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Основные методы 

исследования структуры КС

• Рентгеновские методы: дифракция (РСА) 

и рассеяние, отражение

• Просвечивающая (сканирующая) 

электронная микроскопия - ПЭМ (СЭМ)

• Зондовая микроскопия (туннельная, 

атомно-силовая)

• Нейтронография



Сканирующая туннельная 

микроскопия

100 А



Оптические методы 

исследования КС
• Спектроскопия поглощения (отражения)

• Эллисометрия

• Фотолюминесценция

• ИК и КР спектроскопия

• Методы «возбуждение-зондирование»

• ….



План курса

• Физика химической связи.

• Кристаллы.

• Колебания решетки. 

• Теплоемкость и теплопроводность.

• Свободный электронный газ.

• Электроны в кристаллах. Зонная модель. Экситоны. 

• промежуточная отчетность: контрольные

• домашние задания

• обязательные доклады по выбранной теме

итоговая отчетность: зачет

Презентации и программа  «в облаке»
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Физика химической связи

• Ковалентная связь. Метод молекулярных орбиталей. 

Метод валентных связей. Гибридизация орбиталей.

• Ионная и металлическая связи.

• Межмолекулярные связи.

1. Ч. Коулсон, Валентность, 1965

2. Дж. Маррел, С.Кеттл, Дж. Теддер, Химическая связь, 1980

3. Р. Фейнман, Фейнмановские лекции по физике, Квантовая 

механика



Метод молекулярных 

орбиталей



Нобелевская премия по химии 1966 г. 

"за фундаментальную работу по 

химическим связям и электронной 

структуре молекул, проведенную с 

помощью метода молекулярных 

орбиталей"

Robert Sanderson Mulliken

1896 — 1986



Метод молекулярных 

орбиталей

• Что такое молекулярная орбиталь (МО)?

– линейная комбинация атомных орбиталей

(Mulliken, 1932)

• Что такое атомная орбиталь?

– волновая функция атома (координатная часть)

• Основание для введения МО? 

– принцип суперпозиции в квантовой  физике



Метод молекулярных орбиталей

связь одноэлектронная!

• Приближения

– один изолированный уровень у атома 

(радикала, иона)

– (вырожденные уровни)

– нет отталкивания электронов

|φ1> |φ2>

r0 R



Метод МО для H2
(более общо: пара радикалов, радикал и ион)

H0| φ1 > = E0 |φ1> H0| φ2 > = E0 |φ2> 

H = H0 + V

H|ψ> = E |ψ>,  E -?

Как найти решение? 

• теория возмущения для вырожденного случая

МО |ψ> = c1 |φ1> + c2 |φ2> 

H0 V

= H0 + V

|φ1> |φ2>

r0 R



Метод МО для H2: параметры задачи

<φ1,2 | φ1,2 > =1, нормировка

<φ1,2 | φ2,1 > =S, интеграл перекрытия

недиагональный матричный элемент V:

<φ1,2 |V| φ2,1> =β –резонансный (обменный) интеграл

диагональный матричный элемент V:

<φ1,2 |V| φ1,2> =0 – пренебрегаем, почему?

= H0 + V

H0 V

H0| φ1,2 > = E0 |φ1,2> , H|ψ> = E |ψ>

|φ1> |φ2>

r0 R



Метод МО для гомоядерной молекулы 

(H2): расчет

<φ1,2 | V| φ2,1 > =β, <φ1,2 | V| φ1,2 > =0

H|ψ> = E |ψ>, |ψ> = c1 |φ1> + c2 |φ2>, H= H0 + V

(H0 + V) (c1 |φ1> + c2 |φ2>) = E (c1 |φ1> + c2 |φ2>) 

H0 | φ1,2 > = E0 |φ1,2> , <φ1,2 | φ1,2 > =1, <φ1,2 | φ2,1 > =S 

<φ1,2|   || 

(E − E0)
2 = (β E − S E+SE0)

2

E = E0±
β

1 ± S
S<<1, E = E0 ± β 



Метод МО для H2: решение
H|ψ> = E |ψ>, |ψ> = c1 |φ1> + c2 |φ2>, H= H0 + V

E = E0±
β

1 ± S

Каковы МО (волновые функции)?

квадратное (секулярное) уравнение имеет два решения c1 = ± c2

S<<1, E = E0 ± β 

|ψ> = c1 |φ1> ± c2 |φ2> ~ |φ1> ± |φ2> 

|φ1> |φ2>

r0 R

|φ1> |φ2>

r0 R

Где ниже энергия? Для состояния |ψ+> или |ψ−>?

|ψ+> ~ |φ1> + |φ2> |ψ−> ~ |φ1> − |φ2> 



|φ1> |φ2>

r0 R

Метод МО для H2: решение

E = E0±
β

1 ± S

|ψ−> ~ |φ1> − |φ2> 

|ψ+> ~ |φ1> + |φ2> 

S<<1, E = E0 ± β 

E0

E = E0 − β,

E = E0 + β,

|φ1> |φ2>

r0 R

разрыхляющая 

или антисвязывающая МО

“ s − s → σ* ”

связывающая МО:

“ s + s → σ ”



|φ1> |φ2>

r0 R

Метод МО для H2: заполнение 

электронами МО

|ψ−> ~ |φ1> − |φ2> 

|ψ+> ~ |φ1> + |φ2> 

E0

E = E0 − β,

E = E0 + β,

|φ1> |φ2>

r0 R

σ* антисвязывающая МО

σ связывающая МО

Какова энергия связи?

- иона H2
+

- H2

- He2

β

2β

0



π-орбитали

Что означают +, − ?

+

+

++

− −

−

−
E0

E0 − β

E0 + β

π*p p

p + p = π

π



Метод МО: учет спина
• Многоэлектронная ВФ должна быть антисимметрична 

по перестановке электронов (фермионы)

Двухэлектронная ВФ (заполненная МО): 

• Ψ(1,2)= ψ± (1) ψ ±(2) ~ (|φ1>±|φ2>) (|φ1>±|φ2>) (↑ ↓)  S=0

координатная часть симметрична, спиновая антисимметрична

Основное состояние:

• Синглет (S=0): низкая химическая активность, 

прочная химсвязь (спарены спины)

• Радикал (S=1/2): высокая химическая активность



Метод МО для H2: параметры задачи

<φ1,2 | φ2,1 > =1, нормировка

<φ1 | φ2 > =S, интеграл перекрытия

недиагональный матричный элемент V:

<φ1,2 |V| φ2,1> =β –резонансный (обменный) интеграл

диагональный матричный элемент V:

<φ1,2 |V| φ1,2> =V11=V22 выше пренебрегали

= H0 + V

H0 V

H0| φ1,2 > = E0 |φ1,2> , H|ψ> = E |ψ>

|φ1> |φ2>

r0 R



ДЗ – провести расчет по МО

• учесть, что диагональный член V11 не 

равен 0 



Зависимость энергии  от расстояния: 

метод МО для иона H2
+

~3 эВ энергия

диссоциации

EH=27.2 эВ

b

S

V11

Eg, u =
V11± β

1 ± S

S

b

V11



Гетероядерная молекула

• Как будет выглядеть уровни энергии?

• Волновые функции?



Контрольные вопросы

• Что такое молекулярная орбиталь?

• Сформулируйте основные приближения метода МО?

• Какие типы молекулярных орбиталей вы знаете?

• Что такое резонансный интеграл? 

• Как резонансный интеграл зависит от расстояния?

• Что такое интеграл перекрытия?

• Какова энергия связи молекулы гелия (простейший 

метод МО)? 

• Каково спиновое состояние электронов в основном 

состоянии молекулы водорода?
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Физика химической связи

• Ковалентная связь. Метод молекулярных орбиталей. 

Метод валентных связей. Гибридизация орбиталей.

• Ионная и металлическая связи.

• Межмолекулярные связи.

1. Ч. Коулсон, Валентность, 1965

2. Дж. Маррел, С.Кеттл, Дж. Теддер, Химическая связь, 1980

3. Р. Фейнман, Фейнмановские лекции по физике, Квантовая 

механика



Метод валентных связей для H2

Гайтлера-Лондона (1927 г.) 

Энергия притяжения:

V = H0 + V

V

Экспериментальная энергия диссоциации:  4.75 эВ (!)

exp(-r/a)



Метод валентных связей для H2

Гайтлер и Лондон предложили:

I



Метод валентных связей для H2 (3)

Гайтлер и Лондон предложили:

I



Метод валентных связей для H2

Q – кулоновский интеграл

А – обменный интеграл

S – интеграл перекрытия



Метод валентных связей для H2

‘

= -0.25эВ

= - 2.9эВ



Метод валентных связей для H2

(Гайтлера-Лондона)



Метод валентных связей для H2

Учет спина

• ВФ должна быть антисимметрична по 

перестановке электронов (фермионы)

• ψ ~ (| I> + |II>) (↑ ↓ )    S=0

• ψ ~ (| I>  ̶ |II>) (↑ ↑ )    S=1



𝐸
±
= 𝐸0+

𝑄 ± 𝐴

1 ± 𝑆2

(| I> + |II>) (↑ ↓ ) 

(| I> - |II>) (↑ ↑) 

-3.14 эВ

Зависимости энергий от R

• cинглет (↑ ↓ ) : E+<0

• триплет (↑ ↓ ) :   E- >0
А

Q

E-

E+



Энергия связи в H2

эВ

Эксперимент: -4.75

0

-3.76, 

сжатие орбиталей: exp(-kr/a)

Q+A, -3.14

Q, -0.25

-4.02: Ван-дер-Ваальс 

-4.1: ионный вклад
50-членная ВФ



Дисперсионные (лондоновские) силы ~ 0.01 эВ

E~ -1/r6
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Физика химической связи

• Ковалентная связь. Метод молекулярных орбиталей. 

Метод валентных связей. Гибридизация орбиталей.

• Ионная и металлическая связи.

• Межмолекулярные связи.

1. Ч. Коулсон, Валентность, 1965

2. Дж. Маррел, С.Кеттл, Дж. Теддер, Химическая связь, 1980

3. Р. Фейнман, Фейнмановские лекции по физике, Квантовая 

механика



• Ноб.премия 1954  "за изучение 

природы химической связи и его 

применение к объяснению 

строения сложных молекул"

• гибридизация

• шкала электроотрицательности

• открытие -спирали и -листа белков 

(отец молекулярной биологии)

• витамины

Гибридизация орбиталей

Лайнус Полинг

Lunis Pauling

1901-1994



Гибридизация орбиталей: sp3



Гибридизация орбиталей: sp3

Гибридизация:

- направленная связь

- более сильная (выше эл.плотность)

метан

Алмаз (Tm=3550 C)



Пример гибридизации sp3 : алмаз

• Энергия С-С связи 3.6 эВ, длина 1.54А
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Гибридизация орбиталей: sp2

Этилен CH2= CH2

sp-гибридизованные орбитали образуют σ-связь



Напоминание: σ и π - связи



Пример sp2: наноуглерод



π-делокализация –

полупроводниковые свойства



Сравнение методов 

валентных связей (ВС) и 

молекулярных орбиталей (МО) 



Основные различия

• Молекула рассматривается как 

целое, а не как совокупность 

сохранивших 

индивидуальность атомов

• Самосогласованное движение 

е- в поле друг друга и всех ядер 

молекулы

• Атомы в основном сохраняют 

индивидуальность

• Каждая 

пара атомов удерживается при 

помощи одной или нескольких 

общих электронных пар

Метод валентных связей Метод молекулярных 

орбиталей



ДЗ – сравнить МО и ВС

• Как выглядит выражение для 

резонасного интеграла в методах МО и 

ВС?

• Каковы его величины?



Сравнение методов МО и ВС: ВФ основного 

состояния

𝜓𝑀𝑂~ 𝜑𝑎 1 + 𝜑𝑏 1 [𝜑𝑎 2 + 𝜑𝑏 2 ]=

= 𝜑𝑎 1 𝜑𝑏 2 + 𝜑𝑎 2 𝜑𝑏 1 + 𝜑𝑎 1 𝜑𝑎 2 + 𝜑𝑏 1 𝜑𝑏 2

𝜓ВС~𝜑𝑎 1 𝜑𝑏 2 + 𝜑𝑎 2 𝜑𝑏 1

МО:

ВС (простейший случай):

𝜓ВС ионный вклад

ВС+ 𝜆(МО-ВС): 𝜓~𝜓ВС + 𝜆 [𝜑𝑎 1 𝜑𝑎 1 + 𝜑𝑏 2 𝜑𝑏 2 ]

0 < 𝜆 < 1, варьируемый параметр

𝜑𝑎 1 𝜑𝑏 2

𝑅

В методе ВС нет ионного вклада, а в методе МО его «много»



Ковалентно-ионная связь

• Кристаллы (Киттель)

• LiF – λ~0.92

• NaCl – λ~0.94

• RbF – λ~0.96

ВС+ 𝜆(МО-ВС): 𝜓~𝜓ВС + 𝜆 [𝜑𝑎 1 𝜑𝑎 2 + 𝜑𝑏 1 𝜑𝑏 2 ]

(Коулсон)



Контрольные вопросы

• Как выглядит волновая функция молекулы водорода в простейшем 

варианте метода валентных связей?

• Что такое кулоновский и обменный интегралы. Каковы их 

характерные величины для молекулы водорода?

• В чем сходства и различия методов молекулярных орбиталей и 

валентных связей? Какие связи они описывают?

• Дайте определение энергии диссоциации. 

• Что такое химическая связь? Как энергия химической связи зависит 

от расстояния?

• Как можно улучшить модель молекулы водорода за пределами 

простейшей модели валентных связей?

• Что такое гибридизация орбиталей? Какие виды гибридизации вы 

знаете?

• Сформулируйте «преимущества» гибридизованных орбиталей.
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Физика химической связи

• Ковалентная связь. Метод молекулярных орбиталей. 

Метод валентных связей. Гибридизация орбиталей.

• Ионная и металлическая связи.

• Межмолекулярные связи.

1. Ч. Коулсон, Валентность, 1965

2. Дж. Маррел, С.Кеттл, Дж. Теддер, Химическая связь, 1980

3. Р. Фейнман, Фейнмановские лекции по физике, Квантовая 

механика



Ионная связь

𝑈𝑖 = 𝑧𝑖𝑒
2σ

𝑧𝑗
𝑟𝑖𝑗

𝑈𝑖 =
𝑧𝑖𝑒

2

𝑟𝑜
෍

𝑧𝑗
𝑟𝑖𝑗/𝑟0

=
𝑧𝑖𝑒

2

𝑟𝑜
𝑀

rij – расстояние между i, j

ro - межионное расстояние

N – число ионных пар

– постоянная 

Маделунга

𝑈𝑡𝑜𝑡 = 𝑁𝑈𝑖

Возникает при 

большой разности 

электроотрица-

тельностей

атомов



Ионная связь

𝑈𝑖 =
𝑧𝑖𝑒

2

𝑟𝑜
෍

𝑧𝑗
𝑟𝑖𝑗/𝑟0

=
𝑧𝑖𝑒

2

𝑟𝑜
𝑀



Ионная связь

1ккал/моль=4.2 кДж/моль=1/23 эВ

эксперимент

=7.7 эВ



Металлическая связь

Валентные электроны делокализованы -> понижение энергии –>

хим.связь



Примеры расчёта МО молекулы

НОМО

(высшая заполненная МО)

LUМО

(низшая вакантная МО)



Физика химической связи

• Ковалентная связь. Метод молекулярных орбиталей. 

Метод валентных связей. Гибридизация орбиталей.

• Ионная и металлическая связи.

• Межмолекулярные связи.

1. Ч. Коулсон, Валентность, 1965

2. Дж. Маррел, С.Кеттл, Дж. Теддер, Химическая связь, 1980

3. Р. Фейнман, Фейнмановские лекции по физике, Квантовая 

механика



Молекулы - «острова» 

электронной плотности

Фуллерит С60

Лёд



Межмолекулярные силы (1):

Ван-дер-Ваальсовы, диполь-дипольные 

• Дисперсионные (лондоновские) ~α1α1 /r
6 ~10мэВ~ kT

(нейтральные атомы, молекулы, нет стат. диполя)

• Индукционные (стат. диполь - атом) ~μ1
2 α2/r

6

• Ориентационные (стат. диполи) ~ μ1μ2 /r
3

(полярные молекулы, HCl)

r
1 2 μ2 ,α2μ1 ,α1



Дисперсионные (лондоновские) силы ~ 0.01 эВ

E~ -1/r6



r
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r)

s
r e

-e

0

ULJ  -r -6

ULJ  +r -12

Потенциал Леннард-Джонса, 6-12
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Межмолекулярные силы (2):

+ +
+
+-

-
-

r
-q +q

ind

Q1
2

+Q1

2r

+q-q

• Водородная связь (H···O, H···N,.) ~ 0.1 эВ 

• Ион-дипольные связи

~80% электростатика





Энергии связи:
Энергия, необходимая для разделения (молекулы, 

агрегата, кристалла и т.д.) на отдельные элементы 

(нейтральные молекулы, атомы, ионы) при T=0.

• Ковалентные кристаллы ~ 3-10 эВ 

• Ионные кристаллы ~ 2-10 эВ

• Щелочные металлы ~ 1 эВ

• Молекулярные кристаллы ~ 0.01-0.05 эВ

• Инертные газы ~ 0.02-0.1 эВ



Bonding
Distance-

dependence
Other Factors

Typical 

Energy, eV
Comments

Covalent Bonding e-r 4 Directional

Electrostatic

Ion-Ion r -1 Q1Q2 2

Ion-Dipole r -2 Q12 0.2

Dipole-Dipole (static) r -3 12 0.04

Dipole-Dipole (rotating) r -6 12 0.01

Induction
Always 

attractive

Ion-Induced Dipole r -4 Q1
2 2 0.1

Dipole-Induced Dipole r -6 1
2 2 < 0.01

Dispersion r -6 12(I1I2/(I1+I2)) ~0.01
Always 

attractive

Hydrogen Bonding e-r 0.2 Directional



Comparison of melting points (Tm) of various elements and compounds

Species Tm / C Comments

Ne -249 Dispersion only

O2 -218

N2 -210

HCl -114 D-D

Xe -112 Dispersion only

NH3 -78 H-bonding

CO2 -56

Br2 -7

H2O 0 H-bonding

I2 114

NaCl 801 Ionic

Au 1065 Metallic

C (graphite) (subl.)   3427 Covalent



Контрольные вопросы

• В чем причины различия энергий ковалентной, ионной 

и металлической связей?

• Какова характерная энергия межмолекулярных 

связей?

• Какие типы межмолекулярных связей вы знаете? Как 

их энергия зависит от расстояния?

• Что такое водородная связь? 

• Как можно объяснить температуры плавления: 

основных атмосферных газов, инертных газов, воды?



Паращук Дмитрий Юрьевич

Физика конденсированных сред

Лекция 4

Структура кристаллов



Примеры неорганических кристаллов

Алмаз (природный)

Кварц (природный) Висмут

Вода 



Органические полупроводниковые 
кристаллы (МГУ)



Структура кристаллов (I)

• Кристаллическая решетка. Элементарная 
ячейка. Примитивная ячейка 

• Элементы симметрии 

• Решетки Браве

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Решетки и элементарные ячейки



Идеальный кристалл: трансляционная 
симметрия

Бесконечное повторение одной структурной 
единицы (элементарной ячейки)

r’= 𝒓 + 𝑛1𝒂 +𝑛2𝒃 + 𝑛3𝒄 = 𝒓 + 𝑻

T – вектор трансляций 
a, b  - элементарные вектора трансляций или вектора примитивных трансляций

Элементарные ячейка построена на элементарных векторах трансляций



Мауриц Эшер (1892-1972)

Гаага, Нидерланды



Кристаллическая структура = базис + решетка

Базис:

j=1,…M, M - число 
элементов базиса

Решетка: набор точек 
(математ. абстракция)



Варианты выбора элементарной 
ячейки для одинаковой решетки

• К каждой точке пространства «привязана» 
элементарная ячейка



Кристаллическая решетка

Примитивная ячейка = элементарная 
ячейка минимального объема



Элементарная и примитивные ячейки

Какие ячейки примитивные?
Сколько точек решетки приходится на примитивную ячейку?

V=([ab]c)|Объем элементарной ячейки:

a, b, c – вектора, задающие элементарную ячейку



Примитивная ячейка

Примитивная ячейка = эл. ячейка мин. объема

• Содержит одну “точку” решетки

• Примитивная ячейка не уникальна



Другие способы выбора 
примитивной ячейки

Ячейка Вигнера-Зейтца



Ячейка Вигнера-Зейтца в 
прямоугольной решетке

Ячейка Вигнера-Зейтца



Структура кристаллов (I)

• Кристаллическая решетка. Элементарная 
ячейка. Примитивная ячейка 

• Элементы симметрии. 

• Решетки Браве

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Элементы симметрии

• Трансляционные

• Точечные

• Неточечные



Элементы точечной симметрии кристаллов: 
оси и плоскости

Оси: вращательная симметрия на 
угол 2𝜋/n, n=2,3,4,6

Плоскости: зеркальная 
симметрия, m

Комбинация: вращение + отражение 

пример: инверсия= m + 2𝜋/2

3D:  всего 32 группы точечной симметрии

Точечная симметрия – оставляет хотя бы одну точку пространства на месте



Возможные оси симметрии 
кристаллических структур

ось 5-го порядка 
Нельзя заполнить 

пространство

правильными 

пятиугольниками!

ось 3-го порядка

ось 6-го порядка



Неточечные элементы симметрии 

• Плоскость 
скользящего 
отражения 
(трансляция + 
отражение)

• Винтовая ось 
симметрии 
(трансляция+ 
поворот)

Трансляция всегда меньше периода решетки!



Плоскости симметрии на примере 
NaCl



Примеры неточечной симметрии

• Какой элемент симметрии?



Элементы симметрии 
кристаллических структур: резюме

• Трансляционная

• Точечная: поворотные оси и плоскости 
отражения

• Неточечная: винтовые оси и плоскости 
скользящего отражения

3D:  всего 32 группы точечной симметрии  
230 групп пространственной симметрии (точечная + неточечные элементы)



Симметрия и свойства

• Принцип Ф.Э. Неймана (1885 г): 

Элементы симметрии какого-либо 
физического свойства должны включать 
элементы симметрии точечной группы 

кристалла

Примеры?

1798—1895



Структура кристаллов (I)

• Кристаллическая решетка. Элементарная 
ячейка. Примитивная ячейка 

• Элементы симметрии. 

• Решетки Браве

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Решетки Браве
(трансляционная симметрия + точечная симметрия)



Классификация 
кристаллических решеток: 

решетки Браве

• Все точки решетки эквивалентны

• Элементарная ячейка выбирается как:

– отвечает симметрии решетки (оси и пл.симметрии)

– максимальное число прямых углов и равных сторон

– минимальный объем

Огюст Браве
August Bravais
(1811-1863)

Установил впервые  Иоганн Гессель, 1830



Двумерные решетки Браве (все)

косоугольная  



Двумерные кристаллические решетки (все):
решетки Браве



Паращук Дмитрий Юрьевич

Физика конденсированных сред

Лекция 4

Структура кристаллов



Примеры неорганических кристаллов

Алмаз (природный)

Кварц (природный) Висмут

Вода 



Органические полупроводниковые 
кристаллы (МГУ)



Структура кристаллов (I)

• Кристаллическая решетка. Элементарная 
ячейка. Примитивная ячейка 

• Элементы симметрии 

• Решетки Браве

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Решетки и элементарные ячейки



Идеальный кристалл: трансляционная 
симметрия

Бесконечное повторение одной структурной 
единицы (элементарной ячейки)

r’= 𝒓 + 𝑛1𝒂 +𝑛2𝒃 + 𝑛3𝒄 = 𝒓 + 𝑻

T – вектор трансляций 
a, b  - элементарные вектора трансляций или вектора примитивных трансляций

Элементарные ячейка построена на элементарных векторах трансляций



Мауриц Эшер (1892-1972)

Гаага, Нидерланды



Кристаллическая структура = базис + решетка

Базис:

j=1,…M, M - число 
элементов базиса

Решетка: набор точек 
(математ. абстракция)



Варианты выбора элементарной 
ячейки для одинаковой решетки

• К каждой точке пространства «привязана» 
элементарная ячейка



Кристаллическая решетка

Примитивная ячейка = элементарная 
ячейка минимального объема



Элементарная и примитивные ячейки

Какие ячейки примитивные?
Сколько точек решетки приходится на примитивную ячейку?

V=([ab]c)|Объем элементарной ячейки:

a, b, c – вектора, задающие элементарную ячейку



Примитивная ячейка

Примитивная ячейка = эл. ячейка мин. объема

• Содержит одну “точку” решетки

• Примитивная ячейка не уникальна



Другие способы выбора 
примитивной ячейки

Ячейка Вигнера-Зейтца



Ячейка Вигнера-Зейтца в 
прямоугольной решетке

Ячейка Вигнера-Зейтца



Структура кристаллов (I)

• Кристаллическая решетка. Элементарная 
ячейка. Примитивная ячейка 

• Элементы симметрии. 

• Решетки Браве

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Элементы симметрии

• Трансляционные

• Точечные

• Неточечные



Элементы точечной симметрии кристаллов: 
оси и плоскости

Оси: вращательная симметрия на 
угол 2𝜋/n, n=2,3,4,6

Плоскости: зеркальная 
симметрия, m

Комбинация: вращение + отражение 

пример: инверсия= m + 2𝜋/2

3D:  всего 32 группы точечной симметрии

Точечная симметрия – оставляет хотя бы одну точку пространства на месте



Возможные оси симметрии 
кристаллических структур

ось 5-го порядка 
Нельзя заполнить 

пространство

правильными 

пятиугольниками!

ось 3-го порядка

ось 6-го порядка



Неточечные элементы симметрии 

• Плоскость 
скользящего 
отражения 
(трансляция + 
отражение)

• Винтовая ось 
симметрии 
(трансляция+ 
поворот)

Трансляция всегда меньше периода решетки!



Плоскости симметрии на примере 
NaCl



Примеры неточечной симметрии

• Какой элемент симметрии?



Элементы симметрии 
кристаллических структур: резюме

• Трансляционная

• Точечная: поворотные оси и плоскости 
отражения

• Неточечная: винтовые оси и плоскости 
скользящего отражения

3D:  всего 32 группы точечной симметрии, И.Гессель, 1830 г.
230 групп пространственной симметрии (точечная + неточечные элементы), 

Е. Федоров, А. Шёнфлис, 1890-1894 г.



Симметрия и свойства

• Принцип Ф.Э. Неймана (1885 г): 

Элементы симметрии какого-либо 
физического свойства должны включать 
элементы симметрии точечной группы 

кристалла

Примеры?

1798—1895



Структура кристаллов (I)

• Кристаллическая решетка. Элементарная 
ячейка. Примитивная ячейка 

• Элементы симметрии. 

• Решетки Браве

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Решетки Браве
(трансляционная симметрия + точечная симметрия)



Классификация 
кристаллических решеток: 

решетки Браве

• Все точки решетки эквивалентны

• Элементарная ячейка выбирается как:

– отвечает симметрии решетки (оси и пл.симметрии)

– максимальное число прямых углов и равных сторон

– минимальный объем

Огюст Браве
August Bravais
(1811-1863)



Двумерные решетки Браве (все)

косоугольная  



Двумерные кристаллические решетки (все):
решетки Браве



Паращук Дмитрий Юрьевич

Физика конденсированных сред

Лекция 5

Структура кристаллов (продолжение)



Идеальный кристалл: трансляционная 
симметрия

Бесконечное повторение одной структурной единицы 
(элементарной ячейки)

r’= 𝒓 + 𝑛1𝒂 +𝑛2𝒃 + 𝑛3𝒄 = 𝒓 + 𝑻

T – вектор трансляций 
a, b  - элементарные вектора трансляций или вектора примитивных трансляций

Какие элементы пространственной симметрии у 
кристаллической структуры, показанной  на рисунке?



Замечания к предыдущей лекции
• Не всякая точечная симметрия многогранника 

совместима с трансляционной симметрией

• Точечная симметрия внешней формы кристалла 
(огранки) воспроизводит симметрию 
элементарной ячейки и наоборот 
Закон постоянства углов в кристаллах 
(Закон Стенона и Ромэ-де-л’Иля, 1669 г.): 
В кристаллах одного и того же вещества 
величина и форма граней, их взаимные 
расстояния и даже их число могут 
меняться. Однако углы между 
соответствующими гранями и ребрами  
остаются при этом постоянными.



3D: 6 крист.систем и 14 решеток Браве

Огюст Браве, 1849
August Bravais
(1811-1863)

гексагональная система
система

(нет общепринятых способов разбиения на системы и сингони’и )
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Типы решеток (ячеек) Браве

– примитивная (1 «атом»)

– объёмно-центрированная, I(nner)(?«атомов»)

– гранецентрированная, F, Face-centered, (? атомов)

– базоцентрированная, C(side-Centered)

(? атомов)



Примитивная кубическая решетка

• Mn, P, O

Плотность упаковки=объем атомов/ объем эл.ячейки =

Элементарная ячейка

= 52%



Объёмно-центрированная 
кубическая решетка (ОЦК)

• Все щелочные металлы, Li, K….

• Mo, Cs, Ba, Nb

Элементарная ячейка

Число атомов на ячейку? 

Плотность упаковки =

= 68%



Гранецентрированная 
кубическая решетка (ГЦК)

• Инертные газы

• Ca, Cu, Ag, Au, Al, Ni, Pt, Pd, Ir, Rh

Элементарная ячейка

Плотность упаковки = 74% (!)

Плотноупакованная 
кристаллическая структура

ДЗ: получить формулу



Все кубические решетки

Примитивная (1ат.)  ОЦК (2 ат.) ГЦК (4 ат.)

Плотность упаковки (объем атомов на объем ячейки) 

52% 68% 74%



Примитивные ячейки 
ОЦК и ГЦК (ромбоэдры)



Ячейки Вигнера-Зейтца кубических 
решеток: примитивная и ОЦК

Примитивная(простая)

Ячейка ВЗ: куб ромбододекаэдр

ОЦК



Гексагональная плотноупакованная структура 
(еще один способ плотной упаковки шаров)

Гексагональная упаковка:

• Zn, Be, Mg, C, B, N, Cd, Re, Os, Ru….

Плотность упаковки=74%

ДЗ: получить формулу



3D: 6 крист.систем и 14 решеток Браве

Огюст Браве, 1849
August Bravais
(1811-1863)

гексагональная система
система

(нет общепринятых способов разбиения на системы и сингони’и )



Почему нет среди решеток Браве?

• Триклинная: I,C,F

• Моноклинная: I, B

• Тетрагональная: С, F

• Кубическая: C



моноклинная I = моноклинная С

• 3D

• 2D



Кристаллическая структура = 
решетка + базис



Решетка+базис

• Решетка Браве?
примитивная ячейка

Базис: 2 атома, базисные вектора



Графен: решетка Браве

Красные и синие «атомы» одинаковы

• Какая из решеток - Браве?

решетка из красных «атомов»



Решетка+базис

• Два типа атомов(молекул)

• Не решетка Браве (a/2, a/2)

• Примитивные вектора 
трансляций для ячейки ВЗ

• Объем прим. ячейки a2/2

• Базисные вектора:

Ячейка Вигнера-Зейтца
(строим по красным точкам, 

т.е., точкам решетки Браве)

первый атом (красный)

второй атом (черный)



Алмазная решетка (C, Si, Ge)

• Не решетка Браве (если брать все атомы)

• ГЦК, базис- 2 атома: (0,0,0), (¼, ¼, ¼) 

• Плотность упаковки (шары) 34%

• Плотность vs твердость

Синим цветом 
помечены атомы 
внутри эл.яч.



Алмазная решетка: C, Si, Ge

Синим цветом 
помечены атомы 
внутри эл.яч.

C (алмаз) Si Ge

Постоянная решетки а, А 3.56 5.43 5.65

Межатомное расстояние
a*√3/4, A

1.54 2.33 2.43



Структура «цинковой обманки»
(алмазная решетка)

• ZnS, GaAs, AlAs, InAs, ZnTe…



NaCl

• a = 0,56 нм

ГЦК

Какая решетка?

Fm3m

Цвет Na, Cl?



Квазикристаллы (шехтманиты)

• Порядок, но нет 
трансляционной 
симметрии

• Ось симметрии 5-го 
порядка 

• Открыты 1982 г., Дан Шехтман

• Нобелевская премия 2011 г.

Сплав Al-Pd-Mn, поверхность 
потенциальной энергии

Апериодический орнамент Пенроуза
с осью симметрии 5-го порядка



Контрольные вопросы
• Что означает трансляционная симметрия?

• Что такое элементарная ячейка?

• Примитивная и элементарная ячейка: что общего и различного

• Что такое ячейка Вигнера-Зейтца? Как ее построить?

• Что такое кристаллическая решетка?

• Что такое базис?

• Какие вы знаете элементы симметрии?

• Опишите неточечные элементы симметрии.

• Какие порядки могут быть у винтовых осей симметрии?

• Почему нет кристаллов с осями симметрии 5-го и 7-го порядков?

• Что такое решетка Браве?

• Какие кристаллические структуры отвечают наиболее плотной 
упаковке атомов?

• Что такое квазикристаллы?



Паращук Дмитрий Юрьевич
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Структура кристаллов



3D: 6 крист.систем и 14 решеток Браве

гексагональная система
система

Оси: a, b, c; углы α, β, γ



Структура кристаллов

• Индексы Миллера 

• Рентгеновская дифракция. Условие Брэгга 
Уравнение Лауэ

• Обратная решетка

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Индексы Миллера

• плоскости (hkl)



Индексы Миллера в кубической решетке

• Нормали к плоскости (hkl)= направления [hkl]

x

y

z

1/3



Структура кристаллов

• Индексы Миллера 

• Рентгеновская дифракция. Условие Брэгга. 
Уравнение Лауэ

• Обратная решетка

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978



Рентгеновская дифракция

Макс фон Лауэ (1879-1960)

Нобелевская премия 1914 г. 
«за открытие дифракции 
рентгеновских лучей на кристаллах»

Нобелевская премия 1915 г.  «За заслуги в 
исследовании структуры кристаллов с помощью 
рентгеновских лучей»

Уильямы Генри и Лоренс Брэгги

(1890-1971)(1862-1942)



Условие Вульфа-Брэгга

Θ – угол скольжения

d – межплоскостное расстояние

• λ ≤ 2d, λ ~ 1A



Условие Вульфа-Брэгга
• Дает направления дифракционных максимумов

• Не дает интенсивности, которая зависит от:
– типа атомов

– интерференции

• Если в базисе 2 и более атомов. Какова будет 
дифракционная картина?

✓ Условие Брэгга определяется только параметрам решетки 
Браве, но не базисом.

✓ По взаимному положению пиков дифракции можно 
определить тип решетки Браве и ее ориентацию атомов 
относительно граней (габитуса).



Рассеяние атомом

k’

r’

R

ρ

k’

k

s

𝐸𝑠𝑐(𝑟
′) = 𝐶𝐸0𝑒

𝑖𝒌𝝆
𝑒𝑖(𝒌′𝒓′− 𝜔𝑡)

𝑟′

ρ << R 𝒔 = 𝒌′ − 𝒌

Вектор рассеяния:

• k=k’ : упругое рассеяние
• Рассеяние однократное
• Пренебрегаем поглощением и рефракцией
• Падает плоская волна



Рассеяние атомом

k’

r’

R

ρ

k’

k

s

𝐸𝑠𝑐(𝑟
′) = 𝐶𝐸0𝑒

𝑖𝒌𝝆
𝑒𝑖(𝒌′𝒓′− 𝜔𝑡)

𝑟′

𝑟′ = 𝑹− 𝝆 = 𝑹− 𝝆 2 ≈ 𝑅2− 2𝑹𝝆 ≈ 𝑅 − 𝜌𝐶𝑜𝑠(𝑹𝝆)

𝒌′𝒓′ = 𝑘′𝑟′ ≈ 𝑘𝑅 − 𝑘𝜌𝐶𝑜𝑠(𝑹𝝆) ≈ 𝑘𝑅 − 𝑘𝜌𝐶𝑜𝑠(𝒌′𝝆) = 𝑘𝑅 − 𝒌′𝝆

~𝒌′||𝑹

k=k’ : упругое рассеяние
ρ << R

𝐸𝑠𝑐 = 𝐶𝐸0

𝑒𝑖(𝑘𝑅−𝜔𝑡)

𝑅
𝑒−𝑖𝒔𝝆

𝑒𝑖𝒌𝝆+𝑖𝒌
′𝒓′ = 𝑒𝑖(𝒌𝝆+𝑘𝑅−𝒌

′𝝆) = 𝑒𝑖𝑘𝑅𝑒
𝑖 𝒌−𝒌′ 𝝆

= 𝑒𝑖𝑘𝑅𝑒−𝑖𝝆𝒔

𝒔 = 𝒌′ − 𝒌

Вектор рассеяния:

r’  ͌R



Рассеяние 3D решеткой точечных атомов

• Суммируем 𝐸𝑠𝑐 по атомам. От координат атомов зависит только 𝝆𝑚𝑛𝑝

𝐸𝑠𝑐 = 𝐶𝐸0

𝑒𝑖(𝑘𝑅−𝜔𝑡)

𝑅
𝑒−𝑖𝒔𝝆

A = ෍

𝑚𝑛𝑝

𝑒−𝑖𝒔𝝆𝑚𝑛𝑝= ෍

𝑚𝑛𝑝

𝑒−𝑖𝒔(𝑚𝒂+𝑛𝒃+𝑝𝒄 )

𝝆𝑚𝑛𝑝 = 𝑚𝒂 + 𝑛𝒃 + 𝑝𝒄

Амплитуда рассеяния:

• Когда A=max?

𝒔 𝑚𝒂 + 𝑛𝒃 + 𝑝𝒄 = 2π (целое число)

и тогда  A= M, где M – число атомов в кристалле 

Пусть атомы в узлах парал-да:

Один атом:

• Дифракционные максимумы будут при:

𝒔𝒂 = 2πℎ, 𝒔𝒃 = 2π𝑘, 𝒔𝒄 = 2π𝑙

уравнения дифракции Лауэ
k’

s

k

➢ Не путать: k c k, h c постоянной Планка



Структура кристаллов

• Индексы Миллера 

• Рентгеновская дифракция. Условие Брэгга. 
Уравнение Лауэ

• Обратная решетка



Основные вектора обратной решетки

• 𝒂∗, 𝒃∗, 𝒄∗ - вектора обратной решетки

𝒔 = 𝒂∗ℎ + 𝑘𝒃∗ + 𝑙𝒄∗, какие должны быть 𝒂∗, 𝒃∗ , 𝒄∗ чтобы удовлетворить ур-я Лауэ? 

𝒔𝒂 = ℎ 𝒂∗𝒂 + 𝑘𝒃∗𝒂 + 𝑙𝒄∗𝒂 = 2𝜋ℎ, --> 𝒂∗𝒂=2𝜋, 𝒃∗ 𝒂 = 𝒄∗𝒂 = 0

𝒔𝒃 =……,        𝒔𝒄 = ⋯

𝒂∗ ⊥ 𝒃, 𝒄, 𝒃∗⊥ 𝒂, 𝒄, 𝒄∗ ⊥ 𝒂, 𝒃

𝒂∗=2𝜋
[𝒃хԦ𝐜]

(𝒂 𝒃хԦ𝐜)
𝒃∗=2𝜋

[𝒄х𝒂]

(𝒂 𝒃хԦ𝐜)
𝒄∗=2𝜋

[𝒂х𝒃]

(𝒂 𝒃хԦ𝐜)



Контрольные вопросы

• Сформулируйте условия брэгговской дифракции.

• Что такое вектор рассеяния?

• Запишите уравнения Лауэ.

• Что такое обратная решетка?

• Как определяется вектор обратной решетки? 

• Как ориентированы вектора элементарной ячейки 
обратной решетки по отношению  к «прямой»?



Паращук Дмитрий Юрьевич
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Лекция 7

Структура кристаллов (продолжение)



Контрольная 



Резюме Лекции 6

• Вектор рассеяния:

• Условия Вульфа-Брэгга:

• Уравнения дифракции Лауэ :

𝒔𝒂 = 2πℎ, 𝒔𝒃 = 2π𝑘, 𝒔𝒄 = 2π𝑙

• Обратная решетка 𝑮 = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗

𝝆𝑚𝑛𝑝 = 𝑚𝒂 + 𝑛𝒃 + 𝑝𝒄

k’ s

k



Основные вектора обратной решетки

• 𝒂∗, 𝒃∗, 𝒄∗ - вектора обратной решетки

𝒔 = 𝒂∗ℎ + 𝑘𝒃∗ + 𝑙𝒄∗, какие должны быть 𝒂∗, 𝒃∗ , 𝒄∗ чтобы удовлетворить ур-я Лауэ? 

𝒔𝒂 = ℎ 𝒂∗𝒂 + 𝑘𝒃∗𝒂 + 𝑙𝒄∗𝒂 = 2𝜋ℎ, --> 𝒂∗𝒂=2𝜋, 𝒃∗ 𝒂 = 𝒄∗𝒂 = 0

𝒔𝒃 =……,        𝒔𝒄 = ⋯

𝒂∗ ⊥ 𝒃, 𝒄, 𝒃∗⊥ 𝒂, 𝒄, 𝒄∗ ⊥ 𝒂, 𝒃

𝒂∗=2𝜋
[𝒃хԦ𝐜]

(𝒂 𝒃хԦ𝐜)
𝒃∗=2𝜋

[𝒄х𝒂]

(𝒂 𝒃хԦ𝐜)
𝒄∗=2𝜋

[𝒂х𝒃]

(𝒂 𝒃хԦ𝐜)



«Прямая» (кристаллическая) и 
обратная решетки



Обратная решетка

• Для любого вектора обратной решетки 𝑮 (h,k,l –целые) :

𝑮 = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗

и вектора «прямой» решетки

𝝆𝑚𝑛𝑝 = 𝑚𝒂 + 𝑛𝒃 + 𝑝𝒄

𝑮𝝆𝑚𝑛𝑝 = 2𝜋(ℎ𝑚 + 𝑘𝑛 + 𝑙𝑝) и 𝑒𝑖𝑮𝝆𝑚𝑛𝑝 =1

• Если 𝒔=𝑮, то выполнены условия дифракции

• Объем эл.яч. 𝑉𝑘 = (𝒂∗[𝒃∗х 𝒄∗]) =
2𝜋 3

(𝒂 [𝒃х𝒄 ])
=

2𝜋 3

𝑉



Анимация

• Обратная решетка



Периодические функции и обратная 
решетка (разложение Фурье)

• Концентрация электронов в кристалле

𝑛 𝝆 = σ
𝑲
𝑛
𝑲

exp(i𝑲𝝆), какие вектора K?

𝝆𝑚𝑛𝑝 = 𝑚𝒂 + 𝑛𝒃 + 𝑝𝒄 вектор трансляций

условие  
периодичности 

𝑲 𝝆𝑚𝑛𝑝 = 2π ∗ целое число , т.к. 𝑮𝝆𝑚𝑛𝑝 = 2π ∗ целое число , то:

• Любую периодическую функцию на решетке можно 
разложить в ряд Фурье по векторам обратной решетки

𝑛 𝝆 + 𝝆𝑚𝑛𝑝 = σ
𝑲
𝑛
𝑲

exp(i𝑲𝝆) exp(i𝑲𝝆𝑚𝑛𝑝) = 𝑛 𝝆

𝑛 𝝆 = σ
𝑮
𝑛 Ԧ𝑮

exp(i𝑮𝝆)



Условия дифракции: эквивалентность уравнения 
дифракции и условия Вульфа-Брэгга

вектор рассеяния s = вектору обратной решетки G=>
брэгговское отражение

Рассеяние упруго:   𝑘𝟐 = 𝑘′𝟐 𝒌′ = 𝒌 + 𝑮, 𝒔 = 𝑮:

𝐺2 + 2𝒌𝑮 = 0

𝐺 = 2𝑘 𝑆𝑖𝑛𝜃 = 4𝜋𝑆𝑖𝑛𝜃/𝜆

2𝑑 𝑆𝑖𝑛𝜃 = 𝜆

𝒔 = 𝑮 уравнение дифракции (Лауэ)

𝜆 = 2
2𝜋

𝐺
𝑆𝑖𝑛𝜃

вспомним условие 
Вульфа-Брэгга:

Cравнивая, получаем: 𝑑 =
2𝜋

𝐺

k~
k’~

G

π/d



Построение Эвальда

Рассеяние упруго:   𝑘𝟐 = 𝑘′𝟐 𝒌′ = 𝒌 + 𝑮, 𝒔 = 𝑮:

𝐺2 + 2𝒌𝑮 = 0

k~
k’~

𝐺 = 2𝑘 𝑆𝑖𝑛𝜃 = 4𝜋𝑆𝑖𝑛𝜃/𝜆

𝒔 = 𝑮 условие дифракции



Анимация

• Сфера Эвальда



Индексы Миллера плоскостей и вектор обратной 
решетки

• Нормаль к плоскости (hkl) «прямой» решетки задается вектором 
обратной решетки [hkl] или

• Дифракционный пик [hkl] связан с дифракцией на плоcкостях (hkl)

𝒏 = (
𝒂

ℎ
−

𝒃

𝑘
) х (

𝒂

ℎ
−

𝒄

𝑙
) = 

𝒂 x𝒃

ℎ𝑘
+

𝒃 x𝒄

𝑘𝑙
+

𝒄 x𝒂

ℎ𝑙
=

=
𝑉

2𝜋

𝒄∗𝑙

ℎ𝑘𝑙
+
𝒂∗ℎ

𝑘𝑙ℎ
+
𝒃∗𝑘

ℎ𝑙𝑘
~ℎ𝒂∗ +𝑘𝒃∗ +𝑙𝒄∗

𝒂

𝒃

𝒄

a/h

b/k

c/l

𝒂

ℎ
−
𝒃

𝑘

𝒂

ℎ
−
𝒄

𝑙
𝒏

Нормаль к (hkl):



Вектор обратной решетки и межплоскостное 
расстояние

• Длина вектора обратной решетки Ghkl задает расстояние между 
плоскостями (hkl)

𝑮ℎ𝑘𝑙 = ℎ𝒂∗ +𝑘𝒃∗ +𝑙𝒄∗

𝒂

𝒃

𝒄

a/h

b/k

c/l

𝒂

ℎ
−
𝒃

𝑘

𝒂

ℎ
−
𝒄

𝑙
𝒏

Нормаль к (hkl):

𝑑ℎ𝑘𝑙 =
𝒂

ℎ

𝑮ℎ𝑘𝑙

𝐺ℎ𝑘𝑙

=
𝒂

ℎ𝐺ℎ𝑘𝑙

(ℎ𝒂∗+𝑘𝒃∗+𝑙𝒄∗) =
2𝜋

𝐺ℎ𝑘𝑙

dhkl



Планарная концентрация атомов 
и интенсивность дифракции

Θ – угол скольжения

d – межплоскостное расстояние

“Большие смешанные” индексы Миллера, меньшая концентрация 

атомов, меньше интенсивность дифракции



Структура кристаллов 
(продолжение)

• Обратная решетка.

• Структурный и атомный факторы.

• Зоны Бриллюэна.

• Примеры дифракции в различных КС



Если в элементарной ячейке 
более одного атома?



Рассеяние кристаллической решеткой 
с 2 атомами базиса

• Положение дифракционных пиков не зависит от числа 
атомов в базисе (в т.ч. для  разл. типов решеток Браве)

• Различные атомы базиса могут менять амплитуду 
рассеяния (интенсивность) 
– в случае одноатомных решеток Браве вплоть до нуля



3D: 6 крист.систем и 14 решеток Браве

гексагональная система
система



Рассеяние 3D решеткой с базисом >1 атома

• Суммируем 𝐸𝑠𝑐 по всем атомам, каждый рассеивает с амплитудой 𝑓𝑗 :

𝐸𝑠𝑐 = 𝐶𝐸0

𝑒𝑖(𝑘𝑅−𝜔𝑡)

𝑅
𝑒−𝑖𝒔𝝆

Амплитуда рассеяния: 

A = ෍

𝑚𝑛𝑝𝑗

𝑓𝑗 𝑒
−𝑖𝑮(𝝆

𝑚𝑛𝑝
+𝝆

𝑗
)= 𝑀෍

𝑗

𝑓𝑗 𝑒
−𝑖𝑮𝝆

𝑗 = 𝑀𝐹ℎ𝑘𝑙

𝝆𝑚𝑛𝑝 = 𝑚𝒂 + 𝑛𝒃 + 𝑝𝒄

M – число элементарных ячеек в кристалле

𝝆 = 𝝆𝑚𝑛𝑝 + 𝝆𝑗

𝐹ℎ𝑘𝑙 =෍

𝑗

𝑓𝑗𝑒
−𝑖𝑮𝝆

𝑗 для 𝑓𝑗 = 1: 𝐹ℎ𝑘𝑙 =෍

𝑗

𝑒−𝑖2𝜋(ℎ𝑥𝑗+𝑘𝑦𝑗
+𝑙𝑧

𝑗
)

• 𝐹ℎ𝑘𝑙 - cтруктурный фактор (базиса)

• max j=1, Fhkl= ?

𝝆𝑗

𝝆𝑚𝑛𝑝

• fj - атомный фактор (рассеяния)

• Интенсивность дифракции в [hkl] ~AA*~ |𝐹ℎ𝑘𝑙|
2

k’ s

k



Пример: структурный фактор базиса Fhkl для 
ОЦК решетки  из одинаковых атомов

Координаты базиса
– 000 

– ½, ½, ½

Плоскости (100): 𝐹100= 

➢ Если (h+k+l)=нечетно,

отражений (hkl) нет

1-1=0



Рассеяние кристаллической решеткой 
с двумя атомами базиса

• Положение дифракционных пиков не зависит от числа 
атомов в базисе (в т.ч. для разл. типов решеток Браве)

• Различные атомы базиса могут менять амплитуду 
рассеяния (интенсивность) 
– в случае одноатомных решеток Браве вплоть до нуля



Атомный фактор

если атом не точка:

в направлении 𝒌 = 𝑮 дифракция

𝑓𝑗(𝒌) – атомный фактор

d1 d2 – расст-е междy
брэгговскими плоскостями

➢ Для малых d (больших s) атом нельзя считать точкой, и 
интенсивность дифракции «чувствует» размер атома
за счет интерференции от «разных частей» атома



Атомный фактор

• f – фурье-образ электронной плотности

k

k'

f 𝒔 = ׬ 𝜌(𝒓) exp(i𝒔𝒓) d3r



Кристаллическая структура и 
рентгеновская дифракция 

(рассеяние): итоги

• Крист.структура= решетка + базис

Амплитуда рассеяния:

• А(крист.структура)= [обр.решетка] х F(базис х f)



«Прямая» и обратная решетка:
примеры



«Прямое» и «обратное» пространство
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Электронная дифракция: «прямая» 
и обратной решетки, огранка

S

S

S

S

b*

a*
b

a

Электронная дифракция (TEM)

Требования к образцу – толщина <100 нм

• огранка связана с осями 
элементарной ячейки
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Структура кристаллов

- Зоны Бриллюэна

- Примеры рентгеновской дифракции 
(рассеяния) в конденсированных средах



Структура кристаллов

• Индексы Миллера. Рентгеновская 
дифракция. Условие Брэгга. Уравнение 
Лауэ.

• Обратная решетка.

• Зоны Бриллюэна.

• Примеры дифракции в различных КС



Первая зона Бриллюэна
• (1-я) зона Бриллюэна = ячейка Вигнера-Зейтца обратной решетки

2𝒌𝑮 + 𝐺2 = 0

(𝒌 −
𝑮

2
)
𝑮

2
= 0

• Определяет границы
(плоскости) для k, задающих 
направления дифракции

(𝒌1−
𝑮𝑪

2
)
𝑮𝑪
2
= 0

(𝒌2−
𝑮𝑫

2
)
𝑮𝑫
2
= 0

• Каковы интенсивности дифракции  в направлениях k ?

• Каким зонам Бриллюэна отвечают вектора GD и GC ?



2-я зона Бриллюэна

Ячейка Вигнера-Зейтца обратной решетки =
первая зона Бриллюэна

D
GD/2

1-я зона Бриллюэна- область обр. 
решетки минимального объема



1D: ячейка Вигнера-Зейтца обратной решетки 
= первая зона Бриллюэна

1-я зона Бриллюэна- область обр. решетки 
минимального объема

a*



Имена

Юджин Вигнер

1902-1995, 
«Нобель» 1963,

Венгрия-США

Леон Бриллюэн

1889 – 1969, 
Франция, США

Фредери́к Зейтц
1911- 2008, США



Непримитивные кубические структуры: 
«прямая»/обратная решетки и ячейки Вигнера-

Зейтца

усеченный 
октаэдр

ромбододекаэдр

ОЦК (ВЗ) ГЦК (ЗБ)

ГЦК (ВЗ) ОЦК (ЗБ)



Примитивные ячейки
прямая - ГЦК, обратная - ОЦК 

Киттель, с.89

«прямая»: обратная:



Структура кристаллов

• Индексы Миллера. Рентгеновская 
дифракция. Условие Брэгга. Уравнение 
Лауэ.

• Обратная решетка.

• Зоны Бриллюэна.

• Примеры дифракции в различных КС



Рентгеновская дифракция

• Монокристаллы

• Порошки

• Тонкие пленки



Рентгеновская дифракция в 
монокристаллах



Источники рентгеновского 
излучения для задач структурного 

анализа

• Лабораторные

• Синхротроны и лазеры на свободных 
электронах



Как получают рентгеновское 
излучение (лабораторный источник)?

Электроны в вакуумной трубке c катода 
ускоряются и падают на пластинку металла 
(Cu, Mo), V ~ 5 кВ

Характеристическое излучение



Синхротрон



Рентгеноструктурный анализ 
монокристаллов

• Образцы – монокристаллы 10-300 мкм (?)

• Определение кристаллической системы 
(сингонии)

• Измерение интенсивностей всех пиков (десятки 
тысяч)

• Решение обратной задачи –> 

ИТОГ: кристаллическая структура

– элементарная  ячейка

– положение всех атомов (не всегда H), точность 0.1А



Базы данных кристаллических структур

• Опубликовано более 1 млн. крист. структур (2016)

• Неорганические структуры, ICSD ~185 000

• Биомолекулы

• Cambridge structural 
database (850 000), 
молекулы 
содержащие H и С.



Postnikov et al, Cryst. Growth Des. 2014, 14, 1726−1737

60 атомов



Postnikov et al, Cryst. Growth Des. 2014, 14, 1726−1737

Положения атомов F не определены



Рентгеновская дифракция в порошках

• Монокристаллы – точки

• Поликристаллы - кольца



Рентгеновская дифракция в порошках

• Конус дифракции 
вокруг 2θ из-за 

случайной 

ориентации 
кристаллитов



Рентгеновская дифракция в пленках (полимеры)
• источник – синхротрон

• толщина пленок ~50нм



Рентгеновская дифракция и отражение в 
монослойных органических кристаллах

• источник – синхротрон

S

S

S

S

Bruevich, V. V. et al., ACS Appl. Mater. Interfaces 11 (6), 6315 (2019)



Малоугловое рассеяние 
(small-angle scattering, SAXS)

• Углы рассеяния <10 град

• Размеры объектов, 5-100 нм

• SAXS (small-angle scattering) размеры 
объектов, 5-100 нм

• WAXS (wide-angle scattering), 
дифракция



Контрольные вопросы

• Как отличается картина рентгеновской 
дифракции в монокристаллах и порошках?

• Можно ли увидеть рентгеновскую 
дифракцию от монослоя молекул?

• Что такое малоугловое и широкоугловое
рассеяние?

• Что можно узнать о структуре материала с 
помощью малоуглового рассеяния?



Структура кристаллов: 
основные понятия

• Элементарная и примитивная ячейки. Ячейка 
Вигнера-Зейтца. Базис.

• Трансляционная симметрия. Оси и плоскости 
симметрии.

• Решетки Бравэ

• Рентгеновская дифракция (рассеяние)

• Условия Брэгга. Вектор рассеяния.

• Обратная решетка

• Структурный и атомный факторы

• 1-я зона Бриллюэна
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Фононы



Фононы

• 1D цепь. Одинаковые атомы.

• Понятие фонона. Квазиимпульс и законы 
сохранения

• 1D цепь. Различные (2) атомы

– оптические и акустические фононы

• Примеры фононов в 3D

• Оптика фононов

• Ангармонизм и время жизни фононов



Ковалентная связь, энергия H2

R=27.2 эВ

r

U
L
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r)
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ULJ  -r -6

ULJ  +r -12

Потенциал Леннард-Джонса, 6-12
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Потенциалы взаимодействия в 

конденсированных средах

Межмолекулярные силы

0.01-0.1эВ

≈3.5 А

~3 эВ



Межатомные потенциалы и колебания

равновесное положение атомов
смещения колеблющихся атомов 

(сильно преувеличено!)

ангармонический
потенциал →
тепловое расширение

гармонический потенциал
→ нет теплового 
расширения

Увеличение среднего 
межатомного 

расстояния

Межатомные 
потенциалы 

асимметричны
(ангармонизм)

межатмоное
расстояние,r

потенциальная 
энергия

симметричный (гармонический) 
потенциал

Нет изменения 
среднего 

межатомного 
расстояния



Движение атомов в КС: 
нормальные моды и фононы

– Движение каждого атома зависит от движения соседних. Поэтому 
используют язык нормальных мод.

– Движение атомов в гармоническом потенциала (закон Гука для 
«пружинок» между атомами)  можно описать как сумма независимых 
нормальных мод, где координаты всех атомов осциллируют с 
одинаковой частотой и сохраняется отношение между амплитудами 
колебаний.  

– Движение атомов необходимо описывать квантово-механически:

• Движение атомов классической нормальной моды аналогично квантовому

• Энергия выражается в терминах частоты классической моды (w)

– В КС квантованные нормальные моды называют фононами
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
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1
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Нормальные моды: «классика» для 2 координат 
(пример)

– Мода 1: Мода 2:

– Общее решение

( ) ( )222111
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Колебания в 1D цепочке одинаковых атомов

• Масса m, жесткость a, 
период решетки a
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Нормальные моды в 1D цепи из 13 
атомов

• циклические ГУ 

• больше k, больше ω



Волновой вектор и вектор обратной решетки

• закон дисперсии периодичен с 2p/a

• qa дает сдвиг фаз кол-й соседних ячеек

• q+nG описывает тоже состояние (волну), что и q (n - Ɐ целое)
q

-p/a p/a
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Сдвиг фаз между 

точками решетки 

не важен

• Вектор nG дает сдвиг фаз 2pn 
между колеблющимися 
точками прямой решетки

• В однородном пространстве 
сдвиг фаз для волны f=kr для 
любого r. В кристалле, 
эквивалентные точки 
разделены на r, смысл имеет 
только f=kr



Движение атома(иона): можно описать  
разными q, отличающимися на G

две волны с разными q1<q2 (отличаются 
на вектор обратной решетки G) 

описывают одинаковое колебание 
атома (иона) 



Первая зона Бриллюэна

• Выбираем q : |q| ≤ p/a

Все физически различимые состояния 
описываются q из первой зоны Бриллюэна

Волновой вектор, q



Первая зона Бриллюэна

• Выбираем q : |q| ≤ p/a

Все физически различимые состояния 
описываются q из первой зоны Бриллюэна

Волновой вектор, q



Акустические волны (фононы)

• Длинноволновый предел 
(звуковые волны)
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( ) 22sin qaqa 

E – модуль Юнга

r - плотность

q→0

Градиент-
скорость звука

Длинноволновый предел

• Коротковолновый предел

• q→p/a.  l=2a - наикратчайшая 
длина волны

Стоячая волна w/q=0, волны с /q/=p/a 

не могут распространятся 
(брэгговское отражение)

maw 4max =



Фононы
• Квантованные колебания решеток, квазичастицы – волновой 

пакет

• Каждому нормальному колебанию отвечает энергия

квантовый гармонический осциллятор

Скорость = w/q (групповая)
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Квазичастицы и частицы

• Число частиц сохраняется. Они стабильны (как 
правило). Квазичастицы легко рождаются и 
погибают.

• Массу квазичастиц определяет закон дисперсии.

• Во взаимодействиях (квази)частиц сохраняется 
энергия и (квази)импульс.

• Делим кристалл на мелкие части…. 



Фононы
• Квантованные колебания решеток, квазичастицы – волновой 

пакет

• Каждому нормальному колебанию отвечает энергия

квантовый гармонический осциллятор

Скорость = w/q (групповая)

• Квазиимпульс ħq (аналог импульса фотона ħk), почему квази?
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Фононы

• 1D цепь. Одинаковые атомы.

• Понятие фонона. Квазиимпульс и законы 
сохранения

• 1D цепь. Различные (2) атомы

– оптические и акустические фононы

• Примеры фононов в 3D

• Оптика фононов

• Ангармонизм и время жизни фононов



(Квази)импульс фонона: ħq

• Строго: импульс фонона =0, нет переноса массы (смещение 
всего кристалла при q→0)

• Квазиимпульс ħq (аналог импульса фотона ħk)
• q определен с точностью до G, поэтому нет однозначного закона 

сохранения импульса  

• Если решетка искажена фононом, то каждый атом при 
рассеянии дает сдвиг фаз qr, что изменяет вектор рассеяния 
s на:

sr = 2np + qr и s=k’-k = G + q ,

• При рассеянии кристалл получает импульс ħ(G + q).

ħG – импульс отдачи (весь кристалл). Т.к. q определен с 
точностью до G, то закон сохранения квазиимпульса    

s=k’-k =±q или k’=k ±q



Как «измерять» фононы? (закон дисперсии)

Принципы

• Нужен метод зондирования, где импульс и 
энергия зондирующих частиц сравнимы с 
фононами
– фотоны, электроны ()

– нейтроны (☺)

• Частица взаимодействует с решеткой и 
поглощает/возбуждает фонон

• Освещаем образец монохроматическим 
пучком с k

• Измеряем энергию рассеянного излучения на 
разных k’ – спектр, пики дадут энергию 
возбужденного/поглощенного фонона

q
-p/a p/a

( )2'2
2

2
kk

m
-=


w

Gqkk ++= ' 'kGqk =++

рождается фонон q исчезает фонон q



Законы сохранения энергии и квазиимпульса

• Энергия (+ рождение, − аннигиляция)

• Квазиимпульс
– рождение фонона 

– аннигиляция 

• Закон сохранения импульса – однородность пространства –
трансляционная симметрия на любой вектор r

• Закон сохранения квазиимпульса – «квазиоднородность пространства»
– трансляционная симметрия на любой вектор трансляций ρmnp

• Законы сохранения разрешают чему то происходить, но ничего не 
говорят про вероятность событий. Например, при дифракции                   , 
но какова интенсивность? 

( )2'2
2

2
kk

m
-=


w

Gqkk ++= '

'kGqk =++

Gkk +='



Фононы

• 1D цепь. Одинаковые атомы.

• Понятие фонона. Квазиимпульс и законы 
сохранения

• 1D цепь. Различные (2) атомы

– оптические и акустические фононы

• Примеры фононов в 3D

• Оптика фононов

• Ангармонизм и время жизни фононов



1D цепочка из 2-х различных атомов
(двухатомная)

• Решетка с базисом
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• Ищем решение в виде:
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• Квадратное уравнение для w2 , его 2 решения :
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Акустические и оптические моды (фононы)

• q→0:
– Оптическая мода, знак +, (высокочастотная)

– Акустическая мода, знак − ,  (низкочастотная)
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w=(2a/mB)

w=(2a/mA)

mA>mB



Смещения атомов

• Акустическая мода: хотя бы один сосед 
движется в фазе

• Оптическая мода: соседние атомы 
движутся в противофазе

• Моды на границах зоны Бриллюэна

q=p/2a; l=2p/q=4a, стоячие волны vg=w/q=0

Оптическая мода – движутся только легкие

Акустическая мода – движутся только тяжелые

Для визуализации смещения 
показаны для поперечных мод

w=(2a/mB)

w=(2a/mA)



Происхождение акустических и оптических ветвей
• Моды двухатомной цепи получаются из одноатомной

одноатомная цепь,

период a

период в q → p/a

для двухатомной цепи

Расщепление на оптические 

и акустические моды

для различных масс mA и mB

моды с q вне новой 1-й ЗБ

«складываются» в новую ЗБ

прибавлением ± G=p/a

w=(2a/mB)

w=(2a/mA)
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Фононы (продолжение)



Фононы (квазичастицы) в 1D цепях: резюме

• Акустические моды

– звуковые волны в длинноволновом пределе: w→0 при q→0

• Оптические моды (2-х атомная)

– w→ w0 при q→0

– в длинноволновом пределе оптические моды взаимодействуют с 
э/м излучением (поэтому и оптические)

– могут сильно поглощать ИК излучение: «рождение» фоНонов и 
«уничтожение» фоТонов (а излучать?)

– оптические моды возникают из-за «сворачивания» 
дисперсионной кривой одноатомной цепи – удвоение периода 
прямой решетки (в q - сокращение вдвое)

• На границах зоны Бриллюэна

– стоячие волны, w/q = 0, из-за периодичности решетки

– в двухатомной цепи, энергетическая щель между ветвями, 
зависит от разницы масс. Одинаковые массы → щель 0.

Почему оптические?



Фононы

• 1D цепь. Одинаковые атомы.

• Понятие фонона. Квазиимпульс и законы 
сохранения

• 1D цепь. Различные (2) атомы.

– оптические и акустические фононы.

• Примеры фононов в 3D

• Оптика фононов

• Ангармонизм и время жизни фононов



Фононы в 3D кристаллах: 
моноатомная решетка

• Пример: неон Ne, ГЦК, Т<25K

– неупругое рассеяние нейтронов 

(00 )
( )

( ) 0

Phys. Rev. B 11, 1681, (1975)

• 1D модель объясняет:
– дисперсию в 00ξ и ξξξ

~Sinξ=Sin(ka) –приближение 
ближайших соседей

– все моды акустические
(моноатомная система)

1 ТГц=33 см-1=4.1 мэВ



Фононы в кристалле неона

• 2 типа мод:

– продольные (L): смещение || q

– поперечные (Т): смещение Ʇ q
• типично ωL>ωT

• типично: T-моды вырождены вдоль 
направлений высокой симметрии (но не 
ξξ0)

• Замечание

– 1D модель не описывает дисперсию 
L мод вдоль ξξ0 (3D эффект)

(00 )
( )

( ) 0



Фононы в 3D кристаллах: двухатомная решетка

• Пример NaCl, две сдвинутые по ребру ГЦК

Phys. Rev.  178 1496, (1969)

• 1D модель  объясняет:
– оптические (О) и 

акустические (А) моды

– дисперсию в ξξξ

• За пределами 1D:
– T,  L моды

– сложная дисперсия в 
ξξ0 и 00ξ

• NaCl: fmax =8 TГц; Ne: fmax = 1.6 TГц

• ионные связи vs Ван-дер-Ваальс



Фононы в 3D кристаллах: двухатомная решетка

• Пример алмаз: две проникающие ГЦК

(или ГЦК с 2 атомами)

• О-моды для одинаковых 
атомов

• T-моды дважды вырождены 
(разные поляризации)

• Алмаз fmax =40 TГц; NaCl: fmax =8 TГц; Ne: fmax = 1.6 TГц

• Ковалентные vs ионные связи vs vs Ван-дер-Ваальс



Почему частота поперечных мод ниже 
продольных?

• Смещения в продольной (L)
моде

• Смещения в поперечной (Т) 
моде

q

q

• Возвращающая сила или 
деформация связей-
«пружинок»:

в L-моде больше, 

чем в Т-моде



Фононы

• 1D цепь. Одинаковые атомы.

• Понятие фонона. Квазиимпульс и законы 
сохранения

• 1D цепь. Различные (2) атомы

• Примеры фононов в 3D

• Оптика фононов

– резонансное взаимодействие с ИК фотонами

– поляритоны

– неупругое рассеяние фотонов

• Ангармонизм и время жизни фононов



Взаимодействие э-м поля с фононами:
«оптика фононов»

• Резонансное взаимодействие с ИК фотонами

• Поляритоны

• Неупругое рассеяние света:

– рассеяние Мандельштамма-Бриллюэна

– комбинационное рассеяние (рамановское)
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ФОНОНЫ

• Квант колебаний решетки

~a0~10-4мкм=1А

ФОТОНЫ

• Квант э-м поля

~1 мкм

Фотоны и фононы

(акустические)



Взаимодействие э-м поля с фононами

• Частоты фононов могут лежать в ИК-диапазоне →  
ИК-активные фононы (что значит активные?)

• Поглощать и испускать фотоны могут только 
оптические фононы (почему?)

• Взаимодействуют фононы только с q<<π/a, q  0

0 л / a
q, k

Ω, ω
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Взаимодействие э-м поля с 
поперечными (ТО) фононами

• Классическая осцилляторная модель

• Поперечная оптическая мода (ТO)

• Резонансные условия ω=Ω, q=k

• Взаимодействуют фононы только с q<<π/a, q  0

уравнения движения для пары ионов разноименного заряда:

делим на m± и вычитаем:

обозначаем x = x+ − x-

N – концентрация эл.ячеек

χ – электронная восприимчивость

+

-

+

-

+

-

Fox M., Optical Properties of Solids (OXFORD University Press, 2010)



При ω→0 2
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Что означает =0 ?  Ур-е Максвелла:
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Для   0 и решения в виде волны:
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Поэтому w = w’ отвечают продольным 
фононам (LO) k ‖ E, w’ ≡LO :
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соотношение Лиддена-Сакса-Теллера

Фотоны и фононы: продольные э-м волны
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При ω→∞ поперечные волны

Если  = 0, уравнение для divD=0  может 
быть удовлетворено для волн, у 
которых
т.е. для продольных волн.

➢ В диэлектрике могут существовать 
продольные электромагнитные 
волны при (w’) = 0.

,0Ek




Поле диполя: в ближней зоне есть 
продольная компонента
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• Для неполярных кристаллов 
(алмаз, Si, Ge) нет ИК 
поглощения,  = 

Соотношение Лиддена-Сакса-Теллера:
сравнение с экспериментом
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Почему спектр отражения
отличается от расчета?

Почему для InAs полоса
отражения краснее?

Параметр затухания:
 ~ 1011-1012 Гц →

время жизни LO фононов
1/  ~1-10 пс

 <0 в диапазоне:
vTO (=∞) <v< vLO (=0) («запрещенная зона»)

э-м волны не могут распространяться (почему?)

э-м волны отражаются:

.
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1~ 22
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n
R

Какой R в диапазоне vTO <v< vLO? 

30 cm-1 =1 ТГц

Расчет при vTO=10 ТГц, vLO=11 ТГц, 0=12.1, ∞=10

T=4.2 K

ИК оптика оптических фононов

Fox M., Optical Properties of Solids (OXFORD University Press, 2010)



Взаимодействие э-м поля с фононами:
«оптика фононов»

• Резонансное взаимодействие с ИК фотонами

• Неупругое рассеяние света:

– рассеяние Мандельштамма-Бриллюена

– комбинационное рассеяние (рамановское)

• Поляритоны



,21 w=w

✓ Законы сохранения:

фонон

фотоны✓ Меняется частота света ω1≠ω2

✓ Может быть на различных возбуждения КС
(квазичастицах): фононы, магноны, поляритоны,
плазмоны и т.д.

✓ Выделяют два типа (по величине Ω):

• комбинационное (на оптических фононах )

• Мандельштамма-Брюллюэна (на акустических 
фононах)

qkk


= 21

)/exp( Tk
I

I
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stokes

Stokesanti −=− 

Неупругое рассеяние света

✓ Выделяют два вида
• cтоксово, ω2<ω1

• aнтистоксово, ω2>ω1

➢ Где рождается/уничтожается фонон?

✓ Соотношение интенсивностей:

✓ Максимальное изменение q:
(ср. с рентгеновским рассеянием) c

n
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w
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w
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Контрольные вопросы

• Что такое фонон?

• В чем отличие частицы и квазичастицы?

• Что такое квазиимпульс? Закон его сохранения.

• В чем отличие акустических и оптических фононов?

• Отличия продольных и поперечных фононов? Как объяснить разницу их 
частот?

• В каких кристаллах возможны оптические фононы?

• Сравните волновые вектора и частоты фононов и фотонов (для разных 
диапазонов частот).

• Могут ли фононы поглощать и излучать э-м излучение? Какие фононы? В 
каком диапазоне частот?

• Для каких кристаллов будет отличие диэлектрических проницаемостей на 
частотах фононов и видимого света? Каково это отличие?

• На каких частотах и для каких кристаллов может наблюдаться полоса 
отражения света?



Паращук Дмитрий Юрьевич

Физика конденсированных сред

Лекция 11

Фононы (продолжение)



Взаимодействие э-м поля с фононами:
«оптика фононов»

• Резонансное взаимодействие с ИК фотонами

• Неупругое рассеяние света:

– рассеяние Мандельштамма-Бриллюена

– комбинационное рассеяние (рамановское)

• Поляритоны



Взаимодействие э-м поля с фононами:
«оптика фононов»

• Резонансное взаимодействие с ИК фотонами

• Неупругое рассеяние света:

– рассеяние Мандельштамма-Бриллюена

– комбинационное рассеяние (рамановское)

• Поляритоны: составные квазичастицы



,21 =

✓ Законы сохранения:

фонон

фотоны✓ Меняется частота света ω1≠ω2

✓ Может быть на различных возбуждения КС
(квазичастицах): фононы, магноны, поляритоны,
плазмоны и т.д.

✓ Выделяют два типа (по величине Ω):

• комбинационное (на оптических фононах )

• Мандельштамма-Брюллюэна (на акустических 
фононах)

qkk
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= 21

)/exp( Tk
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I
B

stokes

Stokesanti −=− 

Неупругое рассеяние света

✓ Выделяют два вида
• cтоксово, ω2<ω1

• aнтистоксово, ω2>ω1

➢ Где рождается/уничтожается фонон?

✓ Соотношение интенсивностей:

✓ Максимальное изменение q:
(ср. с рентгеновским рассеянием) c

n
kk


= 12


21 kkq
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−= a
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n
kkq /2)( 
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Рассеяние Мандельштамма-Бриллюэна

2
sin

2 


c

n
s=

✓ Изменение частоты при рассеянии δω=s dk: s – скорость звука

k2

k1

dk

𝒅𝒌 = 𝒌𝟐 − 𝒌𝟏

Вектор рассеяния:

✓ Можно измерить скорость звука

θ

Киттель, Введение…



Взаимодействие э-м поля с фононами:
«оптика фононов»

• Резонансное взаимодействие с ИК фотонами

• Неупругое рассеяние света:

– рассеяние Мандельштамма-Бриллюена

– комбинационное рассеяние (рамановское)

• Поляритоны: составные квазичастицы
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дисперсия поляритона для vTO = 10 ТГц, 0 = 12.1 и  = 10

Дисперсия поляритонов:
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Дисперсионное уравнение для фотонов:

Найдем частоты возбуждений фотонов, 
связанных с фононами

Решение:

Связанные фотон-фононные волны = 
поляритоны (от «поляризация»)
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Точки - данные спектроскопии КР. 
Линии – расчет для 
hvTO = 45.5 meV,  = 9.1 и 0→ 11.0

Фононные поляритоны: сравнение с экспериментом

Замечания

• Следили за одним LO фононом (их в 3D больше 1, расщепление)

• Пренебрегали дисперcией фононов (загибы при больших k)
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Fox M., Optical Properties of Solids (OXFORD University Press, 2010)



Поляритонные волны при учете 
пространственной дисперсии 

• Учет фононной дисперсии ω(k)

• На одной частоте может существовать более одной волны в 

среде (3 на рис.)

• Как получить формулы Френеля? 

• Проблема дополнительных граничных условий
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Типы поляритонов

• Фононные

• Экситонные

• Поверхностные (плазмонные)



Фононы

• 1D цепь. Одинаковые атомы.

• Понятие фонона. Квазиимпульс и законы 
сохранения

• 1D цепь. Различные (2) атомы

• Примеры фононов в 3D

• Оптика фононов

– резонансное взаимодействие с ИК фотонами

– поляритоны

– неупругое рассеяние фотонов

• Ангармонизм и время жизни фононов



• Модель гармонического осциллятора
(невзаимодействующих частиц, идеальный газ)
для фононов – приближение

• Эксперимент показывает, что времена жизни
фононов 1-10 пс. Какие эксп-ты?

ИК отражение (уширение)
КР (уширение)
КР с временным разрешением

• Причина малых времен жизни – ангармонизм.
Потенциальная энергия как функция смещения
атомов x из положения равновесия:

.)( 4

4

3

3

2

2 +++= xCxCxCxU

• Член x3 позволяет учесть взаимодействие 
рассеяние фононов (3 фонона)

• Должны быть выполнены законы 
сохранения энергии и (квазиимпульса). 

Время жизни фононов и ангармонизм
распад фонона

слияние фононов

Пример распада оптического фонона



Закон сохранения (квази)импульса при 
рассеянии фононов

«нормальный» процесс «процесс переброса»

q1+q2=q3 q1+q2=q’3-G=q3

q1

q2

q1

q2
q3

q3

q'3

1-я ЗБ 1-я ЗБ



Фононы: основные понятия и темы

• 1D цепь. Одинаковые атомы.

• Понятие фонона. Квазиимпульс и законы 
сохранения

• 1D цепь. Различные (2) атомы

• Примеры фононов в 3D

• Оптика фононов

• Ангармонизм и время жизни фононов



Контрольные вопросы по разделу Фононы

• Что такое фонон?

• В чем отличие частицы и квазичастицы?

• Что такое квазиимпульс? Закон его сохранения.

• В чем отличие акустических и оптических фононов?

• Отличия продольных и поперечных фононов? Как объяснить разницу их 
частот?

• В каких кристаллах возможны оптические фононы?

• Сравните волновые вектора и частоты фононов и фотонов (для разных 
диапазонов частот).

• Могут ли фононы поглощать и излучать э-м излучение? Какие фононы? В 
каком диапазоне частот?

• Для каких кристаллов будет отличие диэлектрических проницаемостей на 
частотах фононов и видимого света? Каково это отличие?

• На каких частотах и для каких кристаллов может наблюдаться полоса 
отражения света?

• Что такое поляритон?

• Следствия ангармонизма фононов.

• Какие вы знаете эффекты неупругого рассеяние света на фононах?
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Тепловые свойства

• теплоемкость 

• теплопроводность



Теплоемкость

• Эксперимент. Закон Дюлонга и Пти

• Расчет теплоемкости

• Плотность состояний. Фононы 1D и 3D

• Модель Дебая



Удельная молярная  теплоемкость 
твердых тел

cp ≈25 Дж/моль/К ≈ 6 кал/моль/K

при T = 298 K

Алмаз?

• Закон Дюлонга и Пти (1819 г): сv=3R=3kBNA=25.2 Дж/моль/К



Молярная теплоемкость твердых тел
как функция Т: эксперимент

• Закон Дюлонга и Пти работает только для высоких 

температур

Pb

Алмаз (С)



Теплоемкость

• Эксперимент. Закон Дюлонга и Пти

• Расчет теплоемкости

• Плотность состояний. Фононы 1D и 3D

• Модель Дебая



Что нужно для расчета теплоемкости?
(диэлектрики)

• Носитель тепловой энергии – фононы 

– нужно знать - сколько энергии в каждой моде

– нужно знать - сколько фононных мод

– нужно суммировать тепловую энергию во всем модам

– теплоемкость = производная тепловой энергии по Т

• Энергия в нормальной моде (фононе):

– каждая мода E=ħw(n+ ½), n - число фононов в моде (число 
заполнения)

– в равновесии с термостатом, вероятность иметь моду с n 
фононами Pn= exp(-n ħw/kBT)

– пренебрегаем нулевыми колебаниями n=0, E=ħw/2 , (не 
относятся к тепловой энергии)



Средняя энергия нормальной моды

• Рассчитаем среднюю энергию в нормальной моде i, 
усредняем по всем n (0…. ∞):
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Похоже на: 

• формулу Планка (средняя энергия на осц-р поля)

• распределение Бозе



Что нужно для расчета теплоемкости?
(диэлектрики)

• Носитель тепловой энергии – фононы 

– нужно знать - сколько энергии в каждой моде

– нужно знать - сколько фононных мод

– нужно суммировать тепловую энергию во всем модам

– теплоемкость = производная тепловой энергии по Т



Теплоемкость при высоких Т

• Высокотемпературный предел (ħw/ kBT<<1)

– Нет «квантованности»

– ср. с идеальным газом

• Сколько фононных мод?

– Для 3D кристалла из N>>1 атомов, 3N координат для 
описания фонона, 3N нормальных мод

• Термоэнергия всего кристалла 3NkBT, теплоемкость 
= 3NkB ; если 1 моль N=NA, то =3R

✓ Закон Дюлонга и Пти: молярная теплоемкость=const
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Модель теплоемкости Дебая: 
низкие и средние температуры

• Ei зависит от ħwi, надо суммировать по всем 
модам

• Сумму в интеграл:

• здесь g(w)=dN/dw – «плотность состояний», 
g(w)dw дает число фононных состояний dN с 
энергиями между w иw+dw
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Теплоемкость

• Эксперимент. Закон Дюлонга и Пти

• Расчет теплоемкости

• Плотность состояний. Фононы 1D и 3D

• Модель Дебая



• Уровни энергии при взаимодействии N квантовых объектов 
(атомов, молекул и т.д.) расщепляются

“Малоe” N N>>1
N < ∞ 

квазиконтинуум

Интервалы между уровнями энергий hω

• Плотность состояний g(ω):   g(ω)dω - число состояний между ω и dω

• g(ω) важна для расчетов вероятности переходов (золотое правило 
Ферми)

Плотность состояний (density of states, DOS)



• ранее считали цепь с 1D фононами бесконечной

• граничные условия:

– закрепленные (отражающие) границы

– (периодические)

• волновой вектор обозначим k

L

Закрепленные границы
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Плотность состояний:  1D фононы

число состояний dn на dk:

плотность состояний:

Т.к. ω=ω(k), найдем g(k) как функцию ω:

w
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Рассмотрим 1D фононы (1 атомная цепь) 
с N элементарными ячейками (L=Na):
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Постоянная 

плотность состояний

w

Рассчитанная плотность 

состояний 
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g w w w
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= −

➢ Плотность состояний для 1D → ∞ при , т.к. групповая 

скорость dω/dk → 0

➢ Плотность состояний → const, при ω → 0

➢ Число состояний = N
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Плотность состояний в 3D
– Рассчитаем g(w), считая кристалл 3D 

прямоугольным «ящиком» со сторонами Lx, 
Ly Lz . Используем ГУ: закрепленные 
(отражающие) границы. 

– В каждом измерении «ящика» должно 
укладываться целое число полуволн 
(удовлетворяем ГУ), т.е. Lx=nl/2 and k=n/Lx. 
Тогда волновой вектор фонона:

– Объем на 1 состояние в k-пространстве
3/(LxLyLz)= 3/V, где V – объем «ящика»
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Плотность состояний:  3D акустические фононы
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Все состояния в скорлупе

имеют одинаковый |k| 

состояния однородно 

заполняют

k-пространство

1 состояние «занимает 

объем» (3/V)

объем скорлупы
объем на k-состояние 3 поляризации/ k состояние

• Найдем g(k)dk – число состояний, dN, которые 

имеют волновой вектор между k и k +dk. Эти 

состояния лежат в положительном октанте в 

сферической «скорлупе» - оболочке радиуса k и 

толщиной dk. (ГУ закрепленные границы: стоячие 

волны)

• Для каждой фононной моды имеем 2 поперечные 

моды и 1 продольную, т.е. 3 моды на точку в k-

пространстве
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• Замечание

Звук продольный vL (1 волна) и поперечный vT (2 волны), поэтому под s надо понимать



Плотность состояний g(ω) зависит:
- закона дисперсии
- размерности системы

• Если dω/dk→0,  то g(ω)→∞
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Домашнее задание

• Посчитать плотность состояний для 1D фононов 
(акустическая ветвь) для периодических 
граничных условий
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Свободный электронный газ



Свободный электронный газ

• Модель. Энергия Ферми

• Распределение Ферми-Дирака.

• Электронный вклад в тепловые свойства 
металлов

• Электрическая проводимость и сопротивление



Свободный электронный газ (Ферми-газ)

– Успехи модели Ферми-газа:

• теплоемкость электронного газа

• электро- и теплопроводность металлов

– Ограничения модели Ферми-газа. Не объясняет:

• эффект Холла – свидетельство проводимости 

положительно заряженными частицами

• Разницу между проводниками, полупроводниками и 

изоляторами



Предположения модели свободного 
электронного газа

• Все «валентные» электроны могут свободно двигаться

– атомная структура состоит из заполненных «оболочек» (атомов) + 
слабо связанные «валентные» электроны (отвечают за химсвязь)

– например, Na, Mg, Al имеют соответственно 1, 2, 3 электрона на 
атом

• Заряд положительных ионов считают однородно 
«размазанным»

• Электрон-электронное отталкивание игнорируется                  
(одноэлектронная модель)

– электроны рассматриваются как независимые частицы

• Циклические граничные условия – атом N+1th эквивалентен атому N=1

– решения ур. Шредингера – бегущие 
волны
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Циклические ГУ
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Какие состояния занимают электроны?
• Используем циклические граничные условия, т.к. хотим рассмотреть электроны как 

бегущие волны

• Плотность состояний  в k-пространстве как и раньше, но электроны имеют 2 спина –
два состояния на каждую точку в k-пространстве

• Тогда плотность состояний как функция энергии g(e) (в термодинамическом 
равновесии состояния заселяются согласно их энергии):

вырождение – 2

из-за 2 спинов

( ) ( ) 22
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2 .
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объем сферической скорлупы

объем на состояние [=(2/L)3]



Концепция уровня Ферми: 
распределение электронов при T=0

– Электроны – фермионы и подчиняются принципу Паули – один электрон на состояние (2 
спиновых состояния на k состояние – учтено в g(e))

– При T = 0 электроны занимают низшие возможные состояния  до уровня или энергии Ферми, 
eF (Na: 3.2 эВ, Cu: 7 эВ)

– Все состояния внутри сферы радиуса kF - волновой вектор Ферми - заполнены

– Найдем kF и eF из требования, что имеется N электронов (т.е. N заполненных состояний)

( )
V

Nn   гдеn3π
2m

k
2m

ε

n3π
V

N3πk
/V8π

πk
3

4

 2

3

2
2

2
2

F

2

F

223

f3

3

f

===

===



N

2 спина/k-состояние

объем шара
объем на k-состояние

энергия Ферми

заполненные 

состояния



Свободный электронный газ

• Модель. Энергия Ферми

• Распределение Ферми-Дирака

• Электронный вклад в тепловые свойства 
металлов

• Электрическая проводимость и сопротивление



p(e) - вероятность найти электрон
в состоянии e

μ – химический потенциал

μdNPdVTdSdG +−= μdNPdVTdSdG +−=• T = 0

– Распределение Ферми-Дирака - ступенька:

– Состояния от e = 0 до энергии m заполнены. Все 
состояния выше – свободны.

• T ≈ 0

– для e < m , (e-m)/kBT большое и отрицательное, поэтому 
exp[(e-m)/kBT] <<1 и p(e) ≈ 1

– для e >m , (e-m)/kBT большое и положительное, поэтому
exp[(e-m)/kBT] >>1 и p(e) ≈ 0

– В термодинамике, m(T) при T = 0K называют энергией 
Ферми, eF.

– В физике полупроводников m(T) при любой T называют 
энергией Ферми

• T > 0
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Распределение Ферми-Дирака

химический потенциал
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Химический потенциал m(T), для T>0

• Занятые состояния - p(e) x g(e) 

• Химический потенциал m(T) для T>0K

– Полное число электронов равно N:

неявное уравнение m(T)

– Численное решение:

• важно – при низких T: Т<< eF/ kBT m(T) ≈ m(0)

работает для большинства практических случаев
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m ≈const



Свободный электронный газ

• Модель. Энергия Ферми

• Распределение Ферми-Дирака

• Электронный вклад в тепловые свойства 
металлов

• Электрическая проводимость и сопротивление



Тепловые свойства металлов
• Теплоемкость

– электронный вклад в теплоемкость находят из 
дифференцирования электронной энергии по T

– TF = eF/kB = ‘температура Ферми’

– аналогичный результат можно получить из качественных 
соображений

• сравним занятые состояния  при T=0K

с таковыми при T0K

( )
( ) 

F

B

2
el

el

0
B

el

T

T
Nk

2

π

T

U
C

dε
1Tkμεexp

εgε
U





=

+−
= 



можно рассчитать



Электронный вклад в теплоемкость металлов
(простой расчет)

• Только электроны энергии ~kBT возбуждаются термически

• Таких электронов

• Рассмотрим эти возбужденные электроны классически, т.е. они имеют 
кинетическую энергию 3kBT/2 на электрон

• Вспомним:

• Комбинируя A и B:

• Еще более простой расчет Cel : доля возбужденных электронов  T/TF, 
энергия на электрон 3/2 kT, изменение внутренней энергии U  3/2kT2/TF, 
поэтому Cel  3kT/TF
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– Абсолютный вклад много меньше, чем классический 
результат (3NkB/2).  T/TF~10-2 при комнатной Т для типичных 
металлов

классическая модель газа (Друде) дает слишком высокую электронную теплоемкость

– Эксперимент для Na – классический «свободно-электронный» 
металл:
(Cel)эксп = 1.5T мДж моль-1 K-1 (0.45 Дж моль-1 K-1 при 300К)
(Cel)расч = 1.1T мДж моль-1 K-1

– Зависимость от Т?

край Ферми уширяется, больше возбуждается электронов

– Электронный вклад в теплоемкость при высоких Т не виден. 
Почему? 

в металлах при очень низких Т:  С~Т (ср. с решеточной по модели Дебая)

Электронный вклад в теплоемкость 
металлов
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Тепловые свойства

• теплоемкость 

• теплопроводность



Модель Дебая: внутренняя энергия
– Пренебрегаем нулевыми колебаниями (вносят ли они вклад в теплоемкость?)

– Интеграл g(ω) по всем частотам должен быть равен числу мод, т.е. 3N (число 
атомов  в кристалле)

– Дебай предложил обрезать интеграл на некоторой частоте (частоте Дебая wD) 
исходя из условия:

– Внутренняя энергия

– Следовательно: 
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• Низкие Т, T → 0

–при низких Т высоко-частотные моды 
не возбуждены. Поэтому их вкладом 
в интеграл можно пренебречь для 
больших w (>wD) и заменить wD на 
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Теплоемкость в модели Дебая
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• Для T≥θD хорошее приближение – закон Дюлонга и Пти

• При T → 0 теплоемкость очень похожа на теплоемкость фотонного газа

C/3NkB

T/qD

интеграл = 4p4/15

Закон Дебая, T3

• Высокие Т:
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Температуры Дебая, θD

• θD определяется жёсткостью решетки и массой атомов

• чем ниже по таблице Менделеева (от Li к Cs или от C к Pb), 
тем ниже θD – тяжелее атомы, связи слабее – жёсткость ↓

• высокая θD для алмаза – легкий атом и жесткая решетка

• измеренные и рассчитанная по Дебаю плотность 
состояний очень близки при низких w, т.к. (w  q)

Элемент Li Na K Rb Cs

qD/K 344 158 91 56 38

Элемент C Si Ge Sn Pb

qD/K 2230 645 374 200 105

1/32
D N/V)(6π sω =

Вниз по таблице Менделеева

M s /~ 

измеренная для Al 



Модель Дебая 
для теплоемкости твердых тел



Теплоемкость: резюме

• Эксперимент cp ≈25 Дж/моль К при «высоких» Т

• Закон Дюлонга и Пти сv=3R=3kBNA=25.2 Дж/моль К

• Плотность состояний (3D фононы, линейный закон дисперсии) 

• Модель Дебая (g (ω)~ω2):

– T≥θD – закон Дюлонга и Пти

– T → 0, С~T3

✓Использовали для твердых тел модель идеального газа

✓Модель Эйнштейна, все ω=сonst
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Теория теплоемкости Эйнштейна
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Приближение

• Все моды имеют одну частоту ω, средняя энергия 
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✓Модель Эйнштейна дает неверное поведение при низких Т (не учтена 
плотность состояний)



Модель Эйнштейна
Einstein, Annalen der Physik 22 (4), 180 (1907)

CV для алмаза

✓Модель Эйнштейна дает неверное поведение при низких Т (не учтена 
плотность состояний)



Теплоемкость: резюме

• Эксперимент cp ≈25 Дж/моль К при «высоких» Т

• Закон Дюлонга и Пти сv=3R=3kBNA=25.2 Дж/моль К

• Плотность состояний (3D фононы, линейный закон дисперсии) 

• Модель Дебая (g (ω)~ω2):

– T≥θD – закон Дюлонга и Пти

– T → 0, С~T3

✓Использовали для твердых тел модель идеального газа

✓Модель Эйнштейна, все ω=сonst
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Тепловые свойства

• теплоемкость 

• теплопроводность



Теплопроводность

• Фононы и теплопроводность

– фононы – бегущие волны и могут 
переносить энергию, в т.ч. тепло.

– нужна кинетическая модель

– используем модель газа

холодная
грань

горячая грань

в закрытой трубе с газом:



Процессы переноса в газе

Если G – плотность тепловой энергии E, то поток энергии W = энергия через

единицу площади в единицу времени

C – теплоемкость 

единицы объема
dz

dT

dz

dT
C  lV

3

1

dz

dE
 lV

3

1
W −=−=−=

CdTdE =

C  lV
3

1
=

где κ коэффициент теплопроводности (определение)

длина свободного пробегасредняя скорость молекул

dz

dG
 lV

3

1
Gпоток −=

усреднение по углам

В кинетической теории газов стационарный поток величины G (концентрация

частиц, энергия, импульс) в направлении оси z:

• применим для газа фононов

• предполагаем термализацию

фононов при столкновении



Длина свободного пробега фононов
– Ограничена процессами рассеяния

– Когда процессов рассеяния много, частота столкновений 
определяется наиболее короткой длиной:

– “Геометрическое рассеяние” 
• Границы образца (только для особо чистых и при низких Т)

• примеси, дефекты, границы зерен, l не зависит от T

 ++==++= 2121
l1l1l1        lVlVlV

V(r)

жесткость

.

r/r0

Потенциал Леннарда-

Джонса (6/12)

Средняя амплитуда 

фонона при 20K в Ne -

1% межатомного 

расстояния, что дает 

значительные 

изменения в 

жесткости (α)

– Фонон-фононное рассеяние:
• Истинные нормальные моды не 

взаимодействуют друг с другом

• Но в ангармонической решетке фононы 
могут рассеиваться. Фонон 
растягивает/сжимает связи, меняет  
жесткость (α) так что один фонон может 
дифрагировать на решетке  «упругих 
свойств» , создаваемой другим 
фононом (ср. с нел. оптикой)



Температурная зависимость теплопроводности изоляторов

– в изоляторах нет вклада свободных электронов (след. лекция)

– в чистых кристаллах теплопроводность очень велика алмаз =12 000
Вт/м/К при 70K (медь =380  Вт/м/К при 300К) 

– аморфные твердые тела имеют намного более низкую 
теплопроводность l ~ межатомного расстояния, l ~ 3Å, резина l ~ 
10-20Å при 300 К.

– теплопроводность сильно зависит от температуры

• Низкие температуры:

- мало фононов, доминирует геометрическое 

рассеяние, l =const

-C ~ T3 и следовательно  ~T3

• Высокие температуры:

- C=const (3NkB)

- число фононов ~T, 

поэтому l ~ 1/T и  ~ 1/T 0,1
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• Промежуточные температуры – можно ожидать 

теплопроводность между 1/T and T3 асимптотами, но…κ > 1/T 

для чистых образцов. Почему?
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Теплопроводность при промежуточных температурах: 
фонон-фононное рассеяние и процессы переброса

– Типичное фонон-фононное столкновение ведет с слиянию:

– Однако, если результирующий фонон (3) имеет импульс 
как просто q1+q2 столкновение не эффективно для 
термализации – имеем ту же энергию, движущуюся 
примерно в том же направлении.

– Чтобы поток энергии изменил направление, надо чтобы 
q1+q2 > π/a, т.е. осуществился процесс переброса. Тогда 
фонон 3 полетит в др. сторону. Это даст эффективную 
термализацию.

– С понижением Т меньше фононов имеют энергию, чтобы 
результирующий фонон (3) «перебросился». Поэтому 
средняя длина свободного пробега растет и, 
следовательно, растет .
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Закон сохранения (квази)импульса при 
рассеянии фононов

«нормальный» процесс «процесс переброса»

q1+q2=q3 q1+q2=q’3-G=q3

q1

q2

q1

q2
q3

q3

q'3



Теплопроводность фононного и «реального» газов: сравнение

фононный газ «реальный» газ

• поток фононов со скоростью 

звука ≈  const

• концентрация фононов и 

плотность энергии на горячем 

торце больше, чем на холодном

•низкие Т, поток тепла в основном 

за счет потока фононов, 

рождающихся на горячем торце и 

погибающих на холодном

• высокие Т, столкновения 

переброс – термализация

(картинка ближе к «реальному» 

газу)

• нет потока частиц

• средняя скорость и кинетическая 

энергия на частицу больше на 

горячем торце, но концентрация 

выше на холодном торце. В итоге, 

плотность энергии одинакова –

однородное давление

• поток тепла идет только за счет 

переноса кинетической энергии от 

одной частицы к другой при 

столкновениях (незначительный 

вклад для фононов)

холодная
граньгорячая 

грань

C  lV
3

1
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Теплопроводность: резюме

• Работает формула для идеального газа

• Низкие температуры:

- мало фононов, доминирует геометрическое 

рассеяние, l =const, C ~ T3 и  ~T3

• Высокие температуры:

- C=const (3NkB)

- число фононов ~T, 

поэтому l ~ 1/T и  ~ 1/T
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Контрольные вопросы

• Что такое плотность состояний (состояний чего?)? Зависит ли 
она от размерности системы, размера, закона дисперсии? 

• Что такое теплоемкость? Какие бывают удельные 
теплоемкости?

• Чему равна теплоемкость твердых тел в рамках классической 
модели, основанной на модели идеального газа? Зависит ли 
она от температуры?

• Что такое частота Дебая?

• Как зависит от температуры теплоемкость в модели Дебая?

• Можно ли описать теплопроводность твердых тел моделью 
идеального газа?

• Нужен ли для теплопроводности ангармонизм?



Паращук Дмитрий Юрьевич

Физика конденсированных сред

Лекция 14

Свободный электронный газ

(продолжение)



– Абсолютный вклад много меньше, чем классический 
результат (3NkB/2).  T/TF~10-2 при комнатной Т для типичных 
металлов

классическая модель газа (Друде) дает слишком высокую электронную теплоемкость

– Эксперимент для Na – классический «свободно-электронный» 
металл:
(Cel)эксп = 1.5T мДж моль-1 K-1 (0.45 Дж моль-1 K-1 при 300К)
(Cel)расч = 1.1T мДж моль-1 K-1

– Зависимость от Т?

край Ферми уширяется, больше возбуждается электронов

– Электронный вклад в теплоемкость при высоких Т не виден. 
Почему? 

в металлах при очень низких Т:  С~Т (ср. с решеточной по модели Дебая)

Электронный вклад в теплоемкость 
металлов



Теплоемкость металлов: отклонение от модели

При низких Т: C = gT+bT3, поэтому если построить:

– для K:   gтеор =1.67 мДж моль-1K-2 gэксп =2.08 мДж моль K-2

– В модели свободных электронов

– Несоответствие можно учесть, если предположить что электрон движется с эффективной 
массой m* (не равной массе свободного электрона).

– Для «почти свободно-электронных металлов» дополнительный вклад в кинетическую энергию 
от: 

• ионы вокруг движущегося электрона тянут его к себе (электрон-фононное взаимодействие, поляронный эффект)

• другие электроны избегают движущегося (закон Кулона) – в пределе моттовский диэлектрик

для таких металлов ‘почти свободно электронных’ m*/m несколько больше 1:  

K: m*/m=1.25     Mg: m*/m=1.3     Al m*/m=1.48

– Более сильные варианты отклонения: 

• сильные эффекты периодического потенциала ионов могут дать m*/m <1,  например, Zn и Cd 

• сильные электрон-электронные корреляции могут дать m*/m >1000 
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Поляронный эффект Электронное отталкивание

(электронные корреляции)

Иди
прочь!

“Закон Кулона никто не отменял!“, 

Лев Ландау

С.И. Пекар, 1948



Свободный электронный газ

• Модель. Энергия Ферми

• Распределение Ферми-Дирака.

• Электронный вклад в тепловые свойства 
металлов: теплоемкость

• Электрическая проводимость и сопротивление

• Электронная теплопроводность

• Эффект Холла



Транспорт электронов – язык волновых пакетов

– Частицу в квантовой физике представляют волновым 
пакетом, если мы хотим указать, где частица находится, 
надо набрать волновой пакет из близких k.

электронное состояние –

волновой пакет k состояний

N k-состояний в 1 D модели, 

аналог нормальных мод

период 2/L

Пример состояния 12 

электронов, каждый в виде 

пакета k –состояний. 



– Скорость электрона дается групповой скоростью:

• фазовая скорость не используется в квантовой физике, т.к. частота w (энергия) 
определена с точностью до константы. Поэтому фазовая скорость w/k не несет смысла –
важно только изменение в w.

• q фонона тоже определен с точностью до вектора обратной решетки- q эквивалентно to 
q+G

– Действие силы на волновой пакет
• Работа силы f за время δt увеличивает энергию электрона на δε=fvδt

• Импульс электрона также меняется - на δk, изменение можно посчитать из δε

• δε можно записать как

• В итоге: 

– Для электрона в состоянии ‘k’ сила непрерывно увеличивает k со временем – для 
дискретных k-состояний – будут прыжки из одного состояния в другое. Рассмотрим 
волновой пакет в k пространстве: он движется непрерывно по набору доступных k
состояний:

Динамика волновых пакетов
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– Если нет столкновений, на электрон действует только сила Лоренца (v бесконечно растет)

– Учтем столкновения. Нас интересует движение волновых пакетов, мы используем среднюю

скорость, поэтому столкновения дают эффективное трение (зависящее от скорости). Трение 

можно включить в уравнение движения добавлением  дополнительного члена :

Уравнение движения для электронов 
в постоянном э-м поле: модель Друде
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Электрическая проводимость
– Все электроны подчиняются одному уравнению движения. Нас интересует средняя скорость, 

т.н. дрейфовая скорость  под действием постоянного электрического поля:

– Электронная подвижность, m, определяется как:

– Плотность тока (j) – произведение концентрации электронов (n), заряда и дрейфовой скорости:

– Отсюда получаем закон Ома (для проводимости):

– Столкновения могу происходить на фононах, дефектах кристалла, границах. Поэтому частоту 
столкновений можно записать:

– Электрон-электронные «столкновения» учесть сложнее, т.к. надо учитывать корреляцию 
электронов (сложные уравнения движения)

– Более основательные модели – см. статфизику
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Электронное рассеяние и 
электрическое сопротивление

– При приложении электрического поля, все электроны  в сфере Ферми двигаются 
непрерывно через k-пространство в направлении (–E) со скоростью изменения k:

т.е. вся сфера Ферми должна двигаться непрерывно в k-пространстве.

– Фононы имеют квазиимпульс, сравнимый с электронами (почему?), но энергия 
фононов (сколько?) намного ниже характерной энергии электронов  (сколько?)

– Энергия фононов типично до ~ 40мэВ << eF, поэтому рассеяние на фононах может 
изменить направление движения электронов (волновой вектор), но совсем немного 
изменяют величину волнового вектора

– Аналогично, рассеяние на дефектах не дает заметных изменений энергии 
электронов

– Чтобы происходило рассеяние, должны быть соответствующие свободные 
состояния. Поскольку внутри сферы Ферми нет свободных состояний, могут 
рассеиваться только электроны вблизи поверхности Ферми
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Электронное рассеяние и дрейфовая 
скорость

– большая часть электронов, которая может быть рассеяна находится на 
фронте движущейся сферы  Ферми (почему?)

– процесс рассеяния приводит к «переносу» электронов в k-пространстве на 
«заднюю поверхность» сферы Ферми

– равновесное состояние сферы Ферми: она смещена в k- пространстве, т.е. 
электроны имеют среднюю дрейфовую скорость

– частота рассеяния (столкновений), 1/, использованная ранее, – есть 
средняя частота. Когда электроны глубоко внутри сферы – они не могут 
рассеиваться вовсе (почему?), рассеяние сильно на «фронте»  движущейся 
сферы Ферми
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Температурная зависимость сопротивления

– рассеяние на дефектах не зависит от температуры

– при высоких температурах (по сравнению с чем?), все фононные состояние заселены и 
концентрация фононов растет с температурой. Так как фононы << дефекты,  1/ и следовательно 
сопротивление пропорциональны температуре => используют в резистивных термометрах 
(обычно Pt)

например, для резистивного термометра ‘Pt100’ :

T/K 136.5 273 546

R/Ом 54.8 100 202.4

– различные образцы имеют различную концентрацию дефектов, поэтому сопротивления 
разных образцов могут быть смещены по вертикали:
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Свободный электронный газ

• Модель. Энергия Ферми

• Распределение Ферми-Дирака.

• Электронный вклад в тепловые свойства 
металлов: теплоемкость

• Электрическая проводимость и сопротивление

• Электронная теплопроводность

• Эффект Холла



Электронная теплопроводность

– Подставляем величины для теплоемкости свободных электронов

– Так как рассеиваются только электроны вблизи поверхности Ферми, 
полагаем <v>=vF и l = vF, 

– Теплопроводность чистых металлов примерно в 100 раз выше 
изоляторов при T=300K: электронный вклад >>  фононного.

– При комнатных температурах и выше (‘высокие’ Т) рассеяние на 
фононах доминирует, поэтому  a 1/T и теплопроводность 
примерно const (не зависит от Т)
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