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Лекция 1. Конические сечения и их геометрические свойства 
Конические сечения 

Определение. Эллипс – это геометрическое место точек 𝑀𝑀, сумма расстояний от 
которых до некоторых фиксированных точек 𝐹𝐹1 и 𝐹𝐹2 постоянна и больше |𝐹𝐹1𝐹𝐹2|. 

|𝑀𝑀𝐹𝐹1| + |𝑀𝑀𝐹𝐹2| = 2𝑎𝑎 

Точки 𝐹𝐹1 и 𝐹𝐹2 называются фокусами эллипса. 

 
Рис. 1.1 Эллипс 

Определение. Парабола – геометрическое место точек 𝑀𝑀, таких что  
|𝑀𝑀𝑀𝑀| =  |𝑀𝑀𝑀𝑀|, 

где 𝐻𝐻 – основание перпендикуляра, проведённого из точки 𝑀𝑀 на прямую 𝑑𝑑, а 𝐹𝐹 и 𝑑𝑑 – 
некоторые фиксированные точка и прямая, причем 𝐹𝐹 ∉ 𝑑𝑑. 
Точка 𝐹𝐹 называется фокусом параболы, а прямая 𝑑𝑑 – директрисой. 

 
Рис. 1.2 Парабола 

Определение. Гипербола – геометрическое место точек 𝑀𝑀, таких что 
�|𝑀𝑀𝐹𝐹1| − |𝑀𝑀𝐹𝐹2|� = 2𝑎𝑎 

для некоторых точек 𝐹𝐹1 ≠ 𝐹𝐹2 и 0 < 2𝑎𝑎 < |𝐹𝐹1𝐹𝐹2|. 
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Точки 𝐹𝐹1 и 𝐹𝐹2 называются фокусами гиперболы. 

 

Рис. 1.3 Гипербола 

Эллипс, гиперболу и параболу будем называть кониками (коническими сечениями). 

Определение. Круговой конус – это объединение семейства прямых в пространстве, 
образующих некоторый фиксированный угол 𝛼𝛼 с некоторой фиксированной прямой 𝑙𝑙 и 
проходящих через некоторую фиксированную точку 𝑂𝑂 ∈ 𝑙𝑙. 

Точка 𝑂𝑂 называется вершиной конуса, прямая 𝑙𝑙 называется осью конуса, а прямые, 
принадлежащие поверхности конуса называются его образующими. 

 

Рис. 1.4 Круговой конус 

Теорема.  

1) Любое сечение кругового конуса плоскостью, не проходящей через его 
вершину, является эллипсом, гиперболой или параболой. 

2) Любую конику можно получить сечением некоторого кругового конуса с любым 
наперед заданным 𝛼𝛼. 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

9 
 
 

 

 

Рис. 1.5 Сечения конуса 

Если конус пересекает плоскость под углом 𝛽𝛽 > 𝛼𝛼, то сечением является эллипс 
(окружность – частный случай эллипса 𝛽𝛽 = 𝜋𝜋

2
). Если  𝛽𝛽 = 𝛼𝛼, то сечением является 

парабола. При 𝛽𝛽 < 𝛼𝛼 – гипербола (рис. 1.5). 

Идея доказательства этой теоремы заключается в геометрическом построении с 
помощью сфер Данделена, касающихся плоскости сечения в точках 𝐹𝐹1 и 𝐹𝐹2 (рис. 
1.6). Возьмем произвольную точку 𝑃𝑃, лежащую на сечении. 𝑃𝑃𝐹𝐹1 является 
касательной к меньшей сфере. 𝑃𝑃𝑃𝑃 также является касательной к сфере в точке 𝑃𝑃1. 

|𝑃𝑃𝐹𝐹1| = |𝑃𝑃𝑃𝑃1| 

Аналогично, 𝑃𝑃𝐹𝐹2 и 𝑃𝑃𝑃𝑃2 являются касательными к большей сфере и 

|𝑃𝑃𝐹𝐹2| = |𝑃𝑃𝑃𝑃2| 

Поскольку точки 𝑃𝑃,𝑃𝑃1,𝑃𝑃2 лежат на одной прямой, мы получаем 

|𝑃𝑃𝐹𝐹1| + |𝑃𝑃𝐹𝐹2| = |𝑃𝑃𝑃𝑃1| + |𝑃𝑃𝑃𝑃2| = |𝑃𝑃1𝑃𝑃2| = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Таким образом, все точки этого сечения будут лежать на некотором эллипсе с 
фокусами 𝐹𝐹1 и 𝐹𝐹2. 

https://vk.com/teachinmsu
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Рис. 1.6 

Оптическое свойство коник 
Оптическое свойство эллипса: углы касательной с отрезками, соединяющими точку 
касания с фокусами, равны. 

 

Рис. 1.7 

https://vk.com/teachinmsu
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Оптическое свойство параболы: касательная к параболе в некоторой 
точке 𝑴𝑴 составляет равные углы с фокальным радиусом 𝑭𝑭𝑴𝑴 и с лучом, исходящим из 
точки 𝑴𝑴 и параллельным оси параболы. 

 

Рис. 1.8 

Оптическое свойство гиперболы: касательная к гиперболе в произвольной её точке 𝑀𝑀 
является биссектрисой угла ∠𝐹𝐹1𝑀𝑀𝐹𝐹2 

 
Рис. 1.9 

Строгие доказательства для оптических свойств коник будут приведены позднее. 

Аналитические определения коник 
Определение. Эллипс – кривая, которая задаётся в некоторой декартовой системе 
координат уравнением 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= 1 

где 𝑎𝑎 ≥ 𝑏𝑏 > 0.  

𝑎𝑎 и 𝑏𝑏 – длины полуосей эллипса. 

Определение. Гипербола – кривая, которая задаётся в некоторой декартовой системе 
координат уравнением 

https://vk.com/teachinmsu
http://www.kvadromir.com/parabola.html
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𝑥𝑥2

𝑎𝑎2
−
𝑦𝑦2

𝑏𝑏2
= 1 

где 𝑎𝑎 и 𝑏𝑏 > 0.  

𝑎𝑎 называется действительной полуосью гиперболы и 𝑏𝑏 – мнимой полуосью. 

Определение. Парабола – кривая, которая задаётся в некоторой декартовой системе 
координат уравнением 

𝑦𝑦2 = 2𝑝𝑝𝑝𝑝 

где 𝑝𝑝 > 0.  

𝑝𝑝 является расстоянием между директрисой и фокусом параболы. 

 

Рис. 1.10 Эллипс, гипербола и парабола 

Утверждение. Аналитические и геометрические определения коник эквивалентны. 

Доказательство: 

Докажем это утверждение для эллипса: введем прямоугольную систему координат как 
показано на рис. 1.10. Тогда геометрическое определение ( 
|𝑀𝑀𝐹𝐹1| + |𝑀𝑀𝐹𝐹2| = 2𝑎𝑎) перепишется в виде 

�(𝑥𝑥 − 𝑐𝑐)2 + 𝑥𝑥2 + �(𝑥𝑥 + 𝑐𝑐)2 + 𝑦𝑦2 = 2𝑎𝑎 

Возведем это уравнение в квадрат: 

�
(𝑥𝑥 + 𝑐𝑐)2 + 𝑦𝑦2 = 4𝑎𝑎2 + (𝑥𝑥 − 𝑐𝑐)2 + 𝑦𝑦2 − 4𝑎𝑎�(𝑥𝑥 − 𝑐𝑐)2 + 𝑦𝑦2

2𝑎𝑎 ≥ �(𝑥𝑥 − 𝑐𝑐)2 + 𝑦𝑦2
 

Упрощая, получим: 

�
𝑎𝑎�(𝑥𝑥 − 𝑐𝑐)2 + 𝑦𝑦2 = 𝑎𝑎2 − 𝑥𝑥𝑥𝑥

2𝑎𝑎 ≥ �(𝑥𝑥 − 𝑐𝑐)2 + 𝑦𝑦2

𝑎𝑎2 ≥ |𝑥𝑥𝑥𝑥|
 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

13 
 
 

 

Возводя еще раз в квадрат, получим: 

𝑎𝑎4 − 2𝑎𝑎2𝑐𝑐𝑐𝑐 + 𝑐𝑐2𝑥𝑥2 = 𝑎𝑎2(𝑥𝑥 − 𝑐𝑐)2 + 𝑎𝑎2𝑦𝑦2 

𝑎𝑎4 − 𝑎𝑎2𝑐𝑐2 = (𝑎𝑎2 − 𝑐𝑐2)𝑥𝑥2 + 𝑎𝑎2𝑦𝑦2 

Откуда получаем: 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= 1 

где 𝑏𝑏2 ≔ 𝑎𝑎2 − 𝑐𝑐2. 

  

https://vk.com/teachinmsu
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Лекция 2. Полярные координаты. Директориальные 
свойства коник. Уравнение коник в обобщенных полярных 

координатах 
Аналитические определения коник (продолжение) 

Докажем утверждение о том, что аналитическое и геометрическое определения для 
параболы эквивалентны. 

Выберем систему координат как показано на рисунке 2.1. 

 

Рис. 2.1 

Тогда соотношение из геометрического определения параболы примет вид: 

��𝑥𝑥 −
𝑝𝑝
2
�
2

+ 𝑦𝑦2 = �𝑥𝑥 +
𝑝𝑝
2
� 

𝑥𝑥2 − 𝑝𝑝𝑝𝑝 +
𝑝𝑝2

4
+ 𝑦𝑦2 = 𝑥𝑥2 + 𝑝𝑝𝑝𝑝 +

𝑝𝑝2

4
 

Получаем: 

𝑦𝑦2 = 2𝑝𝑝𝑝𝑝 

Теперь докажем утверждение об эквивалентности геометрического и аналитического 
определения для гиперболы. 

Уравнения для асимптот гиперболы (они же являются диагоналями для основного 
прямоугольника со сторонами 2𝑎𝑎 и 2𝑏𝑏 (см. рис. 2.2)): 

https://vk.com/teachinmsu
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𝑦𝑦 = ±
𝑏𝑏
𝑎𝑎
𝑥𝑥 

 

Рис. 2.2 

Докажем это, например для 𝑦𝑦 = 𝑏𝑏
𝑎𝑎
𝑥𝑥. Имеем (см. рис. 2.2) 

𝛥𝛥(𝑥𝑥) =
𝑏𝑏
𝑎𝑎
𝑥𝑥 − 𝑏𝑏�

𝑥𝑥2

𝑎𝑎2
− 1 

lim
𝑥𝑥→∞

𝛥𝛥(𝑥𝑥) = lim
𝑥𝑥→∞

𝑏𝑏
𝑎𝑎

(𝑥𝑥 − �𝑥𝑥2 − 𝑎𝑎2) = lim
𝑥𝑥→∞

𝑏𝑏
𝑎𝑎

𝑎𝑎2

𝑥𝑥 + √𝑥𝑥2 − 𝑎𝑎2
= 0 

Определение. Система координат, которая фигурирует в аналитическом определении 
для коник называется канонической.  

Такая система координат для эллипса, параболы и гиперболы не единственна. 

Полярные координаты 
Определение. Полярная система координат — двумерная система координат, в которой 
каждая точка на плоскости определяется полярным углом 𝜑𝜑 и полярным радиусом 𝜌𝜌. 

Заметим, что угол 𝜑𝜑 определён с точностью до 2𝜋𝜋𝜋𝜋, где 𝑘𝑘 ∈ ℤ. 

https://vk.com/teachinmsu
https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82
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Рис. 2.3 Полярная система координат и связанная с ней декартовая система координат 

Свяжем полярную систему координат с декартовой. Для этого полярную ось обозначим 
за ось 𝑥𝑥, а повернутую относительно неё на угол 𝜋𝜋

2
 – за ось 𝑦𝑦. Тогда 𝑥𝑥 и 𝑦𝑦 можно 

выразить через 𝜑𝜑 и 𝜌𝜌: 

�
𝑥𝑥 = 𝜌𝜌 cos𝜑𝜑
𝑦𝑦 = 𝜌𝜌 sin𝜑𝜑  

Задача. Дана точка 𝑀𝑀(𝑥𝑥0,𝑦𝑦0). Мы хотим повернуть точку 𝑀𝑀 вокруг начала декартовых 
координат на некоторый угол 𝛼𝛼 и таким образом получить точку 𝑀𝑀′. Найти координаты 
точки 𝑀𝑀′. 

 
Рис. 2.4 

Обозначим декартовые и полярные координаты для точек 𝑀𝑀 и 𝑀𝑀′ как в таблице: 

 𝑥𝑥,𝑦𝑦 𝜌𝜌,𝜑𝜑 
𝑀𝑀 𝑥𝑥0, 𝑦𝑦0 𝜌𝜌0,𝜑𝜑0 
𝑀𝑀′ 𝑥𝑥1, 𝑦𝑦1 𝜌𝜌0,𝜑𝜑0 + 𝛼𝛼 

 

https://vk.com/teachinmsu
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Тогда 

𝑥𝑥1 = 𝜌𝜌0 cos(𝜑𝜑0 + 𝛼𝛼) = 𝜌𝜌0 cos𝜑𝜑0 cos𝛼𝛼 − 𝜌𝜌0 sin𝜑𝜑0 sin𝛼𝛼 = 𝑥𝑥0 cos𝛼𝛼 − 𝑦𝑦0 sin𝛼𝛼 

Аналогично 

𝑦𝑦1 = 𝜌𝜌0 sin(𝜑𝜑0 + 𝛼𝛼) = 𝑥𝑥0 sin𝛼𝛼 + 𝑦𝑦0 cos𝛼𝛼 

Получаем 

𝑥𝑥1 = 𝑥𝑥0 cos𝛼𝛼 − 𝑦𝑦0 sin𝛼𝛼 

𝑦𝑦1 = 𝑥𝑥0 sin𝛼𝛼 + 𝑦𝑦0 cos𝛼𝛼 

Операцию поворота можно описать следующей матрицей: 

�
𝑥𝑥1
𝑦𝑦1� = �cos𝛼𝛼 − sin𝛼𝛼

sin𝛼𝛼 cos𝛼𝛼 � �
𝑥𝑥0
𝑦𝑦0� 

Задача. Дана точка 𝑀𝑀(𝑥𝑥0,𝑦𝑦0). Мы хотим отразить эту точку относительно прямой, 
образующей угол 𝛽𝛽 с осью 𝑂𝑂𝑂𝑂, и получить точку 𝑀𝑀′. Найти координаты точки 𝑀𝑀′. 

 

Рис. 2.5 

Обозначим декартовые и полярные координаты для точек 𝑀𝑀 и 𝑀𝑀′ как в таблице: 

 𝑥𝑥,𝑦𝑦 𝜌𝜌,𝜑𝜑 
𝑀𝑀 𝑥𝑥0, 𝑦𝑦0 𝜌𝜌0,𝜑𝜑0 
𝑀𝑀′ 𝑥𝑥1, 𝑦𝑦1 𝜌𝜌0, 2𝛽𝛽 − 𝜑𝜑0 

 

Тогда 

𝑥𝑥1 = 𝜌𝜌0 cos(2𝛽𝛽 − 𝜑𝜑0) = 𝜌𝜌0 cos 2𝛽𝛽 cos𝜑𝜑0 + 𝜌𝜌0 sin 2𝛽𝛽 sin𝜑𝜑0 

𝑥𝑥1 = 𝑥𝑥0 cos 2𝛽𝛽 + 𝑦𝑦0 sin 2𝛽𝛽 

Аналогично 

𝑦𝑦1 = 𝜌𝜌0 sin(2𝛽𝛽 − 𝜑𝜑0) = 𝜌𝜌0 sin 2𝛽𝛽 cos𝜑𝜑0 − 𝜌𝜌0 cos 2𝛽𝛽 sin𝜑𝜑0 
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𝑦𝑦1 = 𝑥𝑥0 sin 2𝛽𝛽 − 𝑦𝑦0 cos 2𝛽𝛽 

Такой операции будет соответствовать матрица отражения 

�
𝑥𝑥1
𝑦𝑦1� = �cos 2𝛽𝛽 sin 2𝛽𝛽

sin 2𝛽𝛽 − cos 2𝛽𝛽� �
𝑥𝑥0
𝑦𝑦0� 

Задача. Дана функция 𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 0, задающая на плоскости некоторую кривую 𝛾𝛾. Мы 
хотим повернуть эту кривую вокруг начала координат на угол 𝛼𝛼. Найти уравнение для 
повернутой кривой. 

Ранее мы нашли матрицу поворота на угол 𝛼𝛼 вокруг начала координат: 

�
𝑥𝑥1
𝑦𝑦1� = �cos𝛼𝛼 − sin𝛼𝛼

sin𝛼𝛼 cos𝛼𝛼 � �
𝑥𝑥0
𝑦𝑦0� 

С помощью неё мы можем записать уравнение для кривой 𝛾𝛾, повернутой вокруг начала 
координат: 

𝐹𝐹(𝑥𝑥 cos𝛼𝛼 + 𝑦𝑦 sin𝛼𝛼 ,−𝑥𝑥 sin𝛼𝛼 + 𝑦𝑦 cos𝛼𝛼) = 0 

Директориальные свойства коник 
Теорема. Пусть 𝐹𝐹 – некоторая точка, 𝑑𝑑 – некоторая прямая, такая что 𝐹𝐹 ∉ 𝑑𝑑, 𝑒𝑒 – 
некоторое число, 𝑒𝑒 > 0. Тогда геометрическое место точек M, таких что 

|𝑀𝑀𝑀𝑀| =  𝑒𝑒|𝑀𝑀𝑀𝑀| 

где 𝐻𝐻 ∈ 𝑑𝑑,𝑀𝑀𝑀𝑀 ⊥ 𝑑𝑑, является 

1) эллипсом, при 𝑒𝑒 < 1 
2) параболой, при 𝑒𝑒 = 1 
3) гиперболой, при 𝑒𝑒 > 1 

Так можно получить любую конику, кроме окружности. 

Во всех трёх случаях 𝐹𝐹 является фокусом. 

Доказательство: 

Поместим фокус в начало системы отсчёта, а прямую 𝑑𝑑 расположим параллельно оси 
ординат на расстоянии 𝑆𝑆.  
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Рис. 2.6 

При 𝑒𝑒 = 1, очевидно, что коника является параболой. 

Рассмотрим случай, когда 𝑒𝑒 ≠ 1. 

|𝑀𝑀𝑀𝑀| = �𝑥𝑥2� + 𝑦𝑦2� = 𝑒𝑒|𝑥𝑥� + 𝑠𝑠| 

Возведём в квадрат: 

𝑥𝑥2� + 𝑦𝑦2� = 𝑒𝑒2𝑥𝑥2� + 2𝑒𝑒2𝑠𝑠𝑥𝑥� + 𝑒𝑒2𝑠𝑠2 

(1 − 𝑒𝑒2)𝑥𝑥2� − 2𝑒𝑒2𝑠𝑠𝑥𝑥� + 𝑦𝑦2� = 𝑒𝑒2𝑠𝑠2 

(1 − 𝑒𝑒2)�𝑥𝑥� −
𝑒𝑒2𝑠𝑠

1 − 𝑒𝑒2
�
2

+ 𝑦𝑦2� = 𝑒𝑒2𝑠𝑠2 +
𝑒𝑒4𝑠𝑠2

1 − 𝑒𝑒2
=

𝑒𝑒2𝑠𝑠2

1 − 𝑒𝑒2
 

Сделаем следующую замену координат: 

�𝑥𝑥 = 𝑥𝑥� −
𝑒𝑒2𝑠𝑠

1 − 𝑒𝑒2
𝑦𝑦 = 𝑦𝑦�

 

Получим уравнение: 

(1 − 𝑒𝑒2)2

𝑒𝑒2𝑠𝑠2
𝑥𝑥2 +

(1 − 𝑒𝑒2)
𝑒𝑒2𝑠𝑠2

𝑦𝑦2 = 1 

При 𝑒𝑒 < 1, получим уравнение эллипса, при 𝑒𝑒 > 1, получим уравнение гиперболы. 

Рассмотрим случай, когда 𝑒𝑒 < 1. 

𝑎𝑎 =
𝑒𝑒𝑒𝑒

1 − 𝑒𝑒2
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𝑏𝑏 =
𝑒𝑒𝑒𝑒

√1 − 𝑒𝑒2
 

𝑐𝑐 = �𝑎𝑎2 − 𝑏𝑏2 =
𝑒𝑒2𝑠𝑠

1 − 𝑒𝑒2
 

Обозначим 𝑝𝑝 = 𝑒𝑒𝑒𝑒. 𝑝𝑝 называется фокальным параметром.  

Геометрический смысл фокального параметра: фокальный параметр, это половина 
длины хорды, проходящей через фокус и параллельной директрисе коники. 

Выпишем полный набор формул, связывающий все величины, которые у нас 
появляются: 

𝑝𝑝 =
𝑏𝑏2

𝑎𝑎
 

𝑒𝑒 =
𝑐𝑐
𝑎𝑎

 

Число 𝑒𝑒 называется эксцентриситетом. Для окружности 𝑒𝑒 = 0. 

На рис. 2.7 показано расположение директрис эллипса. 

 

Рис. 2.7 

При 𝑒𝑒 > 1, имеем гиперболу (рис. 2.8). 
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Рис. 2.8 

Соотношения для гиперболы: 

𝑐𝑐 = �𝑎𝑎2 + 𝑏𝑏2 

𝑒𝑒 =
𝑐𝑐
𝑎𝑎

 

𝑝𝑝 =
𝑏𝑏2

𝑎𝑎
 

Уравнение коник в обобщённых полярных координатах 
Зададим уравнение коник в полярных координатах: 

|𝑀𝑀𝑀𝑀| = 𝑒𝑒|𝑀𝑀𝑀𝑀|, 

где 𝑀𝑀𝑀𝑀 ⊥ 𝑑𝑑,𝐻𝐻 ∈ 𝑑𝑑. 

Будем работать в системе координат, показанной на рис. 16. Подставим вместо 
декартовых координат их выражения через полярные. 

𝜌𝜌 = 𝑒𝑒|𝜌𝜌 cos𝜑𝜑 + 𝑠𝑠| 

±𝜌𝜌 = 𝑒𝑒𝑒𝑒 cos𝜑𝜑 + 𝑝𝑝 

Таким образом, 

𝜌𝜌 =
𝑝𝑝

±1 − 𝑒𝑒 cos𝜑𝜑
 

Вспомним связь между полярными и декартовыми координатами: 

https://vk.com/teachinmsu
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�
𝑥𝑥 = 𝜌𝜌 cos𝜑𝜑
𝑦𝑦 = 𝜌𝜌 sin𝜑𝜑  

В обобщённой полярной системе координат одну и ту же точку можно задать как 
координатами (𝜌𝜌,𝜑𝜑), так и координатами (−𝜌𝜌,𝜑𝜑 + 𝜋𝜋). 

В обобщённой полярной системе координат уравнение  

𝜌𝜌 =
𝑝𝑝

1 − 𝑒𝑒 cos𝜑𝜑
 

задаёт ту же кривую, что и уравнение 

𝜌𝜌 =
𝑝𝑝

−1 − 𝑒𝑒 cos𝜑𝜑
 

Таким образом, в обобщённых полярных координатах все коники можно задать 
уравнением вида 

𝜌𝜌 =
𝑝𝑝

1 − 𝑒𝑒 cos𝜑𝜑
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Лекция 3. Аффинные системы координат и скалярное 
произведение 

Аффинные системы координат  
Определение. Набор векторов 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗  плоскости или пространства называется 
линейно зависимым, если существует набор вещественных чисел 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘, таких что 

1) (𝜆𝜆1, … , 𝜆𝜆𝑘𝑘) ≠ (0, … ,0) 
2) 𝜆𝜆1𝑣𝑣1����⃗ + ⋯+ 𝜆𝜆𝑘𝑘𝑣𝑣𝑘𝑘����⃗ = 0 

Пусть 𝑘𝑘 – это число векторов в наборе линейно зависимых векторов. Тогда  

При 𝑘𝑘 = 1: 𝑣𝑣1����⃗ = 0 

При 𝑘𝑘 = 2 и 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ≠ 0: 

𝜆𝜆1𝑣𝑣1����⃗ + 𝜆𝜆2𝑣𝑣2����⃗ = 0 

Такие векторы называются коллинеарными. 

При 𝑘𝑘 = 3 и 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ , 𝑣𝑣3����⃗ ≠ 0: 

𝜆𝜆1𝑣𝑣1����⃗ + 𝜆𝜆2𝑣𝑣2����⃗ + 𝜆𝜆3𝑣𝑣3����⃗ = 0 

Такие векторы называются компланарными. 

Определение. Базис на прямой, плоскости или в пространстве – максимальный линейно 
независимый набор 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ . 

Определение. Пусть 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  – базис, а 𝑣⃗𝑣 – произвольный вектор. Координатами 
вектора 𝑣⃗𝑣 в этом базисе называются числа 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘, такие что 

𝑣⃗𝑣 = 𝑣𝑣1𝑒𝑒1���⃗ + ⋯+ 𝑣𝑣𝑘𝑘𝑒𝑒𝑘𝑘����⃗  

Утверждение. Определение корректно. 

𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ , 𝑣⃗𝑣 линейно зависимы. Значит 𝜆𝜆1𝑒𝑒1���⃗ + ⋯+ 𝜆𝜆𝑘𝑘𝑒𝑒𝑘𝑘����⃗ + 𝜇𝜇𝑣⃗𝑣 = 0, 𝜇𝜇 ≠ 0. Тогда 𝑣𝑣𝑖𝑖 = −𝜆𝜆𝑖𝑖
𝜇𝜇

. 

Однозначно ли определены координаты вектора 𝑣⃗𝑣? 

Предположим, что 

𝑣𝑣1𝑒𝑒1���⃗ + ⋯+ 𝑣𝑣𝑘𝑘𝑒𝑒𝑘𝑘����⃗ = 𝑣𝑣1′𝑒𝑒1���⃗ + ⋯+ 𝑣𝑣𝑘𝑘′𝑒𝑒𝑘𝑘����⃗  

Тогда 

(𝑣𝑣1 − 𝑣𝑣1′)𝑒𝑒1���⃗ + ⋯+ (𝑣𝑣𝑘𝑘 − 𝑣𝑣𝑘𝑘′)𝑒𝑒𝑘𝑘����⃗ = 0 

Это равенство может быть верным только в случае, когда 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖′. Следовательно, 
координаты определены однозначно. 
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Пусть координаты вектора 𝑢𝑢�⃗ − (𝑢𝑢1, … ,𝑢𝑢𝑘𝑘), а координаты вектора 𝑣⃗𝑣 – (𝑣𝑣1, … , 𝑣𝑣𝑘𝑘). Тогда 
координаты их суммы 𝑢𝑢�⃗ + 𝑣⃗𝑣 – (𝑢𝑢1 + 𝑣𝑣1, … ,𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘). 

Определение. Репер – это набор из одной точки и нескольких векторов, которые 
образуют базис: (𝑂𝑂, 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ ). Точка 𝑂𝑂 называется началом отсчёта. 

Аффинная система координат:  

𝑀𝑀 ↔ (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) – координаты вектора 𝑂𝑂𝑂𝑂������⃗  в базисе 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ . 

Определение. Пусть 𝐴𝐴 и 𝐵𝐵 – различные точки, а 𝜆𝜆, 𝜇𝜇 ∈ ℝ, (𝜆𝜆, 𝜇𝜇) ≠ (0,0). Говорят, что 
точка 𝑀𝑀 делит отрезок 𝐴𝐴𝐴𝐴 в отношении 𝜆𝜆: 𝜇𝜇, если 

𝜇𝜇𝐴𝐴𝐴𝐴������⃗ = 𝜆𝜆𝑀𝑀𝑀𝑀������⃗  

Утверждение. В любой аффинной системе координат 

𝑀𝑀 =
𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆
𝜆𝜆 + 𝜇𝜇

 

Доказательство: 

Из определения 

𝜇𝜇(𝑀𝑀 − 𝐴𝐴) = 𝜆𝜆(𝐵𝐵 −𝑀𝑀) 

Следовательно, 

𝑀𝑀 =
𝜇𝜇𝜇𝜇 + 𝜆𝜆𝜆𝜆
𝜆𝜆 + 𝜇𝜇

 

Выражение 𝜆𝜆1𝑀𝑀1 + ⋯+ 𝜆𝜆𝑘𝑘𝑀𝑀𝑘𝑘 имеет геометрический смысл точки, если ∑𝜆𝜆𝑖𝑖 = 1 и 
вектора, если ∑𝜆𝜆𝑖𝑖 = 0. 

Скалярное произведение 
Определение. Функция векторного аргумента 𝑓𝑓(𝑣⃗𝑣) называется линейной, если 

1) 𝑓𝑓(𝑢𝑢�⃗ + 𝑣⃗𝑣) = 𝑓𝑓(𝑢𝑢�⃗ ) + 𝑓𝑓(𝑣⃗𝑣)  ∀ 𝑢𝑢�⃗ , 𝑣⃗𝑣 (аддитивность) 
2) 𝑓𝑓(𝜆𝜆𝑣⃗𝑣) = 𝜆𝜆𝜆𝜆(𝑣⃗𝑣)  (однородность 1-й степени) 

Определение. Скалярное произведение 

(𝑢𝑢�⃗ , 𝑣⃗𝑣) = |𝑢𝑢�⃗ ||𝑣⃗𝑣| cos∠𝑢𝑢�⃗ 𝑣⃗𝑣 

Свойства скалярного произведения: 

1) Билинейность 
(𝑢𝑢�⃗ + 𝑣⃗𝑣,𝑤𝑤��⃗ ) = (𝑢𝑢�⃗ ,𝑤𝑤��⃗ ) + (𝑣⃗𝑣,𝑤𝑤��⃗ ) 
(𝑢𝑢�⃗ , 𝑣⃗𝑣 + 𝑤𝑤��⃗ ) = (𝑢𝑢�⃗ , 𝑣⃗𝑣) + (𝑢𝑢�⃗ ,𝑤𝑤��⃗ ) 
(𝜆𝜆𝑢𝑢�⃗ , 𝑣⃗𝑣) = 𝜆𝜆(𝑢𝑢�⃗ , 𝑣⃗𝑣) = (𝑢𝑢�⃗ , 𝜆𝜆𝑣⃗𝑣) 

https://vk.com/teachinmsu
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2) Симметричность 
(𝑢𝑢�⃗ , 𝑣⃗𝑣) = (𝑣⃗𝑣,𝑢𝑢�⃗ ) 

3) Положительная определенность 
𝑢𝑢�⃗ ≠ 0 ⇒ (𝑢𝑢�⃗ ,𝑢𝑢�⃗ ) > 0 

Аддитивность: 

Очевидно, что 

(0,𝑢𝑢�⃗ ) = (𝑢𝑢�⃗ , 0) = 0 

Хотим доказать, что 

(𝑢𝑢�⃗ , 𝑣⃗𝑣 + 𝑤𝑤��⃗ ) = (𝑢𝑢�⃗ , 𝑣⃗𝑣) + (𝑢𝑢�⃗ ,𝑤𝑤��⃗ ) 

Пусть 𝑢𝑢�⃗ ≠ 0 

 

Рис. 3.1 

1) (𝑢𝑢�⃗ , 𝑣⃗𝑣) = �𝑢𝑢�⃗ , 𝑣⃗𝑣||� 
2) (𝑣⃗𝑣 + 𝑤𝑤��⃗ )|| = 𝑣⃗𝑣|| + 𝑤𝑤��⃗ || 
3) 𝑣⃗𝑣|| = 𝑎𝑎𝑢𝑢�⃗  

𝑤𝑤��⃗ || = 𝑏𝑏𝑢𝑢�⃗  
(𝑢𝑢�⃗ , (𝑎𝑎 + 𝑏𝑏)𝑢𝑢�⃗ ) = (𝑢𝑢�⃗ , 𝑎𝑎𝑢𝑢�⃗ ) + (𝑢𝑢�⃗ , 𝑏𝑏𝑢𝑢�⃗ ) 

Утверждение. Пусть 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  – базис, 𝑢𝑢�⃗ , 𝑣⃗𝑣 – векторы с координатами (𝑢𝑢1, … ,𝑢𝑢𝑘𝑘), 
(𝑣𝑣1, … , 𝑣𝑣𝑘𝑘) в этом базисе. Тогда 

(𝑢𝑢�⃗ , 𝑣⃗𝑣) = � 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖(𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚥𝚥��⃗ )
𝑘𝑘

𝑖𝑖,𝑗𝑗=1

 

Это утверждение следует из свойства билинейности скалярного произведения. 

https://vk.com/teachinmsu
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Определение. Базис 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  ортонормирован, если 

�𝑒𝑒𝚤𝚤��⃗ , 𝑒𝑒𝚥𝚥��⃗ � = 𝛿𝛿𝑖𝑖𝑖𝑖 

где 𝛿𝛿𝑖𝑖𝑖𝑖 – это символ Кронекера: 

𝛿𝛿𝑖𝑖𝑖𝑖 = �1,   𝑖𝑖 = 𝑗𝑗
0,   𝑖𝑖 ≠ 𝑗𝑗 

В ортонормированном базисе: 

(𝑢𝑢�⃗ , 𝑣⃗𝑣) = 𝑢𝑢1𝑣𝑣1 + ⋯+ 𝑢𝑢𝑘𝑘𝑣𝑣𝑘𝑘 

Отметим, что любая линейная функция – это скалярное произведение с фиксированным 
вектором: 

(𝑢𝑢�⃗ ,∙) – общий вид линейной функции 

(𝑢𝑢�⃗ ,∙) = (𝑢𝑢�⃗ ′,∙)  ⇔  𝑢𝑢�⃗ = 𝑢𝑢�⃗ ′  

  

https://vk.com/teachinmsu
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Лекция 4. Матрица Грама. Площадь и объем. Матрица 
перехода. Ориентация базисов 

Матрица Грама 
Определение. Матрица Грама набора векторов 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ : 

𝐺𝐺(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑘𝑘����⃗ ) = �𝑔𝑔𝑖𝑖𝑖𝑖�𝑗𝑗,𝑖𝑖=1,…,𝑘𝑘
 

𝑔𝑔𝑖𝑖𝑖𝑖 = (𝑣𝑣𝚤𝚤���⃗ , 𝑣𝑣𝚥𝚥���⃗ ) 

Пример: 

𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) = �
(𝑣𝑣1����⃗ , 𝑣𝑣1����⃗ ) (𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ )
(𝑣𝑣2����⃗ , 𝑣𝑣1����⃗ ) (𝑣𝑣2����⃗ , 𝑣𝑣2����⃗ )� 

Через матрицу Грама можно выражать все величины, которые зависят от расстояний и 
углов.  

Пусть 

𝐺𝐺 = �𝑔𝑔𝑖𝑖𝑖𝑖� = 𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) 

Тогда  

|𝑣𝑣1����⃗ | = �𝑔𝑔11 

|𝑣𝑣2����⃗ | = �𝑔𝑔22 

∠𝑣𝑣1����⃗ 𝑣𝑣2����⃗ = arccos
𝑔𝑔12

�𝑔𝑔11�𝑔𝑔22
 , 

где ∠𝑣𝑣1����⃗ 𝑣𝑣2����⃗  – угол между векторами 𝑣𝑣1����⃗  и 𝑣𝑣2����⃗  

Найдём площадь параллелограмма, «натянутого» на векторы 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗  (рис. 4.1). 

 

Рис. 4.1 

https://vk.com/teachinmsu
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𝑆𝑆(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) = |𝑣𝑣1����⃗ ||𝑣𝑣2����⃗ | sin∠𝑣𝑣1����⃗ 𝑣𝑣2����⃗  

𝑆𝑆(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) = �𝑔𝑔11�𝑔𝑔22�1 −
𝑔𝑔122

𝑔𝑔11𝑔𝑔22
= �𝑔𝑔11𝑔𝑔22 − 𝑔𝑔122 = √det𝐺𝐺 

Получаем, что 

𝑆𝑆(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) = √det𝐺𝐺 

Теорема. Квадрат площади параллелограмма, «натянутого» на векторы 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗  равен 
определителю матрицы Грама: 

𝑆𝑆2(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) = det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) 

Теорема. Объём параллелограмма, «натянутого» на векторы 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ , 𝑣𝑣3����⃗  равен корню из 
определителя матрицы Грама: 

𝑉𝑉(𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗ ) = �det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ , 𝑣𝑣3����⃗ ) 

Напомним некоторые свойства определителя. Рассмотрим определитель 

�
𝑔𝑔11 𝑔𝑔12 𝑔𝑔13
𝑔𝑔21 𝑔𝑔22 𝑔𝑔23
𝑔𝑔31 𝑔𝑔32 𝑔𝑔33

� 

При прибавлении к столбцу другого, умноженного на число 𝜆𝜆, определитель не 
меняется: 

�
𝑔𝑔11 𝑔𝑔12 𝑔𝑔13 + 𝜆𝜆𝑔𝑔11
𝑔𝑔21 𝑔𝑔22 𝑔𝑔23 + 𝜆𝜆𝑔𝑔21
𝑔𝑔31 𝑔𝑔32 𝑔𝑔33 + 𝜆𝜆𝑔𝑔31

� = �
𝑔𝑔11 𝑔𝑔12 𝑔𝑔13
𝑔𝑔21 𝑔𝑔22 𝑔𝑔23
𝑔𝑔31 𝑔𝑔32 𝑔𝑔33

� 

При прибавлении к строке другой строки, умноженной на число 𝜆𝜆, определитель не 
меняется: 

𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗ + 𝜆𝜆𝑣𝑣1����⃗ ) = �
𝑔𝑔11 𝑔𝑔12 𝑔𝑔13 + 𝜆𝜆𝑔𝑔11
𝑔𝑔21 𝑔𝑔22 𝑔𝑔23 + 𝜆𝜆𝑔𝑔21

𝑔𝑔31 + 𝜆𝜆𝑔𝑔11 𝑔𝑔32 + 𝜆𝜆𝑔𝑔21 𝑔𝑔33 + 𝜆𝜆𝑔𝑔31 + 𝜆𝜆(𝑔𝑔31 + 𝜆𝜆𝑔𝑔11)
� 

�
𝑔𝑔11 𝑔𝑔12 𝑔𝑔13 + 𝜆𝜆𝑔𝑔11
𝑔𝑔21 𝑔𝑔22 𝑔𝑔23 + 𝜆𝜆𝑔𝑔21

𝑔𝑔31 + 𝜆𝜆𝑔𝑔11 𝑔𝑔32 + 𝜆𝜆𝑔𝑔21 𝑔𝑔33 + 𝜆𝜆𝑔𝑔31 + 𝜆𝜆(𝑔𝑔31 + 𝜆𝜆𝑔𝑔11)
� = �

𝑔𝑔11 𝑔𝑔12 𝑔𝑔13
𝑔𝑔21 𝑔𝑔22 𝑔𝑔23
𝑔𝑔31 𝑔𝑔32 𝑔𝑔33

� 

det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗ + 𝜆𝜆𝑣𝑣1����⃗ ) = det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗ ) 

det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗ + 𝜇𝜇𝑣𝑣2����⃗ ) = det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗ ) 

https://vk.com/teachinmsu
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Рассмотрим параллелепипед, «натянутый» на векторы 𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗  (рис. 4.2). Проведем 
вектор ℎ�⃗ , перпендикулярный плоскости, образованной векторами 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ , и имеющий 
длину, равную высоте параллелепипеда.  

 

Рис. 4.2 

ℎ�⃗ = 𝑣𝑣3����⃗ + 𝜆𝜆𝑣𝑣1����⃗ + 𝜇𝜇𝑣𝑣2����⃗  

𝑉𝑉(𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗ ) = |ℎ|�det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) = ��
𝑔𝑔11 𝑔𝑔12 0
𝑔𝑔21 𝑔𝑔22 0
0 0 |ℎ|2

� = �det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ,ℎ�⃗ )

= �det𝐺𝐺(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ , 𝑣𝑣3����⃗ ) 

То есть объем параллелепипеда, «натянутого» на векторы 𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ 𝑣𝑣3����⃗  равен объему 
параллелепипеда, «натянутого» на векторы 𝑣𝑣1����⃗ , 𝑣𝑣2,�����⃗ ℎ�⃗ . 

Рассмотрим теперь векторы 𝑣𝑣1����⃗ , … , 𝑣𝑣𝑚𝑚�����⃗ . Представим их координатами в 
ортонормированном базисе: 

𝑣𝑣𝚤𝚤���⃗ = �
𝑣𝑣1𝑖𝑖
⋮
𝑣𝑣𝑘𝑘𝑘𝑘

� 

Тогда получим матрицу 

https://vk.com/teachinmsu
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𝑋𝑋 = �
𝑣𝑣1𝑖𝑖 𝑣𝑣12 ⋯ 𝑣𝑣1𝑚𝑚
⋮ ⋮ ⋱ ⋮

𝑣𝑣𝑘𝑘𝑘𝑘 𝑣𝑣𝑘𝑘2 ⋯ 𝑣𝑣𝑘𝑘𝑘𝑘
� 

Матрица Грама связана с матрицей 𝑋𝑋 следующим соотношением: 

𝐺𝐺(𝑣𝑣1����⃗ , … , 𝑣𝑣𝑚𝑚�����⃗ ) = 𝑋𝑋𝑇𝑇𝑋𝑋 

Матрица перехода от базиса к базису 
Пусть даны два базиса (на прямой, плоскости или в пространстве): 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  и 𝑓𝑓1���⃗ , … , 𝑓𝑓𝑘𝑘���⃗ . 

Определение. Матрицей перехода от 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  к 𝑓𝑓1���⃗ , … , 𝑓𝑓𝑘𝑘���⃗  называется матрица 𝐶𝐶 =
�𝑐𝑐𝑖𝑖𝑖𝑖�𝑖𝑖,𝑗𝑗=1,…,𝑘𝑘

, где 𝑐𝑐𝑖𝑖𝑖𝑖 – 𝑖𝑖-я координата вектора 𝑓𝑓𝚥𝚥��⃗  в базисе 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ . 

Рассмотрим случай, когда 𝑘𝑘 = 2: 

𝑓𝑓1���⃗ = 𝑎𝑎𝑒𝑒1���⃗ + 𝑏𝑏𝑒𝑒2���⃗  

𝑓𝑓2���⃗ = 𝑐𝑐𝑒𝑒1���⃗ + 𝑑𝑑𝑒𝑒2���⃗  

Тогда матрица перехода: 

𝐶𝐶 = �𝑎𝑎 𝑐𝑐
𝑏𝑏 𝑑𝑑� 

Пусть имеется три базиса. 𝐶𝐶 – матрица перехода от первого базиса ко второму, 𝐷𝐷 – 
матрица перехода от второго базиса к третьему. Тогда матрицей перехода от первого 
базиса к третьему будет матрица 𝐶𝐶𝐶𝐶. 

 

Рис. 4.3 

Напомним, что вырожденная матрица, это такая матрица, у которой определитель 
равен нулю:  

det𝐶𝐶 = 0 

https://vk.com/teachinmsu
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Если det𝐶𝐶 ≠ 0, то существует обратная матрица 𝐶𝐶−1:  

𝐶𝐶−1𝐶𝐶 = 𝐶𝐶𝐶𝐶−1 = 𝐸𝐸, 

где 𝐸𝐸 – единичная матрица. 

Если 𝐶𝐶 – матрица перехода от базиса №1 к базису №2, то матрицей обратного перехода 
(от базиса №2 к базису №1) будет 𝐶𝐶−1. 

Теорема. Пусть 𝐶𝐶 – матрица перехода от 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  к 𝑓𝑓1���⃗ , … ,𝑓𝑓𝑘𝑘���⃗ . Тогда 

При 𝑘𝑘 = 2:  

|det𝐶𝐶| =
𝑆𝑆(𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ )
𝑆𝑆(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ )

 

При 𝑘𝑘 = 3:  

|det𝐶𝐶| =
𝑉𝑉(𝑓𝑓1���⃗ , 𝑓𝑓2,����⃗ 𝑓𝑓3���⃗ )
𝑉𝑉(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )

 

Доказательство: 

Для доказательства теоремы будем использовать метод Гаусса (сведение матрицы к 
единичной с помощью матриц элементарных преобразований): 

𝐶𝐶 = 𝐶𝐶1𝐶𝐶2 …𝐶𝐶𝑁𝑁 

det𝐶𝐶 = �𝐶𝐶𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

Любую матрицу можно представить как произведение матриц элементарных 
преобразований. 

Пусть на главной диагонали матрицы перехода стоят единицы, за единственным 
исключением, когда там стоит некоторое число 𝜆𝜆, а все остальные элементы равны 
нулю: 

𝐶𝐶 =

⎝

⎜
⎜
⎛

1 ⋯ 0

⋮

⋱ 0 ⋱

0
1 ⋱ 0
⋱ 𝜆𝜆 ⋱
0 ⋱ 1

0

⋱ 0 ⋱

⋮

0 ⋯ 1⎠

⎟
⎟
⎞

 

Тогда 

𝑉𝑉(𝑓𝑓1���⃗ , … ,𝑓𝑓𝑘𝑘���⃗ )
𝑉𝑉(𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ )

= |𝜆𝜆| 

https://vk.com/teachinmsu
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|det𝐶𝐶| = |𝜆𝜆| 

Итого, 

|det𝐶𝐶| =
𝑉𝑉(𝑓𝑓1���⃗ , 𝑓𝑓2,����⃗ 𝑓𝑓3���⃗ )
𝑉𝑉(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )

 

Аналогичные рассуждения можно провести, чтобы показать, что  

|det𝐶𝐶| =
𝑆𝑆(𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ )
𝑆𝑆(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ )

 

Определение. Два базиса одинаково ориентированы, если определитель матрицы 
перехода от первого базиса ко второму положителен.  

Определение. Два базиса противоположно ориентированы, если определитель матрицы 
перехода от первого базиса ко второму отрицателен. 

Ориентация – класс эквивалентности одинаково ориентированных базисов. 

  

https://vk.com/teachinmsu
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Лекция 5. Ориентированные площадь и объём. Векторное и 
смешанное произведения. 

Ориентированная площадь. Ориентированный объём. 
На прошлой лекции было показано, что, если 𝐶𝐶 – матрица перехода от базиса 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗  к 
базису 𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ ,𝑓𝑓3���⃗ , то 

|det𝐶𝐶| =
𝑉𝑉(𝑓𝑓1���⃗ , 𝑓𝑓2���⃗ ,𝑓𝑓3���⃗ )
𝑉𝑉(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )

 

Пусть фиксирована ориентация на плоскости или в пространстве. 

Определение. Ориентированная площадь: 

𝑆𝑆𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) = �
𝑆𝑆(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ), если 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ − положительно ориентированный базис
−𝑆𝑆(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ), если 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ − отрицательно ориентированный базис

0,   если 𝑆𝑆(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) = 0
 

Определение. Ориентированный объём: 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) = �
𝑉𝑉(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ), если 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ − положит. ориентированный базис

−𝑉𝑉(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ), в противном случае
0,   если 𝑉𝑉(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) = 0

 

Утверждение. Если 𝐶𝐶 – матрица перехода от 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  к 𝑓𝑓1���⃗ , … ,𝑓𝑓𝑘𝑘���⃗ , то 

det𝐶𝐶 =
𝑆𝑆𝑜𝑜𝑜𝑜�𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ �
𝑆𝑆𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) ,𝑘𝑘 = 2 

det𝐶𝐶 =
𝑉𝑉𝑜𝑜𝑜𝑜�𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ ,𝑓𝑓3���⃗ �
𝑉𝑉𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) , 𝑘𝑘 = 3 

Пример. 

Пусть задан базис 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗  и даны два вектора: 

𝑢𝑢�⃗ = 𝑎𝑎𝑒𝑒1���⃗ + 𝑏𝑏𝑒𝑒2���⃗  

𝑣⃗𝑣 = 𝑐𝑐𝑒𝑒1���⃗ + 𝑑𝑑𝑒𝑒2���⃗  

Тогда площадь параллелограмма, «натянутого» на векторы 𝑢𝑢�⃗  и 𝑣⃗𝑣 (рис. 5.1), можно 
рассчитать по следующей формуле: 

𝑆𝑆𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣) = �𝑎𝑎 𝑐𝑐
𝑏𝑏 𝑑𝑑� ∙ 𝑆𝑆𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) 

https://vk.com/teachinmsu
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Рис. 5.1 

Теорема. Свойства ориентированной площади и ориентированного объёма: 

1) 𝑆𝑆𝑜𝑜𝑜𝑜 билинейна 
𝑉𝑉𝑜𝑜𝑜𝑜 трилинеен 

2) Косая симметрия: 
𝑆𝑆𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣) = −𝑆𝑆𝑜𝑜𝑜𝑜(𝑣⃗𝑣,𝑢𝑢�⃗ ) 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣,𝑤𝑤��⃗ ) = −𝑉𝑉𝑜𝑜𝑜𝑜(𝑣⃗𝑣,𝑢𝑢�⃗ ,𝑤𝑤��⃗ ) = −𝑉𝑉𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ ,𝑤𝑤��⃗ , 𝑣⃗𝑣) 
3) 𝑆𝑆𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣) = 0 ⟺ 𝑢𝑢�⃗ , 𝑣⃗𝑣 линейно зависимы 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣,𝑤𝑤��⃗ ) = 0 ⟺ 𝑢𝑢�⃗ , 𝑣⃗𝑣,𝑤𝑤��⃗  линейно зависимы 

Доказательство: 

Косая симметрия: 

Матрица перехода от 𝑢𝑢�⃗ , 𝑣⃗𝑣 к 𝑣⃗𝑣,𝑢𝑢�⃗ : 

𝐶𝐶 = �0 1
1 0� 

Тогда 

det𝐶𝐶 = �0 1
1 0� = −1 

Получаем, что 

𝑆𝑆𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣) = −𝑆𝑆𝑜𝑜𝑜𝑜(𝑣⃗𝑣,𝑢𝑢�⃗ ) 

Линейность: 

Матрица перехода от 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗  к 𝜆𝜆𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ : 

𝐶𝐶 = �
𝜆𝜆 0 0
0 1 0
0 0 1

� 

Тогда 

https://vk.com/teachinmsu
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det𝐶𝐶 = �
𝜆𝜆 0 0
0 1 0
0 0 1

� = 𝜆𝜆, 

откуда следует однородность, т. е. 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) = 𝜆𝜆𝑉𝑉𝑜𝑜𝑜𝑜(𝜆𝜆𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) 

Рассмотрим 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ,𝑎𝑎𝑒𝑒1���⃗ + 𝑏𝑏𝑒𝑒2���⃗ + 𝑐𝑐𝑒𝑒3���⃗ ) = �
1 0 𝑎𝑎
0 1 𝑏𝑏
0 0 𝑐𝑐

� 𝑉𝑉𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) 

�
1 0 𝑎𝑎
0 1 𝑏𝑏
0 0 𝑐𝑐

� = 𝑐𝑐 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Напишем общую формулу для расчёта определителя: 

�
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3
𝑏𝑏1 𝑏𝑏2 𝑏𝑏3
𝑐𝑐1 𝑐𝑐2 𝑐𝑐3

� = 𝑎𝑎3 �
𝑏𝑏1 𝑏𝑏2
𝑐𝑐1 𝑐𝑐2

� + 𝑏𝑏3 �
𝑐𝑐1 𝑐𝑐2
𝑎𝑎1 𝑎𝑎2� + 𝑐𝑐3 �

𝑎𝑎1 𝑎𝑎2
𝑏𝑏1 𝑏𝑏2� 

Зададимся вопросом, много ли бывает функций 𝑓𝑓(𝑢𝑢�⃗ , 𝑣⃗𝑣), обладающих следующими 
свойствами: 

1) Косая симметрия 
2) Билинейность  

Для того, чтобы определить полилинейную функцию, достаточно знать её значения для 
конкретных базисных векторов. То есть для того, чтобы определить билинейную 
функцию 𝑓𝑓(𝑢𝑢�⃗ , 𝑣⃗𝑣), нужно знать: 𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ),𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ), 𝑓𝑓(𝑒𝑒2���⃗ , 𝑒𝑒1���⃗ ), 𝑓𝑓(𝑒𝑒2���⃗ , 𝑒𝑒2���⃗ ). 

Для кососимметричных функций: 

𝑓𝑓(𝑢𝑢�⃗ , 𝑣⃗𝑣) = −𝑓𝑓(𝑣⃗𝑣,𝑢𝑢�⃗ ) 

То есть: 

𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ) = −𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒1���⃗ ) = 0 

𝑓𝑓(𝑒𝑒2���⃗ , 𝑒𝑒2���⃗ ) = −𝑓𝑓(𝑒𝑒2���⃗ , 𝑒𝑒2���⃗ ) = 0 

Поэтому для того, чтобы определить кососимметричную функцию 𝑓𝑓(𝑢𝑢�⃗ , 𝑣⃗𝑣) на плоскости 
нам достаточно знать одно значение этой функции: 𝑓𝑓(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ). 
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Непрерывная деформируемость одинаково ориентированных 
базисов 

Теорема. Два базиса одинаково ориентированы тогда и только тогда, когда первый 
можно непрерывно деформировать во второй. 

Расшифруем, что значит «непрерывно деформировать» один базис во второй. Пусть 
даны два базиса: 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  и 𝑓𝑓1���⃗ , … , 𝑓𝑓𝑘𝑘���⃗ . 

Непрерывная деформация: 

∃𝑎𝑎1����⃗ (𝑡𝑡), … , 𝑎𝑎𝑘𝑘����⃗ (𝑡𝑡) − непрерывно зависят от 𝑡𝑡 ∈ [0,1] 

𝑎𝑎𝚤𝚤���⃗ (𝑡𝑡) должны удовлетворять двум требованиям: 

1) В начальный момент времени, эти векторы совпадают с элементами первого 
базиса: 

𝑎𝑎𝚤𝚤���⃗ (0) = 𝑒𝑒𝚤𝚤��⃗ , 𝑖𝑖 ∈ 0, … , 𝑘𝑘 

А в конечный момент времени, они совпадают с элементами второго базиса: 

𝑎𝑎𝚤𝚤���⃗ (1) = 𝑓𝑓𝚤𝚤��⃗ , 𝑖𝑖 ∈ 0, … ,𝑘𝑘 

2) ∀𝑡𝑡 𝑎𝑎1����⃗ (𝑡𝑡), … ,𝑎𝑎𝑘𝑘����⃗ (𝑡𝑡) − базис 

Доказательство: 

Докажем сначала, что если базисы непрерывно деформировать, то они будут одинаково 
ориентированы. 

Пусть 𝐶𝐶 – матрица перехода от 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  к 𝑎𝑎1����⃗ (𝑡𝑡), … , 𝑎𝑎𝑘𝑘����⃗ (𝑡𝑡). Найдем её определитель 
det𝐶𝐶. Из  того, что 

det𝐶𝐶 (0) > 0 

det𝐶𝐶 (𝑡𝑡) ≠ 0 ∀𝑡𝑡 

Следует: 

det𝐶𝐶 (𝑡𝑡) > 0 ∀𝑡𝑡 

Теперь докажем в обратную сторону. Мы знаем, что det𝐶𝐶 (𝑡𝑡) > 0 ∀𝑡𝑡. Нам нужно 
доказать, что существует 𝐶𝐶(𝑡𝑡), непрерывно зависящая от 𝑡𝑡 и такая, что 

𝐶𝐶(0) = 𝐸𝐸 

𝐶𝐶(1) = 𝐶𝐶 

Для этого разложим 𝐶𝐶 в виде произведения матриц элементарных преобразований: 
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𝐶𝐶 = 𝐶𝐶1𝐶𝐶2 …𝐶𝐶𝑁𝑁 

Но мы можем использовать не любые матрицы элементарных преобразований, а только 
матрицы следующего вида: 

�
1 ⋯ 𝜆𝜆 0
⋮ ⋱ ⋮
0 ⋯ 1

� 

⎝

⎜
⎜
⎛

1 ⋯ 0

⋮

⋱ 0 ⋱

0
1 ⋱ 0
⋱ 𝜇𝜇 ⋱
0 ⋱ 1

0

⋱ 0 ⋱

⋮

0 ⋯ 1⎠

⎟
⎟
⎞

, 𝜇𝜇 > 0 

Нужно деформировать матрицу �1 0
0 1� в �−1 0

0 −1�, что делается с помощью 

следующей матрицы: 

�
cos(𝜋𝜋𝜋𝜋) −sin(𝜋𝜋𝜋𝜋)
sin(𝜋𝜋𝜋𝜋) cos(𝜋𝜋𝜋𝜋) � 

Примеры: 

1) Пусть дана матрица �1 0
0 1� и мы хотим её деформировать в �1 𝜆𝜆

0 1�. Это можно 

сделать с помощью матрицы �1 𝜆𝜆
0 1�. 

2) Матрицу  

�
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

� 

можно деформировать в матрицу 

⎝

⎜
⎜
⎛

1 ⋯ 0

⋮

⋱ 0 ⋱

0
1 ⋱ 0
⋱ 𝜇𝜇 ⋱
0 ⋱ 1

0

⋱ 0 ⋱

⋮

0 ⋯ 1⎠

⎟
⎟
⎞

 

с помощью следующей матрицы: 

⎝

⎜
⎜
⎛

1 ⋯ 0

⋮

⋱ 0 ⋱

0
1 ⋱ 0
⋱ 𝜇𝜇𝑡𝑡 ⋱
0 ⋱ 1

0

⋱ 0 ⋱

⋮

0 ⋯ 1⎠

⎟
⎟
⎞
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Векторное и смешанное произведения 
Фиксируем ориентацию в пространстве. 

Определение. Векторное произведение – это операция, которая двум векторам 𝑢𝑢�⃗ , 𝑣⃗𝑣 в 
трёхмерном пространстве сопоставляет вектор [𝑢𝑢�⃗ , 𝑣⃗𝑣] в трёхмерном пространстве по 
следующему правилу: 

1) |[𝑢𝑢�⃗ , 𝑣⃗𝑣]| = 𝑆𝑆(𝑢𝑢�⃗ , 𝑣⃗𝑣) 
2) [𝑢𝑢�⃗ , 𝑣⃗𝑣]  ⊥ 𝑢𝑢�⃗ , 𝑣⃗𝑣 
3) Если 𝑆𝑆(𝑢𝑢�⃗ , 𝑣⃗𝑣) ≠ 0, то 𝑢𝑢�⃗ , 𝑣⃗𝑣, [𝑢𝑢�⃗ , 𝑣⃗𝑣] образуют положительно ориентированный 

базис. 

Определение. Смешанное произведение: 

(𝑢𝑢�⃗ , 𝑣⃗𝑣,𝑤𝑤��⃗ ) = ([𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ ) 

([𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ ) = 𝑆𝑆(𝑢𝑢�⃗ , 𝑣⃗𝑣)|𝑤𝑤��⃗ | cos∠[𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗  

Утверждение. Смешанное произведение есть ориентированный объём: 

([𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ ) = 𝑉𝑉𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣,𝑤𝑤��⃗ ) 

Теорема. Свойства векторного произведения: 

1) Билинейность 
2) Косая симметрия (антисимметричность): 

[𝑢𝑢�⃗ , 𝑣⃗𝑣] = −[𝑣⃗𝑣,𝑢𝑢�⃗ ] 
3) [𝑢𝑢�⃗ , 𝑣⃗𝑣] = 0 ⇔  𝑢𝑢�⃗ , 𝑣⃗𝑣 коллинеарны 
4) Тождество Якоби: 

�[𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ � + �[𝑣⃗𝑣,𝑤𝑤��⃗ ],𝑢𝑢�⃗ � + �[𝑤𝑤��⃗ ,𝑢𝑢�⃗ ], 𝑣⃗𝑣� = 0 

Доказательство: 

1) Нам нужно проверить равенство 
[𝑢𝑢�⃗ + 𝑣⃗𝑣,𝑤𝑤��⃗ ] = [𝑢𝑢�⃗ , 𝑣⃗𝑣] + [𝑣⃗𝑣,𝑤𝑤��⃗ ] 

Это равенство эквивалентно следующему: 
([𝑢𝑢�⃗ + 𝑣⃗𝑣,𝑤𝑤��⃗ ],∗) ≡ ([𝑢𝑢�⃗ , 𝑣⃗𝑣] + [𝑣⃗𝑣,𝑤𝑤��⃗ ],∗) = ([𝑢𝑢�⃗ , 𝑣⃗𝑣],∗) + ([𝑣⃗𝑣,𝑤𝑤��⃗ ],∗) 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ + 𝑣⃗𝑣,𝑤𝑤��⃗ ,∗) ≡ 𝑉𝑉𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ ,𝑤𝑤��⃗ ,∗) + 𝑉𝑉𝑜𝑜𝑜𝑜(𝑣⃗𝑣,𝑤𝑤��⃗ ,∗) 

Формула для векторного произведения в прямоугольной 
положительно ориентированной системе координат 

Пусть 

𝑢𝑢�⃗ = (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) 

𝑣⃗𝑣 = (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2) 

https://vk.com/teachinmsu
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Тогда 

[𝑢𝑢�⃗ , 𝑣⃗𝑣] = ��
𝑦𝑦1 𝑧𝑧1
𝑦𝑦2 𝑧𝑧2� , �

𝑧𝑧1 𝑥𝑥1
𝑧𝑧2 𝑥𝑥2� , �

𝑥𝑥1 𝑦𝑦1
𝑥𝑥2 𝑦𝑦2�� 

Доказательство: 

Возьмём вектор 

𝑤𝑤��⃗ = (𝑥𝑥3, 𝑦𝑦3, 𝑧𝑧3) 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑢𝑢�⃗ , 𝑣⃗𝑣,𝑤𝑤��⃗ ) = �
𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2
𝑥𝑥3 𝑦𝑦3 𝑧𝑧3

� = 𝑥𝑥3 �
𝑦𝑦1 𝑧𝑧1
𝑦𝑦2 𝑧𝑧2� + 𝑦𝑦3 �

𝑧𝑧1 𝑥𝑥1
𝑧𝑧2 𝑥𝑥2� + 𝑧𝑧3 �

𝑥𝑥1 𝑦𝑦1
𝑥𝑥2 𝑦𝑦2� = (𝑤𝑤��⃗ , [𝑢𝑢�⃗ , 𝑣⃗𝑣]) 

Представление вектора в виде кососимметричной матрицы 

��
𝑥𝑥1
𝑦𝑦1
𝑧𝑧1
� ,�

𝑥𝑥2
𝑦𝑦2
𝑧𝑧2
�� = �

0 −𝑧𝑧1 𝑦𝑦1
𝑧𝑧1 0 −𝑥𝑥1
−𝑦𝑦1 𝑥𝑥1 0

��
𝑥𝑥2
𝑦𝑦2
𝑧𝑧2
� 

Будем записывать вектор в виде кососимметричной матрицы: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

0 −𝑧𝑧 𝑦𝑦
𝑧𝑧 0 −𝑥𝑥
−𝑦𝑦 𝑥𝑥 0

� 

Тогда векторное произведение: 

[𝐴𝐴,𝐵𝐵] = 𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 
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Лекция 6. Поворот вокруг вектора в пространстве. 
Двойственный базис 

Скалярное, смешанное и векторное произведения через 
кососимметрические матрицы 

Пусть 𝐴𝐴 – квадратная матрица: 

𝐴𝐴 = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

� 

Следом матрицы 𝐴𝐴 называется сумма её диагональных элементов: 

𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎11 + 𝑎𝑎22 + ⋯+ 𝑎𝑎𝑛𝑛𝑛𝑛 

Пусть даны две матрицы: 𝐴𝐴 размером 𝑚𝑚 × 𝑛𝑛 и 𝐵𝐵 размером 𝑚𝑚 × 𝑛𝑛. Тогда 

𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴) = �(𝐴𝐴𝐴𝐴)𝑖𝑖𝑖𝑖
𝑖𝑖

= ��𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑗𝑗𝑗𝑗
𝑗𝑗𝑖𝑖

 

То есть 𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴) = 𝑡𝑡𝑡𝑡(𝐵𝐵𝐵𝐵) 

Рассмотрим след произведения двух кососимметрических матриц: 

𝑡𝑡𝑡𝑡 ��
0 −𝑧𝑧1 𝑦𝑦1
𝑧𝑧1 0 −𝑥𝑥1
−𝑦𝑦1 𝑥𝑥1 0

��
0 −𝑧𝑧2 𝑦𝑦2
𝑧𝑧2 0 −𝑥𝑥2
−𝑦𝑦2 𝑥𝑥2 0

�� = −2(𝑥𝑥1𝑥𝑥2 + 𝑦𝑦1𝑦𝑦2 + 𝑧𝑧1𝑧𝑧2) 

Получаем выражение для скалярного произведения: 

(𝐴𝐴,𝐵𝐵) = −
1
2
𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴) 

Теперь рассмотрим след произведения: 

𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴)𝑇𝑇 = 𝑡𝑡𝑡𝑡(𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇) = −𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶) 

Получаем: 

𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑡𝑡𝑡𝑡(𝐵𝐵𝐵𝐵𝐵𝐵) 

𝑉𝑉𝑜𝑜𝑜𝑜(𝐴𝐴,𝐵𝐵,𝐶𝐶) = −𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴) 

Смешанное произведение: 

(𝐴𝐴,𝐵𝐵,𝐶𝐶) = −
1
2
𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵𝐵𝐵) = −

1
2
𝑡𝑡𝑡𝑡�(𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝐶𝐶� = (𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵,𝐶𝐶) 

Здесь мы воспользовались свойством кососимметричных матриц: 

(𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇 − 𝐴𝐴𝑇𝑇𝐵𝐵𝑇𝑇 = 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

41 
 
 

 

Таким образом, мы установили следующие факты для кососимметрических матриц: 

(𝐴𝐴,𝐵𝐵) = −
1
2
𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴) 

𝑉𝑉𝑜𝑜𝑜𝑜(𝐴𝐴,𝐵𝐵,𝐶𝐶) = −𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴) 

[𝐴𝐴,𝐵𝐵] = 𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 

Ортогональная проекция вектора на вектор 
Выведем формулу для поворота вокруг вектора в пространстве. 

Рассмотрим векторы 𝑣⃗𝑣 и 𝑢𝑢�⃗  (рис. 6.1). 

 

Рис. 6.1 

Утверждение. Из свойств скалярного произведения следует 

𝑣⃗𝑣∥ =
(𝑣⃗𝑣,𝑢𝑢�⃗ )
(𝑢𝑢�⃗ ,𝑢𝑢�⃗ )

𝑢𝑢�⃗  

Доказательство: 

𝑣⃗𝑣∥ = 𝜆𝜆𝑢𝑢�⃗  

(𝑣⃗𝑣 − 𝑣⃗𝑣∥,𝑢𝑢�⃗ ) = 0 

𝜆𝜆 =
(𝑣⃗𝑣,𝑢𝑢�⃗ )
(𝑢𝑢�⃗ ,𝑢𝑢�⃗ )

 

Зафиксируем ортонормированный базис и рассмотрим векторы: 

𝑢𝑢�⃗ = �
𝑎𝑎
𝑏𝑏
𝑐𝑐
� 

https://vk.com/teachinmsu
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𝑣⃗𝑣 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� 

(𝑢𝑢�⃗ , 𝑣⃗𝑣) = 𝑢𝑢�⃗ 𝑇𝑇𝑣⃗𝑣 

(𝑣⃗𝑣,𝑢𝑢�⃗ )𝑢𝑢�⃗ = 𝑢𝑢�⃗ 𝑢𝑢�⃗ 𝑇𝑇𝑣⃗𝑣 

Тогда 

𝑣⃗𝑣∥ =
1

(𝑢𝑢�⃗ ,𝑢𝑢�⃗ )
𝑢𝑢�⃗ 𝑢𝑢�⃗ 𝑇𝑇𝑣⃗𝑣 

1
(𝑢𝑢�⃗ ,𝑢𝑢�⃗ )

𝑢𝑢�⃗ 𝑢𝑢�⃗ 𝑇𝑇 =
1

𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 �
𝑎𝑎2 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎 𝑏𝑏2 𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 𝑐𝑐2

� 

То есть 

𝑣⃗𝑣∥ =
1

𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 �
𝑎𝑎2 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎 𝑏𝑏2 𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 𝑐𝑐2

� 𝑣⃗𝑣 

Поворот вокруг вектора в пространстве 

 
Рис. 6.2 

Запишем векторы как: 

𝑣⃗𝑣 = 𝑣⃗𝑣∥ + 𝑣⃗𝑣⊥ 

𝑤𝑤��⃗ = 𝑤𝑤��⃗ ∥ + 𝑤𝑤��⃗ ⊥ 

𝑣⃗𝑣∥ = 𝑤𝑤��⃗ ∥ 

https://vk.com/teachinmsu
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𝑤𝑤��⃗ ⊥ получается из 𝑣⃗𝑣⊥ поворотом на 𝛼𝛼 вокруг 𝑢𝑢�⃗  (рис. 6.4). 

 
Рис. 6.3 

 

Рис. 6.4 

𝑤𝑤��⃗ ⊥ = cos𝛼𝛼 𝑣⃗𝑣⊥ +
sin𝛼𝛼
|𝑢𝑢�⃗ |

[𝑢𝑢�⃗ , 𝑣⃗𝑣] 

𝑤𝑤��⃗ =
(𝑣⃗𝑣,𝑢𝑢�⃗ )
(𝑢𝑢�⃗ ,𝑢𝑢�⃗ )

𝑢𝑢�⃗ + cos𝛼𝛼 �𝑣⃗𝑣 −
(𝑣⃗𝑣,𝑢𝑢�⃗ )
(𝑢𝑢�⃗ ,𝑢𝑢�⃗ )

𝑢𝑢�⃗ � +
sin𝛼𝛼
|𝑢𝑢�⃗ |

[𝑢𝑢�⃗ , 𝑣⃗𝑣] 

Пусть 𝑢𝑢�⃗ = �
𝑎𝑎
𝑏𝑏
𝑐𝑐
� . Тогда 

𝑤𝑤��⃗ = �
(1 − cos𝛼𝛼)
𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 �

𝑎𝑎2 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎 𝑏𝑏2 𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 𝑐𝑐2

� + cos𝛼𝛼 �
1 0 0
0 1 0
0 0 1

� +
sin𝛼𝛼

√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2
�

0 −𝑐𝑐 𝑏𝑏
𝑐𝑐 0 −𝑎𝑎
−𝑏𝑏 𝑎𝑎 0

��𝑣𝑣��⃗  

https://vk.com/teachinmsu
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Двойственный базис 
Пусть 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗  – базис. 

Определение. Двойственный (дуальный) к 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗   базис - 𝑒𝑒1����⃗ , … , 𝑒𝑒𝑘𝑘����⃗ : 

�𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑗𝑗� = 𝛿𝛿𝑗𝑗𝑖𝑖 

При 𝑘𝑘 = 3: 

𝑒𝑒1 ⊥ 𝑒𝑒2, 𝑒𝑒3 

𝑒𝑒2 ⊥ 𝑒𝑒1, 𝑒𝑒3 

𝑒𝑒3 ⊥ 𝑒𝑒1, 𝑒𝑒2 

(𝑒𝑒1, 𝑒𝑒1) = 1 

(𝑒𝑒2, 𝑒𝑒2) = 1 

(𝑒𝑒3, 𝑒𝑒3) = 1 

Утверждение. Двойственный базис всегда существует и притом единственный. 

Может ли быть такое, что 𝑒𝑒1����⃗ , … , 𝑒𝑒𝑘𝑘����⃗  линейно зависимы? 

Пусть 

𝜆𝜆1𝑒𝑒1 + ⋯+ 𝜆𝜆𝑘𝑘𝑒𝑒𝑘𝑘 = 0 

Тогда 

(𝜆𝜆1𝑒𝑒1 + ⋯+ 𝜆𝜆𝑘𝑘𝑒𝑒𝑘𝑘 , 𝑒𝑒𝚤𝚤��⃗ ) = 0 

(𝜆𝜆1𝑒𝑒1 + ⋯+ 𝜆𝜆𝑘𝑘𝑒𝑒𝑘𝑘, 𝑒𝑒𝚤𝚤��⃗ ) = 𝜆𝜆𝑖𝑖 ∀𝑖𝑖 

Следовательно эти векторы линейно независимы. 

Теорема. 𝐺𝐺 �𝑒𝑒1����⃗ , … , 𝑒𝑒𝑘𝑘����⃗ � = �𝐺𝐺(𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ )�−1 

Доказательство: 

Введём матрицу 

𝑋𝑋 = �(𝑒𝑒1) … (𝑒𝑒𝑘𝑘)� 

𝑌𝑌 = �(𝑒𝑒1) … (𝑒𝑒𝑘𝑘)� 

Тогда матрицы Грама: 

𝐺𝐺(𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ ) = 𝑋𝑋𝑇𝑇𝑋𝑋 

https://vk.com/teachinmsu
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𝐺𝐺 �𝑒𝑒1����⃗ , … , 𝑒𝑒𝑘𝑘����⃗ � = 𝑌𝑌𝑇𝑇𝑌𝑌 

𝑌𝑌𝑇𝑇𝑋𝑋 = 𝐸𝐸 

𝑌𝑌 = (𝑋𝑋−1)𝑇𝑇 

𝐺𝐺 �𝑒𝑒1����⃗ , … , 𝑒𝑒𝑘𝑘����⃗ � = 𝑌𝑌𝑇𝑇𝑌𝑌 

𝑌𝑌𝑇𝑇𝑌𝑌 = 𝑋𝑋−1(𝑋𝑋−1)𝑇𝑇 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1 

(𝑋𝑋𝑇𝑇𝑋𝑋)−1 = �𝐺𝐺(𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ )�−1 

Итого, мы получили: 

𝐺𝐺 �𝑒𝑒1����⃗ , … , 𝑒𝑒𝑘𝑘����⃗ � = �𝐺𝐺(𝑒𝑒1���⃗ , … , 𝑒𝑒𝑘𝑘����⃗ )�−1 

При 𝑘𝑘 = 3: 

𝑒𝑒1 ⊥ 𝑒𝑒2, 𝑒𝑒3 

�𝑒𝑒1����⃗ , 𝑒𝑒1���⃗ � = 1 

𝑒𝑒1����⃗ =
[𝑒𝑒2, 𝑒𝑒3]

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3)
 

𝑒𝑒2����⃗ =
[𝑒𝑒3, 𝑒𝑒1]

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3)
 

𝑒𝑒3����⃗ =
[𝑒𝑒1, 𝑒𝑒2]

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3)
 

Пример. 

�𝑒𝑒1����⃗ , 𝑒𝑒1����⃗ � =
([𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒2, 𝑒𝑒3])

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3)2  

([𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒2, 𝑒𝑒3])
(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3)2 =

�
𝑔𝑔22 𝑔𝑔23
𝑔𝑔23 𝑔𝑔33�

det𝐺𝐺
 

([𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒2, 𝑒𝑒3]) = �(𝑒𝑒2���⃗ , 𝑒𝑒2���⃗ ) (𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ )
(𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) (𝑒𝑒3���⃗ , 𝑒𝑒3���⃗ )� 

 

�𝑒𝑒1����⃗ , 𝑒𝑒2����⃗ � =
([𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒3, 𝑒𝑒1])

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3)2  

https://vk.com/teachinmsu
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([𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒3, 𝑒𝑒1])
(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3)2 =

− �
𝑔𝑔12 𝑔𝑔13
𝑔𝑔32 𝑔𝑔33�

det𝐺𝐺
 

([𝑒𝑒1, 𝑒𝑒3], [𝑒𝑒2, 𝑒𝑒3]) = �(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ ) (𝑒𝑒1���⃗ , 𝑒𝑒3���⃗ )
(𝑒𝑒3���⃗ , 𝑒𝑒2���⃗ ) (𝑒𝑒3���⃗ , 𝑒𝑒3���⃗ )� 

Утверждение. ��𝑎⃗𝑎, 𝑏𝑏�⃗ �, �𝑐𝑐,𝑑𝑑�� = �
(𝑎⃗𝑎, 𝑐𝑐) �𝑎⃗𝑎,𝑑𝑑�
�𝑏𝑏�⃗ , 𝑐𝑐� �𝑏𝑏�⃗ ,𝑑𝑑�

� 

Эта формула верна, когда 𝑎⃗𝑎, 𝑏𝑏�⃗ , 𝑐𝑐,𝑑𝑑 ∈ {𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ } ⟹ формула верна всегда. 

  

https://vk.com/teachinmsu
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Лекция 7. Сферическая геометрия 
Многоугольник на сфере, его углы и длины сторон 

Уравнение, которым задаётся сфера в прямоугольной системе координат: 

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1 

 

Рис. 7.1 𝑋𝑋𝑋𝑋 – прямая на сфере 

 

Рис. 7.2 Многоугольник на сфере 

Сторона сферического треугольника измеряется величиной опирающегося на неё 
центрального угла. 

Угол между сторонами сферического многоугольника – это угол между касательными к 
окружностям, образующим этот многоугольник. 

https://vk.com/teachinmsu
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Теоремы синусов и косинусов на сфере 
Теорема синусов. Для треугольника на сфере (рис. 7.3) справедливо: 

sin𝛼𝛼
sin𝑎𝑎

=
sin𝛽𝛽
sin 𝑏𝑏

=
sin 𝛾𝛾
sin 𝑐𝑐

 

 

Рис. 7.3 (К теореме синусов и косинусов) 

Теорема косинусов. Для треугольника на сфере справедливо: 

cos 𝛾𝛾 sin𝑎𝑎 sin 𝑏𝑏 = cos 𝑐𝑐 − cos 𝑎𝑎 cos 𝑏𝑏 

cos 𝑐𝑐 sin𝛼𝛼 sin𝛽𝛽 = cos 𝛾𝛾 + cos𝛼𝛼 cos𝛽𝛽 

Доказательство теоремы синусов: 

Обозначим векторы, идущие из центра сферы к вершинам треугольника 𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗  (см. 
рис. 7.4). 

Матрица Грама этих векторов: 

𝐺𝐺(𝑒𝑒1���⃗ , 𝑒𝑒2���⃗ , 𝑒𝑒3���⃗ ) = �
1 cos 𝑐𝑐 cos 𝑏𝑏

cos 𝑐𝑐 1 cos 𝑎𝑎
cos 𝑏𝑏 cos 𝑎𝑎 1

� 

Пусть 𝑓𝑓1���⃗ , 𝑓𝑓2���⃗ ,𝑓𝑓3���⃗  – векторы, перпендикулярные к сторонам 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 соответственно и �𝑓𝑓𝚤𝚤��⃗ � =
1. 

https://vk.com/teachinmsu
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Рис. 7.4 

Тогда матрица Грамма для векторов 𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ , 𝑓𝑓3���⃗ : 

𝐺𝐺(𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ , 𝑓𝑓3���⃗ ) = �−
1 −cos 𝛾𝛾 −cos𝛽𝛽

cos 𝛾𝛾 1 − cos𝛼𝛼
−cos𝛽𝛽 −cos𝛼𝛼 1

� 

�𝑒𝑒𝚤𝚤��⃗ ,𝑓𝑓𝚥𝚥��⃗ � = 0 при 𝑖𝑖 ≠ 𝑗𝑗 

Ведем ориентацию: 

𝑓𝑓1���⃗ =
[𝑒𝑒2, 𝑒𝑒3]

sin𝑎𝑎
 

𝑓𝑓2���⃗ =
[𝑒𝑒3, 𝑒𝑒1]

sin 𝑏𝑏
 

𝑓𝑓3���⃗ =
[𝑒𝑒1, 𝑒𝑒2]

sin 𝑐𝑐
 

𝑒𝑒1���⃗ =
�𝑓𝑓2,𝑓𝑓3�
sin𝛼𝛼

 

𝑒𝑒2���⃗ =
�𝑓𝑓3, 𝑓𝑓1�
sin𝛽𝛽

 

𝑒𝑒3���⃗ =
�𝑓𝑓1,𝑓𝑓2�
sin 𝛾𝛾

 

Тогда 

sin𝛼𝛼
sin𝑎𝑎

=
|�𝑓𝑓2, 𝑓𝑓3�|

sin𝑎𝑎
=
��[𝑒𝑒3, 𝑒𝑒1], [𝑒𝑒1, 𝑒𝑒2]��

sin𝑎𝑎 sin 𝑏𝑏 sin 𝑐𝑐
 

Напомним формулу из прошлой лекции: 

https://vk.com/teachinmsu
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([𝑢𝑢�⃗ , 𝑣⃗𝑣], [𝑤𝑤��⃗ , 𝑧𝑧]) = �(𝑢𝑢�⃗ ,𝑤𝑤��⃗ ) (𝑢𝑢�⃗ , 𝑧𝑧)
(𝑣⃗𝑣,𝑤𝑤��⃗ ) (𝑣⃗𝑣, 𝑧𝑧)� 

([𝑢𝑢�⃗ , 𝑣⃗𝑣], [𝑤𝑤��⃗ , 𝑧𝑧]) = ([𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ , 𝑧𝑧) = ��[𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ �, 𝑧𝑧� 

��[𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ �,∗� = �(𝑢𝑢�⃗ ,𝑤𝑤��⃗ ) (𝑢𝑢�⃗ ,∗)
(𝑣⃗𝑣,𝑤𝑤��⃗ ) (𝑣⃗𝑣,∗)� 

Получаем: 

�[𝑢𝑢�⃗ , 𝑣⃗𝑣],𝑤𝑤��⃗ � = (𝑢𝑢�⃗ ,𝑤𝑤��⃗ )𝑣⃗𝑣 − (𝑣⃗𝑣,𝑤𝑤��⃗ )𝑢𝑢�⃗  

Вернёмся к отношению sin𝛼𝛼
sin𝑎𝑎

: 

sin𝛼𝛼
sin𝑎𝑎

=
|�𝑓𝑓2,𝑓𝑓3�|

sin𝑎𝑎
=
��[𝑒𝑒3, 𝑒𝑒1], [𝑒𝑒1, 𝑒𝑒2]��

sin𝑎𝑎 sin 𝑏𝑏 sin 𝑐𝑐
=

|(𝑒𝑒3, 𝑒𝑒1, 𝑒𝑒2)𝑒𝑒1|
sin𝑎𝑎 sin 𝑏𝑏 sin 𝑐𝑐

 

Аналогичные выражения можно получить и для sin𝛽𝛽
sin𝑏𝑏

, sin 𝛾𝛾
sin 𝑐𝑐

. И тогда 

sin𝛼𝛼
sin𝑎𝑎

=
sin𝛽𝛽
sin 𝑏𝑏

=
sin 𝛾𝛾
sin 𝑐𝑐

 

Доказательство для теоремы косинусов: 

cos 𝛾𝛾 = −�𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ � 

−�𝑓𝑓1���⃗ ,𝑓𝑓2���⃗ � =
([𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒3, 𝑒𝑒1])

sin𝑎𝑎 sin 𝑏𝑏
 

([𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒3, 𝑒𝑒1])
sin𝑎𝑎 sin 𝑏𝑏

=
− �
𝑔𝑔23 𝑔𝑔21
𝑔𝑔33 𝑔𝑔31�

sin𝑎𝑎 sin 𝑏𝑏
 

− �
𝑔𝑔23 𝑔𝑔21
𝑔𝑔33 𝑔𝑔31�

sin𝑎𝑎 sin 𝑏𝑏
=
− �cos 𝑎𝑎 cos 𝑐𝑐

1 cos 𝑏𝑏�
sin𝑎𝑎 sin 𝑏𝑏

 

− �cos𝑎𝑎 cos 𝑐𝑐
1 cos 𝑏𝑏�

sin𝑎𝑎 sin 𝑏𝑏
=

cos 𝑐𝑐 − cos 𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
sin𝑎𝑎 sin 𝑏𝑏

 

Получаем: 

cos 𝛾𝛾 sin𝑎𝑎 sin 𝑏𝑏 = cos 𝑐𝑐 − cos 𝑎𝑎 cos 𝑏𝑏 

Угловой дефект 
Зададимся вопросом: чему равна сумма углов сферического треугольника? Очевидно, 
что она больше 180 градусов. 

Рассмотрим внешние углы многоугольника на сфере (рис. 7.5). 

https://vk.com/teachinmsu
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Рис. 7.5 

Определение. Угловой дефект сферического 𝑛𝑛-угольника – 𝐷𝐷 = 2𝜋𝜋 −
∑внешних углов. 

Угловой дефект у треугольника: 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 − 𝜋𝜋. 

Теорема. Угловой дефект сферического 𝑛𝑛-угольника равен его площади. 

Доказательство: 

Лемма. Угловой дефект аддитивен. 

То есть, если нам дан многоугольник 𝑃𝑃, состоящий из нескольких многоугольников:  

𝑃𝑃 = 𝑃𝑃1 ∪ 𝑃𝑃2 ∪ …∪ 𝑃𝑃𝑛𝑛 

То его угловой дефект: 

𝐷𝐷(𝑃𝑃) = 𝐷𝐷(𝑃𝑃1) + 𝐷𝐷(𝑃𝑃2) + ⋯+ 𝐷𝐷(𝑃𝑃𝑛𝑛) 

Очевидно, что любой 𝑛𝑛-угольник можно разрезать на треугольники. Поэтому 
достаточно доказать, что угловой дефект равен площади для треугольника. Угловой 
дефект для маленького треугольника (𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ≪ 1): 

𝐷𝐷 = 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 − 𝜋𝜋 = 𝛾𝛾 − (𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽) 

𝛾𝛾 − (𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽) ≈
cos 𝛾𝛾 − cos(𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽)

− sin 𝛾𝛾
 

Применяя теорему косинусов, получим: 

cos 𝛾𝛾 − cos(𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽)
− sin 𝛾𝛾

=
cos 𝛾𝛾 + cos𝛼𝛼 cos𝛽𝛽 − sin𝛼𝛼 sin𝛽𝛽

− sin 𝛾𝛾
 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

52 
 
 

 

cos 𝛾𝛾 + cos𝛼𝛼 cos𝛽𝛽 − sin𝛼𝛼 sin𝛽𝛽
− sin 𝛾𝛾

=
sin𝛼𝛼 sin𝛽𝛽

sin 𝛾𝛾
(1 − cos 𝑐𝑐) 

sin𝛼𝛼 sin𝛽𝛽
sin 𝛾𝛾

(1 − cos 𝑐𝑐) ≈
sin𝛼𝛼 sin𝛽𝛽

sin 𝛾𝛾
∙
𝑐𝑐2

2
 

sin𝛼𝛼 sin𝛽𝛽
sin 𝛾𝛾

∙
𝑐𝑐2

2
≈

1
2

sin 𝛾𝛾 𝑎𝑎𝑎𝑎 

Мы получили 

𝐷𝐷 ≈
1
2

sin 𝛾𝛾 𝑎𝑎𝑎𝑎 

То есть мы доказали, что для маленького треугольника угловой дефект равен площади. 
При суммировании положительных величин относительная погрешность не 
увеличивается. Следовательно угловой дефект для любого многоугольника на сфере 
равен его площади. 

  

https://vk.com/teachinmsu
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Лекция 8. Прямые и плоскости 
Система линейных уравнений. Ранг 

Рассмотрим вектор 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�. Пусть нам даны матрица 𝑀𝑀 размером 𝑚𝑚 × 𝑛𝑛 и столбец 

𝑏𝑏�⃗ = �
𝑏𝑏1
⋮
𝑏𝑏𝑛𝑛
�. Системой линейных уравнений будем называть 

𝑀𝑀𝑥⃗𝑥 = 𝑏𝑏�⃗  

Что то же самое: 

�
𝑀𝑀11𝑥𝑥1 + ⋯+ 𝑀𝑀1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1

⋮
𝑀𝑀𝑚𝑚1𝑥𝑥1 + ⋯+ 𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑚𝑚

 

Система имеет решения тогда и только тогда, когда 

𝑟𝑟𝑟𝑟(𝑀𝑀) = 𝑟𝑟𝑟𝑟(𝑀𝑀|𝑏𝑏) 

Здесь 𝑟𝑟𝑟𝑟(𝑀𝑀) – ранг матрицы. Рангом матрицы называют максимальное число линейно 
независимых строк (столбцов) матрицы. 

Если это условие выполнено, то множество решений = {𝑥𝑥0����⃗ + 𝜆𝜆1𝑎𝑎1����⃗ + ⋯+ 𝜆𝜆𝑘𝑘𝑎𝑎𝑘𝑘����⃗ }, где  

𝑥𝑥0����⃗  – частное решение; 

𝑎𝑎1����⃗ , … , 𝑎𝑎𝑘𝑘����⃗  – базис решений системы 𝑀𝑀𝑎⃗𝑎 = 0. 

Число неизвестных равно 

𝑘𝑘 = 𝑛𝑛 − 𝑟𝑟𝑟𝑟(𝑀𝑀) 

Параметрическое задание прямой 
Параметрическое задание прямой: 

{𝑃𝑃 + 𝑡𝑡𝑣⃗𝑣}𝑡𝑡∈𝑅𝑅 

 

Рис. 8.1 

https://vk.com/teachinmsu
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Пусть заданы две прямые: 

𝑙𝑙1:𝑃𝑃1 + 𝑡𝑡𝑣𝑣1����⃗  

𝑙𝑙2:𝑃𝑃2 + 𝑡𝑡𝑣𝑣2����⃗  

Утверждение. 𝑙𝑙1 = 𝑙𝑙2 ⟺ 𝑟𝑟𝑟𝑟�𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ,𝑃𝑃1𝑃𝑃2��������⃗ � = 1 

Доказательство: 

Система для поиска общих точек: 

𝑃𝑃1 + 𝑠𝑠𝑣𝑣1����⃗ = 𝑃𝑃2 + 𝑡𝑡𝑣𝑣2����⃗  

Матрица системы имеет следующий вид: 

�𝑣𝑣1����⃗ −𝑣𝑣2����⃗ 𝑃𝑃1𝑃𝑃2��������⃗ � 

𝑙𝑙1 = 𝑙𝑙2 ⟺ 𝑠𝑠 – свободный параметр, а 𝑡𝑡 = 𝑡𝑡(𝑠𝑠). Отсюда следует, что 

𝑟𝑟𝑟𝑟�𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ,𝑃𝑃1𝑃𝑃2��������⃗ � = 1 

И так как 𝑟𝑟𝑟𝑟(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) > 0, то 

𝑟𝑟𝑟𝑟�𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ,𝑃𝑃1𝑃𝑃2��������⃗ � = 𝑟𝑟𝑟𝑟(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ) 

Задание прямой системой уравнений 
На плоскости:  

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 

(𝐴𝐴,𝐵𝐵) ≠ (0,0) 

Пусть 𝑙𝑙1 задано параметрически: 

𝑙𝑙1: (𝑥𝑥0,𝑦𝑦0) + 𝑡𝑡(𝛼𝛼,𝛽𝛽) 

А 𝑙𝑙2 задано уравнением: 

𝑙𝑙2:𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 

Утверждение.  

𝑙𝑙1 = 𝑙𝑙2 ⟺ �
𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶 = 0

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = 0  

Первое условие означает, что (𝑥𝑥0, 𝑦𝑦0) ∈ 𝑙𝑙2, а второе условие означает, что (𝛼𝛼,𝛽𝛽) ∥ 𝑙𝑙2. 

В трёхмерном пространстве: 

�𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1𝑧𝑧 + 𝐷𝐷1 = 0
𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2𝑧𝑧 + 𝐷𝐷2 = 0 

https://vk.com/teachinmsu
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𝑟𝑟𝑟𝑟 �𝐴𝐴1 𝐵𝐵1 𝐶𝐶1
𝐴𝐴2 𝐵𝐵2 𝐶𝐶2

� = 2 

Пусть заданы две прямые в пространстве: 

𝑙𝑙1 : �𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1𝑧𝑧 + 𝐷𝐷1 = 0
𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2𝑧𝑧 + 𝐷𝐷2 = 0 

𝑙𝑙2 : �𝐴𝐴3𝑥𝑥 + 𝐵𝐵3𝑦𝑦 + 𝐶𝐶3𝑧𝑧 + 𝐷𝐷3 = 0
𝐴𝐴4𝑥𝑥 + 𝐵𝐵4𝑦𝑦 + 𝐶𝐶4𝑧𝑧 + 𝐷𝐷4 = 0 

Когда 𝑙𝑙1 = 𝑙𝑙2? Нужно объединить эти две системы и потребовать, чтобы каждая из них 
имела однопараметрическое семейство решений.  

Матрица объединенных систем: 

�

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

𝐷𝐷1
𝐷𝐷2
𝐷𝐷3
𝐷𝐷4

� 

Для того, чтобы количество свободных параметров было равно единице, нужно чтобы 

𝑟𝑟𝑟𝑟 �

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

С1
С2
С3
С4

� = 2 

Условие существования решения: 

𝑟𝑟𝑟𝑟 �

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

𝐷𝐷1
𝐷𝐷2
𝐷𝐷3
𝐷𝐷4

� = 𝑟𝑟𝑟𝑟 �

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

С1
С2
С3
С4

� = 2 

То есть равенство прямых в данном случае равносильно следующему условию: 

𝑟𝑟𝑟𝑟 �

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

𝐷𝐷1
𝐷𝐷2
𝐷𝐷3
𝐷𝐷4

� = 2 

Параметрическое задание плоскости 
Для параметрического задания плоскости в пространстве нужно выбрать точку и два 
направляющих вектора (рис. 8.2).  

https://vk.com/teachinmsu
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Рис. 8.2 

Тогда параметрическое задание плоскости: 

𝑃𝑃 + 𝑠𝑠𝑣𝑣1����⃗ + 𝑡𝑡𝑣𝑣2����⃗ , 𝑠𝑠, 𝑡𝑡 ∈ ℝ 

Пусть заданы две плоскости: 

П:𝑃𝑃 + 𝑠𝑠𝑣𝑣1����⃗ + 𝑡𝑡𝑣𝑣2����⃗  

П′:𝑃𝑃′ + 𝑠𝑠𝑣𝑣1′�����⃗ + 𝑡𝑡𝑣𝑣2′�����⃗  

Зададимся вопросом: когда плоскости П и П′ совпадают? Для этого приравняем их: 

𝑃𝑃 + 𝑠𝑠𝑣𝑣1����⃗ + 𝑡𝑡𝑣𝑣2����⃗ = 𝑃𝑃′ + 𝑠𝑠′𝑣𝑣1′�����⃗ + 𝑡𝑡′𝑣𝑣2′�����⃗  

Для того, чтобы плоскости совпали нужно, чтобы при решении этого уравнения 
осталось два свободных параметра, то есть ранг матрицы системы должен равняться 
двум: 

𝑟𝑟𝑟𝑟�𝑣𝑣1����⃗ 𝑣𝑣2����⃗ 𝑣𝑣1′�����⃗ 𝑣𝑣2′�����⃗ 𝑃𝑃𝑃𝑃′������⃗ � = 2 

Задание плоскости уравнением 
Задание плоскости в пространстве уравнением: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 = 0, 

(𝐴𝐴,𝐵𝐵,𝐶𝐶) ≠ (0,0,0) 

Опять зададимся вопросом: когда две плоскости, заданные таким уравнением 
совпадают? Пусть даны две плоскости: 

П:𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 = 0 

П′:𝐴𝐴′𝑥𝑥 + 𝐵𝐵′𝑦𝑦 + 𝐶𝐶′𝑧𝑧 + 𝐷𝐷′ = 0 

Они совпадают тогда, когда система, составленная из этих двух уравнений, имеет 
двухпараметрическое семейство решений. Это значит, что 

𝑟𝑟𝑟𝑟 �𝐴𝐴 𝐵𝐵 𝐶𝐶
𝐴𝐴′ 𝐵𝐵′ 𝐶𝐶′� = 𝑟𝑟𝑟𝑟 �𝐴𝐴 𝐵𝐵 𝐶𝐶

𝐴𝐴′ 𝐵𝐵′ 𝐶𝐶′
𝐷𝐷
𝐷𝐷′� = 1 
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Заметим, что условие 

𝑟𝑟𝑟𝑟 �𝐴𝐴 𝐵𝐵 𝐶𝐶
𝐴𝐴′ 𝐵𝐵′ 𝐶𝐶′

𝐷𝐷
𝐷𝐷′� = 1 

означает то, что уравнения пропорциональны. 

Пусть одна плоскость задана уравнением, а другая параметрически: 

П:𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 = 0 

П′: (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) + 𝑠𝑠(𝛼𝛼1,𝛽𝛽1, 𝛾𝛾1) + 𝑡𝑡(𝛼𝛼2,𝛽𝛽2, 𝛾𝛾2) 

Как проверить, совпадают ли две эти плоскости? Для этого должны быть выполнены 
условия: 

�
𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶𝑧𝑧0 + 𝐷𝐷 = 0
𝐴𝐴𝛼𝛼1 + 𝐵𝐵𝛽𝛽1 + 𝐶𝐶𝛾𝛾1 = 0
𝐴𝐴𝛼𝛼2 + 𝐵𝐵𝛽𝛽2 + 𝐶𝐶𝛾𝛾2 = 0

 

Где соблюдены условия параллельности векторов (𝛼𝛼1,𝛽𝛽1, 𝛾𝛾1) и (𝛼𝛼2,𝛽𝛽2, 𝛾𝛾2) плоскости П: 

�𝐴𝐴𝛼𝛼1 + 𝐵𝐵𝛽𝛽1 + 𝐶𝐶𝛾𝛾1 = 0
𝐴𝐴𝛼𝛼2 + 𝐵𝐵𝛽𝛽2 + 𝐶𝐶𝛾𝛾2 = 0 

А условие  

𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶𝑧𝑧0 + 𝐷𝐷 = 0 

эквивалентно тому, что точка (𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) ∈ П. 

Многочлены первой степени. Полуплоскости. 
Полупространства 

Многочлен первой степени на плоскости: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶, 

(𝐴𝐴,𝐵𝐵) ≠ (0,0) 

Многочлен первой степени в пространстве: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝑧𝑧 + 𝐷𝐷, 

(𝐴𝐴,𝐵𝐵,𝐶𝐶) ≠ (0,0,0) 

Рассмотрим случай для плоскости (в пространстве всё будет аналогично). Пусть задан 
многочлен первой степени: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 

Прямая задается уравнением: 

https://vk.com/teachinmsu
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𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 

Неравенствами задаются полуплоскости: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 ≥ 0  

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 ≤ 0 

Утверждение. Вектор (𝛼𝛼,𝛽𝛽) «смотрит» в положительную сторону тогда и только тогда, 
когда 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 > 0. 

 

Рис. 8.3 

Доказательство: 

Возьмём точку (𝑥𝑥0, 𝑦𝑦0), лежащую на прямой 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 и отложим от неё вектор 
(𝛼𝛼,𝛽𝛽) (рис. 8.4). Тогда конец этого вектора будет в точке (𝑥𝑥0 + 𝛼𝛼, 𝑦𝑦0 + 𝛽𝛽). 

 

Рис. 8.4 

Подставим координаты конца вектора в многочлен: 

𝐴𝐴(𝑥𝑥0 + 𝛼𝛼) + 𝐵𝐵(𝑦𝑦0 + 𝛽𝛽) + 𝐶𝐶 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 

https://vk.com/teachinmsu
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Получаем, что знак величины 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 определяет в какую сторону будет «смотреть» 
вектор (𝛼𝛼,𝛽𝛽). 

Заметим, что вектор (𝐴𝐴,𝐵𝐵) будет всегда направлен в сторону положительной 
полуплоскости, то есть где  

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 > 0. 

Утверждение. Любой многочлен первой степени можно взять за одну из аффинных 
координат. 

Аффинные координаты сами по себе являются многочленами первой степени: 𝑥𝑥 и 𝑦𝑦. 
Любая их линейная комбинация также будет являться многочленом первой степени. То 
есть существует аффинная система координат 𝑥𝑥′,𝑦𝑦′ такая, что 𝑥𝑥′ = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶. 

 

Рис. 8.5 

Пусть задана прямая   

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0. 

Выберем произвольно точку 𝑂𝑂 на этой прямой и направим из неё вектор 𝑦𝑦′���⃗  по данной 
прямой и вектор 𝑥𝑥′���⃗  так, чтобы он не был коллинеарен вектору 𝑦𝑦′���⃗  (рис. 8.5). 

Какие координаты будут у точки 𝑀𝑀(𝑥𝑥, 𝑦𝑦) в системе 𝑥𝑥′,𝑦𝑦′? Мы можем записать 
следующее: 

𝑥𝑥 − 𝑥𝑥0 = 𝑥𝑥′𝛼𝛼1 + 𝑦𝑦′𝛼𝛼2 

𝑦𝑦 − 𝑦𝑦0 = 𝑥𝑥′𝛽𝛽1 + 𝑦𝑦′𝛽𝛽2 

Тогда 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 𝐴𝐴(𝑥𝑥0 + 𝑥𝑥′𝛼𝛼1 + 𝑦𝑦′𝛼𝛼2) + 𝐵𝐵(𝑦𝑦0 + 𝑥𝑥′𝛽𝛽1 + 𝑦𝑦′𝛽𝛽2) + 𝐶𝐶 

𝐴𝐴(𝑥𝑥0 + 𝑥𝑥′𝛼𝛼1 + 𝑦𝑦′𝛼𝛼2) + 𝐵𝐵(𝑦𝑦0 + 𝑥𝑥′𝛽𝛽1 + 𝑦𝑦′𝛽𝛽2) + 𝐶𝐶 = 𝑥𝑥′(𝐴𝐴𝛼𝛼1 + 𝐵𝐵𝛽𝛽1) + 𝑦𝑦′(𝐴𝐴𝛼𝛼2 + 𝐵𝐵𝛽𝛽2) 
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𝐴𝐴𝛼𝛼2 + 𝐵𝐵𝛽𝛽2 = 0 

Получаем, что 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 𝑥𝑥′𝜆𝜆, 

Где 𝜆𝜆 = 𝐴𝐴𝛼𝛼1 + 𝐵𝐵𝛽𝛽1 

«Растягивая» 𝑥𝑥′, мы можем сделать так, чтобы 𝜆𝜆 = 1. 

Утверждение. Пусть 𝑙𝑙: 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 0, deg𝑓𝑓 = 1, {𝐴𝐴,𝐵𝐵} ∉ 𝑙𝑙. Тогда 𝐴𝐴𝐴𝐴 ∩ 𝑙𝑙 делит 𝐴𝐴𝐴𝐴 в 
отношении 𝑓𝑓(𝐴𝐴): 𝑓𝑓(𝐵𝐵). 

Следствие. Отрезок 𝐴𝐴𝐴𝐴 пересекает прямую 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 0 ⇔ 𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵) < 0. 

В пространстве аналогично: 

Общий вид аффинной координаты: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷, (𝐴𝐴,𝐵𝐵,𝐶𝐶) ≠ (0,0,0) 

Полупространства задаются неравенствами: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 ≥ 0 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 ≤ 0 

Аффинная классификация 
Определение. Два объекта 𝑋𝑋1,𝑋𝑋2 называются аффинно эквивалентными, если 
существует две аффинные системы координат 𝒜𝒜1,𝒜𝒜2 такие, что 𝑋𝑋1 в 𝒜𝒜1 может быть 
задан также как 𝑋𝑋2 в 𝒜𝒜2. 
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Лекция 9. Аффинная классификация прямых и плоскостей. 
Пучки и связки 

Аффинная классификация пар прямых на плоскости 
Теорема. Для любых двух прямых 𝑙𝑙1, 𝑙𝑙2 на плоскости верно ровно одно из следующих 
трёх высказываний: 

1) Существует аффинная система координат 𝑥𝑥, 𝑦𝑦, в которой 
𝑙𝑙1:𝑦𝑦 = 0 
𝑙𝑙2:𝑦𝑦 = 0 

2) Существует аффинная система координат 𝑥𝑥, 𝑦𝑦, в которой 
𝑙𝑙1:𝑦𝑦 = 0 
𝑙𝑙2:𝑦𝑦 = 1 

3) Существует аффинная система координат 𝑥𝑥, 𝑦𝑦, в которой 
𝑙𝑙1:𝑦𝑦 = 0 
𝑙𝑙2: 𝑥𝑥 = 0 

Пусть в произвольной аффинной системе координат даны две прямые: 

𝑙𝑙1:𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1 = 0 

𝑙𝑙2:𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2 = 0 

Проверим, не совпадают ли они. Возможны два случая: 

1) Если 

𝑟𝑟𝑟𝑟 �𝐴𝐴1 𝐵𝐵1 𝐶𝐶1
𝐴𝐴2 𝐵𝐵2 𝐶𝐶2

� = 1, 

то эти уравнения пропорциональны и прямые совпадают, то есть 𝑙𝑙1 = 𝑙𝑙2 и 𝑙𝑙1 
можно принять за ось 𝑂𝑂𝑂𝑂. 

2) Если 

𝑟𝑟𝑟𝑟 �𝐴𝐴1 𝐵𝐵1 𝐶𝐶1
𝐴𝐴2 𝐵𝐵2 𝐶𝐶2

� = 2, 

то нужно проверить чему равен ранг матрицы без свободных членов. Для нее 
опять может быть два варианта: 

a) Если  

𝑟𝑟𝑟𝑟 �𝐴𝐴1 𝐵𝐵1
𝐴𝐴2 𝐵𝐵2

� = 1, 

то по теореме Кронекера-Капелли прямые 𝑙𝑙1 и 𝑙𝑙2 не имеют общих точек, 
пара коэффициентов при 𝑥𝑥 и 𝑦𝑦 пропорциональны, откуда следует, что 
прямые параллельны: 𝑙𝑙1 ∥ 𝑙𝑙2, 𝑙𝑙1 ∩ 𝑙𝑙2 = ∅. В этом случае можно принять 
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прямую 𝑙𝑙1 за ось 𝑂𝑂𝑂𝑂, а вторым базисным вектором соединим начало 
координат с какой-нибудь точкой, лежащей на 𝑙𝑙2 (рис. 9.1). Тогда вторая 
прямая будет задана уравнением 𝑦𝑦 = 1. 

 
Рис. 9.1 

b) Если  

𝑟𝑟𝑟𝑟 �𝐴𝐴1 𝐵𝐵1
𝐴𝐴2 𝐵𝐵2

� = 2, 

то система будет иметь единственное решение, а значит 𝑙𝑙1 и 𝑙𝑙2 имеют 
одну общую точку. Эту точку можно взять за начало координат, а 𝑙𝑙1 и 𝑙𝑙2 
принять за оси координат. 

В дальнейшем, вместо фразы «существует аффинная система координат, в которой, … 
задано …»  будем использовать «выбором аффинной системы координат приводится к 
виду». 

Аффинная классификация пар прямых в пространстве 
Теорема. Выбором аффинной системы координат любую пару прямых можно привести 
ровно к одному из видов: 

1) 𝑙𝑙1 = 𝑙𝑙2: (0,0,0) + 𝑡𝑡(1,0,0) (прямые совпадают) 
2) 𝑙𝑙1: (0,0,0) + 𝑡𝑡(1,0,0),  𝑙𝑙2: (0,1,0) + 𝑡𝑡(1,0,0) (прямые параллельны) 
3) 𝑙𝑙1: (0,0,0) + 𝑡𝑡(1,0,0),  𝑙𝑙2: (0,0,0) + 𝑡𝑡(0,1,0) (прямые пересекаются в точке) 
4) 𝑙𝑙1: (0,0,0) + 𝑡𝑡(1,0,0),  𝑙𝑙2: (0,0,1) + 𝑡𝑡(0,1,0) (прямые скрещиваются) 

На схеме на рис. 9.2 показано как можно выбрать координатные оси в различных 
случаях. В пространстве более высокой размерности случаи будут аналогичны 
(единственное различие будет в количестве координат). 
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Рис. 9.2 

Аффинная классификация пар плоскостей в пространстве 
Теорема. Выбором аффинной системы координат любую пару плоскостей можно 
привести ровно к одному из видов: 

1) П1 = П2: 𝑧𝑧 = 0 (плоскости совпадают) 
2) П1: 𝑧𝑧 = 0,П2: 𝑧𝑧 = 1 (плоскости параллельны) 
3) П1: 𝑧𝑧 = 0,П2:𝑦𝑦 = 0 (плоскости пересекаются по прямой) 

Пучки прямых на плоскости 
Определение. Собственный пучок прямых на плоскости – семейство всех прямых, 
проходящих через некоторую фиксированную точку. 

Определение. Несобственный пучок прямых на плоскости – семейство всех прямых, 
параллельных некоторому фиксированному вектору. 

Утверждение.  

1) Пусть 𝑙𝑙1 и 𝑙𝑙2 – две различные прямые на плоскости. Тогда существует 
единственный пучок прямых, содержащий 𝑙𝑙1 и 𝑙𝑙2. 

2) Прямые 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 лежат в одном пучке тогда и только тогда, когда 

�
𝐴𝐴1 𝐵𝐵1 𝐶𝐶1
𝐴𝐴2 𝐵𝐵2 𝐶𝐶2
𝐴𝐴3 𝐵𝐵3 𝐶𝐶3

� = 0, 

где  

𝑙𝑙1:𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1 = 0 

𝑙𝑙2:𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2 = 0 
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𝑙𝑙3:𝐴𝐴3𝑥𝑥 + 𝐵𝐵3𝑦𝑦 + 𝐶𝐶3 = 0 

Доказательство: 

1) Первый пункт очевиден. 
2) Пусть 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 лежат в одном пучке. Тогда либо существует точка их 

пересечения (𝑥𝑥0, 𝑦𝑦0) такая, что 

𝑙𝑙1:𝐴𝐴1𝑥𝑥0 + 𝐵𝐵1𝑦𝑦0 + 𝐶𝐶1 = 0 

𝑙𝑙2:𝐴𝐴2𝑥𝑥0 + 𝐵𝐵2𝑦𝑦0 + 𝐶𝐶2 = 0 

𝑙𝑙3:𝐴𝐴3𝑥𝑥0 + 𝐵𝐵3𝑦𝑦0 + 𝐶𝐶3 = 0 

Либо существует вектор (𝛼𝛼,𝛽𝛽) такой, что 
𝐴𝐴1𝛼𝛼 + 𝐵𝐵1𝛽𝛽 = 0 
𝐴𝐴2𝛼𝛼 + 𝐵𝐵2𝛽𝛽 = 0 
𝐴𝐴3𝛼𝛼 + 𝐵𝐵3𝛽𝛽 = 0 

В обоих случаях получаем, что столбцы 

�
𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
� ,�

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
� ,�

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
� 

линейно зависимы. Откуда следует, что  

det �
𝐴𝐴1 𝐵𝐵1 𝐶𝐶1
𝐴𝐴2 𝐵𝐵2 𝐶𝐶2
𝐴𝐴3 𝐵𝐵3 𝐶𝐶3

� = 0. 

Теперь докажем в обратную сторону. Пусть  

det �
𝐴𝐴1 𝐵𝐵1 𝐶𝐶1
𝐴𝐴2 𝐵𝐵2 𝐶𝐶2
𝐴𝐴3 𝐵𝐵3 𝐶𝐶3

� = 0, 

что равносильно существованию (𝛼𝛼,𝛽𝛽, 𝛾𝛾) ≠ (0,0,0) таких, что 

𝛼𝛼 �
𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
� + 𝛽𝛽 �

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
� + 𝛾𝛾 �

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
� = 0 

Далее возникает развилка. Если 𝛾𝛾 = 0, то 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 ∥ (𝛼𝛼,𝛽𝛽). Если нет, то 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 ∋
(𝑥𝑥0,𝑦𝑦0), где  

𝑥𝑥0 =
𝛼𝛼
𝛾𝛾

 ,𝑦𝑦0 =
𝛽𝛽
𝛾𝛾

. 

 

Пучки плоскостей в пространстве 
Определение. Собственный пучок плоскостей в пространстве – семейство всех 
плоскостей, содержащих некоторую прямую. 

Определение. Несобственный пучок плоскостей в пространстве – семейство всех 
прямых, параллельных некоторой фиксированной плоскости. 
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Утверждение. 

1) Для любых двух плоскостей П1,П2, таких что П1 ≠ П2 существует 
единственный пучок, содержащий П1,П2. 

2) П1,П2,П3 лежат в одном пучке тогда и только тогда, когда  

𝑟𝑟𝑟𝑟 �

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

𝐷𝐷1
𝐷𝐷2
𝐷𝐷3
𝐷𝐷4

� < 3 

Доказательство: 

1) Первый пункт очевиден. 
2) Введём следующие обозначения: 

𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1𝑧𝑧 + 𝐷𝐷1 
𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2𝑧𝑧 + 𝐷𝐷2 
𝑓𝑓3(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐴𝐴3𝑥𝑥 + 𝐵𝐵3𝑦𝑦 + 𝐶𝐶3𝑧𝑧 + 𝐷𝐷3 
𝑓𝑓4(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐴𝐴4𝑥𝑥 + 𝐵𝐵4𝑦𝑦 + 𝐶𝐶4𝑧𝑧 + 𝐷𝐷4 

 

𝑟𝑟𝑟𝑟 �

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

𝐷𝐷1
𝐷𝐷2
𝐷𝐷3
𝐷𝐷4

� < 3 ⟺ ∃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) ≠ (0,0,0) такие, что  

𝛼𝛼𝑓𝑓1 + 𝛽𝛽𝑓𝑓2 + 𝛾𝛾𝑓𝑓3 = 0 
Без ограничения общности 𝛾𝛾 ≠ 0. Это значит, что 

𝑓𝑓3 =
−(𝛼𝛼𝑓𝑓1 + 𝛽𝛽𝑓𝑓2)

𝛾𝛾
 

Возможны два случая: П1 ∥ П2 и П1 ∩ П2 ∈ П3. 

Связки прямых и плоскостей в пространстве 
Определение. Собственная связка прямых в пространстве – семейство всех прямых, 
проходящих через некоторую фиксированную точку. 

Определение. Несобственная связка прямых в пространстве – семейство всех прямых, 
параллельных некоторому фиксированному вектору. 

Определение. Собственная связка плоскостей в пространстве – множество всех 
плоскостей, проходящих через некоторую фиксированную точку. 

Определение. Несобственная связка плоскостей в пространстве – множество всех 
плоскостей, параллельных некоторому фиксированному вектору. 

Утверждение.  

1) Пусть П1,П2,П3 – три плоскости, не содержащиеся в одном пучке. Тогда 
существует единственная связка, содержащая П1,П2,П3. 
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2) П1,П2,П3,П4 в одной связке тогда и только тогда, когда  

�

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

𝐷𝐷1
𝐷𝐷2
𝐷𝐷3
𝐷𝐷4

� = 0, 

где  

П1:𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1𝑧𝑧 + 𝐷𝐷1 = 0 

П2:𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2𝑧𝑧 + 𝐷𝐷2 = 0 

П3:𝐴𝐴3𝑥𝑥 + 𝐵𝐵3𝑦𝑦 + 𝐶𝐶3𝑧𝑧 + 𝐷𝐷3 = 0 

П4:𝐴𝐴4𝑥𝑥 + 𝐵𝐵4𝑦𝑦 + 𝐶𝐶4𝑧𝑧 + 𝐷𝐷4 = 0 

Доказательство аналогично доказательству подобного утверждения для пучков 
плоскостей в пространстве и оставляется в качестве упражнения. 

Ортогональная (метрическая/евклидова) классификация 
Ортогональная классификация пар прямых: 

1) 𝑙𝑙1 = 𝑙𝑙2:𝑦𝑦 = 0 
2) 𝑙𝑙1 ∥ 𝑙𝑙2    

𝑙𝑙1:𝑦𝑦 = 0, 𝑙𝑙2:𝑦𝑦 = 𝑎𝑎,𝑎𝑎 > 0 

3) 𝑙𝑙1 ∦ 𝑙𝑙2    

𝑙𝑙1 = 𝑦𝑦 = 0, 𝑙𝑙2: 𝑥𝑥 = 𝑘𝑘𝑘𝑘, 𝑘𝑘 ≥ 0 

В данном случае, инварианты – расстояния и углы. 
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Лекция 10. Формулы для расстояний и углов. Замена 
аффинных координат. 

Лемма о нормали к прямой 
Если не будет оговорено иного, то в этой лекции мы по умолчанию будем считать, что 
𝑥𝑥,𝑦𝑦 – прямоугольная система координат на плоскости. 

Утверждение. Пусть прямая 𝑙𝑙 задаётся следующим уравнением: 

𝑙𝑙: = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 

Тогда (𝐴𝐴,𝐵𝐵) ⊥ 𝑙𝑙. 

Доказательство: 

В любой аффинной системе координат: 

(𝛼𝛼,𝛽𝛽) ∥ 𝑙𝑙 ⟺ 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = 0 

В прямоугольной системе координат: 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = �(𝛼𝛼,𝛽𝛽), (𝐴𝐴,𝐵𝐵)� 

Следовательно, (𝐴𝐴,𝐵𝐵) ⊥  (𝛼𝛼,𝛽𝛽), а значит (𝐴𝐴,𝐵𝐵) ⊥ 𝑙𝑙. 

Формулы для расстояний 
Утверждение. Пусть даны прямая 𝑙𝑙: = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 и произвольная точка (𝑥𝑥0, 𝑦𝑦0). 
Тогда расстояние от этой точки до прямой: 

𝜌𝜌�(𝑥𝑥0,𝑦𝑦0), 𝑙𝑙� =
|𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶|

√𝐴𝐴2 + 𝐵𝐵2
 

Доказательство: 

Возьмём точку (𝑥𝑥1,𝑦𝑦1) на прямой 𝑙𝑙 и проведем из неё вектор 𝑢𝑢�⃗  в точку (𝑥𝑥0,𝑦𝑦0) (рис. 
10.1). 
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Рис. 10.1 

Тогда 

𝜌𝜌 =
|(𝑢𝑢�⃗ ,𝑛𝑛�⃗ )|

|𝑛𝑛�⃗ | =
|𝐴𝐴(𝑥𝑥0 − 𝑥𝑥1) + 𝐵𝐵(𝑦𝑦0 − 𝑦𝑦1)|

√𝐴𝐴2 + 𝐵𝐵2
=

|𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶|
√𝐴𝐴2 + 𝐵𝐵2

 

Утверждение. Пусть даны две прямые:  

𝑙𝑙1: = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶1 = 0 

𝑙𝑙2: = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶2 = 0 

Тогда расстояние от этой точки до прямой: 

𝜌𝜌(𝑙𝑙1, 𝑙𝑙2) =
|𝐶𝐶1 − 𝐶𝐶2|
√𝐴𝐴2 + 𝐵𝐵2

 

Доказательство: 

Возьмём на прямой 𝑙𝑙2 точку (𝑥𝑥0, 𝑦𝑦0) (рис. 10.2). 

 

Рис. 10.2 
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Тогда 

𝜌𝜌(𝑙𝑙1, 𝑙𝑙2) = 𝜌𝜌�(𝑥𝑥0,𝑦𝑦0), 𝑙𝑙1� =
|𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶1|

√𝐴𝐴2 + 𝐵𝐵2
=

|𝐶𝐶1 − 𝐶𝐶2|
√𝐴𝐴2 + 𝐵𝐵2

 

Задача. 

Пусть даны прямая 𝑙𝑙: = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 и произвольная точка (𝑥𝑥0, 𝑦𝑦0), не лежащая на 
этой прямой. Нужно найти функцию 𝑓𝑓(𝑥𝑥, 𝑦𝑦): 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = �
𝜌𝜌�(𝑥𝑥,𝑦𝑦), 𝑙𝑙�, если (𝑥𝑥, 𝑦𝑦) и (𝑥𝑥0,𝑦𝑦0) лежат в одной полуплоскости

−𝜌𝜌�(𝑥𝑥,𝑦𝑦), 𝑙𝑙�, в противном случае
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) =
𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶
√𝐴𝐴2 + 𝐵𝐵2

 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶)  

Аналогичные формулы имеют место и в пространстве. Пусть 𝑥𝑥,𝑦𝑦, 𝑧𝑧 – прямоугольная 
система координат и пусть задана плоскость 

П:𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 = 0 

Тогда расстояние от точки (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) до этой плоскости: 

𝜌𝜌�(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0),П� =
|𝐴𝐴𝑥𝑥0 + 𝐵𝐵𝑦𝑦0 + 𝐶𝐶𝑧𝑧0 + 𝐷𝐷|

√𝐴𝐴2 + 𝐵𝐵2 + 𝐶𝐶2
 

Расстояние между двумя параллельными плоскостями: 

𝜌𝜌(П1,П2) =
|𝐷𝐷1 − 𝐷𝐷2|

√𝐴𝐴2 + 𝐵𝐵2 + 𝐶𝐶2
, 

где  

П1:𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷1 = 0 

П2:𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷2 = 0 

Найдём расстояние между скрещивающимися прямыми в пространстве. Пусть заданы 
две прямые (рис. 10.3): 

𝑙𝑙1:𝑃𝑃1 + 𝑡𝑡𝑣𝑣1����⃗  

𝑙𝑙2:𝑃𝑃2 + 𝑡𝑡𝑣𝑣2����⃗  

https://vk.com/teachinmsu
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Рис. 10.3 

Тогда расстояние между ними: 

𝜌𝜌(𝑙𝑙1, 𝑙𝑙2) =
�(𝑃𝑃1𝑃𝑃2��������⃗ , [𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ])�

|[𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ ]| =
𝑉𝑉(𝑃𝑃1𝑃𝑃2��������⃗ , 𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ )
𝑆𝑆(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ )

 

Пусть прямые заданы следующими уравнениями: 

𝑙𝑙1: �𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1𝑧𝑧 + 𝐷𝐷1 = 0
𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2𝑧𝑧 + 𝐷𝐷2 = 0 

𝑙𝑙2: �𝐴𝐴3𝑥𝑥 + 𝐵𝐵3𝑦𝑦 + 𝐶𝐶3𝑧𝑧 + 𝐷𝐷3 = 0
𝐴𝐴4𝑥𝑥 + 𝐵𝐵4𝑦𝑦 + 𝐶𝐶4𝑧𝑧 + 𝐷𝐷4 = 0 

Попробуем «угадать» формулу для расстояния между скрещивающимися прямыми: 

𝜌𝜌(𝑙𝑙1, 𝑙𝑙2) =

�

�

��

𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
𝐴𝐴4

𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

𝐷𝐷1
𝐷𝐷2
𝐷𝐷3
𝐷𝐷4

�

([𝑛𝑛1����⃗ ,𝑛𝑛2����⃗ ], [𝑛𝑛3����⃗ ,𝑛𝑛4����⃗ ])
�

�

�

, 

где  

𝑛𝑛1����⃗ = (𝐴𝐴1,𝐵𝐵1,𝐶𝐶1) 

𝑛𝑛2����⃗ = (𝐴𝐴2,𝐵𝐵2,𝐶𝐶2) 

𝑛𝑛3����⃗ = (𝐴𝐴3,𝐵𝐵3,𝐶𝐶3) 

𝑛𝑛4����⃗ = (𝐴𝐴4,𝐵𝐵4,𝐶𝐶4) 
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Формулы для углов 
Угол между прямыми. 

Пусть заданы две прямые: 

𝑙𝑙1:𝑃𝑃1 + 𝑡𝑡𝑣𝑣1����⃗  

𝑙𝑙2:𝑃𝑃2 + 𝑡𝑡𝑣𝑣2����⃗  

Тогда угол между ними определяется как 

∠𝑙𝑙1, 𝑙𝑙2 = arccos
|(𝑣𝑣1����⃗ , 𝑣𝑣2����⃗ )|
|𝑣𝑣1����⃗ ||𝑣𝑣2����⃗ |  

Если прямые заданы уравнением 

𝑙𝑙1:𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1𝑧𝑧 + 𝐷𝐷1 = 0 

𝑙𝑙2:𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2𝑧𝑧 + 𝐷𝐷2 = 0 

то  

∠𝑙𝑙1, 𝑙𝑙2 = arccos
|𝐴𝐴1𝐴𝐴2 + 𝐵𝐵1𝐵𝐵2|

�(𝐴𝐴12 + 𝐵𝐵12)(𝐴𝐴22 + 𝐵𝐵22)
 

Угол, смотрящий на точку. 

Пусть даны две прямые и точка. Формула, выражающая угол, который «смотрит» на 
точку (рис. 10.4): 

𝛼𝛼 = arccos�
|𝐴𝐴1𝐴𝐴2 + 𝐵𝐵1𝐵𝐵2|

�(𝐴𝐴12 + 𝐵𝐵12)(𝐴𝐴22 + 𝐵𝐵22)
𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴1𝑥𝑥0 + 𝐵𝐵1𝑦𝑦0 + 𝐶𝐶1) 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴1𝑥𝑥0 + 𝐵𝐵1𝑦𝑦0 + 𝐶𝐶1)(−1)� 
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Рис. 10.4 

Угол между плоскостями. 

Пусть даны две плоскости: 

П1:𝐴𝐴1𝑥𝑥 + 𝐵𝐵1𝑦𝑦 + 𝐶𝐶1𝑧𝑧 + 𝐷𝐷1 = 0 

П2:𝐴𝐴2𝑥𝑥 + 𝐵𝐵2𝑦𝑦 + 𝐶𝐶2𝑧𝑧 + 𝐷𝐷2 = 0 

 

Рис. 10.5 

Формула для угла между плоскостями: 

∠П1,П2 = arccos
|𝐴𝐴1𝐴𝐴2 + 𝐵𝐵1𝐵𝐵2 + 𝐶𝐶1𝐶𝐶2|

�(𝐴𝐴12 + 𝐵𝐵12 + 𝐶𝐶12)(𝐴𝐴22 + 𝐵𝐵22 + 𝐶𝐶22)
 

Формула перехода между аффинными системами координат 
Теорема. Пусть (𝑂𝑂, 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ) и (𝑂𝑂′, 𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗ ) – два репера, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 и 𝑥𝑥1′, … , 𝑥𝑥𝑛𝑛′ – 
соответствующие системы координат. Пусть 𝑏𝑏 – это столбец координат вектора 𝑂𝑂𝑂𝑂′�������⃗  в 
первой системе, а 𝐶𝐶 – матрица перехода от первой системы ко второй. Тогда 
координаты точек в этих реперах связаны следующим образом: 

�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝐶𝐶 �

𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

� + 𝑏𝑏 

Доказательство: 

По условию: 

𝑂𝑂𝑂𝑂′�������⃗ = (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝑏𝑏 
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�𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗ � = (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝐶𝐶 

Координаты произвольной точки в первой системе: 

𝑂𝑂 + (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� 

Чтобы эта точка имела координаты 𝑥𝑥1′, … , 𝑥𝑥𝑛𝑛′ во второй системы, нужно приравнять 
выражения для координат в обеих системах: 

𝑂𝑂 + (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝑂𝑂′ + �𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗ � �

𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

� 

Из условия: 

𝑂𝑂′ = 𝑂𝑂 + (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝑏𝑏 

Тогда 

𝑂𝑂′ + �𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗ � �
𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

� = 𝑂𝑂 + (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )�𝑏𝑏 + С�
𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

�� 

Следовательно 

𝑂𝑂 + (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝑂𝑂 + (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )�𝑏𝑏 + С�

𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

�� 

А значит,  

�
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = 𝐶𝐶 �

𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

� + 𝑏𝑏 

Ортогональные матрицы 
Определение. Матрица 𝐶𝐶 ортогональна, если 

𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐸𝐸 

Или 𝐶𝐶−1 = 𝐶𝐶𝑇𝑇. 

Утверждение. Пусть 𝐶𝐶 – матрица перехода от (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ) к �𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗ �. Из следующих 
трёх высказываний, любые два влекут третье: 

1) Базис 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗  – ортонормирован  
2) Базис 𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗  – ортонормирован  

https://vk.com/teachinmsu
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3) Матрица 𝐶𝐶 ортогональна 

Доказательство: 

Первое высказывание означает, что скалярное произведение между двумя матрицами, 
столбцами которой являются орты базисов, равно единичной матрице: 

(𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝑇𝑇 ∙ (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ ) = 𝐸𝐸 

Третье высказывание означает, что 

𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐸𝐸 

Попробуем из первого и третьего высказываний получить второе. 

�𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗ �
𝑇𝑇
∙ �𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗ � ≤ 𝐶𝐶𝑇𝑇(𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝑇𝑇 ∙ (𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛����⃗ )𝐶𝐶 = 𝐶𝐶𝑇𝑇𝐶𝐶 = 𝐸𝐸 

Следовательно, базис 𝑒𝑒1′�����⃗ , … , 𝑒𝑒𝑛𝑛′�����⃗  – ортонормирован.  
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Лекция 11. Ортогональные матрицы. Кривые и поверхности 
второго порядка. 

Ортогональные матрицы (продолжение) 
Напомним, что по определению матрица 𝐶𝐶 ортогональная, если  

𝐶𝐶𝑇𝑇 = 𝐶𝐶−1 ⟺ 𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐸𝐸 ⟺ 𝐶𝐶𝑇𝑇𝐶𝐶 = 𝐸𝐸 

𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐸𝐸 – ортогональность по строкам, 

𝐶𝐶𝑇𝑇𝐶𝐶 = 𝐸𝐸 – ортогональность по столбцам. 

Утверждение. Общий вид ортогональной матрицы 2 × 2: 

�cos𝜑𝜑 − sin𝜑𝜑
sin𝜑𝜑 cos𝜑𝜑 � 

�cos𝜑𝜑 sin𝜑𝜑
sin𝜑𝜑 − cos𝜑𝜑� 

где 𝜑𝜑 ∈ ℝ. 

Доказательство: 

�𝑎𝑎 𝑐𝑐
𝑏𝑏 𝑑𝑑� �

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = �1 0

0 1� 

Откуда получаются три уравнения: 

�
𝑎𝑎2 + 𝑐𝑐2 = 1
𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 = 0
𝑏𝑏2 + 𝑑𝑑2 = 1

 

Положим, что 

𝑎𝑎 = cos𝜑𝜑 

𝑐𝑐 = sin𝜑𝜑 

А 𝑏𝑏 и 𝑑𝑑 удовлетворяют уравнению 

𝑏𝑏 cos𝜑𝜑 + 𝑑𝑑 sin𝜑𝜑 = 0 

Его общее решение: 

𝑏𝑏 = 𝜆𝜆 sin𝜑𝜑 

𝑑𝑑 = −𝜆𝜆 cos𝜑𝜑 

Подставляя его в последнее из трёх уравнений, получим: 

(𝜆𝜆 sin𝜑𝜑)2 + (−𝜆𝜆 cos𝜑𝜑)2 = 1 

https://vk.com/teachinmsu
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𝜆𝜆 = ±1 

Утверждение. 𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐸𝐸 ⇒ det𝐶𝐶 = ±1. 

Доказательство: 

det𝐶𝐶𝑇𝑇 = det𝐶𝐶 

𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐸𝐸 ⇒ (det𝐶𝐶)2 = 1 

det𝐶𝐶 = ±1 

Утверждение. Ортогональные матрицы 𝑛𝑛 × 𝑛𝑛 образуют группу. 

Доказательство: 

Пусть 𝐶𝐶 и 𝐷𝐷 – ортогональные матрицы: 

𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐸𝐸 

𝐷𝐷𝐷𝐷𝑇𝑇 = 𝐸𝐸 

Тогда  

(𝐶𝐶𝐶𝐶)(𝐶𝐶𝐶𝐶)𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐷𝐷𝑇𝑇𝐶𝐶𝑇𝑇 = 𝐸𝐸 

Утверждение. Любая ортогональная матрица 3 × 3 c определителем, равным единице 
представляется в виде: 

�
cos𝜑𝜑 − sin𝜑𝜑 0
sin𝜑𝜑 cos𝜑𝜑 0

0 0 1
��

1 0 0
0 cos𝜃𝜃 − sin𝜃𝜃
0 sin𝜃𝜃 cos𝜃𝜃

��
cos𝜓𝜓 − sin𝜓𝜓 0
sin𝜓𝜓 cos𝜓𝜓 0

0 0 1
� 

где 𝜑𝜑,𝜓𝜓 ∈ [0,2𝜋𝜋),𝜃𝜃 ∈ [0,𝜋𝜋]. 

Если последний элемент не равен ±1, то такое разложение единственно. 

Доказательство: 

Вычислим некоторые из элементов матрицы: 

�
cos𝜑𝜑 − sin𝜑𝜑 0
sin𝜑𝜑 cos𝜑𝜑 0

0 0 1
��

1 0 0
0 cos 𝜃𝜃 − sin𝜃𝜃
0 sin𝜃𝜃 cos 𝜃𝜃

��
cos𝜓𝜓 − sin𝜓𝜓 0
sin𝜓𝜓 cos𝜓𝜓 0

0 0 1
� =

= �
∗ ∗ sin𝜑𝜑 sin𝜃𝜃
∗ ∗ − cos𝜑𝜑 sin𝜃𝜃

sin𝜃𝜃 sin𝜓𝜓 sin𝜃𝜃 cos𝜓𝜓 cos 𝜃𝜃
� 

Пусть 𝐶𝐶 – произвольная ортогональная матрица с det𝐶𝐶 = 1. Положим 𝜃𝜃 = arccos𝐶𝐶33. 
Если 𝐶𝐶33 = ±1, то матрица имеет следующий вид: 

https://vk.com/teachinmsu
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𝐶𝐶 = �
∗ ∗ 0
∗ ∗ 0
0 0 ±1

� 

Здесь звездочками обозначена ортогональная матрица 2 × 2. То есть 𝐶𝐶 может быть 
одной из матриц: 

�
cos𝜑𝜑 − sin𝜑𝜑 0
sin𝜑𝜑 cos𝜑𝜑 0

0 0 1
� 

�
cos𝜑𝜑 sin𝜑𝜑 0
sin𝜑𝜑 −cos𝜑𝜑 0

0 0 −1
� 

Теперь предположим, что 𝐶𝐶33 ≠ ±1. 𝜑𝜑 определим из условий: 

cos𝜑𝜑 = −
𝐶𝐶23

�1 − (𝐶𝐶33)2
 

sin𝜑𝜑 =
𝐶𝐶23

�1 − (𝐶𝐶33)2
 

А 𝜓𝜓 определим из условий: 

cos𝜓𝜓 =
𝐶𝐶32

�1 − (𝐶𝐶33)2
 

sin𝜓𝜓 =
𝐶𝐶31

�1 − (𝐶𝐶33)2
 

Отсюда получим матрицу 

𝐴𝐴(𝜑𝜑,𝜓𝜓,𝜃𝜃) = �
∗ ∗ sin𝜑𝜑 sin𝜃𝜃
∗ ∗ − cos𝜑𝜑 sin𝜃𝜃

sin𝜃𝜃 sin𝜓𝜓 sin𝜃𝜃 cos𝜓𝜓 cos𝜃𝜃
� 

𝐴𝐴(𝜑𝜑,𝜓𝜓, 𝜃𝜃) совпадает с 𝐶𝐶 в последнем столбце и последней строке. Тогда 

𝐶𝐶𝐴𝐴−1(𝜑𝜑,𝜓𝜓,𝜃𝜃) = �
cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
� 

𝐶𝐶 = �
cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
�𝐴𝐴(𝜑𝜑,𝜓𝜓,𝜃𝜃) = 𝐴𝐴(𝜑𝜑 + 𝛼𝛼,𝜓𝜓,𝜃𝜃) = 𝐴𝐴(𝜑𝜑,𝜓𝜓, 𝜃𝜃) 

𝜑𝜑,𝜓𝜓,𝜃𝜃 называются углами Эйлера. 

𝜑𝜑 – угол прецессии, 

https://vk.com/teachinmsu
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𝜓𝜓 – угол нутации,  

 𝜃𝜃 – угол собственного вращения. 

Преобразование кососимметричных матриц в ортогональные 
На рис. 11. 1 изображена схема преобразования кососимметричных матриц  в 
ортогональные. 

 

Рис. 11.1 

Пример. 

Пусть 𝐵𝐵 = −𝐵𝐵𝑇𝑇 . 

𝑄𝑄 = (𝐸𝐸 + 𝐵𝐵)(𝐸𝐸 + 𝐵𝐵)−1 = (𝐸𝐸 − 𝐵𝐵)−1(𝐸𝐸 + 𝐵𝐵) 

𝑄𝑄𝑄𝑄𝑇𝑇 = (𝐸𝐸 + 𝐵𝐵)(𝐸𝐸 − 𝐵𝐵)−1((𝐸𝐸 − 𝐵𝐵)−1)𝑇𝑇(𝐸𝐸 + 𝐵𝐵) 

(𝐸𝐸 + 𝐵𝐵)(𝐸𝐸 − 𝐵𝐵)−1((𝐸𝐸 − 𝐵𝐵)−1)𝑇𝑇(𝐸𝐸 + 𝐵𝐵) = (𝐸𝐸 + 𝐵𝐵)(𝐸𝐸 − 𝐵𝐵)−1(𝐸𝐸 + 𝐵𝐵)−1(𝐸𝐸 − 𝐵𝐵) = 𝐸𝐸 

Кривые и поверхности второго порядка 
Алгебраическое уравнение: 

𝑓𝑓(𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) = 0,  

где 𝑓𝑓 – многочлен. 

Пусть 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 – другая аффинная система координат. Является ли 𝑔𝑔(𝑥⃗𝑥) = 𝑓𝑓(𝑦⃗𝑦(𝑥⃗𝑥)) 
многочленом? 

Напомним, что аффинная замена координат выглядит следующим образом: 

𝑦⃗𝑦 = 𝐶𝐶𝑥⃗𝑥 + 𝑏𝑏�⃗  

https://vk.com/teachinmsu
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�
𝑦𝑦1 = 𝐶𝐶11𝑥𝑥1 + 𝐶𝐶12𝑥𝑥2 + ⋯+ 𝐶𝐶1𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏1

⋮
𝑦𝑦𝑛𝑛 = 𝐶𝐶𝑛𝑛1𝑥𝑥1 + 𝐶𝐶𝑛𝑛2𝑥𝑥2 + ⋯+ 𝐶𝐶𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏𝑛𝑛

 

𝐶𝐶11𝑥𝑥1 + 𝐶𝐶12𝑥𝑥2 + ⋯+ 𝐶𝐶1𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏1 – многочлен первой степени.  

Утверждение. 𝑔𝑔 – тоже многочлен и deg𝑓𝑓 = deg𝑔𝑔. 

Доказательство: 

Очевидно, что 

deg 𝑓𝑓 ≥ deg𝑔𝑔 

Замена 𝑦⃗𝑦 = 𝑦⃗𝑦(𝑥⃗𝑥) обратима. Следовательно, deg 𝑓𝑓 ≤ deg𝑔𝑔. Значит deg 𝑓𝑓 = deg𝑔𝑔. 

Многочлен второй степени от 𝑥𝑥,𝑦𝑦: 

𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 

(𝑎𝑎11,𝑎𝑎22,𝑎𝑎12) ≠ (0,0,0) 

В дальнейшем, когда мы будем говорить о кривой второго порядка, то будем иметь в 
виду многочлен второй степени на плоскости, рассматриваемый с точностью до 
умножения на 𝜆𝜆 ∈ ℝ\{0}. 

Аналогично, поверхности второго порядка: 

𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 𝑎𝑎33𝑧𝑧2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎13𝑥𝑥𝑥𝑥 + 2𝑎𝑎23𝑦𝑦𝑦𝑦 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 2𝑎𝑎3𝑧𝑧 + 𝑎𝑎0 = 0 

(𝑎𝑎11, 𝑎𝑎22, 𝑎𝑎33, 𝑎𝑎12,𝑎𝑎13, 𝑎𝑎23) ≠ (0,0,0,0,0,0) 

Для того, чтобы компактно записывать подобные уравнения введём следующие 
матрицы. 

Матрица квадратичной части. 

В случае кривой: 

𝑄𝑄 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎12 𝑎𝑎22� 

В случае поверхности: 

𝑄𝑄 = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎12 𝑎𝑎22 𝑎𝑎23
𝑎𝑎13 𝑎𝑎23 𝑎𝑎33

� 

Полная матрица коэффициентов. 

Для кривой: 

https://vk.com/teachinmsu
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𝑄𝑄� = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎1
𝑎𝑎12 𝑎𝑎22 𝑎𝑎2
𝑎𝑎1 𝑎𝑎2 𝑎𝑎0

� 

Для поверхности: 

𝑄𝑄� = �

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎1
𝑎𝑎12 𝑎𝑎22 𝑎𝑎23 𝑎𝑎2
𝑎𝑎13
𝑎𝑎1

𝑎𝑎23
𝑎𝑎2

𝑎𝑎33
𝑎𝑎3

𝑎𝑎3
𝑎𝑎0

� 

В таких обозначениях: 

Кривая второго порядка: 

𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 = 0 ⟺ (𝑥𝑥 𝑦𝑦 1)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� = 0 

Поверхность второго порядка: 

𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 𝑎𝑎33𝑧𝑧2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎13𝑥𝑥𝑥𝑥 + 2𝑎𝑎23𝑦𝑦𝑦𝑦 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 2𝑎𝑎3𝑧𝑧 + 𝑎𝑎0 = 0

⟺ (𝑥𝑥 𝑦𝑦 𝑧𝑧 1)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� = 0 

Обозначим 𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� и 𝑥𝑥′���⃗ = �

𝑥𝑥1′
⋮
𝑥𝑥𝑛𝑛′

�. Общий вид замены координат: 

 𝑥⃗𝑥 = 𝐶𝐶𝑥𝑥′���⃗ + 𝑏𝑏�⃗ , 

где 𝐶𝐶 -матрица перехода от первого базиса ко второму, 𝑏𝑏�⃗  – столбец координат 𝑂𝑂′ в 
𝑥𝑥1, … , 𝑥𝑥𝑛𝑛. 

Мы можем переписать это уравнение в следующем виде: 

�𝑥⃗𝑥
1
� = � 𝐶𝐶 𝑏𝑏�⃗

0 ⋯ 0 1
� �𝑥⃗𝑥′

1
� 

Обозначим 𝐶̂𝐶 = � 𝐶𝐶 𝑏𝑏�⃗
0 ⋯ 0 1

�, 𝑥𝑥� = �𝑥⃗𝑥
1
�,  𝑥𝑥′� = �𝑥⃗𝑥′

1
�. 

Утверждение. Пусть 𝐹𝐹 – многочлен второй степени с матрицей квадратичной части  

• В системе 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 – 𝑄𝑄�  (𝑄𝑄)  
• В системе 𝑥𝑥1′, … , 𝑥𝑥𝑛𝑛′ – 𝑄𝑄�′ (𝑄𝑄′) 

Тогда 𝑄𝑄′ = 𝐶𝐶𝑇𝑇𝑄𝑄𝑄𝑄 и 𝑄𝑄�′ = 𝐶̂𝐶𝑇𝑇𝑄𝑄�𝐶̂𝐶. 

𝑥𝑥� = 𝐶̂𝐶𝑥𝑥′�  

https://vk.com/teachinmsu
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𝐹𝐹 = 𝑥𝑥�𝑇𝑇𝑄𝑄�𝑥𝑥� = 𝑥𝑥�′𝑇𝑇𝐶̂𝐶𝑇𝑇𝑄𝑄�𝐶̂𝐶𝑥𝑥�′ 

Вырожденные многочлены 
Определение. Многочлен 𝐹𝐹(𝑥⃗𝑥) = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) назовём вырожденным, если существует 
𝑣⃗𝑣 ≠ 0 такой, что 𝐹𝐹(𝑥⃗𝑥 + 𝑣⃗𝑣) = 𝐹𝐹(𝑥⃗𝑥) ∀𝑥⃗𝑥. 

Утверждение. Пусть 𝑣⃗𝑣1, … , 𝑣⃗𝑣𝑘𝑘 – линейно независимые векторы такие, что  

𝐹𝐹(𝑥⃗𝑥 + 𝑣⃗𝑣𝑖𝑖) = 𝐹𝐹(𝑥⃗𝑥) ∀𝑖𝑖 = 1, … ,𝑘𝑘 

Пусть 𝑒𝑒1���⃗ , … , 𝑒𝑒𝑛𝑛−𝑘𝑘���������⃗ , 𝑣⃗𝑣1, … , 𝑣⃗𝑣𝑘𝑘 – базис, 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 – соответствующие координаты. 

Тогда 𝐹𝐹 как многочлен от 𝑦⃗𝑦 не зависит от 𝑦𝑦𝑛𝑛−𝑘𝑘+1, … ,𝑦𝑦𝑛𝑛. 

Доказательство: 

Положим  

𝑒𝑒𝑛𝑛−𝑘𝑘+1 = 𝑣𝑣1����⃗  

𝑒𝑒𝑛𝑛 = 𝑣𝑣𝑘𝑘����⃗  

𝐹𝐹(𝑦⃗𝑦 + 𝑒𝑒𝑖𝑖) = 𝐹𝐹(𝑦⃗𝑦) при 𝑖𝑖 = 𝑛𝑛 − 𝑘𝑘 + 1, … ,𝑛𝑛 

Зафиксируем 𝑦𝑦. 

𝐹𝐹(𝑦⃗𝑦 + 𝑘𝑘𝑒𝑒𝑖𝑖) − 𝐹𝐹(𝑦⃗𝑦) = 0 ∀𝑘𝑘 ∈ ℤ 

𝐹𝐹(𝑦⃗𝑦 + 𝑘𝑘𝑒𝑒𝑖𝑖) − 𝐹𝐹(𝑦⃗𝑦) – многочлен от 𝑘𝑘 с бесконечным числом корней. Отсюда следует, 
что  

𝐹𝐹(𝑦⃗𝑦 + 𝑎𝑎𝑒𝑒𝑖𝑖) = 𝐹𝐹(𝑦⃗𝑦)  ∀𝑎𝑎 

  

https://vk.com/teachinmsu
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Лекция 12. Приведение к каноническому виду. 
Ортогональные инварианты. 

Вырожденные многочлены (продолжение) 
Многочлен 𝑓𝑓(𝑥⃗𝑥), 𝑥⃗𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) называется 𝑚𝑚-кратно вырожденным, если существуют 
𝑣⃗𝑣1, … , 𝑣⃗𝑣𝑚𝑚 – линейно независимые, такие что  

𝑓𝑓(𝑥⃗𝑥 + 𝑣⃗𝑣𝑖𝑖) = 𝑓𝑓(𝑥⃗𝑥)  ∀𝑥⃗𝑥  ∀𝑖𝑖 = 1, … ,𝑚𝑚 

Утверждение. 𝑓𝑓 𝑚𝑚-кратно вырожденный тогда и только тогда, когда существует 
аффинная замена 𝑥⃗𝑥 = 𝑥⃗𝑥(𝑦⃗𝑦), такая что 𝑓𝑓(𝑥⃗𝑥(𝑦⃗𝑦)) не зависит от 𝑦𝑦𝑛𝑛−𝑚𝑚+1, … ,𝑦𝑦𝑛𝑛. 

Утверждение. Пусть 𝑓𝑓 – многочлен второй степени, а 𝑄𝑄,𝑄𝑄�  – матрица его квадратичной 
части и всех коэффициентов соответственно. 𝑓𝑓 вырожден тогда и только тогда, когда  

det𝑄𝑄 = det𝑄𝑄� = 0 

Доказательство: 

Пусть 𝑓𝑓 – вырожден. Тогда существует 𝑣⃗𝑣 ≠ 0 такой, что 

𝑓𝑓(𝑥⃗𝑥 + 𝑣⃗𝑣) = 𝑓𝑓(𝑥⃗𝑥) 

Введём обозначения: 

𝑥𝑥� = �𝑥⃗𝑥
1
� 

𝑣𝑣� = �𝑣⃗𝑣
0
� 

Тогда 

(𝑥𝑥� + 𝑣𝑣�)𝑇𝑇𝑄𝑄�(𝑥𝑥� + 𝑣𝑣�) ≡ 𝑥𝑥�𝑇𝑇𝑄𝑄�𝑥𝑥� 

𝑣𝑣�𝑇𝑇𝑄𝑄�𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑄𝑄�𝑣𝑣� + 𝑣𝑣�𝑇𝑇𝑄𝑄�𝑣𝑣� = 0 

𝑣𝑣�𝑇𝑇𝑄𝑄�𝑥𝑥� = 𝑥𝑥�𝑇𝑇𝑄𝑄�𝑣𝑣� 

(2𝑥𝑥� + 𝑣𝑣�)𝑇𝑇𝑄𝑄�𝑣𝑣� = 0 

Последнее равенство тождественно по 𝑥⃗𝑥. 

Отсюда следует, что 

𝑄𝑄�𝑣𝑣� = 0 и 𝑄𝑄𝑣⃗𝑣 = 0 

Следовательно, 

det𝑄𝑄 = det𝑄𝑄� = 0 

https://vk.com/teachinmsu
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Приведение многочлена второй степени к каноническому 
виду ортогональной заменой координат 

Теорема. Для любого многочлена 𝑓𝑓(𝑥⃗𝑥) второй степени существует ортогональная 
замена координат 𝑥⃗𝑥 = 𝑥⃗𝑥(𝑦⃗𝑦), такая что 𝑓𝑓(𝑥⃗𝑥(𝑦⃗𝑦)) имеет вид 

𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜏𝜏 

или 

𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜇𝜇𝑦𝑦𝑘𝑘+1, 

где 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘, 𝜇𝜇 ≠ 0. 

Доказательство: 

Пусть 𝑓𝑓 – однородный многочлен, то есть он имеет вид 

�𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 

Будем доказывать по индукции по числу переменных. 

Рассмотрим 𝑛𝑛 − 1-мерную сферу: 

𝕊𝕊𝑛𝑛−1 = {𝑥⃗𝑥: 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 = 1} 

Пусть 𝐴𝐴 – точка минимума. Примем вектор 𝑂𝑂𝑂𝑂�����⃗  за первый базисный вектор: 

𝑒𝑒1���⃗ = 𝑂𝑂𝑂𝑂�����⃗  

Остальные векторы подберем так, чтобы они образовывали ортонормированный базис. 
Получим новую систему координат: 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛. Обозначим 𝑓𝑓(𝐴𝐴) = 𝜆𝜆. 

𝐹𝐹 = 𝑓𝑓(𝑦⃗𝑦) − 𝜆𝜆(𝑦𝑦12 + ⋯+ 𝑦𝑦𝑛𝑛2) = 𝑏𝑏11𝑦𝑦2 + 𝑝𝑝(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛)𝑦𝑦1 + 𝑞𝑞(𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) 

deg𝑝𝑝(𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) = 1 

deg𝑞𝑞(𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) = 2 

𝐹𝐹(1,0, … ,0) = 0 ⇒ 𝑏𝑏11 = 0 

∀𝑦⃗𝑦 ∈ 𝕊𝕊𝑛𝑛−1  𝑓𝑓(𝑦⃗𝑦) ≥ 0 ⇒ ∀𝑦⃗𝑦   𝐹𝐹(𝑦⃗𝑦) ≥ 0 

Так как 𝐹𝐹(𝛼𝛼𝑦⃗𝑦) = 𝛼𝛼2𝐹𝐹(𝑦⃗𝑦), то 

𝑝𝑝(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛)𝑦𝑦1 + 𝑞𝑞(𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) ≥ 0  ∀𝑦⃗𝑦 

Отсюда следует, что 

𝑝𝑝(𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) = 0 

𝑓𝑓 = 𝜆𝜆(𝑦𝑦12 + ⋯+ 𝑦𝑦𝑛𝑛2) + 𝑞𝑞(𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) = 𝜆𝜆𝑦𝑦12 + 𝑞𝑞�(𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) 

https://vk.com/teachinmsu
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То же самое можно сделать с меньшим числом переменных и далее по индукции. 

Пусть 𝑓𝑓 – произвольный многочлен. Без ограничения общности: 

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) =  𝜆𝜆1𝑥𝑥12 + ⋯+ 𝜆𝜆𝑛𝑛𝑥𝑥𝑛𝑛2 + 2𝑎𝑎1𝑥𝑥1 + 2𝑎𝑎2𝑥𝑥2 + ⋯+ 2𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑎𝑎0 

𝜆𝜆𝑖𝑖 ≠ 0, 𝑖𝑖 = 1, … ,𝑘𝑘 

𝜆𝜆1𝑥𝑥12 + ⋯+ 𝜆𝜆𝑛𝑛𝑥𝑥𝑛𝑛2 + 2𝑎𝑎1𝑥𝑥1 + 2𝑎𝑎2𝑥𝑥2 + ⋯+ 2𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑎𝑎0 =

= 𝜆𝜆1 �𝑥𝑥1 +
𝑎𝑎1
𝜆𝜆1
� + ⋯+ 𝜆𝜆𝑘𝑘 �𝑥𝑥𝑘𝑘 +

𝑎𝑎𝑘𝑘
𝜆𝜆𝑘𝑘
� + 2𝑎𝑎𝑘𝑘+1𝑥𝑥𝑘𝑘+1 + ⋯+ 𝑎𝑎0� 

Сдвинем систему координат: 

𝑥𝑥𝚤𝚤� = 𝑥𝑥𝑖𝑖 +
𝑎𝑎𝑖𝑖
𝜆𝜆𝑖𝑖

, 𝑖𝑖 = 1, … ,𝑘𝑘 

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 𝑘𝑘 + 1, … ,𝑛𝑛 

Тогда получим 

𝜆𝜆1𝑥𝑥12� + ⋯+ 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘2� + 2𝑎𝑎𝑘𝑘+1𝑥𝑥𝑘𝑘+12� + ⋯+ 2𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛2� + 𝑎𝑎0� 

Если 2𝑎𝑎1𝑥𝑥𝑘𝑘+12� + ⋯+ 2𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛2� = 0, то мы привели многочлен к виду 

𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜏𝜏 

Если 2𝑎𝑎1𝑥𝑥𝑘𝑘+12� + ⋯+ 2𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛2� ≠ 0, то обозначим 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝚤𝚤� , 𝑖𝑖 = 1, … ,𝑘𝑘 

𝑦𝑦𝑘𝑘+1 =
𝑎𝑎𝑘𝑘+1𝑥𝑥𝑘𝑘+12� + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛2� + 𝑎𝑎0

2
�

�𝑎𝑎𝑘𝑘+12 + ⋯+ 𝑎𝑎𝑛𝑛2
 

Остальные 𝑦𝑦𝑘𝑘+2, … ,𝑦𝑦𝑛𝑛 нужно подобрать так, чтобы замена была ортогональной. В этом 
случае многочлен приводится к виду 

𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜇𝜇𝑦𝑦𝑘𝑘+1 

Ортогональные инварианты многочлена второй степени 
Теорема. Канонический вид многочлена второй степени определён однозначно с 
точностью до перестановки координат. 

Если 𝑓𝑓 𝑚𝑚-кратно вырожден, то det(𝑄𝑄 − 𝜆𝜆𝜆𝜆) и коэффициент при 𝜆𝜆𝑚𝑚 в (𝑄𝑄� − 𝜆𝜆𝜆𝜆) не 
зависят от выбора прямоугольной системы координат. В этом случае (𝑄𝑄� − 𝜆𝜆𝜆𝜆) делятся 
на 𝜆𝜆𝑚𝑚. 

Определение. Пусть 𝐴𝐴 – квадратная матрица. Тогда многочлен 

https://vk.com/teachinmsu
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𝜒𝜒𝐴𝐴(𝜆𝜆) = det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) 

называется характеристическим многочленом матрицы 𝐴𝐴. 

Для многочленов от двух переменных: 

𝑄𝑄 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎12 𝑎𝑎22� 

det(𝑄𝑄 − 𝜆𝜆𝜆𝜆) = �𝑎𝑎11 − 𝜆𝜆 𝑎𝑎12
𝑎𝑎12 𝑎𝑎22 − 𝜆𝜆� = 𝜆𝜆2 − 𝜆𝜆(𝑎𝑎11 + 𝑎𝑎22) + 𝑎𝑎11𝑎𝑎22 − 𝑎𝑎122  

Для многочленов от трёх переменных: 

𝑄𝑄 = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎12 𝑎𝑎22 𝑎𝑎23
𝑎𝑎13 𝑎𝑎23 𝑎𝑎33

� 

det(𝑄𝑄 − 𝜆𝜆𝜆𝜆) = �
𝑎𝑎11 − 𝜆𝜆 𝑎𝑎12 𝑎𝑎13
𝑎𝑎12 𝑎𝑎22 − 𝜆𝜆 𝑎𝑎23
𝑎𝑎13 𝑎𝑎23 𝑎𝑎33 − 𝜆𝜆

� 

�
𝑎𝑎11 − 𝜆𝜆 𝑎𝑎12 𝑎𝑎13
𝑎𝑎12 𝑎𝑎22 − 𝜆𝜆 𝑎𝑎23
𝑎𝑎13 𝑎𝑎23 𝑎𝑎33 − 𝜆𝜆

� = 

= −𝜆𝜆3 + 𝜆𝜆2(𝑎𝑎11 + 𝑎𝑎22 + 𝑎𝑎33) − 𝜆𝜆 ��
𝑎𝑎11 𝑎𝑎12
𝑎𝑎12 𝑎𝑎22� + �

𝑎𝑎11 𝑎𝑎13
𝑎𝑎13 𝑎𝑎33� + �

𝑎𝑎22 𝑎𝑎23
𝑎𝑎23 𝑎𝑎33�� + det𝑄𝑄 

В дальнейшем будем использовать обозначения: 

Для многочлена от двух переменных: 

𝐼𝐼1 = 𝑎𝑎11 + 𝑎𝑎22 

𝐼𝐼2 = 𝑎𝑎11𝑎𝑎22 − 𝑎𝑎122  

Для многочлена от трёх переменных: 

𝐼𝐼1 = 𝑎𝑎11 + 𝑎𝑎22 + 𝑎𝑎33 

𝐼𝐼2 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎12 𝑎𝑎22� + �

𝑎𝑎11 𝑎𝑎13
𝑎𝑎13 𝑎𝑎33� + �

𝑎𝑎22 𝑎𝑎23
𝑎𝑎23 𝑎𝑎33� 

𝐼𝐼3 = det𝑄𝑄 

То есть  

(𝑄𝑄 − 𝜆𝜆𝜆𝜆) = (−𝜆𝜆)𝑛𝑛 + (−𝜆𝜆)𝑛𝑛−1𝐼𝐼1 + ⋯+ (−𝜆𝜆)𝐼𝐼𝑛𝑛−1 + 𝐼𝐼𝑛𝑛 

𝐼𝐼1, … , 𝐼𝐼𝑛𝑛 – ортогональные инварианты многочлена второй степени. 

Все коэффициенты характеристического многочлена (𝐼𝐼1, … , 𝐼𝐼𝑛𝑛) не зависят от выбора 
прямоугольной системы координат. 

https://vk.com/teachinmsu
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Для доказательства теоремы нам нужно проверить верно ли равенство 

𝜒𝜒𝑄𝑄(𝜆𝜆) = 𝜒𝜒𝐶𝐶𝑇𝑇𝑄𝑄𝑄𝑄(𝜆𝜆) 

Вычислим определитель: 

det(𝐶𝐶𝑇𝑇𝑄𝑄𝑄𝑄 − 𝜆𝜆𝜆𝜆) = det(𝐶𝐶𝑇𝑇𝑄𝑄𝑄𝑄 − 𝜆𝜆𝐶𝐶𝑇𝑇𝐶𝐶) 

det(𝐶𝐶𝑇𝑇𝑄𝑄𝑄𝑄 − 𝜆𝜆𝐶𝐶𝑇𝑇𝐶𝐶) = det(𝐶𝐶𝑇𝑇(𝑄𝑄 − 𝜆𝜆𝜆𝜆)𝐶𝐶) 

det(𝐶𝐶𝑇𝑇(𝑄𝑄 − 𝜆𝜆𝜆𝜆)𝐶𝐶) = det𝐶𝐶𝑇𝑇 det(𝑄𝑄 − 𝜆𝜆𝜆𝜆) det𝐶𝐶 

det𝐶𝐶𝑇𝑇 det(𝑄𝑄 − 𝜆𝜆𝜆𝜆) det𝐶𝐶 = det(𝑄𝑄 − 𝜆𝜆𝜆𝜆) 

Пример. 

Пусть 𝑓𝑓 – невырожденный многочлен. Тогда возможны два случая: 

1) 𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜏𝜏 

𝜒𝜒𝑄𝑄(𝜆𝜆) = �(𝜆𝜆𝑖𝑖 − 𝜆𝜆) 

𝐼𝐼𝑛𝑛+1 = �𝜆𝜆𝑖𝑖 ∙ 𝜏𝜏 

2) 𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜇𝜇𝑦𝑦𝑘𝑘+1, 

𝜒𝜒𝑄𝑄(𝜆𝜆) = 𝜆𝜆�(𝜆𝜆𝑖𝑖 − 𝜆𝜆)
𝑛𝑛−1

𝑖𝑖=1

 

𝐼𝐼𝑛𝑛 = −�(𝜆𝜆𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=1

∙ 𝜇𝜇2 

  

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

87 
 
 

 

Лекция 13. Ортогональные инварианты. Классификации 
кривых и поверхностей второго порядка. 

Ортогональные инварианты многочлена второй степени 
(продолжение) 

Напомним, что на предыдущей лекции было показано, что для любого многочлена 𝑓𝑓(𝑥⃗𝑥) 
второй степени существует ортогональная замена координат 𝑥⃗𝑥 = 𝑥⃗𝑥(𝑦⃗𝑦), такая что 
𝑓𝑓(𝑥⃗𝑥(𝑦⃗𝑦)) имеет вид 

𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜏𝜏 

или 

𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜇𝜇𝑦𝑦𝑘𝑘+1, 

где 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘, 𝜇𝜇 ≠ 0. 

Для первого случая: 

𝜆𝜆1𝑦𝑦12 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘2 + 𝜏𝜏 

𝜒𝜒𝑄𝑄(𝜆𝜆) = �(𝜆𝜆𝑖𝑖 − 𝜆𝜆) ∙ (−𝜆𝜆)𝑛𝑛−𝑘𝑘
𝑘𝑘

𝑖𝑖=1

 

Пусть 𝑘𝑘 = 2,𝑛𝑛 = 4. Рассмотрим матрицу 𝑄𝑄�  в каноническом виде: 

𝑄𝑄� =

⎝

⎜
⎛
𝜆𝜆1
0
0
0
0

0
𝜆𝜆2
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
𝜏𝜏⎠

⎟
⎞

 

𝑄𝑄� − 𝜆𝜆𝐸𝐸 =

⎝

⎜
⎛
𝜆𝜆1 − 𝜆𝜆

0
0
0
0

0
𝜆𝜆2 − 𝜆𝜆

0
0
0

0
0
−𝜆𝜆
0
0

0
0
0
−𝜆𝜆
0

0
0
0
0

𝜏𝜏 − 𝜆𝜆⎠

⎟
⎞

 

det(𝑄𝑄� − 𝜆𝜆𝐸𝐸) = (−𝜆𝜆)2(𝜆𝜆1 − 𝜆𝜆)(𝜆𝜆2 − 𝜆𝜆)(𝜏𝜏 − 𝜆𝜆) 

Если 𝑏𝑏 = (0, … ,0, 𝑏𝑏𝑘𝑘+1, … , 𝑏𝑏𝑛𝑛), то 𝑄𝑄�  не изменяется. 

Если 𝑏𝑏 = (𝑏𝑏1, … , 𝑏𝑏𝑘𝑘, 0, … ,0), то  
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𝐶̂𝐶 =

⎝

⎜
⎜
⎜
⎛

1 ⋯ 0 𝑏𝑏1
⋮

⋮ ⋱ ⋮ 𝑏𝑏𝑘𝑘

0 ⋯ 1
0
⋮
0

0 ⋯ 0 1 ⎠

⎟
⎟
⎟
⎞

 

det(𝐶̂𝐶𝑇𝑇𝑄𝑄�𝐶̂𝐶 − 𝜆𝜆𝜆𝜆) = (−𝜆𝜆)𝑛𝑛−𝑘𝑘 det

⎝

⎜
⎛
�

𝜆𝜆1 ⋯ 0 ∗
⋮ ⋱ ⋮ ∗
0 ⋯ 𝜆𝜆𝑛𝑛 ∗
∗ ∗ ∗ ∗

� − 𝜆𝜆𝜆𝜆

⎠

⎟
⎞

 

Коэффициент при 𝜆𝜆𝑛𝑛−𝑘𝑘 в det(𝐶̂𝐶𝑇𝑇𝑄𝑄�𝐶̂𝐶 − 𝜆𝜆𝜆𝜆) равен  

(−1)𝑛𝑛−𝑘𝑘𝜆𝜆1 ⋯𝜆𝜆𝑘𝑘𝜏𝜏. 

Если 𝑏𝑏 = 0, то 𝜒𝜒𝑄𝑄�  сохраняется, так как матрица 𝐶̂𝐶 ортогональна. 

Инварианты: 

𝑘𝑘, 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘, 𝜆𝜆1 ⋯𝜆𝜆𝑘𝑘𝜏𝜏 

Для второго случая: 

𝜆𝜆1𝑥𝑥12 + ⋯+ 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘2 + 𝜇𝜇𝑥𝑥𝑘𝑘+1 

Инварианты: 

𝑘𝑘, 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘, 𝜆𝜆1 ⋯𝜆𝜆𝑘𝑘𝜇𝜇2 

Тут 𝜆𝜆1 ⋯𝜆𝜆𝑘𝑘𝜇𝜇2 – коэффициент при 𝜆𝜆𝑛𝑛−𝑘𝑘−1 в 𝜒𝜒𝑄𝑄� . 

Рассмотрим характеристический многочлен: 

𝜒𝜒𝑄𝑄�(𝜆𝜆) = �𝑐𝑐𝑖𝑖𝜆𝜆𝑛𝑛+1−𝑖𝑖
𝑛𝑛+1

𝑖𝑖=0

 

𝑐𝑐𝑘𝑘+2 = ⋯ = 𝑐𝑐𝑛𝑛+1 в любом случае. Зададимся вопросом: равен ли 𝑐𝑐𝑘𝑘+1 нулю? 

Если да, то имеет место первый случай и  

𝜏𝜏 = ±
𝑐𝑐𝑘𝑘+1

𝜆𝜆1 ⋯𝜆𝜆𝑘𝑘
 

Если нет, то имеет место второй случай и  

𝜇𝜇 = �
𝑐𝑐𝑘𝑘+1

𝜆𝜆1 ⋯𝜆𝜆𝑘𝑘
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Ортогональная классификация кривых второго порядка 
Отметим, что кривая (или поверхность) второго порядка – это уравнение, это то же 
самое, что и многочлен с точностью до множителя. 

Любую кривую второго порядка выбором прямоугольной системы координат можно 
привести ровно к одному из следующих видов: 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= 1, 𝑎𝑎 ≥ 𝑏𝑏 > 0  (эллипсы) 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= −1, 𝑎𝑎 ≥ 𝑏𝑏 > 0  (мнимые эллипсы) 

𝑥𝑥2

𝑎𝑎2
−
𝑦𝑦2

𝑏𝑏2
= 1, 𝑎𝑎, 𝑏𝑏 > 0  (гиперболы) 

𝑥𝑥2 = 2𝑝𝑝𝑝𝑝, 𝑝𝑝 > 0  (параболы) 
𝑥𝑥2

𝑎𝑎2
+ 𝑦𝑦2 = 0, 𝑎𝑎 ≥ 1  (пары мнимых пересекающихся прямых) 

𝑥𝑥2

𝑎𝑎2
− 𝑦𝑦2 = 0, 𝑎𝑎 ≥ 1  (пары пересекающихся прямых) 

𝑥𝑥2 = 𝑎𝑎2, 𝑎𝑎 > 0  (пары параллельных прямых) 
𝑥𝑥2 = −𝑎𝑎2, 𝑎𝑎 > 0  (пары мнимых параллельных прямых) 
𝑥𝑥2 = 0  (пара совпадающих прямых) 

Доказательство: 

Пусть дана кривая второго порядка. Заменой координат мы можем привести её к 
одному из трёх видов: 

𝜆𝜆1𝑥𝑥2 + 𝜆𝜆2𝑦𝑦2 + 𝜏𝜏 = 0 

𝜆𝜆1𝑥𝑥2 + 2𝜇𝜇𝜇𝜇 = 0 

𝜆𝜆1𝑥𝑥2 + 𝜏𝜏 = 0 

Все уравнения в теореме являются частными случаями этих трёх видов. 

Ортогональная классификация поверхностей второго 
порядка 

Любую поверхность второго порядка выбором прямоугольной системы координат 
можно привести ровно к одному из следующих видов: 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
+
𝑧𝑧2

𝑐𝑐2
= 1, 𝑎𝑎 ≥ 𝑏𝑏 ≥ 𝑐𝑐 > 0  (эллипсоиды) 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
+
𝑧𝑧2

𝑐𝑐2
= −1, 𝑎𝑎 ≥ 𝑏𝑏 ≥ 𝑐𝑐 > 0  (мнимые эллипсоиды) 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
−
𝑧𝑧2

𝑐𝑐2
= 1, 𝑎𝑎 ≥ 𝑏𝑏 > 0, 𝑐𝑐 > 0  (однополостный гиперболоид) 

https://vk.com/teachinmsu
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𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
−
𝑧𝑧2

𝑐𝑐2
= −1, 𝑎𝑎 ≥ 𝑏𝑏 > 0, 𝑐𝑐 > 0  (двуполостный гиперболоид) 

𝑥𝑥2

𝑝𝑝
+
𝑦𝑦2

𝑞𝑞
= 2𝑧𝑧, 𝑝𝑝 ≥ 𝑞𝑞 > 0  (эллиптические параболоиды) 

𝑥𝑥2

𝑝𝑝
−
𝑦𝑦2

𝑞𝑞
= 2𝑧𝑧, 𝑝𝑝 ≥ 𝑞𝑞 > 0  (гиперболические параболоиды) 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
+ 𝑧𝑧2 = 0, 𝑎𝑎 ≥ 𝑏𝑏 ≥ 1  (мнимые конусы) 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
− 𝑧𝑧2 = 0, 𝑎𝑎 ≥ 𝑏𝑏 > 1  (конусы) 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= 1, 𝑎𝑎 ≥ 𝑏𝑏 > 0  (эллиптический цилиндр) 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= −1, 𝑎𝑎 ≥ 𝑏𝑏 > 0  (мнимые эллиптический цилиндр) 

𝑥𝑥2

𝑎𝑎2
−
𝑦𝑦2

𝑏𝑏2
= 1, 𝑎𝑎, 𝑏𝑏 > 0  (гиперболический цилиндр) 

𝑥𝑥2 = 2𝑝𝑝𝑝𝑝, 𝑝𝑝 > 0  (параболический цилиндр) 
𝑥𝑥2

𝑎𝑎2
+ 𝑦𝑦2 = 0, 𝑎𝑎 ≥ 1  (пары мнимых пересекающихся плоскостей) 

𝑥𝑥2

𝑎𝑎2
− 𝑦𝑦2 = 0, 𝑎𝑎 ≥ 1  (пары пересекающихся плоскостей) 

𝑥𝑥2 = 𝑎𝑎2, 𝑎𝑎 > 0  (пары параллельных плоскостей) 
𝑥𝑥2 = −𝑎𝑎2, 𝑎𝑎 > 0  (пары мнимых параллельных плоскостей) 
𝑥𝑥2 = 0  (пара совпадающих плоскостей) 

Аффинная классификация кривых второго порядка 
Любую кривую второго порядка выбором аффинной системы координат можно 
привести ровно к одному из следующих видов: 

𝑥𝑥2 + 𝑦𝑦2 = 1 (эллипсы) 

𝑥𝑥2 + 𝑦𝑦2 = −1 (мнимые эллипсы) 

𝑥𝑥2 − 𝑦𝑦2 = 1 (гиперболы) 

𝑥𝑥2 = 2𝑦𝑦 (параболы) 

𝑥𝑥2 + 𝑦𝑦2 = 0 (пары мнимых пересекающихся прямых) 

𝑥𝑥2 − 𝑦𝑦2 = 0  (пары пересекающихся прямых) 

𝑥𝑥2 = 1 (пары параллельных прямых) 

𝑥𝑥2 = −1 (пары мнимых параллельных прямых) 

𝑥𝑥2 = 0 (пара совпадающих прямых)  

https://vk.com/teachinmsu
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Лекция 14. Метод Лагранжа. Индексы инерции 
Аффинная классификация поверхностей второго порядка 

Утверждение. Для всякой поверхности 2-го порядка существует аффинная система 
координат, в которой её уравнение имеет один из видов, представленного в следующем 
списке: 

Эллипсоиды и гиперболоиды: 

1. 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1 
2. 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = −1 
3. 𝑥𝑥2 + 𝑦𝑦2 − 𝑧𝑧2 = 1 
4. 𝑥𝑥2 + 𝑦𝑦2 − 𝑧𝑧2 = −1 

Параболоиды: 

5. 𝑥𝑥2 + 𝑦𝑦2 = 2𝑧𝑧 
6. 𝑥𝑥2 − 𝑦𝑦2 = 2𝑧𝑧 

Конусы (действительные и мнимые): 

7. 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 0 
8. 𝑥𝑥2 + 𝑦𝑦2 − 𝑧𝑧2 = 0 

Остальные виды (цилиндры или пары плоскостей): 

9. 𝑥𝑥2 + 𝑦𝑦2 = 1 
10. 𝑥𝑥2 + 𝑦𝑦2 = −1 
11. 𝑥𝑥2 − 𝑦𝑦2 = 1 
12. 𝑥𝑥2 = 2𝑦𝑦 
13. 𝑥𝑥2 + 𝑦𝑦2 = 0 
14. 𝑥𝑥2 − 𝑦𝑦2 = 0 
15. 𝑥𝑥2 = 1 
16. 𝑥𝑥2 = −1 
17. 𝑥𝑥2 = 0 

Определение. Данные уравнения называют уравнениями нормального вида.  

Утверждение. Данные уравнения попарно аффинно-неэквивалентны.  

Для доказательства первого утверждения можно воспользоваться теоремой о 
метрической классификации. Ранее, были получены подобные уравнения, однако они 
содержали некий коэффициент. “Растягивая” или “сжимая” оси координат в 
необходимое число раз – получим требуемый вид.  

Рассмотрим более простой метод для доказательства утверждения.  

https://vk.com/teachinmsu
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Метод Лагранжа. 
Проблема использования метрической классификации заключалась в выборе 
прямоугольной системы координат таким образом, чтобы в уравнение не входили 
попарные произведения.  

При рассмотрении данного метода – опустим требование того, чтобы система 
координат была прямоугольной. Рассмотрим часть уравнения, слагаемые которой 
содержат 𝑥𝑥: 

𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎13𝑥𝑥𝑥𝑥 + 2𝑎𝑎1𝑥𝑥 + 𝑃𝑃(𝑦𝑦, 𝑧𝑧) = 0 

Где 𝑃𝑃(𝑦𝑦, 𝑧𝑧) − некий полином по переменным 𝑦𝑦 и 𝑧𝑧.  

Пусть 𝑎𝑎11 ≠ 0, тогда выделим полный квадрат, “выбрасывая” мономы, содержащие 𝑥𝑥: 

±�
𝑎𝑎11

�|𝑎𝑎11|
𝑥𝑥 +

𝑎𝑎12
�|𝑎𝑎11|

𝑦𝑦 +
𝑎𝑎13

�|𝑎𝑎11|
𝑧𝑧 +

𝑎𝑎1
�|𝑎𝑎11|

�
2

+ 𝑞𝑞(𝑦𝑦, 𝑧𝑧) = 0 

Где 𝑞𝑞(𝑦𝑦, 𝑧𝑧) − некий “новый” полином по переменным 𝑦𝑦 и 𝑧𝑧. 

Сделаем соответствующую замену координат: 

𝑥𝑥� =
𝑎𝑎11

�|𝑎𝑎11|
𝑥𝑥 +

𝑎𝑎12
�|𝑎𝑎11|

𝑦𝑦 +
𝑎𝑎13

�|𝑎𝑎11|
𝑧𝑧 +

𝑎𝑎1
�|𝑎𝑎11|

, 𝑦𝑦� = 𝑦𝑦, 𝑧̂𝑧 = 𝑧𝑧 

Рассмотрим полученное уравнение в новой системе координат: 

±𝑥𝑥�2 + 𝑞𝑞(𝑦𝑦�, 𝑧̂𝑧) = 0 

Заметим, что 𝑥𝑥� в данное уравнение входит единожды в качестве 𝑥𝑥�2. Переходя к 
полиному, содержащим меньшее число неизвестных - 𝑞𝑞(𝑦𝑦, 𝑧𝑧), проделываем 
аналогичную замену переменных: 

±𝑥𝑥�2 ± 𝑦𝑦�2 + 𝑟𝑟(𝑧̌𝑧) = 0 

Если квадратичных членов в ходе какой-то из замен переменных не останется – 
заменяем линейную часть. 

При 𝑎𝑎11 = 0 сделаем следующую замену, вводя квадратичный член, например: 

𝑥𝑥� = 𝑥𝑥, 𝑦𝑦� = 𝑦𝑦 + 𝜀𝜀𝜀𝜀, 𝑧̂𝑧 = 𝑧𝑧 + 𝜀𝜀𝜀𝜀  

При данной замене, получим задачу аналогичную, той, когда 𝑎𝑎11 ≠ 0. 

Данный метод позволяет осуществить замену координат, сводя уравнение к виду, не 
содержащему “смешанные” мономы. 

Рассмотрим вопрос о единственности такого представления.  

https://vk.com/teachinmsu
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Аффинные инварианты многочлена второй степени 
Из рассмотренных ранее инвариантов почти ни один не подходит.  

Например, рассмотрим определитель матрицы всех коэффициентов - det𝑄𝑄� . При смене 
координат: 

𝑄𝑄� → 𝐶̂𝐶𝑇𝑇𝑄𝑄�𝐶̂𝐶  ⇒ det𝑄𝑄� → det𝑄𝑄� ∗ �det 𝐶̂𝐶�2 

Однако, знак определителя изменятся не будет, 𝑠𝑠𝑠𝑠𝑠𝑠�det𝑄𝑄�� – аффинный инвариант. 
Хотя данный инвариант не может дать различие между однополостным и 
двуполостным гиперболоидом.  

В качестве очевидного аффинного инварианта можем рассмотреть степень 
вырожденности уравнения. Если в одно из нормальных уравнений входило две 
переменные, а в другое три, то получить одно уравнение из другого не получится.  

Если в нормальном уравнении три неизвестных, то степень вырожденности – 0, если 
две, то степень вырожденности – 1. 

Рассмотрим в качестве одного из важнейших инвариантов индексы инерции 
квадратичной части.  

Определение. Пусть 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) − однородный многочлен степени 2. Положительным 
(отрицательным) индексом инерции 𝑓𝑓 называется наибольшее 𝑘𝑘 такое, что  

∃𝑢𝑢�⃑ 1, … ,𝑢𝑢�⃗ 𝑘𝑘 ∈ ℝ𝑛𝑛    ∀(𝜆𝜆1, … , 𝜆𝜆𝑘𝑘) ≠ (0, … ,0):    𝑓𝑓(𝜆𝜆1𝑢𝑢�⃗ 1 + ⋯+ 𝜆𝜆𝑘𝑘𝑢𝑢�⃗ 𝑘𝑘) > 0  (соответств. < 0) 

Рассмотрим многочлен вида: 

𝑥𝑥12 + ⋯+ 𝑥𝑥𝑘𝑘2 − 𝑥𝑥𝑘𝑘+12 − 𝑥𝑥𝑘𝑘+𝑙𝑙2  

Покажем, что при аффинной замене координат количество “+” и ”-” в квадратичной 
части сохранится.  

Утверждение. Индексы инерции рассматриваемого многочлена равны 
𝑘𝑘 (положительный) и 𝑙𝑙 (отрицательный).  

Доказательство. В качестве векторов 𝑢𝑢�⃑ 1, … ,𝑢𝑢�⃗ 𝑘𝑘 возьмём базис - 𝑒𝑒1, … , 𝑒𝑒𝑘𝑘, тогда 
требование, заложенное в определении, очевидно, выполняется. Таким образом, 
очевидно, что положительный индекс инерции ≥ 𝑘𝑘.  

Докажем, что положительный индекс инерции ≤ 𝑘𝑘: 

Пусть ∃𝑢𝑢�⃑ 1, … ,𝑢𝑢�⃗ 𝑘𝑘+1 ∈ ℝ𝑛𝑛    ∀(𝜆𝜆1, … , 𝜆𝜆𝑘𝑘+1) ≠ (0, … ,0):    𝑓𝑓�∑ 𝜆𝜆𝑖𝑖𝑢𝑢�⃗ 𝑖𝑖𝑘𝑘+1
𝑖𝑖=1 � > 0 

Тогда подберём 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘, чтобы первые 𝑘𝑘 координат в ∑𝜆𝜆𝑖𝑖𝑢𝑢�⃗ 𝑖𝑖  равнялись 0. Получили 
однородную систему линейных уравнений с 𝑘𝑘 + 1 неизвестной, содержащей 𝑘𝑘 
уравнений. Таким образом, получили противоречие ⇒ положительный индекс инерции 

https://vk.com/teachinmsu
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≤ 𝑘𝑘. Из полученных утверждений, получаем, что положительный индекс инерции 
равен 𝑘𝑘. Для отрицательных доказательство аналогично.  

Частные производные 
Изучим некоторые свойства многочленов второй степени.  

Пусть 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) − многочлен (deg 𝑓𝑓 = 𝑑𝑑), 𝑥𝑥 − некая точка. Определим в данной 
точке производную по направлению 𝑢𝑢�⃗ . 

Определение. Производная 𝑓𝑓 в точке 𝑥𝑥 по направлению 𝑢𝑢�⃗  – число 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥), 
определяемое из равенства: 

𝑓𝑓(𝑥𝑥 + 𝑡𝑡𝑡𝑡) = 𝑓𝑓(𝑥𝑥) + 𝑡𝑡𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) + 𝑡𝑡2𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡) 

Где 𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡) – некий многочлен.  

При переходе в другую систему координат из начала отсчёта в точке 𝑥𝑥, а вектор 𝑢𝑢�⃗  
возьмём за базисный, то 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) соответствует линейному коэффициенту при 
координате, соответствующий данному базисному вектору. 

Рассмотрим зависимость 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥), как функцию от 𝑥𝑥 при фиксированных 𝑓𝑓 и 𝑢𝑢�⃗ . Заметим, 
что 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) – многочлен степени не выше d (deg 𝑓𝑓 = 𝑑𝑑).  

Заметим, что выполняется правило Лейбница: 

𝜕𝜕𝑢𝑢(𝑓𝑓𝑔𝑔) = (𝜕𝜕𝑢𝑢𝑓𝑓)𝑔𝑔 + 𝑓𝑓𝜕𝜕𝑢𝑢𝑔𝑔 

Доказательство:  

𝑓𝑓(𝑥𝑥 + 𝑡𝑡𝑡𝑡) 𝑔𝑔(𝑥𝑥 + 𝑡𝑡𝑡𝑡) = �𝑓𝑓(𝑥𝑥) + 𝑡𝑡𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) + 𝑡𝑡2𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡)��𝑔𝑔(𝑥𝑥) + 𝑡𝑡𝜕𝜕𝑢𝑢𝑔𝑔(𝑥𝑥) + 𝑡𝑡2𝑄𝑄(𝑥𝑥,𝑢𝑢, 𝑡𝑡)�
= 𝑓𝑓(𝑥𝑥) 𝑔𝑔(𝑥𝑥) + 𝑡𝑡((𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥))𝑔𝑔(𝑥𝑥) + 𝑓𝑓(𝑥𝑥)𝜕𝜕𝑢𝑢𝑔𝑔(𝑥𝑥)) + 𝑡𝑡2(… )  

 

Рассмотрим зависимость 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥), как функцию от 𝑓𝑓 при фиксированных 𝑥𝑥 и 𝑢𝑢�⃗ . Заметим, 
что по 𝑓𝑓 – данная операция линейна, что следует из определения: 

𝜕𝜕𝑢𝑢(𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) = 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) + 𝜕𝜕𝑥𝑥𝑔𝑔(𝑥𝑥) 

𝜕𝜕𝑢𝑢(𝜆𝜆𝜆𝜆)(𝑥𝑥) = 𝜆𝜆𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) 

Докажем первое из данных утверждений.  

Доказательство. 

(𝑓𝑓 + 𝑔𝑔)(𝑥𝑥 + 𝑡𝑡𝑡𝑡) = (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) + 𝑡𝑡𝜕𝜕𝑢𝑢(𝑓𝑓 + 𝑔𝑔)(𝑥𝑥) + 𝑡𝑡2 … 

По определению суммы функций (𝑓𝑓 + 𝑔𝑔)(𝑥𝑥 + 𝑡𝑡𝑡𝑡) = 𝑓𝑓(𝑥𝑥 + 𝑡𝑡𝑡𝑡) + 𝑔𝑔(𝑥𝑥 + 𝑡𝑡𝑡𝑡), при этом: 

𝑓𝑓(𝑥𝑥 + 𝑡𝑡𝑡𝑡) + 𝑔𝑔(𝑥𝑥 + 𝑡𝑡𝑡𝑡) = 𝑓𝑓(𝑥𝑥) + 𝑡𝑡𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) + 𝑡𝑡𝜕𝜕𝑢𝑢𝑔𝑔(𝑥𝑥) + 𝑡𝑡2 … 

https://vk.com/teachinmsu
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Приравнивая соответствующие коэффициенты при 𝑡𝑡 получаем доказываемое 
утверждение.  

 

Наконец, рассмотрим зависимость 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥), как функцию от 𝑢𝑢�⃗  при фиксированных 𝑥𝑥 и 𝑓𝑓. 

Утверждение. 𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) линейно по 𝑢𝑢�⃗ . 

Доказательство. Данное утверждение достаточно доказать для мономов, на 
произвольные полиномы оно обобщается естественным образом, применяя индукцию 
по степени с помощью правила Лейбница.  

Докажем, что если 𝑓𝑓 – моном, то 𝜕𝜕𝑢𝑢+𝜆𝜆𝜆𝜆𝑓𝑓 = 𝜕𝜕𝑢𝑢𝑓𝑓 + 𝜆𝜆𝜕𝜕𝑣𝑣𝑓𝑓. Пусть deg𝑓𝑓 = 1, т. е.𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑖𝑖 

𝜕𝜕𝑣𝑣𝑥𝑥𝑖𝑖 = 𝑣𝑣𝑖𝑖 ,   

𝜕𝜕𝑢𝑢+𝜆𝜆𝜆𝜆𝑥𝑥𝑖𝑖 = 𝑢𝑢𝑖𝑖 + 𝜆𝜆𝑣𝑣𝑖𝑖 

База индукции доказана.  

Рассмотрим производную по направлению, как операцию от многочлена.  

Утверждение. Операция взятия производной по направлению коммутирует: 𝜕𝜕𝑢𝑢𝜕𝜕𝑣𝑣 =
𝜕𝜕𝑣𝑣𝜕𝜕𝑢𝑢 

Доказательство: 

𝑓𝑓(𝑥𝑥 + 𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑡𝑡) = 𝑓𝑓(𝑥𝑥 + 𝑠𝑠𝑠𝑠) + 𝑡𝑡𝜕𝜕𝑣𝑣𝑓𝑓(𝑥𝑥 + 𝑠𝑠𝑠𝑠) + 𝑡𝑡2 …
= 𝑓𝑓(𝑥𝑥) + 𝑠𝑠𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) + 𝑡𝑡𝜕𝜕𝑣𝑣𝑓𝑓(𝑥𝑥) + 𝑠𝑠𝑠𝑠𝜕𝜕𝑣𝑣𝜕𝜕𝑢𝑢𝑓𝑓(𝑥𝑥) + 𝑡𝑡2 … + 𝑠𝑠2 … 

Аналогично, можем разложить сначала по 𝑠𝑠, а после по 𝑡𝑡, тем самым доказывая данное 
утверждение.  

Определение. 𝑖𝑖 − ая частная производная 𝑓𝑓 в точке 𝑥𝑥 - 𝜕𝜕𝑖𝑖𝑓𝑓(𝑥𝑥) = 𝜕𝜕𝑒𝑒𝑖𝑖𝑓𝑓(𝑥𝑥) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

 

Из линейности по 𝑢𝑢 ⇒ 𝜕𝜕𝑢𝑢𝑓𝑓 = ∑ 𝑢𝑢𝑖𝑖𝜕𝜕𝑖𝑖𝑓𝑓𝑛𝑛
𝑖𝑖=1   

Координаты необходимо менять комплектом при переходе из одной системы в другую. 
Рассмотрим для чего это необходимо: 

Пусть 𝑥𝑥� = 𝑥𝑥, 𝑦𝑦� = 𝑥𝑥 + 𝑦𝑦 ⇒ 𝑒̃𝑒1 = 𝑒𝑒1 − 𝑒𝑒2, 𝑒̃𝑒2 = 𝑒𝑒2, тогда:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥�

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦�

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Действительно, 

𝐶𝐶 = � 1 0
−1 1�,   

https://vk.com/teachinmsu
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�𝑥𝑥�𝑦𝑦�� = 𝐶𝐶−1 �
𝑥𝑥
𝑦𝑦� = �1 0

1 1� �
𝑥𝑥
𝑦𝑦� 

Формула Тейлора 
Теорема. ∀ многочлена степени 𝑘𝑘 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) и ∀ 𝑎𝑎 = (𝑎𝑎1, … , 𝑎𝑎𝑛𝑛) выполнено: 

𝑓𝑓(𝑥𝑥) = ��
1
𝑚𝑚!

� (𝜕𝜕𝑖𝑖1 …𝜕𝜕𝑖𝑖𝑚𝑚𝑓𝑓)(𝑎𝑎)
𝑛𝑛

𝑖𝑖1,…,𝑖𝑖𝑚𝑚=1

�𝑥𝑥𝑖𝑖1 − 𝑎𝑎𝑖𝑖1��𝑥𝑥𝑖𝑖2 − 𝑎𝑎𝑖𝑖2�… �𝑥𝑥𝑖𝑖𝑚𝑚 − 𝑎𝑎𝑖𝑖𝑚𝑚��
𝑘𝑘

𝑚𝑚=0

 

Данная форма даёт соотношение при коэффициентах многочлена при сдвиге системы 
координат на 𝑎𝑎. 

  

https://vk.com/teachinmsu
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Лекция 15. Асимптотические направления. Диаметр 
Асимптотические направления и их геометрический смысл 

Рассмотрим, что будет с кривыми второго порядка, если плоскость, в которой они 
расположены, будет находится на “большом” расстоянии от нас: 

1) Гиперболу (рис. 15.1) на больших расстояниях мы увидим, как пару пересекающихся 
прямых, (рис. 15.2): 

 

Рис. 15.1 

 

 

Рис. 15.2 

2) Эллипс на больших расстояниях мы увидим, как точку. 

3) Параболу на больших расстояниях мы увидим, как луч. 

То есть, данные преобразования аналогичны тому, что мы увеличили длину всех 
базисных векторов в одинаковое число раз. Рассмотрим данные преобразования с 
алгебраической точки зрения.  

https://vk.com/teachinmsu
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Имеем уравнение: 

𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 = 0 

Если мы “смотрим издалека” на кривую, то выполняется преобразование системы 
координат: 

𝑥𝑥� = 𝜆𝜆𝜆𝜆, 𝑦𝑦� = 𝜆𝜆𝜆𝜆, 𝜆𝜆 ≫ 1 

Уравнение преобразуется следующим образом: 

𝜆𝜆2(𝑎𝑎11𝑥𝑥�2 + 2𝑎𝑎12𝑥𝑥�𝑦𝑦� + 𝑎𝑎22𝑦𝑦�2) + 𝜆𝜆(2𝑎𝑎1𝑥𝑥� + 2𝑎𝑎2𝑦𝑦�) + 𝑎𝑎0 = 0 

(𝑎𝑎11𝑥𝑥�2 + 2𝑎𝑎12𝑥𝑥�𝑦𝑦� + 𝑎𝑎22𝑦𝑦�2) + 𝜆𝜆−1(2𝑎𝑎1𝑥𝑥� + 2𝑎𝑎2𝑦𝑦�) + 𝜆𝜆−2𝑎𝑎0 = 0 

Из уравнения видно, что при больших 𝜆𝜆 вклад в уравнение даёт только его 
квадратичная часть.  

Зная этот принцип, можно, например, предсказать какой вид издалека имеет 
следующий параболоид: 

𝑥𝑥2 − 𝑦𝑦2 = 2𝑧𝑧 ⇒ 𝑥𝑥2 − 𝑦𝑦2 = 0 − пара плоскостей 

Рассмотрим геометрию поверхностей второго порядка с точки зрения “бесконечности”.  

Определение. Пусть 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) – некий многочлен. Вектор 𝑣𝑣 = (𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) ≠ 0 имеет 
асимптотическое направление для 𝑓𝑓, если при ограничении 𝑓𝑓 на некоторую прямую с 
направляющим вектором 𝑣𝑣, получаем многочлен меньшей степени. 

Замечание. В определении можно заменить “некоторую прямую” на “любую прямую”, 
так как 

deg 𝑓𝑓(𝑥𝑥 + 𝑡𝑡𝑡𝑡) < deg𝑓𝑓 ⇒ deg 𝑓𝑓(𝑥𝑥′ + 𝑡𝑡𝑡𝑡) < deg 𝑓𝑓 

Это следует из того, что для любого отдельно взятого монома 𝑀𝑀 степени 𝑘𝑘 справедливо 
следующее: 

M(𝑥𝑥 + 𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑡𝑡𝑘𝑘 + ⋯ - не считая меньшие степени, при этом 𝑐𝑐 – зависит только от 𝑣𝑣. 

Алгебраически, полином от одной переменной будет степени меньше 𝑘𝑘, если 𝑘𝑘 
производная от него равна 0.  

Утверждение. 𝑣𝑣 имеет асимптотическое направление для 𝑓𝑓 (deg 𝑓𝑓 = 𝑘𝑘), тогда и только 
тогда, когда 𝜕𝜕𝑣𝑣𝑘𝑘𝑓𝑓 = 0. 

Рассмотрим многочлен второй степени: 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 

Пусть 𝑣𝑣 = (𝛼𝛼,𝛽𝛽), тогда: 

https://vk.com/teachinmsu
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𝑓𝑓(𝑥𝑥 + 𝛼𝛼𝛼𝛼,𝑦𝑦 + 𝛽𝛽𝛽𝛽) = (𝑎𝑎11𝛼𝛼2 + 2𝑎𝑎12𝛼𝛼𝛼𝛼 + 𝑎𝑎22𝛽𝛽2)𝑡𝑡2 + ⋯𝑡𝑡 + ⋯ 

𝑓𝑓(𝑥𝑥 + 𝛼𝛼𝛼𝛼,𝑦𝑦 + 𝛽𝛽𝛽𝛽) =
1
2
𝑡𝑡2𝜕𝜕(𝛼𝛼,𝛽𝛽)𝜕𝜕(𝛼𝛼,𝛽𝛽)𝑓𝑓 + ⋯𝑡𝑡 + ⋯ 

При этом  

(𝛼𝛼,𝛽𝛽) имеет ассимптотическое направление ⇔ 𝑎𝑎11𝛼𝛼2 + 2𝑎𝑎12𝛼𝛼𝛼𝛼 + 𝑎𝑎22𝛽𝛽2 = 0 

Замечание. Можно было бы дать иное определение: вектор имеет асимптотическое 
направление, если при подстановке его в квадратичную часть данного многочлена 
получим ноль.  

Однако данное определение не несёт в себе явного геометрического смысла, в отличии 
от предыдущего.  

Рассмотрим в общем случае пересечение кривой второго порядка и прямой 𝑣𝑣 – 
направляющий вектор. Довольно часто будем иметь две точки пересечения, которые 
можем найти из уравнения 𝑓𝑓(𝑥𝑥 + 𝑣𝑣𝑣𝑣) = 0, если корень комплексный, то пересечение 
отсутствует.  

Рассмотрим гиперболу: 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑥𝑥 − 1. Соответствующее асимптотическое разложение имеет вид: 𝛼𝛼𝛼𝛼 = 0. 
Без ограничений общности, положим (𝛼𝛼,𝛽𝛽) = (1, 0) (нулевой вектор здесь и далее из 
рассмотрения исключён). 

Рассмотрим горизонтальные прямые (в соответствии с выбранным направлением). 
Горизонтальной прямой соответствует некое значение абсциссы - 𝑦𝑦0. При этом: 

𝑓𝑓(𝑡𝑡,𝑦𝑦0) = 𝑦𝑦0𝑡𝑡 − 1 – многочлен степени не выше первой, нулевая степень достигается 
тогда, когда прямая является асимптотой. При этом реализуется ситуация пересечения 
в одной точке, либо, соответственно, пересечение отсутствует вовсе.  

Рассмотрим параболу: 𝑦𝑦2 = 2𝑥𝑥 с асимптотическим направлением, как и ранее - 
(1,0) (рис. 15.2). В отличии от гиперболы, здесь точка пересечения всегда есть и при 
том – единственна.  

Утверждение. Прямые асимптотического направления либо пересекают кривую 
(поверхность) 2-го порядка в одной точке, либо не пересекают вовсе, либо целиком 
содержатся в ней.  

Перепишем формулу 𝑎𝑎11𝛼𝛼2 + 2𝑎𝑎12𝛼𝛼𝛼𝛼 + 𝑎𝑎22𝛽𝛽2, используя матрицу для квадратичной 
части: 

(𝛼𝛼 𝛽𝛽) 𝑄𝑄 �
𝛼𝛼
𝛽𝛽� = 0     или     (𝛼𝛼 𝛽𝛽 0) 𝑄𝑄�  �

𝛼𝛼
𝛽𝛽
0
� = 0 
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Где 𝑄𝑄 − матрица квадратичной части, а 𝑄𝑄�  – матрица, составленная из всех 
коэффициентов. Для поверхностей обобщается естественным образом: 

(𝛼𝛼 𝛽𝛽 𝛾𝛾) 𝑄𝑄 �
𝛼𝛼
𝛽𝛽
𝛾𝛾
� = 0    или   (𝛼𝛼 𝛽𝛽 𝛾𝛾 0) 𝑄𝑄�  �

𝛼𝛼
𝛽𝛽
𝛾𝛾
0

� = 0 

Диаметры 
Здесь и далее будут рассмотрены кривые, обобщение на поверхности производится 
добавлением соответствующей координаты.  

Пусть (𝛼𝛼 𝛽𝛽) ≠ 0 – не асимптотический вектор не асимптотического направления, 
тогда 𝑓𝑓(𝑥𝑥 + 𝛼𝛼𝛼𝛼, 𝑦𝑦 + 𝛽𝛽𝛽𝛽) − квадратный многочлен, относительно 𝑡𝑡. При этом, у данного 
уравнения всегда есть два корня (в общем случае - комплексные). Рассмотрим его 
подробнее: 

𝑓𝑓(𝑥𝑥 + 𝛼𝛼𝛼𝛼, 𝑦𝑦 + 𝛽𝛽𝛽𝛽) = 𝑐𝑐2𝑡𝑡2 + 𝑐𝑐1𝑡𝑡 + 𝑐𝑐0, 𝑡𝑡 = −
𝑐𝑐1

2𝑐𝑐2
− середина хорды. 

При этом, в отличие от корней уравнения, середина хорды всегда вещественная.  

Утверждение. Середины хорд фиксированного не асимптотического направления 
образуют прямую (для поверхностей - плоскость).  

Доказательство: 

Так как наши рассуждения не зависят от выбора системы координат, то без 
ограничения общности положим (𝛼𝛼,𝛽𝛽) = (1, 0).  При этом, данный вектор не 
асимптотический⇒ 𝑎𝑎11 ≠ 0. Подставляя: 

𝑓𝑓(𝑥𝑥 + 𝑡𝑡,𝑦𝑦) = 𝑎𝑎11𝑡𝑡2 + 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑡𝑡 + 𝑞𝑞(𝑥𝑥, 𝑦𝑦), deg𝑝𝑝 ≤ 1 

Заметим, что (𝑥𝑥,𝑦𝑦) − середина хорды ⇔ 𝑝𝑝(𝑥𝑥, 𝑦𝑦) = 0, так как корни должны быть 
симметрично расположены, относительно 0.  

Если deg𝑝𝑝 = 0 – многочлен, то уравнение 𝑝𝑝(𝑥𝑥, 𝑦𝑦) = 0 – задаёт пустое множество. Если 
deg𝑝𝑝 = −∞, то вся плоскость состоит из середин хорд, что невозможно ⇒ deg𝑝𝑝 ≠ 0,
deg𝑝𝑝 ≠ −∞.  

Утверждение. Пусть 𝑣𝑣 – вектор не асимптотического направления. Тогда 𝑥𝑥(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) - 
середина хорды ⇔  𝜕𝜕𝑣𝑣𝑓𝑓(𝑥𝑥) = 0 

Распишем данное условие в других формах. Например, раскроем скобки: 

𝑓𝑓(𝑥𝑥 + 𝛼𝛼𝛼𝛼, 𝑦𝑦 + 𝛽𝛽𝛽𝛽) = ⋯𝑡𝑡2 + 2�𝛼𝛼(𝑎𝑎11𝑥𝑥 + 𝑎𝑎12𝑦𝑦 + 𝑎𝑎1) + 𝛽𝛽(𝑎𝑎12𝑥𝑥 + 𝑎𝑎22𝑦𝑦 + 𝑎𝑎2)�𝑡𝑡 + 𝑓𝑓(𝑥𝑥,𝑦𝑦) 

𝛼𝛼(𝑎𝑎11𝑥𝑥 + 𝑎𝑎12𝑦𝑦 + 𝑎𝑎1) + 𝛽𝛽(𝑎𝑎12𝑥𝑥 + 𝑎𝑎22𝑦𝑦 + 𝑎𝑎2) =
1
2 �
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

= (𝛼𝛼  𝛽𝛽  0)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� 
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Определение. Диаметр (диаметральная плоскость), сопряженная не асимптотическому 
направлению – множество середин хорд этого направления. 

Геометрический смысл этого уравнения следует из того, что мы начинали из условия 
не использующий привязку к системе координат.  

Примеры диаметров для выделенного направления:  

 

Рис. 15.3 

 

Рис. 15.4 

Сопряженные диаметры 
Утверждение. Пусть вектор 𝑣𝑣 параллелен к диаметру, сопряженному не 
асимптотическому направлению 𝑣𝑣.Тогда  

𝜕𝜕𝑢𝑢𝜕𝜕𝑣𝑣𝑓𝑓 = 0 

Верно и обратное. 

Доказательство: 

Уравнение диаметра: 

𝜕𝜕𝑣𝑣𝑓𝑓(𝑥𝑥) = 0 
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Вектор 𝑢𝑢 = (𝛾𝛾, 𝛿𝛿) параллелен прямой  

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 

тогда и только тогда, когда 

𝜕𝜕(𝛾𝛾,𝛿𝛿)(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶) = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = 0 

В системе координат, в которой 𝑢𝑢 и 𝑣𝑣 – базисные векторы, а 𝑥𝑥,𝑦𝑦 – соответствующие 
координаты коэффициент многочлена 𝑓𝑓 при 𝑥𝑥𝑥𝑥 равен нулю. 

Главные направления и диаметры 
Определение. Неасимптотическое направление кривой (поверхности) второго порядка 
называется главным, если оно ортогонально соответствующему диаметру (диаметру 
плоскости). 
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Лекция 16. Главные направления и оси симметрии. Центры 
кривых и поверхностей. 

Главные направления (продолжение) 
Главное направление – это такое направление, которое 

1) Не асимптотическое 
2) Перпендикулярно диаметру 

Определение. Пусть 𝐴𝐴 – матрица 𝑛𝑛 × 𝑛𝑛, 𝑣𝑣 – 𝑛𝑛-столбец. 𝑣𝑣 называется собственным 
вектором для 𝐴𝐴, если  

∃𝜆𝜆 ∈ ℝ:𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆 

𝜆𝜆 называется собственным значением матрицы 𝐴𝐴. 

Утверждение. Пусть 𝑄𝑄 – матрица квадратичной части кривой (поверхности) второго 
порядка. Тогда 𝑣𝑣 имеет главное направление тогда и только тогда, когда 𝑣𝑣 не 
асимптотический и не собственный для 𝑄𝑄. 

Доказательство: 

В прямоугольной системе координат: 

Уравнение диаметра: 

(𝛼𝛼 𝛽𝛽 0)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� = 0 

П′:𝛼𝛼′𝑥𝑥 + 𝛽𝛽′𝑦𝑦 + 𝛾𝛾′ = 0 

Плоскости, ортогональные (𝛼𝛼,𝛽𝛽):  

П: 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾 = 0 

П ∥ П′ ⟺ (𝛼𝛼′,𝛽𝛽′) коллинеарно (𝛼𝛼,𝛽𝛽) 

То есть 

𝜆𝜆(𝛼𝛼,𝛽𝛽) = 𝜆𝜆(𝛼𝛼,𝛽𝛽)𝑄𝑄�  

Если система координат аффинная: 

Уравнение диаметра: 

П′: (𝛼𝛼 𝛽𝛽 0)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� = 0 

Уравнение плоскости, перпендикулярной (𝛼𝛼,𝛽𝛽): 
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П: (𝛼𝛼 𝛽𝛽)𝐺𝐺 �
𝑥𝑥 − 𝑥𝑥0
𝑦𝑦 − 𝑦𝑦0� = 0 

Где 𝐺𝐺 – матрица Грама. 

П ∥ П′: (𝛼𝛼,𝛽𝛽)𝑄𝑄� = 𝜆𝜆(𝛼𝛼,𝛽𝛽)𝐺𝐺 

Утверждение. Для аффинной системы координат. Пусть 𝑄𝑄 – матрица квадратичной 
части кривой (поверхности) второго порядка, а 𝐺𝐺 – матрица Грама данного базиса. 
Тогда 𝑣𝑣 – вектор главного направления тогда и только тогда, когда 𝑣𝑣 не 
асимптотический и собственный для 𝐺𝐺−1𝑄𝑄. 

Геометрический смысл главных направлений: 

Главные диаметры (диаметральные плоскости) являются осями (плоскостями) 
симметрии данной кривой (поверхности). 

Доказательство: 

Выберем прямоугольную систему координат так, чтобы 𝑣𝑣 = 𝑒𝑒1, а диаметральная 
плоскость задавалась уравнением 𝑥𝑥 = 0. То есть нужно, чтобы уравнение 

𝑎𝑎11𝑥𝑥 + 𝑎𝑎12𝑦𝑦 + 𝑎𝑎1 = 0 

совпало с уравнением  𝑥𝑥 = 0. То есть  

𝑎𝑎12 = 𝑎𝑎1 = 0 

𝑥𝑥 входит в уравнение только через 𝑥𝑥2. То есть многочлен 

𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 

чётен по 𝑥𝑥, то есть 𝑥𝑥 является прямой симметрии. 

Центры кривых и поверхностей второго порядка 
Пусть 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) – многочлен произвольной степени. Это означает, что 𝑓𝑓 
симметричен относительно точки 𝑎𝑎 = (𝑎𝑎1, … , 𝑎𝑎𝑛𝑛). 

Уравнение  

𝑓𝑓(𝑎𝑎 + 𝑣𝑣) = 0 

эквивалентно уравнению 

𝑓𝑓(𝑎𝑎 − 𝑣𝑣) = 0 

как уравнение от 𝑣𝑣. То есть  

∃𝜆𝜆 ∈ ℝ\{0}: 𝑓𝑓(𝑎𝑎 + 𝑣𝑣) = 𝜆𝜆𝜆𝜆(𝑎𝑎 − 𝑣𝑣) 

Учитывая, что  
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𝑓𝑓(𝑎𝑎 − 𝑣𝑣) = 𝜆𝜆𝜆𝜆(𝑎𝑎 + 𝑣𝑣) 

Получим, что 

𝜆𝜆 = ±1 

Следовательно,  

𝑓𝑓(𝑎𝑎 + 𝑣𝑣) = (−1)deg𝐹𝐹𝑓𝑓(𝑎𝑎 − 𝑣𝑣) 

Мы получили условие симметрии многочлена относительно точки 𝑎𝑎. 

Утверждение. Точка 𝑥𝑥0 является центром кривой (поверхности) второго порядка, 
заданной уравнением 𝑓𝑓 = 0 тогда и только тогда, когда все первые частные 
производные 𝑓𝑓 в точке 𝑥𝑥0 равны нулю. 

Для кривой: 

𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 = 0 

Центры: 

�𝑎𝑎11𝑥𝑥 + 𝑎𝑎12𝑦𝑦 + 𝑎𝑎1 = 0
𝑎𝑎12𝑥𝑥 + 𝑎𝑎22𝑦𝑦 + 𝑎𝑎2 = 0 

Следствия: 

• Все центры лежат на всех диаметрах 
• Множество центров образует одно из: 

1) Пустое множество 
2) Одна точка 
3) Прямая 
4) Плоскость (в случае поверхности) 

Уравнение центров в матричном виде: 

На плоскости: 

𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� = �

0
0
∗
� 

В пространстве: 

𝑄𝑄� �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� = �

0
0
0
∗

� 

�
𝑎𝑎11 𝑎𝑎12 𝑎𝑎1
𝑎𝑎12 𝑎𝑎22 𝑎𝑎2� �

𝑥𝑥
𝑦𝑦
1
� = 0 
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Особые точки, касательные 
Пусть кривая 

𝑎𝑎10𝑥𝑥 + 𝑎𝑎01𝑦𝑦 + 𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 𝑎𝑎22𝑦𝑦2 + ⋯ = 0 

проходит через начало координат. 

Если мы «растянем» исходную систему координат: 

𝑥𝑥� = 𝜆𝜆𝜆𝜆 

𝑦𝑦� = 𝜆𝜆𝜆𝜆 

𝜆𝜆 ≫ 1 

То получим: 

𝑎𝑎10𝑥𝑥
𝜆𝜆

+
𝑎𝑎01𝑦𝑦
𝜆𝜆

+
𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 𝑎𝑎22𝑦𝑦2

𝜆𝜆2
+ ⋯ = 0 

То есть при «растягивании» системы координат больший вклад будет давать сумма 

𝑎𝑎10𝑥𝑥 + 𝑎𝑎01𝑦𝑦 

Определение. Особая точка алгебраической кривой (поверхности), заданной 
уравнением 𝑓𝑓 = 0 – это точка, в которой 𝑓𝑓 = 0 и 𝜕𝜕𝑖𝑖𝑓𝑓 = 0 ∀𝑖𝑖. 

Определение. Пусть (𝑥𝑥0,𝑦𝑦0) – не особая точка алгебраической кривой 𝑓𝑓 = 0. Прямая, 
заданная уравнением 𝜕𝜕(𝑥𝑥−𝑥𝑥0,𝑦𝑦−𝑦𝑦0)𝑓𝑓(𝑥𝑥0,𝑦𝑦0) = 0, называется касательной к данной кривой 
в точке (𝑥𝑥0,𝑦𝑦0). 

Определение. Пусть (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) – не особая точка алгебраической кривой 𝑓𝑓 = 0. 
Плоскость, заданная уравнением 𝜕𝜕(𝑥𝑥−𝑥𝑥0,𝑦𝑦−𝑦𝑦0,𝑧𝑧−𝑧𝑧0)𝑓𝑓(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) = 0, называется 
касательной плоскостью к данной кривой в точке (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0). 
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Лекция 17. Касательные. Сечение поверхности касательной 
плоскостью. Образующие 

Касательные прямые, касательные плоскости (продолжение) 
Касательная прямая – та единственная прямая, ограничения на которую многочлена 
𝑓𝑓имеет в данной точке (𝑥𝑥0,𝑦𝑦0) особенность. 

Уравнение для касательной плоскости: 

(𝑥𝑥 − 𝑥𝑥0)𝜕𝜕1𝑓𝑓(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) + (𝑦𝑦 − 𝑦𝑦0)𝜕𝜕2𝑓𝑓(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) + (𝑧𝑧 − 𝑧𝑧0)𝜕𝜕3𝑓𝑓(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) = 0 

 

Рис. 17.1 

Касательная плоскость к поверхности 𝑓𝑓 = 0 в не особой точке (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) – это та 
единственная плоскость, ограничения на которую многочлена 𝑓𝑓 имеет в (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) 
особую точку. 

Касательная плоскость состоит из всех прямых, ограничения 𝑓𝑓 на которые имеет в 
точке (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) кратный корень. 

Рассмотрим случай, когда 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 

𝑓𝑓(𝑥𝑥0,𝑦𝑦0) = 0 

Тогда 

(𝑥𝑥 − 𝑥𝑥0)𝜕𝜕1𝑓𝑓(𝑥𝑥0,𝑦𝑦0) + (𝑦𝑦 − 𝑦𝑦0)𝜕𝜕2𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) = 0 

В этом случае 

𝑎𝑎11𝑥𝑥0𝑥𝑥 + 𝑎𝑎22𝑦𝑦0𝑦𝑦 + 𝑎𝑎12(𝑥𝑥0𝑦𝑦 + 𝑦𝑦0𝑥𝑥) + 𝑎𝑎1(𝑥𝑥0 + 𝑥𝑥) + 𝑎𝑎2(𝑦𝑦0 + 𝑦𝑦) + 𝑎𝑎0 = 0 
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Назовем этот многочлен 𝑝𝑝(𝑥𝑥,𝑦𝑦): 

𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝑎𝑎11𝑥𝑥0𝑥𝑥 + 𝑎𝑎22𝑦𝑦0𝑦𝑦 + 𝑎𝑎12(𝑥𝑥0𝑦𝑦 + 𝑦𝑦0𝑥𝑥) + 𝑎𝑎1(𝑥𝑥0 + 𝑥𝑥) + 𝑎𝑎2(𝑦𝑦0 + 𝑦𝑦) + 𝑎𝑎0 

Очевидно, что  

𝑝𝑝(𝑥𝑥0,𝑦𝑦0) = 𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) = 0 

Тогда 

𝜕𝜕1𝑝𝑝 = 𝑎𝑎11𝑥𝑥0 + 𝑎𝑎12𝑦𝑦0 + 𝑎𝑎1 =
1
2
𝜕𝜕1𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) 

Аналогично 

𝜕𝜕2𝑝𝑝 =
1
2
𝜕𝜕2𝑓𝑓(𝑥𝑥0,𝑦𝑦0) 

Запишем в матричном виде: 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥 𝑦𝑦 1)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� 

𝑝𝑝(𝑥𝑥,𝑦𝑦) = (𝑥𝑥0 𝑦𝑦0 1)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� 

Уравнение касательной прямой: 

(𝑥𝑥0 𝑦𝑦0 1)𝑄𝑄� �
𝑥𝑥
𝑦𝑦
1
� = 0 

Вычислим производную по направлению 𝜕𝜕𝑣𝑣𝑓𝑓(𝑥𝑥0, 𝑦𝑦0), 𝑣𝑣 = (𝛼𝛼,𝛽𝛽): 

(𝑥𝑥 + 𝛼𝛼𝛼𝛼 𝑦𝑦 + 𝛽𝛽𝛽𝛽 1)𝑄𝑄� �
𝑥𝑥 + 𝛼𝛼𝛼𝛼
𝑦𝑦 + 𝛽𝛽𝛽𝛽

1
� = 𝑓𝑓(𝑥𝑥,𝑦𝑦) + 2(𝛼𝛼 𝛽𝛽 1)𝑄𝑄� �

𝑥𝑥
𝑦𝑦
1
� 𝑡𝑡 + ⋯𝑡𝑡2 

(𝑥𝑥 − 𝑥𝑥0 𝑦𝑦 − 𝑦𝑦0 1)𝑄𝑄� �
𝑥𝑥0
𝑦𝑦0
1
� = 0 

(𝑥𝑥 𝑦𝑦 1)𝑄𝑄� �
𝑥𝑥0
𝑦𝑦0
1
� − (𝑥𝑥0 𝑦𝑦0 1)𝑄𝑄� �

𝑥𝑥0
𝑦𝑦0
1
� = 0 

(𝑥𝑥0 𝑦𝑦0 1)𝑄𝑄� �
𝑥𝑥0
𝑦𝑦0
1
� = 0 

Следовательно, уравнение касательной прямой: 
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(𝑥𝑥 𝑦𝑦 1)𝑄𝑄� �
𝑥𝑥0
𝑦𝑦0
1
� = 0 

Для поверхностей второго порядка: уравнение касательной плоскости в не особой 
точке (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0): 

(𝑥𝑥0 𝑦𝑦0 𝑧𝑧0 1)𝑄𝑄� �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� = 0 

Сечение поверхностей второго порядка касательной 
плоскостью 

Касательная плоскость пересекает поверхность по кривой, для которой точка касания 
является особой. 

Рассмотрим поверхность второго порядка: 

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0, deg 𝑓𝑓 = 2 

Сечение должно быть кривой порядка не выше 2. 

Может ли оно иметь порядок 0? 

1 = 0 – невозможно  

Может ли оно иметь порядок 1? 

В этом случае мы получим прямую, а на прямой нет особых точек. Значит этот случай 
невозможен. 

Утверждение. Сечение поверхности второго порядка касательной плоскостью – пара 
прямых. 

Прямые, содержащиеся в поверхности, называются её образующими. 

Образующие однополостного гиперболоида 
Уравнение, задающее однополостный гиперболоид: 

𝑥𝑥2 + 𝑦𝑦2 − 𝑧𝑧2 = 1 

Это уравнение можно переписать в следующем виде: 

𝑥𝑥2 − 𝑧𝑧2 = 1 − 𝑦𝑦2 

�𝑥𝑥 − 𝑧𝑧 1 − 𝑦𝑦
1 + 𝑦𝑦 𝑥𝑥 + 𝑧𝑧� = 0 

∃ 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿: �𝑥𝑥 − 𝑧𝑧 1 − 𝑦𝑦
1 + 𝑦𝑦 𝑥𝑥 + 𝑧𝑧� = �

𝛼𝛼
𝛽𝛽� (𝛾𝛾 𝛿𝛿) = �𝛼𝛼𝛼𝛼 𝛼𝛼𝛼𝛼

𝛽𝛽𝛽𝛽 𝛽𝛽𝛽𝛽� 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

110 
 
 

 

Теперь положим, что 

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥2 + 𝑦𝑦2 − 𝑧𝑧2 − 1 

𝑓𝑓(𝑥𝑥0,𝑦𝑦0𝑧𝑧0) = 0 

Рассмотрим две прямые: 

�
𝑥𝑥 − 𝑧𝑧 𝛼𝛼
1 + 𝑦𝑦 𝛽𝛽� = �

𝛼𝛼 1 − 𝑦𝑦
𝛽𝛽 𝑥𝑥 + 𝑧𝑧� = 0 − первое семейство 

�𝑥𝑥 − 𝑧𝑧 1 − 𝑦𝑦
𝛾𝛾 𝛿𝛿 � = � 𝛾𝛾 𝛿𝛿

1 + 𝑦𝑦 𝑥𝑥 + 𝑧𝑧� = 0 − второе семейство 

Утверждение. Образующие из одного семейства попарно скрещиваются. 

Если 𝑙𝑙1 и  𝑙𝑙2 – образующие из разных семейств, то они лежат в одной плоскости. 

 

Рис. 17.2 

Образующие гиперболического параболоида 
Уравнение, задающее однополостный параболоид: 

𝑥𝑥2 − 𝑦𝑦2 = 2𝑧𝑧 

�
𝑥𝑥 − 𝑦𝑦 𝑧𝑧
𝑧𝑧 𝑥𝑥 + 𝑦𝑦� = 0 

Однополостный параболоид имеет два семейства образующих: 

�
𝑥𝑥 − 𝑦𝑦 𝛼𝛼
𝑧𝑧 𝛽𝛽� = �

𝛼𝛼 𝑧𝑧
𝛽𝛽 𝑥𝑥 + 𝑦𝑦� = 0 
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�
𝑥𝑥 − 𝑦𝑦 𝑧𝑧
𝛾𝛾 𝛿𝛿� = �𝛾𝛾 𝛿𝛿

𝑧𝑧 𝑥𝑥 + 𝑦𝑦� = 0 

Утверждение. Образующие из одного семейства попарно скрещиваются. 

Если 𝑙𝑙1 и  𝑙𝑙2 – образующие из разных семейств, то они пересекаются. 

 

Рис. 17.3 

Кривые второго порядка, проходящие через данные точки 
Пусть 𝑃𝑃1, … ,𝑃𝑃𝑘𝑘 – фиксированные точки. Мы хотим найти коэффициенты 𝑎𝑎11,𝑎𝑎12, … ,𝑎𝑎0 
так, чтобы кривая  

𝑎𝑎11𝑥𝑥2 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 

проходила через данные точки. 

𝑓𝑓(𝑃𝑃) = 0 – линейное однородное уравнение на коэффициенты. Всего мы имеем 6 
коэффициентов. 

Теорема. Через пять точек на плоскости, никакие четыре из которых не лежат на одной 
прямой, проходит ровно одна кривая второго порядка. 

Доказательство: 

Мы имеем 5 уравнений и 6 неизвестных. Следовательно, существует нетривиальное 
решение.  

Для доказательства единственности решения, нужно показать независимость 
уравнений. Независимость пяти уравнений означает, что из любых четырёх уравнений 
не следует пятое.  

Теорема Паскаля 
Точки в общем положении: отрезки, их соединяющие не параллельны. 

https://vk.com/teachinmsu
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Теорема Паскаля. Пусть 𝑃𝑃1, … ,𝑃𝑃6 – точки коники, находящейся в общем положении. 
Тогда точки 𝑃𝑃1𝑃𝑃2 ∩ 𝑃𝑃4𝑃𝑃5, 𝑃𝑃2𝑃𝑃3 ∩ 𝑃𝑃5𝑃𝑃6, 𝑃𝑃3𝑃𝑃4 ∩ 𝑃𝑃6𝑃𝑃1 лежат на одной прямой. 

 

Рис. 17.4 

  

https://vk.com/teachinmsu
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Лекция 18. Теоремы Паскаля и Брианшона. Поляры. 
Сечения поверхностей. 

Теорема Паскаля 
В прошлый раз была сформулирована теорема Паскаля: 

Теорема Паскаля. Пусть 𝑃𝑃1, … ,𝑃𝑃6 – точки коники, находящейся в общем положении. 
Тогда точки 𝑃𝑃1𝑃𝑃2 ∩ 𝑃𝑃4𝑃𝑃5, 𝑃𝑃2𝑃𝑃3 ∩ 𝑃𝑃5𝑃𝑃6, 𝑃𝑃3𝑃𝑃4 ∩ 𝑃𝑃6𝑃𝑃1 лежат на одной прямой. 

Доказательство: 

Пронумеруем точки и обозначим линии, проходящие через них как на рис. 18.1 

 

Рис. 18.1 

Объединения 𝑙𝑙23 ∪ 𝑙𝑙45 ∪ 𝑙𝑙61 и 𝑙𝑙12 ∪ 𝑙𝑙34 ∪ 𝑙𝑙56 – кривые третьего порядка.  

Они имеют вид: 

𝐹𝐹1(𝑥𝑥,𝑦𝑦) = 0 

𝐹𝐹2(𝑥𝑥, 𝑦𝑦) = 0 

𝐹𝐹1,𝐹𝐹2 – многочлены третьей степени. 

𝐹𝐹1|𝑚𝑚,𝐹𝐹2|𝑚𝑚 – многочлены третьей степени с общими корнями. Значит 

https://vk.com/teachinmsu
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∃𝜆𝜆 ≠ 0: 𝐹𝐹1|𝑚𝑚 − 𝜆𝜆𝐹𝐹2|𝑚𝑚 ≡ 0 

Обозначим  

𝐹𝐹1|𝑚𝑚 − 𝜆𝜆𝐹𝐹2|𝑚𝑚 = 𝐹𝐹 

𝐹𝐹 – многочлен степени не выше 3 

𝐹𝐹|𝑚𝑚 ≡ 0 

Возьмём  прямую 𝑚𝑚 за ось абсцисс (рис. 18.2) 

𝐹𝐹|𝑚𝑚 ≡ 0 ⇔ 𝐹𝐹 делится на 𝑦𝑦.  

 

Рис. 18.2 

𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝑦𝑦 ∙ 𝑝𝑝(𝑥𝑥,𝑦𝑦) 

Здесь 𝑝𝑝 – многочлен степени не выше 2. 𝑝𝑝 обращается в нуль в точках 1,2,3,4,5,6. 

Сопряжённость точек относительно кривой второго порядка. 
Поляритет 

Для любого многочлена второй степени 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) существует единственный 
многочлен 𝐵𝐵𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) такой, что: 

1)  𝐵𝐵𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)  
2) 𝐵𝐵𝑓𝑓 имеет степень 1 по 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 и по 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 
3) 𝐵𝐵𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) = 𝐵𝐵𝑓𝑓(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)  

В матричном виде: 

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛 1)𝑄𝑄� �

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
1

� 

𝐵𝐵𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛 1)𝑄𝑄� �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
1

� 
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Определение. Точки (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) и (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) называются сопряжёнными относительно 
𝑓𝑓 = 0, если  

𝐵𝐵𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) = 0 

Далее будем рассматривать случай, когда 𝑛𝑛 = 2. И вместо 𝑥𝑥1, 𝑥𝑥2 будем писать 𝑥𝑥,𝑦𝑦. То 
есть, если (𝑥𝑥1,𝑦𝑦1) сопряжена с (𝑥𝑥2,𝑦𝑦2), то: 

(𝑥𝑥1 𝑦𝑦1 1)𝑄𝑄� �
𝑥𝑥2
𝑦𝑦2
1
� = 0 

Если (𝑥𝑥1,𝑦𝑦1) зафиксирована, то условие  

(𝑥𝑥1 𝑦𝑦1 1)𝑄𝑄� �
𝑥𝑥2
𝑦𝑦2
1
� = 0 

может задавать (относительно (𝑥𝑥2,𝑦𝑦2)): 

1) Прямую 
2) Пустое множество 
3) Всю плоскость 

Во втором случае: 

(𝑥𝑥1 𝑦𝑦1 1)𝑄𝑄� = (𝜕𝜕1 𝑓𝑓(𝑥𝑥1,𝑦𝑦1) 𝜕𝜕2 𝑓𝑓(𝑥𝑥1,𝑦𝑦1)  𝑓𝑓(𝑥𝑥1,𝑦𝑦1)) = (0 0 ≠ 0) 

⟺ (𝑥𝑥1,𝑦𝑦1) − центр,но 𝑓𝑓(𝑥𝑥1,𝑦𝑦1) ≠ 0 

В третьем случае: 

(𝑥𝑥1 𝑦𝑦1 1)𝑄𝑄� = (𝜕𝜕1 𝑓𝑓(𝑥𝑥1,𝑦𝑦1) 𝜕𝜕2 𝑓𝑓(𝑥𝑥1, 𝑦𝑦1)  𝑓𝑓(𝑥𝑥1, 𝑦𝑦1)) = (0 0 0) 

⟺ (𝑥𝑥1, 𝑦𝑦1) − особая точка 

В первом случае получившаяся прямая называется полярой точки  (𝑥𝑥1, 𝑦𝑦1), а сама точка 
(𝑥𝑥1, 𝑦𝑦1) – полюсом. 

Построение поляры одной линейкой 
Утверждение. Пусть 𝐴𝐴,𝐵𝐵 и 𝐶𝐶,𝐷𝐷 — точки пересечения двух секущих, проведенных из 𝑃𝑃 
к конике, точки 𝐸𝐸 и 𝐹𝐹 — точки пересечения 𝐴𝐴𝐴𝐴 с 𝐵𝐵𝐵𝐵 и 𝐴𝐴𝐴𝐴 с 𝐵𝐵𝐵𝐵. соответственно. Тогда 
прямая (𝐸𝐸𝐸𝐸) является полярой 𝑃𝑃. (Рис. 18.3) 

Доказательство: 

Рассмотрим аффинную систему координат, у которой прямые 𝐴𝐴𝐴𝐴 и С𝐷𝐷 являются осями, 
а точка 𝑃𝑃 — началом.  
Таким образом, 𝐴𝐴 и 𝐵𝐵 удовлетворяют 𝑦𝑦 =  0, а значит, 𝐴𝐴 и 𝐵𝐵 имеют координаты (𝑥𝑥1, 0) 
и (𝑥𝑥2, 0) соответственно, где 𝑥𝑥1 и 𝑥𝑥2 — корни уравнения 
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𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎1𝑥𝑥 + 𝑎𝑎0 = 0 

Аналогично 𝐶𝐶 и 𝐷𝐷 имеют координаты 𝑦𝑦1 и  𝑦𝑦2, причем 

𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 = 0 

 

Рис. 18.3 

Получаем уравнения соответствующих прямых: 

(𝐴𝐴𝐴𝐴):  
𝑥𝑥
𝑥𝑥1

+
𝑦𝑦
𝑦𝑦2

= 1 

(𝐵𝐵𝐵𝐵):  
𝑥𝑥
𝑥𝑥2

+
𝑦𝑦
𝑦𝑦1

= 1 

(𝐴𝐴𝐴𝐴):  
𝑥𝑥
𝑥𝑥1

+
𝑦𝑦
𝑦𝑦1

= 1 

(𝐵𝐵𝐵𝐵):  
𝑥𝑥
𝑥𝑥2

+
𝑦𝑦
𝑦𝑦2

= 1 

Уравнение (𝐸𝐸𝐸𝐸) имеет вид: 

 
𝑥𝑥
𝑥𝑥1

+
𝑥𝑥
𝑥𝑥2

+
𝑦𝑦
𝑦𝑦1

+
𝑦𝑦
𝑦𝑦2

= 2 

(𝐸𝐸𝐸𝐸): 
𝑥𝑥1 + 𝑥𝑥2
𝑥𝑥1𝑥𝑥2

𝑥𝑥 +
𝑦𝑦1 + 𝑦𝑦2
𝑦𝑦1𝑦𝑦2

𝑦𝑦 = 2 

Тогда из уравнений  
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𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎1𝑥𝑥 + 𝑎𝑎0 = 0 

𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 = 0 

Получаем: 

𝑥𝑥1 + 𝑥𝑥2 = −
2𝑎𝑎1
𝑎𝑎11

 

𝑥𝑥1𝑥𝑥2 =
𝑎𝑎0
𝑎𝑎11

 

𝑦𝑦1 + 𝑦𝑦2 = −
2𝑎𝑎2
𝑎𝑎22

 

𝑦𝑦1𝑦𝑦2 =
𝑎𝑎0
𝑎𝑎22

 

Следовательно,  

(𝐸𝐸𝐸𝐸):−
2𝑎𝑎1
𝑎𝑎0

𝑥𝑥 −
2𝑎𝑎2
𝑎𝑎0

𝑦𝑦 = 2 

Мы получили уравнение поляры точки 𝑃𝑃, имеющей координаты (0,0) в используемой 
системе. 

Теорема Брианшона 
Теорема Брианшона. Если шестиугольник описан около коники, то три диагонали, 
соединяющие противоположные вершины этого шестиугольника, проходят через одну 
точку. 

 

Рис. 18.4 

Теорема Брианшона двойственна к теореме Паскаля. 

https://vk.com/teachinmsu
https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF_%D0%B4%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D0%B8_(%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%B0%D1%81%D0%BA%D0%B0%D0%BB%D1%8F
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Плоские сечения поверхностей второго порядка 
Будем рассматривать поверхность 

Σ: 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 

deg𝐹𝐹 = 2 

И плоскость 

Π: 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿 = 0 

(𝛼𝛼,𝛽𝛽, 𝛾𝛾, ) ≠ (0,0,0) 

 

Рис. 18.5 Сечения эллипса 

Утверждение. Любая другая поверхность второго порядка, имеющая сечение Σ ∩ Π 
плоскостью П задаётся уравнением вида 

𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿)(𝛼𝛼′𝑥𝑥 + 𝛽𝛽′𝑦𝑦 + 𝛾𝛾′𝑧𝑧 + 𝛿𝛿′) = 0 

Доказательство: 

Без ограничения общности можно считать, что  

П: 𝑧𝑧 = 0 

Пусть 𝐹𝐹1 = 0 – поверхность второго порядка, имеющая то же сечение плоскостью 𝑧𝑧 =
0, что и 𝐹𝐹. То есть при подстановке 𝑧𝑧 → 0 в 𝐹𝐹1 и 𝐹𝐹 должно получаться одно и то же с 
точностью до ненулевого множителя.  

Без ограничения общности множитель = 1. 

𝐹𝐹1 − 𝐹𝐹 = 𝑧𝑧 ∙ 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

deg𝑝𝑝 ≤ 1 

Утверждение. Пусть поверхность Σ задаётся уравнением 

𝜆𝜆1𝑥𝑥2 + 𝜆𝜆2𝑦𝑦2 + 𝜆𝜆3𝑧𝑧2 + 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 

https://vk.com/teachinmsu
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deg𝑝𝑝 ≤ 1 

𝜆𝜆1 < 𝜆𝜆2 < 𝜆𝜆3, 𝜆𝜆2 ≠ 0 

Тогда плоскости, пересекающие Σ по окружности (действительной, мнимой или 
вырожденной в точку) – это плоскости вида 

�𝜆𝜆2 − 𝜆𝜆1𝑥𝑥 ± �𝜆𝜆3 − 𝜆𝜆2𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Действительная окружность: 

𝑥𝑥2 + 𝑦𝑦2 = 𝑎𝑎2 

Мнимая окружность: 

𝑥𝑥2 + 𝑦𝑦2 = −𝑎𝑎2 

Окружность, вырожденная в точку: 

𝑥𝑥2 + 𝑦𝑦2 = 0 

  

https://vk.com/teachinmsu
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Лекция 19. Сечения поверхностей. Стереографическая 
проекция 

Общий вид плоскостей, образующих в сечении окружность 
На прошлой лекции было сформулировано утверждение: 

Утверждение. Пусть поверхность Σ задаётся в прямоугольной системе координат 
уравнением 

𝜆𝜆1𝑥𝑥2 + 𝜆𝜆2𝑦𝑦2 + 𝜆𝜆3𝑧𝑧2 + 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 

deg𝑝𝑝 ≤ 1 

𝜆𝜆1 < 𝜆𝜆2 < 𝜆𝜆3, 𝜆𝜆2 ≠ 0 

Тогда плоскости, пересекающие Σ по окружности (действительной, мнимой или 
вырожденной в точку) – это плоскости вида 

�𝜆𝜆2 − 𝜆𝜆1𝑥𝑥 ± �𝜆𝜆3 − 𝜆𝜆2𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Как понять, что сечение данной поверхности будет окружностью? Через окружность 
можно провести сферу. Нам нужно, чтобы уравнение 

𝜆𝜆1𝑥𝑥2 + 𝜆𝜆2𝑦𝑦2 + 𝜆𝜆3𝑧𝑧2 + (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿)(𝛼𝛼′𝑥𝑥 + 𝛽𝛽′𝑦𝑦 + 𝛾𝛾′𝑧𝑧 + 𝛿𝛿′) + 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 

было уравнением сферы. То есть его квадратичная часть должна иметь вид: 

𝜇𝜇(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 

Выпишем коэффициенты при 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦: 

𝑥𝑥𝑥𝑥: 𝛼𝛼𝛽𝛽′ + 𝛼𝛼′𝛽𝛽 = 0 

𝑥𝑥𝑥𝑥:𝛼𝛼𝛾𝛾′ + 𝛼𝛼′𝛾𝛾 = 0 

𝑦𝑦𝑦𝑦:𝛽𝛽𝛾𝛾′ + 𝛽𝛽′𝛾𝛾 = 0 

Из этих равенств следует, что хотя бы один из коэффициентов 𝛼𝛼,𝛽𝛽, 𝛾𝛾 равен нулю.  

Предположим противное: пусть 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ≠ 0. Тогда 

𝛽𝛽′

𝛽𝛽
= −

𝛼𝛼′
𝛼𝛼

 

𝛾𝛾′

𝛾𝛾
= −

𝛼𝛼′
𝛼𝛼

 

𝛽𝛽′

𝛽𝛽
= −

𝛾𝛾′

𝛾𝛾
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Но эти три равенства несовместимы. Получаем противоречие. Таким образом, хотя бы 
один из коэффициентов 𝛼𝛼,𝛽𝛽, 𝛾𝛾 равен нулю. 

Пусть 𝛽𝛽 = 0. Тогда 

(𝛼𝛼𝑥𝑥 + 𝛾𝛾𝛾𝛾)(𝛼𝛼𝑥𝑥 − 𝛾𝛾𝛾𝛾) = 𝛼𝛼2𝑥𝑥2 − 𝛾𝛾2𝑧𝑧2 

Положим 

𝛼𝛼2 = 𝜆𝜆2 − 𝜆𝜆1 

𝛾𝛾2 = 𝜆𝜆3 − 𝜆𝜆2 

Нахождение канонического вида сечения 
Пусть  

𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 

𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿 = 0 

Как найти канонический вид сечения? 

Ошибка: 

Пусть 𝛾𝛾 ≠ 0. Выразим 𝑧𝑧: 

𝑧𝑧 = −
𝛼𝛼
𝛾𝛾
𝑥𝑥 −

𝛽𝛽
𝛾𝛾
𝑦𝑦 −

𝛿𝛿
𝛾𝛾

 

И подставим в уравнение  

𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 

Тогда получим многочлен 𝐹𝐹(𝑥𝑥,𝑦𝑦). Но 𝑥𝑥,𝑦𝑦 – не прямоугольная система координат в 
плоскости 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿 = 0  при (𝛼𝛼,𝛽𝛽) ≠ (0,0). Поэтому подобный способ – 
ошибочный. 

Не ошибочно будет выразить параметрически: 

𝑥𝑥 = 𝑢𝑢 

𝑦𝑦 = 𝑣𝑣 

𝑧𝑧 = −
𝛼𝛼
𝛾𝛾
𝑢𝑢 −

𝛽𝛽
𝛾𝛾
𝑣𝑣 −

𝛿𝛿
𝛾𝛾

 

В матричном виде: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

0
0
𝛿𝛿
𝛾𝛾

� + �

1
0
−
𝛼𝛼
𝛾𝛾
�𝑢𝑢 + �

0
1

−
𝛽𝛽
𝛾𝛾

�𝑣𝑣 
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Столбцы  

�

1
0
−
𝛼𝛼
𝛾𝛾
�  и �

0
1

−
𝛽𝛽
𝛾𝛾

� 

не являются ортонормированным базисом. 

Нахождение ортогональных инвариантов сечения по 
уравнениям поверхности и плоскости 

Уравнение поверхности второго порядка: 

(𝑥𝑥 𝑦𝑦 𝑧𝑧 1)𝑄𝑄� �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� = 0 

Уравнение плоскости: 

(𝛼𝛼 𝛽𝛽 𝛾𝛾 𝛿𝛿)�

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� = 0 

Как преобразуются уравнения при замене координат? 

�

𝑥𝑥
𝑦𝑦
𝑧𝑧
1
� = 𝐶̂𝐶 �

𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
1

� 

В новых координатах: 

𝑄𝑄�′ = 𝐶̂𝐶𝑇𝑇𝑄𝑄�𝐶̂𝐶 

𝑄𝑄′ = 𝐶𝐶𝑇𝑇𝑄𝑄𝑄𝑄 

(𝛼𝛼′ 𝛽𝛽′ 𝛾𝛾′ 𝛿𝛿′) = (𝛼𝛼 𝛽𝛽 𝛾𝛾 𝛿𝛿)𝐶̂𝐶 

�

𝛼𝛼′
𝛽𝛽′
𝛾𝛾′
1

� = 𝐶̂𝐶𝑇𝑇 �

𝛼𝛼
𝛽𝛽
𝛾𝛾
1
� 

Пусть  

𝑀𝑀� =

⎝

⎜
⎛ 𝑄𝑄�

𝛼𝛼
𝛽𝛽
𝛾𝛾
𝛿𝛿

𝛼𝛼 𝛽𝛽 𝛾𝛾 𝛿𝛿 0⎠

⎟
⎞
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𝑀𝑀 = � 𝑄𝑄
𝛼𝛼
𝛽𝛽
𝛾𝛾

𝛼𝛼 𝛽𝛽 𝛾𝛾 0
� 

В новых координатах: 

𝑀𝑀�′ = 𝐶̂̂𝐶𝑇𝑇𝑀𝑀�𝐶̂̂𝐶 

Здесь 

𝐶̂̂𝐶 =

⎝

⎜
⎛ 𝐶̂𝐶

0
0
0
0

0 0 0 0 1⎠

⎟
⎞

 

𝑀𝑀′ = � 𝐶𝐶𝑇𝑇
0
0
0

0 0 0 1

�𝑀𝑀� 𝐶𝐶
0
0
0

0 0 0 1

� 

Характеристические многочлены 𝜒𝜒𝑀𝑀,𝜒𝜒𝑀𝑀� ,𝜒𝜒𝑄𝑄� ,𝜒𝜒𝑞𝑞 – не меняются, если 𝐶𝐶 и 𝐶̂𝐶 
ортогональны. То есть, если 

𝐶̂𝐶 = � 𝐶𝐶
0
0
0

0 0 0 1

� 

𝐶𝐶𝑇𝑇𝐶𝐶 = 𝐸𝐸 

Также при ортогональных заменах координат инвариантно 

𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 

Рассмотрим частный случай, когда 𝛼𝛼 = 𝛽𝛽 = 0. 

Пусть 𝑃𝑃 – ортогональная проекция точки 𝑂𝑂 на плоскость сечения 𝛾𝛾𝑧𝑧 + 𝛿𝛿 = 0 (рис. 19.1). 
Подставим:  

𝑧𝑧 ⟶ −
𝛿𝛿
𝛾𝛾

 

Получим многочлен с матрицей коэффициентов: 
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𝑆̂𝑆 =

⎝

⎜
⎜
⎜
⎛

𝑎𝑎11 𝑎𝑎12 𝑎𝑎1 −
𝛿𝛿
𝛾𝛾
𝑎𝑎13

𝑎𝑎12 𝑎𝑎22 𝑎𝑎2 −
𝛿𝛿
𝛾𝛾
𝑎𝑎23

𝑎𝑎1 −
𝛿𝛿
𝛾𝛾
𝑎𝑎13 𝑎𝑎2 −

𝛿𝛿
𝛾𝛾
𝑎𝑎23 𝑎𝑎0 − 2

𝛿𝛿
𝛾𝛾
𝑎𝑎3 +

𝛿𝛿2

𝛾𝛾2
𝑎𝑎33⎠

⎟
⎟
⎟
⎞

 

𝑆𝑆 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎12 𝑎𝑎22� 

 

Рис. 19.1 

После вычислений, получим следующее: 

𝜒𝜒𝑆𝑆(𝜆𝜆) = −
𝜒𝜒𝑀𝑀(𝜆𝜆) + 𝜆𝜆𝜒𝜒𝑄𝑄(𝜆𝜆)

𝛾𝛾2
 

𝜒𝜒𝑆̂𝑆(𝜆𝜆) = −
𝜒𝜒𝑀𝑀�(𝜆𝜆) + 𝜆𝜆𝜒𝜒𝑄𝑄�(𝜆𝜆) − 𝛿𝛿2𝜒𝜒𝑆𝑆(𝜆𝜆)

𝛾𝛾2
 

Стереографическая проекция 
Стереографическая проекция – центральная проекция из точки 𝑂𝑂′ на плоскость. 
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Рис. 19.2 Стереографическая проекция для сферы 

Утверждение. Образ любого плоского сечения поверхности Σ при стереографической 
проекции является либо окружностью, либо прямой. 

Доказательство: 

Пусть плоскость, пересекающая поверхность, задаётся формулой: 

П:𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿 = 0  

А поверхность: 

Σ: 𝑥𝑥2 + 𝑦𝑦2 + 𝜀𝜀(𝑧𝑧2 − 1) = 0 

𝜀𝜀 = ±1 

 

Рис. 19.3 

https://vk.com/teachinmsu
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Мы хотим кривую Σ ∩ П спроецировать на плоскость 𝑧𝑧 = 0 

 

Рис. 19. 4 Конус с направляющей Σ ∩ П и вершиной (0,0,−1) 

Найдём уравнение конуса с направляющей Σ ∩ П и вершиной (0,0,−1). 

Пусть П не проходит через (0,0,−1). 

Уравнение конуса должно иметь вид: 

𝑥𝑥2 + 𝑦𝑦2 + 𝜀𝜀(𝑧𝑧2 − 1) + (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿)(𝛼𝛼′𝑥𝑥 + 𝛽𝛽′𝑦𝑦 + 𝛾𝛾′𝑧𝑧 + 𝛿𝛿′) = 0 

Точка (0,0,−1) должна быть особой. Сечение поверхности плоскостью 𝑧𝑧 = −1 уже 
особо. Выражение 

𝑥𝑥2 + 𝑦𝑦2 + 𝜀𝜀(𝑧𝑧2 − 1) −
2𝜀𝜀

𝛾𝛾 − 𝛿𝛿
(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿)(𝑧𝑧 + 1) = 0 

удовлетворяет условиям. 

2𝜀𝜀 −
2𝜀𝜀

𝛾𝛾 − 𝛿𝛿
(−𝛾𝛾 + 𝛿𝛿) = 0 

Сечение конуса плоскостью 𝑧𝑧 = 0: 

𝑥𝑥2 + 𝑦𝑦2 + ⋯ = 0 

Это уравнение вида окружности. 

Утверждение. Стереографическая проекция сферы сохраняет углы пересечения 
окружностей. 

Преобразования, сохраняющие углы, называются конформными. 
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Лекция 20. Аффинные преобразования 
Определение аффинного преобразования 

Определение. Пусть 𝑋𝑋 – прямая, плоскость или пространство. Отображение 𝑓𝑓: 𝑥𝑥 ⟶ 𝑥𝑥 
называется аффинным преобразованием, если  

1) для любых трёх попарно различных точек 𝐴𝐴,𝐵𝐵,𝐶𝐶 таких, что 𝐶𝐶 делит 𝐴𝐴𝐴𝐴 в 
отношении 𝜆𝜆 ∈ ℝ, точка 𝑓𝑓(𝐶𝐶) делит отрезок 𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵) в отношении 𝜆𝜆. 

2) 𝑓𝑓 – биекция  

При аффинном преобразовании прямые переходят в прямые. 

Для любых точек 𝑃𝑃1, … ,𝑃𝑃𝑘𝑘 ∈ 𝑋𝑋 и 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘, таких что  

�𝜆𝜆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

≠ 0 

определено  

𝜆𝜆1𝑃𝑃1 + ⋯+ 𝜆𝜆𝑘𝑘𝑃𝑃𝑘𝑘
𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘

 

Лемма. Если 𝑓𝑓 – аффинное преобразование, то 

𝑓𝑓 �
𝜆𝜆1𝑃𝑃1 + ⋯+ 𝜆𝜆𝑘𝑘𝑃𝑃𝑘𝑘
𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘

� =
𝜆𝜆1𝑓𝑓(𝑃𝑃1) + ⋯+ 𝜆𝜆𝑘𝑘𝑓𝑓(𝑃𝑃𝑘𝑘)

𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘
 

Доказательство: 

По индукции по 𝑘𝑘. 

Если 𝑘𝑘 = 2, то данное выражение выполнено по определению аффинного 
преобразования: 

𝑓𝑓 �
𝜆𝜆1𝑃𝑃1 + 𝜆𝜆2𝑃𝑃2
𝜆𝜆1 + 𝜆𝜆2

� =
𝜆𝜆1𝑓𝑓(𝑃𝑃1) + 𝜆𝜆2𝑓𝑓(𝑃𝑃2)

𝜆𝜆1 + 𝜆𝜆2
 

Переход: 

∃𝑖𝑖: 𝜆𝜆𝑖𝑖 ≠�𝜆𝜆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

Без ограничения общности  

𝜆𝜆2 + ⋯+ 𝜆𝜆𝑘𝑘 ≠ 0 

Обозначим 𝜆𝜆2 + ⋯+ 𝜆𝜆𝑘𝑘 = 𝜇𝜇. 

https://vk.com/teachinmsu
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𝜆𝜆1𝑃𝑃1 + ⋯+ 𝜆𝜆𝑘𝑘𝑃𝑃𝑘𝑘
𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘

=
𝜆𝜆1𝑃𝑃1 + 𝜇𝜇 �𝜆𝜆2𝑃𝑃2 + ⋯+ 𝜆𝜆𝑘𝑘𝑃𝑃𝑘𝑘

𝜆𝜆2 + ⋯+ 𝜆𝜆𝑘𝑘
�

𝜆𝜆1 + 𝜇𝜇
 

Обозначим  

𝜆𝜆2𝑃𝑃2 + ⋯+ 𝜆𝜆𝑘𝑘𝑃𝑃𝑘𝑘
𝜆𝜆2 + ⋯+ 𝜆𝜆𝑘𝑘

= 𝑄𝑄 

Тогда  

𝜆𝜆1𝑃𝑃1 + 𝜇𝜇 �𝜆𝜆2𝑃𝑃2 + ⋯+ 𝜆𝜆𝑘𝑘𝑃𝑃𝑘𝑘
𝜆𝜆2 + ⋯+ 𝜆𝜆𝑘𝑘

�

𝜆𝜆1 + 𝜇𝜇
=
𝜆𝜆1𝑓𝑓(𝑃𝑃1) + 𝜇𝜇𝜇𝜇(𝑄𝑄)
𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘

 

𝜆𝜆1𝑓𝑓(𝑃𝑃1) + 𝜇𝜇𝜇𝜇(𝑄𝑄)
𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘

=
𝜆𝜆1𝑃𝑃1 + ⋯+ 𝜆𝜆𝑘𝑘𝑃𝑃𝑘𝑘
𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘

 

Лемма. Если 𝐴𝐴𝐴𝐴�����⃗ = 𝐶𝐶𝐶𝐶�����⃗ , то  

𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵)��������������������⃗ = 𝑓𝑓(𝐶𝐶)𝑓𝑓(𝐷𝐷)��������������������⃗  

Доказательство: 

𝐴𝐴𝐴𝐴�����⃗ = 𝐶𝐶𝐶𝐶�����⃗  

𝐷𝐷 = 𝐶𝐶 + 𝐵𝐵 − 𝐴𝐴 

Следовательно,  

𝑓𝑓(𝐷𝐷) = 𝑓𝑓(𝐶𝐶) + 𝑓𝑓(𝐵𝐵) − 𝑓𝑓(𝐴𝐴) 

Тогда получаем: 

𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵)��������������������⃗ = 𝑓𝑓(𝐶𝐶)𝑓𝑓(𝐷𝐷)��������������������⃗  

Запись аффинного преобразования в координатах 
Теорема. Пусть 𝑋𝑋 – прямая, плоскость или пространство, 𝑘𝑘 = 1,2,3 соответственно. 
Пусть в 𝑋𝑋 выбрана аффинная система координат 

𝑥⃗𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑘𝑘
� 

1) Тогда произвольное аффинное преобразование в этой системе координат имеет 
вид: 

𝑥⃗𝑥 ⟼ 𝐴𝐴𝑥⃗𝑥 + 𝑏𝑏�⃗ , 

где 𝐴𝐴 – невырожденная матрица 𝑘𝑘 × 𝑘𝑘,  

https://vk.com/teachinmsu
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𝑏𝑏�⃗ = �
𝑏𝑏1
⋮
𝑏𝑏𝑘𝑘
� 

2) Любое отображение такого вида есть аффинное преобразование. 

Доказательство: 

Зададим систему координат 𝑂𝑂,𝑃𝑃1, … ,𝑃𝑃𝑘𝑘. 

𝑃𝑃𝑖𝑖 = 𝑂𝑂 + 𝑒𝑒𝚤𝚤��⃗  

Точка с координатами (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘): 

𝑃𝑃 = 𝑂𝑂 + 𝑥𝑥1𝑂𝑂𝑃𝑃1�������⃗ + ⋯+ 𝑥𝑥𝑘𝑘𝑂𝑂𝑃𝑃𝑘𝑘�������⃗ = 𝑥𝑥1𝑃𝑃1 + ⋯+ 𝑥𝑥𝑘𝑘𝑃𝑃𝑘𝑘 + �1 −�𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

�𝑂𝑂 

Определим 𝐴𝐴 следующим образом: 

�𝑓𝑓(𝑂𝑂)𝑓𝑓(𝑃𝑃1)���������������������⃗ ⋯ 𝑓𝑓(𝑂𝑂)𝑓𝑓(𝑃𝑃𝑘𝑘)����������������������⃗ � = �𝑂𝑂𝑃𝑃1�������⃗ ⋯ 𝑂𝑂𝑃𝑃𝑘𝑘�������⃗ �𝐴𝐴 

𝑓𝑓�𝑃𝑃𝑗𝑗� = 𝑓𝑓(𝑂𝑂) + ��𝑎𝑎𝑖𝑖𝑖𝑖𝑂𝑂𝑃𝑃𝚤𝚤������⃗ �
𝑘𝑘

𝑖𝑖=1

 

По первой лемме: 

𝑓𝑓 �𝑥𝑥1𝑃𝑃1 + ⋯+ 𝑥𝑥𝑘𝑘𝑃𝑃𝑘𝑘 + �1 −�𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

�𝑂𝑂� = �𝑥𝑥𝑖𝑖𝑓𝑓(𝑃𝑃𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

+ �1 −�𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

� 𝑓𝑓(𝑂𝑂) 

�𝑥𝑥𝑖𝑖𝑓𝑓(𝑃𝑃𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

+ �1 −�𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

� 𝑓𝑓(𝑂𝑂) = 𝑓𝑓(𝑂𝑂) + ��𝑥𝑥𝑗𝑗𝑎𝑎𝑖𝑖𝑖𝑖𝑂𝑂𝑃𝑃𝚤𝚤������⃗
𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

 

𝑓𝑓(𝑂𝑂) + ��𝑥𝑥𝑗𝑗𝑎𝑎𝑖𝑖𝑖𝑖𝑂𝑂𝑃𝑃𝚤𝚤������⃗
𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

= 𝑏𝑏𝑖𝑖 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
𝑗𝑗

 

Рассмотрим отображение 

𝑓𝑓: 𝑥⃗𝑥 ⟼ 𝐴𝐴𝑥⃗𝑥 + 𝑏𝑏�⃗ , 

где 𝐴𝐴 – невырожденная матрица 𝑘𝑘 × 𝑘𝑘,  

𝑏𝑏�⃗ = �
𝑏𝑏1
⋮
𝑏𝑏𝑘𝑘
� 

Если det𝐴𝐴 = 0, то это не биекция. 

https://vk.com/teachinmsu
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𝑓𝑓 �
𝜆𝜆𝑥⃗𝑥 + 𝜇𝜇𝑦⃗𝑦
𝜆𝜆 + 𝜇𝜇

� = 𝐴𝐴
𝜆𝜆𝑥⃗𝑥 + 𝜇𝜇𝑦⃗𝑦
𝜆𝜆 + 𝜇𝜇

+ 𝑏𝑏 =
𝜆𝜆�𝐴𝐴𝑥⃗𝑥 + 𝑏𝑏�⃗ � + 𝜇𝜇�𝐴𝐴𝑦⃗𝑦 + 𝑏𝑏�⃗ �

𝜆𝜆 + 𝜇𝜇
 

Утверждение. Пусть 𝑃𝑃1, … ,𝑃𝑃𝑘𝑘+1 – произвольный набор точек, такой что  

• Если 𝑘𝑘 = 1, то 𝑃𝑃1 ≠ 𝑃𝑃2 
• Если 𝑘𝑘 = 2, то 𝑃𝑃1,𝑃𝑃2 не коллинеарны 
• Если 𝑘𝑘 = 3, то 𝑃𝑃1,𝑃𝑃2 не компланарны 

И пусть 𝑃𝑃′1, … ,𝑃𝑃′𝑘𝑘+1 – другой такой набор. Тогда существует единственное аффинное 
преобразование, такое что 

𝑃𝑃𝑖𝑖 ⟼ 𝑃𝑃′𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑘𝑘 + 1 

Другое определение аффинного преобразования: 

𝑓𝑓 – аффинное преобразование, если существуют две аффинные системы координат 
𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 и 𝑥𝑥′1, … , 𝑥𝑥′𝑘𝑘 таких, что ∀𝑃𝑃 ∈ 𝑋𝑋 координаты в первой системе координат 
совпадают с координатами 𝑓𝑓(𝑃𝑃) во второй. 

Преобразование матрицы аффинного преобразования при 
замене координат 

В аффинной системе координат аффинное преобразование задаётся с помощью 
матрицы 𝐴𝐴 и столбца 𝑏𝑏. 

Введем матрицу 

𝐴̂𝐴 = � 𝐴𝐴 𝑏𝑏
0 ⋯ 0 1� 

Аффинное преобразование: 

𝐴̂𝐴′ = 𝐶̂𝐶−1𝐴̂𝐴𝐶̂𝐶 

𝐴𝐴′ = 𝐶𝐶−1𝐴𝐴𝐴𝐴 

Утверждение. Матрица аффинного преобразования изменяется при аффинной системе 
координат по правилу 

𝐴̂𝐴′ = 𝐶̂𝐶−1𝐴̂𝐴𝐶̂𝐶 

𝐴𝐴′ = 𝐶𝐶−1𝐴𝐴𝐴𝐴 

𝐴̂𝐴, 𝐴̂𝐴′ - расширенные матрицы однородного преобразования в системах координат 
𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 и 𝑥𝑥′1, … , 𝑥𝑥′𝑘𝑘. 

Следствие: 

det 𝐴̂𝐴 = det𝐴𝐴 не зависит от выбора аффинной системы координат. 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

131 
 
 

 

Смысл det𝐴𝐴 - во сколько раз изменяется объём (площадь). 

Если det𝐴𝐴 > 0, то преобразование называется собственным. Если det𝐴𝐴 < 0, то 
преобразование называется несобственным. 

  

https://vk.com/teachinmsu
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Лекция 21. Изометрии. Классификация изометрий плоскости 
Определение изометрического преобразования 

Определение. Изометрия – биекция 𝑓𝑓:𝑋𝑋 ⟶ 𝑋𝑋, такая что 

|𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵)| = |𝐴𝐴𝐴𝐴|  ∀𝐴𝐴,𝐵𝐵 ∈ 𝑋𝑋 

𝑋𝑋 – прямая, плоскость или пространство. 

Утверждение. Любая изометрия является аффинным преобразованием. 

Доказательство: 

𝐴𝐴,𝐵𝐵,𝐶𝐶 лежат на одной прямой ⟺ 

(|𝐴𝐴𝐴𝐴| − |𝐵𝐵𝐵𝐵| − |𝐴𝐴𝐴𝐴|)(|𝐴𝐴𝐴𝐴| − |𝐴𝐴𝐴𝐴| − |𝐵𝐵𝐵𝐵|)(|𝐵𝐵𝐵𝐵| − |𝐴𝐴𝐴𝐴| − |𝐴𝐴𝐴𝐴|) = 0 

Это условие сохраняется при 𝑓𝑓. 

𝐶𝐶 делит 𝐴𝐴𝐴𝐴 в отношении 𝜆𝜆: 𝜇𝜇 : 

𝜇𝜇𝐴𝐴𝐴𝐴�����⃗ = 𝜆𝜆𝐶𝐶𝐶𝐶�����⃗  

То есть изометрия является аффинным преобразованием. 

Критерии изометричности преобразования 
Утверждение. Каждое из следующих условий необходимо и достаточно, чтобы 
аффинное преобразование 𝑓𝑓 было изометрией: 

1) В некоторой прямоугольной системе координат матрица 𝑓𝑓 ортогональна 
2) В любой прямоугольной системе координат матрица 𝑓𝑓 ортогональна 
3) 𝑓𝑓 сохраняет все углы и длину некоторого ненулевого вектора 
4) 𝑓𝑓 переводит некоторую окружность (сферу) радиуса 𝑟𝑟 > 0 в такую же 

окружность (сферу) 

Доказательство: 

Пусть в некоторой прямоугольной системе координат матрица 𝐴𝐴 ортогональна. В 
другой прямоугольной системе координат: 

𝐴𝐴′ = 𝐶𝐶−1𝐴𝐴𝐴𝐴, 

где 𝐶𝐶 – ортогональная матрица. 

Поэтому критерий 1) равносилен критерию 2). 

Пусть выполнен критерий 1). Тогда 

𝑣𝑣 ⟼ 𝐴𝐴𝐴𝐴 = 𝑣𝑣′ 

(𝑣𝑣′, 𝑣𝑣′) = 𝑣𝑣′𝑇𝑇𝑣𝑣′ 

https://vk.com/teachinmsu
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𝑣𝑣′𝑇𝑇𝑣𝑣′ = (𝐴𝐴𝐴𝐴)𝑇𝑇𝐴𝐴𝐴𝐴 

(𝐴𝐴𝐴𝐴)𝑇𝑇𝐴𝐴𝐴𝐴 = 𝑣𝑣𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 

𝑣𝑣𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 = 𝑣𝑣𝑇𝑇𝑣𝑣 

𝑣𝑣𝑇𝑇𝑣𝑣 = (𝑣𝑣, 𝑣𝑣) 

То есть преобразование изометрично. 

Пусть преобразование изометрично. Тогда 

∀𝑣𝑣 (𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴) = (𝑣𝑣, 𝑣𝑣) 

𝑣𝑣𝑇𝑇(𝐴𝐴𝑇𝑇𝐴𝐴)𝑣𝑣 = 𝑣𝑣𝑇𝑇𝑣𝑣 

Следовательно,  

𝐴𝐴𝑇𝑇𝐴𝐴 = 𝐸𝐸 

То есть утверждение о том, что некоторое преобразование изометрично равносильно 
выполнению критерия 1). 

Очевидно, что критерии 3) и 4) выполняются для любого изометричного 
преобразования. 

Пусть выполнен критерий 4). Если |𝑣𝑣| = 𝑟𝑟, то  

|𝐴𝐴𝐴𝐴| = 𝑟𝑟 

Тогда при выполнении критерия 4) преобразование будет изометричным. 

 

Классификация изометрий плоскости 
Параллельный перенос – это аффинное преобразование с единичной матрицей. 

Поворот – это аффинное преобразование, которое в некоторой прямоугольной системе 
координат имеет вид 

�
𝑥𝑥
𝑦𝑦� ⟼ �cos𝛼𝛼 − sin𝛼𝛼

sin𝛼𝛼 cos𝛼𝛼 � �
𝑥𝑥
𝑦𝑦� 

Изометрические преобразования часто называют движениями. 

Теорема Шаля. Всякое собственное изометрическое преобразование плоскости есть 
либо тождественное преобразование, либо параллельный перенос на ненулевой вектор, 
либо поворот на некоторый угол 𝛼𝛼 ∈ (0,𝜋𝜋]. 

Доказательство: 

Ортогональные матрицы 2 × 2 с det𝐴𝐴 = 1: 

https://vk.com/teachinmsu
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�cos𝛼𝛼 − sin𝛼𝛼
sin𝛼𝛼 cos𝛼𝛼 � = �0 1

1 0� �
cos𝛼𝛼 sin𝛼𝛼
− sin𝛼𝛼 cos𝛼𝛼� �

0 1
1 0� 

Матрица аффинного преобразования не меняется при сдвиге начала отсчета системы 
координат. 

Если матрица  

�cos𝛼𝛼 − sin𝛼𝛼
sin𝛼𝛼 cos𝛼𝛼 � = �1 0

0 1�, 

то это случай параллельного переноса. 

Пусть 𝛼𝛼 ≠ 2𝜋𝜋𝜋𝜋. Тогда  

�
𝑥𝑥
𝑦𝑦� ⟼ �cos𝛼𝛼 − sin𝛼𝛼

sin𝛼𝛼 cos𝛼𝛼 � �
𝑥𝑥
𝑦𝑦� + �

𝑥𝑥0
𝑦𝑦0� 

Существует единственная неподвижная точка. Она удовлетворяет системе 

�
𝑥𝑥
𝑦𝑦� = �cos𝛼𝛼 − sin𝛼𝛼

sin𝛼𝛼 cos𝛼𝛼 � �
𝑥𝑥
𝑦𝑦� + �

𝑥𝑥0
𝑦𝑦0� 

�
− cos𝛼𝛼 sin𝛼𝛼 𝑥𝑥0
− sin𝛼𝛼 1 − cos𝛼𝛼 𝑦𝑦0

� 

det �− cos𝛼𝛼 sin𝛼𝛼
−sin𝛼𝛼 1 − cos𝛼𝛼� = 2(1 − cos𝛼𝛼) 

2(1 − cos𝛼𝛼) ≠ 0 

Определение. Скользящая симметрия – преобразование, которое в некоторой 
прямоугольной системе координат имеет вид 

�
𝑥𝑥
𝑦𝑦� ⟼ �

𝑥𝑥 + 𝑎𝑎
−𝑦𝑦 � 

Утверждение. Любая несобственная изометрия плоскости – это скользящая симметрия. 

Доказательство: 

В произвольной прямоугольной системе координат: 

�
𝑥𝑥
𝑦𝑦� ⟼ �cos𝛼𝛼 sin𝛼𝛼

sin𝛼𝛼 − cos𝛼𝛼� �
𝑥𝑥
𝑦𝑦� + �

𝑥𝑥0
𝑦𝑦0� 

Введем обозначение:  

𝐴𝐴 = �cos𝛼𝛼 sin𝛼𝛼
sin𝛼𝛼 − cos𝛼𝛼� 

det �cos𝛼𝛼 − 1 sin𝛼𝛼
sin𝛼𝛼 − cos𝛼𝛼 − 1� = 0 

Следовательно,  

https://vk.com/teachinmsu
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∃𝑣𝑣: �cos𝛼𝛼 sin𝛼𝛼
sin𝛼𝛼 − cos𝛼𝛼� 𝑣𝑣 = 𝑣𝑣 

Возьмём этот вектор за первый базисный вектор: 

𝑒𝑒1 =
𝑣𝑣

|𝑣𝑣|
= �

sin
𝛼𝛼
2

− cos
𝛼𝛼
2

� 

А за второй базисный вектор возьмем вектор, перпендикулярный 𝑒𝑒1: 

𝑒𝑒2 = �
cos

𝛼𝛼
2

sin
𝛼𝛼
2

� 

�cos𝛼𝛼 sin𝛼𝛼
sin𝛼𝛼 − cos𝛼𝛼� 𝑒𝑒2 = −𝑒𝑒2 

В системе координат с базисом 𝑒𝑒1, 𝑒𝑒2 преобразование будет иметь вид: 

�
𝑥𝑥
𝑦𝑦� ⟼ �

𝑥𝑥 + 𝑎𝑎
−𝑦𝑦 + 𝑏𝑏� 

Заменим: 

𝑦𝑦� = 𝑦𝑦 −
𝑏𝑏
2

 

𝑥𝑥� = 𝑥𝑥 

Тогда в этой системе координат: 

�
𝑥𝑥
𝑦𝑦�
�
� ⟼ �𝑥𝑥� + 𝑎𝑎

−𝑦𝑦� � 

Классификация изометрий пространства 
Теорема. Всякое собственное движение пространства есть любо тождественное, либо 
параллельный перенос, либо винтовое вращение – в некоторой прямоугольной системе 
координат имеет вид 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
��

𝑥𝑥
𝑦𝑦

𝑧𝑧 + 𝑎𝑎
� 

𝛼𝛼 ∈ (0,𝜋𝜋] 

Любое несобственное движение пространства в некоторой прямоугольной системе 
координат имеет один из видов: 

https://vk.com/teachinmsu
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�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
��

𝑥𝑥
𝑦𝑦
𝑧𝑧
� 

Или  

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

𝑥𝑥 + 𝑎𝑎
𝑦𝑦
−𝑧𝑧

� 

𝛼𝛼 ∈ (0,𝜋𝜋] 

  

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

137 
 
 

 

Лекция 22. Классификация изометрий пространства. 
Кватернионы. Сжатие – растяжение 

Классификация изометрий пространства(продолжение) 
Теорема. Всякое собственное движение пространства есть любо тождественное, либо 
параллельный перенос, либо винтовое вращение – в некоторой прямоугольной системе 
координат имеет вид 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
��

𝑥𝑥
𝑦𝑦

𝑧𝑧 + 𝑎𝑎
� 

𝛼𝛼 ∈ (0,𝜋𝜋] 

Любое несобственное движение пространства в некоторой прямоугольной системе 
координат имеет один из видов: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 −1
��

𝑥𝑥
𝑦𝑦
𝑧𝑧
� 

Или  

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

𝑥𝑥 + 𝑎𝑎
𝑦𝑦
−𝑧𝑧

� 

𝛼𝛼 ∈ (0,𝜋𝜋] 

Лемма. Если 𝐴𝐴𝑇𝑇𝐴𝐴 = 𝐸𝐸, 𝐴𝐴 – 𝑛𝑛 × 𝑛𝑛,𝑛𝑛 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 2), то 

det(𝑎𝑎 − (det𝐴𝐴)𝐸𝐸) = 0 

Доказательство: 

Пусть 𝜆𝜆 = ±1. Тогда 

det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = det�𝐴𝐴(𝐸𝐸 − 𝜆𝜆𝐴𝐴𝑇𝑇)� 

det�𝐴𝐴(𝐸𝐸 − 𝜆𝜆𝐴𝐴𝑇𝑇)� = det𝐴𝐴 det(𝐸𝐸 − 𝜆𝜆𝜆𝜆) 

det𝐴𝐴 det(𝐸𝐸 − 𝜆𝜆𝜆𝜆) = det𝐴𝐴  (−𝜆𝜆)𝑛𝑛 det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) 

det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) (1 − det𝐴𝐴 (−𝜆𝜆)𝑛𝑛) = 0 

Если   

𝑛𝑛 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 2) 

𝜆𝜆 = det𝐴𝐴. 

то 

https://vk.com/teachinmsu
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2 det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = 0 

Мы рассматриваем трехмерное пространство (𝑛𝑛 = 3) и 𝐴𝐴𝑇𝑇𝐴𝐴 = 𝐸𝐸 

Это означает, что существует ненулевой вектор 𝑣𝑣, такой что 𝐴𝐴𝐴𝐴 = (det𝐴𝐴)𝑣𝑣. 

Выберем ортонормированный базис так, чтобы 

𝑒𝑒3 =
𝑣𝑣

|𝑣𝑣| 

В соответствующей системе координат: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

∗ ∗ 0
∗ ∗ 0
0 0 ±1

��
𝑥𝑥
𝑦𝑦
𝑧𝑧
� + �

𝑎𝑎
𝑏𝑏
𝑐𝑐
� 

Обозначим матрицу 2 × 2, которая «входит» в вышенаписанную матрицу как * за 𝐵𝐵. 
Известно, что 

det𝐵𝐵 = 1 

𝐵𝐵𝑇𝑇𝐵𝐵 = 𝐸𝐸 

𝐵𝐵 – матрица поворота. 

Тогда преобразование имеет вид: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 ±1
��

𝑥𝑥
𝑦𝑦
𝑧𝑧
� + �

𝑎𝑎
𝑏𝑏
𝑐𝑐
� 

Рассмотрим частные случаи: 

1) Пусть det𝐴𝐴 = 1 и 𝛼𝛼 = 0. Тогда преобразование будет иметь вид: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

𝑥𝑥 + 𝑎𝑎
𝑦𝑦 + 𝑏𝑏
𝑧𝑧 + 𝑐𝑐

� 

2) Пусть det𝐴𝐴 = 1 и 𝛼𝛼 ≠ 0. Тогда преобразование будет иметь вид: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
��

𝑥𝑥
𝑦𝑦

𝑧𝑧 + 𝑎𝑎
� 

𝛼𝛼 ∈ (0,𝜋𝜋] 
3) Пусть det𝐴𝐴 = −1 и 𝛼𝛼 = 0. Тогда преобразование будет иметь вид: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

𝑥𝑥 + 𝑎𝑎
𝑦𝑦 + 𝑏𝑏
−𝑧𝑧 + 𝑐𝑐

� 

4) Пусть det𝐴𝐴 = −1 и 𝛼𝛼 ≠ 0. Тогда преобразование будет иметь вид: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⟼ �

cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 −1
��

𝑥𝑥
𝑦𝑦
𝑧𝑧
� 
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Кватернионы 
Рассмотрим четыре матрицы: 

1�⃗ = �1 0
0 1� 

𝚤𝚤 = �𝑖𝑖 0
0 −𝑖𝑖� 

𝚥𝚥 = � 0 1
−1 0� 

𝑘𝑘�⃗ = �0 𝑖𝑖
𝑖𝑖 0� 

Заметим, что 

𝚤𝚤2 = 𝚥𝚥2 = 𝑘𝑘�⃗ 2 = −1�⃗ 2 

𝚤𝚤𝚥𝚥 = −𝚥𝚥𝚤𝚤 = 𝑘𝑘�⃗  

𝚥𝚥𝑘𝑘�⃗ = −𝑘𝑘�⃗ 𝚥𝚥 = 𝚤𝚤 

𝑘𝑘�⃗ 𝚤𝚤 = −𝚤𝚤𝑘𝑘�⃗ = 𝚥𝚥 

Кватернионы: 

𝑎𝑎1�⃗ + 𝑏𝑏𝚤𝚤 + 𝑐𝑐𝚥𝚥 + 𝑑𝑑𝑘𝑘�⃗  

Множество всех кватернионов будем обозначать  

ℍ = �𝑎𝑎1�⃗ + 𝑏𝑏𝚤𝚤 + 𝑐𝑐𝚥𝚥 + 𝑑𝑑𝑘𝑘�⃗ � 

Если 𝑞𝑞1, 𝑞𝑞2 – кватернионы, то 𝑞𝑞1 ∙ 𝑞𝑞2 – кватернион. 

У кватерниона 

𝑞𝑞 = 𝑎𝑎1�⃗ + 𝑏𝑏𝚤𝚤 + 𝑐𝑐𝚥𝚥 + 𝑑𝑑𝑘𝑘�⃗  

𝑎𝑎1�⃗  – вещественная часть 𝑞𝑞 𝑅𝑅𝑅𝑅(𝑞𝑞) 

𝑏𝑏𝚤𝚤 + 𝑐𝑐𝚥𝚥 + 𝑑𝑑𝑘𝑘�⃗  – мнимая часть 𝑞𝑞 𝐼𝐼𝐼𝐼(𝑞𝑞) 

𝑞𝑞∗ = 𝑅𝑅𝑅𝑅(𝑞𝑞) − 𝐼𝐼𝐼𝐼(𝑞𝑞) = 𝑎𝑎1�⃗ − 𝑏𝑏𝚤𝚤 − 𝑐𝑐𝚥𝚥 − 𝑑𝑑𝑘𝑘�⃗  

𝑞𝑞∗ = 𝑞𝑞𝑇𝑇��� 

Введем обозначения: 

𝑧𝑧 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 

𝑤𝑤 = 𝑐𝑐 + 𝑑𝑑𝑑𝑑 
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Тогда 

𝑞𝑞 = � 𝑧𝑧 𝑤𝑤
−𝑤𝑤� 𝑧𝑧̅ � 

𝑞𝑞∗ = �𝑧𝑧̅ −𝑤𝑤
𝑤𝑤� 𝑧𝑧 � 

𝑞𝑞1∗𝑞𝑞2∗ = (𝑞𝑞2𝑞𝑞1)∗ 

det 𝑞𝑞 = 𝑧𝑧𝑧𝑧̅ + 𝑤𝑤𝑤𝑤� = 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 + 𝑑𝑑2 

𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 – прямоугольные координаты в пространстве ℍ. 

det 𝑞𝑞 - скалярный квадрат. 

Если 

det 𝑞𝑞 ≠ 0,  

то 

𝑞𝑞−1 =
𝑞𝑞∗

det 𝑞𝑞
 

Иначе говоря, 

𝑞𝑞𝑞𝑞∗ = (det 𝑞𝑞)1�⃗  

Введём обозначения: 

𝑂𝑂(𝑛𝑛) – группа всех ортогональных матриц 𝑛𝑛 × 𝑛𝑛 

𝑆𝑆𝑆𝑆(𝑛𝑛) = {𝐴𝐴 ∈ 𝑂𝑂(𝑛𝑛)| det𝐴𝐴 = 1} 

𝑈𝑈(𝑛𝑛) – группа унитарных матриц 𝑛𝑛 × 𝑛𝑛: 

𝐴𝐴 ∈ 𝑀𝑀𝑀𝑀𝑡𝑡𝑛𝑛(ℂ) 

𝐴𝐴𝐴𝐴𝑇𝑇���� = 𝐸𝐸 

𝑆𝑆𝑆𝑆(𝑛𝑛) = {𝐴𝐴 ∈ 𝑈𝑈(𝑛𝑛)| det𝐴𝐴 = 1} 

|𝑞𝑞| = �det 𝑞𝑞 

Например, группа единичных кватернионов: 

{𝑞𝑞 ∈ ℍ| det𝐴𝐴 = 1} = 𝑆𝑆𝑆𝑆(2) 

ℍ1 – пространство чисто мнимых кватернионов, для которых: 

𝑅𝑅𝑅𝑅(𝑞𝑞) = 0 

𝑞𝑞∗ = −𝑞𝑞 
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Рассмотрим трёхмерное пространство чисто мнимых кватернионов. Зафиксируем 

𝑞𝑞 ∈ 𝑆𝑆𝑆𝑆(2) 

Рассмотрим отображение 𝜑𝜑:ℍ1 ⟼ ℍ1: 

𝑤𝑤 ⟼ 𝑞𝑞𝑞𝑞𝑞𝑞∗ 

Так как 

𝑤𝑤∗ = −𝑤𝑤 

Следовательно, 

(𝑞𝑞𝑞𝑞𝑞𝑞∗)∗ = (𝑞𝑞∗)∗𝑤𝑤∗𝑞𝑞∗ = −𝑞𝑞𝑞𝑞𝑞𝑞∗ 

|𝑞𝑞𝑞𝑞𝑞𝑞∗| = |𝑞𝑞||𝑤𝑤||𝑞𝑞∗| = |𝑤𝑤| 

𝜑𝜑 – изометрия. 

Матрица 𝜑𝜑 в базисе 𝚤𝚤, 𝚥𝚥,𝑘𝑘�⃗ : 

𝐴𝐴𝐴𝐴: �𝚤𝚤 𝚥𝚥 𝑘𝑘�⃗ � = �𝑞𝑞𝚤𝚤𝑞𝑞∗ 𝑞𝑞𝚥𝚥𝑞𝑞∗ 𝑞𝑞𝑘𝑘�⃗ 𝑞𝑞∗�𝐴𝐴𝐴𝐴 

𝐴𝐴 – ортогональная матрица. 

𝑞𝑞 ⟼ 𝐴𝐴𝐴𝐴 

𝑆𝑆𝑆𝑆(2) ⟼ 𝑆𝑆𝑆𝑆(3) 

Это отображение является гомоморфизмом. 

(𝑞𝑞1𝑞𝑞2)𝑤𝑤(𝑞𝑞1𝑞𝑞2)∗ = 𝑞𝑞1(𝑞𝑞2𝑤𝑤𝑞𝑞2∗)𝑞𝑞1∗ 

Утверждение. 

1) 𝑆𝑆𝑆𝑆(2) ⟼ 𝑆𝑆𝑆𝑆(3) – гомоморфизм  
2) Ядро = ±1 
3) Образ = 𝑆𝑆𝑆𝑆(3) 

Ядро: 𝑞𝑞 ≤ 𝑆𝑆𝑆𝑆(2) такое что 

𝑞𝑞𝑞𝑞𝑞𝑞∗ = 𝑤𝑤  ∀𝑤𝑤 ∈ ℍ1 

𝑞𝑞∗ = 𝑞𝑞−1 

𝑞𝑞𝑞𝑞 = 𝑤𝑤𝑤𝑤 

Следовательно, 

𝑞𝑞 = ±1 
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Для любой ортогональной матрицы 3 × 3 c определителем, равным единице, 
справедливо разложение: 

�
cos𝜑𝜑 − sin𝜑𝜑 0
sin𝜑𝜑 cos𝜑𝜑 0

0 0 1
��

1 0 0
0 cos𝜃𝜃 − sin𝜃𝜃
0 sin𝜃𝜃 cos𝜃𝜃

��
cos𝜓𝜓 − sin𝜓𝜓 0
sin𝜓𝜓 cos𝜓𝜓 0

0 0 1
� 

Пусть дан кватернион 

cos 𝑡𝑡 + 𝚤𝚤 sin 𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆(2) 

Рассмотрим матрицу, которая ему соответствует: 

𝐴𝐴cos 𝑡𝑡+𝚤𝚤 sin 𝑡𝑡 = �
1 0 0
0 cos 2𝑡𝑡 − sin 2𝑡𝑡
0 sin 2𝑡𝑡 cos 2𝑡𝑡

� 

�1�⃗ cos 𝑡𝑡 + 𝚤𝚤 sin 𝑡𝑡�𝚤𝚤�1�⃗ cos 𝑡𝑡 − 𝚤𝚤 sin 𝑡𝑡� = 𝚤𝚤 

�1�⃗ cos 𝑡𝑡 + 𝚤𝚤 sin 𝑡𝑡�𝚥𝚥�1�⃗ cos 𝑡𝑡 − 𝚤𝚤 sin 𝑡𝑡� = cos(2𝑡𝑡) 𝚥𝚥 + sin(2𝑡𝑡)𝑘𝑘�⃗  

И так далее. 

Если 

𝑞𝑞 = cos 𝑡𝑡 1�⃗ + sin 𝑡𝑡 𝑢𝑢 

где 𝑢𝑢 ∈ ℍ1. 

Тогда 𝐴𝐴𝐴𝐴 – матрица поворота вокруг 𝑢𝑢 на угол 2𝑡𝑡. 

Каждой паре единичных кватернионов можно сопоставить матрицу 4 × 4 следующим 
образом: 

𝑞𝑞1, 𝑞𝑞2 ∈ 𝑆𝑆𝑆𝑆(2) ↝ 𝐴𝐴𝑞𝑞1𝑞𝑞2 ∈ 𝑆𝑆𝑆𝑆(4) 

Это матрица отображения 

ℍ ∋ 𝑤𝑤 ⟼ 𝑞𝑞1𝑤𝑤𝑞𝑞2∗ 

Это дает гомоморфизм 

𝑆𝑆𝑆𝑆(2) × 𝑆𝑆𝑆𝑆(2) → 𝑆𝑆𝑆𝑆(4) 

Ядро может быть одной из следующих пар: 

�1�⃗ , 1�⃗ � 

�−1�⃗ ,−1�⃗ � 

Образ: 𝑆𝑆𝑆𝑆(4). 
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Сжатие – растяжение вдоль взаимно перпендикулярных 
направлений 

Определение. Аффинное преобразование называется преобразованием сжатия – 
растяжения вдоль взаимно перпендикулярных направлений, если в некоторой 
прямоугольной системе координат оно имеет следующий вид: 

(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) ⟼ (𝜆𝜆1𝑥𝑥1, … , 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘), 

где 𝜆𝜆𝑖𝑖 > 0, 𝑖𝑖 = 1, … ,𝑘𝑘. 

Определение. Симметричная матрица 𝐴𝐴 = 𝐴𝐴𝑇𝑇 называется положительной, если 
однородный многочлен второй степени с такой матрицей коэффициентов квадратичной 
части всюду больше нуля, кроме начала координат. 

𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 𝑎𝑎22𝑦𝑦2 > 0  ∀(𝑥𝑥,𝑦𝑦) ≠ (0,0) 

Утверждение. Пусть 𝐴𝐴 – матрица аффинного преобразования 𝑓𝑓 в прямоугольной 
системе координат. Тогда 𝑓𝑓 – преобразование сжатия – растяжения тогда и только 
тогда, когда 

1) 𝑓𝑓 имеет неподвижную точку 
2) 𝐴𝐴 = 𝐴𝐴𝑇𝑇 
3) 𝐴𝐴 > 0 

Доказательство: 

Пусть 𝑓𝑓 – отображение сжатия – растяжения ⟺  

1) 𝑓𝑓 имеет неподвижную точку 
2) 𝐴𝐴 имеет вид 𝐶𝐶−1Λ𝐶𝐶, где 

Λ = �
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑘𝑘

�,  

𝜆𝜆𝑖𝑖 > 0, 
𝐶𝐶𝑇𝑇𝐶𝐶 = 𝐸𝐸 

Проверим, чему равна (𝐶𝐶−1Λ𝐶𝐶)𝑇𝑇: 

(𝐶𝐶−1Λ𝐶𝐶)𝑇𝑇 = (𝐶𝐶𝑇𝑇Λ𝐶𝐶)𝑇𝑇 

(𝐶𝐶𝑇𝑇Λ𝐶𝐶)𝑇𝑇 = 𝐶𝐶𝑇𝑇ΛT𝐶𝐶 

𝐶𝐶𝑇𝑇ΛT𝐶𝐶 = 𝐶𝐶−1Λ𝐶𝐶 

Пусть 𝑣𝑣 = �
𝑥𝑥1
⋮
𝑥𝑥𝑘𝑘
� ≠ 0. Тогда 
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𝑣𝑣𝑇𝑇𝐶𝐶−1Λ𝐶𝐶𝐶𝐶 = (𝐶𝐶𝐶𝐶)𝑇𝑇Λ(𝐶𝐶𝐶𝐶) = 𝜆𝜆1𝑥𝑥12 + ⋯+ 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘2 > 0 

Теперь наоборот предположим, что 𝐴𝐴 = 𝐴𝐴𝑇𝑇. Рассмотрим многочлен с матрицей 
коэффициентов 𝐴𝐴. 

Существует ортогональная матрица 𝐶𝐶, такая что 

𝐴𝐴 = 𝐶𝐶𝑇𝑇Λ𝐶𝐶, 

где 

Λ = �
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑘𝑘

� 

𝐴𝐴 > 0 ⇒ 𝜆𝜆𝑖𝑖 > 0, 𝑖𝑖 = 1, … ,𝑘𝑘 
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Лекция 23. Подобие. Проективная прямая и её проективное 
преобразование. 

Строение произвольного аффинного преобразования 
Теорема. Любое аффинное преобразование является композицией некоторого 
движения и некоторого сжатия – растяжения. 

Доказательство: 

Рассмотрим образ единичной окружности (или сферы) (рис. 23.1 и рис. 23.2). 

 

Рис. 23.1 

 

Рис. 23.2 

Это преобразование является результатом движения и сжатия-растяжения. 

Преобразование подобия 
Определение. Гомотетия – это аффинное преобразование, которое в некоторой системе 
координат имеет вид: 

𝑥𝑥 ⟼ 𝜆𝜆𝜆𝜆, 

где 𝜆𝜆 ≠ 0, 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘). 
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Определение. Скалярная матрица – диагональная матрица с одним и тем же числом по 
диагонали: 

�
𝜆𝜆 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆

� 

Утверждение. Преобразование является гомотетией, если оно не является 
параллельным переносом и его матрица скалярна. 

Определение. Подобие – это биекция 𝑓𝑓, такая что ∃𝜆𝜆 > 0  ∀𝐴𝐴,𝐵𝐵 

|𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵)| = 𝜆𝜆|𝐴𝐴𝐴𝐴| 

Теорема. Пусть 𝑓𝑓 – отображение плоскости или пространства в себя. Тогда следующие 
условия равносильны: 

1) 𝑓𝑓 – подобие  
2) 𝑓𝑓 – композиция движения и гомотетии 
3) 𝑓𝑓 – аффинное преобразование с матрицей 𝐴𝐴 в некоторой прямоугольной системе 

координат, такой что 𝐴𝐴𝑇𝑇𝐴𝐴 – скалярная матрица 
4) 𝑓𝑓 – аффинное преобразование, которое переводит ортогональные векторы в 

ортогональные 
5) 𝑓𝑓 – аффинное преобразование, которое переводит некоторую окружность (или 

сферу) в окружность (сферу) 

Доказательство: 

Пусть 𝑓𝑓 – подобие и пусть 

|𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵)| = 𝜆𝜆|𝐴𝐴𝐴𝐴| 

Рассмотрим композицию 𝑓𝑓 и гомотетии с коэффициентом 1
𝜆𝜆
. 

1
𝜆𝜆
𝐴𝐴 – ортогональна. Следовательно,  

1
𝜆𝜆2
𝐴𝐴𝑇𝑇𝐴𝐴 = 𝐸𝐸 

То есть из первого пункта очевидным образом вытекают остальные. 

Пусть 𝑓𝑓 – аффинное преобразование с матрицей 𝐴𝐴 в некоторой прямоугольной системе 
координат, такой что 𝐴𝐴𝑇𝑇𝐴𝐴 – скалярная матрица. 

𝐴𝐴𝑇𝑇𝐴𝐴 = �
𝜆𝜆 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆

� , 𝜆𝜆 > 0 

Тогда 

https://vk.com/teachinmsu
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1
√𝜆𝜆

𝐴𝐴 –  ортогональная матрица. 

То есть из пункта 3 следует пункт 2. 

Пусть 𝑓𝑓 – аффинное преобразование, которое переводит ортогональные векторы в 
ортогональные. Рассмотрим базисные векторы ортонормированного базиса: 

𝑒𝑒1, … , 𝑒𝑒𝑛𝑛 ↝ 𝐴𝐴𝐴𝐴1, … ,𝐴𝐴𝐴𝐴𝑛𝑛 

𝐴𝐴𝑇𝑇𝐴𝐴 – диагональная матрица (так как она является матрицей Грама): 

𝐴𝐴𝑇𝑇𝐴𝐴 = �
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑘𝑘

� 

Рассмотрим два ортогональных вектора 

(𝑒𝑒1 + 𝑒𝑒2) ⊥ (𝑒𝑒1 − 𝑒𝑒2) 

Из того, что 

𝐴𝐴(𝑒𝑒1 + 𝑒𝑒2) ⊥ 𝐴𝐴(𝑒𝑒1 − 𝑒𝑒2) 

Следует 

(1 1 0 ⋯ 0)𝐴𝐴𝑇𝑇𝐴𝐴

⎝

⎜
⎛

1
−1
0
⋮
0 ⎠

⎟
⎞

= 𝜆𝜆1 − 𝜆𝜆2 = 0 

Аналогично получаем, что 

𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑗𝑗   ∀𝑖𝑖, 𝑗𝑗 

Получается, что из пункта 4 следует пункт 3. 

Пусть 𝑓𝑓 – аффинное преобразование, которое переводит некоторую окружность (или 
сферу) в окружность (сферу) (Рис. 23.3) 

 

Рис. 23.3 
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Пример (𝑘𝑘 = 2): 

�
𝑥𝑥
𝑦𝑦� ⟼ �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� �
𝑥𝑥
𝑦𝑦� + �

𝑥𝑥0
𝑦𝑦0� 

Это преобразование является подобием тогда и только тогда, когда  

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� − скалярна 

Это значит, что 

𝑎𝑎2 + 𝑐𝑐2 = 𝑏𝑏2 + 𝑑𝑑2 

𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 = 0 

Из последнего равенства следует, что 

�𝑏𝑏𝑑𝑑�~ �−𝑐𝑐𝑎𝑎 � 

А из первого уравнения следует, что 

�𝑏𝑏𝑑𝑑� = ± �−𝑐𝑐𝑎𝑎 � 

Тогда два вида матриц подобия на плоскости: 

�𝑎𝑎 −𝑐𝑐
𝑐𝑐 𝑎𝑎 � 

�𝑎𝑎 𝑐𝑐
𝑐𝑐 −𝑎𝑎� 

Преобразование подобия комплексной прямой 
Введём комплексную координату: 

𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 

Тогда 

�
𝑥𝑥
𝑦𝑦� ⟼ �𝑎𝑎 −𝑐𝑐

𝑐𝑐 𝑎𝑎 � �
𝑥𝑥
𝑦𝑦� + �

𝑥𝑥0
𝑦𝑦0� 

записывается как 

𝑧𝑧 ⟼ (𝑎𝑎 + 𝑖𝑖𝑖𝑖)𝑧𝑧 + 𝑧𝑧0 

А отображение 

�
𝑥𝑥
𝑦𝑦� ⟼ �𝑎𝑎 𝑐𝑐

𝑐𝑐 −𝑎𝑎� �
𝑥𝑥
𝑦𝑦� + �

𝑥𝑥0
𝑦𝑦0� 

записывается как 

𝑧𝑧 ⟼ (𝑎𝑎 + 𝑖𝑖𝑖𝑖)𝑧𝑧̅ + 𝑧𝑧0 

https://vk.com/teachinmsu
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Общий вид комплексных преобразований: 

𝑧𝑧 ⟼ (𝑎𝑎 + 𝑖𝑖𝑖𝑖)𝑧𝑧 + 𝑧𝑧0 

𝑎𝑎2 + 𝑐𝑐2 ≠ 0 

Проективная прямая 
ℝ ∪ {∞} - пополненная прямая. 

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ∈  ℝ ∪ {∞} ⟼ (𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4) ∈  ℝ 

Число (𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4) называется двойным (ангармоническим) отношением. 

(𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4) =
(𝑥𝑥3 − 𝑥𝑥1)(𝑥𝑥4 − 𝑥𝑥2)
(𝑥𝑥3 − 𝑥𝑥2)(𝑥𝑥4 − 𝑥𝑥1)

 

Если 𝑥𝑥𝑖𝑖 = ∞, то берется соответствующий предел. 

Например, 

(∞ 0 1 𝑥𝑥) =
(1 −∞)(𝑥𝑥 − 0)
(1 − 0)(𝑥𝑥 −∞)

= 𝑥𝑥 

Пусть  

𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏 

Тогда 

(𝑦𝑦1𝑦𝑦2𝑦𝑦3𝑦𝑦4) = (𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4) 

Определение. Проективная прямая – это множество 𝑋𝑋 с функцией 

𝑓𝑓: �(𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4) ∈ 𝑋𝑋4|𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗  при 𝑖𝑖 ≠ 𝑗𝑗� → ℝ 

такой что существует биекция 𝑋𝑋 → ℝ ∪ {∞}, которая приводит 𝑓𝑓 в двойное отношение. 
Эта биекция будет называться аффинной координатой. 

Рассмотрим собственный пучок прямых на плоскости. Выберем аффинную систему 
координат, в которой 𝑙𝑙1 и 𝑙𝑙2 будут осями, а 𝑙𝑙3 имеет направляющий вектор (1,1). (Рис. 
23.4) 
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Рис. 23.4 

Пусть (𝛼𝛼,𝛽𝛽) – направляющий вектор 𝑙𝑙4. 

(𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙4) =
𝛼𝛼
𝛽𝛽

 

Введем прямоугольную систему координат (рис. 23.5). Каждая из прямых 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4 
пересекает прямую 𝑦𝑦 = 1. 

 

Рис. 23.5 
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∞ - несобственная точка. Ось 𝑂𝑂𝑂𝑂 не пересекает прямую 𝑦𝑦 = 1, поэтому она является 
несобственной точкой в данном случае. 

𝑙𝑙𝑖𝑖 имеет направляющий вектор (𝑥𝑥𝑖𝑖 , 1). 

(𝑥𝑥3, 1) = 𝜆𝜆(𝑥𝑥1, 1) + 𝜇𝜇(𝑥𝑥2, 1) = 𝑙𝑙1 + 𝑙𝑙2 

𝑒𝑒1 = 𝜆𝜆(𝑥𝑥1, 1) 

𝑒𝑒2 = 𝜇𝜇(𝑥𝑥2, 1) 

Для того, чтобы определить 𝜆𝜆, 𝜇𝜇 нужно решить систему с матрицей  

�𝑥𝑥1 𝑥𝑥2 𝑥𝑥3
1 1 1 � 

𝜆𝜆 =
𝑥𝑥3 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

 

𝜇𝜇 =
𝑥𝑥1 − 𝑥𝑥3
𝑥𝑥1 − 𝑥𝑥2

 

Разложим 𝑙𝑙4 через векторы 𝑒𝑒1, 𝑒𝑒2 и получим: 

𝑒𝑒1 = (𝑥𝑥3 − 𝑥𝑥2)(𝑥𝑥1, 1) 

𝑒𝑒2 = (𝑥𝑥1 − 𝑥𝑥3)(𝑥𝑥2, 1) 

(𝑥𝑥4, 1)~(𝑥𝑥4 − 𝑥𝑥2)(𝑥𝑥1, 1) + (𝑥𝑥1 − 𝑥𝑥4)(𝑥𝑥2, 1) 

(𝑥𝑥4 − 𝑥𝑥2)(𝑥𝑥1, 1) + (𝑥𝑥1 − 𝑥𝑥4)(𝑥𝑥2, 1) =
𝑥𝑥4 − 𝑥𝑥2
𝑥𝑥3 − 𝑥𝑥2

𝑒𝑒1 +
𝑥𝑥1 − 𝑥𝑥4
𝑥𝑥1 − 𝑥𝑥3

𝑒𝑒2 

𝛼𝛼 =
𝑥𝑥4 − 𝑥𝑥2
𝑥𝑥3 − 𝑥𝑥2

 

𝛽𝛽 =
𝑥𝑥1 − 𝑥𝑥4
𝑥𝑥1 − 𝑥𝑥3

 

𝛼𝛼
𝛽𝛽

=
(𝑥𝑥3 − 𝑥𝑥1)(𝑥𝑥4 − 𝑥𝑥2)
(𝑥𝑥3 − 𝑥𝑥2)(𝑥𝑥4 − 𝑥𝑥1)

= (𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4) 

Определение. Пусть 𝑋𝑋 – проективная прямая. Проективное преобразование на 𝑋𝑋 – 
биекция 𝑓𝑓:𝑋𝑋 ⟼ 𝑋𝑋, такая что 

(𝑓𝑓(𝑥𝑥1)𝑓𝑓(𝑥𝑥2)𝑓𝑓(𝑥𝑥3)𝑓𝑓(𝑥𝑥4)) = (𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4) 

для любых попарно различных 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ∈ 𝑋𝑋. 

Утверждение. Общий вид проективного преобразования пополненной прямой ℝ ∪ {∞} 
таков: 
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𝑥𝑥 ⟼
𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑐𝑐𝑐𝑐 + 𝑑𝑑

, 

где �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� – невырожденная матрица, однозначно определенная с точностью до 

множителя. 

Доказательство: 

Пусть 𝑓𝑓 – проективное преобразование. 

(∞ 0 1 𝑥𝑥) =
(1 −∞)(𝑥𝑥 − 0)
(1 − 0)(𝑥𝑥 −∞)

= 𝑥𝑥 

(∞ 0 1 𝑓𝑓(𝑥𝑥)) = 𝑓𝑓(𝑥𝑥) 

Дробно-линейная функция от 𝑥𝑥: 

(𝑓𝑓−1(∞)   𝑓𝑓−1   (0)   𝑓𝑓−1(1)   𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 
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Лекция 24. Преобразования проективной плоскости. 
Проективная система координат 

Проективное преобразование прямой и его общий вид 
(продолжение) 

Выражение 

𝑥𝑥 ⟼
𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑐𝑐𝑐𝑐 + 𝑑𝑑

 

является общим видом проективного преобразования. Но почему любое такое 
выражение будет проективным преобразованием? Чтобы это проверить, можно 
доказать, что для таких выражений выполняется двойное соотношение. То есть 
вычислить  

�
𝑎𝑎𝑥𝑥1 + 𝑏𝑏
𝑐𝑐𝑥𝑥1 + 𝑑𝑑

  
𝑎𝑎𝑥𝑥2 + 𝑏𝑏
𝑐𝑐𝑥𝑥2 + 𝑑𝑑

  
𝑎𝑎𝑥𝑥3 + 𝑏𝑏
𝑐𝑐𝑥𝑥3 + 𝑑𝑑

  
𝑎𝑎𝑥𝑥4 + 𝑏𝑏
𝑐𝑐𝑥𝑥4 + 𝑑𝑑�

 

Утверждение. Пусть 𝑋𝑋 – проективная прямая, 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 – попарно различные точки 𝑋𝑋, 
𝑃𝑃1′,𝑃𝑃2′,𝑃𝑃3′ – также попарно различные точки 𝑋𝑋. Тогда существует ровно одно 
проективное преобразование 𝜑𝜑:𝑋𝑋 ⟼ 𝑋𝑋, такое что 

𝜑𝜑(𝑃𝑃𝑖𝑖) = 𝑃𝑃𝑖𝑖′, 𝑖𝑖 = 1,2,3 

Проективная плоскость 
Определение. Пополненная плоскость: 

П ∪∞П, 

где П – аффинная плоскость, ∞П – множество всех несобственных пучков на П 
(несобственные точки). 

𝑙𝑙 – прямая ↝ 𝑙𝑙 ∪ {∞𝑙𝑙}, где ∞𝑙𝑙 – несобственный пучок, содержащий 𝑙𝑙. 

Пусть 𝑃𝑃 ∈ ∞П. Тогда 𝑙𝑙 ∪ {∞𝑙𝑙} ∋ 𝑃𝑃 означает 𝑙𝑙 ∈ 𝑃𝑃. 

∞П – проективная прямая. 

Пусть 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4 ∈ ∞П. Тогда двойное отношение 

(𝑃𝑃1𝑃𝑃2𝑃𝑃3𝑃𝑃4) = (𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙4) 

𝑙𝑙𝑖𝑖 ∈ 𝑃𝑃𝑖𝑖 

𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4 в одном собственном пучке. 

На пополненной плоскости: 

1) Через любые две различные точки проходит ровно одна прямая 
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2) Любые две различные прямые пересекаются ровно в одной точке 
Если 𝑙𝑙1 ∥ 𝑙𝑙2, то ∞𝑙𝑙1 = ∞𝑙𝑙2. 
Прямая ∞П пересекается с прямой 𝑙𝑙 в точке ∞𝑙𝑙. 

Определение. Проективная плоскость – множество 𝑋𝑋, на котором некоторые 
подмножества названы прямыми и на прямых определено двойное отношение так, что 
существует биекция 𝑋𝑋 ⟼ 𝑌𝑌, где 𝑌𝑌 – пополненная плоскость, при которой  

1) прямые в 𝑋𝑋 переходят в прямые в 𝑌𝑌 
2) сохраняется двойное отношение 

Модель связки 
В пространстве зафиксируем точку 𝑂𝑂 и рассмотрим собственную связку прямых 𝑋𝑋, 
проходящих через эту точку. 

Прямая в 𝑋𝑋 – подмножество прямых из этой связки, лежащих в одной плоскости. 

Двойное отношение определяется как в пучке. 

Пусть 𝑋𝑋 – проективная плоскость. Проективным преобразованием на 𝑋𝑋 называется 
любая биекция 𝑓𝑓:𝑋𝑋 ⟼ 𝑋𝑋, переводящая прямые в прямые и сохраняющая двойное 
отношение. 

Утверждение. Для любых четырёх точек 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4, никакие из которых не лежат на 
одной прямой, и для такой же четверки 𝑃𝑃1′,𝑃𝑃2′,𝑃𝑃3′,𝑃𝑃4′ существует единственное 
преобразование, переводящее 𝑃𝑃𝑖𝑖 в 𝑃𝑃𝑖𝑖′, 𝑖𝑖 = 1,2,3,4. 

Доказательство: 

Пусть 𝑓𝑓 – проективное преобразование, такое что 

𝑓𝑓(𝑃𝑃𝑖𝑖) = 𝑃𝑃𝑖𝑖 

Пусть прямые 𝑃𝑃1𝑃𝑃2 и 𝑃𝑃3𝑃𝑃4 пересекаются в точке 𝑄𝑄 (рис. 24.1).  

 

Рис. 24.1 
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Тогда  

𝑓𝑓(𝑄𝑄) = 𝑄𝑄 

Следовательно,  

𝑓𝑓(𝑅𝑅) = 𝑅𝑅  ∀𝑅𝑅 ∈ 𝑃𝑃1𝑃𝑃2 ∪ 𝑃𝑃3𝑃𝑃4 

Почему существует 𝑓𝑓, такое что 𝑓𝑓(𝑃𝑃𝑖𝑖) = 𝑃𝑃𝑖𝑖′, 𝑖𝑖 = 1,2,3,4? 

Пусть 𝑋𝑋 – собственная связка в пространстве. В модели связки точки 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4 – 
проективные прямые, несовпадающие друг с другом. 

Построим параллелепипед Ω𝑃𝑃1𝑃𝑃2𝑃𝑃3𝑃𝑃4, ребра которого лежат на прямых 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3, а 
диагональ – на прямой 𝑃𝑃4. 

Существует аффинное преобразование, переводящее параллелепипед Ω𝑃𝑃1𝑃𝑃2𝑃𝑃3𝑃𝑃4 в 
Ω𝑃𝑃1′𝑃𝑃2′𝑃𝑃3′𝑃𝑃4′. 

Таким образом получаем отображение 𝑋𝑋 ⟼ 𝑋𝑋 – проективное преобразование. 

Системы координат на проективной плоскости 
Проективные координаты: 

Пусть 𝑋𝑋 – проективная плоскость. Тогда существует биекция 

𝑋𝑋 → 𝑌𝑌
координаты направляющего вектора в базисе
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 

где 𝑌𝑌 – собственная связка. 

Введём обозначение: [𝑥𝑥1: 𝑥𝑥2: 𝑥𝑥3] – с точностью до множителя, (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) ≠ (0,0,0). 

Пример: 

[1: 2: 3] = [−5:−10:−15] 

Аффинная карта: 

𝑋𝑋 → ℝ2 ∪ ∞ℝ2 

∞ℝ2 – несобственные точки. 

Пример: 

Прямая  

𝑙𝑙: 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0 

∞𝑙𝑙 = [𝛼𝛼:𝛽𝛽] 

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = 0 
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Биекция между проективной системой координат и 
аффинной картой 

Пусть на проективной плоскости задана проективная система координат. Тогда 
сопоставление точке с проективными координатами [𝑥𝑥1: 𝑥𝑥2: 𝑥𝑥3]  точки из ℝ2 ∪ ∞ℝ2 по 
правилу:  

[𝑥𝑥1: 𝑥𝑥2: 𝑥𝑥3] ↔ �
𝑥𝑥1
𝑥𝑥3

,
𝑥𝑥2
𝑥𝑥3
�, 

если 𝑥𝑥3 ≠ 0, и [𝑥𝑥1: 𝑥𝑥2]   в противном случае, — есть аффинная карта.  

Наоборот, пусть на проективной плоскости задана аффинная карта. Тогда 
сопоставление собственной точке с координатами (𝑥𝑥, 𝑦𝑦) тройки [𝑥𝑥:𝑦𝑦: 1], а 
несобственной точке [𝛼𝛼:𝛽𝛽] тройки [𝛼𝛼:𝛽𝛽: 0] есть проективная система координат. 

Теорема. Для любых четырех точек 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐸𝐸 проективной плоскости, никакие три из 
которых не лежат на одной прямой, найдется ровно одна проективная система 
координат, в которой эти точки имеют координаты, 
соответственно, [1: 0: 0], [0: 1: 0], [0: 0: 1], [1: 1: 1]. 
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Лекция 25. Теоремы Дезарга и Паппа. Кривые второго 
порядка на проективной плоскости 

Общий вид проективного преобразования плоскости в 
проективных координатах 

Матрица в квадратных скобках будет означать ненулевую матрицу с точностью до 
множителя. 

Пример.  

�1 2
3 4� = �−2 −4

−6 −8� 

Утверждение. Общий вид проективного преобразования плоскости в проективных 
координатах: 

�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� ⟼ 𝐶𝐶 �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�, 

где 𝐶𝐶 — невырожденная матрица размера 3 × 3. Наоборот, любое отображение такого 
вида является проективным преобразованием. При этом матрица 𝐶𝐶 определена 
однозначно с точностью до общего множителя. 

Доказательство: 

На прошлой лекции было сформулировано утверждение, согласно которому для любых 
четырех точек 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐸𝐸 проективной плоскости, никакие три из которых не лежат на 
одной прямой, найдется ровно одна проективная система координат, в которой эти 
точки имеют координаты, соответственно, [1: 0: 0], [0: 1: 0], [0: 0: 1], [1: 1: 1]. 

То, что любое отображение такого вида является проективным преобразованием, 
следует из сохранения плоскостей и двойного отношения в собственных пучках при 
аффинном преобразовании. То, что любое проективное преобразование имеет такой 
вид, вытекает из одинаковой свободы: в обоих семействах отображение однозначно 
определяется образом любых четырех точек, никакие три из которых не лежат на одной 
прямой. 

Общий вид проективного преобразования плоскости в 
аффинной карте 
[𝑥𝑥1: 𝑥𝑥2: 𝑥𝑥3] ↔ �

𝑥𝑥1
𝑥𝑥3

,
𝑥𝑥2
𝑥𝑥3
� 

[𝑥𝑥:𝑦𝑦: 1] ↔ (𝑥𝑥,𝑦𝑦) 
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�
𝑥𝑥
𝑦𝑦
1
� = �

𝐶𝐶11𝑥𝑥 + 𝐶𝐶12𝑦𝑦 + 𝐶𝐶13
𝐶𝐶21𝑥𝑥 + 𝐶𝐶22𝑦𝑦 + 𝐶𝐶23
𝐶𝐶31𝑥𝑥 + 𝐶𝐶32𝑦𝑦 + 𝐶𝐶33

� 

Общий вид проективного преобразования в аффинной карте: 

�
𝑥𝑥
𝑦𝑦� ↦

⎩
⎪⎪
⎨

⎪⎪
⎧

⎝

⎜
⎛
𝐶𝐶11𝑥𝑥 + 𝐶𝐶12𝑦𝑦 + 𝐶𝐶13
𝐶𝐶31𝑥𝑥 + 𝐶𝐶32𝑦𝑦 + 𝐶𝐶33
𝐶𝐶21𝑥𝑥 + 𝐶𝐶22𝑦𝑦 + 𝐶𝐶23
𝐶𝐶31𝑥𝑥 + 𝐶𝐶32𝑦𝑦 + 𝐶𝐶33⎠

⎟
⎞

, если 𝐶𝐶31𝑥𝑥 + 𝐶𝐶32𝑦𝑦 + 𝐶𝐶33 ≠ 0

�𝐶𝐶11𝑥𝑥 + 𝐶𝐶12𝑦𝑦 + 𝐶𝐶13
𝐶𝐶21𝑥𝑥 + 𝐶𝐶22𝑦𝑦 + 𝐶𝐶23

� , если 𝐶𝐶31𝑥𝑥 + 𝐶𝐶32𝑦𝑦 + 𝐶𝐶33 = 0

 

�
𝛼𝛼
𝛽𝛽� ↦

⎩
⎪⎪
⎨

⎪⎪
⎧

⎝

⎜
⎛
𝐶𝐶11𝛼𝛼 + 𝐶𝐶12𝛽𝛽
𝐶𝐶31𝛼𝛼 + 𝐶𝐶32𝛽𝛽
𝐶𝐶21𝛼𝛼 + 𝐶𝐶22𝛽𝛽
𝐶𝐶31𝛼𝛼 + 𝐶𝐶32𝛽𝛽⎠

⎟
⎞

, если 𝐶𝐶31𝛼𝛼 + 𝐶𝐶32𝛽𝛽 ≠ 0

�𝐶𝐶11𝛼𝛼 + 𝐶𝐶12𝛽𝛽
𝐶𝐶21𝛼𝛼 + 𝐶𝐶22𝛽𝛽

� , если 𝐶𝐶31𝛼𝛼 + 𝐶𝐶32𝛽𝛽 = 0

 

Здесь 

�
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23
𝐶𝐶31 𝐶𝐶32 𝐶𝐶33

� 

— невырожденная матрица, однозначно с точностью до общего множителя 
определенная преобразованием. 

Принцип двойственности, инцидентность точек и прямых 
Общее уравнение прямой на проективной плоскости в проективных координатах: 

𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 + 𝛼𝛼3𝑥𝑥3 = 0 

(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3) ≠ (0,0,0) 

Прямые ↔ [𝛼𝛼1:𝛼𝛼2:𝛼𝛼3] 

Говорят, что точка 𝑃𝑃 и прямая 𝑙𝑙 на проективной плоскости инцидентны друг другу, 
если 𝑃𝑃 ∈ 𝑙𝑙. 

Теорема. (Принцип двойственности). Любое высказывание о прямых и точках на 
проективной плоскости, выраженное через отношение инцидентности, равносильно 
высказыванию, полученному из него заменой точек на прямые, а прямых — на точки. 
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Теорема Дезарга 
Теорема Дезарга. Пусть попарно различные точки 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐵𝐵1,𝐵𝐵2,𝐵𝐵3 на проективной 
плоскости таковы, что прямые 𝐴𝐴1𝐵𝐵1,𝐴𝐴2𝐵𝐵2 и 𝐴𝐴3𝐵𝐵3 попарно различны и пересекаются в 
одной точке. Тогда точки  

𝐴𝐴1𝐴𝐴2  ∩  𝐵𝐵1𝐵𝐵2, 

𝐴𝐴2𝐴𝐴3  ∩  𝐵𝐵2𝐵𝐵3, 

𝐴𝐴3𝐴𝐴1  ∩  𝐵𝐵3𝐵𝐵1 

лежат на одной прямой. 

Доказательство: 

Рассмотрим это утверждение для точек в пространстве, не лежащих в одной плоскости. 

Тогда четверки точек  

𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑗𝑗 ,𝐵𝐵𝑖𝑖 ,𝐵𝐵𝑗𝑗 

будут лежать в одной плоскости, и прямые 𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 ,𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗  будут пересекаться.  

Точки пересечения будут лежать на линии пересечения плоскостей треугольников 
𝐴𝐴1𝐴𝐴2𝐴𝐴3 и 𝐵𝐵1𝐵𝐵2𝐵𝐵3.  

Теперь «плоское» утверждение получается с помощью проекции этой конструкции на 
плоскость. 

 

Рис. 25.1 
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Двойственная теореме Дезарга. Если два треугольника расположены на плоскости 
таким образом, что три точки, в которых пересекаются продолжения трёх пар 
соответственных сторон треугольников, лежат на одной прямой, то прямые, 
соединяющие соответственные вершины треугольников, проходят через одну точку. 

Теорема Паппа 
Теорема Паппа. Пусть попарно различные точки 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐵𝐵1,𝐵𝐵2,𝐵𝐵3 на проективной 
плоскости таковы, что 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 лежат на некоторой прямой 𝑙𝑙1, а 𝐵𝐵1,𝐵𝐵2,𝐵𝐵3 — на 
прямой 𝑙𝑙2, причем 𝑙𝑙1 ≠ 𝑙𝑙2. Тогда точки пересечения  

𝐴𝐴1𝐵𝐵2  ∩  𝐴𝐴2𝐵𝐵1  

𝐴𝐴2𝐵𝐵3  ∩  𝐴𝐴3𝐵𝐵2 

𝐴𝐴3𝐵𝐵1  ∩  𝐴𝐴1𝐵𝐵3 

лежат на одной прямой. 

 

Рис. 25.2 

Теорема Паппа является вырожденным случаем в теореме Паскаля: если заменить в 
теореме Паскаля вписанный в конику шестиугольник на вписанный в пару 
пересекающихся прямых, то она станет эквивалентной теореме Паппа. 

Двойственная формулировка является вырожденным случаем Теоремы Брианшона. 

Кривые второго порядка на проективной плоскости 
Алгебраические кривые: 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 0 

𝐹𝐹 – однородный многочлен. 

deg𝐹𝐹 – порядок кривой. 

В случае deg𝐹𝐹 = 2: 

� 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
𝑖𝑖,𝑗𝑗=1,2,3

= 0 

https://vk.com/teachinmsu
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%B0%D1%81%D0%BA%D0%B0%D0%BB%D1%8F
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%91%D1%80%D0%B8%D0%B0%D0%BD%D1%88%D0%BE%D0%BD%D0%B0
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Утверждение. Пусть алгебраическая кривая 𝛤𝛤 на проективной плоскости в однородных 
координатах задается уравнением  

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 0 

порядка 𝑚𝑚. Пусть 𝑥𝑥,𝑦𝑦 — аффинные координаты в аффинной карте, соответствующей 
системе 𝑥𝑥1 ∶ 𝑥𝑥2 ∶ 𝑥𝑥3.  

Если кривая 𝛤𝛤 не содержит прямую 𝑥𝑥3 = 0, то собственная часть этой кривой в 
аффинной карте 𝑥𝑥,𝑦𝑦 задается уравнением  

𝐹𝐹(𝑥𝑥,𝑦𝑦, 1) = 0, 

которое также имеет порядок 𝑚𝑚, а множество несобственных точек совпадает с 
множеством несобственных пучков прямых, имеющих асимптотическое направление 
для кривой  

𝐹𝐹(𝑥𝑥, 𝑦𝑦, 1) = 0 

Если кривая 𝛤𝛤 содержит прямую 𝑥𝑥3 = 0 с кратностью 𝑟𝑟, то в аффинной карте 𝑥𝑥,𝑦𝑦 
собственная часть 𝛤𝛤 задается уравнением  

𝐹𝐹(𝑥𝑥,𝑦𝑦, 1) = 0, 

имеющим порядок 𝑚𝑚 − 𝑟𝑟. 

Доказательство: 

Пусть  

𝐹𝐹(𝑥𝑥, 𝑦𝑦, 1) = 𝑎𝑎11𝑥𝑥2 + 2𝑎𝑎12𝑥𝑥𝑥𝑥 + 𝑎𝑎22𝑦𝑦2 + 2𝑎𝑎1𝑥𝑥 + 2𝑎𝑎2𝑦𝑦 + 𝑎𝑎0 = 0 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = ? 

𝑎𝑎11 �
𝑥𝑥1
𝑥𝑥3
�
2

+ 2𝑎𝑎12 �
𝑥𝑥1𝑥𝑥2
𝑥𝑥32

� + 𝑎𝑎22 �
𝑥𝑥2
𝑥𝑥3
�
2

+ 2𝑎𝑎1
𝑥𝑥1
𝑥𝑥3

+ 2𝑎𝑎2
𝑥𝑥2
𝑥𝑥3

+ 𝑎𝑎0 = 0 

Умножим это уравнение на 𝑥𝑥32: 

𝑎𝑎11(𝑥𝑥1)2 + 2𝑎𝑎12𝑥𝑥1𝑥𝑥2 + 𝑎𝑎22(𝑥𝑥2)2 + 2𝑎𝑎1𝑥𝑥1𝑥𝑥3 + 2𝑎𝑎2𝑥𝑥2𝑥𝑥3 + 𝑎𝑎0𝑥𝑥32 = 0 

Асимптотические направления: 

𝑎𝑎11𝛼𝛼2 + 2𝑎𝑎12𝛼𝛼𝛼𝛼 + 𝑎𝑎22𝛽𝛽2 = 0 

Проективная классификация кривых второго порядка 
Теорема. Всякая кривая второго порядка на проективной плоскости с помощью выбора 
проективной системы координат 𝑥𝑥1 ∶ 𝑥𝑥2 ∶ 𝑥𝑥3 может быть приведена ровно к одному из 
следующих видов:  

https://vk.com/teachinmsu
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1) 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 = 0 (мнимый овал);  

2) 𝑥𝑥12 + 𝑥𝑥22 − 𝑥𝑥32 = 0  (овал);  

3) 𝑥𝑥12 + 𝑥𝑥22 = 0 (пара мнимых прямых );  

4) 𝑥𝑥12 − 𝑥𝑥22 = 0 (пара различных действительных прямых );  

5) 𝑥𝑥12 = 0 (пара совпадающих прямых ). 

  

https://vk.com/teachinmsu
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Лекция 26. Овал как проективная прямая. Гиперболический 
поворот 

Овал как проективная прямая 
Утверждение. Пусть 𝛤𝛤 и Г′ — два овала на проективной плоскости. Пусть 𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈
𝛤𝛤 и 𝐴𝐴1 ,𝐵𝐵1 ,𝐶𝐶1 ∈ Г′ — две тройки различных точек. Тогда существует ровно одно 
проективное преобразование этой проективной плоскости, при котором точки 

𝛤𝛤 ⟼ 𝛤𝛤′ 

𝐴𝐴 ⟼ 𝐴𝐴′ 

𝐵𝐵 ⟼ 𝐵𝐵′ 

𝐶𝐶 ⟼ 𝐶𝐶′ 

Доказательство: 

Пусть 𝐷𝐷 — точка пересечения касательных к 𝛤𝛤, проведенных в точках 𝐴𝐴 и 𝐵𝐵, а 𝐷𝐷′ — 
точка пересечения касательных к 𝛤𝛤′ в точках 𝐴𝐴′ и 𝐵𝐵′ .  

Существует ровно одно проективное преобразование, переводящее 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 
соответственно в 𝐴𝐴′ ,𝐵𝐵′ ,𝐶𝐶′ ,𝐷𝐷′ . Оно переводит 𝛤𝛤 в некоторый овал 𝛤𝛤′′ , который 
касается прямых 𝐴𝐴′𝐷𝐷′ и 𝐵𝐵′𝐷𝐷′ в точках 𝐴𝐴′ и 𝐵𝐵′ соответственно и проходит через 𝐶𝐶′.  

Это пять однородных условий на коэффициенты уравнения овала. Показав их 
независимость, получим 𝛤𝛤′′𝛤𝛤′. 

Утверждение. Пусть 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4,𝑃𝑃 — точки некоторого овала 𝛤𝛤 на проективной 
плоскости, причем первые четыре из них попарно различны. Тогда двойное отношение 
четверки прямых 𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2,𝑃𝑃𝑃𝑃3,𝑃𝑃𝑃𝑃4 не зависит от точки 𝑃𝑃 (если 𝑃𝑃 ≠ 𝑃𝑃𝑖𝑖 , то под прямой 
𝑃𝑃𝑃𝑃𝑖𝑖 подразумевается касательная к 𝛤𝛤 в точке 𝑃𝑃). 

 

Рис. 26.1 

https://vk.com/teachinmsu
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Доказательство: 

Поскольку все овалы на проективной плоскости одинаковы, достаточно доказать для 
одного конкретного. В качестве 𝛤𝛤 возьмем окружность.  

Тогда для любой точки 𝑃𝑃′ ∈ 𝛤𝛤 четверку прямых 𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2,𝑃𝑃𝑃𝑃3,𝑃𝑃𝑃𝑃4 можно перевести в 
четверку 𝑃𝑃′𝑃𝑃1,𝑃𝑃′𝑃𝑃2,𝑃𝑃′𝑃𝑃3,𝑃𝑃′𝑃𝑃4, так как соответствующие углы между прямыми в этих 
четверках одинаковы. 

Гомоморфизм PGL(2) → PGL(3) 
Пусть 𝛤𝛤 — некоторый овал на проективной плоскости 𝑋𝑋. Любое проективное 
преобразование овала 𝛤𝛤 можно однозначно продолжить до проективного 
преобразования 𝑋𝑋. 

Это конструкция дает гомоморфизм PGL(2) → PGL(3), который для каждого овала и 
его параметризации как проективной прямой несложно построить явно. Например, 
пусть 𝛤𝛤 — это парабола 𝑥𝑥 = 𝑦𝑦2 с параметризацией𝑥𝑥(𝑡𝑡) = 𝑡𝑡2, 𝑦𝑦(𝑡𝑡) = 𝑡𝑡.  

Проективное преобразование  

𝑡𝑡 ⟼
𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑐𝑐𝑐𝑐 + 𝑑𝑑

 

этого овала в соответствующих проективных координатах можно представить 
умножением на матрицу: 

�
𝑡𝑡2
𝑡𝑡
1
� ⟼

⎣
⎢
⎢
⎢
⎡�
𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑐𝑐𝑐𝑐 + 𝑑𝑑�

2

𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑐𝑐𝑐𝑐 + 𝑑𝑑

1 ⎦
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡�
𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑐𝑐𝑐𝑐 + 𝑑𝑑�

2

𝑎𝑎𝑎𝑎 + 𝑏𝑏
𝑐𝑐𝑐𝑐 + 𝑑𝑑

1 ⎦
⎥
⎥
⎥
⎤

= �
(𝑎𝑎𝑎𝑎 + 𝑏𝑏)2

(𝑎𝑎𝑎𝑎 + 𝑏𝑏)(𝑐𝑐𝑐𝑐 + 𝑑𝑑)
(𝑐𝑐𝑐𝑐 + 𝑑𝑑)2

� 

�
(𝑎𝑎𝑎𝑎 + 𝑏𝑏)2

(𝑎𝑎𝑎𝑎 + 𝑏𝑏)(𝑐𝑐𝑐𝑐 + 𝑑𝑑)
(𝑐𝑐𝑐𝑐 + 𝑑𝑑)2

� = �
𝑎𝑎2 2𝑎𝑎𝑎𝑎 𝑏𝑏2
𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝑑𝑑2
𝑐𝑐2 2𝑐𝑐𝑐𝑐 𝑑𝑑2

� �
𝑡𝑡2
𝑡𝑡
1
� 

Получаем следующий гомоморфизм PGL(2) → PGL(3): 

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ⟼ �

𝑎𝑎2 2𝑎𝑎𝑎𝑎 𝑏𝑏2
𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝑑𝑑2
𝑐𝑐2 2𝑐𝑐𝑐𝑐 𝑑𝑑2

� 
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Общий вид параметризации овала как проективной прямой 
Параметризация любого овала как проективной прямой с помощью произвольной 
аффинной координаты 𝑡𝑡 в любой аффинной карте 𝑥𝑥,𝑦𝑦 на проективной плоскости имеет 
вид 

𝑡𝑡 ⟼

⎝

⎜
⎛
𝐶𝐶11𝑡𝑡2 + 𝐶𝐶12𝑡𝑡 + 𝐶𝐶13
𝐶𝐶31𝑡𝑡2 + 𝐶𝐶32𝑡𝑡 + 𝐶𝐶33
𝐶𝐶21𝑡𝑡2 + 𝐶𝐶22𝑡𝑡 + 𝐶𝐶23
𝐶𝐶31𝑡𝑡2 + 𝐶𝐶32𝑡𝑡 + 𝐶𝐶33⎠

⎟
⎞

, 

где  

�
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23
𝐶𝐶31 𝐶𝐶32 𝐶𝐶33

� 

— некоторая невырожденная матрица: 

det𝐶𝐶 ≠ 0 

Гиперболический поворот 
Пусть на плоскости зафиксирована некоторая гипербола 𝛤𝛤.  

Определение. Аффинное преобразование плоскости, переводящую в себя каждую из 
ветвей 𝛤𝛤 и каждую из асимптот, будем называть гиперболическим поворотом. 

В системе координат, оси которой – асимптоты: 

Г: 𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Общий вид гиперболического поворота: 

(𝑥𝑥,𝑦𝑦) ⟼ �𝜆𝜆𝜆𝜆,
1
𝜆𝜆
𝑦𝑦� , 𝜆𝜆 > 0 

Замена: 

𝜆𝜆 = 𝑒𝑒𝑎𝑎 

𝑎𝑎 – угол поворота. 

Пусть 𝑎𝑎 – «угол поворота», переводящий 𝐴𝐴 в 𝐵𝐵 или 𝐵𝐵 в 𝐴𝐴 (Рис. 26.2). 𝑎𝑎 будем называть 
псевдоевклидовой длиной души 𝐴𝐴𝐴𝐴. 

https://vk.com/teachinmsu
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Рис. 26.2 Две точки на гиперболе 

Пусть оси аффинной системы координат 𝑥𝑥,𝑦𝑦 являются взаимно сопряженными 
диаметрами гиперболы 𝛤𝛤, а прямая 𝑥𝑥 = 𝑦𝑦 является первой из асимптот 𝛤𝛤. Тогда 
гиперболический поворот 𝜌𝜌𝑎𝑎 в этой системе представляется умножением на матрицу 

�
𝑐𝑐ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑎𝑎)
𝑠𝑠ℎ(𝑎𝑎) 𝑐𝑐ℎ(𝑎𝑎)� 

Доказательство: 

�1 1
1 −1� �

𝑒𝑒𝑎𝑎 0
0 𝑒𝑒−𝑎𝑎� �

1 1
1 −1�

−1
= �

𝑐𝑐ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑎𝑎)
𝑠𝑠ℎ(𝑎𝑎) 𝑐𝑐ℎ(𝑎𝑎)� 

Прочие преобразования, сохраняющие гиперболу: 

�
𝑐𝑐ℎ(𝑎𝑎) −𝑠𝑠ℎ(𝑎𝑎)
𝑠𝑠ℎ(𝑎𝑎) −𝑐𝑐ℎ(𝑎𝑎)� 

�
−𝑐𝑐ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑎𝑎)
−𝑠𝑠ℎ(𝑎𝑎) 𝑐𝑐ℎ(𝑎𝑎)� 

�
−𝑐𝑐ℎ(𝑎𝑎) −𝑠𝑠ℎ(𝑎𝑎)
−𝑠𝑠ℎ(𝑎𝑎) −𝑐𝑐ℎ(𝑎𝑎)� 

Псевдоортогональные преобразования обозначаются 𝑂𝑂(1,1). 

Псевдоевклидово скалярное произведение 
Пусть на плоскости зафиксирована некоторая гипербола 𝛤𝛤.  

Утверждение. Существует ровно одна билинейная симметрическая функция 〈∙,∙〉 от 
двух векторов плоскости, для которой 

Г = �𝑀𝑀|〈𝑂𝑂𝑂𝑂������⃗ ,𝑂𝑂𝑂𝑂������⃗ 〉 = 1�, 

где 𝑂𝑂 – это центр гиперболы Г. 

Доказательство: 

https://vk.com/teachinmsu
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Выберем систему координат так, чтобы 

Г: 𝑥𝑥𝑥𝑥 = 1 

Тогда 

〈(𝑥𝑥, 𝑦𝑦), (𝑥𝑥,𝑦𝑦)〉 = 𝑥𝑥𝑥𝑥 

〈(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2)〉 =
𝑥𝑥1𝑦𝑦2 + 𝑥𝑥2𝑦𝑦1

2
 

 

Рис. 26.3 Две точки на гиперболе 

𝑥𝑥2 = 𝑥𝑥1𝑒𝑒𝑎𝑎 

𝑦𝑦2 = 𝑦𝑦1𝑒𝑒−𝑎𝑎 

𝑦𝑦1 =
1
𝑥𝑥1

 

〈(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2)〉 =
𝑥𝑥1𝑦𝑦2 + 𝑥𝑥2𝑦𝑦1

2
 

𝑥𝑥1𝑦𝑦2 + 𝑥𝑥2𝑦𝑦1
2

=
𝑥𝑥1𝑦𝑦1𝑒𝑒−𝑎𝑎 + 𝑥𝑥1𝑦𝑦1𝑒𝑒𝑎𝑎

2
 

𝑥𝑥1𝑦𝑦1𝑒𝑒−𝑎𝑎 + 𝑥𝑥1𝑦𝑦1𝑒𝑒𝑎𝑎

2
= 𝑐𝑐ℎ(𝑎𝑎) 

Мы доказали следующее утверждение. 

Утверждение. Пусть 𝛾𝛾 — дуга гиперболы 𝛤𝛤 с концами 𝐴𝐴 и 𝐵𝐵, и пусть 𝑎𝑎 — 
псевдоевклидова длина 𝛾𝛾. Тогда 

〈𝑂𝑂𝑂𝑂�����⃗ ,𝑂𝑂𝑂𝑂�����⃗ 〉 = 𝑐𝑐ℎ(𝑎𝑎) 

где 𝑂𝑂 — центр гиперболы 𝛤𝛤. 

https://vk.com/teachinmsu
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Длина дуги через логарифм двойного отношения 
Утверждение. Пусть 𝑙𝑙1 и 𝑙𝑙2 — асимптоты гиперболы 𝛤𝛤, а 𝑙𝑙3 и 𝑙𝑙4 — две различные 
прямые, пересекающие одну из ветвей 𝛤𝛤 в точках 𝐴𝐴 и 𝐵𝐵. Тогда длина дуги гиперболы 𝛤𝛤 
между 𝐴𝐴 и 𝐵𝐵 равна  

1
2

|ln(𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙4)| = �ln(∞𝑙𝑙1∞𝑙𝑙2𝐴𝐴𝐴𝐴)� 

где в последнем выражении имеется в виду двойное отношение на 𝛤𝛤. 

Доказательство: 

(𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙4) = �∞ 0
𝑥𝑥1
𝑦𝑦1
𝑥𝑥2
𝑦𝑦2
� = e2|a| 

|𝐴𝐴𝐴𝐴| =
1
2

|ln(𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙4)| 

1
2

|ln(𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙4)| = �ln(∞𝑙𝑙1∞𝑙𝑙2𝐴𝐴𝐴𝐴)� 

  

https://vk.com/teachinmsu
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Лекция 27. Плоскость Лобачевского. Модели Клейна и 
Пуанкаре 

Плоскость Лобачевского 
Определение. Плоскостью Лобачевского 𝕃𝕃2 будем называть «верхнюю половину» 
двуполостного гиперболоида 𝛴𝛴, заданного в аффинной системе координат 𝑡𝑡, 𝑥𝑥,𝑦𝑦 
уравнением 

𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 = 1 

т.е. его часть, выделяемую неравенством 𝑡𝑡 > 0. 

Скалярное произведение в 𝕃𝕃2: 

〈(𝛼𝛼,𝛽𝛽, 𝛾𝛾), (𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′)〉 = 𝛼𝛼𝛼𝛼′ − 𝛽𝛽𝛽𝛽′ − 𝛾𝛾𝛾𝛾′ 

Пространство ℝ3, наделенное этим псевдоевклидовым скалярным произведением, 
обозначается через ℝ1,2 и называется трехмерным пространством Минковского. 

Прямые – непустые сечения диаметральными плоскостями. 

Расстояние – «угловой размер» дуги, соединяющей точки. 

Пусть 𝑢𝑢 и 𝑣𝑣 — два касательных вектора к 𝕃𝕃2 , проведенных в одной точке. Угол между 
ними определяется по формуле 

𝛼𝛼 = arccos�−
〈𝑢𝑢, 𝑣𝑣〉

�〈𝑢𝑢,𝑢𝑢〉〈𝑣𝑣, 𝑣𝑣〉
� 

Уголом между геодезическими лучами, выходящими из одной точки, называется угол 
между их касательными векторами в их общей начальной точке. 

Орициклы – параболы на 𝕃𝕃2. 

Модель Клейна 
Модель Клейна — это центральная проекция 𝕃𝕃2 на плоскость 𝑡𝑡 = 1 из начала 
координат. Точкам 𝕃𝕃2 соответствуют внутренние точки единичного круга 

𝑥𝑥2 + 𝑦𝑦2 ≤ 1, 

а точкам абсолюта — точки его границы.  

Абсолют – множество асимптотических прямых поверхности Σ. 

 

https://vk.com/teachinmsu
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Рис. 27.1 Модель Клейна 

Прямые на 𝕃𝕃2 проецируются в хорды единичной окружности. 

Расстояние в модели Клейна: 

|𝐴𝐴𝐴𝐴| =
1
2

| ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) | 

 

Рис. 27.2 

Утверждение. На плоскости Лобачевского для любых трех точек выполнены 
неравенства треугольника, которые обращаются в равенство только для точек, лежащих 
на одной прямой. 

Доказательство: 

Выполним построение (рис. 27.3). 

https://vk.com/teachinmsu
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Тогда 

|𝐴𝐴𝐴𝐴| <
1
2

| ln(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) | 

1
2

|ln(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)| = |𝐴𝐴𝐴𝐴| + |𝐵𝐵𝐵𝐵| 

Следовательно, 

|𝐴𝐴𝐴𝐴| < |𝐴𝐴𝐴𝐴| + |𝐵𝐵𝐵𝐵| 

 

Рис. 27.3 

Модель Пуанкаре 
Моделью Пуанкаре называется стереографическая проекция 𝕃𝕃2 , т.е. центральная 
проекция на плоскость 𝑡𝑡 = 0 из точки (−1,0,0).  

Образом 𝕃𝕃2 при этой проекции является внутренность единичного круга, а образом 
абсолюта — его граница. 

В модели Пуанкаре сохраняются углы. 

В модели Пуанкаре образы прямых — это дуги окружностей, перпендикулярных 
абсолюту, и его диаметры без концевых точек, а образы орициклов — окружности, 
касающиеся абсолюта, с выколотой точкой касания. Углы между образами 
геодезических лучей в модели Пуанкаре равны соответствующим углам на плоскости 
Лобачевского. 

https://vk.com/teachinmsu
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Расстояние в модели Пуанкаре: 

|𝐴𝐴𝐴𝐴| = | ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) | 

 

 

Рис. 27.4 Модель Пуанкаре 

Треугольник на плоскости Лобачевского 
Раньше мы использовали следующие формулы: 

([𝑎𝑎, 𝑏𝑏], [𝑐𝑐,𝑑𝑑]) = �(𝑎𝑎, 𝑐𝑐) (𝑎𝑎,𝑑𝑑)
(𝑏𝑏, 𝑐𝑐) (𝑏𝑏,𝑑𝑑)� 

�[𝑎𝑎, 𝑏𝑏], 𝑐𝑐� = (𝑎𝑎, 𝑐𝑐)𝑏𝑏 − (𝑏𝑏, 𝑐𝑐)𝑎𝑎 

Мы определили скалярное произведение в 𝕃𝕃2: 

〈(𝛼𝛼,𝛽𝛽, 𝛾𝛾), (𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′)〉 = 𝛼𝛼𝛼𝛼′ − 𝛽𝛽𝛽𝛽′ − 𝛾𝛾𝛾𝛾′ 

Сделаем замену переменных: 

𝑧̂𝑧 = 𝑡𝑡 

𝑥𝑥� = 𝑖𝑖𝑖𝑖 

𝑦𝑦� = 𝑖𝑖𝑖𝑖 

Если определить векторное произведение в 𝕃𝕃2 как: 

[(𝑡𝑡1, 𝑥𝑥1, 𝑦𝑦1), (𝑡𝑡2, 𝑥𝑥2,𝑦𝑦2)] = �− �
𝑥𝑥1 𝑦𝑦1
𝑥𝑥2 𝑦𝑦2� , �

𝑦𝑦1 𝑡𝑡1
𝑦𝑦2 𝑡𝑡2

� , �
𝑡𝑡1 𝑥𝑥1
𝑡𝑡2 𝑥𝑥2

�� 

То будут выполнены следующие равенства: 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

173 
 
 

 

〈[𝑎𝑎, 𝑏𝑏], [𝑐𝑐,𝑑𝑑]〉 = �〈𝑎𝑎, 𝑐𝑐〉 〈𝑎𝑎,𝑑𝑑〉
〈𝑏𝑏, 𝑐𝑐〉 〈𝑏𝑏,𝑑𝑑〉� 

�[𝑎𝑎, 𝑏𝑏], 𝑐𝑐� = 〈𝑎𝑎, 𝑐𝑐〉𝑏𝑏 − 〈𝑏𝑏, 𝑐𝑐〉𝑎𝑎 

〈[𝑢𝑢, 𝑣𝑣],𝑢𝑢〉 = 0 

[𝑣𝑣,𝑢𝑢] = −[𝑢𝑢, 𝑣𝑣] 

〈[𝑢𝑢, 𝑣𝑣],𝑤𝑤〉 = 〈[𝑣𝑣,𝑤𝑤],𝑢𝑢〉 

Рассмотрим матрицу 2 × 2 с нулевым следом: 

(𝛼𝛼,𝛽𝛽, 𝛾𝛾) ↝ � 𝛽𝛽 −𝛼𝛼 + 𝛾𝛾
𝛼𝛼 + 𝛾𝛾 −𝛽𝛽 � 

𝑢𝑢 = � 𝛽𝛽 −𝛼𝛼 + 𝛾𝛾
𝛼𝛼 + 𝛾𝛾 −𝛽𝛽 � 

Для неё справедливо: 

det𝑢𝑢 = 〈𝑢𝑢,𝑢𝑢〉 

〈𝑢𝑢, 𝑣𝑣〉 = −𝑡𝑡𝑡𝑡(𝑢𝑢𝑢𝑢) 

[𝑢𝑢, 𝑣𝑣] =
1
2

(𝑢𝑢𝑢𝑢 − 𝑣𝑣𝑣𝑣) 
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Лекция 28. Гиперболические теоремы синусов и косинусов. 
Угловой дефект 

Гиперболические теоремы синусов и косинусов 
Теорема синусов. Пусть 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 — длины сторон, а 𝛼𝛼,𝛽𝛽, 𝛾𝛾 — соответственно 
противолежащие им углы треугольника на плоскости Лобачевского. Тогда имеет место 
следующее равенство: 

sin𝛼𝛼
𝑠𝑠ℎ(𝑎𝑎) =

sin𝛽𝛽
𝑠𝑠ℎ(𝑏𝑏) =

sin 𝛾𝛾
𝑠𝑠ℎ(𝑐𝑐) 

 

Рис. 28.1 

Теорема косинусов. Пусть 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 — длины сторон, а 𝛼𝛼,𝛽𝛽, 𝛾𝛾 — соответственно 
противолежащие им углы треугольника на плоскости Лобачевского. Тогда имеет место 
следующее равенство: 

cos 𝛾𝛾 𝑠𝑠ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑏𝑏) = 𝑐𝑐ℎ(𝑎𝑎) 𝑐𝑐ℎ(𝑏𝑏) − 𝑐𝑐ℎ(𝑐𝑐) 

𝑐𝑐ℎ(𝑐𝑐) sin𝛼𝛼 sin𝛽𝛽 = cos𝛼𝛼 cos𝛽𝛽 + cos 𝛾𝛾 

Доказательство теоремы синусов: 

В пространстве Минковского ℝ1,2: 

〈[𝑢𝑢, 𝑣𝑣],𝑢𝑢〉 = 0 

Всякая линейная функция от вектора имеет вид 〈𝑢𝑢,∙〉 для некоторого вектора 𝑢𝑢. 

Общее уравнение плоскости: 

〈𝑢𝑢,𝑂𝑂𝑂𝑂������⃗ 〉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Рассмотрим треугольник (рис. 28.2) и обозначим  

https://vk.com/teachinmsu
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𝑂𝑂𝑂𝑂�����⃗ = 𝑒𝑒1 

𝑂𝑂𝑂𝑂�����⃗ = 𝑒𝑒2 

𝑂𝑂𝑂𝑂�����⃗ = 𝑒𝑒3 

〈𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖〉 = 1 

〈𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖〉 = −1 

 

Рис. 28.2 

Тогда 

〈[𝑒𝑒1, 𝑒𝑒2], [𝑒𝑒1, 𝑒𝑒2]〉 = �
〈𝑒𝑒1, 𝑒𝑒1〉 〈𝑒𝑒1, 𝑒𝑒2〉
〈𝑒𝑒1, 𝑒𝑒2〉 〈𝑒𝑒2, 𝑒𝑒2〉

� 

�
〈𝑒𝑒1, 𝑒𝑒1〉 〈𝑒𝑒1, 𝑒𝑒2〉
〈𝑒𝑒1, 𝑒𝑒2〉 〈𝑒𝑒2, 𝑒𝑒2〉

� = � 1 𝑐𝑐ℎ(𝑐𝑐)
𝑐𝑐ℎ(𝑐𝑐) 1 � 

� 1 𝑐𝑐ℎ(𝑐𝑐)
𝑐𝑐ℎ(𝑐𝑐) 1 � = −𝑠𝑠ℎ2(𝑐𝑐) 

𝑓𝑓3 =
1

𝑠𝑠ℎ(𝑐𝑐)
[𝑒𝑒1, 𝑒𝑒2] 

https://vk.com/teachinmsu
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Получим следующие тождества: 

𝑓𝑓3 =
[𝑒𝑒1, 𝑒𝑒2]
𝑠𝑠ℎ(𝑐𝑐)  

𝑓𝑓1 =
[𝑒𝑒2, 𝑒𝑒3]
𝑠𝑠ℎ(𝑎𝑎)  

𝑓𝑓2 =
[𝑒𝑒3, 𝑒𝑒1]
𝑠𝑠ℎ(𝑏𝑏)  

cos𝛼𝛼 = 〈𝑓𝑓2,𝑓𝑓3〉 

〈[𝑓𝑓2, 𝑓𝑓3], [𝑓𝑓2,𝑓𝑓3]〉 = � −1 − cos𝛼𝛼
− cos𝛼𝛼 −1 � = sin2 𝛼𝛼 

Подытожим, какие соотношения мы имеем: 

𝑓𝑓1 =
[𝑒𝑒2, 𝑒𝑒3]
𝑠𝑠ℎ(𝑎𝑎)  

𝑒𝑒1 =
[𝑓𝑓2,𝑓𝑓3]
sin𝛼𝛼

 

𝑐𝑐ℎ(𝑎𝑎) = 〈𝑒𝑒2, 𝑒𝑒3〉 

cos𝛼𝛼 = 〈𝑓𝑓2,𝑓𝑓3〉 

Аналогичные соотношения для других двух случаев можно получить циклической 
перестановкой. 

𝑒𝑒1 =
[𝑓𝑓2,𝑓𝑓3]
sin𝛼𝛼

 

[𝑓𝑓2,𝑓𝑓3]
sin𝛼𝛼

=
�[𝑒𝑒3, 𝑒𝑒1], [𝑒𝑒1, 𝑒𝑒2]�
sin𝛼𝛼 𝑠𝑠ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑐𝑐) 

�[𝑒𝑒3, 𝑒𝑒1], [𝑒𝑒1, 𝑒𝑒2]�
sin𝛼𝛼 𝑠𝑠ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑐𝑐) =

〈𝑒𝑒3, [𝑒𝑒1, 𝑒𝑒2]〉𝑒𝑒1 − 〈𝑒𝑒1, [𝑒𝑒1, 𝑒𝑒2]〉𝑒𝑒3
sin𝛼𝛼 𝑠𝑠ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑐𝑐)  

〈𝑒𝑒3, [𝑒𝑒1, 𝑒𝑒2]〉𝑒𝑒1 − 〈𝑒𝑒1, [𝑒𝑒1, 𝑒𝑒2]〉𝑒𝑒3
sin𝛼𝛼 𝑠𝑠ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑐𝑐) =

〈𝑒𝑒3, [𝑒𝑒1, 𝑒𝑒2]〉𝑒𝑒1
sin𝛼𝛼 𝑠𝑠ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑐𝑐) 

𝑒𝑒1 =
〈𝑒𝑒3, [𝑒𝑒1, 𝑒𝑒2]〉𝑒𝑒1

sin𝛼𝛼 𝑠𝑠ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑐𝑐) 

Следовательно,  

〈𝑒𝑒3, [𝑒𝑒1, 𝑒𝑒2]〉
sin𝛼𝛼 𝑠𝑠ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑐𝑐) = 1 

https://vk.com/teachinmsu
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Проделав подобное для других двух случаев, получим: 

sin𝛼𝛼
𝑠𝑠ℎ(𝑎𝑎) =

sin𝛽𝛽
𝑠𝑠ℎ(𝑏𝑏) =

sin 𝛾𝛾
𝑠𝑠ℎ(𝑐𝑐) 

Доказательство теоремы косинусов: 

cos 𝛾𝛾 = 〈𝑓𝑓1,𝑓𝑓2〉 

〈𝑓𝑓1,𝑓𝑓2〉 =
�[𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒3, 𝑒𝑒1]�
𝑠𝑠ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑏𝑏)  

�[𝑒𝑒2, 𝑒𝑒3], [𝑒𝑒3, 𝑒𝑒1]�
𝑠𝑠ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑏𝑏) =

�
〈𝑒𝑒2, 𝑒𝑒3〉 〈𝑒𝑒2, 𝑒𝑒1〉
〈𝑒𝑒3, 𝑒𝑒3〉 〈𝑒𝑒3, 𝑒𝑒1〉

�

𝑠𝑠ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑏𝑏)  

�
〈𝑒𝑒2, 𝑒𝑒3〉 〈𝑒𝑒2, 𝑒𝑒1〉
〈𝑒𝑒3, 𝑒𝑒3〉 〈𝑒𝑒3, 𝑒𝑒1〉

�

𝑠𝑠ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑏𝑏) =
�
𝑐𝑐ℎ(𝑎𝑎) 𝑐𝑐ℎ(𝑐𝑐)

1 𝑐𝑐ℎ(𝑏𝑏)�

𝑠𝑠ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑏𝑏)  

Получаем: 

cos 𝛾𝛾 𝑠𝑠ℎ(𝑎𝑎) 𝑠𝑠ℎ(𝑏𝑏) = 𝑐𝑐ℎ(𝑎𝑎) 𝑐𝑐ℎ(𝑏𝑏) − 𝑐𝑐ℎ(𝑐𝑐) 

Угловой дефект 
Выпуклым 𝑛𝑛-угольником на плоскости Лобачевского называется пересечение 
поверхности 𝕃𝕃2 с некоторым выпуклым 𝑛𝑛-гранным углом 𝒜𝒜 с вершиной в точке 𝑂𝑂 при 
условии, что 𝒜𝒜 содержится в области  

{(𝑡𝑡, 𝑥𝑥,𝑦𝑦)|𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 > 0} ∪ 0 

Определение. Угловым дефектом (выпуклого) 𝑛𝑛-угольника на плоскости Лобачевского 
называется разность между суммой его внешних углов и 2𝜋𝜋. 

Теорема. Угловой дефект любого (выпуклого) 𝑛𝑛-угольника на плоскости Лобачевского 
равен его площади. 

Доказательство: 

Угловой дефект аддитивен. Поэтому можно доказать это для маленького треугольника: 

𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 ≈
cos 𝛾𝛾 − cos(𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽)

sin 𝛾𝛾
 

cos 𝛾𝛾 − cos(𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽)
sin 𝛾𝛾

=
sin𝛼𝛼 sin𝛽𝛽

sin 𝛾𝛾
(𝑐𝑐ℎ(𝑐𝑐) − 1) 

sin𝛼𝛼 sin𝛽𝛽
sin 𝛾𝛾

(𝑐𝑐ℎ(𝑐𝑐) − 1) ≈
sin𝛼𝛼 sin𝛽𝛽

sin 𝛾𝛾
𝑐𝑐2

2
  

https://vk.com/teachinmsu
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sin𝛼𝛼 sin𝛽𝛽
sin 𝛾𝛾

𝑐𝑐2

2
≈

1
2

sin 𝛾𝛾 ∙ 𝑎𝑎𝑎𝑎 

Мы получили: 

𝜋𝜋 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 =
1
2

sin 𝛾𝛾 ∙ 𝑎𝑎𝑎𝑎 

Прямоугольный шестиугольник 

 

Рис. 28.3 Прямоугольный шестиугольник 

Теорема. Пусть 𝑎𝑎, 𝑏𝑏′, 𝑐𝑐,𝑎𝑎′, 𝑏𝑏, 𝑐𝑐′ — длины последовательных сторон шестиугольника на 
𝕃𝕃2, все углы которого прямые. Тогда 

𝑐𝑐ℎ(𝑎𝑎′) =
𝑐𝑐ℎ(𝑏𝑏)𝑐𝑐ℎ(𝑐𝑐) + 𝑐𝑐ℎ(𝑎𝑎)

𝑠𝑠ℎ(𝑏𝑏)𝑠𝑠ℎ(𝑐𝑐)
 

𝑐𝑐ℎ(𝑏𝑏′) =
𝑐𝑐ℎ(𝑐𝑐)𝑐𝑐ℎ(𝑎𝑎) + 𝑐𝑐ℎ(𝑏𝑏)

𝑠𝑠ℎ(𝑐𝑐)𝑠𝑠ℎ(𝑎𝑎)
 

𝑐𝑐ℎ(𝑐𝑐′) =
𝑐𝑐ℎ(𝑎𝑎)𝑐𝑐ℎ(𝑏𝑏) + 𝑐𝑐ℎ(𝑐𝑐)

𝑠𝑠ℎ(𝑎𝑎)𝑠𝑠ℎ(𝑏𝑏)
 

Доказательство: 

Пусть 𝒜𝒜 — шестигранный угол, сечением которого является данный шестиугольник, и 
пусть 𝑒𝑒1,𝑓𝑓2, 𝑒𝑒3,𝑓𝑓1, 𝑒𝑒2,𝑓𝑓3— единичные векторы, сопряженные относительно 𝛴𝛴 
плоскостям его последовательных граней и направленные относительно этих граней в 
ту же сторону, где находится 𝒜𝒜. (Построение, аналогичное рис. 28.3). 

Тогда  

𝑐𝑐ℎ(𝑎𝑎′) = 〈𝑒𝑒2, 𝑒𝑒3〉 

https://vk.com/teachinmsu
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〈𝑒𝑒2, 𝑒𝑒3〉 = 〈
[𝑓𝑓3,𝑓𝑓1]
𝑠𝑠ℎ(𝑏𝑏)

,
[𝑓𝑓1, 𝑓𝑓2]
𝑠𝑠ℎ(𝑐𝑐)

〉 

〈
[𝑓𝑓3,𝑓𝑓1]
𝑠𝑠ℎ(𝑏𝑏)

,
[𝑓𝑓1,𝑓𝑓2]
𝑠𝑠ℎ(𝑐𝑐)

〉 =
�
〈𝑓𝑓3,𝑓𝑓1〉 〈𝑓𝑓3,𝑓𝑓2〉
〈𝑓𝑓1,𝑓𝑓1〉 〈𝑓𝑓1, 𝑓𝑓2〉

�

𝑠𝑠ℎ(𝑏𝑏)𝑠𝑠ℎ(𝑐𝑐)
 

�
〈𝑓𝑓3,𝑓𝑓1〉 〈𝑓𝑓3, 𝑓𝑓2〉
〈𝑓𝑓1,𝑓𝑓1〉 〈𝑓𝑓1,𝑓𝑓2〉

�

𝑠𝑠ℎ(𝑏𝑏)𝑠𝑠ℎ(𝑐𝑐)
=
�
𝑐𝑐ℎ(𝑏𝑏) 𝑐𝑐ℎ(𝑎𝑎)
−1 𝑐𝑐ℎ(𝑐𝑐)�

𝑠𝑠ℎ(𝑏𝑏)𝑠𝑠ℎ(𝑐𝑐)
 

То есть  

𝑐𝑐ℎ(𝑎𝑎′) =
𝑐𝑐ℎ(𝑏𝑏)𝑐𝑐ℎ(𝑐𝑐) + 𝑐𝑐ℎ(𝑎𝑎)

𝑠𝑠ℎ(𝑏𝑏)𝑠𝑠ℎ(𝑐𝑐)
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Лекция 29. Расстояние между прямыми. Параболический 
поворот. Изометрия 

Расстояние между непересекающимися прямыми на 
плоскости Лобачевского 

Пары прямых на плоскости Лобачевского бывают трех типов: 

1. Пересекающиеся (Рис. 29.1) 
2. Имеют одну общую точку в абсолюте (асимптотически параллельные прямые) 

(Рис. 29.2) 
3. Прямые и точки абсолюта не пересекаются (Рис. 29.3) 

 
   Рис. 29.1                                             Рис. 29.2                                       Рис. 29.3 

Рассмотрим прямые в трехмерном пространстве Минковского. 

Прямые 𝑙𝑙1 и 𝑙𝑙2 – пересечения с плоскостями 𝜋𝜋1 и 𝜋𝜋2, проходящими через центр 
двуполостного гиперболоида. (Рис. 29.4) 

𝑙𝑙𝑖𝑖 = 𝐿𝐿3 ∩ П𝑖𝑖 

 
Рис. 29.4 

https://vk.com/teachinmsu
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Данные плоскости между собой пересекаются по прямой m, образуя двугранный угол. 
(Рис. 29.5) 

 
 

Рис. 29.5 
 

Какой из трех случаев реализуется, определяется тем, пересекает ли прямая m 
гиперболоид. 

• Если прямая m пересекает плоскость Лобачевского, то имеет место первый 
случай; 

• Если прямая не задевает гиперболоид, то реализуется третий случай; 
• Если прямая m идет по асимптоте, то мы будем иметь дело со вторым случаем. 

Рассмотрим подробнее случай 3 (непересекающиеся и не асимптотически 
параллельные прямые). Интересующий нас вопрос: как найти общую длину 
перпендикуляра? (Рис. 29.6) 

 
Рис. 29.6 
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Возьмем два вектора 𝑢𝑢1����⃗  и 𝑢𝑢2����⃗ , которые сопряжены плоскостям 𝜋𝜋1 и 𝜋𝜋2. Рассмотрим 
проекцию вдоль прямой m (рис. 29.7):  

                                                                
                                                                  Рис. 29.7 
 
Сопряженное направление к первой плоскости – направление касательной в точке 𝑀𝑀1 
(при стремлении плоскостей 𝜋𝜋1 и 𝜋𝜋2 к асимптотическим направлениям векторы 𝑢𝑢1����⃗  и 𝑢𝑢2����⃗  
тоже будут стремиться к асимптотическим направлениям). 
Далее через т. О параллельно 𝑢𝑢1����⃗  и 𝑢𝑢2����⃗   проведем диаметральную плоскость 𝜋𝜋. 
Аналогия со сферической геометрией (рис. 29.8): 

 
 
 
 
 
 
 
 
 
 
 
 
 

Рис. 29.8 
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Плоскость, проходящая через 𝑢𝑢1����⃗  и 𝑢𝑢2����⃗  , пересечет сферу по экватору, т.е. по общему 
перпендикуляру к меридиану.  
 
Оказывается, что этот факт чисто алгебраический. Тогда, возвращаясь к Рис. 29.7, в 
точках пересечения 𝑙𝑙𝑖𝑖 с 𝜋𝜋𝑖𝑖 ( обозначим их О1 и О2) линия пересечения будет подходить 
к 𝑙𝑙1 и 𝑙𝑙2 по меридиану. Таким образом, общим перпендикуляром является дуга О1О2. 
 
Введем далее вектора: 

𝑣𝑣1����⃗  ~ 𝑢𝑢2����⃗ −
< 𝑢𝑢1,𝑢𝑢2 >
< 𝑢𝑢1,𝑢𝑢1 >

𝑢𝑢1����⃗  

𝑣𝑣2����⃗  ~ 𝑢𝑢1����⃗ −
< 𝑢𝑢1,𝑢𝑢2 >
< 𝑢𝑢2,𝑢𝑢2 >

𝑢𝑢2����⃗  

< 𝑢𝑢1,𝑢𝑢1 > = < 𝑢𝑢2,𝑢𝑢2 > = 1 
< 𝑢𝑢1,𝑢𝑢2 > = 𝑎𝑎 > 0 

 

Длина перпендикуляра 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ < 𝑣𝑣1, 𝑣𝑣2 > =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ <𝑣𝑣1′,𝑣𝑣2′>
�<𝑣𝑣1′,𝑣𝑣1′><𝑣𝑣2′,𝑣𝑣2′>

  , где 

                                    < 𝑣𝑣1′, 𝑣𝑣1′ > =  −1 − а2 + 2а2 = а2 − 1 
< 𝑣𝑣2′, 𝑣𝑣2′ > = а2 − 1 

< 𝑣𝑣1′, 𝑣𝑣2′ > = а − а − а + а3 = а(а2 − 1) 
 
Имеем, длина перпендикуляра: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ(а) . 

Параболический поворот 
Параболический поворот – аффинное преобразование, сохраняющее параболу. 

Г: 𝑦𝑦 = 𝑥𝑥2 

Сколько существует таких преобразований? Когда мы говорим, что парабола переходит 
сама в себя, это значит, что асимптотическое направление остается неизменным. 
Свобода перемещения сохраняется для оставшихся двух точек. 

Утверждение: Пусть 𝑥𝑥 → а𝑥𝑥 + 𝑏𝑏 – произвольное аффинное преобразование прямой, т.е. 
𝑎𝑎 ≠ 0. Тогда  

1) существует единственное аффинное преобразование плоскости вида (𝑥𝑥,𝑦𝑦) →
�𝑎𝑎𝑎𝑎 + 𝑏𝑏, 𝑝𝑝(𝑥𝑥,𝑦𝑦)�, сохраняющее Г; 

2) любое аффинное преобразование, сохраняющее Г, имеет такой вид. 

Доказательство: 

Запишем общий вид аффинного преобразования: 

�
𝑥𝑥
𝑦𝑦�

→ �
𝑐𝑐11 𝑐𝑐12
𝑐𝑐21 𝑐𝑐22� �

𝑥𝑥
𝑦𝑦�

+ �
𝑑𝑑1
𝑑𝑑2
� 
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Прообраз Г: (𝑐𝑐11𝑥𝑥 + 𝑐𝑐12𝑦𝑦 + 𝑑𝑑1)2 − (𝑐𝑐21𝑥𝑥 + 𝑐𝑐22𝑦𝑦 + 𝑑𝑑2) = 0 .  

Это уравнение должно быть эквивалентно 𝑥𝑥2 − 𝑦𝑦 = 0 ⇒  𝑐𝑐12 = 0, 𝑐𝑐11 = 𝑎𝑎,𝑑𝑑1 =
𝑏𝑏 (𝑎𝑎 и 𝑏𝑏 − произвольные числа 𝑎𝑎 ≠ 0).  

Должны сократиться свободный член ⇒ 𝑑𝑑2 =  𝑑𝑑1
2 и коэффициент перед x ⇒ 𝑐𝑐21 =

2𝑐𝑐11𝑑𝑑1. Осталось выразить коэффициент перед y: 𝑐𝑐22 = 𝑐𝑐112. 

 Замечание: парабола есть аффинная прямая, на которой нет меры длины. 

Изобразим параболу и координатную сетку (Рис.29.8). Обозначив любые две точки на 
этой же параболе, как точки с координатами (0,0) и (1,1), можно по ним подобрать 
другую систему координат, в которой данная парабола будет тоже задаваться 
уравнением 𝑦𝑦 = 𝑥𝑥2 (Рис. 29.9) 

Несмотря на то, что на параболе нет канонически определённой меры длины, на ней 
есть понятие поворота. 

Параболический поворот – это описанное выше преобразование с 𝑐𝑐11 = 1. После 
подстановки найденных коэффициентов многочлен (𝑐𝑐11𝑥𝑥 + 𝑐𝑐12𝑦𝑦 + 𝑑𝑑1)2 − (𝑐𝑐21𝑥𝑥 +
𝑐𝑐22𝑦𝑦 + 𝑑𝑑2) преобразуется в 𝑐𝑐112(𝑥𝑥2 − 𝑦𝑦), т.е. парабола растянется. При выборе 𝑐𝑐11 =
1 мы будем наблюдать только сдвиг 𝑥𝑥 → 𝑥𝑥 + 𝑑𝑑1 

 

Рис.29.8 
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Рис.29.9 

Длина дуги орицикла 
Вернемся на плоскость Лобачевского. 

�𝑡𝑡
2 − 𝑥𝑥2 − 𝑦𝑦2 − 1 = 0

𝑡𝑡 > 0
 

 

 
Рис. 29.10 
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Орицикл – парабола на 𝐿𝐿2. Так как в этом случае мы имеем дело с фиксированным 
многочленом 𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 − 1, то на орициклах возникает длина.  

Припишем длину дуге орицикла:  

Длина дуги орицикла с концами А, В:   �−〈АВ�����⃗ ,АВ�����⃗  〉 (рис.29.9) 

〈АВ�����⃗ ,АВ�����⃗  〉 < 0, т.к АВ�����⃗ = ОВ�����⃗ − ОА�����⃗ , 2 − 2сℎ|𝐴𝐴𝐴𝐴| = 〈АВ�����⃗ ,АВ�����⃗  〉 

|𝐴𝐴𝐴𝐴| ≈ �−〈АВ�����⃗ ,АВ�����⃗  〉 при условии |𝐴𝐴𝐴𝐴| ≪ 1 

Доказательство: 

ch|𝐴𝐴𝐴𝐴| = 〈𝑂𝑂𝑂𝑂�����⃗ ,𝑂𝑂В�����⃗  〉 = −1
2
〈АВ�����⃗ ,АВ�����⃗  〉 + 1 

ch|𝐴𝐴𝐴𝐴| ≈ 1 + |𝐴𝐴𝐴𝐴|2

2
 

Приравнивая эти выражения, получаем |𝐴𝐴𝐴𝐴| ≈ �−〈АВ�����⃗ ,АВ�����⃗  〉. 

Орицикл обозначим Г и введем систему координат с началом отсчета в т.О так, чтобы 
Г = П ∩ 𝐿𝐿2, П:  𝑤𝑤 = 1 (рис.29. 10) Тогда Г в П: 𝑢𝑢2 = 𝑣𝑣, т.е. 𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 − 1 = −𝑢𝑢2 + 𝑣𝑣 
при w = 1 (знак в правой части уравнения обеспечен отрицательным скалярным 
произведением базисного вектора, касательного к параболе). 

𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 − 1 = −𝑢𝑢2 + 𝑣𝑣 + (𝑤𝑤 − 1)(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿) -центр должен быть в т.О, 
т.е. 𝑣𝑣- должно сократиться ⇒ 

                               (𝛼𝛼 = 0, 𝛿𝛿 = 1, 𝛾𝛾 = 1,𝛽𝛽 = 1) 

−𝑢𝑢2 + 𝑣𝑣 + (𝑤𝑤 − 1)(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 + 𝛿𝛿) = −𝑢𝑢2 + 𝑤𝑤2 + 𝑤𝑤𝑤𝑤 − 1 

Тогда 𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 = −𝑢𝑢2 + 𝑤𝑤2 + 𝑤𝑤𝑤𝑤. Далее переходим в плоскость  𝑢𝑢, 𝑣𝑣,𝑤𝑤 и выберем 
на параболе следующие точки А(𝑢𝑢1,𝑢𝑢12, 1) и В(𝑢𝑢2,𝑢𝑢22, 1)(рис. 29. 11) . 
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Рис. 29.11 

АВ�����⃗  в системекоординат  𝑢𝑢, 𝑣𝑣,𝑤𝑤: (𝑢𝑢2 − 𝑢𝑢1,𝑢𝑢22 − 𝑢𝑢12, 0) 

Чтобы узнать скалярный квадрат АВ�����⃗ , подставим его координаты в −𝑢𝑢2 + 𝑤𝑤2 + 𝑤𝑤𝑤𝑤: 

                                                            〈АВ�����⃗ ,АВ�����⃗  〉 = −(𝑢𝑢1 − 𝑢𝑢2)2  

Изометрические преобразования плоскости Лобачевского 
Изометрия – биекция 𝑓𝑓: 𝐿𝐿2 →  𝐿𝐿2, т.ч. |𝑓𝑓(𝐴𝐴)𝑓𝑓(𝐵𝐵)| = |𝐴𝐴𝐴𝐴| ∀ 𝐴𝐴,𝐵𝐵 ∈ 𝐿𝐿2. 

Воспользуемся моделью Клейна: изометрия сохраняет прямые, т.к. три точки, не 
лежащие на одной прямой, если для них выполнено нестрогое неравенство 
треугольника. 

В этой модели |𝐴𝐴𝐴𝐴| = 1
2

|ln (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)| (Рис. 29.12 ).  

 
Рис. 29.12 

Утверждение. Из того, что расстояние связано с двойным отношением и сохраняется, 
следует, что сохраняется двойное отношение любых четырех точек на прямой, т.е. 
изометрия сохраняет двойное отношение. 
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Таким образом, изометрия плоскости Лобачевского в модели Клейна - проективное 
преобразование плоскости, ограниченное на круг, что в свою очередь является 
проективным преобразованием прямой. 

𝐼𝐼𝐼𝐼𝐼𝐼(𝐿𝐿2) = проективное преобразование плоскости, сохраняющее окружность 

 𝑥𝑥2 +  𝑦𝑦2 = 1 = проективное преобразование прямой 

Преобразование плоскости Лобачевского корректно определяет преобразование 
абсолюта как проективной прямой. 

В частности, если взять на плоскости Лобачевского любые три точки на абсолюте и 
соединить их между собой геодезическими, то получится «идеальный треугольник» 
площадью 𝜋𝜋 (Рис. 29.13). 

 

 
Рис. 29.13 

 
О(1,2) =аффинное преобразование 𝑅𝑅2, сохраняющие скалярное псевдоевклидовое 
произведение и начала координат (матрицы 3 × 3). Эти преобразования сохраняют весь 
гиперболоид. 

О+(1,2) – преобразования, сохраняющие половинки гиперболоида. 

РО(1,2) − преобразования, которые сохраняют конус t2 − x2 − y2 = 0 с точностью до 
множителей (т.е. проективно, что отражает Р). 

РGL(2) – преобразование проективной прямой. 

Все эти группы – одна и та же группа.  
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Лекция 30. Классификация движений плоскости 
Лобачевского. Комплексная проективная прямая 

Напоминание прошлой лекции 
На прошлой лекции было обнаружено, что группа проективных преобразований 
прямой 𝑃𝑃𝑃𝑃𝑃𝑃(2) – это тоже самое, что группа движений плоскости Лобачевского. 

Было замечено, что каждое движение плоскости Лобачевского, если рассматривать его 
в модели Клейна, оказывается ограничением проективного преобразования плоскости 
на круг. В частности, его можно продолжить на границу круга – овал, имеющий 
структуру проективной прямой. 

Замечание: Овал на проективной плоскости разделяет ее на два неравноправных куска. 
Из точек внешнего куска можно провести касательные, а из точек внутреннего – нет ⇒ 
проективное преобразование не может поменять их местами, т.к. они принципиально 
разные. 

В свою очередь, движения плоскости Лобачевского представляю собой аффинные 
преобразования 𝑅𝑅1,2, сохраняющие начало координат и конус t2 − x2 − y2 = 0. 

Обозначение: РО(1,2)  ( «Р» − с точностью до пропорциональности, (1,2) − количество 
1 и -1 на диагонали) 

⇓ 

Соответствующая группа матриц А∈ 𝐺𝐺ℎ(3):  �
1 0 0
0 −1 0
0 0 −1

� = 𝐴𝐴т �
1 0 0
0 −1 0
0 0 −1

� А 

С другой стороны, группа движения плоскости Лобачевского это то же самое, что 
группа аффинных преобразований 𝑅𝑅1,2, сохраняющие начало координат и t2 − x2 −
y2 − 1 = 0, t > 0 

Обозначение: О+(1,2) («+» - половина гиперболоида) 

 Соответствующие матрицы: 

�
1 0 0
0 1 0
0 0 1

� = 𝐴𝐴т �
1 0 0
0 1 0
0 0 1

�А,        при условии А = �
a11 > 0 … …

… … …
… … …

  � (условие 

отражает требование t > 0) 

Таким образом,  𝑃𝑃𝑃𝑃𝑃𝑃(2),РО(1,2),О+(1,2) − изоморфные группы. 

Гомоморфизм PGL(2) => PO(1,2) 
Изобразим трехмерное пространство Минковского 𝑅𝑅1,2 изобразим матрицами: 

                                                (𝑡𝑡, 𝑥𝑥,𝑦𝑦) ~ �
𝑥𝑥 −𝑡𝑡 + 𝑦𝑦

𝑡𝑡 + 𝑦𝑦 −𝑥𝑥 �,  tr=0  
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t2 − x2 − y2 = 𝑑𝑑𝑑𝑑𝑑𝑑 �
𝑥𝑥 −𝑡𝑡 + 𝑦𝑦

𝑡𝑡 + 𝑦𝑦 −𝑥𝑥 � 

С точностью до пропорциональности, если trA=0 и detA=0, то 

1) левый нижний элемент матрицы не равен 0 

 [A]=�s −s2
1 −s

� = �s1� [1 −s]   

2) левый нижний элемент матрицы равен 0 

[A]=�0 1
0 0�, s=inf 

Получили параметризацию асимптотического конуса. 

Сравнивая теперь это с �
𝑥𝑥 −𝑡𝑡 + 𝑦𝑦

𝑡𝑡 + 𝑦𝑦 −𝑥𝑥 �, получаем: 𝑡𝑡 = 1+s2

2
 

𝑥𝑥 = 𝑠𝑠 

𝑦𝑦 =
1 − s2

2
 

Рациональная параметризация окружности в аффинной карте:    �
2𝑠𝑠

1+s2
1−s2

1+s2
� 

Замена: 𝑠𝑠 →  𝑎𝑎𝑎𝑎+𝑏𝑏
𝑐𝑐𝑐𝑐+𝑑𝑑

    ⇒  �s1� →  �a b
c d� �

s
1�  и [1 −s] → [1 −s] �a b

c d�
−1

   (предлагается 

проверить).  

Тогда проективное преобразование на всем пространстве 𝑅𝑅1,2, сохраняющее конус 

�
𝑥𝑥 −𝑡𝑡 + 𝑦𝑦

𝑡𝑡 + 𝑦𝑦 −𝑥𝑥 � → �a b
c d� �

𝑥𝑥 −𝑡𝑡 + 𝑦𝑦
𝑡𝑡 + 𝑦𝑦 −𝑥𝑥 � �a b

c d�
−1

  =  � 𝑥𝑥′ −𝑡𝑡′ + 𝑦𝑦′
𝑡𝑡′ + 𝑦𝑦′ −𝑥𝑥′ � 

След и определитель новой матрицы совпадают со старыми. 

 �
𝑡𝑡′
𝑥𝑥′
𝑦𝑦′
� →

⎣
⎢
⎢
⎡
𝑎𝑎2+𝑏𝑏2+𝑐𝑐2+𝑑𝑑2

2
𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 −𝑎𝑎2+𝑏𝑏2−𝑐𝑐2+𝑑𝑑2

2
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 −𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏

−𝑎𝑎2−𝑏𝑏2+𝑐𝑐2+𝑑𝑑2

2
−𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 𝑎𝑎2−𝑏𝑏2−𝑐𝑐2+𝑑𝑑2

2 ⎦
⎥
⎥
⎤

 ∈ РО(1,2), где определитель этой 

матрицы равен кубу определителя исходной. 

Если 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 = ±1 , то матрица будет принадлежать О(1,2). Если учесть, что левый 

верхний элемент 𝑎𝑎2+𝑏𝑏2+𝑐𝑐2+𝑑𝑑2

2
> 0, то, рассматривая матрицы без учета 

пропорциональности, можно получить О+(1,2). 
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Классификация проективных преобразований прямой 
(движений плоскости Лобачевского) 

На прошлой лекции обсуждалось, что, если задать образы трех различных точек при 
проективном преобразовании прямой, то это преобразование тем самым будет 
полностью определено. Это означает, что нетривиальное нетождественное проективное 
преобразование прямой может иметь не больше 2 неподвижных точек. 

Поэтому тип преобразование определяется количеством неподвижных точек: 

• 0 неподвижных точек – эллиптические преобразования 
• 1 неподвижная точка – параболические преобразования 
• 2 неподвижные точки – гиперболические преобразования 

Определение: две матрицы 𝐴𝐴 и 𝐴𝐴′ подобны, если существует невырожденная матрица 
С: 𝐴𝐴′ = С𝐴𝐴𝐶𝐶−1 

Классификацию будем проводить с точностью до подобия. 

Теорема: любая матрица �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑�,  𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 = 1, подобна ровно одной из: 

1) �1 0
0 1�                                                            5) �−𝑐𝑐ℎ𝜑𝜑 −𝑠𝑠ℎ𝜑𝜑

−𝑠𝑠ℎ𝜑𝜑 −𝑐𝑐ℎ𝜑𝜑� 

2) �−1 0
0 −1�                                                      6) �−1 −1

0 −1� 

3) �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � , где 𝜑𝜑 ∈ (0,𝜋𝜋)                   7) �1 1

0 1� 

4) �𝑐𝑐ℎ𝜑𝜑 𝑠𝑠ℎ𝜑𝜑
𝑠𝑠ℎ𝜑𝜑 𝑐𝑐ℎ𝜑𝜑� 

Доказательство 

Если �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� скалярная, то она  ± �1 0

0 1�, т.к. скалярная матрица может быть подобна 

только самой себе. 

Если ответ отрицательный, то проверяем след: 𝑎𝑎 + 𝑑𝑑: 

1. |𝑎𝑎 + 𝑑𝑑| < 2.   Тогда 𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎+𝑑𝑑
2

. 

Подбираем матрицу С, т.ч. С �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑�  С  

Матрица поворота будет иметь такой вид в произвольном базисе из 
ортогональных векторов равной длины. Тогда один из этих векторов можно 
выбрать произвольным ⇒ 

�1 х
0 𝑦𝑦  � �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

1 𝑥𝑥
0 𝑦𝑦 �  ⇒   �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑎𝑎

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑐𝑐  
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�
1 𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  ��𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑��
1 𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 � 

 
Проверка:  

−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑎𝑎
𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

+
𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

0 = −𝑠𝑠𝑠𝑠𝑛𝑛2𝜑𝜑 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑠𝑠2𝜑𝜑 − 𝑎𝑎2 + 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑏𝑏𝑏𝑏 = 𝑎𝑎𝑎𝑎 + 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎2

= −𝑎𝑎𝑎𝑎 + 𝑎𝑎(𝑎𝑎 + 𝑑𝑑) − 𝑎𝑎2 = −𝑎𝑎(𝑎𝑎 + 𝑑𝑑) + 𝑎𝑎(𝑎𝑎 + 𝑑𝑑) = 0 
2. С матрицами 4, 5 можно провести аналогичные вычисления. 
3.  Рассмотрим 7 матрицу. 

            Подбираем матрицу С, т.ч. С �1 1
0 1� = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� С 

            Здесь необходимо начинать со второго столбца. Выберем его произвольно: 

             �𝑥𝑥 0
𝑦𝑦 1  � �1 1

0 1� = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

𝑥𝑥 0
𝑦𝑦 1 �  ⇒  После перемножения матриц             

             �
… 𝑥𝑥
… 𝑦𝑦 + 1  � = �… 𝑏𝑏

… 𝑑𝑑� 

            Таким образом, С = � 𝑏𝑏 0
𝑑𝑑 − 1 1  � 

Замечание: матрица С не должна быть вырожденной. Но, если 𝑏𝑏 = 0, то за счет того, 
что матрица не скалярная, всегда можно подобрать подобие, такое, что в новой матрице 
этот элемент будет отличен от 0. 

Замечание: второй столбец матрицы С может быть любым ненулевым. 

Замечание: единственность подобия следует из того, что следы матриц 1-7 различны. 

Теорема: Любая матрица �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� с 𝑎𝑎𝑎𝑎 − 𝑑𝑑с = −1 подобна ровно одной матрицы вида 

�
𝜆𝜆 0
0 −1

𝜆𝜆
� , где 𝜆𝜆 > 0. 

Доказательство:  

𝜆𝜆 −корень 𝜆𝜆 − 1
𝜆𝜆

= 𝑎𝑎 + 𝑑𝑑. Выберем первый столбец произвольно: 

�
𝜆𝜆 0

0 −
1
𝜆𝜆
� �1 𝑥𝑥

1 𝑦𝑦� = �1 𝑥𝑥
1 𝑦𝑦� �

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑�  ⇒ �

𝜆𝜆𝜆𝜆
−𝑦𝑦𝜆𝜆

� = �
𝑏𝑏 + 𝑑𝑑𝑑𝑑
𝑏𝑏 + 𝑑𝑑𝑑𝑑�
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Находим:  �
𝑥𝑥 = 𝑏𝑏

𝜆𝜆−𝑑𝑑

𝑦𝑦 = −𝑏𝑏
𝑑𝑑+1𝜆𝜆

 

Замечание: во всех случаях, когда знаменатель обращается в 0, можно подобрать 
подобие, которое позволяет этого избежать. 

Запишем как будут выглядеть эти матрицы на плоскости Лобачевского: 

1) �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � → �

1 0 0
0 𝑐𝑐𝑐𝑐𝑐𝑐2𝜑𝜑 −𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑
0 −𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐2𝜑𝜑

� − тоже матрица поворота по своей 

сути. 

2) ± �𝑐𝑐ℎ𝜑𝜑 𝑠𝑠ℎ𝜑𝜑
𝑠𝑠ℎ𝜑𝜑 𝑐𝑐ℎ𝜑𝜑�  → �

𝑐𝑐ℎ2𝜑𝜑 𝑠𝑠ℎ2𝜑𝜑 0
𝑠𝑠ℎ2𝜑𝜑 𝑐𝑐ℎ2𝜑𝜑 0

0 0 1
� − матрица гиперболического поворота 

3) ± �1 1
0 1� → �

3
2

1 1
2

1 1 1
−1

2
−1 1

2

 � Посмотрим, как выглядит результат умножения на 

такую матрицу: 

⎝

⎜
⎛

3
2

1
1
2

1 1 1

−
1
2

−1
1
2

 

⎠

⎟
⎞
�
𝑡𝑡
𝑥𝑥
𝑦𝑦
� = �

𝑡𝑡
𝑥𝑥
𝑦𝑦
� +

𝑡𝑡 + 𝑦𝑦
2 �

1
2
−1

� + 𝑥𝑥 �
1
0
−1

� 

Такие преобразования с одной точкой на абсолюте называются гиперболическими. 
Если взять аффинную карту с неподвижной точкой на бесконечности, то мы получим 
аффинное преобразование (сдвиг). 

В нашем случае сохраняется 𝑡𝑡 + 𝑦𝑦.   Заметим, 𝑡𝑡 + 𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∩  𝐿𝐿2 − плоскости , 
сопряженные направлению (1,0,1) (Рис. 30.1) 

 
Рис. 30.1 
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Каждая такая плоскость – орицикл и в каждом из них происходит сдвиг, 
параболический поворот. 

В модели Пуанкаре эти преобразования выглядят так: 

1. Гиперболический поворот в плоскости двух отмеченных на рисунке (Рис.30.2). 
асимптотических направлений. Вдоль каждых из изображенных дуг происходит 
сдвиг от одной точки до другой. 

 
Рис. 30.2 

 
2. Параболические преобразования (Рис.30.3). На бесконечности есть одна 

фиксированная точка и на каждом из орициклов происходит сдвиг. 

 
Рис. 30.3 

 

4) �𝑒𝑒
𝜑𝜑 0

0 −𝑒𝑒−𝜑𝜑� → �
𝑐𝑐ℎ2𝜑𝜑 0 𝑠𝑠ℎ2𝜑𝜑

0 −1 0
𝑠𝑠ℎ2𝜑𝜑 0 𝑐𝑐ℎ2𝜑𝜑

� −тоже гиперболический поворот, но с 

переворотом относительно инвариантной прямой. 

Таким образом, мы знаем все виды движения плоскости Лобачевского: поворот, 
гиперболический поворот, гиперболический поворот с отражением, параболическое 
преобразование. 
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Комплексная проективная прямая 

В данном курсе плоскость комплексных чисел будет называться прямой, т.к. на 
плоскости нужна одна комплексная координата. То есть комплексная плоскость над 
полем комплексных чисел является одномерным объектом. 
ℂ −аффинная прямая над ℂ 
ℂ� = ℂ ∪ {∞ } −пополненная комплексная прямая 
(𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4) и проективные преобразования определяются по аналогии с вещественным 
случаем. 
Если мы смотрим на ℂ  как на евклидову плоскость, то обнаруживаем, что существует 
связь между проективными преобразованиями комплексной прямой и плоскости. 
 

Обобщенная окружность 

Определение: Обобщенная окружность в ℂ� – это либо окружность, либо вещественная 
пополненная прямая.  
Утверждение: (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4) ∈ ℝ  ⟺  𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4  лежат на одной обобщенной 
окружности.  

Пояснение: (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4) = (𝑧𝑧3−𝑧𝑧1)(𝑧𝑧4−𝑧𝑧2)
(𝑧𝑧3−𝑧𝑧2)(𝑧𝑧4−𝑧𝑧1)

 

Пояснение: «Точки лежат на одной окружности» ↔ угол от 𝑧𝑧1 − 𝑧𝑧3  до 𝑧𝑧2 − 𝑧𝑧3 (mod 𝜋𝜋) 
углу от 𝑧𝑧1 − 𝑧𝑧4  до 𝑧𝑧2 − 𝑧𝑧4 (Рис. 30.4) 

 

Рис. 30.4 

Заметим, что у нас образовалось два двойных отношения на окружности: двойное 
отношение точек овала (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)Г на вещественной плоскости и (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)ℂ�. 
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Утверждение: (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)Г = (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)ℂ� 

Доказательство: 

Докажем для окружности, проходящей через начало координат (Рис. 30.5). Рассмотрим 
отображение 𝑧𝑧 →  1

𝑧̅𝑧
 . Начало координат перейдет в бесконечность, Г переходит в 

прямую с бесконечно удаленной точкой. 

Т.к. отображение дробно-линейное с комплексным сопряжением, а (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)Г −
 вещественное, то оно сохраняет (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)ℂ� на Г.  

При этом 1
𝑧̅𝑧

= 𝑧𝑧
|𝑧𝑧|2

 ⟹ любые другие точки окружности переходят на ту же прямую и 

сохраняется (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)Г. 

На прямой L (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)Г и (𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4)ℂ� совпадут. 

 

Рис. 30.5 
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Лекция 31. Проективное преобразование комплексной 
прямой. Пространство Лобачевского, его движения 

Проективное преобразование комплексной прямой и его 
общий вид 

На прошлой лекции мы ввели понятие пополненной прямой ℂ� = ℂ ∪ {∞} и по аналогии 
с вещественным случаем определили проективное преобразование. 

Общий вид проективных преобразований: 𝑧𝑧 →  𝑎𝑎𝑎𝑎+𝑏𝑏
𝑐𝑐𝑐𝑐+𝑑𝑑

 , где �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� − произвольная 

невырожденная комплексная матрица, определенная с точностью до множителя. (∈
 PGL(2, ℂ)) 

Свойства проективных преобразований: 

1. Переводят обобщенную окружность в обобщенную окружность. 
2. Сохраняет двойное отношение на обобщенных окружностях. 
3. Сохраняет углы пересечений окружностей. 

Доказательство пункта 3: 
Любое дробно-линейное преобразование общего вида 𝑧𝑧 →  𝑎𝑎𝑎𝑎+𝑏𝑏

𝑐𝑐𝑐𝑐+𝑑𝑑
  раскладывается 

в преобразование вида: 𝑧𝑧 →  𝑎𝑎𝑎𝑎 + 𝑏𝑏 и 𝑧𝑧 → 1
𝑧𝑧
 ,   т.к. 𝑎𝑎𝑎𝑎+𝑏𝑏

𝑐𝑐𝑐𝑐+𝑑𝑑
= 𝑏𝑏′

𝑐𝑐𝑐𝑐+𝑑𝑑
+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 
𝑧𝑧 →  𝑎𝑎𝑎𝑎 + 𝑏𝑏 −преобразования подобия. Рассмотрим подробнее z → 1

z
 . 

Докажем, что в результате преобразования две произвольные окружности 
Г1 и Г2 перейдут в две другие окружности, пересекающиеся под тем же углом (Рис 
31.1). Изобразим дополнительно две окружности Г1′и Г2′ , имеющие те же 
касательные и проходящие через начало координат.  
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Рис. 31.1 

Далее будем проводить рассуждения для преобразования 𝑧𝑧 → 1
𝑧̅𝑧

= 𝑧𝑧
|𝑧𝑧|2

− инверсия 

(Рис. 31.2). 

 

Рис. 31.2 

Окружность, проходящая через начало координат, при таком преобразовании не 
может перейти в окружность, она перейдет в прямую, направление которой совпадет 
с направлением касательной к окружности в точке начала координат. (Рис.31.4). 

https://vk.com/teachinmsu


 

 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   
 ДЫННИКОВ ИВАН АЛЕКСЕЕВИЧ 

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ                                                                                                                                                       
ПРОФ РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ                                                                                                                                                 

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU 

 

199 
 
 

 

 

Рис. 31.4 

Тогда Г2′ и Г1′ перейдут в следующие прямые (не учитываем их положение, только 
направление), параллельные касательным (Рис. 31.3). Углы между Г2′ и Г1′ равны 
углу между касательными.  

 

                                                           Рис. 31.3 
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Преобразование  𝑧𝑧 →  𝑎𝑎𝑧̅𝑧+𝑏𝑏
𝑐𝑐𝑧̅𝑧+𝑑𝑑

  тоже обладает свойствами 1-3.  

Определение. Будем называть преобразования со свойствами 1,2,3 – конформными. 

Конформные преобразования сферы 

Теорема: любая биекция ℂ�  →  ℂ� со свойствами 1,2,3 имеет вид 𝑧𝑧 →  𝑎𝑎𝑎𝑎+𝑏𝑏
𝑐𝑐𝑐𝑐+𝑑𝑑

 или 𝑧𝑧 →  𝑎𝑎𝑧̅𝑧+𝑏𝑏
𝑐𝑐𝑧̅𝑧+𝑑𝑑

 . 

Доказательство: 

Проективное отображение прямой определяется образами трех точек. 

Пусть 𝜑𝜑 обладает свойствами 1,2,3. Возьмем произвольные три точки 𝜑𝜑(0),𝜑𝜑(1),𝜑𝜑(∞).  

∃! Проективное преобразование 𝜓𝜓, такое что  

𝜓𝜓(0) = 𝜑𝜑(0) 

𝜓𝜓(1) = 𝜑𝜑(1) 

𝜓𝜓(∞) = 𝜑𝜑(∞) 

Рассмотрим 𝜓𝜓−1 ∘ 𝜑𝜑, обладающее свойствами 1, 2, 3 и  

0 → 0 

1 → 1 

∞ → ∞ 

Отсюда следует, что 𝑥𝑥 → 𝑥𝑥  для ∀𝑥𝑥 ∈ ℝ. В какую точку перешла мнимая единица? 

Проведем через точку i всевозможные окружности, которые пересекают вещественную 
прямую перпендикулярно (Рис. 31.4). Каждая такая окружность может перейти только 
сама в себя. Таким образом, i должна перейти в точку пересечения этих окружностей: 

𝑖𝑖 → 𝑖𝑖 или − 𝑖𝑖 
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Рис. 31.4 

После этого на каждой окружности найдено три точки, образы которых 
зафиксированы. 𝜓𝜓−1 ∘ 𝜑𝜑 − это либо тождественное, либо 𝑧𝑧 → 𝑧𝑧̅. Далее рассмотрим 
расширенную комплексную прямую таким образом, чтобы все ее точки стали 
равноправными.  

Таким образом, →  𝑎𝑎𝑎𝑎+𝑏𝑏
𝑐𝑐𝑧𝑧+𝑑𝑑

 или 𝑧𝑧 →  𝑎𝑎𝑧̅𝑧+𝑏𝑏
𝑐𝑐𝑧̅𝑧+𝑑𝑑

− это конформные преобразования сферы 𝑆𝑆2. 

Сфера отождествляется с ℂ� с общей стереографической проекцией.  

Замечание: используя комплексный анализ можно доказать, что достаточно только 3 
условия.  

Обозначим группу, состоящую из указанных выше отображений, обозначим Conf (𝑆𝑆2) 

Пространство Лобачевского 𝑳𝑳𝟑𝟑 

Рассмотрим пространство 𝑅𝑅1,3с координатами 𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑧𝑧.  𝐿𝐿3 −половина трехмерного 
гиперболоида 𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 − 𝑧𝑧2 = 1, 𝑡𝑡 > 0. Плоскость в пространстве 𝐿𝐿3 – сечение 
диаметральной гиперплоскостью, т.е. А𝑡𝑡 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷𝐷𝐷 = 0.  

Пересечение гиперповерхности с плоскостью 𝑧𝑧 = 0 − плоскость Лобачевского. На 
примере видно, плоскости в пространстве Лобачевского сами являются плоскостями 
Лобачевского. 

Прямая в 𝐿𝐿3 − сечение плоскостью вида �А1𝑡𝑡 + 𝐵𝐵1𝑥𝑥 + 𝐶𝐶1𝑦𝑦 + 𝐷𝐷1𝑧𝑧 = 0
А2𝑡𝑡 + 𝐵𝐵2𝑥𝑥 + 𝐶𝐶2𝑦𝑦 + 𝐷𝐷2𝑧𝑧 = 0 

Расстояние определяется с помощью скалярного произведение:                                           
< (𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿), (𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′, 𝛿𝛿′) >= 𝛼𝛼𝛼𝛼′ − 𝛽𝛽𝛽𝛽′ − 𝛾𝛾𝛾𝛾′ − 𝛿𝛿𝛿𝛿′ 
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Орисфера – сечение 𝐿𝐿3 гиперплоскостью направления, сопряженного 
ассимптотическому  ⇔  эллиптический параболоид. 

Представим, что мы живем в пространстве Лобачевского и надуваем мыльный пузырь 
(Рис. 31.5). Пока пузырь представляет собой сферу его житель видит, что геометрия 
пространства, в котором он живет – сферическая. Когда мы надуем пузырь в 
бесконечный объем, он коснется абсолюта. Теперь для жителя мыльного пузыря он 
станет, с точки зрения внутренней геометрии, евклидовой плоскостью. При 
дальнейшем увеличении пузыря он превратится в плоскость Лобачевского. Переход от 
сферической геометрии к геометрии Лобачевского произойдет в тот момент, когда мы 
касаемся одной точкой абсолюта. Это будет орисфера. 

 

Рис. 31.5 

Возьмем любые две точки на орисфере и одну на абсолюте. Через них всегда можно 
провести окружность – орицикл на какой-то проскости Лобачевского, для которого 
ранее мы вводили длину дуги. 

Модели Клейна и Пуанкаре 
1) Модель Клейна 

Проецируем из начала координат на гиперплоскость 𝑡𝑡 − 1, получая единичный 
шар 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 < 1. Абсолют: 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1. 
Плоскости и прямые в модели Клейна – сечения шара обычными плоскостями и 
прямыми. 

2) Модель Пуанкаре 
Стереографическая проекция их т. (-1,0,0,0) на гиперплоскость 𝑡𝑡 = 0. 
Получаемая проекция – единичный шар 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 < 1. Абсолют: 𝑥𝑥2 + 𝑦𝑦2 +
+𝑧𝑧2 = 1. 
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Плоскости и прямые в модели Пуанкаре – сечения обобщенными сферами и 
окружностями перпендикулярными абсолюту.  

Утверждение: плоскость любого плоского сечения 𝐿𝐿3 в модели Пуанкаре – обобщенная 
сфера или ее часть. 
Утверждение: в модели Пуанкаре сохраняются углы. 
Рассмотрим две произвольные плоскости Лобачевского, пересекающиеся под углом 𝛼𝛼. 
(Рис. 31.6). Зависит ли угол пересечения от точки, в которой мы его рассматриваем? 

 
Рис. 31.6 

 
Чтобы ответить на этот вопрос, нужно рассмотреть модель Пуанкаре, в которой углы 
сохраняются, плоскости превращаются в сферы. Вдоль окружности, по которой 
пересекаются сферы, угол пересечения их касательных плоскостей постоянен. 
Таким образом, корректно определен двугранный угол. 
Под каким углом будут пересекаться абсолют и линия пересечения двух сфер 
перпендикулярно третьей в модели Пуанкаре? (Рис. 31.7) 

 
Рис. 31.7 

Движения пространства Лобачевского 
Группа 𝐼𝐼𝐼𝐼𝐼𝐼(𝐿𝐿3) ≅ 𝑂𝑂+(1,3) ≅ Р𝑂𝑂(1,3) 
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𝑂𝑂+(1,3) − аффинное преобразование 𝑅𝑅1,3, сохраняющее 𝐿𝐿3; 
РО(1,3) −проективное преобразование пространства, сохраняющее сферу. 
На абсолюте сферы и в модели Клейна и в модели Пуанкаре преобразование 
продолжаются на абсолют одинаково. Движение же должно сохранять углы внутри 
пространства Лобачевского ⟹ оно должно сохранять углы и на границе. 
 
Таким образом, рассматриваемые нами преобразования, сохраняют окружности, 
двойное отношение на них и углы ⇒ 𝐼𝐼𝐼𝐼𝐼𝐼(𝐿𝐿3)  →  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆2) − конформное 
преобразование сферы. Но все ли конформные преобразования сферы мы получим? 

Будем рассматривать модель Клейна: 

Пусть ∃ конформное отображение сферы в себя: 𝑃𝑃,𝑄𝑄,𝑅𝑅 → 𝑃𝑃′,𝑄𝑄,𝑅𝑅′.  (По доказанному 
ранее: существует всего два таких преобразования для трех конкретных точек.) Чтобы 
задать проективное преобразование пространство, нужно пять точек. 

Таким образом, нам необходимо по трем точкам построить еще две и убедиться, что 
это можно сделать ровно двумя способами.  

Проведем через 𝑃𝑃,𝑄𝑄,𝑅𝑅 касательные плоскости, которые образуют трехгранный угол. 
Получаем четвертую точку 𝑆𝑆, точку их пересечения, определенную в терминах 
проективной геометрии. (Рис. 31.8). Далее проведем плоскость, проходящую через 
𝑃𝑃,𝑄𝑄,𝑅𝑅  , пересекающую сферу по окружности. Точка М, образующаяся, если соединить 
вершины треугольника с точками касания, нам не подходит, так как лежит в той же 
плоскости, что и 𝑃𝑃,𝑄𝑄,𝑅𝑅 (Рис. 31.9).   

                                       Рис. 31.8                                                         Рис. 31.9 
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Далее проведем прямую через т. М и S, которая пересечет сферу в двух точках 
Т1 и Т2, обеспечивая нам тем самым две возможность выбора (Рис. 31.10). 

 
                                                        
                                                     Рис. 31.10 

Изоморфизм PGL(2,C) => PO(1,3) 
𝑅𝑅1,3  ⇔ эрмитовы матрицы (А� = АТ) 2 × 2,  

параметризуемые � 𝑡𝑡 + 𝑥𝑥 𝑦𝑦 + 𝑧𝑧𝑧𝑧
𝑦𝑦 − 𝑧𝑧𝑧𝑧 𝑡𝑡 − 𝑥𝑥 �, где det � 𝑡𝑡 + 𝑥𝑥 𝑦𝑦 + 𝑧𝑧𝑧𝑧

𝑦𝑦 − 𝑧𝑧𝑧𝑧 𝑡𝑡 − 𝑥𝑥 � = 𝑡𝑡2 − 𝑥𝑥2 − 𝑦𝑦2 − 𝑧𝑧2 

Абсолют: 

𝑋𝑋 = �|𝜁𝜁|2 𝜁𝜁
𝜁𝜁 1� = �𝜁𝜁1�

[𝜁𝜁  1] 

Преобразование 𝜁𝜁 → 𝑎𝑎𝑎𝑎+𝑏𝑏
𝑐𝑐𝑐𝑐+𝑑𝑑

 в терминах матрицы Х обозначает: 

𝑋𝑋 → �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� Х �

𝑎𝑎� 𝑐𝑐̅
𝑏𝑏� 𝑑̅𝑑� 

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

𝑡𝑡 + 𝑥𝑥 𝑦𝑦 + 𝑧𝑧𝑧𝑧
𝑦𝑦 − 𝑧𝑧𝑧𝑧 𝑡𝑡 − 𝑥𝑥 � �

𝑎𝑎� 𝑐𝑐̅
𝑏𝑏� 𝑑̅𝑑� = � 𝑡𝑡

′ + 𝑥𝑥′ 𝑦𝑦′ + 𝑧𝑧′𝑖𝑖
𝑦𝑦′ − 𝑧𝑧′𝑖𝑖 𝑡𝑡′ − 𝑥𝑥′ �, 

 где �

𝑡𝑡′
𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
� = �

⋯
⋮ ⋱ ⋮

⋯
��

𝑡𝑡
𝑥𝑥
𝑦𝑦
𝑧𝑧
� 

Классификация собственных движений 
Движения пространства Лобачевского классифицируются чуть проще, чем все 
остальные типы преобразований, рассматриваемых в этом курсе, т.к., если 

𝑑𝑑𝑑𝑑𝑑𝑑 �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = 1 ⇒  �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� − подобна одной из матриц: 

1. ± �1 0
0 1� 

2. ± �1 1
0 1� 

3. ± �
𝜆𝜆 0
0 1

𝜆𝜆
� , 𝜆𝜆 ≠ ±1 
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Движение пространства Лобачевского, соответствующее случаю 3 и 𝜆𝜆 = 𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖, 
задается  

�
𝑐𝑐ℎ2𝑎𝑎
𝑠𝑠ℎ2𝑎𝑎

𝑠𝑠ℎ2𝑎𝑎
𝑐𝑐ℎ2𝑎𝑎

0 0
0 0

0 0 𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼 −𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼
0 0 𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼

� 

В плоскости 𝑡𝑡𝑡𝑡 происходит гиперболический поворот. Само движение представляет 
собой винтовое вращение. На абсолюте две неподвижные точки, одна из которых 
притягивает, другая отталкивает. Все, кроме одной геодезической, сдвигается и 
вокруг нее происходит поворот. 

Преобразования  2 – параболические преобразования, содержащие на абсолюте 
одну неподвижную точку, которой касаются орициклы. Каждый из орициклов есть 
евклидова плоскость, в которой происходит параллельный перенос 
(Параболические сдвиги с одной неподвижной точкой на бесконечности). 

Преобразование 1 – тождественное. 

Замечание: в этом разделе речь шла только о собственных преобразованиях, 
соответствующих комплексному сопряжению. 
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