

Найдём вероятность нахождения частицы в определённом объёме 𝑑𝑑𝑑𝑑(𝑟𝑟)𝑑𝑑𝑟𝑟 = |𝛹𝛹|2𝑑𝑑𝑟𝑟3, 

где 𝑑𝑑𝑟𝑟3 = 𝑟𝑟2𝑑𝑑𝑑𝑑 sin𝜃𝜃 𝑑𝑑𝜑𝜑 𝑑𝑑𝑑𝑑. Для получения выражения для радиальной плотности 

вероятности, т.е. зависящей от расстояния до ядра, необходимо проинтегрировать по 

углам 𝜃𝜃 и 𝜑𝜑. Тогда получим условие нормировки∫ 𝑅𝑅2(𝑟𝑟)𝑟𝑟2 𝑑𝑑𝑟𝑟∞
0 = 1, где 𝑅𝑅2(𝑟𝑟)𝑟𝑟2 =

𝑃𝑃(𝑟𝑟) – плотность вероятности. 

Найдём среднее значение ⟨𝑟𝑟⟩ = ∫ 𝑟𝑟𝑃𝑃𝑛𝑛𝑛𝑛(𝑟𝑟)𝑑𝑑𝑟𝑟∞
0 , где 𝑃𝑃𝑛𝑛𝑛𝑛(𝑟𝑟)𝑑𝑑𝑟𝑟 = 𝑅𝑅𝑛𝑛𝑛𝑛∗ (𝑟𝑟)𝑅𝑅𝑛𝑛𝑛𝑛(𝛤𝛤)𝑟𝑟2𝑑𝑑𝑑𝑑 – 

радиальная плотность вероятности. Также ⟨𝑟𝑟⟩ = 𝑛𝑛2𝑎𝑎0
𝑍𝑍
�1 + 1

2
�1 − 𝑙𝑙(𝑙𝑙+1)

𝑛𝑛2
��. 

Наивероятнейшее значение 𝑑𝑑
𝑑𝑑𝑟𝑟
𝑃𝑃𝑛𝑛𝑛𝑛(𝑟𝑟) = 0 ⇒ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚. 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑟𝑟𝐵𝐵 = 𝑛𝑛2𝑎𝑎0

𝑍𝑍
. 

Также состояния с максимальным 𝑙𝑙 = 𝑛𝑛 − 1 для 𝑛𝑛 >> 1 соответствуют Боровским 

орбитам. 

Состояния с максимальным моментом количества движения соответствуют состояниям 

наиболее близким к классическим состояниям. Покажем это, учитывая, что угол, 

который составляет момент импульса с осью z, будет уменьшаться при увеличении 𝑙𝑙: 

cos 𝜃𝜃 = 𝑚𝑚
�𝑙𝑙(𝑙𝑙+1)

. Максимальное значение 𝑚𝑚 = 𝑙𝑙 − 1, тогда cos𝜃𝜃 = 1, а 𝜃𝜃 → 0. 

Вычислим наивероятнейшее значение для основного состояния. Для него 𝑅𝑅(𝑟𝑟) =

𝐴𝐴𝑒𝑒−
𝑟𝑟
𝑎𝑎0. Тогда соответствующая радиальная плотность определяется как 𝑃𝑃(𝑟𝑟) = 𝑅𝑅2𝑟𝑟2 =

𝐴𝐴2𝑟𝑟2𝑒𝑒−
2𝑟𝑟
𝑎𝑎0. Возьмём производную и приравняем её нулю. Получим, что 𝑟𝑟max = 𝑎𝑎0. 

Найдём среднее значение для основного состояния. ⟨𝑟𝑟⟩ =
𝐴𝐴2� 𝑟𝑟3𝑒𝑒

−2𝑟𝑟𝑎𝑎0 𝑑𝑑𝑟𝑟

∞

0

𝐴𝐴� 𝑟𝑟2𝑒𝑒
−2𝑟𝑟𝑎𝑎0 𝑑𝑑𝑟𝑟

∞

0

. 

∫ 𝑟𝑟𝑛𝑛𝑒𝑒−𝛼𝛼𝛼𝛼 𝑑𝑑𝑟𝑟∞
𝑐𝑐 = 𝑛𝑛!

𝛼𝛼𝑛𝑛+1
, где 𝛼𝛼 = 2

𝑎𝑎0
. Подставляя соответствующие значения, получим ⟨𝑟𝑟⟩ =

3
2
𝑎𝑎0 ≠ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚.  
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Таким образом возможно вычислять соответствующие значения интегралов для 

различных состояний, отличающихся квантовыми числами 𝑛𝑛 = 1,2,3, …; 𝑙𝑙 =

0,1,2, … ,𝑛𝑛 − 1; 𝑚𝑚 = 0, ±1, ±2, … , ±𝑙𝑙. 
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Лекция 8. Орбитальный, спиновой и полный моменты атомов. 

Связь орбитального и магнитного моментов.  
В классической механике с моментом импульса связан магнитный момент. Пусть по 

орбите движется электрон с моментом импульса 𝐿𝐿�⃗ = [𝑟𝑟𝑝⃗𝑝]. Этому движению 

соответствует некоторый ток, и этому току будет сопоставлен магнитный момент 𝜇⃗𝜇 =

𝐼𝐼𝑆𝑆, где 𝑆𝑆 = 𝑛𝑛�⃗ 𝑆𝑆. Получим соотношение между моментом количества движения и 

магнитным моментом, т.е. определим т.н. гиромагнитное соотношение, которое 

описывается отношением магнитного момента к орбитальному. 𝐼𝐼 = 𝑒𝑒𝑣𝑣
2𝜋𝜋𝜋𝜋

= 𝑒𝑒𝐿𝐿
2𝜋𝜋𝜋𝜋𝑟𝑟2

, где 𝐿𝐿 =

𝑚𝑚𝑚𝑚𝑚𝑚, 𝑆𝑆 = 𝜋𝜋𝑟𝑟2. Тогда 𝜇⃗𝜇 = − 𝑒𝑒𝐿𝐿�⃗

2𝑚𝑚
= − 𝑒𝑒ℏ

2𝑚𝑚
𝐿𝐿�⃗

ℏ
, где 𝑒𝑒ℏ

2𝑚𝑚
= 𝜇𝜇𝐵𝐵 – магнитон Бора. Также данное 

выражение можно переписать в виде 𝜇𝜇𝑙𝑙 = −𝜇𝜇𝐵𝐵�𝑙𝑙(𝑙𝑙 + 1), и для проекции на ось z: 𝜇𝜇𝑙𝑙𝑙𝑙 =

−𝜇𝜇𝐵𝐵𝑚𝑚𝑙𝑙. Отсюда понятно название магнитного квантового числа: 𝑚𝑚𝑙𝑙 определяет 

смещение энергетических уровней, которые будет испытывать атом водорода, если его 

поместить в магнитное поле. Известно, что если магнитный момент поместить в 

магнитное поле, то изменение энергии определяется следующей формулой: 𝛥𝛥𝛥𝛥 =

−�𝜇𝜇𝐵𝐵�⃗ �. Таким образом, если 𝐵𝐵�⃗ = 𝑒𝑒𝑧𝑧𝐵𝐵, то тогда соответствующее 𝛥𝛥𝛥𝛥 = +𝜇𝜇𝐵𝐵𝑚𝑚𝑒𝑒𝐵𝐵, т.е. 

расщепление в магнитном поле будет определяться магнитным квантовым числом. 

Если поле неоднородно, то на магнитный момент будет действовать сила, 

определяющаяся соотношением: 𝐹𝐹 = −𝛻𝛻𝛻𝛻 = 𝛻𝛻�𝜇⃗𝜇𝐵𝐵�⃗ �. 

Опыт Штерна-Герлаха.  
В нём использовался магнит, создающий неоднородное магнитное поле. В результате, 

если атомы проходят через магнит, то будет отклонение пучков, в соответствии с 

написанными формулами. Следует ожидать нечётного числа пучков, если 𝑙𝑙 отлична от 

нуля. Если 𝑙𝑙 = 0, то отклонения не следовало бы ожидать, однако опыт показал, что 

когда атом, например, водород, находится в основном состоянии, т.е. 𝑙𝑙 = 0, пучок 

испытывает отклонение и число таких пучков равно двум. Такую ситуацию можно 

объяснить тем, что электрон, который единственный в атоме водорода, и он находится 

в s состоянии, имеет, присущий ему собственный механический момент, и связанный с 

ним магнитный момент. Собственный механический момент называется спином, а 

магнитный момент может быть записан по аналогии с орбитальным магнитным 

моментом. Если пучков – два, и собственный механический момент обозначить s, тогда 
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2𝑆𝑆 + 1 = 2 ⇒ 𝑆𝑆 = 1
2
. Таким образом для собственного момента 𝑆𝑆2 = ℏ2𝑆𝑆(𝑠𝑠 + 1) и длина 

𝑆𝑆 = √𝑆𝑆2. Тогда получим, что 𝑆𝑆 = ℏ�1
2
3
2

= ℏ�3
4
. Максимальная проекция на ось z 

соответствует числу S, и тогда 𝑆𝑆𝑧𝑧 = ±ℏ𝑚𝑚𝑠𝑠 = ± 1
2
ℏ, т.к. 𝑚𝑚𝑠𝑠 = ± 1

2
. Магнитный момент по 

оси z будет определяться теми же формулами. Также надо учесть следующее: из 

опытов следует, что гиромагнитное отношение равно удвоенному значению: 𝜇𝜇𝑠𝑠𝑠𝑠
𝑠𝑠𝑧𝑧

= 𝑒𝑒
𝑚𝑚

, 

т.е. спин обладает удвоенным магнетизмом. Это можно учесть, подставив во все 

формулы, где стояли орбитальные моменты, соотношение g-фактора 𝑔𝑔 = 𝜇𝜇∕𝐿𝐿
𝑒𝑒∕2𝑚𝑚

, 𝑔𝑔𝑙𝑙 = 1. 

Поэтому формула для магнитного момента спина будет выглядеть, как 𝜇𝜇𝑠𝑠𝑧𝑧 = − 𝑔𝑔𝑠𝑠𝜇𝜇𝐵𝐵𝑚𝑚𝑠𝑠, 

где  𝑔𝑔𝑠𝑠 = 2𝑔𝑔𝑙𝑙. Поэтому 𝜇𝜇𝑠𝑠𝑠𝑠 = ∓ 𝜇𝜇𝐵𝐵.  

Спиновое состояние удобно записывать в виде вектора. Тогда для положительного 

спина 𝜒𝜒+ ≡ �1
0�, а для отрицательного 𝜒𝜒− ≡ �0

1�. Заметим, что ⟨𝜒𝜒+|𝜒𝜒+⟩ = 1, а ⟨𝜒𝜒+|𝜒𝜒−⟩ =

0, т.е. они ортогональны. Таким образом данные состояния могут быть описаны такими 

ортонормированными базисными векторами состояния спина.  

Для того, чтобы описать состояния 𝑆̂𝑆𝑥𝑥, 𝑆̂𝑆𝑦𝑦, 𝑆̂𝑆𝑧𝑧 введём матрицы: 𝑆̂𝑆𝑥𝑥 = ℏ
2
�0 1

1 0�, 𝑆̂𝑆𝑦𝑦 =

ℏ
2
�0 −𝑖𝑖
𝑖𝑖 0 �, 𝑆̂𝑆𝑧𝑧 = ℏ

2
�1 0

0 −1�. Проверим, что данные матрицы правильно описывают 

спиновое состояние. Для этого решим уравнение на собственные значения: 𝑆̂𝑆𝑧𝑧𝜒𝜒+ =
ℏ
2
𝜒𝜒+. Тогда ℏ

2
�1 0

0 −1� �
1
0� = ℏ

2
�1

0� = ℏ
2
𝜒𝜒+. Таким образом, вектор 𝜒𝜒+ является 

собственным вектором оператора 𝑆̂𝑆𝑧𝑧, отвечающему собственному значению ℏ
2
. Таким 

же образом доказывается: ℏ
2
�1 0

0 −1� �
0
1� = −ℏ

2
�0

1� = −ℏ
2
𝜒𝜒−. 

Проверим, описывает ли матрица проведённый эксперимент, т.е. то, что вероятность 

наблюдать положительное значение по оси x, если было приготовлено состояние 

спином вверх, равна 1
2
, как и вероятность наблюдать отрицательное значение по оси x. 

Общий вид спинового состояния с помощью базисных векторов может быть записан 

следующим образом: 𝜒𝜒 = 𝑎𝑎 �1
0� + 𝑏𝑏 �0

1� – разложение произвольного состояния по 

базисным. Физический смысл коэффициентов – их квадраты равны вероятности 
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наблюдать данные состояния. Докажем это по формулам. �𝜒𝜒+�𝑆̂𝑆𝑥𝑥�𝜒𝜒+� =

�1
0�

𝑇𝑇
�0 1

1 0� �
1
0� = 0. Таким образом мы доказали, что равновероятны проекции в 

положительном и отрицательном направлении по оси x. 

Получим общее соотношение для произвольной оси. Найдём 

вероятность наблюдать положительную проекцию на эту ось. 

⟨𝑆𝑆𝑧𝑧⟩ = ℏ
2
, тогда ⟨𝑆𝑆𝑧𝑧′⟩ = ⟨𝑆𝑆𝑧𝑧⟩ cos 𝜃𝜃. Общие значения по оси z’ можно 

записать как �𝑎𝑎
2 ℏ
2
− ℏ

2
𝑏𝑏2 = ℏ

2
cos𝜃𝜃

𝑎𝑎2 + 𝑏𝑏2 = 1
, с учётом условия нормировки. 

Сложив равенства, получим, что 𝑃𝑃(↑𝑧𝑧) = 𝑎𝑎2 = cos2 𝜃𝜃
2
. 

Матрица Пауля: 𝑆̂𝑆𝑥𝑥 = ℏ
2
𝜎𝜎�𝑥𝑥. 

Проверим, что 𝑆̂𝑆𝑧𝑧𝜒𝜒+ =  ℏ2(𝑠𝑠 + 1)𝜒𝜒+. Для операторов спиновых 

существуют те же самые коммутационные соотношения, что и 

для операторов момента импульса: �𝑆̂𝑆2𝑆𝑆𝑖𝑖� = 0, при 𝑖𝑖 = 0,1,2, … Также �𝑆̂𝑆𝑥𝑥𝑆̂𝑆𝑦𝑦� = 𝑖𝑖ℏ𝑠̂𝑠𝑧𝑧. 

Спиновой момент атома. 
Дополним рассмотрение атома водорода спиновой степенью свободы, поэтому 

соответствующую волновую функцию надо написать в виде произведения радиальной 

функции, на сферические функции и на спиновую часть. Возьмём произвольный 

случай: 2 электрона, которые характеризуются орбитальным моментом 𝑙𝑙1 и проекцией 

𝑚𝑚1. Таким образом состояние первого электрона описывается волновой функцией 

|𝑙𝑙1 𝑚𝑚1⟩ и таких состояний 2𝑙𝑙1 + 1. Для второго электрона: |𝑙𝑙2 𝑚𝑚2⟩ и состояний 2𝑙𝑙2 + 1. 

Вычислим 𝐿𝐿�⃗� =  𝑙𝑙1��⃗
� +  𝑙𝑙2���⃗

�. Просуммируем проекции: 𝐿𝐿�𝑧𝑧 = 𝐿𝐿�𝑧𝑧1 + 𝐿𝐿�𝑧𝑧2. Получим 

максимальную проекцию для данных электронов, тогда 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2, а 

следовательно, 𝐿𝐿 = 𝑙𝑙1 + 𝑙𝑙2. Затем 𝐿𝐿min = |𝑙𝑙1 − 𝑙𝑙2|. Для случая 𝑙𝑙1 = 1, а 𝑙𝑙2 = 2, получаем 

15 состояний. Тогда получаем 3 возможных значения 𝐿𝐿 = 1,2,3. Для каждого L 

существуют 2𝑙𝑙 + 1 состояний, отвечающих разным проекциям суммарного момента 

импульса. 

Рисунок 16. Поворот 
оси на произвольный 
угол 𝜃𝜃 
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Таким образом волновая функция может быть записана в виде 

𝛹𝛹𝑛𝑛𝑛𝑛𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠 ≡ |𝑛𝑛𝑛𝑛𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠⟩ = 𝑅𝑅𝑛𝑛𝑛𝑛(𝑟𝑟)𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜑𝜑)𝜒𝜒(𝑚𝑚𝑠𝑠). 

Атом водорода в магнитном поле. 
Поместим атом водорода в магнитное поле. При нахождении в нём, 

у атома будет наблюдаться расщепление линий, которые будут 

определяться дополнительным моментом импульса, т.к. суммарный 

момент импульса для одного электрона 𝐿𝐿 = 𝑙𝑙 ± 1
2
. Тогда уровни 

атома водорода могут быть изображены следующим образом. Но 

для наблюдения подобного расщепления необязательно включать 

магнитное поле, и физика данного расщепления объясняется 

следующим. Если войти в систему, связанную с электроном, то 

протон движется вокруг электрона и создаёт магнитное поле. Это магнитное поле 

взаимодействует с собственным магнитным моментом электрона, что приводит к 

изменения энергий. 

Получим некоторые формулы, которые в последующих лекциях будем использовать 

для описания энергетического расщепления, за счёт спин-орбитального 

взаимодействия. Рассмотри невозмущённый гамильтониан 𝐻𝐻�0𝜑𝜑𝑛𝑛
(0) = 𝐸𝐸𝑛𝑛

(0)𝜑𝜑𝑛𝑛
(0). Найдём 

добавки к этому гамильтониану: 𝐻𝐻� = 𝐻𝐻�0 + 𝜆𝜆𝐻𝐻�(1) + 𝜆𝜆2𝐻𝐻�(2) … Тогда 𝜑𝜑𝑛𝑛 = 𝜑𝜑𝑛𝑛
(0) + 𝜆𝜆𝜑𝜑𝑛𝑛

(1) +

𝜆𝜆2𝜑𝜑𝑛𝑛
(2) и 𝐸𝐸𝑛𝑛 = 𝐸𝐸𝑛𝑛

(0) + 𝜆𝜆𝐸𝐸𝑛𝑛
(1) + 𝜆𝜆2𝐸𝐸𝑛𝑛

(2). Подставив полученные выражения в исходную 

формулу, получим 𝐻𝐻�(1)𝜑𝜑𝑛𝑛
(0) + 𝐻𝐻�0𝜑𝜑𝑛𝑛

(1) = 𝐸𝐸𝑛𝑛
(0)𝜑𝜑𝑛𝑛

(1) + 𝐸𝐸𝑛𝑛
(1)𝜑𝜑𝑛𝑛

(0) . 𝜑𝜑𝑛𝑛
(1) = � 𝐶𝐶𝑚𝑚𝜑𝜑𝑚𝑚

(0)

𝑚𝑚
, 

следовательно, выражение можно переписать в виде �𝜑𝜑𝑛𝑛
(0)�𝐻𝐻�(1)�𝜑𝜑𝑛𝑛

(0)� + 𝐸𝐸𝑛𝑛
(0)𝐶𝐶𝑛𝑛 =

𝐶𝐶𝑛𝑛𝐸𝐸𝑛𝑛
(0) + 𝐸𝐸𝑛𝑛

(1). Переписываем ещё один раз и получаем 𝐸𝐸𝑛𝑛
(1) = 𝐻𝐻𝑛𝑛𝑛𝑛′ , где 𝐻𝐻𝑛𝑛𝑛𝑛′ =

�𝜑𝜑𝑛𝑛
(0)�𝐻𝐻�(1)�𝜑𝜑𝑛𝑛

(0)� = ∫ 𝜑𝜑𝑛𝑛
(0) ∗ 𝐻𝐻1𝜑𝜑𝑛𝑛

(0) 𝑑𝑑𝑉𝑉. Получим формулу для возмущения волновой 

функции из того же выражения в виде 𝜑𝜑𝑛𝑛 = � 𝐻𝐻𝑘𝑘𝑘𝑘
′

𝐸𝐸𝑛𝑛−𝐸𝐸𝑘𝑘
𝜑𝜑𝑘𝑘

𝑘𝑘≠𝑛𝑛
. 

  

Рисунок 17. 
Расщепление 
линий атома 
водорода в 
магнитном поле. 
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Лекция 9. Спин-орбитальное взаимодействие. Тонкая структура 

атома 
Рассмотрим задачу на метод возмущений, рассмотренный в предыдущей лекции. 

Рассчитаем релятивистские поправки к спектру атома водорода. Были получены 

следующие формулы: 𝐻𝐻�0𝜑𝜑𝑛𝑛 = 𝐸𝐸𝑛𝑛𝜑𝜑𝑛𝑛. Идея метода возмущений очень проста. Пусть у 

нас есть невозмущённый гамильтониан и соответствующие волновые функции, и 

считаем, что задача на собственные значения невозмущённого гамильтониана решена. 

Т.е. имеет собственные волновые функции оператора и соответствующие собственные 

значения. В качестве примера была решена задача для атома водорода, где были 

получены соответствующие волновые функции для гамильтониана в нулевом 

приближении. Но использованные формулы – нерелятивистские, и теперь нужно 

получить некоторые изменённые формулы и добавить в этот гамильтониан 𝐻𝐻�0 некие 

добавки, которые будут учитывать релятивистские поправки. Эти поправки 2-ух типов. 

1-ая связана с тем, что энергия не связана с импульсом, как 𝐸𝐸 = 𝑝𝑝2

2ℏ𝑚𝑚
, а релятивистское 

соотношение более сложное. А 2-ое – это то, что в атоме водорода существует 

некоторое внутреннее магнитное поле, которое обусловлено с точки зрения электрона, 

движением ядра вокруг него, создавая некий круговой ток. Этот круговой ток создаёт 

магнитное поле, и это магнитное поле приводит к изменению энергии электрона на 

небольшие величины, которые мы оценим с помощью теории возмущений. 

Вычисление поправки при учёте релятивистских эффектов. 
Для начала запишем формулу (𝐻𝐻0 + 𝐻𝐻′)(𝜑𝜑𝑛𝑛 + 𝛿𝛿𝜑𝜑𝑛𝑛) = (𝐸𝐸𝑛𝑛 + 𝛿𝛿𝐸𝐸𝑛𝑛)(𝜑𝜑𝑛𝑛 + 𝛿𝛿𝜑𝜑𝑛𝑛). Тогда 

𝛿𝛿𝐸𝐸𝑛𝑛 = ⟨𝛹𝛹|𝐻𝐻′|𝛹𝛹⟩ = 𝐻𝐻𝑛𝑛𝑛𝑛′ . Соответствующие поправки для стационарного случая 

невырожденных уровней 𝛿𝛿𝜑𝜑𝑛𝑛 = � 𝐻𝐻𝑘𝑘𝑘𝑘
′

𝐸𝐸𝑛𝑛−𝐸𝐸𝑘𝑘
𝜑𝜑𝑘𝑘

𝑘𝑘≠𝑛𝑛
. Т.е. к добавке к волновой функции 

подмешиваются волновые функции основного (невозмущённого) состояния, не равные 

значению n.  

Используем данную идеологию, для простейшей системы – квантовой ямы. Рассчитаем 

изменение энергии основного состояния. 𝜑𝜑1 = �2
𝑎𝑎

cos 𝑘𝑘𝑘𝑘, 𝑘𝑘 = 𝜋𝜋
𝑎𝑎
. Тогда 𝛿𝛿𝐸𝐸𝑛𝑛 =

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

51 
 
 

 

2
𝑎𝑎
𝑣𝑣0 ∫ cos2 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =

𝑎𝑎
4
−𝑎𝑎4

2𝑣𝑣0
𝑎𝑎
� 1+cos2𝑘𝑘𝑘𝑘

2
𝑑𝑑𝑥𝑥

𝑎𝑎
4

−𝑞𝑞4

= 2𝑣𝑣0
2𝑎𝑎
�𝑞𝑞
2

+ 𝑎𝑎
𝜋𝜋
� = 𝑣𝑣0

2
+ 𝑣𝑣0

𝜋𝜋
. Тогда энергия первого 

состояния в приближении первого порядка в теории возмущений 𝐸𝐸1
(1) = 𝜋𝜋2ℏ2

2𝑚𝑚𝑎𝑎2
+ 𝑣𝑣0

2
+ 𝑣𝑣0

𝜋𝜋
. 

Теперь воспользуемся теорией возмущений для вычисления поправки при учёте 

релятивистского соотношения между энергией и импульсом. Тогда для того, чтобы 

вычислить добавку запишем кинетическую энергию 𝑇𝑇 = �𝑐𝑐2𝑝𝑝2 + 𝑚𝑚2𝑐𝑐4 − 𝑚𝑚𝑐𝑐2 =

𝑚𝑚𝑐𝑐2 ��1 + � 𝑝𝑝
𝑚𝑚𝑚𝑚
�
2

−1� = 𝑚𝑚𝑐𝑐2 �1 + 1
2
� 𝑝𝑝
𝑚𝑚𝑚𝑚
�
2
− 1

8
� 𝑝𝑝
𝑚𝑚𝑚𝑚
�
4
− 1� = 𝑝𝑝2

2𝑚𝑚
− 𝑇𝑇02

2𝑚𝑚𝑐𝑐2
, где 𝑇𝑇0 = 𝑝𝑝2

2𝑚𝑚
. 

Таким образом наша задача с водится к оценке этого члена, т.к. если этот член 

маленький по сравнению с 𝑇𝑇0, то тогда мы можем с помощью теории возмущений 

рассчитать возмущающий потенциал ( 𝑇𝑇02

2𝑚𝑚𝑐𝑐2
) для кинетической энергии. Вычислим 

величину этой поправки. 𝑇𝑇0 – кинетическая энергия, равна половине полной энергии, и 

т.к. полная энергия порядка Ридберга для атома водорода, то 𝛿𝛿𝑇𝑇 ≈ 𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅
2𝑚𝑚𝑐𝑐2

=

𝑅𝑅𝑅𝑅 𝑚𝑚𝑒𝑒4

2ℏ22𝑚𝑚𝑐𝑐2
, где 𝑒𝑒4

4ℏ2𝑐𝑐2
≈ 𝛼𝛼2. Тогда получается, что наша добавка составляет порядка 10-5 

от энергии 𝑇𝑇0, что даёт основание использовать теорию возмущения первого порядка.  

Сделаем оценку для другой релятивистской поправки, которая обусловлена 

взаимодействием магнитного момента спина и орбитального магнитного момента. 

Сами моменты импульса спиновый и орбитальный не взаимодействуют друг с другом, 

но через магнитные моменты они могут взаимодействовать. Оценим величину 

магнитного поля, возникающего из-за движения протона относительно электрона (с 

точки зрения электрона). 𝑑𝑑𝑑𝑑 = 𝜇𝜇0
4𝜋𝜋

𝐼𝐼�𝑑𝑑𝑙𝑙⋅𝑟𝑟�
𝑟𝑟3

. Тогда для всего контура 𝐵𝐵 = 𝜇𝜇0
4𝜋𝜋

2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝑟𝑟3

. Формула 

для тока была получена при вычислении магнетона Бора 𝐼𝐼 = 𝑒𝑒𝑣𝑣
2𝜋𝜋𝜋𝜋

= 𝑒𝑒ℏ
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

= 𝜇𝜇𝐵𝐵
𝜋𝜋𝑟𝑟2

, и тогда 

𝐵𝐵 = 𝜇𝜇0𝜇𝜇𝐵𝐵
2𝜋𝜋𝑟𝑟3

≈ 2𝜇𝜇𝐵𝐵
𝑟𝑟3

≈ 2Тл. Магнитный момент спина электрона 𝜇𝜇𝑠𝑠𝑧𝑧 = 𝑔𝑔𝑠𝑠𝜇𝜇𝐵𝐵𝑚𝑚𝑠𝑠 = ±𝜇𝜇𝐵𝐵. 

Тогда изменение энергии равно |𝑉𝑉𝐿𝐿𝐿𝐿| = 𝜇𝜇𝐵𝐵 ≈ 𝐵𝐵10−4эВ. Порядок поправки совпадает с 

тем порядком, который был получен для первой оценки, когда было рассчитано 

изменение кинетической энергии за счёт релятивистского выражения энергии. Важно 

понимать, что изменение проекции орбитального момента и соответствующий вклад в 

энергию будет определяться значением магнетона Бора. 
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Теперь с помощью полученный вкладов в гамильтониан посчитаем соответствующие 

изменения энергии по теории возмущений. 𝐻𝐻�0 = 𝑇𝑇�0 −
𝑧𝑧𝑒𝑒2

𝑟𝑟
, считаем, что в общем случае 

имеем водородоподобный атом с зарядом 𝑧𝑧𝑒𝑒2. Тогда кинетическая энергия в нулевом 

приближении 𝑇𝑇�0 = 𝐻𝐻�0 −
𝑧𝑧𝑒𝑒2

𝑟𝑟
. Таким образом 𝐻𝐻𝑛𝑛𝑛𝑛′ = �𝑛𝑛𝑛𝑛 � 𝑇𝑇�02

2𝑚𝑚𝑐𝑐2
� 𝑛𝑛𝑛𝑛� = − 1

2𝑚𝑚𝑐𝑐2
�𝑛𝑛𝑛𝑛 �𝐻𝐻�0 −

𝑧𝑧𝑒𝑒2

𝑟𝑟
� 𝑛𝑛𝑛𝑛� = 1

2𝑚𝑚𝑐𝑐2
𝐸𝐸𝑛𝑛2 − 2𝐸𝐸𝑛𝑛𝑧𝑧𝑒𝑒2 �

1
𝑟𝑟
� + 𝑧𝑧2𝑒𝑒4 � 1

𝑟𝑟2
�. Подставив значения �1

𝑟𝑟
� = ∫ 𝑅𝑅𝑛𝑛𝑛𝑛2 𝑟𝑟 𝑑𝑑𝑟𝑟 = 𝑧𝑧

𝑛𝑛𝑎𝑎0
 и 

� 1
𝑟𝑟2
� = 𝑅𝑅𝑛𝑛𝑛𝑛2 𝑑𝑑𝑟𝑟 = 𝑧𝑧2

𝑛𝑛3𝑎𝑎0�𝑙𝑙+
1
2�

, получим добавку к кинетической энергии 𝛥𝛥𝐸𝐸𝑇𝑇 = 𝛼𝛼2𝑧𝑧2𝐸𝐸𝑛𝑛
𝑛𝑛

( 1
𝑙𝑙+12

−

3
4𝑛𝑛

). 

Вычисление поправки при учёте спин-орбитального взаимодействия. 
Рассмотрим электрон, находящийся в движущейся системе координат. На него 

действует электрическое поле 𝐸𝐸�⃗𝛱𝛱 = 1
4𝜋𝜋𝜀𝜀0

𝑧𝑧𝑒𝑒2𝑟𝑟
𝑟𝑟3

. Чтобы получить магнитное поле, 

используем соотношение 𝐵𝐵�⃗ = − 1
2𝑐𝑐2

�𝑣⃗𝑣𝐸𝐸𝛱𝛱�����⃗ � – с учётом добавки Томаса-Франкеля для 

неинерциальной системы отсчёта. Получим выражение для возмущающего 

гамильтониана: 𝐵𝐵�⃗ = − 𝑧𝑧𝑒𝑒2

2𝑐𝑐2𝑚𝑚4𝜋𝜋𝜀𝜀0

1
𝑟𝑟3

[𝑚𝑚𝑣⃗𝑣 ⋅ 𝑟𝑟] = 𝐴𝐴 1
𝑟𝑟3
𝐿𝐿�⃗ . Взаимодействие приводит к 

изменению энергии 𝛥𝛥𝛥𝛥 = −�𝐵𝐵�⃗ 𝜇𝜇𝑠𝑠���⃗ �, где 𝜇𝜇𝑠𝑠���⃗ = 𝑔𝑔𝑠𝑠𝜇𝜇𝐵𝐵
𝑠𝑠
ℏ
. Таким образом оказывается, что 

величина 𝛥𝛥𝛥𝛥 будет связана с оператором спин-орбитального взаимодействия 𝑉𝑉�𝑙𝑙𝑙𝑙 =

𝐴𝐴 1
𝑟𝑟3

(𝐿𝐿�⃗�𝑆̂𝑆) – был получен возмущающий гамильтониан. Данное выражение зависит от 

орбитального и спинового момента импульса, поэтому S уровни не будут подвержены 

спин-орбитальному взаимодействию и не будут расщепляться. Полный механический 

момент 𝐽𝐽 = 𝐿𝐿�⃗� + 𝑆̂𝑆, сложение происходит по правилу сложения векторов. Тогда 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑙𝑙 + 𝑠𝑠 = 𝑙𝑙 + 1
2
 и 𝑗𝑗𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑙𝑙 − 𝑠𝑠 = 𝑙𝑙 − 1

2
 – квантовые числа для полного орбитального и 

спинового момента. 
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Важное замечание. Когда не было спин-орбитального 

взаимодействия, то возможно было использовать 

волновые функции |𝑛𝑛𝑛𝑛𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠⟩. Но теперь, когда 

взаимодействуют 𝐿𝐿�⃗  и 𝑆𝑆 – ситуация меняется коренным 

образом. Теперь невозмущённый 𝐻𝐻�0 не коммутирует с 

проекцией спина и с проекцией орбитального момента 

на ось z. Для полного момента будет та же картинка 

пространственного квантования, которая была у 

моментов 𝐿𝐿�⃗  и S. Но 𝐿𝐿�⃗  и 𝑆𝑆для того, чтобы образовывать 

значение 𝐽𝐽, должны прецессировать вокруг 𝐽𝐽. Таким 

образом видно, что проекции 𝐿𝐿�⃗  и 𝑆𝑆 на ось z не 

сохраняются, они имеют постоянную проекцию на 

направление 𝐽𝐽. А проекция 𝐽𝐽 постоянна, т.е. 

существуют общие собственные функции для 

операторов 𝐻𝐻� и 𝐽𝐽2, 𝐻𝐻� и 𝐽𝐽𝑧𝑧. Поэтому необходимо использовать волновую функцию 

другого вида: |𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑧𝑧⟩. Теперь возможно написать следующее выражение 𝐽𝐽2 = 𝐿𝐿�⃗ 2 +

2�𝐿𝐿�⃗ 𝑆𝑆� + 𝑆𝑆2, и следовательно, 𝑉𝑉�𝑙𝑙𝑙𝑙 = 𝐴𝐴 1
2𝑟𝑟3

(𝐽𝐽2 − 𝐿𝐿�2 − 𝑆̂𝑆2). Т.к. данные операторы 

коммутируют с оператором 𝐻𝐻�, получаем, что 𝐽𝐽2|𝑛𝑛𝑛𝑛𝑛𝑛⟩ = ℏ2𝑗𝑗(𝑗𝑗 + 1)|𝑛𝑛𝑛𝑛𝑛𝑛⟩, 𝐿𝐿�2|𝑛𝑛𝑛𝑛𝑛𝑛⟩ =

ℏ2𝑙𝑙(𝑙𝑙 + 1)|𝑛𝑛𝑛𝑛𝑛𝑛⟩, 𝑆̂𝑆2|𝑛𝑛𝑛𝑛𝑛𝑛⟩ = ℏ2𝑠𝑠(𝑠𝑠 + 1)|𝑛𝑛𝑛𝑛𝑛𝑛⟩. Тогда 𝛥𝛥𝐸𝐸𝑙𝑙𝑙𝑙 = �𝑉𝑉�𝑙𝑙𝑠𝑠� = 𝐴𝐴 � 1
𝑟𝑟3
� (𝑗𝑗(𝑗𝑗 + 1) −

𝑙𝑙(𝑙𝑙 − 1) − 𝑠𝑠(𝑠𝑠 − 1)). � 1
𝑟𝑟3
� = ∫ 𝑅𝑅𝑛𝑛𝑛𝑛2

1
𝑟𝑟
𝑑𝑑𝑟𝑟. 

В результате получается выражение, которое даст добавку за счёт спин-орбитального 

взаимодействия. Если данную добавку суммировать с добавкой, полученной в 

предыдущем случае, то получится соотношение, которое называется формулой тонкой 

структуры Дирака: 𝛥𝛥𝐸𝐸𝑇𝑇 + 𝛥𝛥𝐸𝐸𝑙𝑙𝑙𝑙 = 𝛼𝛼2𝑧𝑧2𝐸𝐸𝑛𝑛
𝑛𝑛3

( 1
𝑗𝑗+12

− 3
4𝑛𝑛

). Вот это та добавка, которая должна 

быть добавлена к энергии 𝐸𝐸𝑛𝑛 = −𝑧𝑧2𝑅𝑅𝑅𝑅
𝑛𝑛2

. 

Рисунок 18. Взаимодействие 
векторов 𝐿𝐿�⃗  и 𝑆𝑆. 
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Спектр атома водорода с учётом поправок и расщепления. 
Нарисуем спектр атома водорода с учётом расщепления и поправок. 

Максимальное расщепление будет наблюдаться для уровня 2𝑃𝑃3
2
 и 2𝑃𝑃1

2
. 

Оценим его величину из формулы Дирака. Тогда 𝛥𝛥𝛥𝛥 = 𝛼𝛼2𝑅𝑅𝑅𝑅
16

 – 

разность уровней между спин-орбитально расщеплёнными уровнями 

2𝑃𝑃3
2
 и 2𝑃𝑃1

2
. 𝛥𝛥𝛥𝛥 = 4,5 ⋅ 10−5эВ – такое смещение за счёт спин-

орбитальных и релятивистских поправок получается, исходя из 

формул Дирака. 

Помимо спин-орбитального взаимодействия, наблюдается т.н. 

сверхтонкое орбитальное взаимодействие, которое обусловлено 

взаимодействием спина ядра и полного механического момента 

атома. Полный механический момент атома определяется J, 

спиновый момент атома определяется I, тогда полный момент атома 𝐹⃗𝐹 = 𝐽𝐽 + 𝐼𝐼, где 𝐼𝐼 – 

спиновый момент ядра, 𝐽𝐽 -полный момент электронной оболочки. Тогда оператор 

взаимодействия 𝑉𝑉�𝐽𝐽𝐽𝐽 = 𝐵𝐵(𝐽𝐽𝐼𝐼). Оценим количество расщеплённых компонент из того, что 

число компонент будет определяться различными значениями полного момента атома. 

При сложении моментов, число комбинаций, определяющих значение 𝐹⃗𝐹, будет 

определяться min (2𝐽𝐽 + 1,2𝐼𝐼 + 1). Поэтому если рассматривать основное состояние 

атома водорода, то число уровней, на которое расщепится данное состояние, будет 

равно двум, т.к. 𝐼𝐼 = 𝐽𝐽 = 1
2
. 

  

Рисунок 19. 
Спектр атома 
водорода с 
учётом 
поправок и 
расщепления. 
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Лекция 10. Многоэлектронные схемы. Водородоподобные атомы. 

На прошлой лекции была получена формула Дирака:𝛥𝛥𝐸𝐸𝑛𝑛𝑛𝑛 = 𝛼𝛼2𝑧𝑧4𝑅𝑅𝑅𝑅
𝑛𝑛3

( 1
𝐽𝐽̇+12

− 3
4𝑛𝑛

) ⇔ 𝛥𝛥𝐸𝐸𝑛𝑛𝑛𝑛 =

𝛼𝛼2𝑧𝑧2𝐸𝐸𝑛𝑛
𝑛𝑛

( 1
𝐽𝐽̇+12

− 3
4𝑛𝑛

). Последняя формула удобна для оценки расщепления уровней при 

изменении энергетического уровня n: 𝛥𝛥𝐸𝐸𝑛𝑛𝑛𝑛
𝐸𝐸𝑛𝑛

= 𝛼𝛼2𝑧𝑧2𝐸𝐸𝑛𝑛
𝑛𝑛

( 1
𝐽𝐽̇+12

− 3
4𝑛𝑛

). 

Теперь перейдём к рассмотрению не только одноэлектронных атомов, но и 

многоэлектронных атомов. Для многоэлектронных атомов характерны 2 типа 

взаимодействия. Помимо взаимодействия электрона с ядром следует учитывать 

межэлектронные взаимодействия, которые могут существенным образом изменять 

положение энергетических уровней и приводить к их смещению. Рассмотрим эти 

вопросы на примере простейших многоэлектронных систем – щелочных металлах, в 

которых соответствующие смещения энергетических уровней могут быть получены в 

виде некоторых поправок т.н. квантового эффекта или Ридберговской поправки. 

Тождественность квантовых частиц. 
Также в квантовых многоэлектронных системах существует принцип тождественности 

квантовых частиц. И этот принцип неразличимости квантовых частиц приводит к тому, 

что при перестановке любых двух частиц в такой системе, соответствующая функция, 

которая описывает данную систему, должна быть либо симметричной, либо 

антисимметричной, причём то, какой она должна быть определяется спином частиц, 

которые входят в данную систему.  Для частиц с полуцелым спином (класс фермионов) 

соответствующая волновая функция должна быть антисимметричной, и наоборот, для 

частиц с целым спином (бозоны) волновая функция должна быть симметричной.  

Для того, чтобы понять, как учитывать свойства тождественности частиц, рассмотрим 

простейший случай двух невзаимодействующих частиц. В общем случае 𝐻𝐻� = 𝐻𝐻�1 +

𝐻𝐻�2 + 𝑉𝑉(𝜉𝜉1, 𝜉𝜉2), где 𝐻𝐻�1 и 𝐻𝐻�2 - одночастичные гамильтонианы 1-ой и 2-ой частицы, а 

𝑉𝑉(𝜉𝜉1, 𝜉𝜉2) – энергия взаимодействия 1-ой и 2-ой частицы, где 𝜉𝜉1 и𝜉𝜉2 – переменные в 

которые входят все координаты частицы 1 и 2. Если энергией взаимодействия можно 

пренебречь, то волновая функция, которая является решением данного стационарного 

уравнения Шредингера  𝐻𝐻�𝛹𝛹(𝜉𝜉1, 𝜉𝜉2) = 𝐸𝐸𝛹𝛹(𝜉𝜉1, 𝜉𝜉2) может быть представлена в виде 

𝛹𝛹(𝜉𝜉1, 𝜉𝜉2) = 𝛹𝛹1(𝜉𝜉1)𝛹𝛹2(𝜉𝜉2), где – волновые функции, которые отвечают решениям 
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одночастичной задачи для первой и второй частицы. Тогда подставив полученное 

выражение в исходное и преобразовав его, получим 𝐻𝐻
�1𝛹𝛹1(𝜉𝜉1)
𝛹𝛹1(𝜉𝜉1)

+ 𝐻𝐻�2𝛹𝛹2(𝜉𝜉2)
𝛹𝛹2(𝜉𝜉2)

= 𝐸𝐸. Энергия 

этой системы также может быть представлена как 𝐸𝐸1 + 𝐸𝐸2 = 𝐸𝐸. Но с учётом принципа 

тождественности частиц необходимо заключить, что данное решение не удовлетворяет 

этому принципу, т.к. данная волновая функция не является ни симметричной, ни 

антисимметричной. Поэтому для удовлетворения принципа тождественности частиц, 

мы должны сконструировать вместо полученного решение либо симметричное, либо 

антисимметричное. Оно конструируется следующим образом 𝛹𝛹𝑆𝑆,𝐴𝐴(𝜉𝜉1, 𝜉𝜉2) =
1
√2

(𝛹𝛹1(𝜉𝜉1)𝛹𝛹2(𝜉𝜉2) ± 𝛹𝛹2(𝜉𝜉2)𝛹𝛹1(𝜉𝜉1)).  

Получим выражение для соответствующих функций для 2-ух электронов, имея ввиду 

атом гелия. При записи уравнения необходимо учитывать спин, т.к. он оказывает 

существенное влияние на вид волновой функции. Запишем антисимметричную 

функцию, которая состоит из пространственной и спиновой части 𝛹𝛹𝐴𝐴 =

𝛹𝛹𝐴𝐴(𝑟𝑟1���⃗ , 𝑟𝑟2)𝜒𝜒𝑠𝑠(𝜎𝜎1,𝜎𝜎2) или 𝛹𝛹𝑆𝑆(𝑟𝑟1���⃗ , 𝑟𝑟2)𝜒𝜒𝐴𝐴(𝜎𝜎1,𝜎𝜎2). Для случая атома гелия спиновые функции 

могут быть образованы с помощью суммирования двух спинов, которые можно 

записать следующим образом: 𝜒𝜒𝐴𝐴 = 1
√2

(𝜒𝜒+(1)𝜒𝜒−(2) − 𝜒𝜒−(2)𝜒𝜒+(1)). Если 𝑆𝑆1 = 1
2
 и 𝑆𝑆2 =

1
2
, то 𝑆𝑆 = 0 или 𝑆𝑆 = 1. В данном случае 𝑚𝑚𝑠𝑠 = 0, 𝑆𝑆 = 0 – синглет. Для симметричной 

функции возможны 3 комбинации �
𝜒𝜒+(1)𝜒𝜒+(2),𝑚𝑚𝑠𝑠 = 1 

1
√2
�𝜒𝜒+(1)𝜒𝜒−(2) + 𝜒𝜒−(2)𝜒𝜒+(1)�,𝑚𝑚𝑠𝑠 = 0

𝜒𝜒−(1)𝜒𝜒−(2),𝑚𝑚𝑠𝑠 = 1
 

Влияние пространственно-волновой функции на распределение 

электронной плотности. 
Для того, чтобы понять, как пространственно-волновая функция влияет на 

расположение электронной плотности, от которой зависит энергия межэлектронного 

взаимодействия и смещение энергетических уровней, рассмотрим простейшую задачу. 

Задача: имеется квантовая яма, в которой два уровня – основной и первый 

возбуждённый. Разместим два электрона и сорганизуем соответствующие 

симметричные и антисимметричные волновые функции в соответствии с тем, что 

электроны могут занимать только эти 2 состояния. В случае с симметричной функцией, 

плотность вероятности максимальна, когда частицы находятся рядом – на биссектрисе 
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угла между осями, т.е. частицы могут иметь одни и те же координаты. Для 

антисимметричной функции плотность вероятности максимальна, когда частицы 

удалены друг от друга, вероятность найти их в одной и той же области равна нулю. 

Поэтому энергия взаимодействия частиц с симметричной волновой функцией будет 

больше, т.к. они могут иметь одни и те же координаты. А для антисимметричных 

функций энергия взаимодействия будет меньше. Если пространственно-волновая 

функция симметрична, то спины частиц антисимметричны и наоборот, если 

пространственно-волновая функция антисимметрична, то спины частиц симметричны. 

Если спины противоположны, то частицы находятся ближе, чем те, спины у которых 

параллельны, поэтому энергия у противоположных спинов выше. Вывод: триплетные 

состояния всегда по энергии находятся ниже, чем синглетные.  

Нарисуем волновые функции. 

Если первый электрон 

находится в основном 

состоянии, то второй 

находится в первом 

возбуждённом и наоборот. 

Запишем соответствующие 

волновые функции. Образуем 

из полученных произведений 

симметричную и 

антисимметричную часть.  

Возьмём плюс, который 

соответствует 

пространственно-волновой 

симметричной функции. 

Когда возведём данную 

волновую функцию в квадрат, 

максимум будет находится на 

биссектрисе. И наоборот, если 

взять минус, который 

Рисунок 20. Волновые функции суммы и разности 
произведений. 

Рисунок 21. Возведение в квадрат волновых функций. 

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

58 
 
 

 

соответствует пространственно-волновой антисимметричной функции, получим, что 

максимуму удалены друг от друга. 

В данной задаче электроны не действуют друг на друга, т.к. межэлектронными 

взаимодействиями мы пренебрегли, но получили важный результат – пространственно-

волновая функция зависит от спино-волновой функции, если одна симметрична, то 

другая должна быть антисимметричной так, чтобы полная волновая функция системы 

электронов была антисимметрична. Таким образом, хоть спин не входит в 

гамильтониан, он будет влиять на пространственное распределение. 

Из условий симметричности и антисимметричности волновых функций следует 

принцип запрета Пауля. Если записать волновую функцию в виде 𝛹𝛹(𝜉𝜉1𝜉𝜉2) =
1
√2
�𝛹𝛹1(1)𝛹𝛹1(2) −𝛹𝛹1(1)𝛹𝛹1(2)� ≡ 0. Эта функция соответствует ситуации, когда 2 

электрона оказались в 1 состоянии, и она тождественно равна 0. Это и есть принцип 

запрета Пауля, т.е. никакие два электрона не могут находиться в одинаковых 

состояниях.  

Принцип запрета Пауля приводит к тому, что 

электронные оболочки будут заполняться 

определённым образом. Электронной оболочкой 

будем называть все электроны, которые 

соответствуют главному квантовому числу n. 

Оболочки носят названия в зависимости от n. 

Количество электронов в оболочке определяется 

главным квантовым, а также орбитальным числом. Под-оболочки характеризуются 

значением 𝑙𝑙. Электроны в соответствующих оболочках и под-оболочках записываются 

в виде электронной конфигурации. Электронная конфигурация даёт возможность 

грубой оценки энергии электрона, который занимает ту или иную оболочку и под-

оболочку.   

Межэлектронное взаимодействие. 
Рассмотрим влияние межэлектронного взаимодействия на щелочных металлах, 

например, атом лития, 𝑧𝑧 = 3. Оценим энергию валентного электрона на внешней 

оболочке. Если данный электрон находится далеко от ядра, то на него будет 

n 1 2 3 4 

K L M N 

𝑙𝑙  0 1 2 3 

s p b d 

Таблица 4. Электронные 

оболочки и под-оболочки. 
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действовать экранированный потенциал 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = �
− 𝑒𝑒2

𝑟𝑟
, 𝑟𝑟 → ∞

−𝑧𝑧𝑒𝑒2

𝑟𝑟
, 𝑟𝑟 → 0

. Выражение для энергии 

записывается как 𝐸𝐸𝑛𝑛 = −𝑧𝑧2𝑅𝑅𝑦𝑦
𝑛𝑛2

, но вместо z должно входить 𝑧𝑧𝑒𝑒𝑒𝑒𝑒𝑒. По сравнению с 

атомом водорода, в щелочных металлах для данного n энергия меньше при малых 𝑙𝑙 т.к. 

электрон находится ближе к ядру, где экранировка меньше. При увеличении n электрон 

удаляется от ядра и уровни энергии мало отличаются от уровней H. Также 𝐸𝐸𝑛𝑛 =

− 𝑅𝑅𝑦𝑦
(𝑛𝑛𝑟𝑟+𝑙𝑙∗+1)2

= − 𝑅𝑅𝑦𝑦
(𝑛𝑛−𝛥𝛥)2

, где 𝑙𝑙∗ - эффективное значение,  𝛥𝛥 > 0 – квантовый эффект, 

который учитывает экранирование. Таким образом окончательный результат для 

щелочных металлов 𝐸𝐸𝑛𝑛𝑛𝑛 = −𝑅𝑅𝑅𝑅
(𝑛𝑛+𝜎𝜎𝑙𝑙)2

, где 𝜎𝜎𝑙𝑙 < 0 – Ридберговская добавка. 

Обменные взаимодействия. 
Рассмотрим эффект, связанный с обменными взаимодействиями. Для этого рассмотрим 

атом гелия. Запишем 2 одно-частичных гамильтониана: 𝐻𝐻�1 = 𝑇𝑇�1 + 𝑉𝑉�1 = − ℏ2

2𝑚𝑚
𝛻𝛻12 −

𝑧𝑧𝑒𝑒2

𝑟𝑟1
, 

𝐻𝐻�2 = 𝑇𝑇�2 + 𝑉𝑉�2 = − ℏ2

2𝑚𝑚
𝛻𝛻22 −

𝑧𝑧𝑒𝑒2

𝑟𝑟2
. Потенциал взаимодействия 𝑉𝑉�12 = 𝑒𝑒2

𝑟𝑟12
. Считаем, что 

потенциал взаимодействия является возмущающим гамильтонианом, и тогда 

рассчитаем сначала уровни энергии в нулевом приближении, т.е. без межэлектронного 

взаимодействия, а дальше добавку к энергии учесть с помощью теории возмущений. 

Решаем задачу на собственные функции и собственные значения: �𝐻𝐻�1(𝑟𝑟1���⃗ ) +

𝐻𝐻�2(𝑟𝑟2���⃗ )�𝛹𝛹(𝑟𝑟1���⃗ 𝑟𝑟2���⃗ ) = 𝐸𝐸(0)𝛹𝛹(𝑟𝑟1���⃗ 𝑟𝑟2���⃗ ). 𝛹𝛹(𝑟𝑟1���⃗ 𝑟𝑟2���⃗ ) = 𝛹𝛹1(𝑟𝑟1���⃗ )𝛹𝛹2(𝑟𝑟2���⃗ ), тогда 𝐸𝐸(0) = 𝐸𝐸1 + 𝐸𝐸2 =

−𝑧𝑧2𝑅𝑅𝑅𝑅( 1
𝑛𝑛12

+ 1
𝑛𝑛22

). Для данной функции необходимо взять не только пространственную 

часть, но и спиновую: 𝛹𝛹𝑆𝑆(𝐴𝐴)(𝑟𝑟1���⃗ 𝑟𝑟2���⃗ ) = 1
√2

(𝛹𝛹1(𝑟𝑟1���⃗ )𝛹𝛹2(𝑟𝑟2���⃗ ) ± 𝛹𝛹1(𝑟𝑟2���⃗ )𝛹𝛹2(𝑟𝑟1���⃗ )). Ранее были 

получены выражения для учёта спиновой части. Тогда полная волновая функция 

𝛹𝛹(𝜉𝜉1𝜉𝜉2) = 𝛹𝛹𝐴𝐴(𝑟𝑟1���⃗ 𝑟𝑟2���⃗ )𝜒𝜒𝑆𝑆(𝜎𝜎1𝜎𝜎2) или 𝛹𝛹(𝜉𝜉1𝜉𝜉2) = 𝛹𝛹𝑆𝑆(𝑟𝑟1���⃗ 𝑟𝑟2���⃗ )𝜒𝜒𝐴𝐴(𝜎𝜎1𝜎𝜎2).  

Рассмотрим поправки к энергии методом теории возмущений. Считаем, что задача в 

нулевом приближении решена. Она будет вычисляться без учёта межэлектронного 

взаимодействия, как 𝐸𝐸 = 𝐸𝐸1 + 𝐸𝐸2. Основное состояние для гелия 1𝑆𝑆2. Тогда энергии 

𝐸𝐸1,𝐸𝐸2 определяются формулой 𝐸𝐸1 = −8𝑅𝑅𝑅𝑅 = −108,8эВ. Экспериментальное же 

значение: −79эВ.  
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Проведём учёт межэлектронного взаимодействия 𝛥𝛥𝛥𝛥 =

∫ �𝛹𝛹𝐿𝐿𝑧𝑧(𝑟𝑟1���⃗ )�2�𝛹𝛹𝐿𝐿𝑧𝑧(𝑟𝑟2���⃗ )�2 𝑒𝑒2

|𝑟𝑟1����⃗ −𝑟𝑟2����⃗ |
𝑑𝑑3𝑟𝑟1 𝑑𝑑3𝑟𝑟2, где 𝛹𝛹𝐿𝐿𝑧𝑧(𝑟𝑟) = � 𝑧𝑧3

𝜋𝜋𝑎𝑎3
𝑒𝑒−

𝑧𝑧𝑟𝑟
𝑎𝑎0. Тогда 𝛥𝛥𝛥𝛥 =

∫ 𝜌𝜌(𝑟𝑟1����⃗ )𝜌𝜌(𝑟𝑟2����⃗ )
|𝑟𝑟1����⃗ −𝑟𝑟2����⃗ |

𝑑𝑑3𝑟𝑟1 𝑑𝑑3𝑟𝑟2 = 5
4
𝑧𝑧𝑧𝑧𝑧𝑧, где 𝜌𝜌 – объёмная плотность электрона. Тогда энергия с 

учётом поправки даёт значение 𝐸𝐸 = −5,5𝑅𝑅𝑅𝑅 = −74,8эВ.  

Перейдём к конфигурации гелия 1𝑠𝑠𝑠𝑠𝑠𝑠, т.е. в этой конфигурации 1 электрон находится в 

основном состоянии, а второй находится в возбуждённом состоянии. В данном случае 

будут получены другие выражения: 𝛥𝛥𝛥𝛥 = ∫ �𝛹𝛹𝑆𝑆(𝐴𝐴)(𝑟𝑟1���⃗ 𝑟𝑟2���⃗ )�2 𝑒𝑒2

𝑟𝑟12
𝑑𝑑3𝑟𝑟1 𝑑𝑑3𝑟𝑟2 =

1
2
∫ |𝛹𝛹1𝑆𝑆(𝑟𝑟1���⃗ )𝛹𝛹𝑛𝑛𝑛𝑛(𝑟𝑟2���⃗ ) ± 𝛹𝛹1𝑆𝑆(𝑟𝑟2���⃗ )𝛹𝛹𝑛𝑛𝑛𝑛(𝑟𝑟1���⃗ )|2 𝑒𝑒2

𝑟𝑟12
𝑑𝑑3𝑟𝑟1 𝑑𝑑3𝑟𝑟2 = 𝐶𝐶 ± 𝐴𝐴. Образуется симметричная 

или антисимметричная пространственно-волновая функция, в зависимости от того, 

какая была взята спиновая волновая функция (для симметричной функции необходимо 

взять антисимметричную спиновую и наоборот). Данный интеграл разбивается на два: 

С = ∫ |𝛹𝛹1𝑆𝑆(𝑟𝑟1���⃗ )|2|𝛹𝛹𝑛𝑛𝑛𝑛(𝑟𝑟2���⃗ )|2 𝑒𝑒2

|𝑟𝑟1����⃗ −𝑟𝑟2����⃗ |
𝑑𝑑3𝑟𝑟1 𝑑𝑑3𝑟𝑟2 – кулоновская энергия, и 𝐴𝐴 =

∫ 𝛹𝛹1𝑆𝑆(𝑟𝑟1���⃗ )𝛹𝛹𝑛𝑛𝑛𝑛(𝑟𝑟2���⃗ )𝛹𝛹1𝑆𝑆∗ (𝑟𝑟2���⃗ )𝛹𝛹𝑛𝑛𝑛𝑛∗ (𝑟𝑟1���⃗ ) 𝑒𝑒2

|𝑟𝑟1����⃗ −𝑟𝑟2����⃗ |
𝑑𝑑3𝑟𝑟1 𝑑𝑑3𝑟𝑟2 – обменная энергия. В синглетном 

состояния электроны находятся ближе друг к другу, поэтому энергия взаимодействия 

будет больше, и уровни будут выше, чем у триплетного состояния. 

Таким образом для многоэлектронных атомов наблюдается два эффекта. На данном 

графике (не в масштабе) представлены низшие энергии атома гелия. 

a) без учёта кулоновского 

взаимодействия электронов 

b) с учётом кулоновского, но без 

учёта обменного взаимодействия 

электронов 

c) с учётом кулоновского и 

обменного взаимодействия электронов 

В b) происходит расщепление, т.к. 

состояния 2p и 2s имеют разные 

максимумы электронной плотности, соответствующие радиальной функции. В c) 

расщепление обусловлено обменным взаимодействием. 

Рисунок 22. Низшие энергии атома гелия с 
учётом и без учёта эффектов. 
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Спин не был включён в гамильтониан, он появляется только за счёт того, что 

результирующая волновая функция должна обладать определёнными свойствами 

симметрии. Таким образом спиновая волновая функция оказывает воздействие на то, 

какой будет пространственная функция. 

Рассмотрим иерархию взаимодействий в многоэлектронном атоме. Первое – 

взаимодействие только с ядром, второе – учитываем кулоновское взаимодействие, 

третье – учитываем обменное взаимодействие, которое расщепляет уровни на термы с 

мультиплетами, четвертое – учитываем спин-орбитальное взаимодействие, которое 

приводит к расщеплению термов. 
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Лекция 11. Многоэлектронные атомы. Термы. 

Решение уравнения Шредингера для многоэлектронного атома.  
Для многоэлектронного атома волновая функция, которая описывает N электронов 

будет зависеть от 3N переменных 𝛹𝛹(𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑁𝑁). Таким образом необходимо решить 

стационарное уравнение Шредингера для 3N переменных. Уже для случая N=2 (атом 

гелия) такое аналитическое решение не может быть получено и следует использовать 

различного рода приближения. Общий подход – использование теории 

самосогласованного поля Хартри. Идея данного подхода – рассматривать движение 

электрона и вводить одноэлектронные функции, которые будут определяться 

значениями соответствующих переменных, например 𝛹𝛹𝑖𝑖(𝜉𝜉𝑖𝑖). Тогда для того, чтобы 

использовать это приближение, необходимо считать, что каждый электрон движется в 

поле ядра, и в поле всех остальных электронов. Поэтому движение этого электрона 

можно описать в приближении самосогласованного поля, а это поле находится из 

решения одночастичных уравнений для каждого электрона, куда включаются 

потенциал ядра и потенциал всех остальных электронов.  

Рассмотрим подход на примере атома гелия. Введём волновые функции для первого и 

второго электрона 𝛹𝛹1(𝑟𝑟1���⃗ ) и 𝛹𝛹2(𝑟𝑟2���⃗ ), где 𝑟𝑟1���⃗  и 𝑟𝑟2���⃗  – соответствующие радиус-векторы 

электронов.  Положение некоторой точки характеризуется радиус-вектором 𝑟𝑟, тогда 

потенциал, который наводит первый электрон в точке 𝑟𝑟 будет создавать некий 

эффективный потенциал для второго электрона, если точка с 𝑟𝑟 перейдёт в точку с 𝑟𝑟2���⃗ . 

Потенциал, создаваемый в точке 𝑟𝑟 первым электроном, 𝜑𝜑1(𝑟𝑟) = ∫ 𝜌𝜌1(𝑟𝑟)
|𝑟𝑟−𝑟𝑟1����⃗ |

𝑑𝑑 𝑑𝑑𝑟𝑟13, 

потенциал, создаваемый вторым электроном, 𝜑𝜑2(𝑟𝑟) = ∫ 𝜌𝜌2(𝑟𝑟)
|𝑟𝑟−𝑟𝑟2����⃗ |

𝑑𝑑𝑟𝑟23, где 𝜌𝜌1(𝑟𝑟) =

𝑒𝑒|𝛹𝛹1(𝑟𝑟)|2 и 𝜌𝜌2(𝑟𝑟) = 𝑒𝑒|𝛹𝛹2(𝑟𝑟)|2, e – заряд электрона. Тогда соответствующий 

эффективный потенциал первого электрона 𝑉𝑉1
𝑒𝑒𝑒𝑒𝑒𝑒� = −𝑒𝑒2

𝑟𝑟1
+ 𝜑𝜑2(𝑟𝑟1���⃗ ), который 

определяется расстоянием этого электрона до ядра и эффективным потенциалом, 

который создаёт второй электрон в точке с первым электроном. Соответственно 

эффективный потенциал второго электрона 𝑉𝑉2
𝑒𝑒𝑒𝑒𝑒𝑒� = −𝑒𝑒2

𝑟𝑟2
+ 𝜑𝜑1(𝑟𝑟2���⃗ ). Тогда 

соответствующие уравнения Шрёдингера могут быть записаны в виде 
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⎩
⎪
⎨

⎪
⎧�𝑇𝑇1� + 𝑉𝑉1

𝑒𝑒𝑒𝑒𝑒𝑒�(𝑟𝑟1���⃗ )�𝜑𝜑1(𝑟𝑟1���⃗ ) = 𝐸𝐸1𝛹𝛹(𝑟𝑟1���⃗ )

�𝑇𝑇2� + 𝑉𝑉2
𝑒𝑒𝑒𝑒𝑒𝑒�(𝑟𝑟2���⃗ )�𝜑𝜑2(𝑟𝑟2���⃗ ) = 𝐸𝐸2𝛹𝛹(𝑟𝑟2���⃗ )

, где T – кинетическая энергия электрона. Решением 

данной системы будут волновые функции первоначального приближения, которые 

будут использованы для вычисления нового самосогласованного потенциала. После 

чего, снова подставляем потенциал в уравнение, получаем новое приближение, и таким 

образом получаем некое сходящееся решение для волновых функций 𝛹𝛹1 и 𝛹𝛹2.  

Особенность самосогласованного потенциала – потенциал обладает центральной 

симметрией, поэтому возможно разбиение волновой функции на пространственную и 

угловую части. Введение угловой части позволяет использовать квантовые числа, 

которые были использованы и получены при решении для атома водорода, т.е. главное 

квантовое число n, орбитальное число l, соответствующее магнитное число 𝑚𝑚𝑙𝑙 и 

магнитное спиновое число 𝑚𝑚𝑆𝑆. Также для многоэлектронных атомов необходимо 

использовать принцип тождественности частиц, поэтому соответствующее решение 

необходимо симметризовать: 𝛹𝛹𝐴𝐴(𝜉𝜉1, 𝜉𝜉2) = �𝛹𝛹𝐴𝐴(𝑟𝑟1���⃗ , 𝑟𝑟2)𝜒𝜒𝑠𝑠(1,2) 
𝛹𝛹𝑆𝑆(𝑟𝑟1���⃗ , 𝑟𝑟2)𝜒𝜒𝐴𝐴(1,2). 

Запишем антисимметричную функцию для N электронов 𝛹𝛹𝐴𝐴(𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑁𝑁) =

1
√𝑁𝑁!

�
𝛹𝛹1(𝜉𝜉1) ⋯ 𝛹𝛹1(𝜉𝜉𝑁𝑁)

⋮ ⋱ ⋮
𝛹𝛹𝑁𝑁(𝜉𝜉1) ⋯ 𝛹𝛹𝑁𝑁(𝜉𝜉𝑁𝑁)

� (определитель). 

Таким образом можно ввести некие одночастичные функции, которые описываются 

одни ми и теми же квантовыми числами, которые фигурировали при описании атома 

водорода и создать таким образом некую электронную конфигурацию, которая будет 

зависеть прежде всего от главного квантового числа n, и заполнение таких 

конфигураций будет происходить в соответствии с принципом Пауля. Посмотрим, 

каким образом происходит заполнение электронных оболочек. 

Первое состояние, которое можем заполнить – основное состояние. Для атома гелия 

1𝑠𝑠2. Не учитывая межэлектронные взаимодействия, для каждого электрона 𝐸𝐸1 = −𝑧𝑧2𝑅𝑅𝑅𝑅
𝑛𝑛2

. 

Следующее состояние 1𝑠𝑠2𝑠𝑠 или 1𝑠𝑠2𝑝𝑝, которые равны без учёта межэлектронного 

взаимодействия. 
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Термы. 
При учёте кулоновского и обменного взаимодействия, электронные конфигурации 

разбиваются на термы, т.е. на уровни, которые определяются значением s и l 

соответствующей конфигурации. Термы обозначаются большой буквой L. При записи 

терма необходимо указывать его мультиплетность 

𝜈𝜈 = 2𝑠𝑠 + 1, где s – значение квантового числа для 

соответствующего терма. Значения s и l 

определяются из связи между спинами и орбитальными моментами. Для нормальной 

связи 𝑆𝑆 = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖 , а 𝐿𝐿�⃗ = � 𝑙𝑙𝚤𝚤��⃗
𝑖𝑖

. И после получения 𝐿𝐿�⃗  и 𝑆𝑆 возможно записать 

соответствующие выражения для терма, используя обозначение, что (2𝑠𝑠 + 1)1𝐿𝐿 – одна 

из букв, обозначающих терм и соответствующая значению полного орбитального 

момента системы. 

Рассмотрим простейший случай неэквивалентных электронов, т.е. те электроны, 

которые находятся в разных оболочках. Запишем возможные термы для конфигурации 

𝑛𝑛𝑛𝑛𝑛𝑛′𝑝𝑝, n≠ 𝑛𝑛′. Возможные значения термов определяются следующим образом: 𝑆𝑆 = 1,0. 

Таким образом возможны как триплетное, так и синглетное состояние. И для 

орбитального момента получаем значение орбитального квантового числа 𝐿𝐿 = 0,1,2. 

Отсюда следует, что возможны термы (3,1)D, (3,1)P, (3,1)S. S терм – всегда синглет. 

Хотя, здесь его мультиплетность указана как тройка, реальная мультиплетность этого 

уровня будет определяться min(2𝑠𝑠 + 1, 2𝑙𝑙 − 1) = 1, т.к. минимальным будет являться 

значение при 𝑙𝑙 = 0. 

Если же электроны не эквивалентны, то ситуация усложняется, т.к. в этом случае 

необходимо учитывать принцип запрета Пауля, и не все термы могут удовлетворять 

данному условию, поэтому необходимо отдельно проводить соответствующее 

рассмотрение. Каким образом происходит заполнение оболочек в соответствии с той 

электронной конфигурацией, которую можно записать, исходя из того, что мы знаем 

заряд многоэлектронного атома, полное число электронов и можем написать 

конфигурацию. 

                                                            
1 К сожалению, word не позволяет записывать отдельно левый верхний индекс, поэтому его значение будет взято в скобки перед 
термом. 

L 0 1 2 3 

S P D F 

Таблица 5. Термы. 
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Начальное приближение для оценки энергии многоэлектронного атома – его 

электронная конфигурация. Энергия в основном будет определяться значением 

главного квантового числа n, поскольку это значение определяет энергию 

взаимодействия электронов с ядром, и эта энергия преобладает в оценке, по сравнению 

со всеми другими взаимодействиями. Затем электронная конфигурация будет 

разбиваться на термы, которые будут расщеплены, что будет обусловлено кулоновским 

взаимодействием между электронами. Затем необходимо учесть спин-орбитальное 

взаимодействие, которое расщепит все термы, в соответствии с их мультиплетностью, 

но для S состояний всегда будет синглета, поэтому данный терм разбиваться не будет. 

Это можно показать из оператора спин-орбитального взаимодействия 𝑉𝑉�𝐿𝐿𝐿𝐿 = 𝐴𝐴 �𝐿𝐿�⃗�𝑆̂𝑆�. Т.к. 

мы считаем приближенное значение, и вычисляем оператор, как среднее значение, то 

спин-орбитальное взаимодействие не учитывается. Следовательно, �𝑆̂𝑆𝐿𝐿�⃗�� =

𝐴𝐴2

2
�𝐽𝐽2 − 𝑆̂𝑆2 − 𝐿𝐿�2�, с учётом, что 𝐽𝐽2 = 𝑆̂𝑆2 + 2 �𝑆̂𝑆𝐿𝐿�⃗�� + 𝐿𝐿�2. Тогда 𝐽𝐽2�𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝐽𝐽� =

ℏ2𝐽𝐽(𝐽𝐽 + 1)�𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝐽𝐽�, 𝑆̂𝑆2 и 𝐿𝐿�2 – аналогично, т.к. у них общие волновые функции. Тогда 

среднее значение этого оператора 𝛥𝛥𝛥𝛥𝐽𝐽 = 𝐴𝐴
2

(𝐽𝐽(𝐽𝐽 + 1) − 𝑆𝑆(𝑆𝑆 + 1) − 𝐿𝐿(𝐿𝐿 + 1)). Вычислим 

разность 𝛿𝛿𝐸𝐸𝐽𝐽 = 𝛥𝛥𝛥𝛥𝐽𝐽 − 𝛥𝛥𝛥𝛥𝐽𝐽−1 = 𝐴𝐴𝐴𝐴, т.е. расстояние между соседними уровнями энергии 

для расщеплённого спин-орбитальным взаимодействием терма пропорционально 

величине J. 

Рассмотрим пример. Возьмём терм (3)𝑃𝑃0,1,2. Узнаем, на какие состояния разбивается 

данный терм, и каким образом эти состояния будут расположены относительно друг 

друга. По формуле возможны следующие значения квантового числа 𝑗𝑗 = 0,1,2, … Т.е. 

действительно данный терм расщепляется на 3 состояния. Для тяжёлых атомов может 

преобладать или быть сравнимым со смежэлектронным взаимодействием энергия спин-

орбитального взаимодействия. В этом случае сложение моментов надо проводить не по 

схеме, соответствующей нормальной связи. Разберёмся, как будут расположены 

состояния (3)𝑃𝑃2, (3)𝑃𝑃1, (3)𝑃𝑃0 по энергии. Возьмём состояние (3)𝑃𝑃2: 𝑆𝑆 = 1, 𝐿𝐿 = 1, 𝐽𝐽 = 2. 

Отсюда получаем, подставив в выражение для энергии, что данное состояния будет 

сдвинуто вверх на величину A. Для (3)𝑃𝑃1, 𝐽𝐽 = 1, тогда получим, что данное состояние 

сдвинуто вниз на A. Аналогично получим, что для (3)𝑃𝑃0 состояние сдвинуто на 2A 

вниз. Если 𝐴𝐴 > 0 – нормальный мультиплет, 𝐴𝐴 < 0 – обращённый мультиплет.  
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Правила заполнения электронных оболочек. 
Заполнение оболочек происходит в порядке возрастания суммы (𝑛𝑛 + 𝑙𝑙) с приоритетом 

по n – правило Маделунга.  

Пример. Используем данное правило для заполнения электронных оболочек калия, 

z=19. Получаем 1𝑠𝑠22𝑠𝑠22𝑝𝑝63𝑠𝑠23𝑝𝑝64𝑠𝑠1. Для кальция, z=20. Тогда 1𝑠𝑠22𝑠𝑠22𝑝𝑝63𝑠𝑠23𝑝𝑝64𝑠𝑠2. 

Минимальной энергией обладают конфигурации с наибольшим спином и орбитальным 

моментом – правило Хунда. 

Если под-оболочка заполнена более чем на половину, её момент будет определяться 

недостающими дырками. Их свойства в отношении моментов, такие же, как и у 

электронов. Единственное – такая дырка будет менять знак при спин-орбитальных 

взаимодействиях, поэтому A, которое было положительно для электронов, которые 

заполняют оболочку менее чем на половину, для дырок станет отрицательным. 

Запишем конфигурацию для бора, z=5, 1𝑠𝑠22𝑠𝑠22𝑝𝑝1. Соответствующий терм: 𝑆𝑆 = 1
2

, 𝐿𝐿 =

1, 𝐽𝐽 = 3
2

, 1
2
. Где больший спин и большее значение L – то состояние является основным. 

Очень важной является зависимость энергии связи, или энергии первого потенциала 

возбуждения для атомов. Максимальная будет для инертных газов, т.е. при полностью 

заполненных оболочках, а минимальная будет у щелочных металлов. Это связано с тем, 

что у лития, например, два электрона экранируют заряд ядра, из-за чего, он становится 

почти равным единице. 

  

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

67 
 
 

 

Лекция 12. Спонтанные и вынужденные переходы. Правило 

отбора. 
Расщепление за счёт спин-орбитального взаимодействия 

не последнее в иерархии взаимодействий, потому что 

уровни, которые расщеплены спин-орбитальным 

взаимодействием, вырождены по значению полного 

механического момента J. В случае для 2𝑃𝑃3
2
 вырождение 

по J: 2J+1 – определятся числом проекций вектора J на 

выбранное направление (обычно это ось z). Тогда 

данные уровни должны расщепляться при наложении 

магнитного поля, например. Тогда с полным механическим моментом J будет связан 

магнитные момент, и взаимодействие данного магнитного момента с магнитным поле, 

которое будет определяться по формуле: 𝛥𝛥𝛥𝛥 = −�𝜇𝜇𝐽𝐽���⃗ 𝐵𝐵�⃗ �. Таким образом эти уровни 

будут расщепляться, и количество расщеплённых уровней будет определяться 

квантовым числом j. В данном примере 𝑗𝑗 = 3
2
, следовательно, будет расщепление по 4 

уровням. Для значения 𝑗𝑗 = 1
2
, будет расщепление по 2 уровням. 

Такая ситуация будет реализовываться в случае, когда энергия спин-орбитального 

взаимодействия 𝑉𝑉𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐿𝐿𝐿𝐿 ≈ 𝛼𝛼2𝑅𝑅𝑅𝑅. Соответственно если взять величину 𝛥𝛥𝛥𝛥, то данное 

расщепление будет соответствовать ситуации слабого магнитного поля, т.е. 𝛥𝛥𝛥𝛥 < 𝑉𝑉𝐿𝐿𝐿𝐿. 

Обозначим критическое поле, как 𝐵𝐵∗ - величина, определяющая переход от слабого 

поля к сильному, и запишем выражение 𝜇𝜇𝐵𝐵𝐵𝐵∗ = 𝛼𝛼2𝑅𝑅𝑅𝑅, откуда 𝐵𝐵∗ = 𝛼𝛼2𝑅𝑅𝑅𝑅
𝜇𝜇𝐵𝐵

≈10Тл. 

Иная ситуация получается, когда возможно пренебречь спин-орбитальным 

взаимодействием, по сравнению с взаимодействием с магнитным полем. При спин-

орбитальном взаимодействии оказываются связанны между собой моменты 

орбитальный и спиновый. Если же взаимодействие с магнитным полем намного больше 

спин-орбитального взаимодействия, тогда данная связь рвётся. Получаем 2 

прецессирующих вокруг оси z вектора, и тогда получаем данный базис функций: 

|𝐿𝐿𝑀𝑀𝐿𝐿𝑆𝑆𝑀𝑀𝑆𝑆⟩. Тем самым у нас реализуется jj связь: 𝐽𝐽𝚥𝚥��⃗ = 𝑙𝑙𝚤𝚤��⃗ + 𝑆𝑆𝑖𝑖 , 𝐽𝐽 = ∑𝐽𝐽𝚤𝚤��⃗ . 

Рисунок 23. Расщепление 
уровней в магнитном поле. 
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Переход электрона из одного стационарного состояния в другое.  
Решая стационарное уравнение Шредингера, мы получаем стационарное состояние, не 

зависящее от времени, что противоречит экспериментам. Атомы переходят из 

возбуждённого состояния в основное, или электромагнитная волна, упав на атом, 

может перевести его в возбуждённое состояние. Полученные уравнения для 

стационарных состояний не описывают переходы между состояниями. Это следствие 

того, что в гамильтониан не было включено внешнее воздействие. Учтём внешнее 

воздействие и решим данную задачу методом возмущений. 

Для этого считаем, что нам известно решение невозмущённого уравнения Шредингера, 

т.е. мы знаем собственные функции соответствующего уравнения на собственные 

значения гамильтониана, и соответствующие энергии. Рассмотрим некоторую добавку, 

которая может быть записана следующим образом. Атом нейтрален, если атом 

поместить в электромагнитное поле, то можно сделать следующее приближение. 

Возьмём линейно поляризованную волну по оси z. Тогда 𝐸𝐸(𝑟𝑟𝑡𝑡) = 𝐸𝐸0 cos�𝑘𝑘�𝑟𝑟 − 𝜔𝜔𝜔𝜔� и 

𝐵𝐵(𝑟𝑟𝑡𝑡) = 𝐵𝐵0 cos�𝑘𝑘�𝑟𝑟 − 𝜔𝜔𝜔𝜔�. Условие, что 𝜆𝜆 ≫ 𝑎𝑎0 означает, что можно считать поле 

однородным и зависящим только от времени: 𝐸𝐸(𝑡𝑡) = 𝐸𝐸0 cos(𝜔𝜔𝜔𝜔) и 𝐵𝐵(𝑡𝑡) = 𝐵𝐵0 cos(𝜔𝜔𝜔𝜔). 

Для плоской волны |𝐸𝐸0| = 𝑐𝑐|𝐵𝐵0|. Оценим, возможно ли пренебречь магнитной 

составляющей электромагнитного поля. Запишем силу Лоренца 𝐹𝐹л = 𝑒𝑒𝐸𝐸 + 𝑒𝑒�𝑣⃗𝑣𝐵𝐵�⃗ �. 

Подставив значения, получим, что 𝐹𝐹𝑒𝑒 ≫ 𝐹𝐹𝑀𝑀 – следовательно магнитным полем 

пренебрегаем. 

Добавку в гамильтониан можно определить с помощью формулы, описывающей 

взаимодействие магнитного или электрического диполя, помещённого во внешнее 

электрическое или магнитное поле. Добавка для электрического поля 𝑊𝑊� (𝑟𝑟𝑡𝑡) = −�𝑑𝑑𝐸𝐸�⃗ �. 

По определению диполя найдём 𝑑𝑑𝑖𝑖 = 𝑒𝑒𝑟𝑟, т.к. заряд отрицательный, 𝑟𝑟 – радиус вектор от 

ядра в точку, где находится электрон. Также будем пренебрегать электрическими и 

магнитными мультипольными моментами. С такими приближениями решим уравнение 

Шредингера: 𝑖𝑖ℏ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝐻𝐻�0 + 𝑊𝑊� (𝑟𝑟𝑡𝑡))𝛹𝛹(𝑟𝑟𝑡𝑡), где 𝛹𝛹(𝑟𝑟𝑡𝑡) = � 𝐶𝐶𝑛𝑛(𝑡𝑡)𝛹𝛹𝑛𝑛(𝑟𝑟)𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡

𝑛𝑛
. Возьмём 

от него производную, а затем умножим на сопряженную функцию ∫ 𝛹𝛹𝑓𝑓∗(𝑟𝑟)𝑒𝑒
𝑖𝑖𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡. Учтя, 

что �𝛹𝛹𝑓𝑓�𝛹𝛹𝑛𝑛� = 𝛿𝛿𝑓𝑓𝑓𝑓, получим 𝑖𝑖ℏ 𝜕𝜕𝐶𝐶𝑓𝑓
𝜕𝜕𝜕𝜕

= � 𝐶𝐶𝑛𝑛�𝛹𝛹𝑓𝑓�𝑊𝑊� �𝛹𝛹𝑛𝑛�𝑒𝑒𝑖𝑖𝜔𝜔𝑓𝑓𝑓𝑓𝑡𝑡

𝑛𝑛
, т.е. конечное состояние 
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определяется суммой других состояний. Найдём решение данного уравнения. 𝐶𝐶𝑛𝑛 =

𝐶𝐶𝑛𝑛
(0) + 𝐶𝐶𝑛𝑛

(1) + 𝐶𝐶𝑛𝑛
(2) +..., 𝐶𝐶𝑛𝑛

(0)(𝑡𝑡) = 𝛿𝛿𝑛𝑛𝑛𝑛. Подставим 𝐶𝐶𝑛𝑛 в выражение и приравняем 

величины одинакового порядка малости, тогда 𝐶𝐶𝑓𝑓
(1)(𝑡𝑡) = − 𝑖𝑖

ℏ
� 𝑊𝑊𝑓𝑓𝑓𝑓(𝑡𝑡)𝑒𝑒𝑖𝑖𝜔𝜔𝑓𝑓𝑓𝑓𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡

0
=

𝑖𝑖 𝑑𝑑𝑓𝑓𝑓𝑓𝐸𝐸0
ℏ ∫ cos(𝜔𝜔𝜔𝜔)𝑒𝑒𝑖𝑖𝜔𝜔𝑓𝑓𝑓𝑓𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡

0 = 𝑖𝑖 𝑑𝑑𝑓𝑓𝑓𝑓𝐸𝐸0
ℏ

𝑒𝑒𝑖𝑖
𝛥𝛥𝛥𝛥𝛥𝛥
2

sin(𝛥𝛥𝛥𝛥𝛥𝛥∕2)
𝛥𝛥𝛥𝛥∕2

 (была использована подстановка 1 =

𝑒𝑒−𝑖𝑖
𝛼𝛼
2𝑒𝑒𝑖𝑖

𝛼𝛼
2), где 𝛥𝛥𝛥𝛥 = 𝜔𝜔𝑓𝑓𝑓𝑓 − 𝜔𝜔.  

Найдём вероятность 𝑃𝑃𝑓𝑓𝑓𝑓 = |𝐶𝐶𝑓𝑓
(1)(𝑡𝑡)|2 = �𝑑𝑑𝑓𝑓𝑓𝑓�

2𝐸𝐸02

4ℏ2
sin2�𝛥𝛥𝛥𝛥𝛥𝛥 2� �

(𝛥𝛥𝛥𝛥∕2)2
.При 𝑡𝑡 → ∞: 𝑙𝑙𝑙𝑙𝑙𝑙

𝑡𝑡→∞

sin2 𝛼𝛼𝛼𝛼
𝛼𝛼2𝑡𝑡

= 𝜋𝜋𝜋𝜋(𝛼𝛼), 

тогда 𝑃𝑃𝑓𝑓𝑓𝑓 = �𝑑𝑑𝑓𝑓𝑓𝑓�
2𝐸𝐸02

4ℏ2
2𝜋𝜋𝜋𝜋�𝜔𝜔𝑓𝑓𝑓𝑓 − 𝜔𝜔�𝑡𝑡 – вероятность перехода зависит от времени. 

Используем вероятность перехода в единицу времени 𝑤𝑤𝑓𝑓𝑓𝑓 = 𝑃𝑃𝑓𝑓𝑓𝑓
𝑡𝑡

= 2𝜋𝜋�𝑑𝑑𝑓𝑓𝑓𝑓�
2𝐸𝐸02

4ℏ2
𝛿𝛿�𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑖𝑖 −

ℏ𝜔𝜔�. Используем интенсивность 𝐼𝐼 = ∫ 𝐼𝐼𝜔𝜔 𝑑𝑑𝜔𝜔 = 𝜀𝜀0𝐸𝐸02𝑐𝑐
2

. Окончательный результат 𝑤𝑤𝑓𝑓𝑓𝑓 =

𝜋𝜋�𝑑𝑑𝑓𝑓𝑖𝑖�
2

𝑐𝑐𝜀𝜀0ℏ2
𝐼𝐼𝜔𝜔. Сделаем ещё одно приближение, считая, что задача изотропна, и дипольный 

момент определяется по каждой оси, и тогда 𝑑𝑑𝑧𝑧2 = 𝑑𝑑2
3� , 𝑤𝑤𝑓𝑓𝑓𝑓 = 𝜋𝜋�𝑑𝑑𝑓𝑓𝑓𝑓�

2

3𝑐𝑐𝜀𝜀0ℏ2
𝐼𝐼𝜔𝜔. Также данные 

вероятности перехода можно представить через коэффициенты Эйнштейна 𝐵𝐵𝑓𝑓𝑓𝑓 = 𝜋𝜋�𝑑𝑑𝑓𝑓𝑓𝑓�
2

3𝑐𝑐𝜀𝜀0ℏ2
, 

𝑤𝑤𝑓𝑓𝑓𝑓 = 𝐵𝐵𝑓𝑓𝑓𝑓𝐼𝐼𝜔𝜔 – для спонтанного излучения. Коэффициент для спонтанного излучения 

𝐴𝐴𝑓𝑓𝑓𝑓 = 𝐵𝐵𝑓𝑓𝑓𝑓
ℏ𝜔𝜔3

𝜋𝜋2𝑐𝑐3
. Для выведения данного коэффициента была рассмотрена двухуровневая 

система с динамическим равновесием между переходами с нижнего на верхний 

уровень. 

Правила отбора. 
Правила отбора определяются ненулевым матричным элементом дипольного момента. 

Вычислим правила отбора для дипольных переходов с изменением магнитного 

квантового числа. Для таких переходов соответствующая волновая функция – волновая 

функция оператора 𝐿𝐿�𝑧𝑧𝛹𝛹(𝜑𝜑) = ℏ𝑚𝑚𝑙𝑙𝛹𝛹(𝜑𝜑), где 𝛹𝛹(𝜑𝜑) = 1
√2𝜋𝜋

𝑒𝑒−𝑖𝑖𝑚𝑚𝑙𝑙𝜑𝜑.  

Выражение для дипольного матричного элемента будет определятся выражением 𝑑𝑑𝑓𝑓𝑓𝑓 =

�� � � 𝜓𝜓𝑓𝑓∗(𝑟𝑟, 𝜃𝜃,𝜑𝜑)
2𝜋𝜋

0

𝜋𝜋

0

∞

0

𝑒𝑒𝑒𝑒𝜑𝜑𝑖𝑖(𝑟𝑟,𝜃𝜃,𝜑𝜑)𝑟𝑟2 sin𝜃𝜃 𝑑𝑑𝑟𝑟 𝑑𝑑𝜃𝜃𝜃𝜃𝜃𝜃�. 
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Проинтегрируем по 𝜑𝜑: 𝐼𝐼 = � 𝜓𝜓𝑓𝑓∗(𝜑𝜑)𝑟𝑟𝜑𝜑𝑖𝑖(𝜑𝜑)𝑑𝑑𝑑𝑑
2𝜋𝜋

0
. Представим составляющие дипольного 

момента по осям x, y, z в виде интегралов, куда будут подставлены соответствующие 

значения (𝑥𝑥 = 𝑟𝑟 sin𝜃𝜃 cos𝜑𝜑 ,𝑦𝑦 = 𝑟𝑟 sin𝜃𝜃 sin𝜑𝜑 , 𝑧𝑧 = 𝑟𝑟 cos 𝜃𝜃). 𝐼𝐼𝑥𝑥 = � 𝛹𝛹𝑓𝑓∗(𝜑𝜑)𝑥𝑥𝛹𝛹𝑖𝑖(𝜑𝜑)𝑑𝑑𝜑𝜑
2𝜋𝜋

0
=

𝑟𝑟 sin𝜃𝜃� cos𝜑𝜑 𝑒𝑒𝑖𝑖�𝑚𝑚𝑙𝑙𝑖𝑖−𝑚𝑚𝑙𝑙𝑓𝑓�𝜑𝜑 𝑑𝑑𝜑𝜑
2𝜋𝜋

0
= 1

2
𝑟𝑟 sin𝜃𝜃� �𝑒𝑒𝑖𝑖�𝑚𝑚𝑙𝑙𝑖𝑖−𝑚𝑚𝑙𝑙𝑓𝑓−1�𝜑𝜑 + 𝑒𝑒𝑖𝑖�𝑚𝑚𝑙𝑙𝑖𝑖−𝑚𝑚𝑙𝑙𝑓𝑓+1�𝜑𝜑� 𝑑𝑑𝜑𝜑

2𝜋𝜋

0
. 

Отсюда получаем, что 𝛿𝛿𝑚𝑚𝑙𝑙𝑖𝑖 ,𝑚𝑚𝑙𝑙𝑓𝑓+1
 и 𝛿𝛿𝑚𝑚𝑙𝑙𝑖𝑖 ,𝑚𝑚𝑙𝑙𝑓𝑓−1

. Тогда получаем правила отбора: для того, 

чтобы соответствующий переход был разрешён, необходимо чтобы 𝛥𝛥𝛥𝛥 = ±1. 𝐼𝐼𝑦𝑦 =

� 𝛹𝛹𝑓𝑓∗(𝜑𝜑)𝑦𝑦𝛹𝛹𝑖𝑖(𝜑𝜑)𝑑𝑑𝜑𝜑
2𝜋𝜋

0
= 𝑟𝑟 sin𝜃𝜃� sin𝜑𝜑 𝑒𝑒𝑖𝑖�𝑚𝑚𝑙𝑙𝑖𝑖−𝑚𝑚𝑙𝑙𝑓𝑓�𝜑𝜑 𝑑𝑑𝜑𝜑

2𝜋𝜋

0
. Для 𝐼𝐼𝑧𝑧 =

� 𝛹𝛹𝑓𝑓∗(𝜑𝜑)𝑧𝑧𝛹𝛹𝑖𝑖(𝜑𝜑)𝑑𝑑𝜑𝜑
2𝜋𝜋

0
= 𝑟𝑟 sin𝜃𝜃� 𝑒𝑒𝑖𝑖�𝑚𝑚𝑙𝑙𝑖𝑖−𝑚𝑚𝑙𝑙𝑓𝑓�𝜑𝜑 𝑑𝑑𝜑𝜑

2𝜋𝜋

0
 получаем 𝛿𝛿𝑚𝑚𝑙𝑙𝑖𝑖 ,𝑚𝑚𝑙𝑙𝑓𝑓

, что соответствует 

𝛥𝛥𝛥𝛥 = 0. Таким образом были получены правила отбора по магнитному квантовому 

числу.  

Правило отбора по моменту импульса. 

Получим правила отбора по 𝑙𝑙. Для этого необходимо использовать свойства 

присоединённых полиномов Лежандра: � 𝑃𝑃𝑙𝑙𝑚𝑚(𝑥𝑥)𝑃𝑃𝑙𝑙′
𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑

+1

−1
→ 𝛿𝛿𝑙𝑙𝑙𝑙′ и 𝑥𝑥𝑃𝑃𝑙𝑙𝑚𝑚(𝑥𝑥) =

𝐴𝐴1𝑃𝑃𝑙𝑙−1𝑚𝑚 (𝑥𝑥) + 𝐵𝐵1𝑃𝑃𝑙𝑙+1𝑚𝑚 (𝑥𝑥). Тогда если взять, например, составляющую дипольного 

момента по z, то ⟨𝑙𝑙,𝑚𝑚|𝑧𝑧|𝑙𝑙′,𝑚𝑚⟩ = ∫ 𝑑𝑑𝜃𝜃𝜋𝜋
0 (𝑃𝑃𝑙𝑙𝑚𝑚(cos 𝜃𝜃) cos𝜃𝜃𝑃𝑃𝑙𝑙𝑚𝑚(cos𝜃𝜃)) = 𝐶𝐶1𝛿𝛿𝑙𝑙,𝑙𝑙′+1 +

𝐶𝐶1𝛿𝛿𝑙𝑙,𝑙𝑙′−1. Откуда 𝛥𝛥𝑙𝑙 = ±1. Аналогичный результат получается для x и y. 

Правила отбора по спину.  
Спин не изменяет вид волновой функции, поэтому соответствующие правила для 

спина: 𝛥𝛥𝛥𝛥 = 0 и 𝛥𝛥𝑚𝑚𝑠𝑠 = 0. Т.е. спин при переходах должен сохраняться. 

Правила отбора для полного механического момента. 

Они следуют из предыдущих правил отбора: 𝑚𝑚𝑗𝑗 = 𝑚𝑚𝑙𝑙 + 𝑚𝑚𝑠𝑠 ⇒ 𝛥𝛥𝑚𝑚𝑗𝑗 = 𝛥𝛥𝑚𝑚𝑙𝑙 + 𝛥𝛥𝑚𝑚𝑖𝑖 ⇒

𝛥𝛥𝑚𝑚𝐽𝐽 = 0, ±1 и 𝛥𝛥𝛥𝛥 = 0, ±1. Был получен очень важный результат – возможны переходы 

только между состояниями с разной чётностью. 

https://vk.com/teachinmsu
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Правила отбора для многоэлектронных атомов. 

Выражение для чётности принимает вид 𝑃𝑃 = (−1)𝛴𝛴𝑙𝑙𝑖𝑖 . Также 𝛥𝛥𝛥𝛥 = 0. ±1, 𝛥𝛥𝐽𝐽 = 0. ±1, 

𝛥𝛥𝑆𝑆 = 0. 

Правила отбора для атома водорода. 

Серия Лаймана. 

𝛥𝛥𝑙𝑙 = ±1, 𝛥𝛥𝛥𝛥 = 0, ±1, 𝛥𝛥𝛥𝛥 – любое. 

Полученные правила отбора 

определяют вероятности и 

возможности переходов, которые 

можно наблюдать в спектрах. Для 

примера рассмотрим правила 

отбора для атома водорода в серии 

Лаймана. Серия Лаймана – 

переходы с вышестоящих уровней 

на основное состояние, и головная 

линия 𝐿𝐿𝛼𝛼 определяется переходами с уровней 2𝑝𝑝3
2
 и 2𝑝𝑝1

2
, запрета по изменению 

главного квантового числа нет, т.к. это радиальная функция умноженная на 𝑟𝑟3, а 

данное произведение отлично от 0 при любом n. Следующая линия данной серии 𝐿𝐿𝛽𝛽 – 

переход с третьего уровня на основной и тоже дублет, но расщеплён меньше. 

Головная линия серии Бальмера. 

𝛥𝛥𝑙𝑙 = ±1, 𝛥𝛥𝛥𝛥 = 0, ±1, 𝛥𝛥𝛥𝛥 – любое. 

Серия Бальмера – переход с вышестоящих уровней на уровень 𝑛𝑛 = 2. В данном случае 

ситуация осложняется, т.к. возможны переходы с уровней s на уровни p, которые дают 

т.н. шарп-серию, т.е. резкую серию. Это происходит из-за того, что дублет на уровне 2p 

имеет большое расщепление и поэтому линии перехода с уровня 3s очень чётко 

фиксируются в спектрах. Переход с уровня 3d даёт 3 линии, расстояние между 

которыми очень мало и размыто, поэтому данный переход называется диффузным. 

Также возможен переход с уровней 3p на уровень 2s. Всего наблюдается семь линий, 

но имеются 2 совпадающих линии. 

Рисунок 24. Правила отбора для атома водорода. 
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Спектры водородоподобных атомов. 
Те же правила отбора могут быть применены и к щелочным металлам, например 

литию.  Спектры атома водорода и лития очень похожи, но основное состояние атома 

лития 𝑛𝑛 = 2. Наблюдается диффузная серия, резкая серия и главная серия. Такие же 

спектры могут быть рассмотрены у других щелочных металлов, в частности натрий и 

т.д., но там основное состояние будет начинаться с уровня 3.  

В спектрах атомов с одним оптическим электроном наблюдаются спектральные серии и 

тонкое расщепление линий, аналогичные наблюдаемым в спектрах атома водорода.  

Правила отбора для многоэлектронных атомов. 

Спектр атома гелия. 
Спектр атома гелия интересен 

тем, что имеются два типа 

уровней, которые отвечают 

синглетному и триплетному 

состоянию. Те же самые правила 

отбора наблюдаются и здесь. Т.к. 

𝛥𝛥𝛥𝛥 = 0 и 𝛥𝛥𝑀𝑀𝑠𝑠 = 0, то возможны 

только те переходы, что 

изображены на картинке. Также 

𝛥𝛥𝛥𝛥 = 0. ±1, 𝛥𝛥𝑀𝑀𝐿𝐿 = 0. ±1; 𝛥𝛥𝛥𝛥 =

0. ±1 (𝛥𝛥𝛥𝛥 ≠ 0, если 𝐽𝐽 = 0), 𝛥𝛥𝑀𝑀𝐽𝐽 =

0. ±1 �𝛥𝛥𝑀𝑀𝐿𝐿 ≠ 0, если 𝑀𝑀𝐽𝐽𝑓𝑓 =

𝑀𝑀𝐽𝐽𝑖𝑖 = 0 и 𝛥𝛥𝛥𝛥 = 0�. Ещё необходимо учитывать правило Лапорта: 𝑃𝑃𝑓𝑓 = −𝑃𝑃𝑖𝑖, т.е. 

возможны переходы только с разной чётностью. Для указания нечётности используют 

символ o, при записи терма ((2𝑠𝑠 + 1)𝐿𝐿𝐽𝐽𝑜𝑜). 

  

Рисунок 25. Спектр атома гелия. 
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Лекция 13. Взаимодействие атом с квантовым электромагнитным 

полем. 
На прошлой лекции было получено, что если рассматривать электромагнитное поле, 

как однородное поле, то состояния начинают быть связанными. Т.е. если рассматривать 

двухуровневую систему, то она может быть описана суперпозицией двух стационарных 

состояний. Если, например, рассмотреть состояния один и два, то получаем 

следующую волновую функцию: 𝛹𝛹 = 𝐶𝐶1𝛹𝛹1 + 𝐶𝐶2𝛹𝛹2. Также нам известно каким образом 

стационарные состояния зависят от времени: 𝐶𝐶1𝛹𝛹1~𝑒𝑒−𝑖𝑖𝜔𝜔1𝑡𝑡 и 𝐶𝐶2𝛹𝛹2~𝑒𝑒−𝑖𝑖𝜔𝜔2𝑡𝑡, где 𝜔𝜔 = 𝐸𝐸
ℏ
. 

Задача для стационарных состояний считается решённой, если известна суперпозиция 

состояний. Тогда диполь будет зависеть от времени и среднее значение диполя ⟨𝑑𝑑⟩ =

𝑒𝑒∫ 𝛹𝛹∗𝑟𝑟𝛹𝛹 𝑑𝑑𝑉𝑉. Учитывая, что ⟨𝛹𝛹1|𝑟𝑟|𝛹𝛹1⟩ = 0 и ⟨𝛹𝛹2|𝑟𝑟|𝛹𝛹2⟩ = 0, тогда ⟨𝑑𝑑⟩ = ∫ (𝐶𝐶1∗𝛹𝛹1∗𝐶𝐶2𝛹𝛹2 +

𝐶𝐶1𝛹𝛹1𝐶𝐶2∗𝛹𝛹2∗)𝑟𝑟𝑟𝑟𝑟𝑟~𝐶𝐶1∗𝐶𝐶2𝑒𝑒−𝑖𝑖(𝜔𝜔2−𝜔𝜔1)𝑡𝑡 + 𝐶𝐶2∗𝐶𝐶1𝑒𝑒𝑖𝑖(𝜔𝜔2−𝜔𝜔1)𝑡𝑡~ cos𝜔𝜔𝜔𝜔, где 𝜔𝜔 = 𝜔𝜔2 − 𝜔𝜔1. Т.е. в этом 

случае имеем связанные состояния, и электрон находится в суперпозиции этих 

состояний, тогда дипольный момент осциллирует с разностной частотой, и 

наблюдаются переходы с частотой, определяемой энергией первого и второго уровней. 

Таким образом удаётся объяснить вынужденное излучение, поскольку стационарные 

состояния связаны, и суперпозиция данных состояний даёт соответствующие 

переходы. Однако, не ясно, как происходят вынужденные переходы, т.к. в отсутствие 

электромагнитного поля состояние перестают быть связанными.  

Квантовое электромагнитное поле. 
Для объяснения этой ситуации необходимо рассматривать не только квантование атома 

и классическое электромагнитное поле. Необходимо рассматривать полностью 

квантовую задачу, когда имеется квантовое электромагнитное поле и проквантованный 

атом. 

Рассмотрим электромагнитное поле в резонаторе размером 𝐿𝐿, тогда его объём 𝑉𝑉 = 𝐿𝐿3. В 

данном резонаторе установятся стоячие волны, которые дадут некий дискретный ряд 

частот, который будут определяться соотношением 𝜆𝜆
2
𝑙𝑙 = 𝐿𝐿 или 𝑘𝑘𝑙𝑙𝐿𝐿 = 𝑙𝑙𝑙𝑙, где 𝑙𝑙 = 1,2,3, … 

Получаем моды 𝐸𝐸𝑙𝑙���⃗ = 𝑦⃗𝑦� 2
𝑉𝑉𝑉𝑉
𝑝𝑝𝑙𝑙(𝑡𝑡) sin𝑘𝑘𝑙𝑙𝑧𝑧 и 𝐻𝐻𝑙𝑙����⃗ = 𝑥⃗𝑥� 2

𝑉𝑉𝑉𝑉
𝑞𝑞𝑙𝑙(𝑡𝑡) cos 𝑘𝑘𝑙𝑙𝑧𝑧. Если подставить 
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данные выражения в уравнения Максвелла 𝛻𝛻 × 𝐸𝐸�⃗ = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 и 𝛻𝛻 × 𝐻𝐻��⃗ = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, получим 𝑞̈𝑞𝑙𝑙(𝑡𝑡) =

𝑝̇𝑝𝑙𝑙 = −𝜔𝜔𝑙𝑙
2𝑞𝑞𝑙𝑙(𝑡𝑡), где 𝑞𝑞𝑙𝑙 – обобщённая координата, 𝑝𝑝𝑙𝑙 – обобщённый импульс, 𝑝̈𝑝𝑙𝑙(𝑡𝑡) =

−𝜔𝜔𝑙𝑙
2𝑞̇𝑞𝑙𝑙 = −𝜔𝜔𝑙𝑙

2𝑝𝑝𝑙𝑙(𝑡𝑡). Таким образом возможно изложить энергию электромагнитного 

поля и написать гамильтониан электромагнитного поля в виде разложения по 

гармоническим осцилляторам 𝐻𝐻�𝑙𝑙 = ∫ 𝐴𝐴𝑑𝑑𝑧𝑧𝑍𝑍
0 �𝜀𝜀𝐸𝐸

�⃗ 𝑙𝑙⋅𝐸𝐸𝑙𝑙����⃗

2
+ 𝜇𝜇𝐻𝐻𝑙𝑙����⃗ ⋅𝐻𝐻𝑙𝑙����⃗

2
� = 1

2
𝑝𝑝𝑙𝑙2(𝑡𝑡) + 1

2
𝜔𝜔𝑙𝑙
2𝑞𝑞𝑙𝑙2(𝑡𝑡). 

Данное выражение с точностью совпадает с выражением для энергии гармонического 

осциллятора, 𝜔𝜔𝑙𝑙 – частота соответствующей моды. Таким образом гамильтониан 

разбивается на бесконечное число мод или бесконечное число гамильтонианов.  

При рассмотрении гармонического осциллятора очень удобно использовать операторы 

рождения и уничтожения. [𝑞𝑞𝑙𝑙𝑝𝑝𝑙𝑙] = 𝚤𝚤̇ℏ𝛿𝛿𝑙𝑙𝑙𝑙, �
𝑎𝑎𝑙𝑙
𝑎𝑎𝑙𝑙
+� = � 1

2ℏ𝜔𝜔𝑙𝑙
(𝜔𝜔𝑙𝑙𝑞𝑞𝑙𝑙 ± 𝑖𝑖𝑝𝑝𝑙𝑙). Тогда гамильтониан 

может быть представлен в виде 𝐻𝐻� = ℏ𝜔𝜔𝑙𝑙 �𝑎𝑎𝑙𝑙+𝑎𝑎𝑙𝑙 + 1
2
�, и даже если не возбуждено ни 

одного фотона, то энергия всё равно отлична от нуля. Таким образом, если 

просуммировать все гамильтонианы 𝐻𝐻� = � 𝐻𝐻�𝑙𝑙
∞
𝑙𝑙=1 , 𝐻𝐻�|𝑛𝑛𝑙𝑙⟩ = ℏ𝜔𝜔𝑙𝑙 �𝑎𝑎𝑙𝑙+𝑎𝑎𝑙𝑙 + 1

2
� |𝑛𝑛𝑙𝑙⟩ =

ℏ𝜔𝜔𝑙𝑙 �𝑛𝑛 + 1
2
� |𝑛𝑛𝑙𝑙⟩, тогда будет получено выражение 𝐻𝐻�|𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑙𝑙 , … ⟩ = � ℏ𝜔𝜔𝑙𝑙 �𝑛𝑛𝑙𝑙 +

∞

𝑙𝑙=1

1
2
� |𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑙𝑙 , … ⟩, которая показывает, что даже если не будет возбуждена ни одна из 

мод, энергия будет бесконечной. Такое состояние называется электромагнитным 

вакуумом, и заметим, что даже когда нет ни одного фотона в соответствующей моде, 

эта энергия отлична от нуля.  

Оказывается, что взаимодействием с электромагнитным полем фотонного вакуума 

обусловлены спонтанные переходы, поскольку даже в отсутствие электромагнитного 

поля, энергия электромагнитного вакуума отлична от нуля, и это приводит к 

взаимодействию электрона с колебаниями этого поля. 

Таким образом получается, что полный гамильтониан системы равен 𝐻𝐻� = 𝐻𝐻�0 + 𝐻𝐻�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +

𝑊𝑊� , где 𝐻𝐻�0 – гамильтониан атома, для которого задача на уравнение Шредингера и 

волновые функции решена, 𝐻𝐻�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 включает энергию электромагнитного поля и 

представляет собой сумму гамильтонианов осцилляторов, которые соответствуют той 

или иной моде, и добавка 𝑊𝑊� , которая учитывалась раньше, но теперь электрическое 
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поле должно учитываться как квантовое, которое определяется соответствующими 

волновыми функциями и гамильтонианом электромагнитного поля, в виде суммы 

гамильтонианов, относящихся к гармоническому осциллятору каждой моды. Волновая 

функция, соответствующая электромагнитному полю, записывается в виде 𝛹𝛹𝑓𝑓 =

∑ 𝑢𝑢𝑙𝑙𝑙𝑙 = |𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑙𝑙 , … ⟩. Тогда амплитуда вероятности перехода из i-ого начального 

состояния в конечное f-тое может быть записана в виде 𝐶𝐶𝑓𝑓𝑓𝑓~�𝛹𝛹𝑓𝑓�𝑑̂𝑑�𝛹𝛹𝑖𝑖� �𝑛𝑛𝑓𝑓 �𝐸𝐸�⃗ 𝑙𝑙
� � 𝑛𝑛𝑖𝑖� −

�𝛹𝛹𝑓𝑓�𝑑̂𝑑�𝛹𝛹𝑖𝑖��𝑛𝑛𝑓𝑓|[𝑎𝑎𝑙𝑙+(𝑡𝑡) − 𝑎𝑎𝑙𝑙(𝑡𝑡)]|𝑛𝑛𝑖𝑖�, откуда 𝑛𝑛𝑓𝑓 = 𝑛𝑛𝑖𝑖 ± 1, т.е. были получены правила 

отбора, которые были справедливы для гармонического осциллятора, т.е. возможны 

переходы только в соседние состояния. Если осуществляется переход со второго 

уровня на первый, то 𝐸𝐸2 + 𝑛𝑛ℏ𝜔𝜔 ≈ 𝐸𝐸1 + (𝑛𝑛 + 1)ℏ𝜔𝜔. Даже если 𝑛𝑛 = 0, то всё равно 

возможен спонтанный переход. Также возможно получить вероятность перехода 𝑃𝑃𝑓𝑓𝑓𝑓 =

�𝐶𝐶𝑓𝑓𝑓𝑓�
2 − �𝑑𝑑𝑓𝑓𝑓𝑓�

2(𝑛𝑛𝜔𝜔 + 1), которая равна 𝑃𝑃𝑓𝑓𝑖𝑖 = 𝑃𝑃𝑓𝑓𝑖𝑖
𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑓𝑓𝑖𝑖

𝑠𝑠𝑠𝑠 – сумме вероятностей переходов 

стимулированного и спонтанного. Отсюда можно получить соотношение между 

коэффициентом 𝐴𝐴𝑓𝑓𝑓𝑓 = 𝐵𝐵𝑓𝑓𝑓𝑓
ℏ𝜔𝜔3

𝜋𝜋2𝑐𝑐3
 – для спонтанного излучения, и  𝐵𝐵𝑓𝑓𝑓𝑓 = 𝜋𝜋�𝑑𝑑𝑓𝑓𝑓𝑓�

2

3𝑐𝑐𝜀𝜀0ℏ2
 – для 

вынужденного. Различаются определения вероятности 𝐵𝐵𝑓𝑓𝑓𝑓. Либо 𝑤𝑤𝑠𝑠𝑠𝑠 = 𝐵𝐵21∗ 𝐼𝐼𝜔𝜔, где 𝐼𝐼𝜔𝜔 – 

интенсивность, либо более частый вариант 𝑤𝑤𝑠𝑠𝑠𝑠 = 𝐵𝐵21𝜌𝜌𝜔𝜔 – объёмная плотность энергии 

или спектральная плотность излучения, 𝐼𝐼𝜔𝜔 = 𝜌𝜌𝜔𝜔𝑐𝑐. 

Рассмотрим выражения, полученные 

Эйнштейном в 1917 году. Соотношения 

основаны на принципе детального 

равновесия. 𝑁𝑁2
𝑁𝑁1

= 𝑒𝑒−
𝐸𝐸2−𝐸𝐸1
𝑘𝑘𝑘𝑘 = 𝑒𝑒−

ℏ𝜔𝜔
𝑘𝑘𝑘𝑘  – 

распределение Больцмана. Учитывая 

спонтанные переходы со второго на 

первый уровень, получаем 𝑁𝑁1𝐵𝐵12𝜌𝜌𝜔𝜔 =

𝑁𝑁2(𝐴𝐴21 + 𝐵𝐵21𝜌𝜌𝜔𝜔), без их учёта  𝑁𝑁1 = 𝑁𝑁2. 

При 𝑇𝑇 → ∞, 𝐵𝐵12 = 𝐵𝐵21 ≡ 𝐵𝐵, 𝐴𝐴21 ≡ 𝐴𝐴. 𝜌𝜌𝜔𝜔 = 𝜔𝜔2

𝜋𝜋2𝑐𝑐3
𝑘𝑘𝑘𝑘 – формула планка. Когда 𝑘𝑘𝑘𝑘 ≫ ℏ𝜔𝜔, 

то 𝜌𝜌𝜔𝜔 = 𝐴𝐴

𝐵𝐵�𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘𝑘𝑘  −1�

 может быть разложена в ряд, откуда получается выражение 𝐴𝐴𝑓𝑓𝑓𝑓 =

𝐵𝐵𝑓𝑓𝑓𝑓
ℏ𝜔𝜔3

𝜋𝜋2𝑐𝑐3
. Время жизни перехода 𝜏𝜏 = 1

𝐴𝐴
= 𝜋𝜋2𝐶𝐶3

𝐵𝐵ℎ𝜔𝜔3, имея ввиду только спонтанные переходы. 

Рисунок 26. Переходы между двумя 
уровнями. 
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По величине 𝜏𝜏 можно оценить ширину уровня или ширину линии, вызванной 

естественным затуханием. Естественное затухание вызвано взаимодействием с 

электромагнитным вакуумом. 

Эффекты, обусловленные взаимодействием с фотонным вакуумом. 

Один из них – Лэмбовский сдвиг. В соответствии с теорией Дирака 𝐸𝐸 =

− 𝜇𝜇𝑒𝑒4

(4𝜋𝜋𝜀𝜀0)22ℏ2𝑛𝑛2
�1 + 𝛼𝛼2

𝑛𝑛
� 1
𝑗𝑗+12

− 3
4𝑛𝑛
�� смещение энергетических уровней обусловлено 

релятивистскими поправками, в том числе спин-орбитальным взаимодействием, и 

зависит от квантового числа j, и для одинаковых j соответствующие уровни должны 

совпадать. Т.е. по формуле выше уровень 2𝑠𝑠1
2
 совпадает с уровнем 2𝑝𝑝1

2
. Но эксперимент 

показывает, что это не так. Это было обнаружено в опыте Уиллиса Лэмба и Роберта 

Ризерфорда. Данное отличие в энергии уровней обусловлено взаимодействием с 

электромагнитным вакуумом. Точное значение было рассчитано Бете в рамках 

квантовой теории поля 𝛿𝛿𝐸𝐸𝑛𝑛𝑛𝑛 = 8
3𝜋𝜋
𝑍𝑍4𝛼𝛼3 1

𝑛𝑛3
𝑅𝑅𝑅𝑅 ln 2𝑛𝑛2

𝑍𝑍2𝛼𝛼2
. 

Ещё один эффект, обусловленный взаимодействием с фотонным вакуумом – 

“аномальный” магнитный момент электрона. Он обусловлен тем, что электрон 

находится в облаке виртуальных фотонов и меняется как его заряд, так и масса. В 

результате можно оценить такие изменения исходя из квантовой теории поля 𝜇𝜇𝑡𝑡𝑡𝑡 =

𝜇𝜇0 �1 + 𝛼𝛼
2𝜋𝜋
− 0,32848 𝑎𝑎2

𝜋𝜋2
+ 1,184175 𝛼𝛼3

𝜋𝜋3
�, где 𝜇𝜇0 = 𝑒𝑒ℏ

2𝑚𝑚
. 

Рентгеновское излучение. 
Спектр рентгеновского 

излучения происходит 

в результате 

торможения 

ускоренных 

электронов о анод. 

Коротковолновая 

граница сплошного 

спектра 

рентгеновского 

Рисунок 28. Интенсивность 
рентгеновского излучения. 

Рисунок 27. 
Рентгеновские 
характеристические 
переходы. 
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излучения не зависит от типа анода. Это находит простое объяснение, если 

рассматривать коротковолновую границу, а излучение вторичны электронов, как 

обратный фотоэффект. Тогда можно записать следующее выражение 𝑒𝑒𝛥𝛥𝛥𝛥 = ℎ𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚 =
ℎ𝑐𝑐
𝜆𝜆min

, откуда 𝜆𝜆min = ℎ𝑐𝑐
𝑒𝑒𝛥𝛥𝛥𝛥

. 

Также интересным в данном процессе является характеристическое излучение, 

наблюдаемое для анодов некоторых типов, и не наблюдаемое для других типов анодов. 

Это связано с тем, что они имеют разные заряды, и соответствующие энергии 

характеристических линий можно получить, используя формулу Мозли 𝛥𝛥𝐸𝐸𝐾𝐾𝛼𝛼 =

𝑅𝑅𝑅𝑅 3
4

(𝑍𝑍 − 1)2, 𝛥𝛥𝐸𝐸𝐿𝐿𝛼𝛼 = 𝑅𝑅𝑅𝑅 5
36

(𝑍𝑍 − 7,5)2. Рентгеновские характеристические переходы 

обусловлены переходом электронов, с соответствующим излучением, с вышестоящих 

уровней, при выбивании электрона на нижестоящем. Наряду с оптическими 

переходами, возможно Оже испускание электрона. Т.е. энергия полученного кванта 

тратится не на излучение, а на возбуждение какого-либо другого электрона, который 

вылетает за пределы атома.  

Соответствующие линии имеют 

тонкую структуру, которая 

обусловлена спин-орбитальным 

взаимодействием. Линия L 

рентгеновского излучения ведётся себя как триплет, если рассматривать спектры 

поглощения. Линия K не расщеплена, т.к. там единственное значение j, но линия 𝐾𝐾𝛼𝛼 

оказывается дублетной, т.к. возможны два перехода, обусловленные спин-орбитальным 

расщеплением линии L. 

Рисунок 30. Расщепление линий рентгеновского 
излучения. 

Рисунок 29. Реальный спектр 
поглощения рентгеновских лучей. 
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Поведение атома в магнитном поле. 
Гамильтониан атома в магнитном поле можно рассмотреть в качестве суммы трёх 

гамильтонианов 𝐻𝐻� = 𝐻𝐻�0 + 𝐻𝐻�𝐿𝐿𝑆𝑆 + 𝐻𝐻�𝑀𝑀, где 𝐻𝐻�0 – гамильтониан, не учитывающий 

магнитное поле, 𝐻𝐻�𝐿𝐿𝑆𝑆 = 𝐴𝐴�𝐿𝐿�𝑆̂𝑆�~𝛼𝛼2𝑅𝑅𝑅𝑅 – гамильтониан, обусловленный внутренним 

магнитным полем, релятивистскими эффектами и спин-орбитальным взаимодействием, 

𝐻𝐻�𝑀𝑀~𝜇𝜇𝐵𝐵𝐵𝐵 – обусловлен взаимодействием магнитных моментов с внешним магнитным 

полем. Сильным полем будем считать 𝐵𝐵 ≫ 𝛼𝛼2𝑅𝑅𝑅𝑅
𝜇𝜇𝐵𝐵

. 

Слабое поле. 

𝐵𝐵 ≪ 𝛼𝛼2𝑅𝑅𝑅𝑅
𝜇𝜇𝐵𝐵

. Формула для магнитного момента записывается 

следующим образом 𝜇𝜇𝐿𝐿����⃗ = −𝑔𝑔𝐿𝐿𝜇𝜇𝐵𝐵
𝐿𝐿�⃗

ℏ
, где 𝑔𝑔𝐿𝐿 = 1. Магнитный 

момент, связанный со спином, 𝜇𝜇𝑠𝑠���⃗ = −𝑔𝑔𝑠𝑠𝜇𝜇𝐵𝐵
𝑆𝑆
ℏ
, где 𝑔𝑔𝑠𝑠 = 2. В 

проекциях на оси 𝜇𝜇𝐿𝐿𝑧𝑧 = −𝑔𝑔𝐿𝐿𝜇𝜇𝐵𝐵𝑀𝑀𝑧𝑧 и 𝜇𝜇𝑠𝑠𝑧𝑧 = −𝑔𝑔𝐿𝐿𝜇𝜇𝐵𝐵𝑀𝑀𝑆𝑆. 𝐽𝐽 = 𝐿𝐿�⃗ + 𝑆𝑆, 𝜇⃗𝜇 =

𝜇𝜇𝐿𝐿����⃗ + 𝜇𝜇𝑆𝑆����⃗ = −𝜇𝜇𝐵𝐵
ℏ

(𝐿𝐿�⃗ + 2𝑆𝑆). Тогда множитель Ланде (g-фактор) равен 

𝑔𝑔 = − 1
𝜇𝜇𝐵𝐵

�𝜇𝜇��⃗ 𝐽𝐽�
𝐽𝐽2

= 1 + 𝐽𝐽2+𝑆𝑆2−𝐿𝐿2

2𝐽𝐽2
= 1 + 𝐽𝐽(𝐽𝐽+1)+𝑆𝑆(𝑆𝑆+1)−𝐿𝐿(𝐿𝐿+1)

2𝐽𝐽(𝐽𝐽+1)
. И 𝜇𝜇𝐽𝐽 =

−𝑔𝑔𝜇𝜇𝐵𝐵
𝐽𝐽
ℏ
. Тогда расщепление в слабом магнитном поле будет 

определяться как величиной g-фактора, так и величиной проекции 

𝑀𝑀𝐽𝐽. Для данной ситуации необходимо использовать  |𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝐽𝐽⟩ базис. 

Эффект Зеемана (простой). 

Если имеется уровень 𝐸𝐸1 = 𝐸𝐸01 + 𝑔𝑔1𝜇𝜇𝐵𝐵𝐵𝐵𝑀𝑀𝐽𝐽1, где 𝐸𝐸01 – 

уровень в отсутствии поля, и 𝐸𝐸2 = 𝐸𝐸02 + 𝑔𝑔2𝜇𝜇𝐵𝐵𝐵𝐵𝑀𝑀𝐽𝐽2. Тогда 

разность энергии между этими уровнями будет 

определяться формулой 𝜔𝜔 = 𝜔𝜔0 + 𝜇𝜇𝐵𝐵𝐵𝐵
ℏ

(𝑔𝑔1𝑀𝑀𝐽𝐽1 − 𝑔𝑔2𝑀𝑀𝐽𝐽2), 

которая также будет определять расщепление уровней в 

слабом магнитном поле. Если 𝑔𝑔1 = 𝑔𝑔2 = 1 (для 

синглетных уровней), тогда будет наблюдаться Лоренцов 

триплет. 

Рисунок 31. 
Магнитный и 
спиновый 
моменты в слабом 
магнитном поле. 

Рисунок 32. Эффект 
Зеемана (простой). 

https://vk.com/teachinmsu


 

 АТОМНАЯ ФИЗИКА 
 АВАКЯНЦ ЛЕВ ПАВЛОВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

79 
 
 

 

Эффект Зеемана (сложный). 

Возникает если 𝑔𝑔1 ≠ 𝑔𝑔2. В этом случае 

необходимо получать расщепление уровней и 

использовать правила отбора. Заметим, что поле 

действительно слабое, т.к. расщепление намного 

меньше расщепления спин-орбитального 

взаимодействия. Здесь наблюдается целая серия 

линий, обусловленная правилами отбора. Таким 

образом получим четыре линии, обусловленные 

переходом 2𝑝𝑝1
2
→ 1𝑠𝑠1

2
, и шесть линий, 

образованных переходом 2𝑝𝑝3
2
→ 1𝑠𝑠1

2
.  

Сильное поле. 
Ситуация меняется, если поле – сильное. 

Этот эффект называется эффектом 

Пашена-Бака. Если взять те же линии 2𝑝𝑝1
2
 

и 2𝑝𝑝3
2
, то спин-орбитальное 

взаимодействие будет много меньше 

расщепления, обусловленного 

воздействием поля. В случае сильного 

магнитного поля необходимо 

использовать другой базис, где проекции 

𝐿𝐿𝑧𝑧 и 𝑆𝑆𝑧𝑧 сохраняются, и векторы L и S уже 

не связаны. Поэтому будет 

использоваться базис |𝐿𝐿𝐿𝐿𝑧𝑧𝑆𝑆𝑆𝑆𝑧𝑧⟩ базис. Добавочный гамильтониан в таком базисе 𝐻𝐻�𝑀𝑀 =

𝜇𝜇𝐵𝐵𝐵𝐵�𝐿𝐿�𝑧𝑧 + 2𝑆̂𝑆𝑧𝑧�. Таким образом в эффекте Пашена-Бака всегда наблюдается Лоренцов 

триплет, т.е. L-S связь разрывается, и все возможные переходы будут определяться 

правилами отбора. 

  

Рисунок 33. Эффект Зеемана 
(сложный). 

Рисунок 34. Эффект Пашена-Бака. 
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Лекция 14. Физика молекул и молекулярных ионов. 
Для рассмотрения механизмов, приводящих к образованию химических связей, 

рассмотрим простейшую молекулу – молекулярный ион водорода. Получаем, что 

электрон находится в электростатическом поле двух протонов, и тогда возможно такую 

модель описать с помощью модели двух прямоугольных ям. 

Также, при получении устойчивой молекулы, необходимо 

найти минимум такой системы, который соответствует 

устойчивому положению. Таким образом, необходимо получить 

волновые функции в данной модельной системе, и затем, 

уменьшая расстояния между ямами, смотреть, что происходит с 

энергией системы, возможно ли получить такое состояние, в котором два 

положительных протона должны отталкиваться друг от друга, и есть ли какой-нибудь 

механизм, который будет препятствовать этому отталкиванию и приведёт к созданию 

связи молекулярного иона. Рассмотрим случай, когда имеется один уровень, который 

является двукратно вырожденным. При большом расстоянии между протонами 

волновые функции могут быть определены следующим образом: волновая функция, 

соответствующая электрону в первой яме, и волновая функция, соответствующая 

электрону во второй яме. Поскольку потенциалы симметричны относительно начала 

координат, возможно менять протоны местами, и таким образом получаются два 

вырожденных состояния, которые имеют одну и ту же энергию. Если же сближать ямы, 

то появляется отличное от первого второе состояние. При том, волновая функция, 

описывающая второе состояние, 𝛹𝛹2 находится выше по энергии и является 

антисимметричной. А функция 𝛹𝛹1 симметрична. Также, для первой волновой функции 

плотность вероятности между ямами отлична от нуля, поэтому в данной области может 

концентрироваться электронное облако, и это электронное облако будет притягивать к 

себе два протона, препятствуя их взаимному отталкиванию. Таким образом, можно 

объяснить механизм притяжения двух протонов. Нахождение электрона между ямами 

обусловлено туннельным эффектом. 

Рисунок 35. Модель 
двух прямоугольных 
ям. 
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Волновые функции иона водорода. 

Симметричная. 
Данная волновая функция соответствует нахождению 

электрона около одного из протонов. Когда протоны 

разнесены на бесконечность данная функция – функция 

основного состояния атома водорода. При сближении двух 

протонов, получаем волновую функцию с плотностью 

вероятности между ними отличной от нуля. Когда же 

расстояние станет равно нулю, эти волновые функции 

совпадут и дадут волновую функцию гелия. 

Антисимметричная. 
Данная функция соответствует разности волновых функция 

основного состояния водорода. Теперь при сближении 

протонов между ними не возникает избыточной электронной 

плотности, которая могла бы притягивать протоны. В случае, 

когда расстояние равно нулю, получим состояние 

возбуждённое состояние 2p для иона гелия.  

Таким образом можно нарисовать график взаимодействия 

электрона с каждым из протонов и взаимодействия протонов 

между собой. Энергия взаимодействия протонов – 

положительная величина, имеет вид гиперболы 𝑉𝑉𝑝𝑝 = 𝑒𝑒2

𝑅𝑅
, где К 

– расстояние между протонами. Ситуации для симметричной 

(самая нижняя линяя) и антисимметричной (вторая снизу) 

сильно отличаются. Сумма энергий взаимодействия протонов и электрона, описанного 

антисимметричной волновой функцией, не имеет минимума, поэтому установления 

состояния равновесия невозможно (вторая линия сверху). При сложении симметричной 

волновой функции и энергии взаимодействия протонов, получается один минимум, т.е. 

обеспечивается стабильное состояние. Таким образом получаем, что образование 

молекулярного иона водорода возможно только для симметричной пространственно-

волновой функции. 

Рисунок 36. Волновые 
функции иона водорода. 
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Для получения молекулы водорода необходимо брать симметричные волновые 

функции для электронов и антисимметричные спиновые функции. 

Волновые функции иона водорода. 
Теперь рассмотрим систему количественно. Расстояние между протонами R, 

расстояние между протонами и электроном 𝑟𝑟𝑎𝑎 и 𝑟𝑟𝑏𝑏. Минимум энергии определяется 

взаимодействием электрона с протонами и его кинетической энергией 𝐻𝐻�(𝑎𝑎, 𝑏𝑏) =

− ℏ2

2𝑚𝑚
𝛻𝛻2 − 𝑒𝑒𝑀𝑀2 �

1
𝑟𝑟𝑎𝑎

+ 1
𝑟𝑟𝑏𝑏
�, где 𝑒𝑒𝑀𝑀2 = 𝑒𝑒2

4𝜋𝜋𝜀𝜀0
. Используем метод линейной комбинации 

атомных орбиталей и будем искать результирующую волновую функцию в виде суммы 

атомных орбиталей 𝜑𝜑(𝑟𝑟𝑎𝑎, 𝑟𝑟𝑏𝑏) = ∑ 𝑐𝑐𝛼𝛼𝑢𝑢𝛼𝛼𝛼𝛼=𝑎𝑎,𝑏𝑏 , которые являются волновыми функциями 

невозмущенного состояния для каждого из протонов �− ℏ2

2𝑚𝑚
𝛻𝛻2 − 𝑒𝑒𝑀𝑀

2

𝑟𝑟𝛼𝛼
� 𝑢𝑢𝛼𝛼 = 𝐸𝐸0𝑢𝑢𝛼𝛼. 

Подставим полученные выражения в полный гамильтониан 𝐻𝐻�(𝑎𝑎, 𝑏𝑏)∑ 𝑐𝑐𝛼𝛼𝑢𝑢𝛼𝛼𝛼𝛼=𝑎𝑎⋅𝑏𝑏 =

𝐸𝐸 ∑ 𝑐𝑐𝛼𝛼𝑢𝑢𝛼𝛼𝛼𝛼=𝑎𝑎⋅𝑏𝑏 , откуда 𝑐𝑐𝑎𝑎 �𝛥𝛥𝛥𝛥 −
𝑒𝑒𝑀𝑀
2

𝑟𝑟𝑎𝑎
� 𝑢𝑢𝑎𝑎 + 𝑐𝑐𝑏𝑏 �𝛥𝛥𝛥𝛥 −

𝑒𝑒𝑀𝑀
2

𝑟𝑟𝑏𝑏
� 𝑢𝑢𝑏𝑏 = 0, где 𝛥𝛥𝛥𝛥 = 𝐸𝐸0 − 𝐸𝐸. 

Умножая на 𝑢𝑢𝑎𝑎,  𝑢𝑢𝑏𝑏 и интегрируя, получим �
(𝛥𝛥𝛥𝛥 + 𝐶𝐶)𝑐𝑐𝑎𝑎 + (𝛥𝛥𝛥𝛥𝛥𝛥 + 𝐷𝐷)𝑐𝑐𝑏𝑏 = 0
(𝛥𝛥𝛥𝛥𝛥𝛥 + 𝐷𝐷)𝑐𝑐𝑎𝑎 + (𝛥𝛥𝛥𝛥 + 𝐶𝐶)𝑐𝑐𝑏𝑏 = 0, где 

интегралы S = ∫ 𝑑𝑑𝑟𝑟𝑢𝑢𝑎𝑎∗ (𝑟𝑟𝑎𝑎)𝑢𝑢𝑏𝑏(𝑟𝑟𝑏𝑏) ≡ ⟨𝑢𝑢𝑎𝑎|𝑢𝑢𝑏𝑏⟩ ≡ ⟨𝑢𝑢𝑏𝑏|𝑢𝑢𝑎𝑎⟩ – перекрытия, 𝐶𝐶 =

�𝑢𝑢𝑎𝑎 �−
𝑒𝑒𝑀𝑀
2

𝑟𝑟𝑏𝑏
� 𝑢𝑢𝑎𝑎� = �𝑢𝑢𝑏𝑏 �−

𝑒𝑒𝑀𝑀
2

𝑟𝑟𝑎𝑎
� 𝑢𝑢𝑏𝑏� < 0 – кулоновский, 𝐷𝐷 = �𝑢𝑢𝑎𝑎 �−

𝑒𝑒𝑀𝑀
2

𝑟𝑟𝑎𝑎
� 𝑢𝑢𝑏𝑏� = �𝑢𝑢𝑏𝑏 �−

𝑒𝑒𝑀𝑀
2

𝑟𝑟𝑏𝑏
� 𝑢𝑢𝑎𝑎� <

0 – обменный. Для разрешения данного уравнения необходимо � 𝛥𝛥𝛥𝛥 + 𝐶𝐶 𝛥𝛥𝛥𝛥𝑆𝑆 + 𝐷𝐷
𝛥𝛥𝛥𝛥𝛥𝛥 + 𝐷𝐷 𝛥𝛥𝛥𝛥 + 𝐶𝐶 � =

0. Получаем 𝛥𝛥𝐸𝐸± ≡ 𝐸𝐸0 − 𝐸𝐸 = ±𝐷𝐷−𝐶𝐶
1∓𝑆𝑆

, при чём 𝑐𝑐𝑏𝑏 = ∓𝑐𝑐𝑎𝑎, т.е. 𝜑𝜑∓( 𝑟𝑟𝑎𝑎, 𝑟𝑟𝑏𝑏) = 1
√2

(𝑢𝑢𝑎𝑎 ∓ 𝑢𝑢𝑏𝑏). 

Отсюда получаем энергию связи 𝐸𝐸𝑠𝑠 = 𝛥𝛥𝐸𝐸± − 𝐸𝐸0 + 𝑒𝑒𝑀𝑀
2

𝑅𝑅
= 𝐶𝐶∓𝐷𝐷

1∓𝑆𝑆
+ 𝑒𝑒𝑀𝑀

2

𝑅𝑅
< 0, если 𝜑𝜑+( 𝑟𝑟𝑎𝑎, 𝑟𝑟𝑏𝑏). 

Основным и решающим членом при решении данных неравенств является обменный 

интеграл.  

Обменная энергия в различных молекулах. 

Рассмотрим случай гелия. Полная волновая функция определяется, как 𝛹𝛹𝑆𝑆,𝐴𝐴 =
1
√2

{𝛹𝛹𝑎𝑎(𝑟𝑟1)𝛹𝛹𝛽𝛽(𝑟𝑟2) ± 𝛹𝛹𝑎𝑎(𝑟𝑟2)𝛹𝛹𝛽𝛽(𝑟𝑟1)}. Рассчитаем среднюю энергию взаимодействия ⟨𝑈𝑈⟩ =

∫ 𝛹𝛹∗𝑈𝑈𝑈𝑈 𝑑𝑑𝑣𝑣1 𝑑𝑑𝑣𝑣2 (𝑈𝑈 = 𝑒𝑒2

𝑟𝑟12
), которая разбивается на плотности заряда электронов: 

𝜌𝜌𝛼𝛼(𝑟𝑟1) = −𝑒𝑒|𝛹𝛹𝛼𝛼(𝑟𝑟1)|2 и  𝜌𝜌𝛽𝛽(𝑟𝑟2) = −𝑒𝑒�𝛹𝛹𝛽𝛽(𝑟𝑟2)�2, и обменные плотности заряда 

электронов 𝜌𝜌𝛼𝛼𝛼𝛼(𝑟𝑟1) = −𝑒𝑒𝛹𝛹𝑎𝑎∗(𝑟𝑟1)𝛹𝛹𝛽𝛽(𝑟𝑟1) и 𝜌𝜌𝛼𝛼𝛼𝛼(𝑟𝑟2) = −𝑒𝑒𝛹𝛹𝛼𝛼(𝑟𝑟2)𝛹𝛹𝛽𝛽∗(𝑟𝑟2). Тогда ⟨𝑈𝑈⟩ =
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∫ 𝜌𝜌𝛼𝛼(𝑟𝑟1)𝜌𝜌𝛽𝛽(𝑟𝑟2)

𝑟𝑟12
𝑑𝑑𝑣𝑣1 𝑑𝑑𝑣𝑣2 ± ∫

𝜌𝜌𝛼𝛼𝛼𝛼(𝑟𝑟1)𝜌𝜌𝛼𝛼𝛼𝛼
∗ (𝑟𝑟2)

𝑟𝑟12
𝑑𝑑𝑣𝑣1 𝑑𝑑𝑣𝑣2 = 𝐾𝐾 ± 𝐴𝐴, где A – кулоновская, A – 

обменная энергия. 

В молекуле водорода можно точно так же написать энергию взаимодействия ⟨𝑈𝑈⟩ =

2𝐸𝐸0 + 𝑒𝑒2

𝑅𝑅
+ ⟨𝑈𝑈1(𝑅𝑅)⟩, где 𝑈𝑈�1(𝑅𝑅) = 𝑒𝑒2

𝑟𝑟12
− 𝑒𝑒2

𝑟𝑟𝑎𝑎2
− 𝑒𝑒2

𝑟𝑟𝑏𝑏1
 – энергия взаимодействия электронов и 

протонов. Соответствующее среднее значение ⟨𝑈𝑈1(𝑅𝑅)⟩ = 𝐾𝐾 ± 𝐴𝐴. Таким образом, 

получаем для случая, когда спины параллельны, не существует минимума 𝑈𝑈𝑠𝑠 = 2𝐸𝐸0 +
𝑒𝑒2

𝑅𝑅
+ 𝐾𝐾 + 𝐴𝐴, а для антисимметричного положения, минимум существует 𝑈𝑈𝑠𝑠 = 2𝐸𝐸0 + 𝑒𝑒2

𝑅𝑅
+

𝐾𝐾 − 𝐴𝐴. 

Такая задача с помощью метода теории возмущений была решена в 1927 году 

В.Гайтлером и Ф.Лондоном. 

Основные типы орбиталей двухатомных молекул. 
 В двухатомной молекуле потенциал характеризуется аксиальной симметрией (ось z 

совпадает с осью молекулы), поэтому: �𝐻𝐻�𝑒𝑒, 𝐿𝐿�2� ≠ 0, �𝐻𝐻�𝑒𝑒, 𝐿𝐿�𝑧𝑧� = 0, 𝐿𝐿𝑧𝑧 = 𝑀𝑀𝐿𝐿ℏ, 𝑀𝑀𝐿𝐿 =

0, ±1, ±2, … 𝛬𝛬 = |𝑀𝑀𝐿𝐿| = 0,1,2 …, тогда соответствующие 

обозначения будут аналогичны атому водорода и его термам. 

Возможные термы для двух атомов водорода: 𝛬𝛬 = 𝑀𝑀𝐿𝐿1 + 𝑀𝑀𝐿𝐿2 = 0 

и 𝑆𝑆 = 0,1. Тогда получаем термы (1)𝛴𝛴 и (3)𝛴𝛴. Триплетное 

состояние соответствует разрыхляющей молекулярной орбитали, 

которая будет образована из двух атомных орбиталей. Если 

связывать атомные орбитали, которые в состоянии 1S имеют симметричный вид, то 

молекулярные орбитали 

могут быть получены 

двумя способами: либо 𝜎𝜎 

связывающая (сумма 

волновых функций), либо 

𝜎𝜎∗ разрыхляющая 

(разность волновых функций). Также существуют связывающие 𝜎𝜎𝑧𝑧 и разрыхляющие 𝜎𝜎𝑧𝑧∗, 

связывающие 𝜋𝜋𝑥𝑥(𝜋𝜋𝑦𝑦) и разрыхляющие 𝜋𝜋𝑥𝑥∗(𝜋𝜋𝑦𝑦∗) орбитали. Таким образом, используя 

𝛬𝛬 0 1 2 3 

𝛴𝛴 𝛱𝛱 𝛥𝛥 Φ 

Таблица 6. Термы 

в двухатомных 

молекулах. 

Рисунок 37. Орбитали в двухатомной молекуле. 
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линейные комбинации атомных орбиталей возможно предсказать какими будут 

молекулярные орбитали, используя метод линейной комбинации атомных орбиталей.  

Ионная связь. 
Ещё один тип связи и способ образования молекул. Химическая связь, основанная на 

электростатическом притяжении разноимённо заряженных ионов – ионная связь. 

Щелочные металлы имеют самый высокий ионизационный потенциал, т.к. им очень 

просто потерять электрон на внешнем уровне. Для галогенов аналог ионизационного 

потенциала – энергия сродства к электрону, т.е. это та энергия, которая выделяется, 

когда атом захватывает электрон. Поэтому, когда в реакцию вступает щелочной металл 

и галоген необходимо просто определить некий энергетический баланс. 

Ионизационный потенциал натрия 𝐼𝐼𝑃𝑃𝑁𝑁𝑁𝑁 = 5,1эВ, тогда при ионизации 𝑁𝑁𝑁𝑁 + 5.1эВ →

𝑁𝑁𝑁𝑁+ + 𝑒𝑒−. Аналогично для хлора 𝐶𝐶𝐶𝐶 + 𝑒𝑒− → 𝐶𝐶𝐶𝐶− + 3.6эВ. Таким образом нужны ещё 

1,5эВ, что бы произошла реакция 𝑁𝑁𝑁𝑁 + 𝐶𝐶𝐶𝐶 + 1.5эВ → 𝑁𝑁𝑁𝑁+ + 𝐶𝐶𝐶𝐶−. Натрий и хлор – 

разноимённые заряженные ионы, поэтому потенциальная энергия, которой они 

обладают, будет отрицательной. Эта энергия на расстоянии четыре ангстрема 

𝑉𝑉(𝑅𝑅 = 4𝐴𝐴) = − 𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑅𝑅
= −3.6эВ, что с избытком покрывает необходимую энергию. В 

результате образуется устойчивая система с ионной связью 2,1эВ. На самом деле это не 

минимальное расстояние, отвечающее за минимум потенциальной энергии, а 

минимальное расстояния 𝑅𝑅min = 2,4𝐴𝐴, при этом 𝑈𝑈min = 4,2эВ. 

Насыщение химической связи. Валентность. 
Валентность химического элемента определяется числом неспаренных электронов во 

внешней оболочке атома и равна удвоенному спину атома. Насыщение связей 

происходит тогда, когда заканчиваются неспаренные атомы. Рассчитаем валентность 

элемента, например азота. Для него 𝑧𝑧 = 7, его электронная конфигурация 1𝑆𝑆22𝑆𝑆22𝑃𝑃3. 

Тогда основное состояние атома будет соответствовать валентности три, т.к. три 

неспаренных спина на внешней орбитали элемента. Всё это относится к основному 

состоянию, т.к. в возбуждённом состоянии валентность может меняться.   

Задача движения двух тел. 
Рассмотрим двухатомную молекулу, аналогичную задаче механики. Два тела 𝑚𝑚1 и 𝑚𝑚2 

могут быть рассмотрены в системе центра масс, с радиус вектором 𝑟𝑟2���⃗ − 𝑟𝑟1���⃗ , который 
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характеризует относительное смещение этих масс. Таким образом гамильтониан 

разбивается на два 𝐻𝐻 = ℙ2

2𝑀𝑀
+ �𝑝𝑝

2

2𝜇𝜇
+ 𝑈𝑈(𝑟𝑟)� (𝜇𝜇 = 𝑚𝑚1𝑚𝑚2

𝑚𝑚1+𝑚𝑚2
, 𝑀𝑀 = 𝑚𝑚1 + 𝑚𝑚2), один из которых 

определяется движением центра масс, и гамильтониан относительного движения. 

Ядерная подсистема молекулы. 
Рассмотрим ядерную подсистему молекулы, которая может быть рассмотрена 

отдельно, из-за того, что работает адиабатическое приближение, согласно которому 

электронная подсистема движется быстрее ядер и может быть рассмотрена при их 

неподвижных координатах. Тогда энергия и волновые функции могут быть 

фактаризованы, т.е. они будут равны произведению волновых функций для 

соответствующих гамильтонианов, а гамильтониан разбивается на три части: 

электронный, вращательный и колебательный. Энергия колебательного движения 

𝐸𝐸𝜈𝜈
(𝑣𝑣𝑣𝑣𝑣𝑣) = ℏ𝛺𝛺 �𝜈𝜈 + 1

2
�, где 𝜈𝜈 – колебательное квантовое число, частота колебаний 

молекулы 𝛺𝛺 = �𝑘𝑘
𝜇𝜇
. Для энергии вращательного движения ядер 𝐸𝐸(𝑟𝑟𝑟𝑟𝑟𝑟) = ℏ2

2𝜇𝜇𝑅𝑅02
𝐽𝐽(𝐽𝐽 + 1), J – 

вращательное квантовое число, момент инерции 𝐼𝐼 = 𝜇𝜇𝑅𝑅02, 𝐵𝐵 = ℏ2

2𝐼𝐼
. Электронная энергия 

порядка Ридберга, значения для колебательной энергии на два порядка меньше, 

значения для вращательной энергии меньше ещё на два порядка. Между энергиями 

существует соотношение 𝐸𝐸(𝑒𝑒):𝐸𝐸(𝑣𝑣𝑣𝑣𝑣𝑣):𝐸𝐸(𝑟𝑟𝑟𝑟𝑟𝑟) = 1:�
𝑚𝑚
𝜇𝜇

: 𝑚𝑚
𝜇𝜇

, где 𝜇𝜇 – приведённая масса. 

Использование энергии гармонического осциллятора – идеализация системы, т.к. 

энергии совпадают только в области минимальной энергии. Хорошим приближением 

является потенциал Морзе 𝑉𝑉𝑒𝑒𝑓𝑓𝑓𝑓(𝑅𝑅) = 𝐷𝐷�1 − 𝑒𝑒−𝛼𝛼(𝑅𝑅−𝑅𝑅0)�
2
, где D определяется энергией 

диссоциации молекулы. Тогда точное решение уравнения Шредингера с потенциалом 

Морзе 𝐸𝐸𝜈𝜈
(𝑣𝑣𝑣𝑣𝑣𝑣) =  ℏ𝛺𝛺 �𝜈𝜈 + 1

2
� − (ℏ𝛺𝛺)2

4𝐷𝐷
�𝑣𝑣 + 1

2
�
2
. 

Вращательный спектр молекулы.  

Вращательный спектр молекулы определяется правилами отбора для J: 𝛥𝛥𝛥𝛥 = ±1. 

Используя формулы 𝐸𝐸�𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐽𝐽2

2𝐼𝐼
 и 𝐸𝐸𝐽𝐽 = ℏ2

2𝐼𝐼
𝐽𝐽(𝐽𝐽 + 1) можно получить изменения расстояния 

между уровнями. 
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Структура энергетических уровней молекулы. 
На данном графике представлена полная 

структура энергетических уровней молекулы. 

Энергия электронных переходов на 2 порядка 

больше энергии колебательных переходов, а 

между колебательными переходами 

расположены вращательные. Поэтому 

молекулярные спектры имеют сложный 

характер и включают в себе как электронные, 

так и колебательно-вращательные переходы.  

Комбинационное рассеяние света, ИК 

поглощение и люминесценция.  
ИК поглощение определяет переход с одного колебательного уровня на другой. При 

комбинационном рассеянии будут наблюдаться переходы с поглощением энергии 

ℏ𝜔𝜔𝑆𝑆 = ℏ𝜔𝜔𝑖𝑖 ± ℏ𝛺𝛺𝑗𝑗. Таким образом будут наблюдаться линии относительно 

несмещённой компоненты, которая называется релеевской, в виде стоксовой 

компоненты, которая идёт с увеличением длины волны, и антистоксовой. Заселённости 

уровней разные, поэтому интенсивность антистоксовой компоненты много меньше 

интенсивности стоксовой компоненты и подчиняется закону распределения Больцмана. 

Если 𝛺𝛺 -частота колебательного перехода, то 𝐼𝐼𝐴𝐴𝐴𝐴
𝐼𝐼𝑆𝑆

= 𝑒𝑒−
ℏ𝛺𝛺
𝑘𝑘𝑘𝑘. Данные характерные частоты 

соответствуют химическим связям. Чем больше связей, тем больше частота колебаний, 

также частота уменьшается с увеличением приведённой массы. 

 

 

 

 

Рисунок 38. Полная структура 
энергетических уровней молекулы. 
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