
Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 1

4 сентября 2019 г.

Курс «Алгоритмы и алгоритмические языки»

Лектор: Андрей Андреевич Белеванцев,
ИСП РАН им. В. П. Иванникова / кафедра СП ВМК МГУ

Лекции 2 раза в неделю: среда/суббота, 8.45
Практические и лабораторные занятия 2 раза в неделю

Структура курса:

Элементы теории алгоритмов
Язык Си
Алгоритмы и структуры данных

В конце курса зачет с оценкой и письменный экзамен

АиАЯ Лекция 1 1 / 14

Курс «Алгоритмы и алгоритмические языки»

Сайт курса: http://algcourse.cs.msu.su/

Новости и объявления
Материалы лекций
Рекомендуемая литература
Вопросы к экзамену
Среда разработки программ и опции компилятора
Стиль кодирования

Практические и лабораторные занятия

Контрольные и коллоквиумы (по лекциям — 2, по семинарам — 3)

Критерии оценки: 10% – 15% – 75% (коллоквиумы/экзамен)

АиАЯ Лекция 1 2 / 14

http://algcourse.cs.msu.su/

Рекомендуемая литература

По алгоритмам и машинам Тьюринга
1. Г. Эббинхауз, К. Якобс, Ф. Манн, Г. Хермес. Машины Тьюринга и рекурсивные
функции. «Мир», М.– 1972

2. Л. С. Корухова, М. Р. Шура-Бура. Введение в алгоритмы (учебное пособие для
студентов I курса). PDF на сайте курса

По языку Си
1. Б. Керниган, Д. Ритчи. Язык программирования Си. Издание 2-е, «Вильямс» –
2013

2. Стандарт языка Си С99 + TC1,2,3.
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

3. Stephen Prata. C Primer Plus. Fifth Edition. Sams Publishing 2004.
http://www.9wy.net/onlinebook/CPrimerPlus5/main.html

По алгоритмам и структурам данных
1. Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн. Алгоритмы. Построение и
анализ. Издание 2-е, «Вильямс» – 2011

2. Harry R. Lewis, Larry Denenberg. Data Structures and Their Algorithms.
HarperCollins, 1991.

АиАЯ Лекция 1 3 / 14

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.9wy.net/onlinebook/CPrimerPlus5/main.html

Методические пособия

1. А. А. Белеванцев, С. С. Гайсарян, Л. С. Корухова, Е. А. Кузьменкова,
В. С. Махнычев. Семинары по курсу «Алгоритмы и алгоритмические языки»
(учебно-методическое пособие для студентов 1 курса). М., 2012: Изд. отдел
ф-та ВМК МГУ имени М.В. Ломоносова.

2. А. А. Белеванцев, С. С. Гайсарян, В. П. Иванников, Л. С. Корухова, В. А. Падарян.
Задачи экзаменов по вводному курсу программирования
(учебно-методическое пособие). М., 2012: Изд. отдел ф-та ВМК МГУ имени М.В.
Ломоносова.

3. К. А. Батузов, А. А. Белеванцев, Р. А. Жуйков, А. О. Кудрявцев, В. А. Падарян,
М. А. Соловьев. Практические задачи по вводному курсу программирования
(методическое пособие). М., 2012: Изд. отдел ф-та ВМК МГУ имени М.В.
Ломоносова.

4. О. В. Сенюкова. Сбалансированные деревья поиска: учебно-методическое
пособие. М.: Издательский отдел факультета ВМиК МГУ имени М.В.
Ломоносова; МАКС Пресс, 2014. Доступно на сайте курса

Планируется: А. А. Белеванцев, С. С. Гайсарян, Л. С. Корухова, Е. А. Кузьменкова. Элементы
теории алгоритмов. Учебно-методическое пособие для студентов 1 курса. М.: Издательский
отдел факультета ВМиК МГУ имени М.В. Ломоносова; МАКС Пресс, 2019.

АиАЯ Лекция 1 4 / 14

Неформальное (интуитивное) определение алгоритма

Под алгоритмом (или эффективной процедурой) в математике
понимают точное предписание, задающее вычислительный
процесс, ведущий от начальных данных, которые могут
варьироваться, к искомому результату. Алгоритм должен
обладать следующими свойствами:

• Конечность (результативность). Алгоритм должен
заканчиваться за конечное (хотя и не ограниченное сверху)
число шагов.

• Определенность (детерминированность). Каждый шаг
алгоритма и переход от шага к шагу должны быть точно
определены и каждое применение алгоритма к одним и тем
же исходным данным должно приводить к одинаковому
результату.

АиАЯ Лекция 1 5 / 14

Неформальное (интуитивное) определение алгоритма

Под алгоритмом (или эффективной процедурой) в математике
понимают точное предписание, задающее вычислительный
процесс, ведущий от начальных данных, которые могут
варьироваться, к искомому результату. Алгоритм должен
обладать следующими свойствами:

• Простота и понятность. Каждый шаг алгоритма должен быть
четко и ясно определен, чтобы выполнение алгоритма
можно было «поручить» любому исполнителю (человеку или
механическому устройству).

• Массовость. Алгоритм задает процесс вычисления для
множества исходных данных (чисел, строк букв и т.п.), он
представляет общий метод решения класса задач.

АиАЯ Лекция 1 5 / 14

Неформальное (интуитивное) определение алгоритма

Пример. Алгоритм Евклида нахождения наибольшего общего
делителя двух целых положительных чисел a и b НОД(a,b).

Даны два целых числа a и b, найти НОД(a,b).

Выполнить следующие шаги:

1. Если a < b, то поменять их местами.
2. Разделить нацело a на b; получить остаток r.
3. Если r = 0, то НОД(a,b) = b.
4. Если r 6= 0, заменить: a на b, b на r и вернуться к шагу 2.

АиАЯ Лекция 1 6 / 14

Почему необходимо формальное определение алгоритма

Не имея такого определения, невозможно доказать, что задача
алгоритмически неразрешима, т.е. алгоритм ее решения никогда
не удастся построить.

Тезис Тьюринга–Чёрча. Для любой интуитивно вычислимой
функции существует вычисляющая её значения машина
Тьюринга.

Тезис Тьюринга–Чёрча невозможно строго доказать или
опровергнуть, так как он устанавливает эквивалентность между
строго формализованным понятием частично вычислимой
функции и неформальным понятием вычислимости.

АиАЯ Лекция 1 7 / 14

Формализация понятия алгоритма.
Алфавиты и отображения

Алфавит — это конечное множество Ap элементов ai:
Ap = {a1,a2, . . . ,ap}.
Элементы алфавита Ap называются символами.

Последовательность из m символов алфавита Ap называется
словом длины m над алфавитом Ap: ai1ai2 . . .aim
Слово длины 0 называется пустым словом и обозначается ε.

Множество всех слов над алфавитом Ap:

A∗p = {ε} ∪ Ap ∪ A2p ∪ . . . ∪ Amp ∪ . . . =
∞⋃
m=0

Amp .

Длину слова w ∈ A∗p будем обозначать |w|,
в частности, для пустого слова |ε| = 0.

АиАЯ Лекция 1 8 / 14

Формализация понятия алгоритма. Кодирование

Утверждение. Для любой пары алфавитов A и B можно
выполнить кодирование алфавита A с помощью алфавита B и
обратно, возможно, с применением дополнительно служебного
символа ı («конец кода символа»).

Следствие. Кодирование позволяет ограничиться одним
алфавитом.
Обычно рассматриваются A1 или A2.

АиАЯ Лекция 1 9 / 14

Формализация понятия алгоритма.
Обработка информации.

Задача обработки информации — это задача построения
частичного отображения (функции) F : A∗ → A∗.

Утверждение. Существует взаимно-однозначное отображение
: A∗ ↔ N0, где N0 — множество целых неотрицательных чисел,
которое любому слову w ∈ A∗ ставит в соответствие его номер
n ∈ N0. (Это отображение # и называется нумерацией.)

АиАЯ Лекция 1 10 / 14

Формализация понятия алгоритма.
Обработка информации

A∗ A∗

N0 N0

#

F

f
#−1

Таким образом:

1. каждый алгоритм F : A∗ → A∗ определяет частично
вычислимую функцию f : N0 → N0;

2. каждая частично вычислимая функция f : N0 → N0

определяет алгоритм F : A∗ → A∗.

АиАЯ Лекция 1 11 / 14

Машина Тьюринга (МТ). Вычислимость по Тьюрингу

Машина-автомат: предъявляется любое исходное слово w ∈ A∗,
а в результате обработки получается слово v = F(w).

Каждая частичная функция F, для которой можно построить МТ,
называется вычислимой по Тьюрингу.

АиАЯ Лекция 1 12 / 14

Машина Тьюринга. Обозначения

Алфавит состояний Q = {q0,q1,q2, . . . ,qn}

Рабочий алфавит S = A ∪ A′

A — алфавит входных символов
A′ — алфавит вспомогательных символов (маркеров)

Лента, размеченная на ячейки (пустая ячейка — Λ)

Управляющая головка (УГ)

Рабочая ячейка (РЯ)

Начальное состояние q0, состояние останова qs

Начальные данные — слова из A∗

АиАЯ Лекция 1 13 / 14

Машина Тьюринга. Конфигурация

. . . Λ Λ Λ 0 0 1 0 1 1 Λ Λ . . .

q

Конфигурация МТ: 〈n, F,q〉, где n— номер текущей рабочей ячейки,
F : Z → S — текущая запись на ленте, q — текущее состояние.

Позиция МТ: пара 〈n,q〉.

Такт работы МТ:
〈состояние, символ〉 → 〈состояние, символ,направление〉.

АиАЯ Лекция 1 14 / 14

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 2

7 сентября 2019 г.

Машина Тьюринга. Обозначения

Алфавит состояний Q = {q0,q1,q2, . . . ,qn}

Рабочий алфавит S = A ∪ A′

A — алфавит входных символов
A′ — алфавит вспомогательных символов (маркеров)

Лента, размеченная на ячейки (пустая ячейка — Λ)

Управляющая головка (УГ)

Рабочая ячейка (РЯ)

Начальное состояние q0, состояние останова qs

Начальные данные — слова из A∗

АиАЯ Лекция 2 1 / 15

Машина Тьюринга. Конфигурация

. . . Λ Λ Λ 0 0 1 0 1 1 Λ Λ . . .

q

Конфигурация МТ: 〈n, F,q〉, где n— номер текущей рабочей ячейки,
F : Z → S — текущая запись на ленте, q — текущее состояние.

Позиция МТ: пара 〈n,q〉.

Такт работы МТ:
〈состояние, символ〉 → 〈состояние, символ,направление〉.

АиАЯ Лекция 2 2 / 15

Машина Тьюринга. Пример

Проверка правильности скобочных выражений: МТ должна
записать на ленту для правильного скобочного выражения
результат 1 (для неправильного 0) и остановиться.

Правильное скобочное выражение1:

1. число открывающих скобок равно числу закрывающих,
2. каждая открывающая скобка предшествует парной ей
закрывающей скобке.

(())() — правильное скобочное выражение
)(или (() — неправильные скобочные выражения

1для одного типа скобок
АиАЯ Лекция 2 3 / 15

Машина Тьюринга. Пример

Проверка правильности скобочных выражений: МТ должна
записать на ленту для правильного скобочного выражения
результат 1 (для неправильного 0) и остановиться.

Рабочий алфавит: S = {(,), 0, 1} ∪ {Λ, X}
Алфавит состояний Q = {q0,q1,q2,q3,qs}

q0 — начальное состояние МТ: поиск ближайшей справа
закрывающей скобки;
qs — состояние останова;
q1 — поиск парной открывающей скобки;
q2 — стирание маркеров, запись результата 1 и переход
в состояние qs;
q3 — стирание маркеров, запись результата 0 и переход
в состояние qs.

В начальном состоянии УГ обозревает самый левый символ
входного слова.
АиАЯ Лекция 2 3 / 15

Машина Тьюринга. Пример

Проверка правильности скобочных выражений: МТ должна
записать на ленту для правильного скобочного выражения
результат 1 (для неправильного 0) и остановиться.

Программа

q0, (→ q0, (,R q0,) → q1, X, L q0, X → q0, X,R q0,Λ → q2,Λ, L

q1, (→ q0, X,R q1,) → q1,), L q1, X → q1, X, L q1,Λ → q3,Λ,R

q2, (→ q3,Λ,H q2,) невозможно q2, X → q2,Λ, L q2,Λ → qs, 1,H

q3, (→ q3,Λ, L q3,) невозможно q3, X → q3,Λ, L q3,Λ → qs, 0,H

АиАЯ Лекция 2 3 / 15

Машина Тьюринга. Пример

Проверка правильности скобочных выражений: МТ должна
записать на ленту для правильного скобочного выражения
результат 1 (для неправильного 0) и остановиться.

Программа (способ записи в виде таблицы)

qi ↓ \ sj → () X Λ

q0 q0, (,R q1, X, L q0, X,R q2,Λ, L

q1 q0, X,R q1,), L q1, X, L q3,Λ,R

q2 q3,Λ,H — q2,Λ, L qs, 1,H

q3 q3,Λ, L — q3,Λ, L qs, 0,H

АиАЯ Лекция 2 3 / 15

Машина Тьюринга. Пример

Проверка правильности скобочных выражений: МТ должна
записать на ленту для правильного скобочного выражения
результат 1 (для неправильного 0) и остановиться.

Программа (способ записи в виде таблицы)

qi ↓ \ sj → () X Λ

q0 q0, (,R q1, X, L q0, X,R q2,Λ, L

q1 q0, X,R q1,), L q1, X, L q3,Λ,R

q2 q3,Λ,H — q2,Λ, L qs, 1,H

q3 q3,Λ, L — q3,Λ, L qs, 0,H

На ленте не должно остаться ничего, кроме числа 1 или 0.

Дома: исправьте программу, чтобы лишние символы стирались.
Происходит ли это сейчас? Для всех ли слов?
АиАЯ Лекция 2 3 / 15

Машина Тьюринга. Нормальные МТ

Любую МТ можно перестроить таким образом, что она будет,
вычисляя ту же функцию, удовлетворять следующим условиям:

1. в начальном состоянии q0 УГ установлена напротив пустой
ячейки, которая следует за всеми исходными символами:

. . . Λ Λ Λ (() ()) Λ Λ Λ Λ . . .

q0

2. в состоянии останова qs УГ установлена напротив пустой
ячейки, которая следует за всеми символами результата:

. . . Λ Λ Λ 1 Λ Λ Λ Λ . . .

qs

МТ, удовлетворяющая условиям (1) и (2), называется
нормальной МТ.
АиАЯ Лекция 2 4 / 15

Перестройка МТ к виду, более удобному для ДТ

МТ с лентой, ограниченной с левого конца Для произвольной
МТ T с неограниченной лентой построим МТ T ′ с лентой,
ограниченной с левого конца, которая работает так же:

1. перегнём ленту по ячейке с номером 0;
2. раздвинем ячейки правой части ленты: символ из ячейки
с номером n > 0 перепишем в ячейку с номером 2× n;

3. в освободившиеся ячейки с нечётными номерами перенесём
содержимое ячеек левой части ленты: символ ячейки
с номером n < 0 перепишем в ячейку с номером 2× |n| − 1.

АиАЯ Лекция 2 5 / 15

Перестройка МТ к виду, более удобному для ДТ

МТ с лентой, ограниченной с левого конца

В результате конфигурация МТ T

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

. . . Λ Λ Λ k a b c d a f Λ Λ . . .

q0

перейдёт в конфигурацию МТ T ′

0 1 2 3 4 5 6 7 8 9 10 11
0 −1 1 −2 2 −3 3 −4 4 −5 5 −6

[b a c k d Λ a Λ f Λ Λ Λ . . .

q0

АиАЯ Лекция 2 5 / 15

Перестройка МТ к виду, более удобному для ДТ

МТ с лентой, ограниченной с левого конца

Передвижения машины:

T T ′ (чётные) T ′ (нечётные) T ′ (ячейка 0) T ′ (ячейка 1)

вправо на две
вправо

на две
влево

на две
вправо

на одну
влево

влево на две
влево

на две
вправо

на одну
вправо

на две
вправо

АиАЯ Лекция 2 5 / 15

Перестройка МТ к виду, более удобному для ДТ

МТ с лентой, ограниченной с левого конца

Передвижения машины:

T T ′ (чётные) T ′ (нечётные) T ′ (ячейка 0) T ′ (ячейка 1)

вправо на две
вправо

на две
влево

на две
вправо

на одну
влево

влево на две
влево

на две
вправо

на одну
вправо

на две
вправо

Откуда известна четность ячейки? Как узнать, что МТ подошла к
краю ленты?

АиАЯ Лекция 2 5 / 15

Перестройка МТ к виду, более удобному для ДТ

МТ с лентой, ограниченной с левого конца

Передвижения машины:

T T ′ (чётные) T ′ (нечётные) T ′ (ячейка 0) T ′ (ячейка 1)

вправо на две
вправо

на две
влево

на две
вправо

на одну
влево

влево на две
влево

на две
вправо

на одну
вправо

на две
вправо

Откуда известна четность ячейки? Как узнать, что МТ подошла к
краю ленты?

«Размножение состояний» и специальный маркер в начале ленты.

АиАЯ Лекция 2 5 / 15

Перестройка МТ к виду, более удобному для ДТ

МТ с укороченными инструкциями

Рассмотрим произвольную инструкцию МТ T : q,a→ q′
,b,R.

Разобьём её на две инструкции:

q,a→ q′′
,b, S (только записывает символ в РЯ);

q′′
,b→ q′

,b,R (только сдвигает головку).

Можно доказать, что для любой МТ T можно построить МТ T ′ ,
каждая инструкция которой либо только сдвигает головку, либо
только записывает символ в РЯ.

МТ T ′ и есть МТ с укороченными инструкциями.

АиАЯ Лекция 2 6 / 15

Перестройка МТ к виду, более удобному для ДТ

Далее будем рассматривать класс МТ, который содержит только
МТ с укороченными инструкциями и лентой, ограниченной слева.
Кроме того, будем считать, что МТ, принадлежащие
рассматриваемому классу, выполняют нормальные вычисления
по Тьюрингу.
Все эти предположения не являются ограничением общности,
так как по произвольной МТ нетрудно построить МТ
рассматриваемого класса.

Основным преимуществом рассматриваемого класса МТ является
возможность ввести понятие действия

v = {L,R,H, si ∈ S}

АиАЯ Лекция 2 7 / 15

Диаграммы Тьюринга. Элементарные ДТ

Запись символа в РЯ или сдвиг УГ вправо или влево называются
элементарными действиями.

Элемен-
тарная МТ

Программа Диаграмма

l q0Λ → Lq1, q0a1 → Lq1, . . ., q0ap → Lq1 ·l·

r q0Λ → Rq1, q0a1 → Rq1, . . ., q0ap → Rq1 ·r·

ai q0Λ → aiq1, q0a1 → aiq1, . . ., q0ap → aiq1 ·ai·

АиАЯ Лекция 2 8 / 15

Диаграммы Тьюринга. Примеры ДТ неэлементарных машин

. l .L = .

6= Λ

= Λ
, . r .R = .

6= Λ

= Λ
.

МТ L переводит конфигурацию

[Λ Λ ··· Λ a1 a2 ··· an Λ Λ ···

q0

в конфигурацию

[Λ Λ ··· Λ a1 a2 ··· an Λ Λ ···

q1

АиАЯ Лекция 2 9 / 15

Диаграммы Тьюринга. Примеры ДТ неэлементарных машин

. l .L = .

6= Λ

= Λ
, . r .R = .

6= Λ

= Λ
.

Будем обозначать слово a1a2a3 . . .an на ленте как w, тогда
конечная конфигурация для МТ L:

[Λ Λ ··· Λ w Λ Λ ···

q1

АиАЯ Лекция 2 9 / 15

Диаграммы Тьюринга. Копирующая машина

МТ K переводит конфигурацию

[Λ Λ ··· Λ w Λ Λ Λ ···

q0

в конфигурацию

[Λ Λ ··· Λ w Λ w Λ Λ Λ ···

qs

АиАЯ Лекция 2 10 / 15

Диаграммы Тьюринга. Копирующая машина

.LK = r Λ R R 0 L L 0

Λ R R 1 L L 1

R .

0
1

Λ

АиАЯ Лекция 2 11 / 15

Диаграммы Тьюринга. Упрощённая ДТ копирующей машины

Упрощающие соглашения:

• Если над стрелкой не указано никаких символов, над ней
нужно надписать все символы рабочего алфавита
и опустить.

• Если подряд идут n символов одной и той же машины M, то
их можно заменить одним символом Mn.

.LK = r ΛR20L20

ΛR21L21

R .

0
1

Λ

АиАЯ Лекция 2 12 / 15

Построение таблиц по диаграммам

1. Заменим упрощённую диаграмму полной.
2. С помощью индексации добиваемся того, чтобы каждый
символ МТ входил в диаграмму только один раз.

.L1K = r0 Λ1 R1 R2 01 L2 L3 02

Λ2 R3 R4 11 L4 L5 12

R5 .

0

1

Λ

3. Сопоставим каждому символу МТ её таблицу (таблицу
запишем в виде набора соответствующих инструкций).

АиАЯ Лекция 2 13 / 15

Построение таблиц по диаграммам

4. Перепишем все таблицы одну за другой (в любой
последовательности).

5. Добавим в таблицу следующие строки:
5.1 для каждого символа a входного алфавита, которому

соответствует стрелка, ведущая из точки снова к ней же,
добавим строку q0a→ aq0;

5.2 для каждого символа a входного алфавита, которому
соответствует стрелка, ведущая из точки к символу МТ M,
добавим строку q0a→ aqM0;

5.3 для каждого символа a входного алфавита, которому не
соответствует никакая стрелка, ведущая из точки, добавим
строку q0a→ Hqs;

5.4 если два символа МТ M и M
′
соединены стрелкой, над которой

надписан символ a, то для состояния останова qMs из части
таблицы, соответствующей M, добавляем строку qMsa→ aqM′ 0
(аналогично для стрелки в состояние останова).

АиАЯ Лекция 2 14 / 15

Построение таблиц по диаграммам

В результате преобразований 1–5 получится таблица МТ, которая
выполняет те же действия, что и МТ, заданная диаграммой. Тем
самым мы всегда можем построить таблицу МТ по диаграмме, а
строить диаграммы по таблице МТ мы уже умеем.

Следовательно, МТ, задаваемые диаграммами, эквивалентны МТ,
задаваемым таблицами.

АиАЯ Лекция 2 15 / 15

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 3

11 сентября 2019 г.

Моделирование МТ

МТ M моделирует МТ M′ , если:

1. Данная начальная конфигурация вызывает машинный
останов/переход за край ленты МТ M после конечного числа
шагов тогда и только тогда, когда указанная начальная
конфигурация вызывает машинный останов/переход за
край ленты МТ M′ после конечного числа шагов.

2. Для последовательности (c′

n) текущих конфигураций МТ M
′

для данной начальной конфигурации можно указать
моделирующую подпоследовательность (cn)
последовательности текущих конфигураций МТ M для той же
начальной конфигурации:
для каждой конфигурации c′

i машины M′ её лента будет
«частью» ленты конфигурации ci машины M, УГ машины M
будет находиться на ячейке, соответствующей положению
рабочей ячейки машины M′ , и по конфигурации ci можно
указать состояние машины M′ в конфигурации c′

i .
АиАЯ Лекция 3 1 / 14

Универсальная машина Тьюринга

Универсальной машиной Тьюринга (УМТ) для алфавита A1

называется такая машина U, на которой может быть
промоделирована любая МТ над алфавитом A.

Идея УМТ. На ленту УМТ записывается программа моделируемой
МТ (таблица) и исходные данные моделируемой МТ. УМТ по
состоянию и текущему символу МТ находит на своей ленте
команду моделируемой МТ, выясняет, какое действие нужно
выполнить, и выполняет его.

1На самом деле можно эффективно построить УМТ, моделирующую любую МТ
над любым алфавитом. Для этого фиксируется некоторый алфавит (например,
A2 = {0, 1}) и добавляется кодирование и декодирование.
АиАЯ Лекция 3 2 / 14

УМТ. Представление программы

Моделируемая машина T :

• рабочий алфавит Ap,
• состояния q0, q1, …, qs,
• правила qiaj → vijqk, где i, k = 0, . . . ,n; j = 1, . . . ,p;
vij ∈ {a1,a2, . . . ,ap, l, r,h}.

Универсальная машина:

• алфавит Bp = {b1,b2, . . . ,bp},
• дополнительные символы {l, r,h,+,−,O}.

Для правила qiaj → vijqk запись выглядит как
bjvij+k−i, если k > i;
bjvijO, если k = i;
bjvij−i−k, если k < i.

+k−i означает символ +, повторённый k− i раз.
АиАЯ Лекция 3 3 / 14

УМТ. Представление программы

Слово-программа: cw0cw1 . . . cwn§,
где wi — слово с записью подряд всех правил состояния qi.

• Слова правил разных состояний отделяются друг от друга
вспомогательным маркером c.

• Вся программа заканчивается маркером §.

Лента в начальном состоянии:

[∗ w0 c w1 ··· c wn § w Λ Λ Λ ···

q

w — исходные данные моделируемой МТ;
∗ — маркер начального состояния.

АиАЯ Лекция 3 4 / 14

УМТ. Интерпретация моделируемой МТ

1. Поиск правила для выполнения
2. Изменение текущего состояния моделируемой МТ
3. Выполнение действия моделируемой МТ
4. Переход на выполнение нового такта

АиАЯ Лекция 3 5 / 14

УМТ. Интерпретация моделируемой МТ

1. Поиск правила для выполнения
1.1 “Запоминаем” обозреваемый символ aj размножением

состояний
1.2 Заменяем символ aj на его зеркальную пару bj
1.3 Ищем слово wi, содержащее запись правила
1.4 Ищем запись правила для символа aj

cw0cw1 . . .

wi︷ ︸︸ ︷
∗b0vi0 ++ . . . bj︸︷︷︸

↑

vij −−− . . . cws§at1at2 . . .

aj︷︸︸︷
bj . . . atwΛΛ . . .

2. Изменение текущего состояния моделируемой МТ
3. Выполнение действия моделируемой МТ
4. Переход на выполнение нового такта

АиАЯ Лекция 3 5 / 14

УМТ. Интерпретация моделируемой МТ

1. Поиск правила для выполнения
2. Изменение текущего состояния моделируемой МТ

2.1 Сдвигаемся на один символ вправо, пропуская vij
2.2 По описанию сдвига пропускаем соответствующее количество

символов-маркеров c и ставим символ текущего состояния ∗
2.3 Возвращаемся на символ описания vij действия

.Λ l c r ∗L+ r .

Λ r

6= ∗

= ∗

6= c

= c 6= +

6= ∗

= ∗

= +

3. Выполнение действия моделируемой МТ
4. Переход на выполнение нового такта

АиАЯ Лекция 3 6 / 14

УМТ. Интерпретация моделируемой МТ

1. Поиск правила для выполнения
2. Изменение текущего состояния моделируемой МТ
3. Выполнение действия моделируемой МТ

3.1 Ищем ячейку ленты, на которой находится УГ моделируемой МТ
3.2 Выполняем считанное действие (запись или сдвиг2)

4. Переход на выполнение нового такта

4.1 Ничего делать не нужно! Ура!

2Если при сдвиге УГ попала на символ §, отделяющий программу моделируемой
МТ от данных, это означает, что. моделируемая МТ зашла за левый край ленты.
АиАЯ Лекция 3 7 / 14

УМТ. Интерпретация моделируемой МТ

1. Поиск правила для выполнения
2. Изменение текущего состояния моделируемой МТ
3. Выполнение действия моделируемой МТ

3.1 Ищем ячейку ленты, на которой находится УГ моделируемой МТ
3.2 Выполняем считанное действие (запись или сдвиг2)

4. Переход на выполнение нового такта
4.1 Ничего делать не нужно! Ура!

2Если при сдвиге УГ попала на символ §, отделяющий программу моделируемой
МТ от данных, это означает, что. моделируемая МТ зашла за левый край ленты.
АиАЯ Лекция 3 7 / 14

УМТ. Останов моделируемой МТ

Если при сдвиге маркера текущего состояния (шаг 2.2) происходит
переход на символ §, то следующим состоянием будет являться
состояние останова.

В таком случае УМТ нужно выполнить действие моделируемой
машины, а потом остановиться.

Лента в состоянии останова:

[c w0 c w1 ··· c wn § T(w) Λ Λ Λ ···

q

АиАЯ Лекция 3 8 / 14

Проблема останова

Существует ли алгоритм, определяющий, произойдет ли
когда-либо останов машины T , запущенной на входных
данных w? Или иначе, остановится ли универсальная машина
Тьюринга, моделирующая МТ T на входных данных w?

Утверждение. Проблема останова алгоритмически неразрешима.

АиАЯ Лекция 3 9 / 14

Проблема останова. Доказательство

Пусть существует машина D, решающая проблему останова для
всех МТ T и входных данных w.

Построим машину E, которая по данной МТ T запускает машину D
для МТ T и записи (описания) T на ленте.

Машина E∗:

.EE∗ = lr

.

1

0

1

Останавливается ли машина E∗, будучи применённой к описанию
самой себя (т.е. описанию машины E∗)?

АиАЯ Лекция 3 10 / 14

Проблема самоприменимости

Машина Тьюринга T называется самоприменимой, если она
останавливается, когда в качестве входного слова для неё
используется описание3 самой машины T .

Проблемой самоприменимости является вопрос о
существовании алгоритма, определяющего самоприменимость
любой заданной машины T .

Алгоритмическая неразрешимость проблемы самоприменимости
может быть доказана тем же способом, что и неразрешимость
проблемы останова: такой машиной является машина E с
предыдущего слайда.

3Как и ранее, будем считать, что с помощью кодирования описание задано во
входном алфавите нашей машины.
АиАЯ Лекция 3 11 / 14

Нормальные алгоритмы Маркова. Обозначения

V — алфавит основных символов,
V′ — алфавит символов-маркеров.

σ, σ
′ ∈ V ∪ V′ .

Подстановка σ → σ
′ переводит слово τ = ασβ в слово τ

′
= ασ

′
β,

где τ, τ
′
, α, β ∈ V ∪ V′ .

Как слова α и β, так и слова σ и σ
′ могут быть пустыми.

Метасимвол→ отделяет левую часть подстановки от правой.

АиАЯ Лекция 3 12 / 14

Нормальные алгоритмы Маркова. Определение

Нормальный алгоритм Маркова (НАМ) задаётся конечной
последовательностью подстановок p1,p2, . . . ,pn.

«Такт» работы алгоритма состоит в поиске подстановки,
применимой к текущему обрабатываемому слову:

• поиск применимой подстановки ведётся, начиная с первой
подстановки в последовательности;

• если ни одна подстановка не оказалась применимой,
алгоритм завершается;

• первая найденная применимая подстановка применяется:
заменяется самое левое вхождение слова из левой части
подстановки;

• подстановка может быть помечена как терминальная, тогда
после её применения алгоритм завершается.

Терминальная подстановка обозначается как→ . или 7→
АиАЯ Лекция 3 13 / 14

Нормальные алгоритмыМаркова. Процедура интерпретации

Пусть задано входное слово σ0 ∈ (V ∪ V′
)∗ и набор подстановок

p1,p2, . . . ,pn.

1. Положить i = 0.
2. Положить j = 1.
3. Если подстановка pj применима к слову σi, перейти к шагу 5.
4. Положить j = j+ 1. Если j 6 n, то перейти к шагу 3, иначе
остановиться.

5. Применить подстановку pj к слову σi и построить слово σi+1.
Если pj — терминальная подстановка, то остановиться. Иначе
положить i = i+ 1 и перейти к шагу 2.

Говорят, что НАМ применим к слову σ0, если в результате
выполнения описанной процедуры интерпретации произойдёт
остановка.

АиАЯ Лекция 3 14 / 14

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 4

18 сентября 2019 г.

Нормальные алгоритмыМаркова. Процедура интерпретации

Пусть задано входное слово σ0 ∈ (V ∪ V′
)∗ и набор подстановок

p1,p2, . . . ,pn.

1. Положить i = 0.
2. Положить j = 1.
3. Если подстановка pj применима к слову σi, перейти к шагу 5.
4. Положить j = j+ 1. Если j 6 n, то перейти к шагу 3, иначе
остановиться.

5. Применить подстановку pj к слову σi и построить слово σi+1.
Если pj — терминальная подстановка, то остановиться. Иначе
положить i = i+ 1 и перейти к шагу 2.

Говорят, что НАМ применим к слову σ0, если в результате
выполнения описанной процедуры интерпретации произойдёт
остановка.

АиАЯ Лекция 4 1 / 9

Нормальные алгоритмы Маркова. Примеры

Шифр Юлия Цезаря: i-я буква латинского алфавита шифруется
(i+ c) mod 26-й буквой, где i — номер буквы (начиная с нуля),
c — некоторая константа.

НАМ: ∗a→ d∗, ∗b→ e∗, ∗c → f∗, . . ., ∗y → b∗, ∗z → c∗, ∗ 7→ , → ∗.

• Маркер устанавливается в начало слова с помощью
подстановки с пустой левой частью (→ ∗)

• Шифрование выполняется одной из 26 подстановок вида
∗ai → a(i+3) mod 26∗, где 0 6 i < 26, a+ i ∈ A26 = {a,b, c, . . . , z}

• Последняя подстановка удаляет маркер из зашифрованного
слова (∗ 7→)

Сложение чисел в единичной системе счисления: V = {+, |},
V′

= {}.
Лобовая программа: |+ → +|, +| → |, | 7→ |.

АиАЯ Лекция 4 2 / 9

Нормальные алгоритмы Маркова. Заключительные
замечания

Тезис Маркова. Любой алгоритм в алфавите V может быть
представлен нормальным алгоритмом Маркова над алфавитом V .

Примерно так же, как и для МТ, можно доказать алгоритмическую
неразрешимость проблемы останова и самоприменимости.

Существуют различные НАМ решения одной и той же задачи.
Проблема построения алгоритма, который может определить
эквивалентность любых двух НАМ, алгоритмически неразрешима.

Можно построить универсальный НАМ U, который мог бы
интерпретировать любой нормальный алгоритм, включая самого
себя.

Дома. Постройте НАМ, осуществляющий композицию двух НАМ F и
G, вычисляющий по слову w слово G(F(w)). Считайте, что оба НАМ
работают над одним алфавитом A.

АиАЯ Лекция 4 3 / 9

Нормальные алгоритмы Маркова. Заключительные
замечания

Можно доказать эквивалентность двух формальных систем
Тьюринга и Маркова конструктивным путем: построить
универсальную МТ, которая могла бы интерпретировать любой
НАМ и, наоборот, построить универсальный НАМ, который
интерпретирует любую МТ.

Существуют и другие формальные описания алгоритмов: машина
Поста, λ-исчисление, рекурсивные функции и др. Для всех таких
формальных систем доказана их эквивалентность МТ.

МТ невозможно реализовать на конечной машине: МТ с лентой
конечных размеров не обеспечивает реализации всех
алгоритмов.

Тезис Тьюринга-Чёрча (основная гипотеза теории алгоритмов).
Для любой интуитивно вычислимой функции существует
вычисляющая её значения МТ.
АиАЯ Лекция 4 4 / 9

Некоторые трудности программирования МТ

Поиск данных осуществляется за линейное время: нет «адресов»,
которые позволили бы попасть в нужное место ленты за
константное время.

Нельзя «скопировать» символ программой константного
размера: размножение состояний приводит к росту программы в
зависимости от размера входного алфавита.

АиАЯ Лекция 4 5 / 9

Схема простейшего компьютера

Процессор
Регистры АЛУ

Шина

Основная
память

Внешние
устройства

АиАЯ Лекция 4 6 / 9

Язык программирования Си

Си разрабатывался как язык для реализации первой в мире
универсальной операционной системы UNIX.

1973 первая версия Си
1978 выход книги Б. Кернигана и Д. Ритчи «Язык

программирования Си» (K&R C). Русский перевод вышел
в 1985 году

1989 первый стандарт ANSI C (C89)
1999 стандарт C99
2011 стандарт C11 (ранее назывался C1X)

_Thread_local, _Generic, _Align*, _Noreturn...
2018 стандарт C18 (только исправления ошибок в C11)

АиАЯ Лекция 4 7 / 9

Характеристики языка Си

• Императивный язык
• Удобный синтаксис
• Позволяет естественно оперировать «машинными»
понятиями

• Переносимость на уровне исходного кода
Конфигурируемость

• Хорошие системные библиотеки
• Хорошие оптимизирующие компиляторы

АиАЯ Лекция 4 8 / 9

Первая программа Си

#include <stdio.h>

int main (void)
{

printf ("Hello,␣world\n");
return 0;

}

Программа:
объявления переменных или функций
определения функций

АиАЯ Лекция 4 9 / 9

Первая программа Си

#include <stdio.h>

int main (void)
{

printf ("Hello,␣world\n");
return 0;

}

Директивы препроцессора

Системные библиотеки

Строковые константы

Управляющие последовательности

АиАЯ Лекция 4 9 / 9

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 5

21 сентября 2019 г.

Первая программа на Си

#include <stdio.h>

int main (void)
{

printf ("Hello,␣world\n");
return 0;

}

Программа:
объявления переменных или функций
определения функций

АиАЯ Лекция 5 1 / 7

Первая программа на Си

#include <stdio.h>

int main (void)
{

printf ("Hello,␣world\n");
return 0;

}

Директивы препроцессора

Системные библиотеки

Строковые константы

Управляющие последовательности

АиАЯ Лекция 5 1 / 7

Си-машина

Процессор
Регистры АЛУ

Шина

Основная память

Программа и
статические
данные

Куча

Стек

Внешние
устройства

АиАЯ Лекция 5 2 / 7

Классы памяти

Переменные/память:
• регистровая
• автоматическая
• статическая
• динамическая
(рассмотрим позже)

Процессор
Регистры АЛУ

Шина

Основная память

Программа и
статические
данные

Куча

Стек

Внешние
устройства

АиАЯ Лекция 5 3 / 7

Типы данных

Базовые типы данных: char (символьный), int (целый), float
(с плавающей точкой), double (двойной точности), _Complex
(C99, комплексный).

Тип void (без значения).

Модификаторы базовых типов: signed, unsigned, long, short,
long long (C99).

• К типу int применимы все модификаторы.
• К типу char — только signed и unsigned.
• К типу double — только long (C99).

АиАЯ Лекция 5 4 / 7

Типы данных. Представление целых чисел

Позиционная двоичная система счисления.

• Байты в представлении числа идут подряд
• Порядок байт не гарантируется, то есть зависит от
аппаратуры (big/little endian)

• Порядок бит в байте также не гарантируется (и его может
быть невозможно узнать)

• Отрицательные числа часто представляются
в дополнительном коде (n бит):

• самый значащий бит (n− 1) является знаковым
• биты от 0 до n− 2 — значения
• положительные значения — как обычно
• отрицательные значения: 2n − |x|

АиАЯ Лекция 5 5 / 7

Типы данных. Размеры типов

sizeof — размер типа (любого объекта типа)

• int x → sizeof(x) == sizeof(int)
• Файл limits.h задаёт минимальные и максимальные
значения целых типов
sizeof(char) == 1 (запомните!)

6

sizeof(short) > 2

6

sizeof(int) > 2

6

sizeof(long) > 4

6

sizeof(long long) > 8
• Файл inttypes.h задает знаковые и беззнаковые целые
типы фиксированных размеров (8, 16, 32, 64 бита)

АиАЯ Лекция 5 6 / 7

Типы данных. Некоторые новые типы в C99

• Тип _Bool (C99, значения 0/1, целый беззнаковый)
Необходимо включить stdbool.h для объявлений bool, true,
false

• Тип _Complex (C99, float/double/long double)
• Необходимо включить complex.h для объявлений complex,
I и т.п.

• Тип _Imaginary (C99) является необязательным
• С11: поддержка комплексных чисел стала необязательной
(__STDC_NO_COMPLEX__)

АиАЯ Лекция 5 7 / 7

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 6

25 сентября 2019 г.

Переменные

• Переменная = тип + имя + значение
• Каждая переменная является объектом программы
• Ключевые слова (C89 — 32, C99 — C89 + 5) не могут быть
именами переменных

• Объявление переменной: type name [, name, name];
Можно задать класс памяти и начальное значение
переменной
int a, b; unsigned c = 2019;

АиАЯ Лекция 6 1 / 12

Область действия (scope) переменных

Переменная может быть объявлена

1. внутри функции или блока (локальная),
2. в объявлении функции (параметр функции),
3. вне всех функций (глобальная).

Область действия (видимости)

локальной переменной — блок, в котором она объявлена
(C99 — начиная со строки объявления),
глобальной переменной — программный файл, начиная со
строки объявления.

В одной области действия нельзя объявлять более одной
переменной с одним и тем же именем.

АиАЯ Лекция 6 2 / 12

Классы памяти и области действия: пример

include < s td io . h>
i n t count ; /* global */
void func (void) {
i n t count ; /* auto */
count = count - 2 ;

}
s t a t i c i n t mult = 0 ; /* static */
i n t sum (i n t x , i n t y) {
count + + ;
return (x + y) * (++mult) ;

}
i n t main (void) {
r e g i s t e r i n t s = 0 ; /* register */
count = 0 ;
s += sum (5 , 7) ;
func () ;
p r i n t f (”Sum␣ i s ␣%d , ␣ func␣ i s ␣ ca l led ␣%d␣ times\n” , s , count) ;
return 0 ;

}

АиАЯ Лекция 6 3 / 12

Инициализация переменных

При объявлении переменной int x = 42;

• автоматические переменные инициализируются каждый раз
при входе в соответствующий блок;

• если нет инициализации, значение соответствующей
переменной не определено!

• глобальные и статические инициализируются только один
раз в начале работы программы;

• если нет инициализации, они обнуляются компилятором;
• внешние переменные инициализируются только в том
файле, в котором они определяются;

• при инициализации переменной типа с квалификатором
const она является константой и не может изменять свое
значение.

АиАЯ Лекция 6 4 / 12

Литералы

Литералы задают константу (фиксированное значение).

• символьные константы 'c', L't', '\0x4f', '\040'
тип символьной константы — int!

• целые константы 100, -34l, 1000U, 999llu
• константы с плавающей точкой 11.123F, 4.56e-4f, 1.0,
-11.123, 3.1415926l, -6.626068e−34L
тип вещественной константы без суффикса — double!

• шестнадцатеричные константы 0x80 (128)
вещественные 16-ричные: 0x3.ABp3 3 171256 × 8 = 29.34375

• восьмеричные константы 012 (10)
• строковые константы "a", "Hello, World!",
L"Unicode string"

• специальные символьные константы \n, \t, \b

АиАЯ Лекция 6 5 / 12

Операции над целочисленными данными

Арифметические

одноместные: изменение знака (-), одноместный плюс (+)
двухместные: сложение (+), вычитание (–), умножение (*),
деление нацело (/), остаток от деления нацело (%)
(a/b)× b+ (a%b) == a

Отношения (результат 0/1 типа int)

больше (>), больше или равно (>=), меньше (<), меньше или
равно (<=)

Сравнения (результат 0/1 типа int)

равно (==), не равно (!=)

Логические

отрицание (!), конъюнкция (&&), дизъюнкция (||)
ложное значение — 0, истинное — любое ненулевое
«ленивое» вычисление && и ||

АиАЯ Лекция 6 6 / 12

Операции присваивания

Побочные эффекты: изменение объекта, вызов функции
lvalue = rvalue

• lvalue — выражение, указывающее на объект памяти
• rvalue — выражение, генерирующее значение
Пример: a = b = c = d = 0;

Укороченное присваивание: lvalue op= rvalue, где op —
двухместная операция
Пример: a += 15;

Инкремент и декремент: ++ и --
префиксные и постфиксные

Последовательное вычисление: операция запятая ,
Пример: a = (b = 5, b + 2);

АиАЯ Лекция 6 7 / 12

Точки следования

Побочные эффекты: изменение объекта, вызов функции
Точка следования (sequence point): момент во время
выполнения программы, в котором все побочные эффекты
предыдущих вычислений закончены, а новых — не начаты

• первый операнд &&, ||, ,
• окончание полного выражения (full expression)
• между вычислением фактических параметров и вызовом
функции

Между двумя точками следования изменение значения
переменной возможно не более одного раза1.
(a=2) + (a=3)
i++ + ++i

1В последних стандартах терминология несколько иная (sequenced before,
unsequenced, indeterminately sequenced): точка следования влечёт частичный
порядок, его отсутствие делает возможным любые варианты.
АиАЯ Лекция 6 8 / 12

Форматный ввод-вывод

#include <stdio.h>
int main (void) {
int s = 0;
int a, b;
scanf ("%d%d", &a, &b);
s += a + b;
printf ("Sum␣is␣%d\n", s);
return 0;

}

АиАЯ Лекция 6 9 / 12

Спецификаторы ввода-вывода

спецификатор печатает/считывает

%d, %ld, %lld число int, long, long long

%u, %lu, %llu число unsigned, unsigned long,
unsigned long long

%f, %Lf печатает double, long double

%f, %lf, %Lf считывает float, double, long double

%c символ (char)

%4d: вывести число типа int минимум в четыре символа
%.5f: вывести число типа double c пятью знаками
%%: напечатать знак процента

Функция scanf возвращает количество удачно считанных
элементов
АиАЯ Лекция 6 10 / 12

Пример Си-программы

/* Solving a quadratic equation */
#include <stdio.h>
#include <math.h>
int main (void) {
int a, b, c, d;
/* Input coefficients */
if (scanf ("%d%d%d", &a, &b, &c) != 3) {
printf ("Need␣to␣input␣three␣coefficients!\n");
return 1;

}
if (!a) {
printf ("That's␣not␣quadratic!\n");
return 1;

}
<...>

АиАЯ Лекция 6 11 / 12

Пример Си-программы

<...>
d = b*b - 4*a*c;
if (d < 0)
printf ("No␣solutions\n");

else if (d == 0) {
double db = -b;
printf ("Solution:␣%.4f\n", db/(2*a));

} else {
double db = -b;
double dd = sqrt (d);
printf ("Solution␣1:␣%.4f,␣solution␣2:␣%.4f\n",

(db+dd)/(2*a), (db-dd)/(2*a));
}
return 0;

}

АиАЯ Лекция 6 12 / 12

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 7

28 сентября 2019 г.

Пример Си-программы

/* Solving a quadratic equation */
#include <stdio.h>
#include <math.h>
int main (void) {
int a, b, c, d;
/* Input coefficients */
if (scanf ("%d%d%d", &a, &b, &c) != 3) {
printf ("Need␣to␣input␣three␣coefficients!\n");
return 1;

}
if (!a) {
printf ("That's␣not␣quadratic!\n");
return 1;

}
<...>

АиАЯ Лекция 7 1 / 10

Пример Си-программы

<...>
d = b*b - 4*a*c;
if (d < 0)
printf ("No␣solutions\n");

else if (d == 0) {
double db = -b;
printf ("Solution:␣%.4f\n", db/(2*a));

} else {
double db = -b;
double dd = sqrt (d);
printf ("Solution␣1:␣%.4f,␣solution␣2:␣%.4f\n",

(db+dd)/(2*a), (db-dd)/(2*a));
}
return 0;

}

АиАЯ Лекция 7 2 / 10

Преобразование типов

При присваивании a = b:

• «Широкий» целочисленный тип в «узкий»: отсекаются
старшие биты

• Знаковый тип в беззнаковый: знаковый бит «становится»
значащим
signed char c = -1; /* sizeof(c) == 1 */
((unsigned char) c) → 255

• Плавающий тип в целочисленный: отбрасывается дробная
часть

• «Широкий» плавающий тип в «узкий»: округление или
усечение числа

Явное приведение типов: (type) expression
d = ((double) a+b)/2;

АиАЯ Лекция 7 3 / 10

Приведение типов

Неявное приведение типов: происходит, когда операнды
двухместной операции имеют разные типы (6.3.1.8)
• Если один из операндов — long double, то и второй
преобразуется к long double (так же для double и float)
long double + double → long double + long double
int + double → double + double

float + short → float + int → float + float

• Если все значения операнда могут быть представлены в int,
то операнд преобразуется к int, так же и для unsigned int
(англоязычный термин — integer promotion)
unsigned short(2) + char(1) → int(4) + int(4)

unsigned short(4) + char(1) → unsigned int(4) + int(4)

• Если оба операнда — соответственно знаковых или
беззнаковых целых типов, то операнд более «узкого» типа
преобразуется к операнду более «широкого» типа
int + long → long + long
unsigned long long + unsigned →

unsigned long long + unsigned long long
АиАЯ Лекция 7 4 / 10

Приведение типов

• Если операнд беззнакового типа более или так же «широк»,
чем операнд знакового «узкого» типа, то операнд «узкого»
типа преобразуется к операнду «широкого» типа
int + unsigned long → unsigned long + unsigned long
int(4) / unsigned int(4) → unsigned int(4) / unsigned int(4)

/* Неверные значения */

• Если тип операнда знакового типа может представить все
значения типа операнда беззнакового типа, то операнд
беззнакового типа преобразуется к операнду знакового типа
unsigned int(4) + long(8) → long(8) + long(8)

unsigned short + long long → long long + long long

• Оба операнда преобразуются к беззнаковому типу,
соответствующему типу операнда знакового типа
unsigned int(4)+ long(4) →

unsigned long(4) + unsigned long(4)

• Числа типа float не преобразуются автоматически к
double

АиАЯ Лекция 7 5 / 10

Старшинство операций

Старшинство Ассоциативность

! ++ -- + - sizeof (type) Справа налево
* / % Слева направо
+ - Слева направо

== != Слева направо

&& Слева направо
|| Слева направо

= += -= *= /= %= Справа налево
, Слева направо

АиАЯ Лекция 7 6 / 10

Операторы

Выражение-оператор: expression;

Составной оператор: {}

Условный оператор: if (expr) stmt; else stmt;

else всегда относится к ближайшему if:

if (x > 2)
if (y > z)

y = z;
else

z = y;

if (x > 2) {
if (y > z)

y = z;
}
else

z = y;

АиАЯ Лекция 7 7 / 10

Операторы

Оператор выбора:

switch (expr) {
case const-expr: stmt;
case const-expr: stmt;
default: stmt;

}

Оператор break — немедленный выход из switch.

АиАЯ Лекция 7 8 / 10

Операторы

Цикл while: while (expression) stmt;

Цикл do-while: do { stmt; } while (expression);
Проверка условия выхода из цикла после выполнения тела

Цикл for:

for (decl1; expr2; expr3)
stmt;

decl1;
while (expr2) {

stmt;
expr3;

}

for (; ;) stmt; — бесконечный цикл

АиАЯ Лекция 7 9 / 10

Операторы

Операторы break и continue: выход из внутреннего цикла и
переход на следующую итерацию

Оператор goto: переход по метке

goto label;
...
label:

Областью видимости метки является вся функция

АиАЯ Лекция 7 10 / 10

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 8

2 октября 2019 г.

Программа: количество дней между двумя датами

int main (void)
{
while (1) {
int m1, d1, y1, m2, d2, y2;
int t1, t2;
int days1, days2, total;

if (scanf ("%d%d%d%d%d%d", &d1, &m1, &y1,
&d2, &m2, &y2) != 6)

break;
t1 = check_date (d1, m1, y1);
if (t1 == 1 || (t2 = check_date (d2, m2, y2)) == 1)

break;
else if (t1 == 2 || t2 == 2)

continue;

АиАЯ Лекция 8 1 / 14

Программа: количество дней между двумя датами

<...>
days1 = days_from_jan1 (d1, m1, y1);
days2 = days_from_jan1 (d2, m2, y2);
total = days_between_years (y1, y2)

+ (days2 - days1);
printf ("Days␣between␣dates:␣%d,"

"weeks␣between␣days:␣%d\n",
total, total / 7);

}
return 0;

}

АиАЯ Лекция 8 2 / 14

Программа: количество дней между двумя датами

#include <stdio.h>

static int check_date (int d, int m, int y)
{
if (!d || !m || !y)
return 1;

if (d < 0 || m < 0 || y < 0)
{

printf ("%d␣%d␣%d:␣wrong␣date\n", d, m, y);
return 2;

}
return 0;

}

АиАЯ Лекция 8 3 / 14

Программа: количество дней между двумя датами

static int leap_year (int y) {
return (y % 400 == 0) || (y % 4 == 0 && y % 100 != 0);

}

static int days_in_year (int y) {
return leap_year (y) ? 366 : 365;

}

static int days_between_years (int y1, int y2) {
int i;
int days = 0;

for (i = y1; i < y2; i++)
days += days_in_year (i);

return days;
}

АиАЯ Лекция 8 4 / 14

Программа: количество дней между двумя датами

static int days_from_jan1 (int d, int m, int y) {
int days = 0;
switch (m) {

case 1 2 : days += 30 ;
case 1 1 : days += 3 1 ;
case 1 0 : days += 30 ;
case 9 : days += 3 1 ;
case 8 : days += 3 1 ;
case 7 : days += 30 ;
case 6 : days += 3 1 ;
case 5 : days += 30 ;
case 4 : days += 3 1 ;
case 3 : days += leap_year (y) ? 29 : 2 8 ;
case 2 : days += 3 1 ;
case 1 : break ;

}
return days + d;

}
АиАЯ Лекция 8 5 / 14

Символьный тип данных (char)

Программа подсчета числа строк во входном потоке

#include <stdio.h>
int main (void)
{

int c, nl = 0;
while ((c = getchar()) != EOF)

if (c == '\n')
++nl;

printf ("%d\n", nl);
return 0;

}

Каков должен быть возвращаемый тип функции getchar?

АиАЯ Лекция 8 6 / 14

Символьный тип данных (char)

Символьные данные представляются в некотором коде.
Популярным кодом является ASCII (American Standard Code for
Information Interchange).

Каждому символу сопоставляется его код — число типа char
Требуется, чтобы в кодировке присутствовали маленькие и
большие английские буквы, цифры, некоторые другие
символы
Требуется, чтобы коды цифр 0, 1, ..., 9 были
последовательны

АиАЯ Лекция 8 7 / 14

Символьный тип данных (char)

Символьные данные представляются в некотором коде.
Популярным кодом является ASCII (American Standard Code for
Information Interchange).

К символьным данным применимы операции целочисленных
типов (но обычно — операции отношения и сравнения)
Каждый символ-литерал заключается в одинарные
кавычки ' и '
Последовательность символов (строка) заключается
в двойные кавычки " и "
Специальные (управляющие) символы представляются
последовательностями из двух символов. Примеры:

\n переход на начало новой строки
\t знак табуляции
\b возврат на один символ с затиранием

АиАЯ Лекция 8 7 / 14

Таблица ASCII

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 \0 \t \n

1 ESC

2 ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ̂ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } DEL

В коде ASCII буквы верхнего и нижнего регистра составляют
непрерывные последовательности: между a и z (соответственно,
между A и Z) нет ничего, кроме букв, расположенных
в алфавитном порядке.

Это же верно и для цифр 0, 1, ..., 9.
АиАЯ Лекция 8 8 / 14

Преобразование строки цифр в целое число

int atoi (char s[]) {
int i, n;

n = 0;
for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i)

n = 10 * n + (s[i] - '0');
return n;

}

Верно для любой кодировки символов.

АиАЯ Лекция 8 9 / 14

Массивы

Массивы позволяют организовывать непрерывные
последовательности нескольких однотипных элементов и
обращаться к ним по номеру (индексу).

• Элементы массивов располагаются в памяти
последовательно и индексируются с 0:

int a[30]; /* элементы a[0], a[1], ... , a[29] */

• Все массивы — одномерные, но элементом массива может
быть массив:

int b[3][3]; /* b[0][0], b[0][1], b[0][2],
b[1][0], b[1][1], b[1][2],
b[2][0], b[2][1], b[2][2] */

• Контроль правильности индекса массива не производится!

АиАЯ Лекция 8 10 / 14

Пример программы с массивом символов

#include <stdio.h>
int main (void) {
int c, i, nwhite = 0, nother = 0, ndigit[10];
for (i = 0; i < 10; ++i)
ndigit[i] = 0;

while (c = getchar ()) != EOF)
if (c >= '0' && c <= '9')

++ndigit[c - '0'];
else if (c == '␣' || c == '\n' || c == '\t')

++nwhite;
else

++nother;

АиАЯ Лекция 8 11 / 14

Пример программы с массивом символов

printf ("digits=");
for (i = 0; i < 10; ++i)
printf ("␣%d", ndigit[i]);

printf (",␣white␣space=%d,␣other=%d\n",
nwhite, nother);

return 0;
}

АиАЯ Лекция 8 12 / 14

Инициализация массивов

type name[dim1]...[dimN] = {value list};
Можно не указывать размер массива — он будет вычислен по
количеству элементов инициализатора

int sqrs[] = {1, 4, 9, 16, 25}; /* 5 элементов */

С99: инициализация лишь некоторых элементов (остальные
инициализируются нулями)

int days[12] = {31, 28, [4] = 31,30,31, [1] = 29};

• При инициализации одного элемента дважды используется
последнее значение

• После задания номера элемента дальнейшие инициализаторы
присваиваются следующим по порядку элементам

Можно использовать модификаторы const, static и т.п.
Можно использовать любое константное целочисленное
выражение для определения размера массива

• const-переменная не является константным выражением!
АиАЯ Лекция 8 13 / 14

Строки

• Строка — это одномерный массив типа char.
Объявляя массив, предназначенный для хранения строки, необходимо

предусмотреть место для символа '\0' (конец строки).

• Строковая константа записывается как "string constant".
В конец строковой константы компилятор добавляет '\0'.

• Стандартная библиотека функций работы со строками
<string.h>, в частности, содержит такие функции, как:
strcpy(s1, s2) копирование s2 в s1
strcat(s1, s2) конкатенация s2 и s1
strlen(s) длина строки s
strcmp(s1, s2) сравнение s2 и s1 в лексикографическом порядке:

0, если s1 и s2 совпадают, отрицательное значение, если
s1 < s2, положительное значение, если s1 > s2

strchr(s, ch) указатель на первое вхождение символа ch в s
strstr(s1, s2) указатель на первое вхождение подстроки s2 в строку

s1

Дома. Прочитайте о функциях strspn, strpbrk.
Зачем нужна функция stpcpy?

АиАЯ Лекция 8 14 / 14

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 9

5 октября 2019 г.

Строки

• Строка — это одномерный массив типа char.
Объявляя массив, предназначенный для хранения строки, необходимо

предусмотреть место для символа '\0' (конец строки).

• Строковая константа записывается как "string constant".
В конец строковой константы компилятор добавляет '\0'.

• Стандартная библиотека функций работы со строками
<string.h>, в частности, содержит такие функции, как:
strcpy(s1, s2) копирование s2 в s1
strcat(s1, s2) конкатенация s2 и s1
strlen(s) длина строки s
strcmp(s1, s2) сравнение s2 и s1 в лексикографическом порядке:

0, если s1 и s2 совпадают, отрицательное значение, если
s1 < s2, положительное значение, если s1 > s2

strchr(s, ch) указатель на первое вхождение символа ch в s
strstr(s1, s2) указатель на первое вхождение подстроки s2 в строку

s1

Дома. Прочитайте о функциях strspn, strpbrk.
Зачем нужна функция stpcpy?

АиАЯ Лекция 9 1 / 9

Пример программы работы со строками

#include <stdio.h>
#include <string.h>
int main (void) {
char str1[80], str2[80], smp[3] = "ВМК";

fgets (str1, 80, stdin); str1[strlen (str1)-1] = '\0';
fgets (str2, 80, stdin); str2[strlen (str2)-1] = '\0';
printf ("Строки␣имеют␣длину:␣первая␣%d,␣вторая␣%d\n",

strlen (str1), strlen (str2));
if (!strcmp (str1, str2))
printf ("строки␣равны\n");

strncat (str1, str2, 80 – strlen (str1) - 1);
printf ("%s\n", str1);
sprintf (str1, "Привет,␣%s", smp);
puts (str1);
return 0;

}
АиАЯ Лекция 9 2 / 9

Пример программы работы со строками

#include <stdio.h>
#include <string.h>
int main (void) {
char str1[80], str2[80], smp[3] = "ВМК";

fgets (str1, 80, stdin); str1[strlen (str1)-1] = '\0';
fgets (str2, 80, stdin); str2[strlen (str2)-1] = '\0';
printf ("Строки␣имеют␣длину:␣первая␣%d,␣вторая␣%d\n",

strlen (str1), strlen (str2));
if (!strcmp (str1, str2))
printf ("строки␣равны\n");

strncat (str1, str2, 80 – strlen (str1) - 1);
printf ("%s\n", str1);
sprintf (str1, "Привет,␣%s", smp);
puts (str1);
return 0;

}
АиАЯ Лекция 9 2 / 9

Пример программы работы со строками

#include <stdio.h>
#include <string.h>
int main (void) {
char str1[80], str2[80], smp[4] = "ВМК";

fgets (str1, 80, stdin); str1[strlen (str1)-1] = '\0';
fgets (str2, 80, stdin); str2[strlen (str2)-1] = '\0';
printf ("Строки␣имеют␣длину:␣первая␣%d,␣вторая␣%d\n",

strlen (str1), strlen (str2));
if (!strcmp (str1, str2))
printf ("строки␣равны\n");

strncat (str1, str2, 80 – strlen (str1) - 1);
printf ("%s\n", str1);
sprintf (str1, "Привет,␣%s", smp);
puts (str1);
return 0;

}
АиАЯ Лекция 9 2 / 9

Операция sizeof

• Одноместная операция sizeof позволяет определить длину
операнда в байтах

Операнды — типы либо переменные
Результат имеет тип size_t

• Операция sizeof выполняется во время компиляции, её
результат представляет собой константу

• sizeof помогает улучшить переносимость программ
Для определения объема памяти в байтах, нужного для
двумерного массива
number_of_bytes = d1 * d2 * sizeof (element_type)
где d1 — количество элементов по первому измерению,
d2 — количество элементов по второму измерению,
element_type — тип элемента массива
Можно поступить и проще:
number_of_bytes = sizeof (array_name)

АиАЯ Лекция 9 3 / 9

Операция sizeof

• sizeof можно применять только к «полностью»
определённым типам. Для массивов это означает:

размерности массива должны присутствовать в его
объявлении,
тип элементов массива должен быть полностью определён.

• Пример. Если объявление массива имеет вид:
extern int arr[];
то операция sizeof (arr) ошибочна, так как у
компилятора нет возможности узнать, сколько элементов
содержит массив arr.

АиАЯ Лекция 9 4 / 9

Операция sizeof

#include <stdio.h>
#include <string.h>
int main (int argc, char **argv) {
char buffer[10];

/* копирование 9 символов из argv[1] в buffer;
sizeof (char) равно 1, число элементов массива
buffer равно его размеру в байтах */
strncpy (buffer, argv[1],

sizeof (buffer) – sizeof (char));
buffer[sizeof (buffer) - 1] = '\0';
return 0;

}

АиАЯ Лекция 9 5 / 9

Указатели

& — операция адресации
* — операция разыменования

int a = 1;
int *p;
p = &a;
*p = 2;
printf ("Значение␣переменной␣a␣=␣%d\n", *p);
printf ("Адрес␣переменной␣a␣=␣%p\n", p);

В результате выполнения фрагмента будет напечатано:
Значение переменной a = 2

Адрес переменной a = 0xbffff7a4

&foo является константой, указатель — переменной
foo должен быть l-значением (lvalue)
Печать адреса — модификатор %p
Нулевой указатель (никуда не указывающий) — NULL
(константа в stdlib.h, может не иметь нулевого значения)
АиАЯ Лекция 9 6 / 9

Адресная арифметика

В языке Си допустимы следующие операции над указателями:

• сложение указателя с целым числом;
• вычитание целого числа из указателя;
• вычитание указателей;
• операции отношения и сравнения.

Пример. Пусть sizeof (int) == 4 и пусть текущее значение
int* p1 равно 2016=0x7E0.

После операции p1++ значение p1 будет 2020=0x7E4 (а не
2017=0x7E1), после операции p1-3 — значение 2004=0x7D4.

При увеличении (уменьшении) на целое число i указатель
будет перемещаться на i ячеек соответствующего типа в
сторону увеличения (уменьшения) их адресов.

АиАЯ Лекция 9 7 / 9

Преобразование типа указателя

Указатель можно преобразовать к другому типу, но такое
преобразование типов обязательно должно быть явным.
Условие: исходный указатель правильно выравнен для целевого
типа. Значение указателя сохраняется.

Иногда такое преобразование типов может вызвать
непредсказуемое поведение программы.

#include <stdio.h>
int main (void) {

double x = 200.35, y;
int *p;
p = (int *)&x; /* &x - double, а p имеет тип int* */
y = *p; /* будет ли y присвоено значение 200.35? */
printf ("значение␣x␣равно␣%f\n", x);
printf ("значение␣y␣равно␣%f\n", y);
return 0;

}
АиАЯ Лекция 9 8 / 9

Преобразование типа указателя

Типичный вывод (GCC, Linux):

значение x равно 200.350000

значение y равно 858993459.000000

В присваивании y = *p; загрузка *p считывает только
первые четыре байта области памяти с адресом &x
(т.к. sizeof (int) в данном случае равен 4)
В представлении 200.35 в формате числа double первые
четыре байта соответствуют целому числу 858993459

Таким образом, необходимо учитывать, что операции
с указателями выполняются в соответствии с базовым типом
указателя.

АиАЯ Лекция 9 9 / 9

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 10

9 октября 2019 г.

Преобразование типа указателя

Разрешено также преобразование целого в указатель и наоборот
(поведение определяется реализацией). Однако пользоваться
этим нужно очень осторожно.
aux = (void *) -1;
Допускается присваивание указателя типа void * указателю
любого другого типа (и наоборот) без явного преобразования
типа указателя. Это позволяет использовать void *, когда тип
объекта неизвестен.

Использование типа void * в качестве параметра функции позволяет
передавать в функцию указатель на объект любого типа.

Допускается неявное преобразование менее
квалифицированного типа указателя к более
квалифицированному (int * → const int *).

Константа NULL неявно преобразуется к любому другому типу
указателя.

АиАЯ Лекция 10 1 / 8

Указатели и массивы

Указатель на первый элемент массива можно создать, присвоив
переменной типа «указатель на тип элемента массива» имя
массива без индекса:

int array[15];
int *p, *q;
p = array;
q = &array[0];

p и q указывают на начало массива array[15]
Значение array изменить нельзя, а значение p — можно
array не является l-значением, а p — является

• array = p; array++ — писать нельзя (это ошибки)
• p = array; p++ — писать можно (и нужно)

АиАЯ Лекция 10 2 / 8

Указатели и массивы

Индексирование указателей

int *p, a[10]; /* два способа присвоить 100 */
/* 6-ому элементу массива a[10] */

p = a;
(p + 5) = 100; / адресная арифметика */
p[5] = 100; /* индексирование указателя */

Сравнение указателей

Если p и q являются указателями на элементы одного и того
же массива и p < q, то:
q – p + 1 равно количеству элементов массива от p до q
включительно.
Можно написать:

if (p < q)
printf ("p ссылается на меньший адрес, чем q");

АиАЯ Лекция 10 3 / 8

Массивы указателей

Указатели могут быть собраны в массив.

int *mu[27]; /* это массив из 27 указателей на int */
int (*um)[27]; /* это указатель на массив из 27 int */

static void error (int errno) {
static char *errmsg[] = {

"переменная уже существует",
"нет такой переменной",
<...>
"нужно использовать переменную-указатель"

};
printf ("Ошибка: %s\n", errmsg[errno]);

}

Имя массива указателей — пример многоуровневого указателя.
Массив errmsg можно представить как char **errmsg.
АиАЯ Лекция 10 4 / 8

Функции

Объявление функции: return-type func(type1 arg1,
type2 arg2, ..., typen argn);

int atoi (char s[]);
void QuickSort (char *items, int count);

Тип возвращаемого значения void означает, что функция не возвращает
значения.

Определение функции: func-decl { body }
Областью действия функции является весь программный файл,
в котором она объявлена, начиная со строки, содержащей её
объявление.

Если в программном файле вызывается какая-либо функция, она
обязательно должна быть объявлена в этом программном файле до её
вызова.

Директива препроцессора #include <имя_библиотеки.h>
вставляет в программу объявления всех функций
соответствующей библиотеки
АиАЯ Лекция 10 5 / 8

Вызов функции

Если функция возвращает значение, то её результатом можно
пользоваться в выражениях: v = f(); a = f(y) + 2;

Если функция не возвращает значений, то вызов выглядит просто
как f(args);

В языке Си все аргументы передаются по значению
(т.е. передаются только значения аргументов, и эти значения
копируются в локальную область памяти функции).

Если аргументом является указатель, его значением может быть
адрес объекта вызывающей функции, что обеспечивает
вызываемой функции доступ к объекту.

АиАЯ Лекция 10 6 / 8

Указатели и аргументы функций

Используя аргументы-указатели, функция может обращаться к
объектам вызвавшей её функции.

Использование указателей позволяет избежать копирования
сложных структур данных: вместо этого передаются указатели на
эти структуры.

Пример. Функция void swap(int x, int y); меняет местами
значения переменных x и y.

Неправильно:
void swap (int x, int y)
{

int tmp;
tmp = x;
x = y;
y = tmp;

}

Правильно:
void swap (int *px, int *py)
{
int tmp;
tmp = *px;
*px = *py;
*py = tmp;

}
АиАЯ Лекция 10 7 / 8

Вызов функции

Массив всегда передается с помощью указателя на его первый
элемент.

int asum1d (int a[], int n) {
int s = 0;
for (int i = 0; i < n; i++)

s += a[i];
return s;

}
Можно объявить массив a в списке параметров как const a[].

Функции с переменным числом параметров:
int scanf (const char *, ...);

Всегда должен быть явно задан хотя бы один параметр.
После многоточия не должно быть других явных параметров.

Обработка переменных параметров — файл stdarg.h,
макросы va_start/va_arg/va_end.
АиАЯ Лекция 10 8 / 8

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 11

12 октября 2019 г.

Пример: перевод строковой записи числа в целый тип

#include <ctype.h>
int atoi (char *s)
{

int n, sign;
for (; isspace (*s); s++)

;
sign = (*s == '-') ? -1 : 1;
if (*s == '+' || *s == '-')

s++;
for (n = 0; isdigit (*s); s++)

n = 10 * (*s - '0');
return sign * n;

}

АиАЯ Лекция 11 1 / 14

Возврат из функции

Возврат из функции в точку вызвавшей её функции, следующей
за точкой вызова функции, осуществляется:
• либо при выполнении оператора return,
• либо после выполнения последнего оператора функции,
если она не содержит оператора return.

#include <string.h>
#include <stdio.h>
void print_str_reverse (char *s) {

register int i;
for (i = strlen (s) – 1; i >= 0; i--)
putchar (s[i]);

}

Если тип функции не void, то в её теле на каждом пути
выполнения должен быть оператор return с возвращаемым
значением.

Если у функции несколько операторов return, возврат
осуществляется немедленно по тому из них, который будет
выполнен первым.АиАЯ Лекция 11 2 / 14

Результат выполнения функции

Все функции, кроме тех, которые относятся к типу void,
возвращают значение, которое определяется выражением
в операторе return.

Помимо вычисления возвращаемого значения, функция может
изменять значения переменных вызывающей функции (по
указателю), а также изменять значения глобальных переменных.

Результаты вызова функции, не связанные непосредственно
с вычислением возвращаемых значений, составляют побочный
эффект функции.

АиАЯ Лекция 11 3 / 14

Результат выполнения функции

Выделяют следующие виды функций:

• выполняют операции над своими аргументами с
единственной целью — вычислить возвращаемое значение;

• обрабатывают данные и возвращают значение, которое
показывает, успешно ли была выполнена эта обработка;

• возвращающие несколько значений (через
указатели-аргументы и через возвращаемое значение);

• не возвращающие значений — все такие функции имеют тип
void.

АиАЯ Лекция 11 4 / 14

Результат выполнения функции

Возвращаемым значением может быть указатель. Требуется, чтобы
в объявлении такой функции тип возвращаемого указателя был
объявлен точно: нельзя объявлять возвращаемый тип как int *,
если функция возвращает указатель типа char *.

Пример функции, возвращающей указатель: поиск первого
вхождения символа c в строку s.

char *match (char c, char *s)
{

while (c != *s && *s)
s++;

return s;
}

АиАЯ Лекция 11 5 / 14

Рекурсия

Функция может быть рекурсивной, т.е. вызывать саму себя:

int fib (int n) {
if (n == 1 || n == 2)

return 1;
else

return fib (n – 2)
+ fib (n – 1);

}

fib(5)

fib(3)

fib(1)

fib(2)

fib(4)

fib(2)

fib(3)

fib(1)

fib(2)

АиАЯ Лекция 11 6 / 14

Рекурсия

Рекурсивные функции часто неэффективны по сравнению с их
нерекурсивными вариантами:

int fibn (int n) {
int i, g, h, fb;
if (n == 1 || n == 2)

return 1;
else

for (i = 2, g = h = 1; i < n; i++) {
fb = g + h;
h = g;
g = fb;

}
return fb;

}

Функция fib работает за экспоненциальное время и линейную память, функция

fibn — за линейное время и константную память.
АиАЯ Лекция 11 7 / 14

Хвостовая рекурсия∗

Хвостовая рекурсия (tail recursion) — рекурсивный вызов в
самом конце функции. Как правило, этот вызов может быть
оптимизирован компилятором в цикл.

int fact (int n) {
if (n == 0)
return 1;

else
return n*fact (n-1);

}

int fact (int n) {
return tfact (n, 1);

}
int tfact (int n, int acc) {

if (n == 0)
return acc;

return tfact (n-1, n*acc);
}

АиАЯ Лекция 11 8 / 14

Хвостовая рекурсия∗

Хвостовая рекурсия (tail recursion) — рекурсивный вызов в
самом конце функции. Как правило, этот вызов может быть
оптимизирован компилятором в цикл.

int fact (int n) {
int t_n = n, t_acc = 1;
/* tfact встроена в fact

и оптимизирована в цикл */
start:
if (t_n == 0)
return t_acc;

t_acc = t_n * t_acc;
t_n = t_n – 1;
goto start;

}

int fact (int n) {
return tfact (n, 1);

}
int tfact (int n, int acc) {

if (n == 0)
return acc;

return tfact (n-1, n*acc);
}

АиАЯ Лекция 11 8 / 14

Ключевое слово inline: встраиваемые функции (C99)

#include <stdio.h>
inline static int max (int a, int b) {

return a > b ? a : b;
}
int main (void) {

int x = 5, y = 17;
printf ("Maximum␣of␣%d␣and␣%d␣is␣%d\n",

x, y, max (x, y));
return 0;

}

АиАЯ Лекция 11 9 / 14

Ключевое слово inline: встраиваемые функции (C99)

При типичной реализации inline программа будет
преобразована как

#include <stdio.h>

inline static int max (int a, int b) {
return a > b ? a : b;

}

int main (void) {
int x = 5, y = 17;
printf ("Maximum␣of␣%d␣and␣%d␣is␣%d\n",

x, y, (x > y ? x : y));
return 0;

}

АиАЯ Лекция 11 9 / 14

Указатели на функцию

Каждая функция располагается в памяти по определенному
адресу. Адресом функции является её точка входа (при вызове
функции управление передается именно на эту точку).

Присвоив значение адреса функции переменной типа указатель,
получим указатель на функцию.

Указатель функции можно использовать вместо её имени при
вызове этой функции. Указатель «лучше» имени тем, что его
можно передавать другим функциям в качестве их аргумента.

Имя функции f без скобок и аргументов по определению является
указателем на функцию f() (аналогия с массивом).

int (*pf) (const char*, const char*);
char *s1, *s2;
int x = (*pf) (s1, s2);
int y = pf (s2, "string␣constant");

АиАЯ Лекция 11 10 / 14

Указатели на функцию

Каждая функция располагается в памяти по определенному
адресу. Адресом функции является её точка входа (при вызове
функции управление передается именно на эту точку).

Присвоив значение адреса функции переменной типа указатель,
получим указатель на функцию.

Указатель функции можно использовать вместо её имени при
вызове этой функции. Указатель «лучше» имени тем, что его
можно передавать другим функциям в качестве их аргумента.

Имя функции f без скобок и аргументов по определению является
указателем на функцию f() (аналогия с массивом).

int (*pf) (const char*, const char*);
char *s1, *s2;
int x = (*pf) (s1, s2);
int y = pf (s2, "string␣constant");

АиАЯ Лекция 11 11 / 14

Указатели на функцию. Пример

include < s td io . h>
include < s t r i n g . h>
static void check (char *a, char *b,
int (*pf) (const char*, const char*)) {
printf ("Проверка на совпадение: ");
if (! pf (a, b))

printf ("равны\n");
else

printf ("не␣равны\n");
}
int main (void) {
char s1[80], s2[80];
printf ("Введите две строки\n");
fgets (s1, sizeof (s1), stdin); s1[strlen (s1) - 1] = 0;
fgets (s2, sizeof (s2), stdin); s2[strlen (s2) - 1] = 0;
check (s1, s2, strcmp);
return 0;

} АиАЯ Лекция 11 12 / 14

Указатели на функцию. Пример

Объявление int (*p)(const char *, const char *);
сообщает компилятору, что p — указатель на функцию, имеющую
два параметра типа const char * и возвращающую значение
типа int.

Скобки вокруг *p нужны, так как операция * имеет более низкий приоритет, чем ().

Если написать int *p(...), получится, что объявлен не указатель на функцию, а

функция p, которая возвращает указатель на целое.

(*cmp)(a, b) эквивалентно cmp(a, b).

Указатель pf и функция strcmp имеют одинаковый формат, что
позволяет использовать имя функции в качестве аргумента,
соответствующего параметру pf.

АиАЯ Лекция 11 13 / 14

Указатели на функцию. Пример

В данном случае использование указателя на функцию позволяет
не менять программу сравнения, и тем самым получается более
общий алгоритм

int compvalues (const char *a, const char *b) {
return atoi (a) != atoi (b);

}

Массивы указателей на функцию: гибкая обработка событий.

АиАЯ Лекция 11 14 / 14

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 12

16 октября 2019 г.

Поразрядные операции

& (поразрядное И)
| (поразрядное включающее ИЛИ)
̂ (поразрядное исключающее ИЛИ)
<< (сдвиг влево)
>> (сдвиг вправо)

• Беззнаковое число — заполнение нулями.
• Знаковое число — заполнение значением знакового разряда
(арифметический сдвиг) или нулями (логический сдвиг).

̃ (дополнение до 1, или инверсия)

hackersdelight.org
x & 1 x | 1 x | (1 << 5) x & (x - 1)
x ^= y, y ^= x, x ^= y ~x + 1 x | (x + 1)

АиАЯ Лекция 12 1 / 11

hackersdelight.org

Структуры

Структура — это совокупность нескольких переменных, часто
разных типов, сгруппированных под одним именем для удобства.

Переменные, перечисленные в объявлении структуры,
называются её полями, элементами, или членами.

Объявление структуры:

struct point
{

int x;
int y;

} f, g;
struct point h, center = {32, 32};

АиАЯ Лекция 12 2 / 11

Структуры

Поля структуры могут иметь любой тип, например, тип массива
или тип другой структуры.

struct rect
{

struct point pt1;
struct point pt2;

};

Инициализация структуры:

struct rect r = {.pt1 = {4, 4},
.pt2 = {7, 6}};

/* Остальные элементы --- нулевые */
struct rect r2 = {.pt2.x = 5};

Размер структуры в общем случае не равен сумме размеров её
элементов (выравнивание).
АиАЯ Лекция 12 3 / 11

Структуры

Доступ к полям структуры: операция точка .

f.x, g.y, r.pt1.x

Присваивание структур целиком: f = g;

Массивы структур:

#define NRECT 15
/* Первый прямоугольник вокруг 0, 0 */
struct rect rectangles[NRECT]

= {{-1, -1, 1, 1}};
/* Последний прямоугольник --- большой */
#define BOUND 1024
struct rect bounded_rectangles[NRECT]

= {[NRECT-1] = {-BOUND, -BOUND,
BOUND, BOUND}};

АиАЯ Лекция 12 4 / 11

Указатели на структуры

struct rect r = {.pt1 = {4, 4},
.pt2 = {7, 6}};

struct rect *pr = &r;

Доступ к полям структуры через указатель:

pr->pt1 (= (*pr).pt1), pr->pt2.x

Адресная арифметика:

struct rect *pr = &bounded_rectangles[0];
while (pr->pt1.x != -BOUND)

pr++;

АиАЯ Лекция 12 5 / 11

Составные инициализаторы структур (C99)

struct rect r;
r = (struct rect) { {4, 4},

{7, 6} };

Составной инициализатор генерирует lvalue! Т.е. можно
передавать и указатель:

double area (struct rect *r) {
return (r->pt1.x – r->pt2.x)

* (r->pt1.y – r->pt2.y);
}
double da = area (& (struct rect) {{4, 4}, {7, 6}});

АиАЯ Лекция 12 6 / 11

Старшинство операций

Старшинство Ассоциативность
() [] -> . Слева направо
! ++ -- + - sizeof (type) Справа налево
* / % Слева направо
+ - Слева направо
<< >> Слева направо
< <= > >= Слева направо
== != Слева направо
& Слева направо
̂ Слева направо

| Слева направо
&& Слева направо
|| Слева направо
?: Справа налево
= += -= *= /= %= Справа налево
, Слева направо

АиАЯ Лекция 12 7 / 11

Объединения

Объединение — это объект, который может содержать значения
различных типов (но не одновременно — только одно в каждый
момент).
struct constant
{

int ctype;
union
{

int i;
float f;
char *s;

} u;
} sc;

switch (sc.ctype)
{

case CI:
printf("%d",sc.u.i);
break;

case CF:
printf("%f",sc.u.f);
break;

case CS: puts(sc.u.s);
}

Размер объединения достаточно велик, чтобы содержать
максимальный по размеру элемент.
Можно выполнять те же операции, что и со структурами.
АиАЯ Лекция 12 8 / 11

Анонимные объединения и структуры (С11)

Для вложенных структур и объединений разрешено опускать тег
для повышения читаемости.

struct constant
{

int ctype;
union
{

int i;
float f;
char *s;

} /* нет имени! */;
} sc;

switch (sc.ctype)
{

case CI:
printf("%d",sc.i);
break;

case CF:
printf("%f",sc.f);
break;

case CS: puts(sc.s);
}

Поля анонимной структуры считаются принадлежащими
родительской структуре (если родительская также анонимна — то
следующей родительской структуре и т.п.)
АиАЯ Лекция 12 9 / 11

Битовые поля

Для экономии памяти можно точно задать размер поля в битах
(например, набор флагов).

struct tree_base {
unsigned code : 16;
unsigned side_effects_flag : 1;
unsigned constant_flag : 1;
<...>
unsigned lang_flag_0 : 1;
unsigned lang_flag_1 : 1;
<...>
unsigned spare : 12;

}
Адрес битового поля брать запрещено
Можно объявить анонимные поля (для выравнивания)
Можно объявить битовое поле ширины 0 (для перехода на
следующий байт)

АиАЯ Лекция 12 10 / 11

Перечисления

Перечисления — целочисленные типы данных, определяемые
программистом. Определение перечисления:

enum typename { name[=value], ... };
enum colors {red, orange, yellow, green, azure,
blue, violet};

Значения перечисления нумеруются с 0, но можно присваивать
свои значения.

enum {red, orange = 23, yellow = 23, green, cyan = 75,
blue = 75, violet};

Доступны операции над целочисленными типами и объявление
указателей на переменные перечислимых типов.

Проверка корректности присваиваемых значений не
производится.
АиАЯ Лекция 12 11 / 11

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 13

23 октября 2019 г.

Схема раздельной компиляции

Исходная
программа

file1.c

Препроцессор
Компилятор

file1.s

Ассемблер

file1.o

file2.c

Препроцессор
Компилятор

file2.s

Ассемблер

file2.o

file3.c

Препроцессор
Компилятор

file3.s

Ассемблер

file3.o

Компоновщик

Исполняемый
файл

АиАЯ Лекция 13 1 / 11

Препроцессор

Перед компиляцией выполняется этап препроцессирования. Это
обработка программного модуля для получения его
окончательного текста, который отдается компилятору.

Управление препроцессированием выполняется с помощью
директив препроцессора:

#include <...> // системные библиотеки
#include "..." // пользовательские файлы
#define name(parameters) text
#undef name

#define MAX 128
#define ABS(x) ((x) >= 0 ? (x) : -(x))

x -> y – 7
ABS(x) -> ((y – 7) >= 0 ? (y – 7) : -(y – 7))

x -> a-- ?

АиАЯ Лекция 13 2 / 11

Препроцессор

Препроцессор позволяет организовать условное включение
фрагментов кода в программу.

#ifdef name / #endif -- проверка определения имени

#ifndef _STDIO_H
#define _STDIO_H
<... текст файла ...>

#endif

АиАЯ Лекция 13 3 / 11

Препроцессор

Препроцессор позволяет организовать условное включение
фрагментов кода в программу.

#if/#if defined/#elif/#else/#endif --- общие
проверки условий

#if HOST_BITS_PER_INT >= 32
typedef unsigned int gfc_char_t;
#elif HOST_BITS_PER_LONG >= 32
typedef unsigned long gfc_char_t;
#elif defined(HAVE_LONG_LONG)

&& (HOST_BITS_PER_LONGLONG >= 32)
typedef unsigned long long gfc_char_t;
#else
#error "Cannot find an integer type with at least 32 bits"

#endif

АиАЯ Лекция 13 3 / 11

Препроцессор: операции # и ##

Операция # позволяет получить строковое представление
аргумента.

#define FAIL(op) \
do { \

fprintf (stderr, "Operation␣" #op "failed:␣" \
"at␣file␣%s,␣line␣%d\n", __FILE__, \
__LINE__); \

abort (); \
} while (0)

int foo (int x, int y) {
if (y == 0)

FAIL (division);
return x / y;

}
do { f p r i n t f (s tderr , ” Operation␣ ” ” d i v i s i on ” ” f a i l e d : ␣ ”
” at␣ f i l e ␣%s , ␣ l i n e ␣%d\n” , ” f a i l . c ” , 1 3) ; abort () ; } while (0) ;
АиАЯ Лекция 13 4 / 11

Препроцессор: операции # и ##

Операция ## позволяет объединить фактические аргументы
макроса в одну строку.

java-opcodes.h:
enum java_opcode {
#define JAVAOP(NAME, CODE, KIND, TYPE, VALUE) \

OPCODE_##NAME = CODE,
#include "javaop.def"
#undef JAVAOP
LAST_AND_UNUSED_JAVA_OPCODE
};

javaop . def :
JAVAOP (nop , 0 , STACK , POP , 0)
JAVAOP (aconst_nul l , 1 , PUSHC , PTR , 0)
JAVAOP (iconst_m1 , 2 , PUSHC , INT , - 1)
< . . . >
JAVAOP (ret_w , 209 , RET , RETURN , VAR_INDEX_2)
JAVAOP (impdep1 , 254 , IMPL , ANY , 1)
АиАЯ Лекция 13 5 / 11

Препроцессор: операции # и ##

Операция ## позволяет объединить фактические аргументы
макроса в одну строку.

gcc –E java-opcodes.h:
enum java_opcode {
OPCODE_nop = 0,
OPCODE_aconst_null = 1,
OPCODE_iconst_m1 = 2,
OPCODE_iconst_0 = 3,
<...>
OPCODE_impdep2 = 255,
LAST_AND_UNUSED_JAVA_OPCODE
};

АиАЯ Лекция 13 5 / 11

Компоновка и классы памяти: переменные

Класс памяти Время жизни Видимость Компоновка Определена
aвтоматический автоматическое блок нет в блоке
регистровый автоматическое блок нет в блоке

как register
статический статическое файл внешняя вне функций
статический статическое файл внутренняя вне функций

как static
статический статическое блок нет в блоке

как static

Квалификатор extern: переменная определена и память под нее
выделена в другом файле.

АиАЯ Лекция 13 6 / 11

Компоновка и классы памяти: функции

Классы памяти функций:

• статическая (объявлена с квалификатором static);
• внешняя (extern), по умолчанию;
• встраиваемая (inline, C99).

Объявление внешних функций в заголовочных файлах:

extern void *realloc (void *ptr, size_t size);

АиАЯ Лекция 13 7 / 11

Компоновщик

• Организовывает слияние нескольких объектных файлов в
одну программу

• Разрешает неизвестные символы (внешние переменные и
функции)

• Глобальные переменные с одним именем получают одну
область памяти

• Ошибки, если необходимых имён нет или есть несколько
объектов с одним именем

• Опции для указания места поиска

• Собирает исполняемый файл или библиотеку (статическую
или динамическую)

• Хорошим стилем программирования является экспорт лишь
тех объектов, которые используются в других файлах
(интерфейс модуля).
Используйте квалификатор static.

АиАЯ Лекция 13 8 / 11

Динамическое выделение памяти

Функция void *malloc (size_t size); выделяет область
памяти размером size байтов и возвращает указатель на
выделенную область памяти.

Если память не выделена (например, в системе не осталось
свободной памяти требуемого размера), возвращаемый
указатель имеет значение NULL.

Поскольку результат операции sizeof имеет тип size_t и равен
длине операнда в байтах, в качестве size можно использовать
результат операции sizeof.

char *p;
p = (char *) malloc (1000 * sizeof (char));

int *p;
p = malloc (50 * sizeof (int));

АиАЯ Лекция 13 9 / 11

Динамическое выделение памяти

Функция void free (void *p); возвращает системе
выделенный ранее участок памяти с указателем p.

Внимание. Аргументом функции free() обязательно должен
быть указатель p на участок памяти, выделенный ранее
функцией malloc().

• Вызов функции free() с неправильным указателем не
определен и может привести к разрушению системы
распределения памяти

• Вызов функции free() с указателем NULL не приводит ни к
каким действиям (С99).

• Обращение к освобожденному указателю не определено.

Функции malloc() и free() объявлены в stdlib.h.

АиАЯ Лекция 13 10 / 11

Динамическое выделение памяти. Пример

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main (void) {
int t;
char *s = malloc (80 * sizeof (char));
if (!s) {
fprintf (stderr, "требуемая␣память␣не␣выделена\n");
return 1; /* исключительная ситуация */

}
fgets (s, 80, stdin); s[strlen (s) – 1] = '\0';
// посимвольный вывод перевернутой строки на экран
for (t = strlen(s) - 1; t >= 0; t--)
putchar (s[t]);

free (s);
return 0;

}
АиАЯ Лекция 13 11 / 11

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 14

26 октября 2019 г.

Динамическое выделение памяти для двумерного
целочисленного массива

#include <stdio.h>
#include <stdlib.h>

long pwr (int a, int b) {
long t = 1;
for (; b; b--)

t *= a;
return t;

}

АиАЯ Лекция 14 1 / 13

Динамическое выделение памяти для двумерного
целочисленного массива

int main (void) {
long *p[6]; int i, j;
for (i = 0; i < 6; i++)

if (!(p[i] = malloc (4 * sizeof (long)))) {
printf ("out␣of␣memory...\n");
exit (1);

}
for (i = 1; i < 7; i++)

for (j = 1; j < 5; j++)
p[i – 1][j – 1] = pwr (i, j);

for (i = 1; i < 7; i++) {
for (j = 1; j < 5; j++)
printf ("%10ld␣", p[i – 1][j – 1]);

printf ("\n");
}
<...>АиАЯ Лекция 14 1 / 13

Динамическое выделение памяти для двумерного
целочисленного массива

<...>
for (i = 0; i < 6; i++)

free (p[i]);
return 0;

}

АиАЯ Лекция 14 1 / 13

VLA-массивы

В C89 размер массива обязан являться константой. Это неудобно
при передаче массивов (многомерных) в функции.
/* можно передать int a[5]; int a[42]; ... */
int asum1d (int a[], int n) {

int s = 0;
for (int i = 0; i < n; i++)

s += a[i];
return s;

}
/* можно передать только int a[???][5] */
int asum2d (int a[][5], int n) {

int s = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < 5; j++)

s += a[i][j];
return s;

}
АиАЯ Лекция 14 2 / 13

VLA-массивы

В C99 размер массива автоматического класса памяти может
задаваться во время выполнения программы (C11 сделал VLA
необязательными, проверка через макрос __STDC_NO_VLA__).
int foo (int n) {

int a[n];
// можно обрабатывать a[i]...

}
// можно передать int a[???][???]

int asum2d (int m, int n, int a[m][n]) {
int s = 0;
for (int i = 0; i < m; i++)

for (int j = 0; j < n; j++)
s += a[i][j];

return s;
}
int asum2d (int m, int n, int a[m][n]);
int asum2d (int, int, int [*][*]);
АиАЯ Лекция 14 3 / 13

VLA-массивы и динамическое выделение памяти

Функция asum2d может использоваться с VLA-массивами, но они
всегда выделяются в автоматической памяти.

int foo (int m, int n) {
int a[m][n]; int s;
<... Считаем a[i][j]...>

s = asum2d (m, n, a);
return s;

}

АиАЯ Лекция 14 4 / 13

VLA-массивы и динамическое выделение памяти

Можно выделить VLA-массив в динамической памяти.

int main (void) {
int m, n;
scanf ("%d%d", &m, &n);

int (*pa)[n];
pa = (int (*)[n]) malloc (m * n * sizeof (int));
<... Считаем pa[i][j]...>

s = asum2d (m, n, pa);
free (pa);
return 0;

}

АиАЯ Лекция 14 4 / 13

Динамическое распределение памяти

Состав функций динамического распределения памяти
(заголовочный файл <stdlib.h>).

void *malloc (size_t size);
void free (void *p);
void *realloc (void *p, size_t size);
void *calloc(size_t num, size_t size);

Функция calloc работает аналогично функции malloc
(size1), где size1 = num * size (т.е. выделяет память для
размещения массива из num объектов размера size).
Выделенная память инициализируется нулевыми значениями.

АиАЯ Лекция 14 5 / 13

Динамическое распределение памяти

Состав функций динамического распределения памяти
(заголовочный файл <stdlib.h>).

void *malloc (size_t size);
void free (void *p);
void *realloc (void *p, size_t size);
void *calloc(size_t num, size_t size);

Функция void *realloc (void *p, size_t size) сначала
выполняет free (p), а потом p = malloc (size), возвращая
новое значение указателя p. При этом значения первых size
байтов новой и старой областей совпадают.

АиАЯ Лекция 14 6 / 13

Динамическое распределение памяти

#include <stdio.h>
#include <stdlib.h>
int main (void) {

int *p = (int*) malloc (sizeof(int));
int *q = (int*) realloc (p, sizeof(int));
*p = 1;
*q = 2;
if (p == q)

printf ("%d␣%d\n", *p, *q);
return 0;

}

$ clang -O2 realloc.c && ./a.out
1 2

АиАЯ Лекция 14 7 / 13

Динамическое распределение памяти

#include <stdio.h>
#include <stdlib.h>
int main (void) {

int *p = (int*) malloc (sizeof(int));
int *q = (int*) realloc (p, sizeof(int));
*p = 1;
*q = 2;
if (p == q)

printf ("%d␣%d\n", *p, *q);
return 0;

}

$ clang -O2 realloc.c && ./a.out
1 2

АиАЯ Лекция 14 7 / 13

Массив переменного размера в структуре (C99)

Flexible array member — последнее поле структуры.

struct polygon {
int np; /* число вершин */
struct point points[];

}

Варьирование размера переменного массива.

int np; struct polygon *pp;
scanf ("%d", &np);
pp = malloc (sizeof (struct polygon)

+ np * sizeof (struct point));
pp->np = np;
for (int i = 0; i < np; i++)

scanf ("%d%d", &pp->points[i].x,
&pp->points[i].y);

АиАЯ Лекция 14 8 / 13

Отладка программ

Все программы содержат ошибки, отладка — это процесс поиска
и удаления (некоторых) ошибок.

Существуют другие методы обнаружения ошибок (тестирование,
верификация, статические и динамические анализаторы кода), но
их применение не гарантирует отсутствия ошибок.

Для отладки используют инструменты, позволяющие получить
информацию о поведении программы на некоторых входных
данных, не изменяя ее поведения.

АиАЯ Лекция 14 9 / 13

Отладочная печать и assert.h

static void debug_array (int *a, int n) {
fprintf (stderr, "Array␣(%d)", n);
for (int i = 0; i < n; i++)

fprintf (stderr, "%d␣", a[i]);
fprintf (stderr, "\n");

}

Проверка инвариантов: макрос assert (контролируется
макросом NDEBUG). Нежелательно использовать выражения с
побочным эффектом.

#include <assert.h>
int foo (int *a, int n) {

assert (n > 0);
<...>
debug_array (a, n);

}

АиАЯ Лекция 14 10 / 13

Отладчики

Отладчик — основной инструмент отладки, который позволяет:

• запустить программу для заданных входных данных;
• останавливать выполнение по достижении заданных точек
программы безусловно или при выполнении некоторого
условия на значения переменных (breakpoints);

• останавливать выполнение, когда некоторая переменная
изменяет свое значение (watchpoints);

• выполнить текущую строку исходного кода программы и
снова остановить выполнение;

• посмотреть/изменить значения переменных, памяти;
• посмотреть текущий стек вызовов.

Необходимое условие для отладки на уровне исходного кода:

наличие в исполняемом файле программы отладочной
информации — связи между командами процессора и строками
исходного кода программы, связь между адресами и
переменными и т.д.

АиАЯ Лекция 14 11 / 13

Отладчики

Отладчик — основной инструмент отладки, который позволяет:

• запустить программу для заданных входных данных;
• останавливать выполнение по достижении заданных точек
программы безусловно или при выполнении некоторого
условия на значения переменных (breakpoints);

• останавливать выполнение, когда некоторая переменная
изменяет свое значение (watchpoints);

• выполнить текущую строку исходного кода программы и
снова остановить выполнение;

• посмотреть/изменить значения переменных, памяти;
• посмотреть текущий стек вызовов.

Необходимое условие для отладки на уровне исходного кода:
наличие в исполняемом файле программы отладочной
информации — связи между командами процессора и строками
исходного кода программы, связь между адресами и
переменными и т.д.
АиАЯ Лекция 14 11 / 13

Отладчик gdb

Компиляция с отладочной информацией: gcc -g. Команды gdb:

• gdb <file> --args <args> — загрузить программу с
заданными параметрами командной строки;

• run/continue — запустить/продолжить выполнение;
• break <function name/file:line number> — завести
безусловную точку останова;

• cond <bp#> condition — задать условие остановки
выполнения для некоторой точки останова;

• watch <variable/address> — задать точку наблюдения
(остановка выполнения при изменении значения
переменной или памяти по адресу);

• next/step — выполнить текущую строку исходного кода
программы без захода/с заходом в вызываемые функции;

• print <var>/set <var> = expression — посмотреть
/изменить текущие значения переменных, памяти;

• bt — посмотреть текущий стек вызовов.
АиАЯ Лекция 14 12 / 13

Примеры команд gdb

Установка точек останова (можно использовать '.' вместо '->').

b fancy_abort
b 7199
b sel-sched.c:7199
cond 2 insn.u.fld.rt_int == 112
cond 3 x_rtl->emit.x_cur_insn_uid == 1396

Просмотр и изменение значений переменных.

p orig_ops.u.expr.history_of_changes.base
p bb->index
set sched_verbose=5
call debug_vinsn (0x4744540)

Установка точек наблюдения.

wa can_issue_more
wa ((basic_block) 0x7ffff58b5680)->preds.base.prefix.num
АиАЯ Лекция 14 13 / 13

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 15

30 октября 2019 г.

Поиск ошибок работы с памятью

Частые ошибки работы с динамической памятью тяжело
отлаживать (даже в небольших программах).

• Ошибки доступа за границы буфера
• Ошибки использования неинициализированного или уже
освобожденного указателя

• Недостаточный размер буфера

Разработан ряд инструментов анализа, которые облегчают жизнь
программисту.

• valgrind: динамический двоичный транслятор
http://valgrind.org

• sanitizers: компиляторная инструментация от Google
https://github.com/google/sanitizers/wiki

Disclaimer: Linux-only tools1.
1На Windows работает Dr.Memory: https://drmemory.org/
АиАЯ Лекция 15 1 / 21

http://valgrind.org
https://github.com/google/sanitizers/wiki
https://drmemory.org/

Поиск ошибок работы с памятью

valgrind: динамический двоичный транслятор (плюс набор
инструментов, ваш — memcheck).
include < s t d l i b . h>
void f (void) {
i n t * x = malloc (10 * s i zeo f (i n t)) ;
x [1 0] = 0 ; // problem 1: heap block overrun

}
i n t main (void) {
f () ;
return 0 ;

}
$ gcc –Og –g –o me && va lg r ind . /me
< . . . >
==27164== I n va l i d wr i te of s i z e 4
==27164== at 0x400554 : f (me . c : 4)
==27164== by 0x400568 : main (me . c : 7)
==27164== Address 0x51da068 i s 0 bytes a f t e r a block of s i z e 40 a l l o c ’d
==27164== at 0x4C2C12F : malloc (in /usr/ l i b64 / va lg r ind /vgpreload_memcheck -amd64- l i nux . so)
==27164== by 0x400553 : f (me . c : 3)
==27164== by 0x400568 : main (me . c : 7)

АиАЯ Лекция 15 2 / 21

Поиск ошибок работы с памятью

sanitizers: встроенная в gcc/clang инструментация (нас интересует
address sanitizer).
include < s t d l i b . h>
void f (void) {
i n t * x = malloc (10 * s i zeo f (i n t)) ;
x [1 0] = 0 ; // problem 1: heap block overrun

}
i n t main (void) {
f () ;
return 0 ;

}
$ gcc –Og –g – f s a n i t i z e - address –o mesa && . /mesa
==27179==ERROR : AddressSan i t i ze r : heap- buf fe r - overf low on address 0x60400000dff8 at pc 0x0000004007c1 bp 0 x 7 f f f c 3 2a 1420 sp 0 x 7 f f f c 3 2a 1 4 1 8
WRITE of s i z e 4 at 0x60400000dff8 thread T0

#0 0x4007c0 in f /home/bonzo/tmp/me . c : 4
#1 0x4007d5 in main /home/bonzo/tmp/me . c : 7
#2 0x7fba219d870f in __ l ibc_s tar t_main (/ l i b64 / l i b c . so .6+0 x2070f)
#3 0x4006b8 in _ s t a r t (/home/bonzo/tmp/mesa+0x4006b8)

0x60400000dff8 i s located 0 bytes to the r i g h t of 40 - byte region [0 x60400000dfd0 , 0 x60400000dff8)
a l located by thread T0 here :

#0 0x7fba21df074a in malloc (/ usr/ l i b64 / l ibasan . so . 2+0 x9674a)
#1 0x400793 in f /home/bonzo/tmp/me . c : 3

SUMMARY : AddressSan i t i ze r : heap- buf fe r - overf low /home/bonzo/tmp/me . c : 4 f

АиАЯ Лекция 15 3 / 21

Вычисления с плавающей точкой

• Предпосылки: дробные двоичные числа
• Стандарт арифметики с плавающей точкой IEEE 754: записи
чисел, примеры

• Округление, сложение, умножение
• Плавающие типы языка Си
• Флаги компилятора gcc

АиАЯ Лекция 15 4 / 21

Дробные двоичные числа

Что такое 1011.1012?

1×23+0×22+1×21+1×20+1×2−1+0×2−2+1×2−3 = 11 5
8
= 11.625.

0.1111...2 = 1.0− ε(ε → 0), т.к. 1
2
+
1
4
+
1
8
+ . . .+

1
2n

→ 1 при n→ ∞.

Точно можно представить только числа вида x
2k
.

Осстальные рациональные числа представляются
периодическими двоичными дробями: 1

5
= 0.(0011)2.

Иррациональные числа представляются апериодическими
двоичными дробями и могут быть представлены только
приближенно.

АиАЯ Лекция 15 5 / 21

Дробные двоичные числа

Что такое 1011.1012?

1×23+0×22+1×21+1×20+1×2−1+0×2−2+1×2−3 = 11 5
8
= 11.625.

0.1111...2 = 1.0− ε(ε → 0), т.к. 1
2
+
1
4
+
1
8
+ . . .+

1
2n

→ 1 при n→ ∞.

Точно можно представить только числа вида x
2k
.

Осстальные рациональные числа представляются
периодическими двоичными дробями: 1

5
= 0.(0011)2.

Иррациональные числа представляются апериодическими
двоичными дробями и могут быть представлены только
приближенно.

АиАЯ Лекция 15 5 / 21

Дробные двоичные числа

Что такое 1011.1012?

1×23+0×22+1×21+1×20+1×2−1+0×2−2+1×2−3 = 11 5
8
= 11.625.

0.1111...2 = 1.0− ε(ε → 0), т.к. 1
2
+
1
4
+
1
8
+ . . .+

1
2n

→ 1 при n→ ∞.

Точно можно представить только числа вида x
2k
.

Осстальные рациональные числа представляются
периодическими двоичными дробями: 1

5
= 0.(0011)2.

Иррациональные числа представляются апериодическими
двоичными дробями и могут быть представлены только
приближенно.

АиАЯ Лекция 15 5 / 21

Представление чисел с плавающей точкой (IEEE 754)

Числа с плавающей точкой представляются в нормализованной
форме:

(−1)sM2e, где

• s — код знака числа (он же знак мантиссы);
• M — мантисса (1 6 M < 2);
• e — (двоичный) порядок.

Первая цифра мантиссы в нормализованном представлении
всегда 1. В стандарте принято решение не записывать
в представление числа эту единицу (тем самым мантисса как бы
увеличивается на разряд).

В представление числа записывается не M, а frac = M− 1.

АиАЯ Лекция 15 6 / 21

Представление чисел с плавающей точкой (IEEE 754)

Чтобы не записывать отрицательных чисел в поле порядка,
вводится смещение bias = 2k−1 − 1, где k — количество бит в поле
для записи порядка, и вместо порядка e записывается код
порядка exp, связанный с e соотношением e = exp− bias.

Нормализованное число (−1)sM2e упаковывается в машинное
слово с полями s, frac и exp.

s exp (код порядка) frac (код мантиссы)

Ширина поля s всегда равна 1. Ширина полей exp и frac зависит
от точности числа.

АиАЯ Лекция 15 7 / 21

Типы плавающей арифметики (точность)

Одинарная точность (32 бита): exp — 8 бит, frac — 23 бита.
bias = 127, −126 6 e 6 127, 1 6 exp 6 254.

Двойная точность (64 бита): exp — 11 бит, frac — 52 бита.
bias = 1023, −1022 6 e 6 1023, 1 6 exp 6 2046.

Повышенная точность (80 бит): exp — 15 бит, frac — 64 бита.

АиАЯ Лекция 15 8 / 21

Пример

float f = 15213.0;

1521310 = 111011011011012 = 1.11011011011012 × 213.

M = 1.11011011011012,
frac = 110110110110100000000002.

e = 13,bias = 127, exp = 140 = 100011002.

Результат:

0 10001100 11011011011010000000000
s exp frac

АиАЯ Лекция 15 9 / 21

Представление нуля

Для типа float код порядка exp изменяется от 00000001 до
11111110 (значению 00000001 соответствует порядок e = −126,
значению 11111110 — порядок e = 127).

Код exp = 00000000, frac = 000 . . . 0 представляет нулевое
значение; в зависимости от значения знакового разряда s это
либо +0, либо −0.

А какое значение представляют коды
exp = 00000000, frac 6= 000 . . . 0 и
exp = 11111111?

АиАЯ Лекция 15 10 / 21

Большие числа

Пусть exp = 111 . . . 1.

Если при этом frac = 000 . . . 0, то коду будет соответствовать
значение∞ (со знаком s).

Если же frac 6= 000 . . . 0, то код не будет представлять никакое
число («значение», представляемое таким кодом, так и
называется: «не число» — NaN — Not a number).

АиАЯ Лекция 15 11 / 21

Денормализованные числа

Это числа, представляемые кодами exp = 000 . . . 0, frac 6= 000 . . . 0.

exp вносит в значение такого числа постоянный вклад 2−k−2,
frac меняется от 000 . . . 1 до 111 . . . 1 и рассматривается уже не как
мантисса, а как значение, умножаемое на exp.

АиАЯ Лекция 15 12 / 21

Пример: 8-разрядные числа

s exp frac
1 бит 4 бита 3 бита

s exp frac E значение

Денормализованные
числа

0 0000 000 -6 0

Близкие к 00 0000 001 -6 1/8× 1/64 = 1/512
0 0000 010 -6 2/8× 1/64 = 2/512

. . .

0 0000 110 -6 6/8× 1/64 = 6/512

0 0000 111 -6 7/8× 1/64 = 7/512 Наибольшее
денормализованное

Нормализованные
числа

0 0001 000 -6 8/8× 1/64 = 8/512 Наименьшее
нормализованное

0 0001 001 -6 9/8× 1/64 = 9/512
. . .

0 0110 110 -1 14/8× 1/2 = 14/16
0 0110 111 -1 15/8× 1/2 = 15/16 Ближайшее к 1 снизу
0 0111 000 0 8/8× 1 = 1
0 0111 001 0 9/8× 1 = 9/8 Ближайшее к 1 сверху

. . .

0 1110 110 7 14/8× 128 = 224

0 1110 111 7 15/8× 128 = 240 Наибольшее
нормализованное

0 1111 000 +∞

АиАЯ Лекция 15 13 / 21

Важные частные случаи

Что exp frac Численное значение
float double

Ноль 00 . . . 00 00 . . . 00 0.0
Наименьшее
положительное
денормализованное

00 . . . 00 00 . . . 01 2−23 × 2−126 2−52 × 2−1022

Наибольшее
положительное
денормализованное

00 . . . 00 11 . . . 11 (1− ε)× 2−126 (1− ε)× 2−1022

Единица 01 . . . 11 00 . . . 00 1.0
Наибольшее
положительное
нормализованное

11 . . . 10 11 . . . 11 (2− ε)× 2127 (2− ε)× 21023

АиАЯ Лекция 15 14 / 21

Операции над числами с плавающей точкой

x +FP y = Round(x + y)

x ×FP y = Round(x × y),

где Round означает округление.

Выполнение операции:

• сначала вычисляется точный результат (получается более
длинная мантисса, чем запоминаемая, иногда в два раза);

• потом фиксируется исключение (например, переполнение);
• потом результат округляется, чтобы поместиться в поле frac.

АиАЯ Лекция 15 15 / 21

Умножение чисел с плавающей точкой

(−1)s
1
M12e

1
× (−1)s

2
M22e

2

Точный результат: (−1)sM2e, где

• s = s1 ∧ s2,
• M = M1 ×M2,
• e = e1 + e2.

Преобразование:

• если M > 2, сдвиг M вправо с одновременным увеличением e;
• если e не помещается в поле exp, фиксируется
переполнение;

• округление M, чтобы оно поместилось в поле frac.

Основные затраты на перемножение мантисс.
АиАЯ Лекция 15 16 / 21

Сложение чисел с плавающей точкой

(−1)s
1
M12e

1
+ (−1)s

2
M22e

2
, где e1 > e2.

Точный результат: (−1)sM2e.

• Порядок суммы — e1.
• К мантиссе M1 прибавляется e1 − e2 старших разрядов
мантиссы M2.

Преобразование:

• если M > 2, сдвиг M вправо с одновременным увеличением e;
• если M < 1, сдвиг M влево на k позиций с одновременным
вычитанием k из e;

• если e не помещается в поле exp, фиксируется
переполнение;

• округление M, чтобы оно поместилось в поле frac.
АиАЯ Лекция 15 17 / 21

Пример. Сложение чисел «типа» float

Мантисса — 6 десятичных цифр, порядок — 2 десятичных цифры.
0.231876∗1002+0.645391∗10−03+0.231834∗10−01+0.245383∗10−02+
0.945722 ∗ 10−03.

Сложение по порядку: 0.232147 ∗ 1002.
23.1876+ 0.000645391 = 23.188245391 = 23.1882 = 0.231882 ∗ 1002;
23.1882+ 0.0231834 = 23.2113834 = 23.2114 = 0.232114 ∗ 1002;
23.2114+ 0.00245383 = 23.21385383 = 23.2138 ∗ 1002;
23.2138+ 0.000945722 = 23.214745722 = 23.2147 = 0.232147 ∗ 1002.

Сложение по размеру: 0.232157 ∗ 1002.
0.000645391 + 0.000945722 = 0.001591113 = 0.00159111 = 0.159111 ∗
10−02;
0.00159111+ 0.00245383 = 0.00494493 = 0.494493 ∗ 10−02;
0.00494493+ 0.0231834 = 0.02812833 = 0.0281283 = 0.281283 ∗ 10−01;
0.0281283+ 23.1876 = 23.2157283 = 23.2157 = 0.232157 ∗ 1002.

АиАЯ Лекция 15 18 / 21

Выводы по операциям

При вычислении суммы чисел с одинаковыми знаками
необходимо упорядочить слагаемые по возрастанию и
складывать, начиная с наименьших слагаемых.

При вычислении суммы чисел с разными знаками необходимо
сначала сложить все положительные числа, потом — все
отрицательные числа и в конце выполнить одно вычитание.

Вычитание (сложение чисел с противоположными знаками)
часто приводит к потере точности, которая у чисел с плавающей
точкой определяется количеством значащих цифр в мантиссе
(при вычитании двух близких чисел мантисса «исчезает», что
ведет к резкой потере точности).
Итак, чем меньше вычитаний, тем точнее результат.

АиАЯ Лекция 15 19 / 21

Вещественные типы языка Си

float, double, long double.

Традиционные арифметические операции.

Внимание: в функциях с переменным числом параметров float
автоматически преобразуется в double (в части переменных
параметров).

АиАЯ Лекция 15 20 / 21

Режимы gcc для работы с плавающей точкой∗

https://gcc.gnu.org/wiki/FloatingPointMath
Детальное резюме того, что бывает в gcc, и таблица преобразований, влияющих

на результат вычислений.

-ffast-math: считать максимально быстро, но, возможно,
нарушать стандарт IEEE-754
Полезно для тестирования, но не распространения финальной версии

программы

-fno-math-errno: не устанавливать переменную errno как
результат ошибочного выполнения математических функций
Можно обойтись и без этого, но зависит от библиотеки Си.

Компилятор может заменять вызовы функций инструкциями процессора

(например, sqrt).

David Goldberg. 1991. What every computer scientist should know
about floating-point arithmetic. ACM Comput. Surv. 23, 1 (March 1991),
5-48.
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_
goldberg.htmlАиАЯ Лекция 15 21 / 21

https://gcc.gnu.org/wiki/FloatingPointMath
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Режимы gcc для работы с плавающей точкой∗

https://gcc.gnu.org/wiki/FloatingPointMath
Детальное резюме того, что бывает в gcc, и таблица преобразований, влияющих

на результат вычислений.

-fno-trapping-math: считать, что вычисления с
плавающей точкой не могут вызывать исключений
процессора (traps)
Т.е. вы гарантируете отсутствие в своем коде ситуаций, вызывающих
деления на ноль, переполнения, некорректные операции.

Компилятор может более свободно комбинировать, переставлять, удалять

операции с плавающей точкой.

David Goldberg. 1991. What every computer scientist should know
about floating-point arithmetic. ACM Comput. Surv. 23, 1 (March 1991),
5-48.
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_
goldberg.html

АиАЯ Лекция 15 21 / 21

https://gcc.gnu.org/wiki/FloatingPointMath
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 16

6 ноября 2019 г.

Сложность алгоритмов

Размер входа: числовая величина, характеризующая количество
входных данных (например, длина битовой записи
чисел-параметров алгоритма).

Сложность в наихудшем случае: функция размера входа,
отражающая максимум затрат на выполнение алгоритма для
данного размера:

• временнАя сложность,
• пространственная сложность (затраты памяти);
• часто оценивают не все затраты, а только самые «дорогие»
операции.

Сложность в среднем: функция размера входа, отражающая
средние затраты на выполнение алгоритма для входа данного
размера (учет вероятностей входа).

Асимптотические оценки сложности: О-нотация (оценка сверху),
точная O-оценка, Θ-оценка.
АиАЯ Лекция 16 1 / 21

Формальная постановка задачи поиска по образцу

Даны текст — массив T[N] длины N и образец — массив P[m]

длины m 6 N, где значениями элементов массивов T и P
являются символы некоторого алфавита A.

Говорят, что образец P входит в текст T со сдвигом s, если
0 6 s 6 N−m и для всех i = 1, 2, . . . ,m T[s+ i] = P[i].

Сдвиг s(T,P) называется допустимым, если P входит в T со
сдвигом s = s(T,P), и недопустимым в противном случае.

Задача поиска подстрок состоит в нахождении множества
допустимых сдвигов s(T,P) для заданного текста T и образца P.

АиАЯ Лекция 16 2 / 21

Терминология

Пусть строки x, y,w ∈ A∗, ε ∈ A∗ — пустая строка.

|x| — длина строки x;
xy — конкатенация строк x и y; |xy| = |x|+ |y|;
если x = wy, то w — префикс (начало) x, обозначение w ≺ x;
если x = yw, то w — суффикс (конец) x, обозначение w � x;
если w — префикс или суффикс x, то |w| 6 |x|;
отношения префикса и суффикса транзитивны.

Для любых x, y ∈ A∗ и любого a ∈ A соотношения x � y и xa � ya
равносильны.

Если S = S[r] — строка длины r, то её префикс длины k, k 6 r будет
обозначаться Sk = S[k]; ясно, что S0 = ε, Sr = S.

АиАЯ Лекция 16 3 / 21

Лемма о двух суффиксах

Пусть x, y и z — строки, для которых x � z и y � z. Тогда:

если |x| 6 |y|, то x � y,
если |x| > |y|, то y � x,
если |x| = |y|, то x = y.

АиАЯ Лекция 16 4 / 21

Лемма о двух суффиксах

АиАЯ Лекция 16 5 / 21

Простой алгоритм

Проверка совмещения двух строк: посимвольное сравнение
слева направо, которое прекращается (с отрицательным
результатом) при первом же расхождении.
Оценка скорости сравнения строк x и y — Θ(t + 1), где t — длина
наибольшего общего префикса строк x и y.

for (s = 0; s <= n – m; s++) {
for (i = 0; i < m && P[i] == T[s + i]; i++)

;
if (i == m)

printf ("%d\n", s);
}
Время работы в худшем случае Θ((n−m+ 1)m) ∼ Θ(nm).
Причина: информация о тексте T , полученная при проверке
сдвига s, никак не используется при проверке следующих
сдвигов. Например, если для образца dddc сдвиг s = 0 допустим,
то сдвиги s = 1, 2, 3 недопустимы, так как T[3] == с.
АиАЯ Лекция 16 6 / 21

Алгоритм Кнута–Морриса–Пратта. Идея

Префикс-функция, ассоциированная с образцом P, показывает,
где в строке P повторно встречаются различные префиксы этой
строки. Если это известно, можно не проверять заведомо
недопустимые сдвиги.

Пример. Пусть ищутся вхождения образца P = ababaca в текст T .
Пусть для некоторого сдвига s оказалось, что первые q символов
образца совпадают с символами текста. Значит, символы текста
от T[s + 1] до T[s + q] известны, что позволяет заключить, что
некоторые сдвиги заведомо недопустимы.

АиАЯ Лекция 16 7 / 21

Алгоритм Кнута–Морриса–Пратта. Идея

Пусть P[1..q] = T[s+ 1..s+q]; каково минимальное значение сдвига
s′ > s, для которого P[1..k] = T[s′ + 1..s′ + k], где s′ + k = s+ q?

• Число s′ — минимальное значение сдвига, большего s,
которое совместимо с тем, что T[s+ 1..s+ q] = P[1..q].
Следовательно, значения сдвигов, меньшие s′ , проверять не
нужно.

• Лучше всего, когда s′ = s+ q, так как в этом случае не нужно
рассматривать сдвиги s+ q− 1, s+ q− 2, . . . , s+ 1.

• Кроме того, при проверке нового сдвига s′ можно не
рассматривать первые его k символов образца: они
заведомо совпадут.

Чтобы найти s′ , достаточно знать образец P и число q:
T[s′ + 1..s′ + k] — суффикс Pq, поэтому k — это наибольшее число,
для которого Pk является суффиксом Pq. Зная k (число символов,
заведомо совпадающих при проверке нового сдвига s′), можно
вычислить по формуле s′ = s+ (q− k).
АиАЯ Лекция 16 8 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

Определение. Префикс-функцией, ассоциированной со строкой
P[1..m], называется функция π : 1, 2, . . . ,m → 0, 1, . . . ,m− 1,
определённая следующим образом:

π[q] = max{k : k < q ∧ Pk � Pq}.

Иными словами, π[q] — длина наибольшего префикса P,
являющегося суффиксом Pq.

АиАЯ Лекция 16 9 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

void prefix_func (char *pat, int *pi, int m) {
int k, q;

/* Считаем, что pat и pi нумеруются от 1. */
pi[1] = 0; k = 0;
for (q = 2; q <= m; q++) {

while (k > 0 && pat[k + 1] != pat[q])
k = pi[k];

if (pat[k + 1] == pat[q])
k++;

pi[q] = k;
}

}

АиАЯ Лекция 16 10 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

Лемма 1. Обозначим π∗[q] = {q, π[q], π2[q], . . . , πt[q]}, где πi[q] есть
i-я итерация префикс-функции, πt[q] = 0. Пусть P — строка длины
m c префикс-функцией π. Тогда для всех q = 1, 2, . . . ,m имеем
π∗[q] = {k : Pi � Pq}.
Лемма показывает, что при помощи итерирования
префикс-функции можно для данного q найти все такие k, что Pk
является суффиксом Pq.

Доказательство. Во-первых, покажем, что если i принадлежит
π∗[q], то Pi является суффиксом Pq.
Действительно, Pπ[i] � Pi по определению префикс-функции, так
что каждый следующий член последовательности
Pi,Pπ[i],Pπ[π[i]], . . . является суффиксом всех предыдущих.

АиАЯ Лекция 16 11 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

Покажем, что наоборот, если Pi является суффиксом Pq, то i
принадлежит π∗[q].

Расположим все Pi, являющиеся суффиксами Pq, в порядке
уменьшения i (длины): Pi1 ,Pi2 , Покажем по индукции, что
Pik = πk[q].

База индукции (k = 1): для максимального префикса Pi,
являющегося суффиксом Pq, по определению i = π[q].
Шаг индукции: если Pik = πk[q], то по определению
j = π[πk[q]] соответствует максимальный префикс Pj, который
является суффиксом Pik . Обе строки Pj и Pik есть суффиксы Pq
по построению. Таким максимальным префиксом из
оставшихся Pik+1 ,Pik+2 , . . . по построению является префикс
Pik+1 , то есть j = ik+1.

АиАЯ Лекция 16 12 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

π∗[8] = {8, 6, 4, 2, 0}

АиАЯ Лекция 16 13 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

Лемма 2. Пусть P — строка длины m c префикс-функцией π. Тогда
для всех q = 1, 2, . . . ,m, для которых π[q] > 0, имеем π[q] − 1 ∈
π∗[q− 1].

Доказательство. Если k = π[q] > 0, то Pk является суффиксом Pq
по определению префикс-функции. Следовательно, Pk−1 является
суффиксом Pq−1.
Тогда по Лемме 1 k− 1 ∈ π∗[q− 1], т.е. π[q]− 1 ∈ π∗[q− 1].

Определим множества Eq−1 как

Eq−1 = {k : k ∈ π∗[q− 1] ∧ P[k+ 1] = P[q]}.

Множество Eq−1 состоит из таких k, что Pk является суффиксом
Pq−1, и за ними идут одинаковые буквы P[k+ 1] и P[q].
Из определения вытекает, что Pk+1 есть суффикс Pq.

АиАЯ Лекция 16 14 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

Следствие 1. Пусть P — строка длины m c префикс-функцией π.
Тогда для всех q = 2, 3, . . . ,m

π[q] =
{
0, если Eq−1 пусто;
1+max{k ∈ Eq−1}, если Eq−1не пусто.

Доказательство. Если r = π[q] > 1, то P[r] = P[q] и по Лемме 2
r − 1 = π[q] − 1 ∈ π∗[q − 1]. Раз P[r] = P[q], то P[(r − 1) + 1] = P[q].
Поэтому r − 1 ∈ Eq−1 из определения Eq−1, и из π[q] > 1 следует
непустота Eq−1.

Следовательно, если Eq−1 пусто, то π[q] = 0 (от противного).

Если же k ∈ Eq−1, то Pk+1 есть суффикс Pq (по определению), тем
самым π[q] > k+ 1 и π[q] > 1+max{k ∈ Eq−1}. То есть, если Eq−1 не
пусто, то префикс-функция положительна.

Но тогда π[q]− 1 ∈ Eq−1, и π[q]− 1 не больше максимума из Eq−1, то
есть π[q] 6 1+max{k ∈ Eq−1}.
АиАЯ Лекция 16 15 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

1 void prefix_func (char *pat, int *pi, int m) {
2 int k, q;
3
4 /* Считаем, что pat и pi нумеруются от 1. */
5 pi[1] = 0; k = 0;
6 for (q = 2; q <= m; q++) {
7 while (k > 0 && pat[k + 1] != pat[q])
8 k = pi[k];
9 if (pat[k + 1] == pat[q])
10 k++;
11 pi[q] = k;
12 }
13 }

АиАЯ Лекция 16 16 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

Теорема 1. Функция prefix_func правильно вычисляет префикс-
функцию π.

Доказательство.
Покажем, что при входе в цикл функции k = π[q− 1].

База индукции. При q = 2 k = 0, pi[q-1] = pi[1] = 0.
Шаг индукции. Пусть при входе в цикл функции k = π[q− 1].
Код на строках 7-8

while (k > 0 && pat[k + 1] != pat[q])
k = pi[k];

находит наибольший элемент Eq−1 (т.к. цикл перебирает
в порядке убывания элементы из π∗[q− 1] и для каждого
проверяет условие pat[k + 1] != pat[q]).

АиАЯ Лекция 16 17 / 21

Алгоритм Кнута–Морриса–Пратта. Префикс-функция

Теорема 1. Функция prefix_func правильно вычисляет префикс-
функцию π.

Доказательство.
После выхода из цикла на строках 7-8

while (k > 0 && pat[k + 1] != pat[q])
k = pi[k];

если pat[k + 1] == pat[q], то выполняется код на
строке 10

k++;

что из Следствия 1 даёт нам π[q];
если pat[k + 1] != pat[q], то k == 0, множество Eq−1
пусто и π[q] = 0.

АиАЯ Лекция 16 17 / 21

Алгоритм Кнута–Морриса–Пратта. Функция kmp

void kmp (char *text, char *pat, int m, int n) {
int q;
int pi[m + 1]; /* VLA-массив */

/* Считаем, что pat и pi нумеруются от 1. */
prefix_func (pat, pi, m);
q = 0;
for (i = 1; i <= n; i++) {

while (q > 0 && pat[q + 1] != text[i])
q = pi[q];

if (pat[q + 1] == text[i])
q++;

if (q == m) {
printf ("образец␣входит␣со␣сдвигом␣%d\n", i – m);
q = pi[q];

}
}
АиАЯ Лекция 16 18 / 21

Алгоритм Кнута–Морриса–Пратта. Функция kmp

Алгоритм КМП для подстроки P и текста эквивалентен
вычислению префикс-функции для строки Q = P#T , где # —
символ, заведомо не встречающийся в обеих строках.

Длина максимального префикса Q, являющегося её
суффиксом (т.е. значение префикс-функции), не превосходит
длины P.
Допустимый сдвиг обнаруживается в тот момент, когда
очередное вычисленное значение префикс-функции
совпадает с длиной подстроки P (условие if (q == m)).
В явном виде объединённая строка не строится!

АиАЯ Лекция 16 19 / 21

Алгоритм Кнута–Морриса–Пратта. Функция kmp

Теорема 2. Функция kmp работает правильно.
Формальное доказательство осуществляется по аналогии с
доказательством Теоремы 1, где множества, подобные Eq−1,
строятся для строки-текста, а не строки-образца.

Свойства префикс-функции часто используются и в других
задачах (кроме поиска подстроки в строке).
Полезной оказывается Лемма 1: итерированием
префикс-функции можно найти все префиксы строки,
являющиеся её суффиксами.

АиАЯ Лекция 16 20 / 21

Алгоритм Кнута–Морриса–Пратта. Время работы

Функция prefix_func выполняет 6 (m− 1) итераций цикла for.
Стоимость каждой итерации можно считать равной O(1), а
стоимость всей процедуры O(m).

Каждая итерация цикла while (строки 7-8) уменьшает k.
Увеличивается k только в строке 10 не более одного раза на
итерацию цикла for (строки 6-11).
Следовательно, операций уменьшения не больше, чем
итераций цикла for, то есть 6 (m− 1) на весь цикл и O(1) на
итерацию в среднем.

Аналогично, функция kmp выполняет 6 (n − 1) итераций, и её
стоимость (без учета вызова prefix_func) есть O(n).
Следовательно, время выполнения всей процедуры — O(m+ n).

АиАЯ Лекция 16 21 / 21

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 17

9 ноября 2019 г.

Динамические структуры данных. Стек

Стек (stack) — это динамическая последовательность элементов,
количество которых изменяется, причем как добавление, так и
удаление элементов возможно только с одной стороны
последовательности (вершина стека).

Работа со стеком осуществляется с помощью функций:

push(x) — затолкать элемент x в стек;
x = pop() — вытолкнуть элемент из стека.

Стек можно организовать на базе (примеры):

• фиксированного массива stack[MAX], где константа MAX
задает максимальную глубину стека;

• динамического массива, текущий размер которого хранится
отдельно.

В обоих случаях необходимо хранить позицию текущей вершины
стека.
Можно использовать и другие структуры данных (список).
АиАЯ Лекция 17 1 / 17

Организация стека на динамическом массиве

struct stack {
int sp; /* Текущая вершина стека */
int sz; /* Размер массива */
char *stack;

} stack = { .sp = -1, .sz = 0, .stack = NULL };

static void push (char c) {
if (stack.sz == stack.sp + 1) {

stack.sz = 2*stack.sz + 1;
stack.stack = (char *) realloc (stack.stack,

stack.sz*sizeof (char));
}
stack.stack[++stack.sp] = c;

}

АиАЯ Лекция 17 2 / 17

Организация стека на динамическом массиве

struct stack {
int sp; /* Текущая вершина стека */
int sz; /* Размер массива */
char *stack;

} stack = { .sp = -1, .sz = 0, .stack = NULL };

static char pop (void) {
if (stack.sp < 0) {

fprintf (stderr, "Cannot␣pop:␣stack␣is␣empty\n");
return 0;

}
return stack.stack[stack.sp--];

}

Дома. Сделайте, чтобы результат записывался по
указателю-аргументу, а функция возвращала код успеха
операции.
АиАЯ Лекция 17 3 / 17

Организация стека на динамическом массиве

struct stack {
int sp; /* Текущая вершина стека */
int sz; /* Размер массива */
char *stack;

} stack = { .sp = -1, .sz = 0, .stack = NULL };

static int isempty (void) {
return stack.sp == -1;

}

АиАЯ Лекция 17 4 / 17

Пример работы со стеком

Перевод арифметического выражения в обратную польскую
запись (постфиксную).

a+ b× c − d → abc ×+d−
c × (a+ b)− (d+ e)/f → cab+×de+ f/−

АиАЯ Лекция 17 5 / 17

Перевод арифметического выражения в обратную польскую
запись

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

#include "stack.c"

/* Считывание символа-операции или переменной */
static char getop (void) {

int c;
while ((c = getchar ()) != EOF && isblank (c))

;
return c == EOF || c == '\n' ? 0 : c;

}

АиАЯ Лекция 17 6 / 17

Перевод арифметического выражения в обратную польскую
запись

/* Является ли символ операцией */
static int isop (char c) {

return (c == '+') || (c == '-') || (c == '*')
|| (c == '/');

}

/* Каков приоритет символа-операции */
static int prio (char c) {

if (c == '(')
return 0;

if (c == '+' || c == '-')
return 1;

if (c == '*' || c == '/')
return 2;

return -1;
}
АиАЯ Лекция 17 7 / 17

Перевод арифметического выражения в обратную польскую
запись

int main (void) {
char c, op;

while (c = getop ()) {
/* Переменная-буква выводится сразу */
if (isalpha (c))
putchar (c);

/* Скобка заносится в стек операций */
else if (c == '(')
push (c);

else <...>

АиАЯ Лекция 17 8 / 17

Перевод арифметического выражения в обратную польскую
запись

/* Операция заносится в стек в зависимости от
приоритета */
else if (isop (c)) {

while (! isempty ()) {
op = pop ();
/* Заносим, если больший приоритет */
if (prio (c) > prio (op)) {

push (op); break;
} else
/* Иначе выталкиваем операцию из стека */
putchar (op);

}
push (c);

} else <...>

АиАЯ Лекция 17 9 / 17

Перевод арифметического выражения в обратную польскую
запись

/* Скобка выталкивает операции до парной скобки */
} else if (c == ')')

while ((op = pop ()) != '(')
putchar (op);

}
/* Вывод остатка операций из стека */

while (! isempty ())
putchar (pop ());

putchar ('\n');
return 0;

}

Дома. Введите операцию peek() и перепишите код с ее помощью.
Обработайте случай непарных скобок.

АиАЯ Лекция 17 10 / 17

Организация стека как библиотеки

stack.h:
extern void push (char);
extern char pop (void);
extern int isempty (void);

stack.c:
#include "stack.h"
struct stack {
<...>

};
static struct stack stack

= { <...> };

main.c:
#include "stack.h"
int main (void) {

<...push (c), pop (), ...>
}

$gcc main.c stack.c –o main

АиАЯ Лекция 17 11 / 17

Организация стека как библиотеки

stack.h:
struct stack; // forward declaration
extern void push (struct stack *, char);
extern char pop (struct stack *);
extern int isempty (struct stack *);
extern struct stack* new_stack (void);
extern void free_stack (struct stack *);

stack.c:
#include "stack.h"
struct stack {

<...>
};
void push (struct stack *stack, char c) {

if (stack->sz == stack->sp + 1) <...>
}
<...>
АиАЯ Лекция 17 12 / 17

Организация стека как библиотеки

stack.c:
struct stack* new_stack (void) {
struct stack *s = malloc (sizeof (struct stack));
*s = (struct stack) { .sp = -1, .sz = 0, .stack = NULL };
return s;

}
void free_stack (struct stack *s) {
free (s->stack);
free (s);

}

main.c:
#include "stack.h"
int main (void) {
struct stack *s = new_stack ();
<...push (s, c), pop (s), ...>
free_stack (s); <...>

} АиАЯ Лекция 17 13 / 17

Очередь

Очередь (queue) — это линейный список информации, работа с
которой происходит по принципу FIFO.
Для списка можно использовать статический массив: количество
элементов массива (MAX) — наибольшей допустимой длине
очереди.

Работа с очередью осуществляется с помощью двух функций:

qstore() — поместить элемент в конец очереди;
qretrieve() — удалить элемент из начала очереди;

и двух глобальных переменных:

spos — индекс первого свободного элемента очереди, его
значение < MAX;
rpos — индекс очередного элемента, подлежащего
удалению: “кто первый?”

АиАЯ Лекция 17 14 / 17

Пример реализации

int queue[MAX]; // Заведите enum
int spos = 0, rpos = 0;

int qstore (int q) {
if (spos == MAX) {

/* Можно расширить очередь, см. реализацию стека */
printf ("Очередь␣переполнена\n");
return 0;

}
queue[spos++] = q;
return 1;

}

int qretrieve (void) {
if (rpos == spos) { // Очередь пуста

return -1;
}
return queue[rpos++];

}АиАЯ Лекция 17 15 / 17

Улучшение — «зацикленная» очередь

int queue[MAX]; // Заведите enum
int spos = 0, rpos = 0;

int qstore (int q) {
if (spos + 1 == rpos

|| (spos + 1 == MAX && !rpos) {
printf ("Очередь␣переполнена␣\n");
// Дома. Реализуйте очередь на динамическом массиве.

return 0;
}
queue[spos++] = q;
if (spos == MAX)

spos = 0;
return 1;

}

АиАЯ Лекция 17 16 / 17

Улучшение — «зацикленная» очередь

int queue[MAX]; // Заведите enum
int spos = 0, rpos = 0;

int qretrieve (void) {
if (rpos == spos) {

printf ("Очередь␣пуста␣\n");
return -1;

}
if (rpos == MAX - 1) {

rpos = 0;
return queue[MAX – 1];

}
return queue[rpos++];

}

Зацикленная очередь переполняется, когда spos находится
непосредственно перед rpos, так как в этом случае запись
приведёт к rpos == spos, т.е. к пустой очереди.
АиАЯ Лекция 17 17 / 17

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 18

13 ноября 2019 г.

Списки

Односвязный список — это динамическая структура данных,
каждый элемент которой содержит ссылку на следующий
элемент (либо NULL, если следующего элемента нет).
Доступ к списку осуществляется с помощью указателя на его
первый элемент.

struct list {
struct data info; /* Данные */
struct list *next; /* Ссылка на след. элемент */

};

Выделение элемента:

struct list *phead = NULL;
phead = (struct list *) malloc (sizeof (struct list));

АиАЯ Лекция 18 1 / 33

Списки: добавление элемента в начало

struct list *phead = NULL;
struct list *add_element (struct list *phead,

struct data *elem) {
struct list *new = malloc (sizeof (struct list));
new->info = *elem;
new->next = phead;
return new;

}

АиАЯ Лекция 18 2 / 33

Списки: добавление элемента в конец

struct list *phead = NULL;
struct list *add_element (struct list *phead,

struct data *elem) {
if (! phead) {

phead = malloc (sizeof (struct list));
phead->info = *elem;
phead->next = NULL;
return phead;

}
struct list *ph = phead; // сохраним голову
while (phead->next != NULL)

phead = phead->next;
phead->next = malloc (sizeof (struct list));
phead->next->info = *elem;
phead->next->next = NULL;
return ph; // phead затёрт, вернём сохранённый указатель

}
АиАЯ Лекция 18 3 / 33

Списки: поиск элемента

struct list * phead;

int equals (struct data *, struct data *);
struct list * search (struct list *phead,

struct data *elem) {
while (phead && ! equals (&phead->info, elem))

phead = phead->next;
return phead;

}

АиАЯ Лекция 18 4 / 33

Списки: удаление элемента

struct list *remove (struct list *phead,
struct data *elem) {
struct list *prev = NULL, *ph = phead;
while (phead && ! equals (&phead->info, elem)) {

prev = phead;
phead = phead->next;

}
if (! phead)

return ph;
if (prev)

prev->next = phead->next;
else

ph = phead->next;
free (phead);
return ph;

}

АиАЯ Лекция 18 5 / 33

Списки: удаление элемента (двойной указатель)

void remove (struct list **pphead,
struct data *elem) {
struct list *prev = NULL, *phead = *pphead;
while (phead && ! equals (&phead->info, elem)) {

prev = phead;
phead = phead->next;

}
if (! phead)

return;
if (prev)

prev->next = phead->next;
else

*pphead = phead->next;
free (phead);

}

Дома. Напишите добавление элемента с двойным указателем.
АиАЯ Лекция 18 6 / 33

Топологическая сортировка узлов ациклического
ориентированного графа

Ациклический граф можно использовать для графического
изображения частично упорядоченного множества.
Цель топологической сортировки: преобразовать частичный
порядок в линейный. Графически это означает, что все узлы
графа нужно расположить на одной прямой таким образом,
чтобы все дуги графа были направлены в одну сторону.

АиАЯ Лекция 18 7 / 33

Топологическая сортировка узлов ациклического
ориентированного графа

Пример. Частичный порядок (<) задается следующим набором
отношений:

a < b,b < d,d < f ,b < l,d < h, f < c,a < c,

c < e, e < h,g < e,g < k, k < d, k < l.

Его можно представить в виде такого графа:

АиАЯ Лекция 18 8 / 33

Топологическая сортировка узлов ациклического
ориентированного графа

Требуется привести рассматриваемый граф к линейному графу:

На этом графе ключи расположены в следующем порядке:

g, k,a,b,d, f , c, e,h, l.

(поскольку топологическая сортировка неоднозначна, это один из
возможных топологических порядков).

Последовательная обработка полученного линейного списка
узлов графа эквивалентна их обработке в порядке обхода графа.
АиАЯ Лекция 18 9 / 33

Структуры данных для представления узлов

Каждый узел исходного графа представляется с помощью
дескриптора узла, который имеет вид:

Ведомыми для узла n будут узлы, для которых n является
предшественником. Каждый узел графа (не только ведущий)
может иметь один или несколько ведомых узлов.
АиАЯ Лекция 18 10 / 33

Структуры данных для представления узлов

Дескриптор каждого узла содержит ссылки на ведомые узлы. Так
как заранее неясно, сколько у узла будет ведомых узлов, эти
ссылки помещаются в список. На рисунке представлен элемент
списка ссылок.

АиАЯ Лекция 18 11 / 33

Первая фаза алгоритма: ввод исходного графа

На этой фазе вводятся пары ключей и из них формируется
представление ациклического графа через дескрипторы узлов и
списки ведомых узлов.

• Исходные данные представлены в виде множества пар
ключей (*), которые вводятся в произвольном порядке.

• После ввода очередной пары x < y ключи x и y ищутся
в списке «ведущих» и в случае отсутствия добавляются к
нему.

• В список ведомых узлов узла x добавляется ссылка на y,
а счётчик предшественников y увеличивается на 1
(начальные значения всех счетчиков равны 0).

АиАЯ Лекция 18 12 / 33

Пример: результат первой фазы

АиАЯ Лекция 18 13 / 33

Вторая фаза алгоритма: сортировка

• В списке «ведущих» находим дескриптор узла z, у которого
значение поля count равно 0.

• Включаем узел z в результирующую цепочку.
• Если у узла z есть «ведомые» узлы (значение поля trail не
NULL):

• просматриваем очередной элемент списка «ведомых» узлов;
• корректируем поле count дескриптора соответствующего
«ведомого» узла.

• Переходим к шагу 1.

Так как с каждой коррекцией поля count его значение
уменьшается на 1, постепенно все узлы включаются
в результирующую цепочку.

АиАЯ Лекция 18 14 / 33

Топологическая сортировка на Си

#include <stdio.h>
#include <stdlib.h>
typedef struct ldr { /* дескриптор ведущего узла */
char key;
int count;
struct ldr *next;
struct trl *trail;

} leader;
typedef struct trl { /* дескриптор ведомого узла */
struct ldr *id;
struct trl *next;

} trailer;

leader *head, *tail; /* два вспомогательных узла */
int lnum; /* счётчик ведущих узлов */

АиАЯ Лекция 18 15 / 33

Топологическая сортировка на Си: поиск по ключу

leader *find (char w) {
leader *h = head;
/* барьер на случай отсутствия w */
tail->key = w;
while (h->key != w)

h = h->next;
if (h == tail) {

/* генерация нового ведущего узла */
tail = malloc (sizeof (leader));
/* старый tail становится новым элементом списка */
lnum++;
h->count = 0;
h->trail = NULL;
h->next = tail;

}
return h;

}
АиАЯ Лекция 18 16 / 33

Топологическая сортировка на Си: формирование списка

void init_list() {
leader *p, *q;
trailer *t;
char x, y;

head = (leader *) malloc (sizeof (leader));
tail = head;
lnum = 0; /* начальная установка */
while (1) {

if (scanf ("%c␣%c", &x, &y) != 2)
break;

/* включение пары в список */
p = find (x);
q = find (y);
<...>

АиАЯ Лекция 18 17 / 33

Топологическая сортировка на Си: формирование списка

<...>
/* коррекция списка */
t = malloc (sizeof (trailer));
t->id = q;
t->next = p->trail;
p->trail = t;
q->count += 1;

}
}

АиАЯ Лекция 18 18 / 33

Топологическая сортировка на Си: новый список

void sort_list() {
leader *p, *q;
trailer *t;
/* В выходной список включаются все узлы с count == 0 */
p = head;
head = NULL; /* голова выходного списка */
while (p != tail) {

q = p;
p = q->next;
if (q->count == 0) {
/* включение q в выходной список */
q->next = head;
head = q;

}
}

<...>

АиАЯ Лекция 18 19 / 33

Топологическая сортировка на Си: новый список

q = head; /* есть ведущий узел -> head != NULL */
while (q != NULL) {

printf ("%c\n", q->key);
lnum--;
t = q->trail;
q = q->next;
while (t != NULL) {
p = t->id;
p->count -= 1;
if (p->count == 0) {

p->next = q; // достаточно для
q = p; // правильной сортировки

}
t = t->next;

}
}
/* lnum == 0 */

}
АиАЯ Лекция 18 20 / 33

Топологическая сортировка на Си: основная функция

int main (void) {
init_list ();
sort_list ();
return 0;

}

Дома. Что поменяется, если узлы идентифицируются не одним
символом, а именем (строкой)? Сделайте нужные изменения в
коде. Добавьте определение циклов в исходных данных.

АиАЯ Лекция 18 21 / 33

Сортировка: постановка задачи

Сортировка — это упорядочение наборов однотипных данных,
для которых определено отношение линейного порядка
(например, <, «меньше») по возрастанию или по убыванию.
Здесь будут рассматриваться целочисленные данные и
отношение порядка <.

Различают внешнюю и внутреннюю сортировку.
Рассматривается только внутренняя сортировка: сортируемый
массив находится в основной памяти компьютера. Внешняя
сортировка применяется к записям на внешних файлах.

АиАЯ Лекция 18 22 / 33

Сортировка: что есть в Си

#include <stdlib.h>
void qsort (void *buf, size_t num, size_t size,

int(*compare)(const void *, const void *));

Функция qsort сортирует (по возрастанию) массив с указателем
buf, используя алгоритм быстрой сортировки Ч.Э.Р. Хоара,
который считается одним из лучших алгоритмов сортировки
общего назначения.

Параметр num задает количество элементов массива buf,
параметр size — размер (в байтах) элемента массива buf.
Параметр int(*compare)(const void *,const void *)
задаёт правило сравнения элементов массива num. Функция
сравнивает аргументы и возвращает:
• целое < 0, если arg1 < arg2,
• целое = 0, если arg1 = arg2,
• целое > 0, если arg1 > arg2.

АиАЯ Лекция 18 23 / 33

Простейший алгоритм сортировки

Сведение сортировки к задаче нахождения максимального
(минимального) из n чисел. Нахождение максимума n чисел (n
сравнений). Числа содержатся в массиве int a[n];

max = a[0];
for (i = 1; i < n; i++)

if (a[i] > max)
max = a[i];

Алгоритм сортировки: находим максимальное из n чисел,
получаем последний элемент отсортированного массива
(n сравнений); находим максимальное из n − 1 оставшихся чисел,
получаем предпоследний элемент отсортированного массива
(еще n− 1 сравнений); и так далее.

Общее количество сравнений: 1 + 2 + . . . + n − 1 + n = n(n − 1)/2.
Сложность алгоритма O(n2).

АиАЯ Лекция 18 24 / 33

Три общих метода внутренней сортировки

• сортировка обменами: рассматриваются соседние элементы
сортируемого массива и при необходимости меняются
местами;

• сортировка выборкой: идея описана на предыдущем слайде;
• сортировка вставками: сначала сортируются два элемента
массива, потом выбирается третий элемент и вставляется
в нужную позицию относительно первых двух и т.д.

АиАЯ Лекция 18 25 / 33

Сортировка обменами (пузырьком)

Общее количество сравнений (действий): n(n − 1)/2, так как
внешний цикл выполняется (n − 1) раз, а внутренний —
в среднем n/2 раза.

void bubble_sort (int *a, int n) {
int i, j, tmp;
for (j = 1; j < n; ++j)

for (i = n - 1; i >= j; --i) {
if (a[i - 1] > a[i]) {

tmp = a[i - 1];
a[i - 1] = a[i];
a[i] = tmp;

}
}

}

АиАЯ Лекция 18 26 / 33

Сортировка вставками

Количество сравнений зависит от степени перемешанности
массива a. Если массив a уже отсортирован, количество
сравнений равно n − 1. Если массив a отсортирован в обратном
порядке (наихудший случай), количество сравнений имеет
порядок n2.

void insert_sort (int *a, int n) {
int i, j, tmp;

for (j = 1; j < n; ++j) {
tmp = a[j];
for (i = j - 1; i >= 0 && tmp < a[i]; i--)
a[i + 1] = a[i];

a[i + 1] = tmp;
}

}

АиАЯ Лекция 18 27 / 33

Оценка сложности алгоритмов сортировки

Скорость сортировки определяется количеством сравнений и
количеством обменов (обмены занимают больше времени). Эти
показатели интересны для худшего и лучшего случаев, а также
интересно их среднее значение.

Кроме скорости, оценивается «естественность» алгоритма
сортировки: естественным считается алгоритм, который на уже
отсортированном массиве работает минимальное время, а на не
отсортированном работает тем дольше, чем больше степень его
неупорядоченности.

Важным показателем является и объем дополнительной памяти
для хранения промежуточных данных алгоритма. Для
рекурсивных алгоритмов расход памяти связан
с необходимостью сохранять в автоматической памяти (стеке)
локальные переменные и параметры.

АиАЯ Лекция 18 28 / 33

Оценка сложности алгоритмов сортировки

Теорема. Для любого алгоритма S внутренней сортировки
сравнением массива из n элементов количество сравнений
CS > O(n log2 n).

Доказательство. Сначала покажем, что

CS > log2(n!) (1)

Алгоритм S можно представить в виде двоичного дерева
сравнений. Так как любая перестановка индексов
рассматриваемого массива может быть ответом в алгоритме, она
должна быть приписана хотя бы одному листу дерева сравнений.
Таким образом, дерево сравнений будет иметь не менее n!
листьев.

АиАЯ Лекция 18 29 / 33

Оценка сложности алгоритмов сортировки

Теорема. Для любого алгоритма S внутренней сортировки
сравнением массива из n элементов количество сравнений
CS > O(n log2 n).

Доказательство. Сначала покажем, что

CS > log2(n!) (1)

Для высоты hm двоичного дерева с m листьями имеет место
оценка: hm > log2m.

Любое двоичное дерево высоты h можно достроить до полного
двоичного дерева высоты h, а у полного двоичного дерева высоты
h 2h листьев. Применив полученную оценку к дереву сравнений,
получим искомую оценку (1).

АиАЯ Лекция 18 29 / 33

Оценка сложности алгоритмов сортировки

Далее, применим к log2 n! формулу Стирлинга

n! =
√
2πnnne−neθ(n),

где |θ(n)| 6 1
12n . Подставляя и логарифмируя, имеем

log2 n! =
1
2
log2 2πn+ n log2 n− n+ θ(n),

log2 n! > O(n log2 n).

АиАЯ Лекция 18 30 / 33

Быстрая сортировка

static void QuickSort (int *a, int left, int right) {
/* comp -- компаранд, i, j -- значения индексов */
int comp, tmp, i, j;
i = left; j = right;
comp = a[(left + right)/2];
do {
while (a[i] < comp && i < right)

i++;
while (comp < a[j] && j > left)

j--;
if (i <= j) {

tmp = a[i];
a[i] = a[j];
a[j] = tmp;
i++, j--;

}
} while (i <= j);
...

}

АиАЯ Лекция 18 31 / 33

Быстрая сортировка

static void QuickSort (int *a, int left, int right) {
...
if (left < j)
QuickSort (a, left, j);

if (i < right)
QuickSort (a, i, right);

}

Программа быстрой сортировки.

void qsort (int *a, int n) {
QuickSort (a, 0, n - 1);

}

Нужно, чтобы значение компаранда было таким, чтобы он попал
в середину результирующей последовательности. Мы пытаемся
угадать, какой из элементов массива имеет такое значение. Чем
лучше мы угадаем, тем быстрее выполнится алгоритм.
АиАЯ Лекция 18 32 / 33

Быстрая сортировка

Покажем, что цикл do-while действительно строит нужное нам
разбиение массива a[].

• В процессе работы цикла индексы i и j не выходят за
пределы отрезка [left, right], так как в циклах while
выполняются соответствующие проверки.

• В момент окончания работы цикла do-while j 6 right, так
как части разбиения не могут быть пустыми: хотя бы один
элемент массива a[] (в крайнем случае a[right])
содержится в правой части разбиения.

• Аналогично, в момент окончания работы цикла do-while
i > left.

• В момент окончания работы цикла do-while любой элемент
подмассива a[left..j] не больше любого элемента
подмассива a[i..right], что очевидно.

АиАЯ Лекция 18 33 / 33

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 19

16 ноября 2019 г.

Топологическая сортировка на Си

#include <stdio.h>
#include <stdlib.h>
typedef struct ldr { /* дескриптор ведущего узла */
char key;
int count;
struct ldr *next;
struct trl *trail;

} leader;
typedef struct trl { /* дескриптор ведомого узла */
struct ldr *id;
struct trl *next;

} trailer;

leader *head, *tail; /* два вспомогательных узла */
int lnum; /* счётчик ведущих узлов */

АиАЯ Лекция 19 1 / 30

Топологическая сортировка на Си: поиск по ключу

leader *find (char w) {
leader *h = head;
/* барьер на случай отсутствия w */
tail->key = w;
while (h->key != w)

h = h->next;
if (h == tail) {

/* генерация нового ведущего узла */
tail = malloc (sizeof (leader));
/* старый tail становится новым элементом списка */
lnum++;
h->count = 0;
h->trail = NULL;
h->next = tail;

}
return h;

}
АиАЯ Лекция 19 2 / 30

Топологическая сортировка на Си: формирование списка

void init_list() {
leader *p, *q;
trailer *t;
char x, y;

head = (leader *) malloc (sizeof (leader));
tail = head;
lnum = 0; /* начальная установка */
while (1) {

if (scanf ("%c␣%c", &x, &y) != 2)
break;

/* включение пары в список */
p = find (x);
q = find (y);
<...>

АиАЯ Лекция 19 3 / 30

Топологическая сортировка на Си: формирование списка

<...>
/* коррекция списка */
t = malloc (sizeof (trailer));
t->id = q;
t->next = p->trail;
p->trail = t;
q->count += 1;

}
}

АиАЯ Лекция 19 4 / 30

Топологическая сортировка на Си: новый список

void sort_list() {
leader *p, *q;
trailer *t;
/* В выходной список включаются все узлы с count == 0 */
p = head;
head = NULL; /* голова выходного списка */
while (p != tail) {

q = p;
p = q->next;
if (q->count == 0) {
/* включение q в выходной список */
q->next = head;
head = q;

}
}

<...>

АиАЯ Лекция 19 5 / 30

Топологическая сортировка на Си: новый список

q = head; /* есть ведущий узел -> head != NULL */
while (q != NULL) {

printf ("%c\n", q->key);
lnum--;
t = q->trail;
q = q->next;
while (t != NULL) {
p = t->id;
p->count -= 1;
if (p->count == 0) {

p->next = q; // достаточно для
q = p; // правильной сортировки

}
t = t->next;

}
}
/* lnum == 0 */

}
АиАЯ Лекция 19 6 / 30

Топологическая сортировка на Си: основная функция

int main (void) {
init_list ();
sort_list ();
return 0;

}

Дома. Что поменяется, если узлы идентифицируются не одним
символом, а именем (строкой)? Сделайте нужные изменения в
коде. Добавьте определение циклов в исходных данных.

АиАЯ Лекция 19 7 / 30

Сортировка: постановка задачи

Сортировка — это упорядочение наборов однотипных данных,
для которых определено отношение линейного порядка
(например, <, «меньше») по возрастанию или по убыванию.
Здесь будут рассматриваться целочисленные данные и
отношение порядка <.

Различают внешнюю и внутреннюю сортировку.
Рассматривается только внутренняя сортировка: сортируемый
массив находится в основной памяти компьютера. Внешняя
сортировка применяется к записям на внешних файлах.

АиАЯ Лекция 19 8 / 30

Сортировка: что есть в Си

#include <stdlib.h>
void qsort (void *buf, size_t num, size_t size,

int(*compare)(const void *, const void *));

Функция qsort сортирует (по возрастанию) массив с указателем
buf, используя алгоритм быстрой сортировки Ч.Э.Р. Хоара,
который считается одним из лучших алгоритмов сортировки
общего назначения.

Параметр num задает количество элементов массива buf,
параметр size — размер (в байтах) элемента массива buf.
Параметр int(*compare)(const void *,const void *)
задаёт правило сравнения элементов массива num. Функция
сравнивает аргументы и возвращает:
• целое < 0, если arg1 < arg2,
• целое = 0, если arg1 = arg2,
• целое > 0, если arg1 > arg2.

АиАЯ Лекция 19 9 / 30

Простейший алгоритм сортировки

Сведение сортировки к задаче нахождения максимального
(минимального) из n чисел. Нахождение максимума n чисел (n
сравнений). Числа содержатся в массиве int a[n];

max = a[0];
for (i = 1; i < n; i++)

if (a[i] > max)
max = a[i];

Алгоритм сортировки: находим максимальное из n чисел,
получаем последний элемент отсортированного массива
(n сравнений); находим максимальное из n − 1 оставшихся чисел,
получаем предпоследний элемент отсортированного массива
(еще n− 1 сравнений); и так далее.

Общее количество сравнений: 1 + 2 + . . . + n − 1 + n = n(n − 1)/2.
Сложность алгоритма O(n2).

АиАЯ Лекция 19 10 / 30

Три общих метода внутренней сортировки

• сортировка обменами: рассматриваются соседние элементы
сортируемого массива и при необходимости меняются
местами;

• сортировка выборкой: идея описана на предыдущем слайде;

• сортировка вставками: сначала сортируются два элемента
массива, потом выбирается третий элемент и вставляется
в нужную позицию относительно первых двух и т.д.

АиАЯ Лекция 19 11 / 30

Сортировка обменами (пузырьком)

Общее количество сравнений (действий): n(n − 1)/2, так как
внешний цикл выполняется (n − 1) раз, а внутренний —
в среднем n/2 раза.

void bubble_sort (int *a, int n) {
int i, j, tmp;
for (j = 1; j < n; ++j)

for (i = n - 1; i >= j; --i) {
if (a[i - 1] > a[i]) {

tmp = a[i - 1];
a[i - 1] = a[i];
a[i] = tmp;

}
}

}

АиАЯ Лекция 19 12 / 30

Сортировка вставками

Количество сравнений зависит от степени перемешанности
массива a. Если массив a уже отсортирован, количество
сравнений равно n − 1. Если массив a отсортирован в обратном
порядке (наихудший случай), количество сравнений имеет
порядок n2.

void insert_sort (int *a, int n) {
int i, j, tmp;

for (j = 1; j < n; ++j) {
tmp = a[j];
for (i = j - 1; i >= 0 && tmp < a[i]; i--)
a[i + 1] = a[i];

a[i + 1] = tmp;
}

}

АиАЯ Лекция 19 13 / 30

Оценка сложности алгоритмов сортировки

Скорость сортировки определяется количеством сравнений и
количеством обменов (обмены занимают больше времени). Эти
показатели интересны для худшего и лучшего случаев, а также
интересно их среднее значение.

Кроме скорости, оценивается «естественность» алгоритма
сортировки: естественным считается алгоритм, который на уже
отсортированном массиве работает минимальное время, а на не
отсортированном работает тем дольше, чем больше степень его
неупорядоченности.

Важным показателем является и объем дополнительной памяти
для хранения промежуточных данных алгоритма. Для
рекурсивных алгоритмов расход памяти связан
с необходимостью сохранять в автоматической памяти (стеке)
локальные переменные и параметры.

АиАЯ Лекция 19 14 / 30

Оценка сложности алгоритмов сортировки

Теорема. Для любого алгоритма S внутренней сортировки
сравнением массива из n элементов количество сравнений
CS > O(n log2 n).

Доказательство. Сначала покажем, что

CS > log2(n!) (1)

Алгоритм S можно представить в виде двоичного дерева
сравнений. Так как любая перестановка индексов
рассматриваемого массива может быть ответом в алгоритме, она
должна быть приписана хотя бы одному листу дерева сравнений.
Таким образом, дерево сравнений будет иметь не менее n!
листьев.

АиАЯ Лекция 19 15 / 30

Оценка сложности алгоритмов сортировки

Теорема. Для любого алгоритма S внутренней сортировки
сравнением массива из n элементов количество сравнений
CS > O(n log2 n).

Доказательство. Сначала покажем, что

CS > log2(n!) (1)

Для высоты hm двоичного дерева с m листьями имеет место
оценка: hm > log2m.

Любое двоичное дерево высоты h можно достроить до полного
двоичного дерева высоты h, а у полного двоичного дерева высоты
h 2h листьев. Применив полученную оценку к дереву сравнений,
получим искомую оценку (1).

АиАЯ Лекция 19 15 / 30

Оценка сложности алгоритмов сортировки

Далее, применим к log2 n! формулу Стирлинга

n! =
√
2πnnne−neθ(n),

где |θ(n)| 6 1
12n . Подставляя и логарифмируя, имеем

log2 n! =
1
2
log2 2πn+ n log2 n− n+ θ(n),

log2 n! > O(n log2 n).

АиАЯ Лекция 19 16 / 30

Быстрая сортировка

static void QuickSort (int *a, int left, int right) {
/* comp -- компаранд, i, j -- значения индексов */
int comp, tmp, i, j;
i = left; j = right;
comp = a[(left + right)/2];
do {
while (a[i] < comp && i < right)

i++;
while (comp < a[j] && j > left)

j--;
if (i <= j) {

tmp = a[i];
a[i] = a[j];
a[j] = tmp;
i++, j--;

}
} while (i <= j);
...

}

АиАЯ Лекция 19 17 / 30

Быстрая сортировка

static void QuickSort (int *a, int left, int right) {
...
if (left < j)
QuickSort (a, left, j);

if (i < right)
QuickSort (a, i, right);

}

Программа быстрой сортировки.

void qsort (int *a, int n) {
QuickSort (a, 0, n - 1);

}

Нужно, чтобы значение компаранда было таким, чтобы он попал
в середину результирующей последовательности. Мы пытаемся
угадать, какой из элементов массива имеет такое значение. Чем
лучше мы угадаем, тем быстрее выполнится алгоритм.
АиАЯ Лекция 19 18 / 30

Быстрая сортировка

Покажем, что цикл do-while действительно строит нужное нам
разбиение массива a[].

• В процессе работы цикла индексы i и j не выходят за
пределы отрезка [left, right], так как в циклах while
выполняются соответствующие проверки.

• В момент окончания работы цикла do-while j 6 right, так
как части разбиения не могут быть пустыми: хотя бы один
элемент массива a[] (в крайнем случае a[right])
содержится в правой части разбиения.

• Аналогично, в момент окончания работы цикла do-while
i > left.

• В момент окончания работы цикла do-while любой элемент
подмассива a[left..j] не больше любого элемента
подмассива a[i..right], что очевидно.

АиАЯ Лекция 19 19 / 30

Быстрая сортировка. Пример разделения массива

Работа цикла do-while на примере: 5 3 2 6 4 1 3 7.
• Пусть в качестве первого компаранда выбран первый
элемент массива — 5 (a[left]).
Во время первого прохода цикла do-while после
выполнения обоих циклов while получим:
(5) 3 2 6 4 1 {3} 7 (в круглых скобках элемент
с индексом i, в фигурных — элемент с индексом j).

• Поскольку i < j, элементы, выделенные скобками, нужно
поменять местами: 3 (3) 2 6 4 {1} 5 7.

• В результате второго прохода цикла do-while получим: до
обмена — 3 3 2 (6) 4 {1} 5 7;
после обмена — 3 3 2 1 ({4}) 6 5 7.

• Третий проход лишь увеличивает i.
Теперь массив a состоит из двух подмассивов 3 3 2 1 4 и 6 5
7, причём i = 5, j = 4. Нужно рекурсивно применить метод к этим
подмассивам.
АиАЯ Лекция 19 20 / 30

Быстрая сортировка. Выбор компаранда

При выборе компаранда можно брать первый элемент, значение
которого больше значения следующего элемента. Для
результирующих подмассивов из примера компаранды
заключены в квадратные скобки:
3 [3] 2 1 4 и [6] 5 7.

Оценка времени работы быстрой сортировки (Θ-нотация).
Если f (n) и g(n) — некоторые функции, то запись g(n) = Θ(f (n))
означает, что найдутся такие константы c1, c2 > 0 и такое n0, что
для всех n > n0 выполняются соотношения

0 6 c1f (n) 6 g(n) 6 c2f (n),

т.е. при больших n f (n) хорошо описывает поведение g(n).

АиАЯ Лекция 19 21 / 30

Быстрая сортировка. Оценка времени работы

Время выполнения цикла do-while – Θ(n), где n = right− left+ 1.

Для алгоритма QuickSort максимальное (наихудшее) время
выполнения Tmax(n) = Θ(n2). Наихудшее время: при каждом
Partition массив длины n разбивается на подмассивы длины 1 и
n− 1.

Для Tmax(n) имеет место соотношение Tmax(n) = Tmax(n− 1) +Θ(n).
Очевидно, что Tmax(1) = Θ(1). Следовательно,

Tmax(n) = Tmax(n− 1) + Θ(n) = n(n− 1)/2 = Θ(n2).

Если исходный массив a отсортирован в порядке убывания,
время его сортировки в порядке возрастания с помощью
алгоритма QuickSort будет Θ(n2).

АиАЯ Лекция 19 22 / 30

Быстрая сортировка. Оценка времени работы

Минимальное и среднее время выполнения алгоритма QuickSort
Tmean(n) = Θ(n log n) с разными константами: чем ближе разбиение
на подмассивы к сбалансированному, тем константы меньше.

Доказательство использует теорему о рекуррентных оценках из Кормен, Ч.

Лейзерсон, Р. Ривест. Алгоритмы: построение и анализ. М.: МЦНМО, 1999. ISBN

5-900916-37-5, с. 66-73.

Рекуррентное соотношение для минимального (наилучшего)
времени сортировки Tmin(n) имеет вид

Tmin(n) = 2Tmin(n/2) + Θ(n),

так как минимальное время получается тогда, когда на каждом
шаге удается выбрать компаранд, который делит массив на два
подмассива одинаковой длины dn/2e. Применяя ту же теорему,
получаем Tmin(n) = Θ(n log n).

АиАЯ Лекция 19 23 / 30

Быстрая сортировка. Оценка времени работы

Рекуррентное соотношение для T(n) в общем случае, когда на
каждом шаге массив делится в отношении q : (n − q), причем q
равновероятно распределено между 1 и n, также можно решить и
установить, что T(n) = Θ(n log n) (та же книга, с. 160-164).

АиАЯ Лекция 19 24 / 30

Двоичное дерево

Двоичное дерево — набор узлов, который:

• либо пуст (пустое дерево),
• либо разбит на три непересекающиеся части:
узел, называемый корнем,
двоичное дерево, называемое левым поддеревом, и
двоичное дерево, называемое правым поддеревом.

Двоичное дерево не является частным случаем обычного дерева,
хотя у этих структур много общего. Основные отличия:

• пустое дерево является двоичным деревом, но не является
обычным деревом;

• двоичные деревья (A(B,NULL)) и (A(NULL,B)) различны,
а обычные деревья — одинаковы.

Термины: узлы, ветви, корень, листья, высота.

АиАЯ Лекция 19 25 / 30

Описание узла двоичного дерева на Си

typedef struct bin_tree {
char info;
struct bin_tree *left;
struct bin_tree *right;

} node;

АиАЯ Лекция 19 26 / 30

Способы обхода двоичного дерева

Обход в глубину в прямом порядке:

• обработать корень,
• обойти левое поддерево,
• обойти правое поддерево.

Порядок обработки узлов дерева: A B D C E G F H J.

Линейная последовательность узлов, полученная при прямом
обходе, отражает «спуск» информации от корня дерева к
листьям.

АиАЯ Лекция 19 27 / 30

Способы обхода двоичного дерева

Обход в глубину в обратном порядке:

• обойти левое поддерево,
• обойти правое поддерево,
• обработать корень.

Порядок обработки узлов дерева: D B G E H J F C A.

Линейная последовательность узлов, полученная при обратном
обходе, отражает «подъём» информации от листьев к корню
дерева.

АиАЯ Лекция 19 28 / 30

Способы обхода двоичного дерева

Симметричный обход в глубину (обход в симметричном порядке):

• обойти левое поддерево,
• обработать корень,
• обойти правое поддерево.

Порядок обработки узлов дерева: D B A E G C H F J.

АиАЯ Лекция 19 29 / 30

Способы обхода двоичного дерева

Обход двоичного дерева в ширину: узлы дерева обрабатываются
«по уровням» (уровень составляют все узлы, находящиеся на
одинаковом расстоянии от корня).

Порядок обработки узлов дерева: A B C D E F G H J.

АиАЯ Лекция 19 30 / 30

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 20

20 ноября 2019 г.

Быстрая сортировка

static void QuickSort (int *a, int left, int right) {
/* comp -- компаранд, i, j -- значения индексов */
int comp, tmp, i, j;
i = left; j = right;
comp = a[(left + right)/2];
do {
while (a[i] < comp && i < right)

i++;
while (comp < a[j] && j > left)

j--;
if (i <= j) {

tmp = a[i];
a[i] = a[j];
a[j] = tmp;
i++, j--;

}
} while (i <= j);
...

}

АиАЯ Лекция 20 1 / 25

Быстрая сортировка

static void QuickSort (int *a, int left, int right) {
...
if (left < j)
QuickSort (a, left, j);

if (i < right)
QuickSort (a, i, right);

}

Программа быстрой сортировки.

void qsort (int *a, int n) {
QuickSort (a, 0, n - 1);

}

Нужно, чтобы значение компаранда было таким, чтобы он попал
в середину результирующей последовательности. Мы пытаемся
угадать, какой из элементов массива имеет такое значение. Чем
лучше мы угадаем, тем быстрее выполнится алгоритм.
АиАЯ Лекция 20 2 / 25

Быстрая сортировка

Покажем, что цикл do-while действительно строит нужное нам
разбиение массива a[].

• В процессе работы цикла индексы i и j не выходят за
пределы отрезка [left, right], так как в циклах while
выполняются соответствующие проверки.

• В момент окончания работы цикла do-while j 6 right, так
как части разбиения не могут быть пустыми: хотя бы один
элемент массива a[] (в крайнем случае a[right])
содержится в правой части разбиения.

• Аналогично, в момент окончания работы цикла do-while
i > left.

• В момент окончания работы цикла do-while любой элемент
подмассива a[left..j] не больше любого элемента
подмассива a[i..right], что очевидно.

АиАЯ Лекция 20 3 / 25

Быстрая сортировка. Пример разделения массива

Работа цикла do-while на примере: 5 3 2 6 4 1 3 7.
• Пусть в качестве первого компаранда выбран первый
элемент массива — 5 (a[left]).
Во время первого прохода цикла do-while после
выполнения обоих циклов while получим:
(5) 3 2 6 4 1 {3} 7 (в круглых скобках элемент
с индексом i, в фигурных — элемент с индексом j).

• Поскольку i < j, элементы, выделенные скобками, нужно
поменять местами: 3 (3) 2 6 4 {1} 5 7.

• В результате второго прохода цикла do-while получим: до
обмена — 3 3 2 (6) 4 {1} 5 7;
после обмена — 3 3 2 1 ({4}) 6 5 7.

• Третий проход лишь увеличивает i.
Теперь массив a состоит из двух подмассивов 3 3 2 1 4 и 6 5
7, причём i = 5, j = 4. Нужно рекурсивно применить метод к этим
подмассивам.
АиАЯ Лекция 20 4 / 25

Быстрая сортировка. Выбор компаранда

При выборе компаранда можно брать первый элемент, значение
которого больше значения следующего элемента. Для
результирующих подмассивов из примера компаранды
заключены в квадратные скобки:
3 [3] 2 1 4 и [6] 5 7.

Оценка времени работы быстрой сортировки (Θ-нотация).
Если f (n) и g(n) — некоторые функции, то запись g(n) = Θ(f (n))
означает, что найдутся такие константы c1, c2 > 0 и такое n0, что
для всех n > n0 выполняются соотношения

0 6 c1f (n) 6 g(n) 6 c2f (n),

т.е. при больших n f (n) хорошо описывает поведение g(n).

АиАЯ Лекция 20 5 / 25

Быстрая сортировка. Оценка времени работы

Время выполнения цикла do-while – Θ(n), где n = right− left+ 1.

Для алгоритма QuickSort максимальное (наихудшее) время
выполнения Tmax(n) = Θ(n2). Наихудшее время: при каждом
Partition массив длины n разбивается на подмассивы длины 1 и
n− 1.

Для Tmax(n) имеет место соотношение Tmax(n) = Tmax(n− 1) +Θ(n).
Очевидно, что Tmax(1) = Θ(1). Следовательно,

Tmax(n) = Tmax(n− 1) + Θ(n) = n(n− 1)/2 = Θ(n2).

Если исходный массив a отсортирован в порядке убывания,
время его сортировки в порядке возрастания с помощью
алгоритма QuickSort будет Θ(n2).

АиАЯ Лекция 20 6 / 25

Быстрая сортировка. Оценка времени работы

Минимальное и среднее время выполнения алгоритма QuickSort
Tmean(n) = Θ(n log n) с разными константами: чем ближе разбиение
на подмассивы к сбалансированному, тем константы меньше.

Доказательство использует теорему о рекуррентных оценках из Кормен, Ч.

Лейзерсон, Р. Ривест. Алгоритмы: построение и анализ. М.: МЦНМО, 1999. ISBN

5-900916-37-5, с. 66-73.

Рекуррентное соотношение для минимального (наилучшего)
времени сортировки Tmin(n) имеет вид

Tmin(n) = 2Tmin(n/2) + Θ(n),

так как минимальное время получается тогда, когда на каждом
шаге удается выбрать компаранд, который делит массив на два
подмассива одинаковой длины dn/2e. Применяя ту же теорему,
получаем Tmin(n) = Θ(n log n).

АиАЯ Лекция 20 7 / 25

Быстрая сортировка. Оценка времени работы

Рекуррентное соотношение для T(n) в общем случае, когда на
каждом шаге массив делится в отношении q : (n − q), причем q
равновероятно распределено между 1 и n, также можно решить и
установить, что T(n) = Θ(n log n) (та же книга, с. 160-164).

АиАЯ Лекция 20 8 / 25

Двоичное дерево

Двоичное дерево — набор узлов, который:

• либо пуст (пустое дерево),
• либо разбит на три непересекающиеся части:
узел, называемый корнем,
двоичное дерево, называемое левым поддеревом, и
двоичное дерево, называемое правым поддеревом.

Двоичное дерево не является частным случаем обычного дерева,
хотя у этих структур много общего. Основные отличия:

• пустое дерево является двоичным деревом, но не является
обычным деревом;

• двоичные деревья (A(B,NULL)) и (A(NULL,B)) различны,
а обычные деревья — одинаковы.

Термины: узлы, ветви, корень, листья, высота.

АиАЯ Лекция 20 9 / 25

Описание узла двоичного дерева на Си

typedef struct bin_tree {
char info;
struct bin_tree *left;
struct bin_tree *right;

} node;

АиАЯ Лекция 20 10 / 25

Способы обхода двоичного дерева

Обход в глубину в прямом порядке:

• обработать корень,
• обойти левое поддерево,
• обойти правое поддерево.

Порядок обработки узлов дерева: A B D C E G F H J.

Линейная последовательность узлов, полученная при прямом
обходе, отражает «спуск» информации от корня дерева к
листьям.

АиАЯ Лекция 20 11 / 25

Способы обхода двоичного дерева

Обход в глубину в обратном порядке:

• обойти левое поддерево,
• обойти правое поддерево,
• обработать корень.

Порядок обработки узлов дерева: D B G E H J F C A.

Линейная последовательность узлов, полученная при обратном
обходе, отражает «подъём» информации от листьев к корню
дерева.

АиАЯ Лекция 20 12 / 25

Способы обхода двоичного дерева

Симметричный обход в глубину (обход в симметричном порядке):

• обойти левое поддерево,
• обработать корень,
• обойти правое поддерево.

Порядок обработки узлов дерева: D B A E G C H F J.

АиАЯ Лекция 20 13 / 25

Способы обхода двоичного дерева

Обход двоичного дерева в ширину: узлы дерева обрабатываются
«по уровням» (уровень составляют все узлы, находящиеся на
одинаковом расстоянии от корня).

Порядок обработки узлов дерева: A B C D E F G H J.

АиАЯ Лекция 20 14 / 25

Рекурсивные реализации соответствующих функций на Си

void preorder (node * r) {
if (r == NULL)

return;
if (r->info)

printf ("%c", r->info);
preorder (r->left);
preorder (r->right);

}

АиАЯ Лекция 20 15 / 25

Рекурсивные реализации соответствующих функций на Си

void postorder (node *r) {
if (r == NULL)

return;
postorder (r->left);
postorder (r->right);
if (r->info)

printf ("%c", r->info);
}
void inorder (node *r) {

if (r == NULL)
return;

inorder (r->left);
if (r->info)

printf ("%c", r->info);
inorder (r->right);

}

АиАЯ Лекция 20 16 / 25

Нерекурсивная функция симметричного обхода

r — указатель на корень дерева;
t — указатель на корень обрабатываемого (текущего)
поддерева;
stack — массив,на котором моделируется стек;
depth — глубина стека;
top — указатель вершины стека.

Стек требуется для ручного сохранения параметров функции,
локальных переменных и точки возврата (если рекурсивных
вызовов функции несколько).

В функции inorder нет локальных переменных, а второй из двух
рекурсивных вызовов хвостовой, что позволяет не сохранять его
параметры в стеке.
Поэтому сохраняется только параметр функции.

АиАЯ Лекция 20 17 / 25

Нерекурсивная функция симметричного обхода. Алгоритм

1. Инициализация. Сделать стек пустым, т.е. затолкнуть NULL на
дно стека: stack[0] = NULL; установить указатель стека на
дно стека: top = 0; установить указатель t на корень
дерева: t = r.

2. Конец ветви. Если t == NULL, перейти к 4.
3. Продолжение ветви. Затолкнуть t в стек:
stack[++top] = t; установить t = t->left и вернуться
к шагу 2.

4. К обработке правой ветви. Вытолкнуть верхний элемент
стека в t: t = stack[top]; top--; Если t == NULL,
выполнение алгоритма прекращается, иначе обработать
данные узла, на который указывает t, и перейти к шагу 5.

5. Начало обработки правой ветви. Установить t = t->right
и вернуться к шагу 2.

АиАЯ Лекция 20 18 / 25

Нерекурсивная функция симметричного обхода. Код

int inorder (node *r, char *order) {
node *t = r, *stack[depth]; // depth = ?
int top = 0, i = 0;
if (!t)

return 0;
stack[0] = NULL; // 1
while (1) {

while (t) { // 2
stack[++top] = t; // 3
t = t->left;

}
<...>

АиАЯ Лекция 20 19 / 25

Нерекурсивная функция симметричного обхода. Код

<...>
t = stack[top--]; // 4
if (t) {
order[i++] = t->info; // обработка
t = t->right; // 5

} else // t == NULL
break; // 4

}
return i;

}

АиАЯ Лекция 20 20 / 25

Прошитое двоичное дерево

Рассмотрим двоичное
дерево на верхнем
рисунке. У этого дерева
нулевых указателей,
больше, чем ненулевых:
10 против 8. Это —
типичный случай.

Будем записывать

вместо нулевых

указателей указатели

на родителей (или

более далеких предков)

соответствующих узлов

(такие указатели

называются нитями).

Это позволит при

обходе дерева не

использовать стек.
АиАЯ Лекция 20 21 / 25

Прошитое двоичное дерево. Описание узла

typedef struct bin_tree {
char info;
struct bin_tree *left;
struct bin_tree *right;
char left_tag;
char right_tag;

} threaded_node;

Нити устанавливаются таким образом, чтобы указывать на
предшественников (левые нити) или последователей (правые
нити) текущего узла при соответствующем обходе дерева.

Обычное дерево Прошитое дерево
P->left == NULL P->left_tag == 1, P->left == P_pred_in
P->left == Q P->left_tag == 0, P->left == Q
P->right == NULL P->right_tag == 1, P->right == P_next_in
P->right == Q P->right_tag == 0, P->right == Q

АиАЯ Лекция 20 22 / 25

Прошитое двоичное дерево. Симметричный обход

threaded_node * next_in (threaded_node *p) {
threaded_node *q = p->right;
if (p->right_tag == 1)

return q;
while (q->left_tag == 0) //q != NULL

q = q->left; //q->left != NULL
return q;

}

Функция next_in фактически реализует симметричный обход
дерева, так как позволяет для произвольного узла дерева P
найти следующий элемент P_next_in. Многократно применяя
эту функцию, можно вычислить топологический порядок узлов
двоичного дерева, соответствующий симметричному обходу.

Аналогичным образом можно построить функции, вычисляющие
следующий узел дерева в прямом или обратном порядке обхода.
АиАЯ Лекция 20 23 / 25

Прошитое двоичное дерево. Симметричный обход

threaded_node * next_in (threaded_node *p) {
threaded_node *q = p->right;
if (p->right_tag == 1)

return q;
while (q->left_tag == 0) //q != NULL

q = q->left; //q->left != NULL
return q;

}

С помощью обычного представления невозможно для
произвольного узла P вычислить P_next_in, не вычисляя всей
последовательности узлов.

Функции next_in не требуется стек ни в явной, ни в неявной
(рекурсия) форме.

АиАЯ Лекция 20 23 / 25

Прошитое двоичное дерево. Симметричный обход

Если p — произвольно выбранный узел дерева,то следующий
фрагмент функции next_in:

q = p->right;
if (p->right_tag == 1)

return q;

выполняется только один раз.

Обход прошитого дерева выполняется быстрее, так как для него
не нужны операции со стеком.

Для inorder требуется больше памяти, чем для next_in, из-за
массива stack[depth] (пропорционально высоте дерева).

Нельзя допускать переполнение стека деревьев (массив
выделяется с запасом либо используется реализация стека с
динамическим перевыделением памяти).

АиАЯ Лекция 20 24 / 25

Прошитое двоичное дерево. Заголовок

В функции inorder используется указатель r на корень
двоичного дерева. Желательно, применив функцию next_in к
корню r, получить указатель на самый первый узел дерева для
выбранного порядка обхода. Для этого к дереву добавляется еще
один узел — заголовок дерева (header).
header - > l e f t _ t a g = 0 ;
header - > r i gh t _ t ag = 0 ;
header - > l e f t = r ;
header - > r i g h t = header ;

АиАЯ Лекция 20 25 / 25

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 21

23 ноября 2019 г.

Прошитое двоичное дерево

Рассмотрим двоичное
дерево на верхнем
рисунке. У этого дерева
нулевых указателей,
больше, чем ненулевых:
10 против 8. Это —
типичный случай.

Будем записывать

вместо нулевых

указателей указатели

на родителей (или

более далеких предков)

соответствующих узлов

(такие указатели

называются нитями).

Это позволит при

обходе дерева не

использовать стек.
АиАЯ Лекция 21 1 / 16

Прошитое двоичное дерево. Описание узла

typedef struct bin_tree {
char info;
struct bin_tree *left;
struct bin_tree *right;
char left_tag;
char right_tag;

} threaded_node;

Нити устанавливаются таким образом, чтобы указывать на
предшественников (левые нити) или последователей (правые
нити) текущего узла при соответствующем обходе дерева.

Обычное дерево Прошитое дерево
P->left == NULL P->left_tag == 1, P->left == P_pred_in
P->left == Q P->left_tag == 0, P->left == Q
P->right == NULL P->right_tag == 1, P->right == P_next_in
P->right == Q P->right_tag == 0, P->right == Q

АиАЯ Лекция 21 2 / 16

Прошитое двоичное дерево. Симметричный обход

threaded_node * next_in (threaded_node *p) {
threaded_node *q = p->right;
if (p->right_tag == 1)

return q;
while (q->left_tag == 0) //q != NULL

q = q->left; //q->left != NULL
return q;

}

Функция next_in фактически реализует симметричный обход
дерева, так как позволяет для произвольного узла дерева P
найти следующий элемент P_next_in. Многократно применяя
эту функцию, можно вычислить топологический порядок узлов
двоичного дерева, соответствующий симметричному обходу.

Аналогичным образом можно построить функции, вычисляющие
следующий узел дерева в прямом или обратном порядке обхода.
АиАЯ Лекция 21 3 / 16

Прошитое двоичное дерево. Симметричный обход

threaded_node * next_in (threaded_node *p) {
threaded_node *q = p->right;
if (p->right_tag == 1)

return q;
while (q->left_tag == 0) //q != NULL

q = q->left; //q->left != NULL
return q;

}

С помощью обычного представления невозможно для
произвольного узла P вычислить P_next_in, не вычисляя всей
последовательности узлов.

Функции next_in не требуется стек ни в явной, ни в неявной
(рекурсия) форме.

АиАЯ Лекция 21 3 / 16

Прошитое двоичное дерево. Симметричный обход

Если p — произвольно выбранный узел дерева,то следующий
фрагмент функции next_in:

q = p->right;
if (p->right_tag == 1)

return q;

выполняется только один раз.

Обход прошитого дерева выполняется быстрее, так как для него
не нужны операции со стеком.

Для inorder требуется больше памяти, чем для next_in, из-за
массива stack[depth] (пропорционально высоте дерева).

Нельзя допускать переполнение стека деревьев (массив
выделяется с запасом либо используется реализация стека с
динамическим выделением памяти).

АиАЯ Лекция 21 4 / 16

Прошитое двоичное дерево. Заголовок

В функции inorder используется указатель r на корень
двоичного дерева. Желательно, применив функцию next_in к
корню r, получить указатель на самый первый узел дерева для
выбранного порядка обхода. Для этого к дереву добавляется еще
один узел — заголовок дерева (header).
header - > l e f t _ t a g = 0 ;
header - > r i gh t _ t ag = 0 ;
header - > l e f t = r ;
header - > r i g h t = header ;

АиАЯ Лекция 21 5 / 16

Двоичные деревья поиска

Проблема: организовать хранилище данных, которое позволяет
хранить большие объемы данных и предоставляет возможность
быстро находить и модифицировать данные.

Хранилище данных обеспечивает пользователю интерфейс,
в котором определены словарные операции: search (найти,
иногда называется fetch), insert (вставить) и delete (удалить).
Также предоставляется один или несколько вариантов обхода
хранилища (посещения всех данных).

Варианты решения — деревья поиска, хеширование.

АиАЯ Лекция 21 6 / 16

Двоичные деревья поиска

struct BT_node {
int key;
struct BT_node *left;
struct BT_node *right;
struct BT_node *parent;

}

Ключи в двоичном дереве поиска хранятся с соблюдением
свойства упорядоченности.
Пусть x — произвольный узел двоичного дерева поиска.
Если узел y принадлежит левому поддереву, то
key[y] < key[x],
если y находится в правом поддереве узла x, то
key[y] > key[x].

Возможно хранение дублирующихся ключей (нестрогие
неравенства), не рассматривающееся в данном курсе.
АиАЯ Лекция 21 7 / 16

Двоичные деревья поиска: поиск узла

На входе: искомый ключ k и указатель root на корень поддерева,
в котором производится поиск.
На выходе: указатель на узел с ключом key==k (если такой узел
есть), либо пустой указатель NULL.

struct BT_node *Btsearch (struct BT_node *root, int k)
{

if (! root || root->key == k)
return root;

if (k < root->key)
return Btsearch (root->left, k);

else
return Btsearch (root->right, k);

}

АиАЯ Лекция 21 8 / 16

Двоичные деревья поиска: поиск узла

На входе: искомый ключ k и указатель root на корень поддерева,
в котором производится поиск.
На выходе: указатель на узел с ключом key==k (если такой узел
есть), либо пустой указатель NULL.

struct BT_node *Btsearch (struct BT_node *root, int k)
{

struct BT_node *p = root;

while (p && p->key != k)
if (k < p->key)
p = p->left;

else
p = p->right;

return p;
}

Время поиска O(h), где h — высота дерева.
АиАЯ Лекция 21 9 / 16

Двоичные деревья поиска: минимум и максимум

На входе: указатель root на корень поддерева.
На выходе: указатель на узел с минимальным ключом key.

struct BT_node *Btmin (struct BT_node *root)
{

struct BT_node *p = root;
while (p->left)

p = p->left;
return p;

}

Время выполнения O(h), где h — высота дерева.

АиАЯ Лекция 21 10 / 16

Двоичные деревья поиска: следующий элемент

На входе: указатель node на узел поддерева.
На выходе: указатель на следующий за node узел дерева.

struct BT_node *Btsucc (struct BT_node *node) {
struct BT_node *p = node, *q;
/* 1 случай: правое поддерево узла не пусто. */
if (p->right)

return Btmin (p->right);
/* 2 случай: правое поддерево узла пусто, идём по родителям до тех пор, пока

не найдём родителя, для которого наше поддерево левое. */
q = p->parent;
while (q && p == q->right) {

p = q;
q = q->parent;

}
return q;

}
Время выполнения O(h), где h — высота дерева.
Связь с симметричным порядком обхода и прошитыми деревьями.
АиАЯ Лекция 21 11 / 16

Двоичные деревья поиска: вставка

На входе: указатель root на корень дерева и указатель node на новый
узел, у которого есть значение ключа, а все поля с указателями имеют
значение NULL.
struct BT_node * Btinsert (struct BT_node *root, struct BT_node *node) {
struct BT_node *p, *q;
p = root, q = NULL;
while (p) {

q = p;
p = (node->key < p->key) ? p->left : p->right;

}
node->parent = q;
if (q == NULL)

root = node;
else if (node->key < q->key)

q->left = node;
else

q->right = node;
return root;

}АиАЯ Лекция 21 12 / 16

Двоичные деревья поиска: удаление

На входе: указатель на корень root дерева T и указатель на узел
n дерева T.
На выходе: двоичное дерево T с удаленным узлом n (ключи нового
дерева по-прежнему упорядочены).

Необходимо рассмотреть три случая: (1) у узла n нет детей
(листовой узел); (2) у узла n только один ребенок; (3) у узла n два
ребенка.

1. просто удаляем узел n;
2. вырезаем узел n, соединив единственного ребенка узла n с
родителем узла n;

3. находим succ(n) и удаляем его, поместив ключ succ(n) в
узел n.

АиАЯ Лекция 21 13 / 16

Двоичные деревья поиска: удаление

Шаг 1: если у n меньше двух детей, удаляем n, иначе удаляем
succ(n); устанавливаем указатель y на удаляемый узел.

Шаг 2: находим ребенка удаляемого узла (ребенка либо нет, либо
он единственный) и устанавливаем на него указатель �x.

Шаг 3: подвешиваем ребенка y (указатель x) к родителю y;
если у y нет родителя, новым корнем дерева становится x;
устанавливаем в соответствующем поле родителя указатель на x,
полностью исключая y из дерева.

Шаг 4: если удаляемый узел succ(n), заменяем данные узла n на
данные узла succ(n).

АиАЯ Лекция 21 14 / 16

Двоичные деревья поиска: удаление

struct BT_node * BTdelete (struct BT_node **root,
struct BT_node *n) {

struct BT_node *x, *y;
/* Шаг 1: y -- указатель на удаляемый узел n */
y = (! n->left || ! n->right) ? n : BT_succ (n);
/* Шаг 2: x -- указатель на ребенка y либо NULL */
x = y->left ? y->left : y->right;
/* Шаг 3: если x есть, вырезаем y из родителей */
if (x)

x->parent = y->parent;
/* Шаг 3: если у y нет родителя, x -- новый корень */
if (! y->parent)

*root = x;
else {

/* Шаг 3: x присоединяется к y->parent */
if (y == y->parent->left)
y->parent->left = x;

else
y->parent->right = x;

}
<...>

АиАЯ Лекция 21 15 / 16

Двоичные деревья поиска: удаление

struct BT_node * BTdelete (struct BT_node **root,
struct BT_node *n) {

struct BT_node *x, *y;
<...>

/* Шаг 4: если удалялся не узел n, а succ(n),
необходимозаменить данные узла n на данные узла
succ(n) */

if (y != n)
n->key = y->key;

/* функция возвращает указатель удаленного узла, что
даёт возможность использовать этот узел в других
структурах либо очистить занимаемую им память */
return y;

}

Время выполнения O(h), где h — высота дерева.
АиАЯ Лекция 21 16 / 16

Московский государственный университет им. М. В. Ломоносова
Факультет вычислительной математики и кибернетики

Алгоритмы и алгоритмические языки
Лекция 22

27 ноября 2019 г.

Построение двоичного дерева поиска

Постановка задачи. Пусть имеется множество K из m ключей: K =

{k0, k1, . . . , km−1}.

Разобьём K на три подмножества K1, K2, K3 такие, что |K2| = 1, |K1| >
0, |K3| > 0. K2 = {k} и ∀l ∈ K1 : l < k,∀r ∈ K3 : k < r.

Далее аналогично разбиваем множества K1, K2, K3, пока не
кончатся ключи.

Пример. K = {15, 10, 1, 3, 8, 12, 4}. Первое разбиение:
{1, 3, 4}, {8}, {15, 10, 12}. Второе разбиение:
{{1}{3}{4}}{8}{{10}{12}{15}}. Получилось полностью
сбалансированное двоичное дерево.

Определение. Дерево называется полностью
сбалансированным (совершенным), если длина пути от корня до
любой листовой вершины одинакова

АиАЯ Лекция 22 1 / 30

Построение двоичного дерева поиска

Постановка задачи. Пусть имеется множество K из m ключей: K =

{k0, k1, . . . , km−1}.

Разобьём K на три подмножества K1, K2, K3 такие, что |K2| = 1, |K1| >
0, |K3| > 0. K2 = {k} и ∀l ∈ K1 : l < k,∀r ∈ K3 : k < r.

Далее аналогично разбиваем множества K1, K2, K3, пока не
кончатся ключи.

Пример. K = {15, 10, 1, 3, 8, 12, 4}. Первое разбиение:
{1, 3, 4}, {8}, {15, 10, 12}. Второе разбиение:
{{1}{3}{4}}{8}{{10}{12}{15}}. Получилось полностью
сбалансированное двоичное дерево.

Определение. Дерево называется полностью
сбалансированным (совершенным), если длина пути от корня до
любой листовой вершины одинакова и все внутренние
вершины имеют двоих сыновей.

АиАЯ Лекция 22 1 / 30

Построение двоичного дерева поиска

Пусть h — высота полностью сбалансированного двоичного
дерева. Тогда число вершин m должно быть равно:

m = 1+ 2+ 22 + . . .+ 2h−1 = 2h − 1,

откуда h = log2(m+ 1).

Если все m ключей известны заранее, их можно отсортировать за
O(m log2m), после чего построение сбалансированного дерева
будет тривиальной задачей.

Если дерево строится по мере поступления ключей, то возможны
все варианты: от линейного дерева с высотой O(m) до полностью
сбалансированного дерева с высотой O(log2m).

Пусть T = root, left, right — двоичное дерево; тогда hT =

max(hleft,hright) + 1.

АиАЯ Лекция 22 2 / 30

Деревья Фибоначчи

Числа Фибоначчи возникли в решении задачи о кроликах,
предложенном в XIII веке Леонардо из Пизы, известным как
Фибоначчи.

Задача о кроликах: пара новорожденных кроликов помещена на
остров. Каждый месяц любая пара дает приплод — также пару
кроликов. Пара начинает давать приплод в возрасте двух
месяцев. Сколько кроликов будет на острове в конце n-го
месяца?

В конце первого и второго месяцев на острове будет одна пара
кроликов: f1 = 1, f2 = 1.

В конце третьего месяца родится новая пара, так что f3 = f2+f1 = 2.

По индукции можно доказать, что для n > 3 fn = fn−1 + fn−2.

АиАЯ Лекция 22 3 / 30

Деревья Фибоначчи

int fib (int n) {
if (n == 1 || n == 2)

return 1;
else {

int g, h, fb;
g = h = 1;
for (int k = 2; k < n; k++) {
fb = g + h;
h = g;
g = fb;

}
return fb;

}
}

АиАЯ Лекция 22 4 / 30

Деревья Фибоначчи

Определение дерева Фибоначчи:

• Пустое дерево — это дерево Фибоначчи с высотой h = 0.
• Двоичное дерево, левое и правое поддерево которого есть
деревья Фибоначчи с высотами соответственно h− 1 и h− 2
(либо h− 2 и h− 1), есть дерево Фибоначчи с высотой h.

Из определения следует, что в дереве Фибоначчи значения высот
левого и правого поддерева отличаются ровно на 1.

АиАЯ Лекция 22 5 / 30

Деревья Фибоначчи

Дерево Фибоначчи с h = 6.

АиАЯ Лекция 22 6 / 30

Деревья Фибоначчи

Теорема. Число вершин в дереве Фибоначчи Fh высоты h равно
m(h) = fh+2 − 1.

Доказательство проводится по индукции:

• При h = 0 m(0) = f2 − 1 = 0, m(1) = f3 − 1 = 1.
• По определению m(h) = m(h− 1) +m(h− 2) + 1, значит,
m(h) = (fh+1 − 1) + (fh − 1) + 1 = fh+2 − 1, так как fh + fh+1 = fh+2.

АиАЯ Лекция 22 7 / 30

Деревья Фибоначчи

Теорема. Пусть C1 и C2 таковы, что уравнение

r2 − C1r − C2 = 0

имеет два различных корня r1 и r2, r1 6= r2.

Тогда для an = α1rn1 + α2rn2 выполняется соотношение
an = C1an−1 + C2an−2.

Доказательство. Раз r1 и r2 — корни уравнения, то r21 = C1r1+C2, r22 =
C1r2+C2. Поэтому C1an−1+C2an−2 = C1(α1rn−11 +α2rn−12)+C2(α1rn−21 +

α2rn−22) = α1rn−21 (C1r1+C2)+α2rn−22 (C1r2+C2) = α1rn−21 r21 +α2rn−22 r22 =
α1rn1 + α2rn2 = an.

АиАЯ Лекция 22 8 / 30

Деревья Фибоначчи

Теорема. Пусть C1 и C2 таковы, что уравнение

r2 − C1r − C2 = 0

имеет два различных корня r1 и r2, r1 6= r2.

Тогда из an = C1an−1 + C2an−2 и начальных условий a0,a1 следует
an = α1rn1 + α2rn2 для n = 1, 2,

Доказательство. Нужно повторить в обратном порядке вывод
предыдущей теоремы, но и подобрать такие α1 и α2, чтобы
a0 = α1 + α2,a1 = α1r1 + α2r2. Решая эту систему линейных
уравнений, получим

α1 =
a1 − a0r2
r1 − r2

, α2 =
−a1 + a0r1
r1 − r2

.

.

АиАЯ Лекция 22 9 / 30

Деревья Фибоначчи

Применим доказанные теоремы к числам Фибоначчи fn = fn−1 +
fn−2. Уравнение r2 − r − 1 = 0 имеет корни r1,2 = 1±

√
5

2 .

Следовательно, fn = α1(
1+

√
5

2)n + α2(
1−

√
5

2)n, f0 = α1 + α2 = 0, f1 =

α1(
1+

√
5

2) + α2(
1−

√
5

2) = 1.

Из описанной системы получаем α1 =
1√
5 , α2 = − 1√

5 .

Отсюда m(h) = fh+2 − 1 = 1√
5 (

1+
√
5

2)h+2 − 1√
5 (

1−
√
5

2)h+2 − 1.

Заметим, что второе слагаемое по модулю не превосходит
единицы, а, следовательно,

m(h) + 1 > 1√
5
(
1+

√
5

2
)h+2.

АиАЯ Лекция 22 10 / 30

Деревья Фибоначчи

m(h) + 1 > 1√
5
(
1+

√
5

2
)h+2.

Обозначим γ = 1+
√
5

2 и логарифмируем неравенство. Тогда

h+ 2 < log2(m+ 1)
log2 γ

+
log2

√
5

log2 γ
,

откуда
h < 1.44 log2(m+ 1)− 0.32.

Таким образом, мы доказали, что для деревьев Фибоначчи с
числом вершин m количество сравнений в худшем случае не
превышает 1.44 log2(m+ 1).

АиАЯ Лекция 22 11 / 30

АВЛ-деревья

В АВЛ-деревьях (Адельсон-Вельский, Ландис) оценка сложности
не лучше, чем в совершенном дереве, но не хуже, чем в деревьях
Фибоначчи для всех операций: поиск, исключение, занесение.

АВЛ-деревом (подравненным деревом) называется такое
двоичное дерево, в котором для любой его вершины высоты
левого и правого поддерева отличаются не более, чем на 1.

АиАЯ Лекция 22 12 / 30

АВЛ-деревья

В узлах дерева записаны значения показателя
сбалансированности (balance factor), равного разности высот
левого и правого поддеревьев. Показатель сбалансированности
может иметь одно из трех значений:
–1: Высота левого поддерева на 1 больше высоты правого
поддерева.
0: Высоты обоих поддеревьев одинаковы.
+1: Высота правого поддерева на 1 больше высоты левого
поддерева.

У совершенного дерева все узлы имеют показатель баланса 0
(это самое «хорошее» АВЛ-дерево) а у дерева Фибоначчи все
узлы имеют показатель баланса +1 (либо –1) (это самое «плохое»
АВЛ-дерево).

АиАЯ Лекция 22 13 / 30

Типичная структура узла и операции в АВЛ-деревьях

typedef int key_t;
struct avlnode;
typedef struct avlnode *avltree;
struct avlnode {

key_t key; //ключ
avltree left; //левое поддерево
avltree right; //правое поддерево
// int balance; показательбаланса
int height; //высота поддерева

};

avltree makeempty (avltree t); //удалить дерево
avltree find (key_t x, avltree t); //поиск поключу
avltree findmin (avltree t); //минимальный ключ
avltree findmax (avltree t); //максимальный ключ
avltree insert (key_t x, avltree t); //вставить узел
avltree delete (key_t x, avltree t); //исключить узел
АиАЯ Лекция 22 14 / 30

Реализация простейших базовых операций

avltree makeempty (avltree t) {
if (t != NULL) {

makeempty (t->left);
makeempty (t->right);
free (t);

}
return NULL;

}

avltree find (key_t x, avltree t) {
if (t == NULL || x == t->key)
return t;

if (x < t->key)
return find (x, t->left);

if (x > t->key)
return find (x, t->right);

}
АиАЯ Лекция 22 15 / 30

Реализация простейших базовых операций

avltree findmin (avltree t) {
if (t == NULL)

return NULL;
else if (t->left == NULL)

return t;
else

return findmin (t->left);
}

avltree findmax (avltree t) {
if (t != NULL)

while (t->right != NULL)
t = t->right;

return t;
}

АиАЯ Лекция 22 16 / 30

Включение узла в АВЛ-дерево

Рассматриваемое дерево состоит из корневой вершины r и
левого (L) и правого (R) поддеревьев, имеющих высоты hL и hR
соответственно. Для определённости будем считать, что новый
ключ включается в поддерево L.

Если hL не изменяется, то не изменяются и соотношения между hL
и hR, и свойства АВЛ-дерева сохраняются.

Если hL увеличивается на единицу, возможны три случая:

• hL = hR, тогда после добавления вершины L и R станут
разной высоты, но свойство сбалансированности сохранится;

• hL < hR, тогда после добавления новой вершины L и R станут
равной высоты, т.е. сбалансированность общего дерева даже
улучшится;

• hL > hR, тогда после включения ключа сбалансированность
нарушится, и потребуется перестройка дерева.

АиАЯ Лекция 22 17 / 30

Включение узла в АВЛ-дерево

Новая вершина добавляется к левому поддереву поддерева L.
В результате поддерево с корнем в узле B разбалансировалось:
разность высот его левого и правого поддеревьев стала равной
–2.

Преобразование, разрешающее ситуацию — однократный
поворот RR: делаем узел A корневым узлом поддерева, в
результате правое поддерева с корнем в узле B «опускается» и
разность высот становится равной 0.

АиАЯ Лекция 22 18 / 30

Включение узла в АВЛ-дерево

Новая вершина добавляется к правому поддереву поддерева L. В
результате поддерево с корнем в C разбалансировалось: разность
высот его левого и правого поддеревьев стала равной -2.

Преобразование, разрешающее ситуацию — двукратный поворот
LR: «вытягиваем» узел B на самый верх, чтобы его поддеревья
поднялись. Для этого сначала делаем левый поворот, меняя
местами поддеревья с корневыми узлами A и B, а потом правый
поворот, меняя местами поддеревья с корнями B и C.

АиАЯ Лекция 22 19 / 30

Построение АВЛ-дерева

static inline int height (avltree p) {
return p ? p->height : 0;

}

static inline int height (avltree p) {
return p ? p->height : 0;

}

АиАЯ Лекция 22 20 / 30

Построение АВЛ-дерева. Однократные повороты

Между узлом и его левым сыном.

Функция SingleRotateWithLeft вызывается только в том случае, когда у узла K2 есть

левый сын. Функция выполняет поворот между узлом (K2) и его левым сыном,

корректирует высоты поддеревьев, после чего возвращает новый корень.

static avltree SingleRotateWithLeft (avltree k2) {
avltree k1;
/* выполнение поворота */
k1 = k2->left;
k2->left = k1->right; /* k1 != NULL */
k1->right = k2;
/* корректировка высот переставленных узлов */
k2->height = max (height (k2->left),

height (k2->right)) + 1;
k1->height = max (height (k1->left), k2->height) + 1;
return k1; /* новый корень */

}
АиАЯ Лекция 22 21 / 30

Построение АВЛ-дерева. Однократные повороты

Между узлом и его правым сыном.

Эта функция вызывается только в том случае, когда у узла K1 есть правый сын.

Функция выполняет поворот между узлом (K1) и его правым сыном, корректирует

высоты поддеревьев, после чего возвращает новый корень.

static avltree SingleRotateWithRight (avltree k1) {
avltree k2;
k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k1->height = max (height (k1->left)

height (k1->right)) + 1;
k2->height = max (height (k2->right), k1->height) + 1;
return k2; /* новый корень */

}

АиАЯ Лекция 22 22 / 30

Построение АВЛ-дерева. Двойные повороты

LR-поворот.

Эта функция вызывается только тогда, когда у узла K3 есть левый сын, а у левого

сына K3 есть правый сын. Функция выполняет двойной поворот LR, корректирует

высоты поддеревьев, после чего возвращает новый корень.

static avltree DoubleRotateWithLeft (avltree k3) {
/* Поворот между K1 и K2 */
k3->left = SingleRotateWithRight (k3->left);
/* Поворот между K3 и K2 */
return SingleRotateWithLeft (k3);

}

АиАЯ Лекция 22 23 / 30

Построение АВЛ-дерева. Двойные повороты

RL-поворот.

Эта функция вызывается только в том случае, когда у узла K1 есть правый сын, а

у правого сына узла K1 есть левый сын. Функция выполняет двойной поворот RL,

корректирует высоты поддеревьев, после чего возвращает новый корень.

static avltree DoubleRotateWithRight (avltree k1) {
/* Поворот между K3 и K2 */
k1->right = SingleRotateWithLeft (k1->right);
/* Поворот между K1 и K2 */
return SingleRotateWithRight(k1);

}

АиАЯ Лекция 22 24 / 30

Построение АВЛ-дерева. Вставить новый узел

avltree insert (key_t x, avltree t) {
if (t == NULL) {
/* создание дерева с одним узлом */
t = malloc (sizeof (struct avlnode));
if (!t)

abort();
t->key = x;
t->height = 1;
t->left = t->right = NULL;

}
else if (x < t->key) {
t->left = insert (x, t->left);
if (height (t->left) – height (t->right) == 2) {

АиАЯ Лекция 22 25 / 30

Построение АВЛ-дерева. Вставить новый узел

if (x < t->left->key)
t = SingleRotateWithLeft (t);

else
t = DoubleRotateWithLeft (t);

}
}
else if (x > t->key) {
t->right = insert (x, t->right);
if (height (t->right) – height (t->left) == 2) {

if (x > t->right->key)
t = SingleRotateWithRight (t);

else
t = DoubleRotateWithRight (t);

}
}

АиАЯ Лекция 22 26 / 30

Построение АВЛ-дерева. Вставить новый узел

/* иначе x уже в дереве */
t->height = max (height (t->left),

height (t->right)) + 1;
return t;

}

АиАЯ Лекция 22 27 / 30

Пример построения АВЛ-дерева

Последовательно вставляем целые числа 4,5,7,2,1,3,6.

АиАЯ Лекция 22 28 / 30

Удаление узла из АВЛ-дерева

Удаление узла из АВЛ-дерева требует балансировки дерева.
Иными словами, в конец функции, выполняющей удалениеузла,
необходимо добавить вызовы функций SingleRotateWithRight(T),
SingleRotateWithLeft(T), DoubleRotateWithRight(T) и
DoubleRotateWithLeft(T).

Возможны случаи вращения, не встречавшиеся при вставке.

Может оказаться необходимым выполнить несколько вращений.

АиАЯ Лекция 22 29 / 30

Оценка сложности

Ранее были получены оценки высоты самого «хорошего»
АВЛ-дерева, содержащего m узлов (полностью
сбалансированное дерево):

h = O(log2(m+ 1)),

и самого «плохого» АВЛ-дерева, содержащего m узлов (дерево
Фибоначчи):

h < 1.44 log2(m+ 1)− 0.32.

Следовательно, для «среднего» АВЛ-дерева, содержащего m
узлов:

log2(m+ 1) 6 h 6 1.44 log2(m+ 1)− 0.32.

АиАЯ Лекция 22 30 / 30

1

Алгоритмы и алгоритмические языки

Лекция 23

4 декабря 2019 г.

2

 Красно-черные деревья

 Красно-черное дерево – двоичное дерево поиска, каждая

 вершина которого окрашена либо в красный, либо в черный цвет

 Поля – цвет, дети, родители

 typedef struct rbtree {

 int key;

 char color;

 struct rbtree *left, *right, *parent;

 } rbtree, *prbtree;

 Будем считать, что если left или right равны NULL, то это

 “указатели” на фиктивные листы, т.е. все вершины внутренние

3

 Красно-черные деревья

 Свойства красно-черных деревьев:

1. Каждая вершина либо красная, либо черная.

2. Каждый лист (фиктивный) – черный.

3. Если вершина красная, то оба ее сына – черные.

4. Все пути, идущие от корня к любому листу, содержат одинаковое

количество черных вершин

nil nil nil nil 35

nil nil nil nil

nil 20

nil nil

7 15 nil 12

nil nil 3 nil nil nil

nil nil

17

26

nil

41

21 14

10 16 19 23

30 47

28 38
nil

39

4

 Красно-черные деревья

 Обозначим bh(x) – "черную" высоту поддерева с корнем х (саму

 вершину в число не включаем), т.е. количество черных вершин от

 х до листа

 Черная высота дерева – черная высота его корня

 Лемма: Красно-черное дерево с n внутренними вершинами (без

 фиктивных листьев) имеет высоту не более 2log2(n+1).

 (1) Покажем вначале, что поддерево х содержит не меньше

 2bh(x) – 1 внутренних вершин

 (1a) Индукция. Для листьев bh = 0, т.е. 2bh(x) – 1 = 20– 1 = 0.

 (1б) Пусть теперь х – не лист и имеет черную высоту k.

 Тогда каждый сын х имеет черную высоту не меньше k – 1

 (красный сын имеет высоту k, черный – k – 1).

 (1в) По предположению индукции каждый сын имеет не меньше

 2k-1 – 1 вершин. Поэтому поддерево х имеет не меньше 2k-1 – 1 +

 2k-1 – 1 + 1 = 2k – 1.

5

 Красно-черные деревья

 Лемма: Красно-черное дерево с n внутренними вершинами (без

 фиктивных листьев) имеет высоту не более 2log2(n+1).

 (2) Теперь пусть высота дерева равна h.

 (2а) По свойству 3 черные вершины составляют не меньше

 половины всех вершин на пути от корня к листу. Поэтому

 черная высота дерева bh не меньше h/2.

 (2б) Тогда n ≥ 2h/2 – 1 и h ≤ 2log2(n + 1). Лемма доказана.

 Следовательно, поиск по красно-черному дереву имеет

 сложность O (log2n).

6

 Красно-черные деревья: вставка вершины

 Сначала мы используем обычную процедуру занесения новой

 вершины в двоичное дерево поиска:

  красим новую вершину в красный цвет.

 Если дерево было пустым, то красим новый корень в черный

 цвет

 Свойство 4 при вставке изначально не нарушено, т.к. новая

 вершина красная

 Если родитель новой вершины черный (новая – красная), то

 свойство 3 также не нарушено

 Иначе (родитель красный) свойство 3 нарушено

7

 Красно-черные деревья: вставка вершины

 Случай 1: “дядя” (второй сын родителя родителя текущей

 вершины) тоже красный (как текущая вершина и родитель)

  Возможно выполнить перекраску:

 родителя и дядю (вершины A и D) – в черный цвет,

 деда – (вершина C) – в красный цвет

  Свойство 4 не нарушено (черные высоты поддеревьев

 совпадают)

С

A

α

γ β

B
ε δ

D

перекраска

A

α

γ β

B
ε δ

С

D

8

 Красно-черные деревья: вставка вершины

 Случай 2: “дядя” (второй сын родителя родителя текущей

 вершины) черный

  Шаг 1: Необходимо выполнить левый поворот родителя

 текущей вершины (вершины A)

Левый
поворот

δ

α

A

γ β

B γ

β α

A

С

B δ

С

9

 Красно-черные деревья: вставка вершины

 Случай 2: “дядя” (второй сын родителя родителя текущей

 вершины) черный

  Шаг 2: Необходимо выполнить правый поворот

 вершины C, после чего …

  Шаг 3: … перекрасить вершины B и C

  Все поддеревья имеют черные корни и одинаковую

 черную высоту, поэтому свойства 3 и 4 верны

Правый
поворот

γ

β α

A

C

B δ

B

β α

A

δ γ

C

10

 Самоперестраивающиеся деревья (splay trees)

 Двоичное дерево поиска, не содержащее дополнительных

 служебных полей в структуре данных

 (нет баланса, цвета и т.п.)

 Гарантируется не логарифмическая сложность в худшем случае,

 а амортизированная логарифмическая сложность:

  Любая последовательность из m словарных операций

 (поиска, вставки, удаления) над n элементами, начиная

 с пустого дерева, имеет сложность O(m log n)

  Средняя сложность одной операции O(log n)

  Некоторые операции могут иметь сложность (n)

  Не делается предположений о распределении

 вероятностей ключей дерева и словарных операций

 (т.е. что некоторые операции выполнялись чаще других)

 Хорошее описание в:

 Harry R. Lewis, Larry Denenberg. Data Structures and

 Their Algorithms. HarperCollins, 1991. Глава 7.3.

http://www.amazon.com/Structures-Their-Algorithms-Harry-

Lewis/dp/067339736X

http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X
http://www.amazon.com/Structures-Their-Algorithms-Harry-Lewis/dp/067339736X

11

 Самоперестраивающиеся деревья (splay trees)

 Идея: эвристика Move-to-Front

  Список: давайте при поиске элемента в списке

 перемещать найденный элемент в начало списка

  Если он потребуется снова в обозримом будущем,

 он найдется быстрее

 Move-to-Front для двоичного дерева поиска: oперация Splay(K, T)

 (подравнивание, перемешивание, расширение)

  После выполнения операции Splay дерево T

 перестраивается (оставаясь деревом поиска) так, что:

  Если ключ K есть в дереве, то он становится корнем

  Если ключа K нет в дереве, то в корне оказывается

 его предшественник или последователь в симметричном

 порядке обхода

12

 Реализация словарных операций через splay

 Поиск (LookUp): выполним операцию Splay(K, T) и проверим

 значение ключа в корне:

  если значение равно K, то ключ найден

13

 Реализация словарных операций через splay

 Вставка (Insert): выполним операцию Splay(K, T) и проверим

 значение ключа в корне:

  если значение уже равно K, то обновим данные ключа

  если значение другое, то вставим новый корень К и

 поместим старый корень J слева или справа

 (в зависимости от значения J)

 Реализация словарных операций через splay

 Операция Concat (T1, T2) – слияние деревьев поиска T1 и T2 таких,

 что все ключи в дереве T1 меньше, чем все ключи в дереве T2,

 в одно дерево поиска

 Слияние (Concat): выполним операцию Splay(+∞, T1) со значением

 ключа, заведомо больше любого другого в T1

  После Splay(+∞, T1) у корня дерева T1 нет правого сына

  Присоединим дерево T2 как правый сын корня T1

14

 Реализация словарных операций через splay

 Удаление (Delete): выполним операцию Splay(K, T) и проверим

 значение ключа в корне:

  если значение не равно K, то ключа в дереве нет и

 удалять нам нечего

  иначе (ключ был найден) выполним операцию Concat

 над левым и правым сыновьями корня, а корень удалим

15

16

 Реализация операции splay

 Шаг 1: ищем ключ K в дереве обычным способом, запоминая

 пройденный путь по дереву

  Может потребоваться память, линейная от количества

 узлов дерева

  Для уменьшения количества памяти можно

 воспользоваться инверсией ссылок (link inversion)

 ○ перенаправление указателей на сына

 назад на родителя вдоль пути по дереву

 плюс 1 бит на обозначение направления

 Шаг 2: получаем указатель P на узел дерева либо с ключом K,

 либо с его соседом в симметричном порядке обхода, на котором

 закончился поиск (сосед имеет единственного сына)

 Шаг 3: возвращаемся назад вдоль запомненного пути,

 перемещая узел P к корню (узел P будет новым корнем)

17

 Реализация операции splay

 Шаг 3а): отец узла P – корень дерева (или у P нет деда)

  выполняем однократный поворот налево или направо

18

 Реализация операции splay

 Шаг 3б): узел P и отец узла P – оба левые или правые дети

  выполняем два однократных поворота направо (налево),

 сначала вокруг деда P, потом вокруг отца P

19

 Реализация операции splay

 Шаг 3в): отец узла P – правый сын, а P – левый сын (или наоборот)

  выполняем два однократных поворота в противоположных

 направлениях (сначала вокруг отца P направо, потом

 вокруг деда P налево)

20

 Пример операции splay над узлом D

 Случай б): отец узла D (E) и сам узел D – оба левые сыновья

21

 Пример операции splay над узлом D

 Случай в): отец узла D (H) – правый сын, а сам узел D – левый сын

22

 Пример операции splay над узлом D

 Случай а): отец узла D (L) – корень дерева

23

 Сложность операции splay

 Пусть каждый узел дерева содержит некоторую сумму денег.

  Весом узла является количество ее потомков,

 включая сам узел

  Рангом узла r(N) называется логарифм ее веса

  Денежный инвариант: во время всех операций с деревом

 каждый узел содержит r(N) рублей

  Каждая операция с деревом стоит фиксированную сумму

 за единицу времени

 Лемма. Операция splay требует инвестирования не более чем в

 рублей с сохранением денежного инварианта.

 Теорема. Любая последовательность из m словарных операций

 на самоперестраивающемся дереве, которое было изначально

 пусто и на каждом шаге содержало не более n узлов, занимает

 не более O(m log n) времени.

  Каждая операция требует не более O(log n) инвестиций,

 при этом может использовать деньги узла

  По лемме инвестируется всего не более

 рублей, сначала дерево содержит 0 рублей, в конце

 содержит ≥0 рублей – O(m log n) хватает на все операции.

  1lg3 n

 )1lg3(nm

24

 Сбалансированные деревья: обобщение через ранги

 Haeupler, Sen, Tarjan. Rank-balanced trees. ACM Transactions on

 Algorithms, 2015.

 Обобщение разных видов сбалансированных деревьев через

 понятие ранга (rank) и ранговой разницы (rank difference)

  АВЛ, красно-черные деревья, 2-3 деревья, B-деревья

 Новый вид деревьев: слабые АВЛ-деревья (weak AVL)

 Анализ слабых АВЛ-деревьев, анализ потенциалов

25

 Сбалансированные деревья: понятие ранга

 Ранг (rank) вершины r(x): неотрицательное целое число

  Ранг отсутствующей (null) вершины равен -1

 Ранг дерева: ранг корня дерева

 Ранговая разница (rank difference): если у вершины x есть

 родитель p(x), то это число r(p(x)) – r(x).

  У корня дерева нет ранговой разницы

 i-сын: вершина с ранговой разницей, равной i.

 i,j-вершина: вершина, у которой левый сын – это i-сын,

 а правый сын – это j-сын. Один или оба сына могут

 отсутствовать. i,j- и j,i-вершины не различаются.

26

 Сбалансированные деревья: ранговый формализм

 Конкретный вид сбалансированного дерева определяется

 рангом и ранговым правилом.

 Ранговое правило должно гарантировать:

  Высота дерева (h) превосходит его ранг не более чем

 в константное количество раз (плюс, возможно, O(1))

  Ранг вершины (k) превосходит логарифм ее размера (n)

 не более чем в константное количество раз

 (плюс, возможно, O(1))

 Размер вершины – число ее потомков, включая себя,

 т.е. размер поддерева с корнем в этой вершине

  Т.е. h = O (k), k = O (log n)  h = O (log n)

 Совершенное дерево:

 ранг дерева – его высота; все вершины – 1,1.

27

 Сбалансированные деревья: ранговые правила

 АВЛ-правило: каждая вершина – 1,1 или 1,2.

  Ранг: высота дерева.
 (или: все ранги положительны, каждая вершина имеет хотя бы одного 1-сына)

  Можно хранить один бит, указывающий на

 ранговую разницу вершины

 Красно-черное правило: ранговая разница любой вершины

 равна 0 или 1, при этом родитель 0-сына не может быть 0-сыном.

  0-сын – красная вершина, 1-сын – черная вершина

  Ранг: черная высота

  Корень не имеет цвета (т.к. не имеет ранговой разницы!)

 Слабое АВЛ-правило: ранговая разница любой вершины

 равна 1 или 2; все листья имеют ранг 0.

  Вдобавок к АВЛ-деревьям разрешаются 2,2-вершины

  Бит на узел для ранговой разницы или ее четности

  Балансировка: не более двух поворотов и O(log n)

 изменений ранга для вставки/удаления, при этом

 амортизированно – лишь O(1) изменений.

  Слабое АВЛ-дерево является красно-черным деревом

1

Алгоритмы и алгоритмические языки

Лекция 24

7 декабря 2019 г.

2

Пирамидальная сортировка: пирамида (двоичная куча)

 Рассматриваем массив a как двоичное дерево:

  Элемент a[i] является узлом дерева

  Элемент a[i/2] является родителем узла a[i]

  Элементы a[2*i] и a[2*i+1] являются детьми узла a[i]

 Для всех элементов пирамиды выполняется соотношение

 (основное свойство кучи):

 a[i] >= a[2*i] и a[i] >= a[2*i+1]

 или

 a[i/2] <= a[i]

  Сравнение может быть как в большую, так и в меньшую сторону

 Замечание. Определение предполагает нумерацию элементов

 массива от 1 до n

  Для нумерации от 0 до n-1:

 a[i] >= a[2*i+1] и a[i] >= a[2*i+2]

2

3

Пирамидальная сортировка: пирамида (двоичная куча)

 Для всех элементов пирамиды выполняется соотношение:

 a[i] >= a[2*i] и a[i] >= a[2*i+1]

 или

 a[i/2] <= a[i]

  Сравнение может быть как в большую, так и в меньшую сторону

3

4

Пирамидальная сортировка: просеивание элемента

 Как добавить элемент в уже существующую

 пирамиду?

 Алгоритм:
  Поместим новый элемент в корень пирамиды

  Если этот элемент меньше одного из сыновей:

  Элемент меньше наибольшего сына

  Обменяем элемент с наибольшим сыном

 (это позволит сохранить свойство пирамиды

 для другого сына)

  Повторим процедуру для обмененного сына

4

5

Пирамидальная сортировка: просеивание элемента

static void sift (int *a, int l, int r) {

 int i, j, x;

 i = l; j = 2*l; x = a[l];

 /* j указывает на наибольшего сына */

 if (j < r && a[j] < a[j + 1])

 j++;

 /* i указывает на отца */

 while (j <= r && x < a[j]) {

 /* обмен с наибольшим сыном: a[i] == x */

 a[i] = a[j]; a[j] = x;

 /* продвижение индексов к следующему сыну */

 i = j; j = 2*j;

 /* выбор наибольшего сына */

 if (j < r && a[j] < a[j + 1])

 j++;

 }

}

5

6

Пирамидальная сортировка: просеивание элемента

 Вызов sift (2, 10) для левого поддерева

6

7

Пирамидальная сортировка: просеивание элемента

 Вызов sift (2, 10) для левого поддерева

7

8

Пирамидальная сортировка: просеивание элемента

 Вызов sift (2, 10) для левого поддерева

8

9

Пирамидальная сортировка: алгоритм

 (1) Построим пирамиду по сортируемому массиву
  Элементы массива от n/2 до n являются листьями

 дерева, а следовательно, правильными пирамидами из

 одного элемента

  Для остальных элементов в порядке уменьшения индекса

 просеиваем их через правую часть массива

 (2) Отсортируем массив по пирамиде
  Первый элемент массива максимален (корень пирамиды)

  Поменяем первый элемент с последним

 (таким образом, последний элемент отсортирован)

  Теперь для первого элемента свойство кучи нарушено:

 повторим просеивание первого элемента в пирамиде

 от первого до предпоследнего

  Снова поменяем первый и предпоследний элемент и т.п.

9

10

Пирамидальная сортировка: программа

void heapsort (int *a, int n) {

 int i, x;

 /* Построим пирамиду по сортируемому массиву */

 /* Элементы нумеруются с 0 -> идем от n/2-1 */

 for (i = n/2 - 1; i >= 0; i--)

 sift (a, i, n - 1);

 for (i = n – 1; i > 0; i--) {

 /* Текущий максимальный элемент в конец */

 x = a[0]; a[0] = a[i]; a[i] = x;

 /* Восстановим пирамиду в оставшемся массиве */

 sift (a, 0, i – 1);

 }

}

10

11

Пирамидальная сортировка: пример

11

12

Пирамидальная сортировка: пример

12

13

Пирамидальная сортировка: пример

13

14

Пирамидальная сортировка: пример

14

15

Пирамидальная сортировка: пример

15

16

Пирамидальная сортировка: сложность алгоритма

 (1) Построим пирамиду по сортируемому массиву
  Элементы массива от n/2 до n являются листьями

 дерева, а следовательно, правильными пирамидами из 1 элемента

  Для остальных элементов в порядке уменьшения индекса

 просеиваем их через правую часть массива

 (2) Отсортируем массив по пирамиде
  Первый элемент массива максимален (корень пирамиды)

  Поменяем первый элемент с последним

 (таким образом, последний элемент отсортирован)

  Теперь для первого элемента свойство кучи нарушено:

 повторим просеивание первого элемента в пирамиде

 от первого до предпоследнего

  Снова поменяем первый и предпоследний элемент и т.п.

 Сложность этапа построения пирамиды есть O(n)

 Сложность этапа сортировки есть O(n log n)

 Сложноcть в худшем случае также O(n log n)

 Среднее количество обменов – n/2* log n

16

17

 Хеш-таблицы

 Словарные операции: добавление, поиск и удаление элементов

 по их ключам.

 Организуется таблица ключей: массив Index[m] длины m,

 элементы которого содержат значение ключа и указатель

 на данные (информацию), соответствующие этому ключу.

  Прямая адресация. Применяется, когда количество

 возможных ключей невелико: например, ключи

 перенумерованы целыми числами из множества

 U = {0, 1, 2, …, m – 1}, где m не очень большое число.

  В случае прямой адресации ключ с номером k

 соответствует элементу Index[k]. Этот ключ обычно не

 записывается в элемент массива, т.к. совпадает с

 индексом.

  Все три словарные операции выполняются за время

 порядка O(1).

  Основной недостаток прямой адресации – таблица Index

 занимает слишком много места, если множество

 всевозможных ключей U достаточно велико

 (m большое целое число).

18

 Хеш-таблицы

 Хеширование тоже позволяет обеспечить среднее время

 операций с данными Tср(n) = O(1) и тоже за счет использования

 таблицы Index.

 Хеш-таблица использует память объемом (|K|), где |K| –

 мощность множества использованных ключей (правда,

 это оценка в среднем, а не в худшем случае, да и то при

 определенных предположениях).

 В случае хеш-адресации элементу с ключом key отводится

 строка таблицы с номером hash(key), где

 hash: U  {0, 1, 2, …, m – 1} – хеш-функция.

 Число hash(key) называется хеш-значением ключа key.

 Если хеш-значения ключей key1 и key2 совпадают

 (hash(key1) == hash(key2)), говорят, что случилась коллизия.

 Выбрать хеш-функцию, для которой коллизии исключены,

 возможно лишь тогда, когда все возможные значения ключей

 заранее известны.

 В общем же случае коллизии неизбежны, так как |U| > m.

19

 Хеш-таблицы

 Простейший способ обработки коллизий – сцепление элементов

 с одинаковыми значениями хеш-функции: все такие элементы

 сцепляются в список, а в хеш-таблицу помещается указатель на

 первый элемент этого списка. В пределах каждого такого списка

 осуществляется последовательный поиск.

 В случае использования двусвязного списка среднее время

 выполнения каждой из трех словарных операций будет иметь

 порядок O(1). Основная трудность – в поиске по списку, но

 коллизий не очень много и hash(key) можно выбрать так, чтобы

 списки были достаточно короткими.

 Примером хеш-таблицы с цепочками является записная книжка с

 алфавитом.

20

 Хеш-таблицы

 Устройство простой хеш-таблицы (реализация хеширования с

 цепочками).

  Задается некоторое фиксированное число m

 (типичные значения m от 100 до 1,000,000).

  Создается массив Index[m] указателей начал

 двусвязных списков (цепочек), который называется

 индексом хеш-таблицы. В начале работы все указатели

 имеют значения NULL.

  Задается хеш-функция hash(), которая получает на вход

 ключи и выдает значение от 0 до m – 1.

  При добавлении пары (key, value) вычисляется

 h = hash(key) и пара добавляется в список Index[h].

  При удалении либо поиске пары (key, value) вычисляется

 h = hash(key) и происходит удаление либо поиск пары

 (key, value) в списке Index[h].

21

 Хеш-таблицы

 Анализ хеширования с цепочками.

  Пусть Index[m] – хеш-таблица с m позициями, в которую

 занесено n пар (key, value). Отношение  = n/m

 называется коэффициентом заполнения хеш-таблицы.

  Коэффициент заполнения  позволяет судить о качестве

 хеш-функции:

 пусть – средняя длина списков;

 если hash(key) – «хорошая» хеш-функция, то

 дисперсия  .

  Это условие исключает наихудший случай, когда хеш-

 значения всех ключей одинаковы, заполнен только один

 список и поиск в этом списке из n элементов имеет

 среднее время (n).







1

0

|][|
1 m

i

iIndex
m

M

 





1

0

2
|][|

1 m

i

iIndexM
m

D

22

 Хеш-таблицы

 Анализ хеширования с цепочками.

  Равномерное хеширование: хеш-функция подобрана

 таким образом, что каждый данный элемент может

 попасть в любую из m позиций хеш-таблицы с равной

 вероятностью, независимо от того, куда попали другие

 элементы.

  Условие из предыдущего слайда выполняется и средняя

 длина каждого из m списков хеш-таблицы с

 коэффициентом заполнения  равна .

  Среднее время поиска элемента, отсутствующего в

 таблице, пропорционально средней длине списка ,

 так как поиск сводится к просмотру одного из списков.

  Поскольку среднее время вычисления хеш-функции

 равно (1), то среднее время выполнения каждой из

 словарных операций с учетом вычисления хеш-функции

 равно (1 + ).

23

 Хеш-таблицы

 Теорема. Пусть T – хеш-таблица с цепочками, имеющая

 коэффициент заполнения , причем хеширование равномерно.

 Тогда при поиске элемента, отсутствующего в таблице, будет

 просмотрено в среднем  элементов таблицы, а время поиска,

 включая время на вычисление хеш-функции, будет равно (1 + ).

 Теорема. При равномерном хешировании среднее время

 успешного поиска в хеш-таблице с коэффициентом заполнения

  есть (1 + ).

  Замечание. Теорема не сводится к предыдущей, так как

 в предыдущей теореме оценивалось среднее число

 действий, необходимых для поиска случайного элемента,

 равновероятно попадающего в любую из ячеек таблицы.

  В этой теореме сначала рассматривается случайно

 выбранная последовательность элементов, добавляемых

 в таблицу (на каждом шаге все значения ключа равновероятны

 и шаги независимы); потом в полученной таблице выбираем

 элемент для поиска, считая, что все ее элементы равновероятны.

 Из теорем следует, что в случае равномерного хеширования

 среднее время выполнения любой словарной операции есть O(1).

24

 Методы построения хеш-функций

 Построение хеш-функции методом деления с остатком.

  Хеш-функция hash(key) определяется соотношением

 hash(key) = key % m.

  При правильном выборе m такая хеш-функция

 обеспечивает распределение, близкое к равномерному.

  Правильный выбор m: в качестве m выбирается

 достаточно большое простое число, далеко отстоящее от

 степеней двойки.

  Например, если устраивает средняя длина списков 3, а

 число записей, доступ к которым нужно обеспечить с

 помощью хеш-таблицы  2000, то можно взять

 m = 2000/3  701. Тогда hash(key) = key % 701.

  Недостаток: в качестве m нельзя брать степень двойки,

 так как если m = 2p, то hash(key) – это просто p младших

 битов числа key.

25

 Методы построения хеш-функций
 Построение хеш-функции методом умножения.

  Пусть количество хеш-значений равно m.

 Выберем и зафиксируем вещественную константу

 v, 0 < v < 1; положим hash(key) = m(frac(keyv)

 frac(keyv) – дробная часть числа keyv.

  Достоинство метода умножения в том, что качество хеш-

 функции слабо зависит от выбора m. Обычно в качестве

 m выбирают степень двойки, так как в этом случае

 умножение на m сводится к сдвигу.

  Пример. Пусть в используемом компьютере длина слова

 равна w битам и ключ key помещается в одно слово.

  Если m = 2p, то вычисление hash(key) можно выполнить

 следующим образом: умножим key на w-битовое целое

 число v2w; получится 2w-битовое число r0.

 В качестве значения hash(key) возьмем старшие p битов

 “дробной” части числа r0 / 2
w (r0 %2w или обнуление w

 старших разрядов, потом умножение на m = 2p).

  Согласно Д. Кнуту выбор

 является удачным.

  ...6180339887.02/15 v

26

 Хеш-функции: программы
#define MAX 701 /* размер хеш-таблицы */

struct htype {

 int key; /* ключ */

 int val; /* значение элемента данных */

 struct htype *next; /* указатель на следующий элемент

 цепочки */

 struct htype *prvs; /* указатель на предыдущий элемент

 цепочки */

};

struct htype *index[MAX];

27

 Хеш-функции: программы
#define MAX 701 /* размер хеш-таблицы */

static inline int hash (int key) {

 return key % MAX;

}

/* инициализация хеш-таблицы */

void init (void) {

 int i;

 for (i = 0; i < MAX; i++)

 index[i] = NULL; /* массив начал цепочек */

}

28

 Хеш-функции: программы
/* Вычисление хеш-адреса и поиск по ключу k:

если элемент с ключом k найден, возвращаем указатель

на него, если нет, возвращаем NULL */

struct htype *search (int k) {

 /* вычисление хеш-адреса */

 int h = hash (k);

 /* поиск ключа k */

 if (index[h]) {

 struct htype *p = index[h];

 do {

 if (p->key == k)

 return p;

 else

 p = p->next;

 } while (p);

 }

 return NULL;

}

29

 Хеш-функции: программы
/* Порождение нового элемента цепочки и возврат указателя

на него */

struct htype *new (void) {

 struct htype *p;

 p = malloc (sizeof (struct htype));

 if (!p)

 abort ();

 p->key = -1;

 p->val = 0;

 p->next = NULL;

 p->prvs = NULL;

 return p;

}

30

 Хеш-функции: программы
/* Вычисление хеш-адреса и поиск по ключу k: если элемент с ключом k

найден, возвращаем значение true и указатель на найденный элемент;

если элемент не найден, возвращаем значение false и указатель на

последний элемент либо NULL, если цепочка пустая */

static bool search_internal (int k, struct htype **r) {

 struct htype *p, *q;

 if ((p = index[hash (k)]) != NULL) {

 do {

 if (p->key == k) {

 *r = p;

 return true;

 }

 else

 q = p, p = p->next;

 } while (p);

 *r = q;

 } else

 *r = NULL;

 return false;

}

31

 Хеш-функции: программы
/* Добавление новой пары (key, value) */

void insert (int k, int v) {

 struct htype *p, *q;

 /* Если элемент с ключом k уже имеется в цепочке,

 изменяем его значение на v */

 if (search_internal (k, &p))

 p->val = v;

 else {

 /* Если элемента с ключом k в цепочке нет */

 /* порождение и инициализация нового элемента цепочки */

 q = new ();

 q->key = k;

 q->val = v;

 /* Включение порожденного элемента в цепочку */

 if (p) {

 p->next = q;

 q->prvs = p;

 } else

 index[hash (k)] = q;

 }

}

32

 Хеш-функции: программы
/* Исключение пары (key, value) */

void delete (int k, int v) {

 struct htype *p;

 if (search_internal (k, &p)) {

 if (p->prvs)

 p->prvs->next = p->next;

 else

 index[hash (k)] = p->next;

 if (p->next)

 p->next->prvs = p->prvs;

 free (p);

 }

 /* иначе ничего не нашли, удалять не нужно */

}

// Дома. Сделайте так, чтобы хеш-функция не вычислялась

дважды (внутри search_internal и внутри insert/delete).

1

Алгоритмы и алгоритмические языки

Лекция 25

11 декабря 2019 г.

2

 Хеширование с открытой адресацией
 Все записи хранятся в самой хеш-таблице: каждая ячейка

 таблицы (массива длины m) содержит либо хранимый элемент,
 либо NULL. Указатели вообще не используются, что приводит к

 сохранению места и ускорению поиска.

 Таким образом, коэффициент заполнения  = n/m не больше 1.

 Поиск (search): мы определенным образом просматриваем

 элементы таблицы, пока не найдем искомый или не убедимся,

 что искомый элемент отсутствует.

 Просматриваются не все элементы (иначе это был бы

 последовательный поиск), а только некоторые согласно

 значению хеш-функции, которая в этом случае имеет два

 аргумента – ключ и «номер попытки»:

 hash: U  {0, 1, …, m – 1}  {0, 1, …, m – 1}.

 Функцию hash нужно выбрать такой, чтобы в последовательности

 проб hash(k, 0), hash(k, 1), …, hash(k, m – 1) каждый номер

 ячейки 0, 1, …, m – 1 встретился только один раз.

 Если при поиске мы добираемся до ячейки, содержащей NULL,

 можно быть уверенным, что элемент с данным ключом

 отсутствует (иначе он попал бы в эту ячейку).

3

 Хеширование с открытой адресацией: программы
#define m 1999

struct htype {

 int key; /* ключ */

 int val; /* значение элемента данных */

} *index[m];

/* Поиск элемента */

struct htype *search (int k) {

 int i = 0, j;

 do {

 j = hash (k, i);

 if (index[j] && index[j]->key == k)

 return index[j];

 } while (index[j] && ++i < m);

 return NULL;

}

4

 Хеширование с открытой адресацией: программы

/* Добавление элемента */

int insert (int k, int v) {

 int i = 0, j;

 do {

 j = hash (k, i);

 if (index[j] && index[j]->key == k) {

 index[j]->val = v;

 return j;

 }

 } while (index[j] && ++i < m);

 /* Таблица может оказаться заполненной */

 if (i == m)

 return -1; /* Или расширим index */

 index[j] = new ();

 index[j]->key = k, index[j]->val = v;

 return j;

}

5

 Хеширование с открытой адресацией: программы

/* Внутренний поиск: вернем индекс массива */

static int search_internal (int k) {

 int i = 0, j;

 do {

 j = hash (k, i);

 if (index[j] && index[j]->key == k)

 return j;

 } while (index[j] && ++i < m);

 return -1;

}

/* Внешний поиск легко реализуется через внутренний */

struct htype *search (int k) {

 int j = search_internal (k);

 return j >= 0 ? index[j] : NULL;

}

6

 Хеширование с открытой адресацией: программы

/* Удаление элемента */

void delete (int k) {

 int j;

 j = search_internal (k);

 if (j < 0)

 return;

 /* Нельзя писать index[j] = NULL!

 Будут потеряны ключи, возможно, находящиеся

 за удаляемым ключом (с тем же хешем). */

 ???

}

7

 Хеширование с открытой адресацией: программы

#define SHADOW ((void *) (intptr_t) 1)

/* Удаление элемента */

void delete (int k) {

 int j;

 j = search_internal (k);

 if (j < 0)

 return;

 /* Нельзя писать index[j] = NULL! */

 free (index[j]);

 index[j] = SHADOW;

}

8

 Хеширование с открытой адресацией: программы

#define SHADOW ((void *) (intptr_t) 1)

#define ISEMPTY(el) ((!el) || (el) == SHADOW)

static int search_internal (int k) {

 int i = 0, j;

 do {

 j = hash (k, i);

 if (!ISEMPTY (index[j]) && index[j]->key == k)

 return j;

 } while (index[j] && ++i < m);

 return -1;

}

9

 Хеширование с открытой адресацией: программы

#define SHADOW ((void *) (intptr_t) 1)

#define ISEMPTY(el) ((!el) || (el) == SHADOW)

/* Добавление элемента */

int insert (int k, int v) {

 int i = 0, j;

 do {

 j = hash (k, i);

 if (! ISEMPTY (index[j]) && index[j]->key == k) {

 index[j]->val = v;

 return j;

 }

} while (! ISEMPTY (index[j]) && ++i < m);

/* Таблица может оказаться заполненной (много вставок/удалений) */

 if (i == m)

 return -1; /* Или расширим index */

 index[j] = new ();

 index[j]->key = k, index[j]->val = v;

 return j;

}

10

 Хеш-функции для открытой адресации

 Линейная последовательность проб.

 Пусть hash: U  {0, 1, …, m – 1} – обычная хеш-функция.

 Функция hash(k, i) = (hash(k) + i) mod m

 определяет линейную последовательность проб.

 При линейной последовательности проб начинают с ячейки

 index[h(k)], а потом перебирают ячейки таблицы подряд:

 index[h(k) + 1], index[h(k) + 2], … (после index[m – 1] переходят к

 index[0]).

 Cуществует лишь m различных последовательностей проб,

 т.к. каждая последовательность однозначно определяется

 своим первым элементом.

11

 Хеш-функции для открытой адресации
 Серьезный недостаток – тенденция к образованию кластеров

 (длинных последовательностей занятых ячеек, идущих подряд),

 что удлиняет поиск:

  Если в таблице все четные ячейки заняты, а нечетные

 ячейки свободны, то среднее число проб при поиске

 отсутствующего элемента равно 1,5.

  Если же те же m/2 занятых ячеек идут подряд, то

 среднее число проб равно (m/2)/2 = m/4.

 Причины образования кластеров: если k заполненных ячеек идут

 подряд, то:

  вероятность того, что при очередной вставке в таблицу

 будет использована ячейка, непосредственно следующая

 за ними, есть (k +1)/m (пропорционально «толщине слоя»),

  вероятность использования конкретной ячейки,

 предшественница которой тоже свободна, всего лишь 1/m.

 Таким образом, хеширование с использованием линейной

 последовательности проб далеко не равномерное.

 Возможное улучшение: добавляем не 1, а константу с, взаимно

 простую с m (для полного обхода таблицы).

12

 Хеш-функции для открытой адресации

 Квадратичная последовательность проб:

 hash(k, i) = (hash(k) + c1i + c2i
2) mod m,

 c1 и c2  0 – константы.

 Пробы начинаются с ячейки index[h(k)], а потом ячейки

 просматриваются не подряд, а по более сложному закону.

 Метод работает значительно лучше, чем линейный.

 Чтобы при просмотре таблицы index использовались все ее

 ячейки, значения m, c1 и c2 следует брать не произвольными, а

 подбирать специально. Если обе константы равны единице:

  находим i  hash(k); полагаем j  0;

  проверяем index[i]:

 если она свободна, заносим в нее

 запись и выходим из алгоритма,

 если нет – полагаем j  (j + 1) mod m,

 i  (i + j) mod m и повторяем текущий шаг.

13

 Хеш-функции для открытой адресации

 Двойное хеширование – один из лучших методов открытой

 адресации.

 hash(k, i) = (h1(k) + i h2(k)) mod m,

 где h1(k) и h2(k) – обычные хеш-функции.

 Дополнительная хеш-функция h2(k) генерирует хеши, взаимно

 простые с m.

 Если основная и дополнительная функция существенно

 независимы (т.е. вероятность совпадения их хешей обратно

 пропорциональна квадрату m), то скучивания не происходит,

 а распределение ключей по таблице близко к случайному.

 Оценки. Среднее число проб для равномерного хеширования

 оценивается при успешном поиске как .

 При коэффициенте заполнения 50% среднее число проб для

 успешного поиска  1,387, а при 90% –  2,559.

 При поиске отсутствующего элемента и при добавлении нового

 элемента оценка среднего числа проб .

1

1

 1

1
ln

1

14

 Хеширование других данных

 Хеширование идентификаторов в компиляторе

hashval_t

htab_hash_string (const PTR p)

{

 const unsigned char *str = (const unsigned char *) p;

 hashval_t r = 0;

 unsigned char c;

 while ((c = *str++) != 0)

 r = r * 67 + c - 113;

 return r;

}

 Хеширование ключа переменной длины: в GCC используется

 http://burtleburtle.net/bob/hash/evahash.html (если не отвечает,

 смотрите в web.archive.org)

http://burtleburtle.net/bob/hash/evahash.html

15

 Цифровой поиск

 Цифровой поиск – частный случай поиска заданной подстроки

 (образца) в длинной строке (тексте).

 Примеры цифрового поиска: поиск в словаре, в библиотечном

 каталоге и т.п., когда делается поиск по образцу в нескольких

 текстах (названиях книг, фамилиях авторов, текстах на

 вызванных сайтах и т.п.).

 Хороший пример – словарь с высечками, т.е. словарь, в котором

 обеспечен быстрый доступ к некоторым страницам (например,

 начальным страницам списков слов, начинающихся на

 очередную букву алфавита). Иногда используются

 многоуровневые высечки.

 При цифровом поиске ключи рассматриваются как

 последовательности символов рассматриваемого алфавита

 (в частности, цифр или букв). Ожидаемое число сравнений

 порядка О(logm N), где m - число различных букв, используемых

 в словаре, N – мощность словаря. В худшем случае дерево

 содержит k уровней, где k – длина максимального слова.

16

 Цифровой поиск

 Пример. Пусть множество используемых букв (алфавит)

 {A, B, C, D}. Мы добавим к алфавиту еще одну букву (пробел).

 По определению слова АА, АА , АА совпадают.

 Пусть {A, AA, ABB, AC, ADBD, BCA, BCD, CBA} – словарь

 (множество ключей).

 Построим m-ичное дерево, где m = 5 = | , A, B, C, D |.

 Следующая небольшая хитрость позволит иногда сократить

 поиск: если в словаре есть слово а1а2а3...аk и первые i его букв

 (i < k) задают уникальное значение: комбинация а1...аi

 встречается в словаре только один раз, то не нужно строить

 дерево для j > i, так как слово можно идентифицировать по

 первым i буквам.

 Очень важное обобщение цифрового поиска: таким же образом

 можно обрабатывать любые ключи, не привязываясь к байту (8

 битам), который обычно используется для кодирования символов

 алфавита. Мы можем отсекать от ключа первые m бит,

 использовать 2m-ичное разветвление, т.е. строить 2m-ичное

 дерево поиска (на двоичных деревьях для разветвления

 берется один бит: m = 1).

17

 Цифровой поиск
 Прямоугольниками изображены вершины дерева, в овалах –

 значения слов (ключей) и связанная с ним информация.

 Тем самым любая вершина дерева – массив из m элементов.

 Каждый элемент вершины содержит либо ссылку на другую

 вершину m-ичного дерева, либо на овал (ключ).

18

 Цифровой поиск

 Иногда используют комбинации нескольких методов:

 цифровой поиск вначале, а затем переключение на поиск в

 последовательных таблицах.

  Именно так мы и работаем со словарем с высечками:

 вначале на высечку, а затем либо последовательный

 поиск, либо дихотомический.

 Обычно предлагается пользоваться цифровым поиском, пока

 количество различных слов не меньше некоторого k, а затем

 переключаться на последовательные таблицы.

 Обобщения: поиск по неполным ключам, поиск по образцу.

 Варианты:

  Не строить промежуточных узлов из одного

 разветвления, вместо этого хранить индекс следующего

 символа с нетривиальным разветвлением

  Писать символы ключа на ребрах (“бор/сжатый бор”)

19

 Цифровой поиск
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define M 5

typedef enum {word, node} tag_t;

struct record {

 char *key;

 int value;

};

struct tree {

 tag_t tag;

 union {

 struct record *r;

 struct tree *nodes[M+1];

 }; /* анонимное объединение */

};

20

 Цифровой поиск: поиск элемента
static inline int ord (char c) {

 return c ? c - 'A' + 1 : 0; // ASCII-only

}

struct record *find (struct tree *t, char *key) {

 int i = 0;

 while (t) {

 switch (t->tag) {

 case word:

 for (; key[i]; i++)

 if (key[i] != t->r->key[i])

 return NULL;

 return t->r->key[i] ? NULL : t->r;

 case node:

 t = t->nodes[ord(key[i])];

 if (key[i])

 i++;

 }

 }

 return NULL;

}

21

 Цифровой поиск: вставка – вспомогательные функции
struct record *make_record (char *key, int value) {

 struct record *r = malloc (sizeof (struct record));

 r->key = strdup (key);

 r->value = value;

 return r;

}

struct tree *make_from_record (struct record *r) {

 struct tree *t = malloc (sizeof (struct tree));

 t->tag = word;

 t->r = r;

 return t;

}

struct tree *make_word (char *key, int value) {

 return make_from_record (make_record (key, value));

}

struct tree *make_node (void) {

 struct tree *t = calloc (1, sizeof (struct tree));

 t->tag = node;

 return t;

}

22

 Цифровой поиск: вставка элемента
struct tree *insert (struct tree *t, char *key, int value) {

 if (!t)

 return make_word (key, value);

 int i = 0;

 struct tree *root = t;

 /* skip all nodes */

 while (t->tag == node) {

 struct tree **p = &t->nodes[ord(key[i++])];

 if (!*p) {

 *p = make_word (key, value);

 return root;

 }

 t = *p;

 }

 /* all word skipped -- key exists, update value */

 if (i && !key[i - 1]) {

 t->r->value = value;

 return root;

 }

23

 Цифровой поиск: вставка элемента

 /* compare the remaining part */

 int j = i;

 for (; key[i]; i++)

 if (key[i] != t->r->key[i])

 break;

 /* key already exists -- update value */

 if (!key[i] && !t->r->key[i]) {

 t->r->value = value;

 return root;

 }

 /* turn t into a node */

 struct record *other = t->r;

 t->tag = node;

 memset (t->nodes, 0, sizeof (t->nodes));

24

 Цифровой поиск: вставка элемента

 /* make new nodes for remaining common prefix */

 for (; j < i; j++) {

 struct tree *p = make_node ();

 t->nodes[ord(key[j])] = p;

 t = p;

 }

 /* accommodate both other and new record */

 t->nodes[ord(other->key[i])]

 = make_from_record (other);

 t->nodes[ord(key[i])] = make_word (key, value);

 return root;

}

25

 Цифровой поиск: печать элементов
void print (struct tree *t, char c) {

 static int level = 0;

 if (!t) {

 printf ("empty\n"); // also maybe if level == 0

 return;

 }

 for (int i = 0; i < level; i++)

 putchar (' ');

 if (level)

 printf ("%c: ", chr (c));

 if (t->tag == word) {

 printf ("word: %s %d\n", t->r->key, t->r->value);

 } else {

 printf ("node: ");

 for (int i = 0; i < M + 1; i++)

 if (t->nodes[i])

 printf ("%c ", chr(i));

 putchar ('\n');

 level++;

 for (int i = 0; i < M + 1; i++)

 if (t->nodes[i])

 print (t->nodes[i], i);

 level--;

 }

}

26

 Резюме курса. Введение в теорию алгоритмов.

 Формализация алгоритмов: информация (кодирование),

 исполнители. Связь с задачей обработки информации (частично

 вычислимыми функциями).

 Возможность построения универсального вычислителя.

 Алгоритмическая неразрешимость.

 Эквивалентность формальных систем описания алгоритмов.

27

 Резюме курса. Язык программирования Си.

 Си-машина. Устройство памяти.

 Особенности, требующие понимания

o Приведение типов, в том числе integer promotion

o Точки следования и побочные эффекты

o «Ленивая» логика

o Битовые операции

o Оператор выбора

o Индексация массивов

o Строки

o Адресная арифметика

o Выравнивание структур

o Рекурсия (в том числе хвостовая), inline

o Вызовы по указателю

o VLA-массивы

o Динамическая память

o Программы из нескольких файлов, заголовочные файлы,

внешние переменные, компоновка…

28

 Резюме курса. Алгоритмы и структуры данных.

 Списки (варианты «возвратить новый указатель» или «передать

 двойной указатель»)

 Стеки, очереди

 Сортировка (простые алгоритмы, быстрая сортировка, их

 сложность). Минимально возможная сложность сортировки.

 Двоичные деревья и их обходы. Замена рекурсии итерацией.

 Прошитые двоичные деревья («посчитать и сохранить» или

 «пересчитать каждый раз, не хранить»)

 Двоичные деревья поиска. Основные операции и высота дерева.

 Сбалансированные двоичные деревья поиска. Повороты как

 средство восстановления балансировки. Splay-деревья и чем они

 отличаются от классических сбалансированных.

 Возможное обобщение сбалансированных деревьев (ранги).

 Хеширование: как разрешать коллизии и как делать хорошие

 хеш-функции.

 Пирамида и пирамидальная сортировка.

 Дерево цифрового поиска.

29

Виктор Петрович Иванников

(1940-2016)

	alg_2019_1
	alg_2019_2
	alg_2019_3
	alg_2019_4
	alg_2019_5
	alg_2019_6
	alg_2019_7
	alg_2019_8
	alg_2019_9
	alg_2019_10
	alg_2019_11
	alg_2019_12
	alg_2019_13
	alg_2019_14
	alg_2019_15
	alg_2019_16
	alg_2019_17
	alg_2019_18
	alg_2019_19
	alg_2019_20
	alg_2019_21
	alg_2019_22
	alg_2019_23
	alg_2019_24
	alg_2019_25

