

$$L = q \frac{\lambda}{2}$$

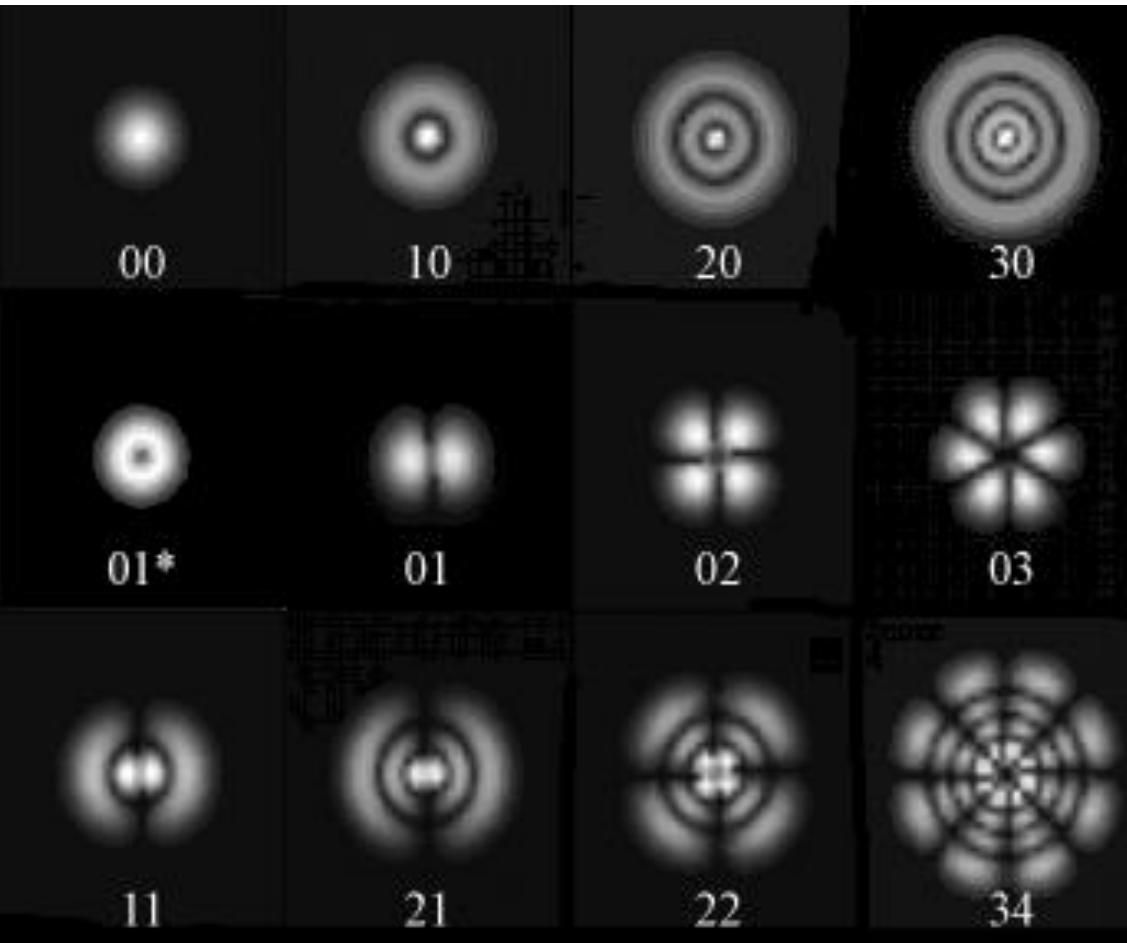
$$\Delta\nu = \frac{c}{2L}$$

Transversal Modes of a Laser Cavity (Cylindrical symmetry)

Gaussian beam profile with a Laguerre polynomial.

$$I_{pl}(r, \phi) = I_0 \rho^l [L_p^l(\rho)]^2 \cos^2(l\phi) e^{-\rho}$$

where $\rho = 2r^2/w^2$, and L_p^l is the associate Laguerre polynomial of order p and index l . w is the spot size of the mode corresponding to the Gaussian beam radius.



Transversal Modes of a Laser Cavity (Rectangular symmetry)

In many lasers, the symmetry of the optical resonator is restricted by polarizing elements such as Brewster's angle windows. In these lasers, transverse modes with **rectangular symmetry** are formed.

These modes are designated TEM_{mn} with m and n being the horizontal and vertical orders of the pattern. The intensity at point x,y is given by:

$$I_{mn}(x, y) = I_0 \left[H_m \left(\frac{\sqrt{2}x}{w} \right) \exp \left(\frac{-x^2}{w^2} \right) \right]^2 \left[H_n \left(\frac{\sqrt{2}y}{w} \right) \exp \left(\frac{-y^2}{w^2} \right) \right]^2$$

where $H_m(x)$ is the m th order Hermite polynomial.

