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ЛОГИКА ВЫСКАЗЫВАНИЙ

Пропозициональные формулы
Высказывания — это предложения естественного языка. Естественные языки – предмет изучения других наук:
лингвистики и филологии. В математической логике рассматриваются формальные языки. Простейший из них
— язык классической логики высказываний, который задается так.

Определение 1. Фиксируем счетное множество символов — так называемых пропозициональных переменных
𝑉 𝑎𝑟 = {𝑃1, 𝑃2, . . .}. Множество пропозициональных формул, обозначаемое 𝐹𝑚, строится из этих переменных,
логических связок ∧, ∨, →, ¬ и скобок по индукции, как наименьше множество, удовлетворяющее условиям:

(1) Если 𝐴 ∈ 𝑉 𝑎𝑟, то 𝐴 ∈ 𝐹𝑚.
(2) Если 𝐴,𝐵 ∈ 𝐹𝑚, то (𝐴 ∧𝐵) ∈ 𝐹𝑚.
(3) Если 𝐴,𝐵 ∈ 𝐹𝑚, то (𝐴 ∨𝐵) ∈ 𝐹𝑚.
(4) Если 𝐴,𝐵 ∈ 𝐹𝑚, то (𝐴→ 𝐵) ∈ 𝐹𝑚.
(5) Если 𝐴 ∈ 𝐹𝑚, то ¬𝐴 ∈ 𝐹𝑚.

Таким образом, формулы представляют собой конечные последовательности знаков, т.е. некоторые слова в
алфавите, состоящем из переменных, связок и скобок.1

Правила построения формул можно записать схематически так:

(1) 𝑃𝑖, (2)
𝐴,𝐵

(𝐴 ∧𝐵)
, (3)

𝐴,𝐵

(𝐴 ∨𝐵)
, (4)

𝐴,𝐵

(𝐴→ 𝐵)
, (5)

𝐴

¬𝐴
.

Эти правила задают множество 𝐹𝑚 с помощью «формальной грамматики». бычно формальные языки описы-
ваются правилами такого типа.

При записи формул используют дополнительные сокращения: внешние скобки опускаются; для экономии
внутренних скобок устанавливается приоритет связок: ∧ сильнее ∨, ∨ сильнее →. И конечно, ¬ сильнее всех, но
это и так видно из записи.

Еще одно сокращение:
(𝐴↔𝐵) := ((𝐴→ 𝐵) ∧ (𝐵 → 𝐴)).

Лемма 1.1. (Лемма об однозначном анализе формул)
Для любой формулы 𝐶 выполнено ровно одно из условий:

(I) 𝐶 ∈ 𝑉 𝑎𝑟,
(II) Существует единственная пара формул 𝐴,𝐵, такая что 𝐶 = (𝐴 ∧𝐵),

(III) Существует единственная пара формул 𝐴,𝐵, такая что 𝐶 = (𝐴 ∨𝐵),
(IV) Существует единственная пара формул 𝐴,𝐵, такая что 𝐶 = (𝐴→ 𝐵),
(V) Существует единственная формула 𝐴, такая что 𝐶 = ¬𝐴.

Доказательство этой леммы мы пропустим; его можно найти, например, в [1], [5].
1Этот алфавит бесконечен за счет множества 𝑉 𝑎𝑟. Можно обойтись и конечным алфавитом, если каждую переменную 𝑃𝑛

изображать в виде слова 𝑃1 . . . 1 (𝑛 раз).
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Пoдформулы
Говоря не совсем точно, подформула — это часть формулы, которая тоже является формулой. Точное опреде-
ление можно дать двумя способами.

Определение 2. Подсловом слова 𝑎1 . . . 𝑎𝑛 (где 𝑎1, . . . , 𝑎𝑛 — буквы) называется его часть, расположеннная
между какими-то двумя позициями, т.е. слово вида 𝑎𝑖 . . . 𝑎𝑗 , где 𝑖 < 𝑗.2 Подформулой формулы 𝐴 называется
любое ее подслово, которое является формулой.

Другой вариант: определяем отношение 𝐴 ⪯ 𝐵 (𝐴 — подформула 𝐵) индукцией по длине 𝐵.

Определение 3. 3

∙ Если 𝐵 ∈ 𝑉 𝑎𝑟, то 𝐴 ⪯ 𝐵 ⇔ 𝐴 = 𝐵,

∙ Если 𝐵 = (𝐶 ∧𝐷), (𝐶 ∨𝐷) или (𝐶 → 𝐷) для формул 𝐶,𝐷, то

𝐴 ⪯ 𝐵 ⇔ (𝐴 = 𝐵 или 𝐴 ⪯ 𝐶 или 𝐴 ⪯ 𝐷).

∙ Если 𝐵 = ¬𝐶, то
𝐴 ⪯ 𝐵 ⇔ (𝐴 = 𝐵 или 𝐴 ⪯ 𝐶.)

Задача Докажите, что два определения подформулы эквивалентны.
(Более легкая часть: если 𝐴 ⪯ 𝐵, то 𝐴 — подслово 𝐵 и формула. Это делается индукцией по длине 𝐵.)

Оценки и значения формул
Определение 4. Оценкой (пропозициональных переменных) называется любое отображение 𝑓 : 𝑉 𝑎𝑟 −→ B, где
B = {и,л} = {1, 0}.

Лемма 2.1. (о продолжении оценок на формулы). Для любой оценки
𝑓 : 𝑉 𝑎𝑟 −→ B существует единственное отображение 𝑓 : 𝐹𝑚 −→ B, такое что для всех 𝐴,𝐵 ∈ 𝐹𝑚

(1) 𝑓(𝐴) = 𝑓(𝐴), если 𝐴 ∈ 𝑉 𝑎𝑟,
(2) 𝑓(𝐴 ∧𝐵) = 1 ⇔ 𝑓(𝐴) = 𝑓(𝐵) = 1,
(3) 𝑓(𝐴 ∨𝐵) = 1 ⇔ (𝑓(𝐴) = 1 или 𝑓(𝐵) = 1),
(4) 𝑓(𝐴→ 𝐵) = 1 ⇔ (𝑓(𝐴) = 0 или 𝑓(𝐵) = 1),
(5) 𝑓(¬𝐴) = 1 ⇔ 𝑓(𝐴) = 0.

Заметим, что условия (2)–(5) можно записать иначе:

(2) 𝑓(𝐴 ∧𝐵) = min(𝑓(𝐴), 𝑓(𝐵)),
(3) 𝑓(𝐴 ∨𝐵) = max(𝑓(𝐴), 𝑓(𝐵)),
(4) 𝑓(𝐴→ 𝐵) = max(1 − 𝑓(𝐴), 𝑓(𝐵)),
(5) 𝑓(¬𝐴) = 1 − 𝑓(𝐴).

Доказательство Определяем 𝑓(𝐶) индукцией по длине 𝐶. Если 𝐶 — переменная, то все ясно: 𝑓(𝐶) = 𝑓(𝐶).
Пусть 𝑓 однозначно определена на всех формулах длины < 𝑛, 𝑛 > 1, и рассмотрим формулу 𝐶 длины 𝑛. По

лемме 1.1, возможен ровно один из случаев (II)–(V). В каждом случае 𝑓 однозначно доопределяется для 𝐶.
Например, в случае (II) 𝐶 = (𝐴 ∧ 𝐵) для единственной пары формул (𝐴,𝐵). Эти формулы 𝐴, 𝐵 — длины

< 𝑛, поэтому 𝑓(𝐴), 𝑓(𝐵) однозначно определены по предположению индукции. Тогда 𝑓(𝐶) = min(𝑓(𝐴), 𝑓(𝐵))
тоже задается однозначно.

Аналогично рассуждаем для других случаев. �

𝑓(𝐶) называется значением формулы 𝐶 при оценке 𝑓 ; мы будем обозначать его также через 𝑓(𝐶).
Заметим еще, что условия (2)–(5) можно переписать так:

(2) 𝑓(𝐴 ∧𝐵) = 𝑓(𝐴) ∧○ 𝑓(𝐵),
(3) 𝑓(𝐴 ∨𝐵) = 𝑓(𝐴) ∨○ 𝑓(𝐵),
(4) 𝑓(𝐴→ 𝐵) = 𝑓(𝐴) →○ 𝑓(𝐵),
(5) 𝑓(¬𝐴) = ¬○ 𝑓(𝐴),
2Можно и дальше уточнить смысл такой записи: это слово 𝑏1 . . . 𝑏𝑗−𝑖, такое что

𝑏𝑘 = 𝑎𝑖+𝑘−1 для всех 𝑘 = 1, . . . , 𝑗 − 𝑖.
3Знаки ⪯, ⇔, которые встречаются в этом определении, относятся к метаязыку; они сокращают русский текст.
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где ∨○, ∧○, →○, ¬○ соответственно обозначают операции на множестве B: max (“дизъюнкция"), min (“конъюнкция"),
max(1 − 𝑥, 𝑦) (“импликация"), 1 − 𝑥 “отрицаниe". При таких обозначениях видна некоторая аналогия между
условиями (2)–(5) и определением гомоморфизма (или линейного отображения) в алгебре. Лемма 2.1 является
аналогом следующего утверждения: любое отображение базиса векторного пространства в другое пространство
однозначно продолжается до линейного отображения.

Лемма 2.2. Значение формулы 𝐴 при некоторой оценке зависит только от значения этой оценки на пере-
менных из 𝐴: если оценки 𝑓, 𝑔 совпадают на всех переменных, входящих в 𝐴, то 𝑓(𝐴) = 𝑔(𝐴).

Доказательство Это утверждение достаточно очевидно. Формально оно доказывается индукцией по длине
𝐴; например, если 𝐴 = 𝐵 ∨ 𝐶, имеем:

𝑓(𝐴) = 𝑓(𝐵) ∨○ 𝑓(𝐶) = 𝑔(𝐵) ∨○ 𝑔(𝐶) = 𝑔(𝐴)

(по определению значения формулы и предположению индукции). �

Булевы функции
Определение 5. Мы говорим, что формула 𝐴 построена из переменных 𝑃1, . . . , 𝑃𝑛, если в ней нет других
переменных (но не обязательно все 𝑃1, . . . , 𝑃𝑛 в ней встречаются).

Если 𝐴 построена из 𝑃1, . . . , 𝑃𝑛, то используем запись 𝐴(𝑃1, . . . , 𝑃𝑛).
Каждой формуле 𝐴(𝑃1, . . . , 𝑃𝑛) отвечает 𝑛-местная булева функция 𝜙𝑛

𝐴 (или короче, 𝜙𝐴) из B𝑛 в B, ко-
торая задает значения 𝐴 при всевозможных оценках. Таблица значений этой функции называется таблицей
истинности формулы 𝐴.

Дадим точное определение 𝜙𝑛
𝐴.

Определение 6. Для каждого двоичного вектора −→𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ B𝑛 построим оценку 𝑓−→𝑥 : 𝑉 𝑎𝑟 −→ B,
такую что 𝑓−→𝑥 (𝑃𝑖) = 𝑥𝑖 при 𝑖 ≤ 𝑛 и (например4) 𝑓−→𝑥 (𝑃𝑖) = 0 при 𝑖 > 𝑛.

Положим 𝜙𝑛
𝐴(−→𝑥 ) = 𝑓−→𝑥 (𝐴).

Определение 7. Формула называется тавтологией, если при любой оценке она принимает значение 1.
Формула называется выполнимой, если найдется оценкa, при которой она принимает значение 1.

Очевидно, что для любой формулы 𝐴:

∙ 𝐴 — тавтология ⇔ ¬𝐴 не выполнима.

∙ 𝐴 выполнима ⇔ ¬𝐴 — не тавтология.

Определение 8. Формулы 𝐴 и 𝐵 называются равносильными (или эквивалентными), если при всех оценках
их значения совпадают.

Равносильность формул обозначается знаком ∼.5
Из леммы 2.2 сразу получаем, что формулы от одних и тех же переменных равносильны, если и только если

(тождественно) совпадают их булевы функции:6

𝐴(𝑃1, . . . , 𝑃𝑛) ∼ 𝐵(𝑃1, . . . , 𝑃𝑛) ⇔ 𝜙𝑛
𝐴 ≡ 𝜙𝑛

𝐵 .

Также очевидно, что отношение равносильности рефлексивно, симметрично и транзитивно.
Обозначим через ⊤ формулу 𝑃1 → 𝑃1, а через ⊥ — формулу 𝑃1 ∧ ¬𝑃1.

Лемма 2.3.

(1) 𝐴 ∼ 𝐵 ⇔ ((𝐴→ 𝐵) ∧ (𝐵 → 𝐴)) — тавтология.

(2) 𝐴— тавтология ⇔ 𝐴 ∼ ⊤.

Доказательство (1) Заметим, что

𝑓(𝐴) = 𝑓(𝐵) ⇔ 𝑓((𝐴→ 𝐵) ∧ (𝐵 → 𝐴)) = 1.

Действительно,
𝑓((𝐴→ 𝐵) ∧ (𝐵 → 𝐴)) = 1 ⇔ 𝑓(𝐴→ 𝐵) = 𝑓(𝐵 → 𝐴) = 1

Обе эти импликации истинны только в двух случаях: когда формулы 𝐴, 𝐵 обе истинны или обе ложны, т.е.
когда 𝑓(𝐴) = 𝑓(𝐵).

(2) совсем очевидно: тавтологичность 𝐴 как раз и означает, что 𝐴 равносильна формуле ⊤, которая всегда
истинна. �

4На самом деле неважно, каковы значения при 𝑖 > 𝑛 (лемма 2.2).
5Это тоже символ метязыка.
6≡ обозначает совпадение функций при всех значениях аргумента. Часто пишут ‘=’ вместо ≡.
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Приведем список некоторых равносильностей; проверка их предлагается в качестве упражнения.

Лемма 2.4.

(1) 𝐴 ∧𝐵 ∼ 𝐵 ∧𝐴, 𝐴 ∨𝐵 ∼ 𝐵 ∨𝐴 (коммутативность).
(2) (𝐴 ∧𝐵) ∧ 𝐶 ∼ 𝐴 ∧ (𝐵 ∧ 𝐶), (𝐴 ∨𝐵) ∨ 𝐶 ∼ 𝐴 ∨ (𝐵 ∨ 𝐶) (ассоциативность).
(3) 𝐴 ∧𝐴 ∼ 𝐴, 𝐴 ∨𝐴 ∼ 𝐴 (идемпотентность).
(4) 𝐴 ∧ (𝐵 ∨ 𝐶) ∼ (𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶), 𝐴 ∨ (𝐵 ∧ 𝐶) ∼ (𝐴 ∨ 𝐶) ∧ (𝐵 ∨ 𝐶) (дистрибутивность).
(5) 𝐴 ∨ (𝐴 ∧𝐵) ∼ 𝐴, 𝐴 ∧ (𝐴 ∨𝐵) ∼ 𝐴 (поглощение).
(6) 𝐴 ∧ ¬𝐴 ∼ ⊥, 𝐴 ∨ ⊥ ∼ 𝐴,

𝐴 ∨ ¬𝐴 ∼ ⊤, 𝐴 ∧ ⊤ ∼ 𝐴.
(7) ¬(𝐴 ∨𝐵) ∼ ¬𝐴 ∧ ¬𝐵, ¬(𝐴 ∧𝐵) ∼ ¬𝐴 ∨ ¬𝐵 (законы Де Моргана).
(8) ¬¬𝐴 ∼ 𝐴 (закон двойного отрицания).
(9) 𝐴→ 𝐵 ∼ ¬𝐴 ∨𝐵.

Лемма 2.5. Для любого вектора −→𝑥 ∈ B𝑛 можно построить сигнальную формулу 𝐴−→𝑥 (𝑃1, . . . , 𝑃𝑛), для которой

𝜙𝑛
𝐴−→𝑥

(−→𝑦 ) = 1 ⇔ −→𝑥 = −→𝑦 .

Иными словами, таблица истинности 𝐴−→𝑥 содержит 1 только в строке −→𝑥 .

Доказательство Для переменной 𝑃 обозначим 𝑃 1 = 𝑃 , 𝑃 0 = ¬𝑃 .
Очевидно, что для любой оценки 𝑓 и 𝑠 ∈ B

𝑓(𝑃 𝑠) = 1 ⇔ 𝑓(𝑃 ) = 𝑠.

Теперь для −→𝑥 = (𝑥1, . . . , 𝑥𝑛) можно взять

𝐴−→𝑥 = 𝑃 𝑥1
1 ∧ . . . ∧ 𝑃 𝑥𝑛

𝑛 .

В самом деле, для любой оценки 𝑓

𝑓(𝐴−→𝑥 ) = 1 ⇔ (так как 𝐴−→𝑥 — конъюнкция) ∀𝑖 < 𝑛 𝑓(𝑃 𝑥𝑖
𝑖 ) = 1

⇔ (по замечанию выше) ∀𝑖 < 𝑛 𝑓(𝑃𝑖) = 𝑥𝑖.

Таким образом, в таблице истинности для 𝐴−→𝑥 значение 1 появляется только в строке −→𝑥 . �

Теорема 2.6. [Теорема о функциональной полноте] Любая булева функция отвечает формуле логики выска-
зываний, точнее:

для любой функции 𝛼 : B𝑛 −→ B существует формула 𝐴(𝑃1, . . . , 𝑃𝑛), такая что 𝜙𝐴 ≡ 𝛼.

Доказательство Сначала рассмотрим случай, когда 𝛼 не всюду равна 0. Тогда положим

𝐴 =
⋁︁

{𝐴−→𝑥 | 𝛼(−→𝑥 ) = 1}.

Это означает дизъюнкцию нескольких формул вида 𝐴−→𝑥 — по всем векторам −→𝑥 , на которых функция 𝛼 равна
1 (дизъюнкция одной формулы — это сама формула).

Докажем, что 𝜙𝐴 ≡ 𝛼. Действительно,

𝜙𝐴(−→𝑦 ) = 1 ⇔ 𝑓−→𝑦 (𝐴) = 1

по определению функции 𝜙𝐴 (определение 6). Но 𝐴 — это дизъюнкция формул вида 𝐴−→𝑥 , поэтому

𝑓−→𝑦 (𝐴) = 1 ⇔ ∃−→𝑥 (𝛼(−→𝑥 ) = 1 и 𝑓−→𝑦 (𝐴−→𝑥 ) = 1).

По лемме 2.5,
𝑓−→𝑦 (𝐴−→𝑥 ) = 1 ⇔ −→𝑦 = −→𝑥 .

Получаем:
𝜙𝐴(−→𝑦 ) = 1 ⇔ ∃−→𝑥 (𝛼(−→𝑥 ) = 1 и −→𝑦 = −→𝑥 ) ⇔ 𝛼(−→𝑦 ) = 1.

Таким образом, функции 𝜙𝐴 и 𝛼 принимают значение 1 в одних и тех же точках. Во всех остальных точках
значение равно 0. Следовательно, 𝜙𝐴 ≡ 𝛼.

Если же 𝛼 ≡ 0, то можно использовать формулу ⊥. Она ложна при всех оценках, a потому 𝜙⊥ ≡ 𝛼. �
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Лекция 3

Нормальные формы
Определение 9. Литерал — это переменная или ее отрицание. Элементарная конъюнкция от переменных
𝑃1, . . . , 𝑃𝑛 — это конъюнкция литералов, построенных из этих переменных, в которой каждая переменная встре-
чается ровно 1 раз.

Из определения ясно, что любая элементарная конъюнкция от 𝑃1, . . . , 𝑃𝑛 равносильна сигнальной формуле
вида 𝐴−→𝑥 , где −→𝑥 — двоичный вектор длины 𝑛 (см. лекцию 2). Строго говоря, формула 𝐴−→𝑥 определена неодно-
значно: в конъюнкции можно по-разному расставить скобки. Для единообразия будем записывать скобки слева
направо:

𝐴−→𝑥 = (. . . (𝑃 𝑥1
1 ∧ 𝑃 𝑥2

2 ) . . . ∧ 𝑃 𝑥𝑛−1

𝑛−1 ) ∧ 𝑃 𝑥𝑛
𝑛 .

В дальнейшем будем считать, что все элементарные конъюнкции имеют такой вид.

Определение 10. Совершенная дизъюнктивная нормальная форма (СДНФ) от переменных 𝑃1, . . . , 𝑃𝑛 — это
дизьюнкция различных элементарных конъюнкций от этих переменных.

Сюда включаются частные случаи: когда дизъюнкция берется по множеству, состоящему из одной формулы,
а также случай пустой дизъюнкции — ee считаем равной ⊥.

Теорема 3.1.

(1) Каждая формула, построенная из переменных 𝑃1, . . . , 𝑃𝑛, равносильна некоторой СДНФ от этих пере-
менных.

(2) Каждая формула равносильна единственной СДНФ (с точностью до перестановок и расстановки скобок
в дизъюнкциях):
если

⋁︀
−→𝑥 ∈𝐼

𝐴−→𝑥 ∼
⋁︀

−→𝑥 ∈𝐽

𝐴−→𝑥 , то 𝐼 = 𝐽 .

Доказательство (1) уже доказанo в процессе доказательства теоремы 2.6.
(2) Докажем единственность (это почти уже сделано). Заметим, что запись

⋁︀
−→𝑥 ∈𝐼

𝐴−→𝑥 не задает формулу

однозначно, пока не определена расстановка скобок и порядок членов дизъюнкции. Для однозначности можно,
например, считать, что скобки расставлены слева направо, а порядок членов определяется, исходя из порядка
на множестве B𝑛 всех двоичных векторов −→𝑥 . Порядок на B𝑛 можно задать, как в двоичной системе счисления:
(0,...,0,0) — наименьший, (0,...,0,1) — следующий, и т.д.

Обозначим эту дизъюнкцию через 𝐴𝐼 . Ее булева функция равна 1 в точности на множестве 𝐼:

𝜙𝐴𝐼
(−→𝑦 ) =

{︂
1, если 𝑦 ∈ 𝐼,
0, если 𝑦 ̸∈ 𝐼.

Действительно,

𝜙𝐴𝐼
(−→𝑦 ) = 1 ⇔ 𝑓−→𝑦 (𝐴𝐼) = 1 ⇔ ∃−→𝑥 ∈ 𝐼 𝑓−→𝑦 (𝐴−→𝑥 ) = 1 (т.к. 𝐴𝐼 — дизъюнкция)

⇔ ∃−→𝑥 ∈ 𝐼 −→𝑦 = −→𝑥 (по лемме 2.5) ⇔ 𝑦 ∈ 𝐼.

Поэтому, если 𝐼 ̸= 𝐽 , то 𝐴𝐼 ̸∼ 𝐴𝐽 : у них разные булевы функции. �

По аналогии с элементарными конъюнкциями, можно определить элементарные дизъюнкции: они имеют
вид 𝑃 𝑥1

1 ∨ . . . ∨ 𝑃 𝑥𝑛
𝑛 . И соответственно определяем совершенную конъюнктивную нормальную форму (СКНФ)

(от 𝑃1, . . . 𝑃𝑛) как конъюнкцию элементарных дизъюнкций (причем пустая конъюнкция считается равной ⊤).
Справедлива следующая

Теорема (об СКНФ).

(1) Каждая формула, построенная из переменных 𝑃1, . . . , 𝑃𝑛, равносильна некоторой СКНФ от этих пере-
менных.

(2) Каждая формула равносильна единственной СКНФ, с точностью до перестановок и расстановки скобок
в конъюнкциях и дизъюнкциях.

Дополнительная задача Докажите эту теорему.
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Двойственность
Определение 11. Для формулы 𝐴, построенной из ∧,∨,¬, двойственная формула 𝐴* получается заменой всех
∧ на ∨ и наоборот. Более формальное определение 𝐴* — по индукции:

𝐴* = 𝐴 для 𝐴 ∈ 𝑉 𝑎𝑟,
(𝐴 ∧𝐵)* = (𝐴* ∨𝐵*),
(𝐴 ∨𝐵)* = (𝐴* ∧𝐵*),
(¬𝐴)* = ¬𝐴*.

Теорема (о двойственности). Если 𝐴 ∼ 𝐵, то 𝐴* ∼ 𝐵*. В частности, если � 𝐴 (т.е. 𝐴 ∼ ⊤), то � ¬𝐴* (т.е.
𝐴* ∼ ⊤* ∼ ⊥).

Дополнительная задача Докажите эту теорему.

Булевы алгебры
По аналогии с двузначными оценками и таблицами истинности, для логических связок ¬,∨,∧ можно построить
таблицы с несколькими значениями истинности. Если желательно, чтобы сохранились основные свойства этих
связок, мы приходим к понятию булевой алгебры.

Определение 12. Булевой алгеброй называется непустое множество с заданными на нем операциями и выде-
ленными элементами (ℬ,⊔,⊓,−,0,1)7, где

∙ ⊔,⊓ — двуместные операции на ℬ,

∙ − — одноместная операция на ℬ,

∙ 0,1 ∈ ℬ,

причем выполняются следующие свойства (см. лемму 2.4):

(1) 𝑥 ⊔ 𝑦 = 𝑦 ⊔ 𝑥, 𝑥 ⊓ 𝑦 = 𝑦 ⊓ 𝑥 (коммутативность),
(2) (𝑥 ⊔ 𝑦) ⊔ 𝑧 = 𝑥 ⊔ (𝑦 ⊔ 𝑧), (𝑥 ⊓ 𝑦) ⊓ 𝑧 = 𝑥 ⊓ (𝑦 ⊓ 𝑧) (ассоциативность),
(3) 𝑥 ⊔ 𝑥 = 𝑥, 𝑥 ⊓ 𝑥 = 𝑥 (идемпотентность),
(4) (𝑥 ⊔ 𝑦) ⊓ 𝑧 = (𝑥 ⊓ 𝑦) ⊔ (𝑥 ⊓ 𝑧), (𝑥 ⊓ 𝑦) ⊔ 𝑧 = (𝑥 ⊔ 𝑧) ⊓ (𝑦 ⊔ 𝑧) (дистрибутивность),
(5) (𝑥 ⊔ 𝑦) ⊓ 𝑥 = 𝑥, (𝑥 ⊓ 𝑦) ⊔ 𝑥 = 𝑥 (поглощение),
(6) 𝑥 ⊓ −𝑥 = 0, 𝑥 ⊔ 0 = 𝑥, 𝑥 ⊔ −𝑥 = 1, 𝑥 ⊓ 1 = 𝑥 (свойства 0 и 1),
(7) −(𝑥 ⊔ 𝑦) = −𝑥 ⊓ −𝑦, −(𝑥 ⊓ 𝑦) = −𝑥 ⊔ −𝑦 (законы Де Моргана),
(8) −− 𝑥 = 𝑥 (закон двойного дополнения).

Операции ⊔,⊓,− называются соответственно булевой суммой (или объединением), булевым произведением
(или пересечением) и дополнением. 0,1 называются нулем и единицей.

Список основных тождеств, задающих булевы алгебры, в действительности можно сократить. Например,
можно ограничиться только (1), (2),(5), (6) и одним из (4); остальные тождества следуют из этих.

В частности, идемпотентность получается так:

𝑥 = 𝑥 ⊓ (𝑥 ⊔ 0) (по (5)) = 𝑥 ⊓ 𝑥 (по (6)).

А закон двойного дополнения — так:

−− 𝑥 = −− 𝑥 ⊓ 1 = −− 𝑥 ⊓ (𝑥 ⊔ −𝑥) = (−− 𝑥 ⊓ 𝑥) ⊔ (−− 𝑥 ⊓ −𝑥)

= (−− 𝑥 ⊓ 𝑥) ⊔ 0 = −− 𝑥 ⊓ 𝑥 (по (6),(4), (1));
с другой стороны,
𝑥 = 𝑥 ⊓ 1 = −− 𝑥 ⊓ (−𝑥 ⊔ −− 𝑥) = (𝑥 ⊓ −𝑥) ⊔ (𝑥 ⊓ −− 𝑥)

= 0 ⊔ (𝑥 ⊓ −− 𝑥) = 𝑥 ⊓ −− 𝑥 (тоже по (6),(4), (1));
отсюда −−𝑥 = 𝑥.

Пример 1 Тривиальный пример булевой алгебры — одноэлементная алгебра (она обозначается 1 ). В ней 0 = 1
и все операции дают 1; тогда тождества из определения 12 очевидны.

7В каждой алгебре имеются свои операции, поэтому точнее были бы обозначения ⊔ℬ,⊓ℬ и т.д. Но для удобства мы опускаем
индекс ℬ.
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Пример 2 Двухэлементная булева алгебра 2 на множестве B = {0, 1}:

2 = ({0, 1}, ∨○, ∧○, ¬○, 0, 1),

где 𝑥 ∨○𝑦 = max(𝑥, 𝑦), 𝑥 ∧○𝑦 = min(𝑥, 𝑦), ¬○ 𝑥 = 1 − 𝑥 (см. лекцию 1). То, что 2 — булева алгебра, фактически
доказано в лемме 2.4.
Пример 3 Стандартный пример булевой алгебры — множество 𝒫(𝐸) всех подмножеств данного множества 𝐸 с
обычными операциями объединения, пересечения, дополнения (до 𝐸) и ∅, 𝐸 в качестве 0,1.

Предложение 3.2. Пусть 𝐸 — произвольное множество. Тогда
(𝒫(𝐸),∪,∩,−,∅, 𝐸) (где −𝐴 = 𝐸∖𝐴)— булева алгебра.

Доказательство Надо проверить булевы тождества для 𝒫(𝐸). При этом можно использовать равносильности
из леммы 2.4.

Например, дистрибутивность
(𝑥 ∪ 𝑦) ∩ 𝑧 = (𝑥 ∩ 𝑧) ∪ (𝑦 ∩ 𝑧)

означает, что для любого 𝑎 ∈ 𝐸

(∙) 𝑎 ∈ (𝑥 ∪ 𝑦) ∩ 𝑧 ⇔ 𝑎 ∈ (𝑥 ∩ 𝑧) ∪ (𝑦 ∩ 𝑧).

Чтобы это проверить, возьмем произвольное 𝑎 и рассмотрим пропозициональные переменные 𝑃,𝑄,𝑅, которые
оценим соответственно как 𝑎 ∈ 𝑥, 𝑎 ∈ 𝑦, 𝑎 ∈ 𝑧. Т.е. выберем оценку 𝑓 такую, что

𝑓(𝑃 ) = 1 ⇔ 𝑎 ∈ 𝑥; 𝑓(𝑄) = 1 ⇔ 𝑎 ∈ 𝑦; 𝑓(𝑅) = 1 ⇔ 𝑎 ∈ 𝑧.

Тогда
𝑎 ∈ (𝑥 ∪ 𝑦) ∩ 𝑧 ⇔ ((𝑎 ∈ 𝑥 или 𝑎 ∈ 𝑦) и 𝑎 ∈ 𝑧) ⇔ 𝑓((𝑃 ∨𝑄) ∧𝑅) = 1,

и аналогично,
𝑎 ∈ (𝑥 ∩ 𝑧) ∪ (𝑦 ∩ 𝑧) ⇔ 𝑓((𝑃 ∧𝑅) ∨ (𝑄 ∧𝑅)) = 1.

Но из леммы 2.4 мы знаем, что формулы (𝑃 ∨𝑄)∧𝑅 и (𝑃 ∧𝑅)∨(𝑄∧𝑅) равносильны (т.е. одновременно истинны
или одновременно ложны). Отсюда следует (∙).

Tак же поступаем и с другими булевыми тождествами для 𝒫(𝐸); они превращаются в равносильности из
леммы 2.4, если знаки ∪,∩,− заменить соответственно на ∨,∧,¬. �

Определение 13. Изоморфизм булевых алгебр — это биекция, сохраняющая все операции.
Точнее, пусть 𝒜, ℬ — булевы алгебры. Биекция 𝜙 : 𝒜 −→ ℬ называется изоморфизмом 𝒜 на ℬ, если 𝜙(0𝒜) =

0ℬ, 𝜙(1𝒜) = 1ℬ и для всех 𝑥, 𝑦 ∈ 𝒜

𝜙(𝑥 ⊔𝒜 𝑦) = 𝜙(𝑥) ⊔ℬ 𝜙(𝑦), 𝜙(𝑥 ⊓𝒜 𝑦) = 𝜙(𝑥) ⊓ℬ 𝜙(𝑦), 𝜙(−𝒜 𝑥) = −ℬ 𝜙(𝑥).

Если существует изоморфизм 𝒜 на ℬ, то алгебры 𝒜, ℬ называются изоморфными.

Как легко видеть, изоморфность — отношение эквивалентности между алгебрами8.
В частности, алгебра 2 изоморфна алгебре 𝒫({𝑎}) подмножеств 1-элементного множества, а тривиальная

алгебра 1 изоморфна алгебре 𝒫(∅).

Лемма 3.3. В булевой алгебре можно определить частичный порядок, положив

𝑎 ≤ 𝑏⇔ 𝑎 = (𝑎 ⊓ 𝑏).

Относительно этого порядка 0 является наименьшим элементом, 1 — наибольшим элементом.

Доказательство

∙ Рефлексивность 𝑎 = 𝑎 ⊓ 𝑎 — это идемпотентность ⊓.

∙ Транзитивность получается из ассоциативности:
если 𝑎 = 𝑎 ⊓ 𝑏 и 𝑏 = 𝑏 ⊓ 𝑐, то

𝑎 = 𝑎 ⊓ 𝑏 = 𝑎 ⊓ (𝑏 ⊓ 𝑐) = (𝑎 ⊓ 𝑏) ⊓ 𝑐 = 𝑎 ⊓ 𝑐.

∙ Антисимметричность следует из коммутативности:
если 𝑎 = 𝑎 ⊓ 𝑏 и 𝑏 = 𝑏 ⊓ 𝑎, то 𝑎 = 𝑏.

8В более общем контексте понятие изоморфизма будет обсуждаться позже.
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∙ 1 — наибольший: 𝑎 = 𝑎 ⊓ 1 — по определению 12.

∙ 0 — наименьший, т.е. 0 = 0 ⊓ 𝑎. Это получается так:

0 ⊓ 𝑎 = (−𝑎 ⊓ 𝑎) ⊓ 𝑎 = −𝑎 ⊓ (𝑎 ⊓ 𝑎) = −𝑎 ⊓ 𝑎 = 0.

�

Если алгебра содержит более 2 элементов, то этот порядок — не линейный.

Лемма 3.4. 𝑎 ≤ 𝑏⇔ −𝑎 ⊔ 𝑏 = 1.

Доказательство (⇐). Пусть −𝑎 ⊔ 𝑏 = 1. Тогда

𝑎 = 𝑎 ⊓ 1 = 𝑎 ⊓ (−𝑎 ⊔ 𝑏) = (𝑎 ⊓ (−𝑎)) ⊔ (𝑎 ⊓ 𝑏) = 0 ⊔ (𝑎 ⊓ 𝑏) = 𝑎 ⊓ 𝑏.

по свойствам 1,0 и дистрибутивности. Значит, 𝑎 ≤ 𝑏.
(⇒). Пусть 𝑎 ≤ 𝑏, т.е. 𝑎 = 𝑎 ⊓ 𝑏. Тогда

−𝑎 ⊔ 𝑏 = −(𝑎 ⊓ 𝑏) ⊔ 𝑏 = −𝑎 ⊔ −𝑏 ⊔ 𝑏 = −𝑎 ⊔ 1

по закону Де Моргана и свойству 1. И заметим еще, что

−𝑎 ⊔ 1 = −𝑎 ⊔ (−𝑎 ⊔ 𝑎) = (−𝑎 ⊔ −𝑎) ⊔ 𝑎 = −𝑎 ⊔ 𝑎 = 1.

Следовательно, −𝑎 ⊔ 𝑏 = 1. �

Определение 14. Оценка в булевой алгебре ℬ — это отображение 𝑓 : 𝑉 𝑎𝑟 −→ ℬ.

По аналогии с леммой 2.1, получаем:

Лемма 3.5. Для любой оценки 𝑓 : 𝑉 𝑎𝑟 −→ ℬ существует единственное отображение 𝑓 : 𝐹𝑚 −→ ℬ, такое
что для всех 𝐴,𝐵 ∈ 𝐹𝑚

(1) 𝑓(𝐴) = 𝑓(𝐴), если 𝐴 ∈ 𝑉 𝑎𝑟,
(2) 𝑓(𝐴 ∧𝐵) = 𝑓(𝐴) ⊓ 𝑓(𝐵),
(3) 𝑓(𝐴 ∨𝐵) = 𝑓(𝐴) ⊔ 𝑓(𝐵),
(4) 𝑓(¬𝐴) = −𝑓(𝐴),
(5) 𝑓(𝐴→ 𝐵) = 𝑓(¬𝐴 ∨𝐵) = −𝑓(𝐴) ⊔ 𝑓(𝐵).

Доказательство полностью аналогично лемме 2.1 (по индукции, используя однозначность анализа формул).
Как и в случае оценок в 2 , пишем 𝑓(𝐴) вместо 𝑓(𝐴); 𝑓(𝐴) называется значением 𝐴 в алгебре ℬ при оценке

𝑓 .

Определение 15. Формулы 𝐴,𝐵 называются равносильными (эквивалентными) в булевой алгебре ℬ, если их
значения в ℬ совпадают при всех оценках; обозначение: 𝐴 ∼ℬ 𝐵.

Формула 𝐴 называется общезначимой в булевой алгебре ℬ, если ее значение в ℬ равно 1 при любой оценке;
обозначение: ℬ � 𝐴.

Ясно, что равносильность и общезначимость в алгебре 2 — это обычные равносильность (∼) и тавтологич-
ность (�); они определялись в лекции 2.

Аналогично лемме 2.3, получаем:

Лемма 3.6.

(1) 𝐴 ∼ℬ 𝐵 ⇔ ℬ � ((𝐴→ 𝐵) ∧ (𝐵 → 𝐴)).
(2) ℬ � 𝐴 ⇔ 𝐴 ∼ℬ ⊤.

Доказательство Как и в лемме 2.3, проверяем, что для любой оценки 𝑓 ,

𝑓(𝐴) = 𝑓(𝐵) ⇔ 𝑓((𝐴→ 𝐵) ∧ (𝐵 → 𝐴)) = 1.

Обозначим 𝑎 := 𝑓(𝐴), 𝑏 := 𝑓(𝐵). Нам надо показать, что

𝑎 = 𝑏⇔ (𝑎→○ 𝑏) ⊓ (𝑏→○ 𝑎) = 1,

где 𝑎→○ 𝑏 := −𝑎 ⊔ 𝑏.
Утверждение (⇒) очевидно: 𝑎→○ 𝑎 = −𝑎 ⊔ 𝑎 = 1, 1 ⊓ 1 = 1 по определению 12.
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Чтобы доказать (⇐), заметим сначала, что

𝑥 ⊓ 𝑦 = 1 ⇒ 𝑥 = 𝑦 = 1.

Действительно, 𝑥 ⊓ 𝑦 ≤ 𝑥, 𝑥 ⊓ 𝑦 ≤ 𝑦, а 1 — наибольший элемент (относительно ≤).
Поэтому

(𝑎→○ 𝑏) ⊓ (𝑏→○ 𝑎) = 1 ⇒ −𝑎 ⊔ 𝑏 = −𝑏 ⊔ 𝑎 = 1.

По лемме 3.4 из −𝑎 ⊔ 𝑏 = −𝑏 ⊔ 𝑎 = 1 следует 𝑎 ≤ 𝑏 и 𝑏 ≤ 𝑎, т.е. 𝑎 = 𝑏. �

Минимальные ненулевые элементы относительно порядка ≤ в булевой алгебреназываются атомами; их мо-
жет быть несколько, а может не быть вообще.

Справедлива следующая теорема Стоуна (в курсе не доказывается):

Теорема 3.7. *

(1) Всякая булева алгебра изоморфна алгебре множеств, т.е. подалгебре некоторой алгебры 𝒫(𝐸).

(2) Всякая конечная булева алгебра изоморфна алгебре вида 𝒫(𝐸), и следовательно, состоит из 2𝑛 элемен-
тов для некоторого 𝑛.

В конечном случае в качестве 𝐸 можно взять множество всех атомов данной алгебры.
Дополнительная задача Докажите часть (2) в теореме Стоуна.
Заметим, что не все булевы алгебры имеют вид 𝒫(𝐸).
Пример 4 Рассмотрим, например, такое множество подмножеств натурального ряда:

{𝑉 ⊆ N | 𝑉 конечно или N∖𝑉 конечно}.

В него входят ∅ и N. Очевидно, что оно замкнуто относительно дополнений, и нетрудно проверить, что оно
замкнуто относительно объединений и пересечений, поэтому получается счетная подалгебра алгебры 𝒫(N).

Однако никакая алгебра 𝒫(𝐸) не может быть счетной: такие алгебры конечны при конечном 𝐸 и несчетны
при бесконечном 𝐸 — в силу теоремы Кантора (которая будет обсуждаться в этом курсе позже).

Пример 5 Алгебра Линденбаума — Тарского.
Рассмотрим множество классов всех пропозициональных формул по отношению равносильности ℒ = 𝐹𝑚/∼.

Пусть 𝐴 обозначает класс формулы 𝐴. Тогда определим

0 := ⊥̃, 1 := ⊤̃, 𝐴 ⊔ 𝐵̃ := 𝐴 ∨𝐵, 𝐴 ⊓ 𝐵̃ := 𝐴 ∧𝐵, −𝐴 := ̃︁¬𝐴.
Корректность этого определения следует из того, что равносильность согласована с логическими связками: если
𝐴 ∼ 𝐴′ и 𝐵 ∼ 𝐵′, то 𝐴 ∨𝐵 ∼ 𝐴′ ∨𝐵′ и т.д.

Лемма 2.4 показывает, что ℒ — булева алгебра. Эта алгебра счетна, и в ней, как можно доказать, атомов нет
(в отличие от примера 4).

Дополнительная задача Докажите последнее утверждение.
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Лекция 4
Теорема 4.1. Для любой нетривиальной булевой алгебры ℬ и формулы 𝐴

ℬ � 𝐴⇒ 2 � 𝐴.

Доказательство Пусть ℬ � 𝐴. Возьмем оценку 𝑓 : 𝑉 𝑎𝑟 −→ 2 , и рассмотрим “такую же” оценку в ℬ, т.е.
𝐹 : 𝑉 𝑎𝑟 −→ ℬ, где

𝐹 (𝑃𝑖) = 1 ⇔ 𝑓(𝑃𝑖) = 1

для каждого 𝑖. Из свойств булевых алгебр получаем:

0 ⊔ 1 = 1 ⊔ 0 = 1, 0 ⊔ 0 = 0, 1 ⊔ 1 = 1,

и аналогично для ⊓.
Кроме того,

−0 = 1, т.к. 1 = 0 ⊔ −0 = −0,
−1 = 0, т.к. 0 = 1 ⊓ −1 = −1.

Отсюда мы видим, что 0,1 образуют подалгебру в ℬ, изоморфную 2 . Обозначим этот изоморфизм через ≈,
т.е. пусть

1 ≈ 1, 0 ≈ 0.

Тогда для всех 𝑖
𝐹 (𝑃𝑖) ≈ 𝑓(𝑃𝑖),

откуда по индукции имеем для любой формулы 𝐵

𝐹 (𝐵) ≈ 𝑓(𝐵).

Здесь надо разбирать все случаи построения 𝐵, но это — рутинная проверка. Например, пусть 𝐵 = 𝐶 ∨ 𝐷.
Тогда 𝐹 (𝐵) = 𝐹 (𝐶) ⊔ 𝐹 (𝐷), 𝑓(𝐵) = max(𝑓(𝐶), 𝑓(𝐷)), и если 𝐹 (𝐶) ≈ 𝑓(𝐶), 𝐹 (𝐷) ≈ 𝑓(𝐷), то 𝐹 (𝐶) ⊔ 𝐹 (𝐷) ≈
max(𝑓(𝐶), 𝑓(𝐷)). Это получается из равенств

0 ⊔ 1 = 1 ⊔ 0 = 1, 0 ⊔ 0 = 0, 1 ⊔ 1 = 1.

Теперь для исходной формулы 𝐴 получаем 𝑓(𝐴) = 1, поскольку 𝐹 (𝐴) = 1.
Таким образом, 2 � 𝐴. �

Исчисление высказываний
Различные тавтологии можно получать как теоремы в некоторой аксиоматической системе — исчислении выска-
зываний. Имеются разные варианты таких исчислений. Мы будем рассматривать исчисление гильбертовского
типа. Оно задается множеством аксиом и правил вывода; теоремы выводятся из аксиом с помощью правил. В
процессе вывода возникает доказательство — некоторая последовательность формул.

Приведем одну из формулировок исчисления высказываний (𝐶𝐿).
Схемы аксиом

(1) 𝐴→ (𝐵 → 𝐴)

(2) (𝐴→ (𝐵 → 𝐶)) → ((𝐴→ 𝐵) → (𝐴→ 𝐶))

(3) 𝐴 ∧𝐵 → 𝐴

(4) 𝐴 ∧𝐵 → 𝐵

(5) 𝐴→ (𝐵 → 𝐴 ∧𝐵)

(6) 𝐴→ 𝐴 ∨𝐵
(7) 𝐵 → 𝐴 ∨𝐵
(8) (𝐴→ 𝐶) → ((𝐵 → 𝐶) → (𝐴 ∨𝐵 → 𝐶))

(9) (𝐴→ ¬𝐵) → ((𝐴→ 𝐵) → ¬𝐴)

(10) ¬¬𝐴→ 𝐴

Здесь 𝐴,𝐵,𝐶 — произвольные формулы. Поэтому каждая из схем (1)–(10) порождает бесконечную серию акси-
ом. Например, схема (1) задает аксиомы вида 𝐴→ (𝐵 → 𝐴) и т.д.

Единственное правило вывода — Modus Ponens (MP), которое записывается так:

𝐴, 𝐴→ 𝐵

𝐵
.

Эта запись означает, что если доказаны формулы 𝐴 и 𝐴→ 𝐵, то можно доказать 𝐵.
Формальное понятие доказательства определяется следующим образом.
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Определение 16. Доказательство (или вывод) формулы 𝐴 в 𝐶𝐿 — это конечная последовательность фор-
мул, каждая из которых — аксиома или получается из предыдущих по правилу MP и которая заканчивается
формулой 𝐴.

Точнее: доказательство — это такая последовательность формул
𝐴1, . . . , 𝐴𝑛 = 𝐴, что для всех 𝑘 (1 ≤ 𝑘 ≤ 𝑛) 𝐴𝑘 — аксиома или существуют 𝑖, 𝑗 < 𝑘, для которых 𝐴𝑗 = 𝐴𝑖 → 𝐴𝑘.

Действительно, из 𝐴𝑖 и 𝐴𝑖 → 𝐴𝑘 по MP получается как раз 𝐴𝑘.
Любое математическое доказательство можно организовать аналогичным образом, если включить в него все

промежуточные доказательства и выбрать подходящую систему аксиом и правил вывода (исчисления высказы-
ваний здесь уже не хватит). Однако на практике так не происходит, потому что доказательства упрощаются и
сокращаются.

Формула 𝐴, для которой существует доказательство в 𝐶𝐿, называется теоремой 𝐶𝐿, или выводимой в 𝐶𝐿;
это записывается так: ⊢𝐶𝐿 𝐴. Индекс 𝐶𝐿 не пишем, если ясно, что речь идет об этой системе.

Пример 1 ⊢ 𝐴 ∨𝐵 → 𝐵 ∨𝐴.
Приведем доказательство (с комментариями). Для удобства обозначим формулу 𝐵 ∨𝐴 через 𝐶.

1. 𝐴→ 𝐶 (аксиома 7)
2. 𝐵 → 𝐶 (аксиома 6)
3. (𝐴→ 𝐶) → ((𝐵 → 𝐶) → (𝐴 ∨𝐵 → 𝐶)) (аксиома 8)
4. (𝐵 → 𝐶) → (𝐴 ∨𝐵 → 𝐶) (2,4, MP)
5. 𝐴 ∨𝐵 → 𝐶 (1,3, MP)

Формула 5 и есть нужная теорема.
Пример 2 ⊢ 𝐴→ 𝐴. Обозначим эту формулу 𝐵.

1. 𝐴→ 𝐵 (аксиома 1)
2. 𝐴→ (𝐵 → 𝐴) (аксиома 1)
3. (𝐴→ (𝐵 → 𝐴)) → ((𝐴→ 𝐵) → (𝐴→ 𝐴)) (аксиома 2)
4. (𝐴→ 𝐵) → (𝐴→ 𝐴) (2,3, MP)
5. 𝐴→ 𝐴 (1,4, MP)

Расширим теперь определение вывода 16.

Определение 17. Пусть Γ — какое-то множество пропозициональных формул. Вывод из Γ формулы 𝐴 в 𝐶𝐿 —
это конечная последовательность формул, каждая из которых — аксиома или принадлежит Γ или получается
из предыдущих по правилу MP и которая заканчивается формулой 𝐴.

Т.e. это последовательность формул 𝐴1, . . . , 𝐴𝑛, где для всех 𝑘
𝐴𝑘 — аксиома или 𝐴𝑘 ∈ Γ или существуют 𝑖, 𝑗 < 𝑘, для которых 𝐴𝑗 = 𝐴𝑖 → 𝐴𝑘.

Формула 𝐴 выводима из Γ, если существует вывод из Γ, содержащий 𝐴; обозначение: Γ ⊢𝐶𝐿 𝐴.

Если рассматриваются выводы из Γ, то формулы из Γ называются гипотезами. В математике (и в прак-
тической жизни) такие выводы часто встречаются: мы делаем какие-то предположения (временно считая их
аксиомами), и получаем из них различные следствия.

Очевидно, что если Γ = ∅, то вывод из Γ — это обычный вывод из заданных аксиом (в 𝐶𝐿).

Лемма 4.2.

(1) Если ∆ ⊆ Γ и ∆ ⊢ 𝐴, то Γ ⊢ 𝐴.

(2) Если Γ ⊢ 𝐴, то существует конечное ∆ ⊆ Γ, для которого ∆ ⊢ 𝐴.

(3) (“транзитивность выводимости”, или “сечение”)
Если Γ ⊢ 𝐴, и ∆ ⊢ 𝐵 для всех 𝐵 ∈ Γ, то ∆ ⊢ 𝐴.

Если условие ∆ ⊢ 𝐵 для всех 𝐵 ∈ Γ обозначить как ∆ ⊢ Γ, то утверждение (3) запишется так:

Если ∆ ⊢ Γ и Γ ⊢ 𝐴, то ∆ ⊢ 𝐴.

Отсюда название “транзитивность”.

Доказательство (1) очевидно.
(2) также очевидно: можно составить ∆ из тех гипотез, которые встречаются в выводе 𝐴; их конечное число.

11



(3) Предположим, что ∆ ⊢ Γ и Γ ⊢ 𝐴. Из (2) следует, что можно заменить Γ на его конечное подмножество
Γ1, т.е. мы имеем

∆ ⊢ Γ1, Γ1 ⊢ 𝐴.

Пусть Γ1 = {𝐵1, . . . , 𝐵𝑛}. Пусть Π𝑖 —- вывод 𝐵𝑖 из ∆. Возьмем вывод 𝐴 из Γ1; в нем встречаются какие-то
гипотезы 𝐵𝑖:

. . . 𝐵𝑖1 , . . . , 𝐵𝑖2 , . . . , 𝐴.

Заменим в этом выводе каждую 𝐵𝑖 на ее вывод Π𝑖:

. . .Π𝑖1 , . . . ,Π𝑖2 , . . . , 𝐴.

Получится вывод 𝐴 из из ∆. Действительно, все формулы из исходного вывода, кроме гипотез 𝐵𝑖, — аксиомы
𝐶𝐿 или получаются из предыдущих по MP. А в каждом вставном выводе Π𝑖 все формулы — аксиомы 𝐶𝐿 или
входят в ∆ или получаются по MP из предыдущих (внутри того же вывода). �

Вместо {𝐴1, . . . , 𝐴𝑛} ⊢𝐶𝐿 𝐵 обычно пишут 𝐴1, . . . , 𝐴𝑛 ⊢𝐶𝐿 𝐵. Говорят также, что
𝐴1, . . . , 𝐴𝑛

𝐵
— производное

правило 𝐶𝐿.

Если из выводимости формул 𝐴1, . . . , 𝐴𝑛 следует выводимость 𝐵, то говорят, что
𝐴1, . . . , 𝐴𝑛

𝐵
— допустимое

правило 𝐶𝐿.

Лемма 4.3. Всякое производное правило 𝐶𝐿 допустимо.9

Доказательство Пусть Γ = {𝐴1, . . . , 𝐴𝑛} ⊢ 𝐵. Тогда, если ∅ ⊢ Γ, то ∅ ⊢ 𝐵 — по транзитивности выводимости:
�

Транзитивность выводимости означает, что уже доказанные теоремы можно использовать в новых выво-
дах, не повторяя из доказательств. Полученные допустимые правила также можно применять для сокращения
доказательств.

Пример 3 Допустимо правило введения конъюнкции

𝐴,𝐵

𝐴 ∧𝐵
.

Действительно, 𝐴,𝐵 ⊢ 𝐴 ∧𝐵:

1. 𝐴 (гипотеза)
2. 𝐵 (гипотеза)
3. 𝐴→ (𝐵 → 𝐴 ∧𝐵) (аксиома 5)
4. 𝐵 → 𝐴 ∧𝐵 (1,3, MP)
5. 𝐴 ∧𝐵 (2,4, MP)

Теорема о дедукции для исчисления высказываний
Теорема 4.4. (теорема10 о дедукции)

Γ, 𝐴 ⊢𝐶𝐿 𝐵 ⇔ Γ ⊢𝐶𝐿 𝐴→ 𝐵.

Здесь Γ, 𝐴 обозначает множество Γ ∪ {𝐴}.

Доказательство Утверждение (⇐) почти очевидно. Действительно, пусть Γ ⊢ 𝐴 → 𝐵. Тогда имеем Γ, 𝐴 ⊢
𝐴,𝐴→ 𝐵 и 𝐴,𝐴→ 𝐵 ⊢ 𝐵 (MP). Отсюда по транзитивности Γ, 𝐴 ⊢ 𝐵.

Утверждение (⇒) доказывается индукцией по длине вывода 𝐵 из Γ, 𝐴.
(1) Если этот вывод — длины 1, то 𝐵 — аксиома или гипотеза. Если 𝐵 — аксиома, то имеем вывод 𝐴 → 𝐵

(из ∅):
1. 𝐵 (аксиома)
2. 𝐵 → (𝐴→ 𝐵) (аксиома 1)
3. 𝐴→ 𝐵 (1,2, MP)

(2) Если 𝐵 ∈ Γ, то имеем такой же вывод 𝐴→ 𝐵 из Γ:
9Обратное утверждение (при некотором уточнении понятия “правило вывода ”) тоже верно, но в этом курсе мы его не доказываем.

10Конечно, это — не теорема нашего формального исчисления, а утверждение о его свойствах (“метатеорема”).
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1. 𝐵 (гипотеза)
2. 𝐵 → (𝐴→ 𝐵) (аксиома 1)
3. 𝐴→ 𝐵 (1,2, MP)

(3) Если 𝐵 = 𝐴, то 𝐴→ 𝐵 = 𝐴→ 𝐴. Но ⊢ 𝐴→ 𝐴 (пример 2 выше).
(4) Предположим теперь, что Γ, 𝐴 ⊢ 𝐵 и утверждение (⇒) верно для всех более коротких выводов, т.е.

для всех 𝐶, если Γ, 𝐴 ⊢ 𝐶 и вывод 𝐶 из Γ, 𝐴 короче, чем вывод 𝐵, то Γ ⊢ 𝐴→ 𝐶.
Докажем, что Γ ⊢ 𝐴→ 𝐵.
Рассмотрим вывод из Γ, 𝐴, который заканчивается формулой 𝐵. При этом 𝐵 может оказаться аксиомой или

гипотезой (тогда все предыдущие формулы для доказательства 𝐵 не нужны). Но в этом случае Γ ⊢ 𝐴 → 𝐵 по
(1)–(3).

Остается случай, когда 𝐵 получается по MP из формул 𝐶,𝐶 → 𝐵, причем Γ, 𝐴 ⊢ 𝐶 и Γ, 𝐴 ⊢ 𝐶 → 𝐵 с более
короткими доказательствами. По предположению индукции имеем

(*) Γ ⊢ 𝐴→ 𝐶, 𝐴→ (𝐶 → 𝐵).

С другой стороны,

(**) 𝐴→ 𝐶, 𝐴→ (𝐶 → 𝐵) ⊢ 𝐴→ 𝐵 :

1. 𝐴→ 𝐶 (гипотеза)
2. 𝐴→ (𝐶 → 𝐵) (гипотеза)
3. (𝐴→ (𝐶 → 𝐵)) → ((𝐴→ 𝐶) → (𝐴→ 𝐵)) (аксиома 2)
4. (𝐴→ 𝐶) → (𝐴→ 𝐵) (2,3, MP)
5. 𝐴→ 𝐵 (1,4, MP)

Из (*), (**) по транзитивности получаем Γ ⊢ 𝐴→ 𝐵. �

Отметим частный случай теоремы о дедукции для Γ = ∅:

𝐴 ⊢ 𝐵 ⇔ ⊢ 𝐴→ 𝐵.

Пример 4 Допустимо правило силлогизма
𝐴→ 𝐵,𝐵 → 𝐶

𝐴→ 𝐶
.

Покажем, что это — производное правило, т.е.

𝐴→ 𝐵, 𝐵 → 𝐶 ⊢ 𝐴→ 𝐶.

По теореме дедукции это равносильно
𝐴→ 𝐵, 𝐵 → 𝐶,𝐴 ⊢ 𝐶.

Последнее утверждение очевидно: надо два раза применить MP.

Корректность исчисления высказываний для булевых алгебр
Теорема 4.5. Если ⊢𝐶𝐿 𝐴, то ℬ � 𝐴 для любой булевой алгебры ℬ.

Доказательство
Доказываем теорему индукцией по длине вывода 𝐴. Имеется 2 случая:
(I) 𝐴 — аксиома.
(II) 𝐴 получается по MP из формул 𝐵, 𝐵 → 𝐴 с более короткими выводами.
Начнем с более простого случая (II). По предположению индукции, ℬ � 𝐵,𝐵 → 𝐴. Рассмотрим произвольную

оценку 𝑓 в ℬ; пусть 𝑓(𝐴) = 𝑎. Докажем, что 𝑎 = 1.
Поскольку ℬ � 𝐵,𝐵 → 𝐴, имеем: 𝑓(𝐵) = 𝑓(𝐵 → 𝐴) = 1. Тогда

1 = 𝑓(𝐵 → 𝐴) = 𝑓(𝐵) →○ 𝑓(𝐴) = 1 →○ 𝑎.

По лемме 3.4 1 ≤ 𝑎, и значит, 𝑎 = 1, т.к. 1 — наибольший элемент.
В случае (I) надо доказывать общезначимость всех 10 аксиом. Это мы рассмотрим на следующей лекции. �
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Лекция 5

Корректность исчисления высказываний для булевых алгебр (окончание)
Продолжаем доказательство теоремы:

Теорема 5.5. Если ⊢𝐶𝐿 𝐴, то ℬ � 𝐴 для любой булевой алгебры ℬ.

Доказательство
Остается рассмотреть случаи, когда 𝐴 — аксиома. Нам понадобится лемма о булевых алгебрах.

Лемма 5.1. В любой булевой алгебре

(1) 𝑥 ≤ 𝑥 ⊔ 𝑦, 𝑦 ≤ 𝑥 ⊔ 𝑦;

(2) если 𝑥 ≤ 𝑧 и 𝑦 ≤ 𝑧, то 𝑥 ⊔ 𝑦 ≤ 𝑧;

(3) если 𝑥 ≤ 𝑥′ и 𝑦 ≤ 𝑦′, то 𝑥 ⊔ 𝑦 ≤ 𝑥′ ⊔ 𝑦′.

Доказательство (1) 𝑥 ⊓ (𝑥 ⊔ 𝑦) = 𝑥 — поглощение и коммутативность; аналогично получаем 𝑦 ⊓ (𝑥 ⊔ 𝑦) = 𝑦.
(2) Если 𝑥 ⊓ 𝑧 = 𝑥, 𝑦 ⊓ 𝑧 = 𝑦, то по дистрибутивности

(𝑥 ⊔ 𝑦) ⊓ 𝑧 = (𝑥 ⊓ 𝑧) ⊔ (𝑦 ⊓ 𝑧) = 𝑥 ⊔ 𝑦.

(3) Пусть 𝑥 ≤ 𝑥′ и 𝑦 ≤ 𝑦′. Тогда из (1) получаем

𝑥 ≤ 𝑥′ ≤ 𝑥′ ⊔ 𝑦′, 𝑦 ≤ 𝑦′ ≤ 𝑥′ ⊔ 𝑦′.

Теперь, применив (2), имеем:
𝑥 ⊔ 𝑦 ≤ 𝑥′ ⊔ 𝑦′.

�

Докажем теперь общезначимость аксиом 𝐶𝐿 в произвольной булевой алгебре ℬ.
Аксиома 1 Выберем оценку 𝑓 в ℬ; пусть 𝑓(𝐴) = 𝑎, 𝑓(𝐵) = 𝑏. Нам надо доказать

𝑎→○ (𝑏→○ 𝑎) = 1.

По лемме 3.4 это равносильно
𝑎 ≤ 𝑏→○ 𝑎 = −𝑏 ⊔ 𝑎.

Теперь можно применить лемму 5.1.
Общезначимость аксиом 3, 4, 6, 7, 10 проверяется легко (упражнение). Рассмотрим аксиомы 2, 8, 9.
Аксиома 2 Пусть дана оценка 𝑓 в ℬ, 𝑓(𝐴) = 𝑎, 𝑓(𝐵) = 𝑏, 𝑓(𝐶) = 𝑐. Надо доказать

(𝑎→○ (𝑏→○ 𝑐)) →○ ((𝑎→○ 𝑏) →○ (𝑎→○ 𝑐)) = 1.

По лемме 3.4 это равносильно
𝑎→○ (𝑏→○ 𝑐) ≤ (𝑎→○ 𝑏) →○ (𝑎→○ 𝑐),

т.е.
−𝑎 ⊔ (−𝑏 ⊔ 𝑐) ≤ −(−𝑎 ⊔ 𝑏) ⊔ (−𝑎 ⊔ 𝑐),

или (применяя закон Де Моргана и ассоциативность)

−𝑎 ⊔ −𝑏 ⊔ 𝑐 ≤ (𝑎 ⊓ −𝑏) ⊔ −𝑎 ⊔ 𝑐.

Благодаря почленному сложению неравенств (лемма 5.1 (3)), достаточно проверить

(*) −𝑏 ≤ (𝑎 ⊓ −𝑏) ⊔ −𝑎.

A это получается так:

−𝑏 = 1 ⊓ (−𝑏) = (𝑎 ⊔ −𝑎) ⊓ (−𝑏) = (𝑎 ⊓ −𝑏) ⊔ (−𝑎 ⊓ −𝑏) ≤ (𝑎 ⊓ −𝑏) ⊔ (−𝑎)

— опять по лемме 5.1.
Аксиома 9 Надо доказать

(𝑎→○ − 𝑏) →○ ((𝑎→○ 𝑏) →○ − 𝑎) = 1.
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Заметим, что
𝑎→○0 = −𝑎 ⊔ 0 = −𝑎.

Значит, надо проверить, что
(𝑎→○ (𝑏→○0)) →○ ((𝑎→○ 𝑏) →○ (𝑎→○0)) = 1.

Но это мы установили при проверке аксиомы 2: надо взять 𝑐 = 0.
Аксиома 8 Надо доказать

(𝑎→○ 𝑐) →○ ((𝑏→○ 𝑐) →○ ((𝑎 ⊔ 𝑏) →○ 𝑐)) = 1,

или
𝑎→○ 𝑐 ≤ (𝑏→○ 𝑐) →○ ((𝑎 ⊔ 𝑏) →○ 𝑐),

или
−𝑎 ⊔ 𝑐 ≤ −(−𝑏 ⊔ 𝑐) ⊔ −(𝑎 ⊔ 𝑏) ⊔ 𝑐,

или (если применить закон Де Моргана)

−𝑎 ⊔ 𝑐 ≤ (𝑏 ⊓ −𝑐) ⊔ (−𝑎 ⊓ −𝑏) ⊔ 𝑐.

По лемме 5.1 это сводится к

(♯) −𝑎 ≤ (𝑏 ⊓ −𝑐) ⊔ (−𝑎 ⊓ −𝑏) ⊔ 𝑐.

Для доказательства (♯) используем неравенства:

(**) −𝑎 ≤ (−𝑎 ⊓ −𝑏) ⊔ 𝑏,

(* * *) 𝑏 ≤ (𝑏 ⊓ −𝑐) ⊔ 𝑐.

Каждое из них — это вариант неравенства (*) (см. выше). Теперь по лемме 5.1 получаем (♯):

−𝑎 ≤ (−𝑎 ⊓ −𝑏) ⊔ 𝑏 ≤ (−𝑎 ⊓ −𝑏) ⊔ (𝑏 ⊓ −𝑐) ⊔ 𝑐.

�

Следствие 5.2. 𝐶𝐿 непротиворечиво, т.е. нет такой формулы 𝐴, что ⊢𝐶𝐿 𝐴,¬𝐴.

Доказательство. Иначе обе формулы 𝐴,¬𝐴 окажутся тавтологиями.

Полнота исчисления высказываний
Теорема 5.3. (Теорема о полноте 𝐶𝐿)
Все тавтологии выводимы в 𝐶𝐿:

2 � 𝐴 ⇒ ⊢𝐶𝐿 𝐴.

Доказательство Множество формул Γ ⊆ 𝐹𝑚 называется противоречивым (в 𝐶𝐿), если Γ ⊢ 𝐴,¬𝐴 для
некоторой формулы 𝐴.

Лемма 5.4.

(1) Γ ∪ {𝐵} противоречиво ⇔ Γ ⊢ ¬𝐵

(2) Если Γ противоречиво, то Γ ⊢ 𝐵 для всех формул 𝐵.

Доказательство (леммы).
(1) (⇐) очевидно.
Докажем (⇒). Пусть Γ, 𝐵 ⊢ 𝐴,¬𝐴. Тогда по теореме дедукции

Γ ⊢ 𝐵 → 𝐴, 𝐵 → ¬𝐴.

С другой стороны,
𝐵 → 𝐴, 𝐵 → ¬𝐴 ⊢ ¬𝐵.

Это получается из аксиомы 9, если заменить в ней 𝐴 на 𝐵 и наоборот и 2 раза применить MP. Тогда по
транзитивности

Γ ⊢ ¬𝐵.

(2) Если Γ противоречиво, то и подавно Γ ∪ {¬𝐵} противоречиво. По (1) тогда Γ ⊢ ¬¬𝐵. Добавив к этому
выводу аксиому 10 ¬¬𝐵 → 𝐵 и применив MP, получаем Γ ⊢ 𝐵. �
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Теорему 5.3 докажем от противного: предполагаем ̸⊢𝐶𝐿𝐴 и доказываем 2 ̸� 𝐴.
Пусть Φ — множество всех подформул 𝐴 и их отрицаний. Будем рассматривать различные Γ ⊆ Φ.
Множество Γ ⊆ Φ назовем максимально непротиворечивым (или просто — максимальным), если оно непро-

тиворечиво, а всякое его собственное расширение внутри Φ (т.е. Γ′, такое что Γ ⊂ Γ′ ⊆ Φ) противоречиво.
Очевидно, что Φ противоречиво — например, потому, что 𝐴,¬𝐴 ∈ Φ.
Множество {¬𝐴} непротиворечиво: иначе бы ⊢ ¬¬𝐴 (по лемме 5.4(1)), и тогда ⊢ 𝐴 — по аксиоме 10 и MP.

Лемма 5.5. Любое непротиворечивое подмножество Φ содержится в каком-то максимальном.

Доказательство Если Γ ⊆ Φ непротиворечиво и не максимально, то оно останется непротиворечивым при
добавлении какой-то формулы из Φ∖Γ. Расширим его, добавив эту формулу. Продолжаем процесс до тех пор,
пока это возможно. Т.к. Φ∖Γ конечно, через конечное число шагов получится максимальное множество.11 �

Лемма 5.6. Пусть Γ — максимальное множество. Тогда

(0) Γ ⊢ 𝐵 ⇒ 𝐵 ∈ Γ (для 𝐵 ∈ Φ);

(1) ¬𝐵 ∈ Γ ⇔ 𝐵 ̸∈ Γ (для ¬𝐵 ∈ Φ);

(2) (𝐵 ∧ 𝐶) ∈ Γ ⇔ (𝐵 ∈ Γ и 𝐶 ∈ Γ) (для (𝐵 ∧ 𝐶) ∈ Φ);

(3) (𝐵 ∨ 𝐶) ∈ Γ ⇔ (𝐵 ∈ Γ или 𝐶 ∈ Γ) (для (𝐵 ∨ 𝐶) ∈ Φ);

(4) (𝐵 → 𝐶) ∈ Γ ⇔ (𝐵 ̸∈ Γ или 𝐶 ∈ Γ) (для (𝐵 → 𝐶) ∈ Φ).

Доказательство (0) Доказываем от противного. Предположим, что 𝐵 ∈ Φ, 𝐵 ̸∈ Γ. Тогда Γ ⊂ Γ ∪ {𝐵} ⊆ Φ,
поэтому Γ ∪ {𝐵} противоречиво (т.к. Γ максимально). Тогда по лемме 5.4(1) Γ ⊢ ¬𝐵, и следовательно, Γ ̸⊢𝐵 —
иначе бы Γ было противоречиво.

(1) (⇒) очевидно, т.к. Γ непротиворечиво.
(⇐) Сначала заметим, что если ¬𝐵 ∈ Φ, то и 𝐵 ∈ Φ как подформула 𝐴. Действительно, если ¬𝐵 — отрицание

подформулы 𝐴, то 𝐵 — подформула; если же ¬𝐵 — подформула 𝐴, то 𝐵 — тоже подформула. Тогда из 𝐵 ̸∈ Γ
следует Γ ⊢ ¬𝐵 (как в доказательстве (0)). Отсюда ¬𝐵 ∈ Γ — по (0).

(2) Нам дано, что (𝐵 ∧𝐶) ∈ Φ. Тогда (𝐵 ∧𝐶) — подформула Φ, поэтому и 𝐵,𝐶 — подформулы и лежат в Φ.
(⇒) Пусть (𝐵 ∧ 𝐶) ∈ Γ. Тогда Γ ⊢ 𝐵,𝐶 (по аксиомам 3,4 и MP). Значит, 𝐵,𝐶 ∈ Γ — по (0).
(⇐) Пусть 𝐵,𝐶 ∈ Γ. Тогда Γ ⊢ 𝐵 ∧𝐶 (т.к. 𝐵,𝐶 ⊢ 𝐵 ∧𝐶 — см. пример 3 из лекции 4). Отсюда (𝐵 ∧𝐶) ∈ Γ —

по (0).
(3) Как и в случае (2), сначала заметим, что 𝐵,𝐶 ∈ Φ.
(⇐) Если 𝐵 ∈ Γ, то Γ ⊢ 𝐵 ∨ 𝐶 (по аксиоме 6 и MP), и тогда (𝐵 ∨ 𝐶) ∈ Γ — по (0). Если 𝐶 ∈ Γ, рассуждаем

аналогично (с аксиомой 7).
(⇒) Доказываем от противного. Допустим (𝐵 ∨ 𝐶) ∈ Γ, но 𝐵,𝐶 ̸∈ Γ Тогда ¬𝐵,¬𝐶 ∈ Γ — по (1).
Вспомним теперь, что из противоречивого множества выводится любая формула (лемма 5.4(1)), в частности,

⊥ (= 𝑃1 ∧ ¬𝑃1 — см. лекцию 2). Поэтому ¬𝐵,𝐵 ⊢ ⊥, откуда ¬𝐵 ⊢ 𝐵 → ⊥ — по теореме дедукции. Аналогично
¬𝐶 ⊢ 𝐶 → ⊥. В результате имеем:

Γ ⊢ 𝐵 ∨ 𝐶,𝐵 → ⊥, 𝐶 → ⊥.

Однако
𝐵 ∨ 𝐶,𝐵 → ⊥, 𝐶 → ⊥ ⊢ ⊥

— это получится, если применить аксиому 8 и MP (дважды). По транзитивности, Γ ⊢ ⊥, и тогда Γ противоречиво:
из ⊥ выводятся 𝑃1,¬𝑃1.

(4) Как и в остальных случаях, заметим, что 𝐵,𝐶 ∈ Φ.
(⇒) Если (𝐵 → 𝐶), 𝐵 ∈ Γ, то Γ ⊢ 𝐶 по MP, и тогда 𝐶 ∈ Γ (по (0)).
(⇐) Разбираем 2 случая.
Если 𝐵 ̸∈ Γ, то ¬𝐵 ∈ Γ (1). Но ¬𝐵,𝐵 ⊢ 𝐶 (лемма 5.4(1)), откуда по теореме дедукции ¬𝐵 ⊢ 𝐵 → 𝐶. Значит,

Γ ⊢ 𝐵 → 𝐶, и (𝐵 → 𝐶) ∈ Γ — по (0).
Если 𝐶 ∈ Γ, то Γ ⊢ 𝐵 → 𝐶 по аксиоме 1 и MP, и опять (𝐵 → 𝐶) ∈ Γ — по (0). �

11Это рассуждение (его можно провести точнее, в рамках формальной теории множеств) показывает, что всякое конечное частич-
но упорядоченное множество имеет максимальный элемент. В нашем случае это множество всех непротиворечивых подмножеств
Φ, содержащих Γ, упорядоченное по включению.
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Закончим теперь доказательство теоремы. Исходное непротиворечивое множество ¬𝐴 расширим до макси-
мального Γ (лемма 5.5). Возьмем оценку 𝑓 : 𝑉 𝑎𝑟 −→ {0, 1} такую, что для всех переменных 𝑃𝑖 из Φ

𝑓(𝑃𝑖) = 1 ⇔ 𝑃𝑖 ∈ Γ.

На всех других переменных зададим 𝑓 как угодно. Тогда справедливо следующее утверждение:

𝑓(𝐹 ) = 1 ⇔ 𝐹 ∈ Γ

для всех 𝐹 ∈ Φ. Это утверждение доказывается индукцией по длине 𝐹 .

∙ Если 𝐹 ∈ 𝑉 𝑎𝑟, то утверждение верно по определению.

∙ Пусть 𝐹 = ¬𝐵, тогда 𝐵 ∈ Φ, и по предположению индукции,

𝑓(𝐵) = 1 ⇔ 𝐵 ∈ Γ

Имеем:
𝑓(𝐹 ) = 1 ⇔ 𝑓(𝐵) = 0 ⇔ 𝐵 ̸∈ Γ ⇔ 𝐹 = ¬𝐵 ∈ Γ

по лемме 5.6.

∙ Пусть 𝐹 = (𝐵 ∧ 𝐶), тогда 𝐵,𝐶 ∈ Φ, и по предположению индукции,

𝑓(𝐵) = 1 ⇔ 𝐵 ∈ Γ, 𝑓(𝐶) = 1 ⇔ 𝐶 ∈ Γ.

Тогда
𝑓(𝐹 ) = 1 ⇔ 𝑓(𝐵) = 𝑓(𝐶) = 1 ⇔ (𝐵 ∈ Γ и 𝐶 ∈ Γ) ⇔ 𝐹 = (𝐵 ∧ 𝐶) ∈ Γ

по лемме 5.6.

∙ Связки ∨, → рассматриваются аналогично.

Применив доказанное утверждение к 𝐹 = ¬𝐴, получаем 𝑓(¬𝐴) = 1, и следовательно, 𝑓(𝐴) = 0. Итак, 2 ̸� 𝐴. �

Теорема 5.7. Для любой пропозициональной формулы 𝐴 и нетривиальной булевой алгебры ℬ следующие
утверждения эквивалентны.

(1) ⊢𝐶𝐿 𝐴,

(2) ℬ � 𝐴,

(3) 2 � 𝐴.

Доказательство (1) ⇒ (2) — это теорема корректности 4.5, (2) ⇒ (3) — теорема 4.1, а (3) ⇒ (1) — теорема
полноты 5.3. �

Лекция 6
ЛОГИКА ПРЕДИКАТОВ

Языки первого порядка: синтаксис
Отличия языка 1-го порядка от языка логики высказываний:

∙ Вместо пропозициональных переменных используются атомарные формулы.

∙ Для индуктивного построения формул, кроме логических связок, применяются кванторы.

Определение 18. Сигнатурой (первого порядка) называется четверка вида Ω = (𝑃𝑟𝑒𝑑Ω, 𝐶𝑜𝑛𝑠𝑡Ω, 𝐹𝑢𝑛Ω, 𝜈), в
которой

∙ 𝑃𝑟𝑒𝑑Ω, 𝐶𝑜𝑛𝑠𝑡Ω, 𝐹𝑢𝑛Ω — попарно не пересекающиеся множества,

∙ 𝑃𝑟𝑒𝑑Ω ̸= ∅,

∙ 𝜈 : 𝑃𝑟𝑒𝑑Ω ∪ 𝐹𝑢𝑛Ω −→ N+ = {1, 2, . . .}.
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Множества 𝑃𝑟𝑒𝑑Ω, 𝐶𝑜𝑛𝑠𝑡Ω, 𝐹𝑢𝑛Ω называются соответственно множеством предикатных символов, множеством
(предметных) констант и множеством функциональных символов сигнатуры Ω. 𝜈 называется функцией ва-
лентности.

Предикатный или функциональный символ 𝐺 называется n-местным (n-арным), если 𝜈(𝐺) = 𝑛. Чтобы это
подчеркнуть, его обозначают 𝐺𝑛.

Определение 19. Алфавит языка первого порядка сигнатуры Ω состоит из

∙ всех предикатных символов, констант и функциональных символов Ω;
∙ счетного множества свободных (предметных) переменных 𝐹𝑉 𝑎𝑟 = {𝑎0, 𝑎1, . . .};
∙ счетного множества связанных (предметных) переменных 𝐵𝑉 𝑎𝑟 = {𝑣0, 𝑣1, . . .};
∙ логических связок: ∨,∧,→,¬;
∙ кванторов: ∀,∃;
∙ технических символов: ( , ) (скобки), “,” (запятая).

Предполагаем, что все эти множества попарно не пересекаются.

Как правило, для обозначения свободных переменных мы будем использовать 𝑎, 𝑏, 𝑐, . . . вместо символов 𝑎𝑖,
a для связанных — 𝑥, 𝑦, 𝑧, . . . вместо 𝑣𝑖.

Язык первого порядка данной сигнатуры состоит из двух видов слов в этом алфавите: термов и формул.

Определение 20. Термы сигнатуры Ω строятся индуктивно:

∙ все константы — термы,
∙ все свободные переменные — термы,
∙ если 𝑓𝑛 ∈ 𝐹𝑢𝑛Ω и 𝑡1, . . . , 𝑡𝑛 — термы, то 𝑓(𝑡1, . . . , 𝑡𝑛) — терм.

Таким образом, мы индукцией по длине слова, определяем, какие слова считаются термами.
Это определение можно сформулировать иначе:
Множество термов сигнатуры Ω — это наименьшее множество слов 𝑋, такое что

∙ 𝐶𝑜𝑛𝑠𝑡Ω ⊆ 𝑋,
∙ 𝐹𝑉 𝑎𝑟 ⊆ 𝑋,
∙ если 𝑓𝑛 ∈ 𝐹𝑢𝑛Ω и 𝑡1, . . . , 𝑡𝑛 ∈ 𝑋, то 𝑓(𝑡1, . . . , 𝑡𝑛) ∈ 𝑋.

Определение 21. Атомарные формулы сигнатуры Ω — это слова вида 𝑃 (𝑡1, . . . , 𝑡𝑛), где 𝑃𝑛 ∈ 𝑃𝑟𝑒𝑑Ω, а 𝑡1, . . . , 𝑡𝑛
— термы сигнатуры Ω.

Определение 22. Формулы сигнатуры Ω строятся индуктивно:

∙ все атомарные формулы являются формулами;
∙ eсли 𝐴,𝐵 — формулы, то (𝐴 ∧𝐵) — формулa;
∙ eсли 𝐴,𝐵 — формулы, то (𝐴 ∨𝐵) — формулa;
∙ eсли 𝐴,𝐵 — формулы, то (𝐴→ 𝐵) — формулa;
∙ eсли 𝐴 — формулa, то ¬𝐴 — формулa;
∙ eсли 𝐴 — формулa, 𝑎 ∈ 𝐹𝑉 𝑎𝑟, 𝑥 ∈ 𝐵𝑉 𝑎𝑟 и 𝑥 не входит в 𝐴, то ∃𝑥[𝑥/𝑎]𝐴 — формулa;
∙ eсли 𝐴 — формулa, 𝑎 ∈ 𝐹𝑉 𝑎𝑟, 𝑥 ∈ 𝐵𝑉 𝑎𝑟 и 𝑥 не входит в 𝐴, то ∀𝑥[𝑥/𝑎]𝐴 — формулa.

В этом определении запись [𝑥/𝑎]𝐴 означает результат замены всех вхождений переменной 𝑎 в 𝐴 на переменную
𝑥 (в частности, [𝑥/𝑎]𝐴 = 𝐴, если 𝑎 не входит в 𝐴).

Обозначения (для сигнатуры Ω):
𝑇𝑚Ω — множество всех термов,
𝐹𝑚Ω — множество всех формул,
𝐴𝐹𝑚Ω — множество всех атомарных формул.
Замечание В любой формуле кванторы по одной и той же переменной могут встречаться только в непересе-

кающихся подформулах. Например, если 𝑃 1 ∈ 𝑃𝑟𝑒𝑑Ω и 𝑥 ∈ 𝐵𝑉 𝑎𝑟, то

∃𝑥𝑃 (𝑥) ∧ ∃𝑥¬𝑃 (𝑥)

— формулa, а
∃𝑥(𝑃 (𝑥) ∧ ∃𝑥¬𝑃 (𝑥))

— не формула.
Существуют и другие варианты определения формулы. Самый распространенный вариант: свободные и

связанные переменные не различаются, а кванторы применяются без ограничений. Такое определение формулы
проще, но при этом варианте усложняется формулировка исчисления предикатов.
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При более экзотическом варианте определения связанные переменные исчезают, а вместо них появляются
пустые окошки, которые соединяются связями со своими кванторами. Похожее определение используется в
“Теории множеств” Бурбаки.

Пример Рассмотрим сигнатуру колец (или сигнатуру арифметики). В ней имеются константы 0,1, предикат-
ный символ =2, и функциональные символы +2, ·2.

Атомарные формулы имеют вид = (𝑡1, 𝑡2), что мы будем записывать более привычным образом: (𝑡1 = 𝑡2).
Аналогично, термы + (𝑡1, 𝑡2), · (𝑡1, 𝑡2) записываются как (𝑡1 + 𝑡2), (𝑡1 · 𝑡2).

В этой сигнатуре можно написать формулу

∃𝑥((𝑥+ 𝑥) = 𝑎),

которая означает, что 𝑎 — четное число (если речь идет о натуральных или целых числах).
Для коммутативных колец формула

¬(𝑎 = 0) ∧ ∃𝑥((𝑥 · 𝑎) = 0) ∧ ¬(𝑥 = 0))

означает, что 𝑎 — делитель нуля, а формула
∃𝑥((𝑥 · 𝑎) = 1)

— что 𝑎 обратим.

Лемма 6.1 (Лемма об однозначном анализе термов и формул). Для данной сигнатуры Ω

(1) Каждый терм есть либо константа, либо свободная переменная, либо имеет вид 𝑓(𝑡1, . . . , 𝑡𝑛) для един-
ственного функционального символа 𝑓𝑛 и термов 𝑡1, . . . , 𝑡𝑛.

(2) Каждая атомарная формула имеет вид 𝑃 (𝑡1, . . . , 𝑡𝑛) для единственного предикатного символа 𝑃𝑛 и тер-
мов 𝑡1, . . . , 𝑡𝑛.

(3) Для любой формулы 𝐶 выполнено ровно одно из условий:

∙ 𝐶 — атомарная,

∙ Существует единственная пара формул 𝐴,𝐵, такая что 𝐶 = (𝐴 ∧𝐵),

∙ Существует единственная пара формул 𝐴,𝐵, такая что 𝐶 = (𝐴 ∨𝐵),

∙ Существует единственная пара формул 𝐴,𝐵, такая что 𝐶 = (𝐴→ 𝐵),

∙ Существует единственная формула 𝐴, такая что 𝐶 = ¬𝐴,

∙ 𝐶 = ∃𝑥[𝑥/𝑎]𝐴 для некоторой формулы 𝐴 и 𝑎 ∈ 𝐹𝑉 𝑎𝑟, 𝑥 ∈ 𝐵𝑉 𝑎𝑟,

∙ 𝐶 = ∀𝑥[𝑥/𝑎]𝐴 для некоторой формулы 𝐴 и 𝑎 ∈ 𝐹𝑉 𝑎𝑟, 𝑥 ∈ 𝐵𝑉 𝑎𝑟.

Доказательство опускаем. Отметим, что в последних двух случаях формула 𝐴 уже не единственна: например,

∃𝑥𝑃 (𝑥) = ∃𝑥[𝑥/𝑎]𝑃 (𝑎) = ∃𝑥[𝑥/𝑏]𝑃 (𝑏).

Языки первого порядка: семантика
Определение 23. Модель сигнатуры Ω, или Ω-структура, — это пара вида 𝑀 = (𝑀, ℐ), где

𝑀 — непустое множество (носитель модели),
ℐ — функция, определенная на множестве 𝑃𝑟𝑒𝑑Ω ∪ 𝐶𝑜𝑛𝑠𝑡Ω ∪ 𝐹𝑢𝑛Ω (интерпретирующая функция), причем

∙ Если 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω, то ℐ(𝑐) ∈𝑀 ,

∙ Если 𝑃𝑛 ∈ 𝑃𝑟𝑒𝑑Ω, то ℐ(𝑃 ) : 𝑀𝑛 −→ {и,л}12 (т.е. ℐ(𝑃 ) — 𝑛-местный предикат на 𝑀),

∙ Если 𝑓𝑛 ∈ 𝐹𝑢𝑛Ω, то ℐ(𝑓) : 𝑀𝑛 −→𝑀 (т.е. ℐ(𝑓) — 𝑛-местная операция на 𝑀).

В дальнейшем для заданной модели 𝑀 = (𝑀, ℐ) пишем 𝑐𝑀 , 𝑃𝑀 , 𝐹𝑀 соответственно вместо ℐ(𝑐), ℐ(𝑃 ), ℐ(𝑓) и
𝑚 ∈𝑀 вместо 𝑚 ∈𝑀 .

Определение 24. Терм, не содержащий переменных (т.е. построенный из констант и функциональных симво-
лов), называется замкнутым. Для сигнатуры Ω множество всех замкнутых термов обозначается 𝐶𝑇𝑚Ω,

Для замкнутого терма 𝑡 сигнатуры Ω индукцией по длине определяется его значение в модели 𝑀 сигнатуры
Ω; оно обозначается |𝑡|𝑀 .

∙ |𝑐|𝑀 := 𝑐𝑀 для 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω,
12Как и в логике высказываний, далее мы будем отождествлять значения истинности и, л с 0, 1. Пока мы этого не делаем — во

избежание путаницы.
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∙ |𝑓(𝑡1, . . . , 𝑡𝑛)|𝑀 := 𝑓𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 ) для 𝑓𝑛 ∈ 𝐹𝑢𝑛Ω, 𝑡1, . . . , 𝑡𝑛 ∈ 𝐶𝑇𝑚Ω.

Определение 25. Замкнутая атомарная формула имеет вид 𝑃𝑛(𝑡1, . . . , 𝑡𝑛), где 𝑡1, . . . , 𝑡𝑛 — замкнутые термы.
Для замкнутой атомарной формулы сигнатуры Ω ее значение в модели 𝑀 той же сигнатуры определяется

так:
|𝑃 (𝑡1, . . . , 𝑡𝑛)|𝑀 := 𝑃𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 ).

Определение 26. Модель 𝑀 сигнатуры, содержащей 2-местный предикатный символ равенства =, называется
нормальной, если для всех 𝑚1,𝑚2 из 𝑀

=𝑀 (𝑚1,𝑚2) =

{︃
и, если 𝑚1,𝑚2 совпадают,
л, иначе.

Пример Модель сигнатуры колец — это произвольное непустое множество 𝑀 с выбранными как угодно
элементами 0𝑀 , 1𝑀 , предикатом =𝑀 (как в определении 26) и операциями +𝑀 , ·𝑀 . Онa не обязанa быть кольцом.

Если 𝑀 = N с обычным пониманием символов 0, 1,+, ·, то |(1 + 1) · 1|𝑀 равно 2 (но символа 2 в нашей
сигнатуре нет, это — элемент модели). А

Если же 𝑀 = Z2 (кольцо вычетов 𝑚𝑜𝑑 2), то |(1 + 1) · 1|𝑀 равно 0𝑀 .
Замкнутая атомарная формула 1 + 1 = 0 принимает значение и в модели Z2 и л в модели N.

Лемма 6.2. Пусть 𝑀 — модель сигнатуры Ω. Значения замкнутых термов в 𝑀 определены корректно. Это
означает, что существует единственное отображение 𝑡 ↦→ |𝑡|𝑀 из 𝐶𝑇𝑚Ω в 𝑀 , удовлетворяющее условиям
из определения 24:

∙ |𝑐|𝑀 = 𝑐𝑀 для 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω,

∙ |𝑓(𝑡1, . . . , 𝑡𝑛)|𝑀 = 𝑓𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 ) для 𝑓𝑛 ∈ 𝐹𝑢𝑛Ω, 𝑡1, . . . , 𝑡𝑛 ∈ 𝐶𝑇𝑚Ω.

Доказательство Аналогично лемме 2.1. Индукцией по длине 𝑡 доказываем, что |𝑡|𝑀 определяется однозначно.
Базис индукции: если 𝑡 — константа, то все очевидно.
Шаг индукции. По лемме 6.1, 𝑡 = 𝑓(𝑡1, . . . , 𝑡𝑛) для единственнoго функционального символа 𝑓 и тер-

мов 𝑡1, . . . , 𝑡𝑛. По предположению индукции, значения |𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 определены однозначно, и тогда |𝑡|𝑀 =
𝑓𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 ) тоже задается однозначно. �

Лемма 6.3. Значения замкнутых атомарных формул в модели определены корректно.

Доказательство Очевидное следствие лемм 6.1 и 6.2. �

Определение 27. Формула, не содержащая свободных переменных, называется замкнутой, или предложени-
ем.

Для сигнатуры Ω множество всех замкнутых формул обозначается 𝐶𝐹𝑚Ω.
Значение произвольной замкнутой формулы в модели определяется по индукции; оно отражает интуитивное

понимание связок и кванторов. Точное определение мы дадим в лекции 7, а пока отметим лишь, что для связок
∨,∧,¬ определение аналогично логике высказываний. Т.е. |𝐴 ∧𝐵| = min(|𝐴|, |𝐵|), |¬𝐴| = 1 − |𝐴| и т.д.

Определение 28. Пусть 𝑀 — модель сигнатуры Ω, 𝐴 — замкнутая формулa сигнатуры Ω. Говорят, что 𝐴
истинна (или выполнима) в 𝑀 , если |𝐴|𝑀 = 1. В этом случае также говорят, что 𝑀 — модель 𝐴 и пишут 𝑀 � 𝐴.

Замкнутая формула называется выполнимой, если она имеет модель; общезначимой — если она истинна во
всех моделях данной сигнатуры.

Определение 29. Tеорией первого порядка в сигнатуре Ω называется любое множество замкнутых формул
этой сигнатуры; элементы теории называются также ее аксиомами.

Говорят, что теория 𝑇 выполнима в модели 𝑀 , или что 𝑀 — модель 𝑇 , и пишут 𝑀 � 𝑇 , если все формулы
из 𝑇 истинны в 𝑀 .

Теория называется выполнимой (или совместной), если она имеет модель.

Пример 1 Рассмотрим сигнатуру равенства. В ней единственный 2-местный предикатный символ “=” (ра-
венство) и нет ни констант, ни функциональных символов. Чистая теория равенства (которую мы обозначим
𝐸𝑞) содержит 3 аксиомы:

∀𝑥(𝑥 = 𝑥),

∀𝑥∀𝑦(𝑥 = 𝑦 → 𝑦 = 𝑥),

∀𝑥∀𝑦∀𝑧(𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧).

Всякая модель 𝑀 сигнатуры равенства — это непустое множество с произвольным 2-местным предикатом =𝑀 .
Если же 𝑀 � 𝐸𝑞, то предикат =𝑀 должен быть рефлексивным, симметричным и транзитивным (такой предикат
называется эквивалентностью).

В любой нормальной модели 𝑀 истинны все аксиомы 𝐸𝑞; в этом случае =𝑀 — предикат равенства.
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Определение 30. Пусть 𝑇 — теория, 𝐴 — замкнутая формула в ее сигнатуре. Говорят, что 𝐴 логически (или
семантически) следует из 𝑇 (обозначение: 𝑇 � 𝐴), если 𝐴 истинна во всех моделях 𝑇 .

Очевидны следующие свойства:
1. Если 𝑇 не выполнима, то 𝑇 � 𝐴 для всех 𝐴.
2. 𝑇 ̸�𝐴⇔ 𝑇 ∪ {¬𝐴} выполнима.

Определение 31. Теория 𝑇 называется полной, если для любой замкнутой формулы 𝐴 в ее сигнатуре хотя бы
одна из формул 𝐴, ¬𝐴 логически следует из 𝑇 .

Очевидно, что всякая невыполнимая теория полна: из нее следуют все формулы той же сигнатуры. Если
же теория выполнима и полна, то либо 𝑇 � 𝐴, либо 𝑇 � ¬𝐴, но не одновременно: в модели 𝑇 не могут быть
истинны и 𝐴, и ¬𝐴.

Определение 32. Элементарной теорией модели 𝑀 называется множество всех замкнутых формул в ее
сигнатуре, истинных в 𝑀 ; обозначение: 𝑇ℎ(𝑀).

Пример 2 Любая теория 𝑇ℎ(𝑀) полна: если замкнутая формула 𝐴 верна в 𝑀 , то она принадлежит теории
𝑇ℎ(𝑀) и значит, следует из нее; если же 𝐴 ложна в 𝑀 , то ¬𝐴 ∈ 𝑇ℎ(𝑀), поэтому 𝑇ℎ(𝑀) � ¬𝐴.

Пример 3 Чистая теория равенства 𝐸𝑞 неполна. Чтобы в этом убедиться, рассмотрим формулу

𝐴=1 := ∀𝑥∀𝑦(𝑥 = 𝑦).

Заметим, что в нормальной модели 𝑀
𝑀 � 𝐴=1 ⇔ |𝑀 | = 1

(где |𝑀 | — мощность модели 𝑀 , т.е. мощность ее носителя). Поэтому

∙ 𝐸𝑞 ̸�¬𝐴=1 — т.к. теория 𝐸𝑞 ∪ {𝐴=1} выполнима: у нее есть 1-элементная нормальная модель.

∙ 𝐸𝑞 ̸�𝐴=1 — т.к. теория 𝐸𝑞∪{¬𝐴=1} выполнима: у нее есть (например) 10-элементная нормальная модель.

Пример 4 Теория 𝑇 = 𝐸𝑞 ∪ {𝐴=1} полна. Аккуратно это утверждение мы докажем позже (см. лекцию 9),
но интуитивно оно понятно: все нормальные модели этой теории одноэлементны и потому они не отличимы
никакими формулами. А ненормальные модели можно не учитывать. Значит, не могут быть выполнимы обе
теории 𝑇 ∪ {𝐴}, 𝑇 ∪ {¬𝐴}.

Лекция 7
Определение 33. Теории 𝑇1, 𝑇2 одной сигнатуры называются эквивалентными (равносильными), если у них
одни и те же модели; обозначение: 𝑇1 ∼ 𝑇2.

Обозначим через [𝑇 ] множество всех логических следствий теории 𝑇 . Заметим, что

𝑇1 ∼ 𝑇2 ⇔ [𝑇1] = [𝑇2].

Действительно, если модели у теорий 𝑇1, 𝑇2 одинаковые, то и формулы, которые верны в этих моделях — одни
и те же, т.е. [𝑇1] = [𝑇2]. Наоборот, если следствия у теорий одинаковые, то любая формула из 𝑇2 является
следствием 𝑇1, т.е. верна во всех моделях 𝑇1. Значит, всякая модель 𝑇1 оказывается моделью 𝑇2. Аналогично,
всякая модель 𝑇2 является моделью 𝑇1.

Определение 34. Модели 𝑀1,𝑀2 одной сигнатуры называются элементарно эквивалентными, если в них
истинны одни и те же замкнутые формулы, т.е. 𝑇ℎ(𝑀1) = 𝑇ℎ(𝑀2); обозначение: 𝑀1 ≡𝑀2.

Лемма 7.1. Пусть 𝑇 — выполнимая теория. Следующие условия эквивалентны:

(1) 𝑇 полна.
(2) Любое выполнимое расширение теории 𝑇 эквивалентно 𝑇 .
(3) [𝑇 ] = 𝑇ℎ(𝑀) для некоторой модели 𝑀 .
(4) Все модели 𝑇 элементарно эквивалентны.

Доказательство (1) ⇒ (2). Пусть 𝑇 полна, докажем (2). Пусть 𝑇 ′ ⊇ 𝑇 ; тогда очевидно, что [𝑇 ′] ⊇ [𝑇 ].
Предположим, что 𝑇 ′ ̸∼ 𝑇 . Тогда найдется формула 𝐴 ∈ ([𝑇 ′] ∖ [𝑇 ]). Поскольку 𝑇 ̸�𝐴 и 𝑇 полна, получаем
𝑇 � ¬𝐴. Но тогда и 𝑇 ′ � ¬𝐴. С другой стороны, 𝑇 ′ � 𝐴. Значит, 𝑇 ′ невыполнима.
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(2) ⇒ (3). Предположим (2). Если 𝑀 � 𝑇 , то 𝑇 ⊆ 𝑇ℎ(𝑀). Теория 𝑇ℎ(𝑀) выполнима, поэтому она эквива-
лентна 𝑇 (в силу (2)). Тогда [𝑇 ] = [𝑇ℎ(𝑀)]. Но [𝑇ℎ(𝑀)] = 𝑇ℎ(𝑀), т.к. все логические следствия 𝑇ℎ(𝑀) истинны
в 𝑀 .

(3) ⇒ (4). Предположим (3). Тогда из 𝑀 ′ � 𝑇 следует 𝑀 ′ � 𝑇ℎ(𝑀). Значит, всякая замкнутая формула,
истинная в 𝑀 , будет истинной в 𝑀 ′. И наоборот, если 𝑀 ̸�𝐴, т.e. 𝑀 � ¬𝐴, то 𝑀 ′ � ¬𝐴, т.е. 𝑀 ′ ̸�𝐴. Итак,
𝑀 ≡𝑀 ′.

(4) ⇒ (1). Предположим (4) и допустим, что 𝑇 неполна. Тогда для некоторой замкнутой формулы 𝐴, 𝑇 ̸�𝐴
и 𝑇 ̸�¬𝐴. Это означает, что обе теории 𝑇 ∪ {¬𝐴}, 𝑇 ∪ {𝐴} выполнимы. Их модели оказываются моделями 𝑇 ,
которые не элементарно эквивалентны. �

Определение истинности в модели
Пусть 𝑀 — модель сигнатуры Ω; предполагаем, что ее носитель 𝑀 состоит из совершенно новых элементов,
которые не являются словами, содержащими символы из Ω. Через Ω ∪𝑀 обозначим расширенную сигнатуру
модели 𝑀 , которая получается из Ω добавлением множества новых констант 𝑀 ; т.е. 𝐶𝑜𝑛𝑠𝑡Ω∪𝑀 = 𝐶𝑜𝑛𝑠𝑡Ω ∪𝑀 ,
в остальном же Ω ∪𝑀 не отличается от Ω. 13

Определение 35. Пусть 𝑀 — модель сигнатуры Ω. Tерм, oцененный в 𝑀 — это замкнутый терм расширенной
сигнатуры 𝑀 ; аналогично, формула, оцененная в 𝑀 — это замкнутая формула сигнатуры Ω ∪𝑀 .

Согласно нашим обозначениям, 𝐶𝑇𝑚Ω∪𝑀 — множество всех термов, оцененных в 𝑀 ; а 𝐶𝐹𝑚Ω∪𝑀 — множе-
ство всех формул, оцененных в 𝑀 .

Определение 36. Для терма 𝑡, oцененного в модели 𝑀 , индукцией по длине определяется его значение |𝑡|𝑀 :

∙ |𝑐|𝑀 := 𝑐𝑀 для 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω,
∙ |𝑚|𝑀 := 𝑚 для 𝑚 ∈𝑀 ,
∙ |𝑓(𝑡1, . . . , 𝑡𝑛)|𝑀 := 𝑓𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 ) для 𝑓𝑛 ∈ 𝐹𝑢𝑛Ω, 𝑡1, . . . , 𝑡𝑛 ∈ 𝐶𝑇𝑚Ω∪𝑀 .

Корректность этого определения проверяется, как в лемме 6.2.

Определение 37. Для формулы 𝐶, oцененной в модели 𝑀 , ee “логической длиной” назовем число вхождений
в нее логических связок и кванторов. Индукцией по логической длине формулы 𝐶 определяется ее значение
|𝐶|𝑀 :

∙ |𝑃 (𝑡1, . . . , 𝑡𝑛)|𝑀 := 𝑃𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 ) для 𝑃𝑛 ∈ 𝐹𝑢𝑛Ω, 𝑡1, . . . , 𝑡𝑛 ∈ 𝐶𝑇𝑚Ω∪𝑀 .
∙ |𝐴 ∧𝐵|𝑀 := min(|𝐴|𝑀 , |𝐵|𝑀 ),

∙ |𝐴 ∨𝐵|𝑀 := max(|𝐴|𝑀 , |𝐵|𝑀 ),

∙ |𝐴→ 𝐵|𝑀 := max(1 − |𝐴|𝑀 , |𝐵|𝑀 ),

∙ |¬𝐴|𝑀 := 1 − |𝐴|𝑀 ,

∙ |∃𝑥[𝑥/𝑎]𝐴|𝑀 := 1 ⇔ существует 𝑚 ∈𝑀 , такой что |[𝑚/𝑎]𝐴|𝑀 = 1,

∙ |∀𝑥[𝑥/𝑎]𝐴|𝑀 := 1 ⇔ для всех 𝑚 ∈𝑀 , |[𝑚/𝑎]𝐴|𝑀 = 1,

Здесь [𝑚/𝑎]𝐴 обозначает оцененную формулу, полученную из 𝐴 заменой всех вхождений 𝑎 на 𝑚.14
Заметим, что последние 2 пункта определения можно записать и так:

|∃𝑥[𝑥/𝑎]𝐴|𝑀 = max
𝑚∈𝑀

|[𝑚/𝑎]𝐴|𝑀 ,

|∀𝑥[𝑥/𝑎]𝐴|𝑀 = min
𝑚∈𝑀

|[𝑚/𝑎]𝐴|𝑀 .

Докажем корректность этих определений.

Лемма 7.2. (1) Для любой модели 𝑀 существует единственное отображение 𝑡 ↦→ |𝑡|𝑀 оцененных в 𝑀
термов в 𝑀 , удовлетворяющее условиям из определения 36.

(2) Для любой модели 𝑀 существует единственное отображение 𝐴 ↦→ |𝐴|𝑀 оцененных в 𝑀 формул в {0, 1},
удовлетворяющее условиям из определения 37.

13Техническое требование, чтобы все элементы из 𝑀 были новыми, нужно для корректности дальнейших определений. Чтобы
его обойти, для всех элементов можно ввести “новые имена”, т.е. добавить к 𝐶𝑜𝑛𝑠𝑡Ω не 𝑀 , а другое множество, которое находится
с ним в биективном соответствии и состоит из новых элементов. Мы не будем этим заниматься.

14Строго говоря, надо доказывать, что это — действительно формула; доказательство рутинное, по индукции. Мы определяем
значения только для замкнутых формул. Заметим, что если формула ∀𝑥[𝑥/𝑎]𝐴 (или ∃𝑥[𝑥/𝑎]𝐴) замкнута, то 𝐴 не может содержать
никаких свободных переменных, кроме 𝑎. И тогда [𝑚/𝑎]𝐴 снова оказывается замкнутой. Т.е. определение осмысленно.
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Доказательство (1) Рассуждаем, как в лемме 6.2. Лемма 6.1 об однозначном анализе сохраняется для
оцененных термов с небольшим отличием: они бывают 3 видов. При этом важно, что элементы 𝑀 не являются
константами Ω и не представляются в виде 𝑓(𝑡1, . . . , 𝑡𝑛). Но это уже было оговорено.

(2) Аналогично лемме 2.1. Применим лемму 6.1 об однозначном анализе формул (для оцененных формул
она не меняется).

1. Если 𝐴 = 𝑃 (𝑡1, . . . , 𝑡𝑛) — атомарная, то |𝐴|𝑀 однозначно определено — по лемме 6.3.
2. Если 𝐴 = (𝐵 ∧ 𝐶), то надо положить |𝐴|𝑀 = 𝑚𝑖𝑛(|𝐵|𝑀 , |𝐶|𝑀 ). Формулы 𝐵, 𝐶 единственны по лемме 6.1,

а |𝐵|𝑀 , |𝐶|𝑀 определены однозначно по предположению индукции (𝐵,𝐶 — меньшей длины, чем 𝐴). Поэтому
|𝐴|𝑀 задается однозначно.

3, 4, 5. Аналогично рассуждаем в случаях 𝐴 = ¬𝐵, (𝐵 ∨ 𝐶), (𝐵 → 𝐶).
6. Пусть 𝐴 = ∃𝑥[𝑥/𝑎]𝐵. Тогда надо определить |𝐴|𝑀 = max

𝑚∈𝑀
|[𝑚/𝑎]𝐵|𝑀 . 𝐵 и [𝑚/𝑎]𝐵 — меньшей длины, чем

𝐴, поэтому |𝐴|𝑀 задается однозначно при данном выборе 𝐵.
Однако теперь уже 𝐵 не единственна. Рассмотрим другую формулу 𝐵′, такую что 𝐴 = ∃𝑥[𝑥/𝑎′]𝐵′ для

некоторой свободной переменной 𝑎′, причем 𝑥 не входит в 𝐵′. Тогда [𝑥/𝑎′]𝐵′ = [𝑥/𝑎]𝐵, поэтому 𝐵′ получается
из 𝐵 при замене 𝑎 на 𝑎′ (или: заменой сначала всех 𝑎 на 𝑥, а потом всех 𝑥 на 𝑎′). T.e. 𝐵′ = [𝑎′/𝑎]𝐵.

Отсюда получаем, что при всех 𝑚 ∈𝑀

[𝑚/𝑎′]𝐵′ = [𝑚/𝑎′][𝑎′/𝑎]𝐵 = [𝑚/𝑎]𝐵.

Поэтому если мы определили
|𝐴|𝑀 = max

𝑚∈𝑀
|[𝑚/𝑎]𝐵|𝑀 ,

то также получаем и
|𝐴|𝑀 = max

𝑚∈𝑀
|[𝑚/𝑎′]𝐵′|𝑀 .

Таким образом, |𝐴|𝑀 и в этом случае определено однозначно — независимо от того, используем мы 𝐵 или 𝐵′

для построения 𝐴.
7. Случай 𝐴 = ∀𝑥[𝑥/𝑎]𝐵 рассматривается аналогично. �

Пример Рассмотрим сигнатуру колец, содержащую равенство (=), константы 0, 1 и функциональныe сим-
волы: ·,+ (2-местныe).

В термах записываем их привычным образом: 𝑡1 · 𝑡2, 𝑡1 + 𝑡2.
Рассмотрим формулу ∃𝑥(𝑥 · 𝑥 = 1 + 1) в моделях R и Q (с обычным пониманием нуля, единицы, сложения и

умножения). Имеем:
R � ∃𝑥(𝑥 · 𝑥 = 1 + 1),

т.к.
R �

√
2 ·

√
2 = 1 + 1.

Отметим, что здесь возникает оцененная формула
√

2 ·
√

2 = 1 + 1, с константами двух видов: 1 берется из
исходной сигнатуры, а

√
2 — из модели; в сигнатуре колец такого символа нет.

С другой стороны,
Q � ¬∃𝑥(𝑥 · 𝑥 = 1 + 1),

т.к.
Q ̸� 𝑟 · 𝑟 = 1 + 1

для всех 𝑟 ∈ Q.

Изоморфизмы моделей
Определим теперь точно, какие модели будут считаться “одинаковыми”.

Определение 38. Пусть 𝑀,𝑀 ′ — модели сигнатуры Ω. Отображение
𝛼 : 𝑀 −→𝑀 ′ называется изоморфизмом 𝑀 на 𝑀 ′, если

∙ 𝛼 — биекция,

∙ 𝛼(𝑐𝑀 ) = 𝑐𝑀 ′ для всех 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω,

∙ 𝛼(𝑓𝑀 (𝑚1, . . . ,𝑚𝑘)) = 𝑓𝑀 ′(𝛼(𝑚1), . . . , 𝛼(𝑚𝑘)) для всех 𝑓𝑘 ∈ 𝐹𝑢𝑛Ω и 𝑚1, . . . ,𝑚𝑘 ∈𝑀 ,

∙ 𝑃𝑀 (𝑚1, . . . ,𝑚𝑘) = 𝑃𝑀 ′(𝛼(𝑚1), . . . , 𝛼(𝑚𝑘)) для всех 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω и
𝑚1, . . . ,𝑚𝑘 ∈𝑀 .
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Если говорить не совсем строго, изоморфизм сохраняет значения всех констант, предикатов и функций из
нашей сигнатуры.

Запись 𝛼 : 𝑀 ∼= 𝑀 ′ означает, что 𝛼 — изоморфизм 𝑀 на 𝑀 ′.

Лемма 7.3.

(1) Если 𝛼 : 𝑀 ∼= 𝑀 ′ и 𝛽 : 𝑀 ′ ∼= 𝑀 ′′, то 𝛽𝛼 : 𝑀 ∼= 𝑀 ′′ (𝛽𝛼 обозначает композицию).

(2) Если 𝛼 : 𝑀 ∼= 𝑀 ′, то 𝛼−1 : 𝑀 ′ ∼= 𝑀 .

Доказательство — непосредственной проверкой (упражнение).

Определение 39. Модели 𝑀 , 𝑀 ′ называются изоморфными (обозначение: 𝑀 ∼= 𝑀 ′), если существует изомор-
физм 𝛼 : 𝑀 ∼= 𝑀 ′.

Очевидно, что 𝑀 ∼= 𝑀 , a из леммы 7.3 получаем, что изоморфность моделей также обладает свойствами
симметричности и транзитивности, т.е. ∼= задает отношение эквивалентности на классе всех моделей данной
сигнатуры.

Посмотрим, как изменяются значения термов и формул при изоморфизме.
Пусть 𝑀,𝑀 ′ — модели сигнатуры Ω, 𝛼 : 𝑀 ∼= 𝑀 ′. Для терма 𝑡, оцененного в 𝑀 , обозначим через 𝛼·𝑡 терм,

полученный заменой всех констант 𝑚 из 𝑀 на их образы 𝛼(𝑚). Формально 𝛼·𝑡 надо определять по индукции и
доказывать, что 𝛼 · 𝑡 — терм, оцененный в 𝑀 ′. (Это — простое упражнение.)

Аналогично по формуле 𝐴, оцененной в 𝑀 , строится формула 𝛼·𝐴, оцененная в 𝑀 ′.

Теорема 7.4. Пусть 𝑀,𝑀 ′ — модели сигнатуры Ω, 𝛼 : 𝑀 ∼= 𝑀 ′.

(1) Если 𝑡 ∈ 𝐶𝑇𝑚Ω∪𝑀 , то |𝛼·𝑡|𝑀 ′ = 𝛼(|𝑡|𝑀 ).

(2) Если 𝐴 ∈ 𝐶𝐹𝑚Ω∪𝑀 , то |𝛼·𝐴|𝑀 ′ = |𝐴|𝑀 .

Доказательство (1) Рассуждаем индукцией по длине 𝑡. Возможны 3 случая.
(1.1) (базис индукции). 𝑡 = 𝑐, для 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω.
Тогда 𝛼·𝑡 = 𝑡 = 𝑐. Имеем:

|𝛼·𝑡|𝑀 ′ = 𝑐𝑀 ′ = 𝛼(𝑐𝑀 ) = 𝛼(|𝑡|𝑀 )

по определению значения терма (опр. 36) и определению изоморфизма (опр. 38).
(1.2) (базис индукции). 𝑡 = 𝑚, для 𝑚 ∈𝑀 . Тогда 𝛼·𝑡 = 𝛼(𝑚), и утверждение очевидно:

|𝛼·𝑡|𝑀 ′ = 𝛼(𝑚) = 𝛼(|𝑡|𝑀 )

по определению значения терма (опр. 36).
(1.3) (шаг индукции). 𝑡 = 𝑓(𝑡1, . . . , 𝑡𝑛) для функционального символа 𝑓𝑛 и термов 𝑡1, . . . , 𝑡𝑛. Тогда

𝛼·𝑡 = 𝑓(𝛼·𝑡1, . . . , 𝛼·𝑡𝑛).

Получаем:

(*) |𝛼·𝑡|𝑀 ′ = 𝑓𝑀 ′(|𝛼·𝑡1|𝑀 ′ , . . . , |𝛼·𝑡𝑛|𝑀 ′) = 𝑓𝑀 ′(𝛼(|𝑡1|𝑀 ), . . . , 𝛼(|𝑡𝑛|𝑀 ))

по опр. 36 и предположению индукции для термов 𝑡𝑖. Далее,

(**) 𝑓𝑀 ′(𝛼(|𝑡1|𝑀 ), . . . , 𝛼(|𝑡𝑛|𝑀 )) = 𝛼(𝑓𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 )) = 𝛼(|𝑡|𝑀 )

по определению изоморфизма (опр. 38) и опр. 36. Утверждение (1) следует из (*) и (**). �

Утверждение (2) докажем на следующей лекции.
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Лекция 8
Теорема 7.4. Пусть 𝑀,𝑀 ′ — модели сигнатуры Ω, 𝛼 : 𝑀 ∼= 𝑀 ′.

(1) Если 𝑡 ∈ 𝐶𝑇𝑚Ω∪𝑀 , то |𝛼·𝑡|𝑀 ′ = 𝛼(|𝑡|𝑀 ).

(2) Если 𝐴 ∈ 𝐶𝐹𝑚Ω∪𝑀 , то |𝛼·𝐴|𝑀 ′ = |𝐴|𝑀 .

Доказательство (окончание)
(2) Применяем индукцию по числу вхождений логических связок и кванторов в 𝐴.
(2.1) (базис индукции) 𝐴 = 𝑃 (𝑡1, . . . , 𝑡𝑛) — атомарная (𝑃𝑛 — предикатный символ, 𝑡1, . . . , 𝑡𝑛 — термы).
Доказательство — почти такое же, как в случае (1.3).

|𝐴|𝑀 = 𝑃𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 )

(опр. 36 лекции 7). С другой стороны,

|𝛼 ·𝐴|𝑀 ′ = 𝑃𝑀 ′(|𝛼 · 𝑡1|𝑀 ′ , . . . , |𝛼 · 𝑡𝑛|𝑀 ′) = 𝑃𝑀 ′(𝛼(|𝑡1|𝑀 ), . . . , 𝛼(|𝑡𝑛|𝑀 )).

= 𝑃𝑀 (|𝑡1|𝑀 , . . . , |𝑡𝑛|𝑀 )).

по (1) и определению изоморфизма. Отсюда получаем:

|𝛼 ·𝐴|𝑀 ′ = |𝐴|𝑀 .

(2.2) 𝐴 = (𝐵 ∧ 𝐶).
(2.3) 𝐴 = (𝐵 ∨ 𝐶),
(2.4) 𝐴 = (𝐵 → 𝐶),
(2.5) 𝐴 = ¬𝐵.
Эти простые случаи оставляются читателю в качестве упражнения.
(2.6) 𝐴 = ∃𝑥[𝑥/𝑎]𝐵.
По определению истинности

(*) |𝛼 ·𝐴|𝑀 ′ = |∃𝑥[𝑥/𝑎](𝛼 ·𝐵)|𝑀 ′ = max
𝑚′∈𝑀 ′

|[𝑚′/𝑎](𝛼 ·𝐵)|𝑀 ′ = max
𝑚∈𝑀

|[𝛼(𝑚)/𝑎](𝛼 ·𝐵)|𝑀 ′

Последнее равенство следует из сюръективности 𝛼: все 𝑚′ ∈𝑀 ′ — это в точности 𝛼-образы всех 𝑚 ∈𝑀 .
Также по определению истинности и предположению индукции для [𝑚/𝑎]𝐵

(**) |𝐴|𝑀 = max
𝑚∈𝑀

|[𝑚/𝑎]𝐵|𝑀 = max
𝑚∈𝑀

|𝛼 · [𝑚/𝑎]𝐵|𝑀

Но

(* * *) 𝛼 · [𝑚/𝑎]𝐵 = [𝛼(𝑚)/𝑎](𝛼 ·𝐵).

Действительно, левая часть получается из 𝐵 сначала заменой 𝑎 на 𝑚, a потом всех элементов из 𝑀 на их образы.
В итоге 𝑎 заменится на 𝛼(𝑚). В правой части: сначала в 𝐵 все элементы из 𝑀 заменяются на их образы, а потом
𝑎 сразу заменяется на 𝛼(𝑚).

Собирая вместе (*), (**), (* * *), получаем

|𝛼 ·𝐴|𝑀 ′ = |𝐴|𝑀 .

(2.7) 𝐴 = ∀𝑥[𝑥/𝑎]𝐵.
Этот случай совершенно аналогичен (2.6); max заменяется на min. �

Теорема 8.1. Если 𝑀 ∼= 𝑀 ′, то 𝑀 ≡𝑀 ′.

Доказательство Пусть 𝛼 : 𝑀 ∼= 𝑀 ′. Если 𝐴 — замкнутая формула данной сигнатуры, то 𝛼 ·𝐴 = 𝐴, т.к. 𝐴 не
содержит констант из 𝑀 . По теореме 7.4(2)

|𝐴|𝑀 = |𝐴|𝑀 ′ ,

или
𝑀 � 𝐴⇔𝑀 ′ � 𝐴.

Это выполняется для любой замкнутой 𝐴, а потому 𝑇ℎ(𝑀) = 𝑇ℎ(𝑀 ′), т.е. 𝑀 ≡𝑀 ′. �
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Определимость и автоморфизмы
Определение 40. 𝑘-местный предикат на множестве 𝑀 — это отображение 𝛾 : 𝑀𝑘 −→ {0, 1}. 𝑘-местное
отношение на множестве 𝑀 — это множество 𝑅 ⊆𝑀𝑘.

Любому 𝑘-местному отношению 𝑅 ⊆𝑀𝑘 соответствует 𝑘-местный предикат — его характеристическая функ-
ция 𝛾 : 𝑀𝑘 −→ {0, 1}:

𝛾(𝑚1, . . . ,𝑚𝑘) =

{︃
1, если (𝑚1, . . . ,𝑚𝑘) ∈ 𝑅,

0 иначе .

И наоборот, предикату 𝛾 : 𝑀𝑘 −→ {0, 1} соответствует отношение

𝑅 = {(𝑚1, . . . ,𝑚𝑘) | 𝛾(𝑚1, . . . ,𝑚𝑘) = 1}.

В частности, при 𝑘 = 1: подмножествам 𝑀 соответствуют одноместные предикаты на 𝑀 .

Определение 41. Параметрaми формулы 𝐴 (некоторой сигнатуры) называются входящие в нее свободные
переменные. 𝐹𝑉 (𝐴) обозначает множество всех параметров формулы 𝐴.

Формулу 𝐴 мы записываем в виде 𝐴(𝑏1, . . . , 𝑏𝑘), если хотим отметить, что 𝐹𝑉 (𝐴) ⊆ {𝑏1, . . . , 𝑏𝑘}. При этом
некоторые 𝑏𝑖 могут и не встречаться в 𝐴. Подразумевается, что все 𝑏𝑖 различны.

Аналогичную терминологию и обозначения применяем для термов; разница лишь в том, что в термах могут
встречаться только свободные переменные. Т.е. параметры терма 𝑡 — это все входящие в него переменные; их
множество обозначается 𝐹𝑉 (𝑡). Запись 𝑡(𝑏1, . . . , 𝑏𝑘) означает, что 𝐹𝑉 (𝑡) ⊆ {𝑏1, . . . , 𝑏𝑘}.

Определение 42. Рассмотрим формулу 𝐴(
−→
𝑏 ), где

−→
𝑏 = (𝑏1, . . . , 𝑏𝑘).

𝑘-местный предикат, определимый формулой 𝐴(
−→
𝑏 ) в модели 𝑀 — это

𝐴𝑀 : 𝑀𝑘 −→ {0, 1}, такой что для всех 𝑚1, . . . ,𝑚𝑘

𝐴𝑀 (𝑚1, . . . ,𝑚𝑘) = |[𝑚1, . . . ,𝑚𝑘/𝑏1, . . . , 𝑏𝑘]𝐴|𝑀 .

Здесь использовано обозначение многократной подстановки:
[𝑚1, . . . ,𝑚𝑘/𝑏1, . . . , 𝑏𝑘]𝐴 получается из 𝐴 заменой 𝑏1, . . . , 𝑏𝑘 соответственно на 𝑚1, . . . ,𝑚𝑘. В сокращенных обо-
значениях oпределение записывается так:

𝐴𝑀 (−→𝑚) = |𝐴(−→𝑚)|𝑀 .

для всех −→𝑚 ∈𝑀𝑘.15
Примеры Рассмотрим опять сигнатуру колец и ее модель N — множество натуральных чисел с обычными

сложением, умножением, нулем и единицей. Рассмотрим в этой модели 2-местный предикат 𝑚1 ≤ 𝑚2. Он
определим формулой ∃𝑥(𝑏1 + 𝑥 = 𝑏2):

N � ∃𝑥(𝑚1 + 𝑥 = 𝑚2) ⇔ 𝑚1 ≤ 𝑚2.

В этой формуле используется только сложение, поэтому определимость сохранится и для более бедной сигна-
туры, в которой есть только + и =.

Для того, чтобы задать порядок на множестве действительных чисел R, сложения уже не хватит, т.е. в R как
модели сигнатуры {+,=} предикат 𝑚1 ≤ 𝑚2 не определим — это мы установим чуть позже. Но легко доказать
определимость в сигнатуре колец:

R � ∃𝑥(𝑚1 + 𝑥 · 𝑥 = 𝑚2) ⇔ 𝑚1 ≤ 𝑚2.

Докажем необходимое условие определимости предиката в модели.
Kaк и в алгебре, автоморфизм модели — это ее изоморфизм на себя.

Теорема 8.2. Пусть 𝛼 — автоморфизм модели 𝑀 сигнатуры Ω, 𝐴(𝑏1, . . . , 𝑏𝑘) — формула той же сигнатуры.
Тогда для всех 𝑚1, . . . ,𝑚𝑘 ∈𝑀

𝐴𝑀 (𝛼(𝑚1), . . . , 𝛼(𝑚𝑘)) = 𝐴𝑀 (𝑚1, . . . ,𝑚𝑘).

В сокращенной записи:
𝐴𝑀 (𝛼−→𝑚) = 𝐴𝑀 (−→𝑚).

Таким образом, определимый в 𝑀 предикат инвариантен при всех автоморфизмах 𝑀 .
15Для краткости мы пишем 𝑀𝑘 вместо 𝑀𝑘.
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Доказательство По определению 42 и теореме 7.4

𝐴𝑀 (𝛼−→𝑚) = |𝐴(𝛼−→𝑚)|𝑀 = |𝐴(−→𝑚)|𝑀 = 𝐴𝑀 (−→𝑚).

�

Поскольку предикаты соответствуют отношениям, мы можем говорить и об определимости отношений: 𝑘-
местное отношение 𝑅 oпределимо в 𝑀 формулой 𝐴(

−→
𝑏 ), если опредeлим соответствующий предикат, т.е. для

всех −→𝑚 ∈𝑀𝑘

𝑀 � 𝐴(−→𝑚) ⇔ −→𝑚 ∈ 𝑅.

В частности (при 𝑘 = 1): подмножество 𝑆 ⊆𝑀 определимо формулой 𝐴(𝑎), если для всех 𝑚 ∈𝑀

𝑀 � 𝐴(𝑚) ⇔ 𝑚 ∈ 𝑆.

Теорема 8.2 означает, что определимые отношения инвариантны при автоморфизмах:

−→𝑚 ∈ 𝑅⇔ 𝛼−→𝑚 ∈ 𝑅.

Пример 1 Рассмотрим множество действительных чисел R как модель сигнатуры {=2,+2, 0}, с обычным
пониманием этих символов.

У этой модели есть автоморфизм 𝛼(𝑥) = −𝑥: это отображение — биекция (обратно само к себе), сохраняет 0
и сумму.

Предикат 𝑚1 ≤ 𝑚2 не определим в этой модели, т.к. он не инвариантен при этом автоморфизме: неверно,
что 𝑚1 ≤ 𝑚2 ⇔ −𝑚1 ≤ −𝑚2.

Пример 2 Рассмотрим Z в той же сигнатуре, что в примере 1. Тогда подмножество N не определимо: оно не
инвариантно при автоморфизме 𝛼(𝑥) = −𝑥.

Однако, если добавить в сигнатуру умножение, N станет определимым. Для этого можно применить теорему
Лагранжа о представимости всякого натурального числа в виде суммы 4 квадратов:

Z � ∃𝑥1∃𝑥2∃𝑥3∃𝑥4(𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 𝑚) ⇔ 𝑚 ∈ N,

где 𝑥2 обозначает 𝑥 · 𝑥.
Конечно же, и в этой сигнатуре не все подмножества определимы: определимых подмножеств (как и всех

формул в данной сигнатуре) — счетное число, а всех подмножеств — континуум.

Определение 43. Подмножества N, опредeлимые в сигнатуре колец (она же — сигнатура арифметики), назы-
ваются арифметическими.

Как и в случае Z, таких множество таких подмножеств счетно. Однако теорема 8.1 никак не помогает
построить конкретные неарифметические множества: легко видеть, что единственный автоморфизм модели N
— тождественный (Упражнение).

Стандартные теории равенства и нормальные модели
Пусть 𝐴 = 𝐴(𝑏1, . . . , 𝑏𝑛) — формула. Если же 𝑥1, . . . , 𝑥𝑛 — какие-то (различные) связанные переменные, не
входящие в 𝐴, то результат подстановки [𝑥1, . . . , 𝑥𝑛/𝑏1, . . . , 𝑏𝑛]𝐴 будем обозначать через 𝐴(𝑥1, . . . , 𝑥𝑛). (Заметим,
что выражение 𝐴(𝑥1, . . . , 𝑥𝑛) — не формула, но может быть частью формулы: например, последовательное
навешивание кванторов ∀𝑥𝑛, . . . ,∀𝑥1 дает формулу ∀𝑥1 . . . ∀𝑥𝑛𝐴(𝑥1, . . . , 𝑥𝑛).)

Лемма 8.3. Пусть 𝐴(𝑏1, . . . , 𝑏𝑛) — формула сигнатуры Ω, 𝑥1, . . . , 𝑥𝑛 — (различные) связанные переменные,
не входящие в 𝐴. Тогда для любой модели 𝑀 сигнатуры Ω

𝑀 � ∀𝑥1 . . . ∀𝑥𝑛𝐴(𝑥1, . . . , 𝑥𝑛)⇔ для всех 𝑚1, . . . ,𝑚𝑛 ∈𝑀 𝑀 � 𝐴(𝑚1, . . . ,𝑚𝑛),

𝑀 � ∃𝑥1 . . . ∃𝑥𝑛𝐴(𝑥1, . . . , 𝑥𝑛)⇔ для некоторых 𝑚1, . . . ,𝑚𝑛 ∈𝑀 𝑀 � 𝐴(𝑚1, . . . ,𝑚𝑛).

Доказательство Мы рассмотрим только случай кванторов ∀; для ∃ доказательство аналогично.
Утверждение следует из определения истинности (формально — индукцией по 𝑛). А именно, 𝐴 =

∀𝑥1[𝑥1/𝑏1]𝐵(𝑏1), где
𝐵(𝑏1) := ∀𝑥2 . . . ∀𝑥𝑛𝐴(𝑏1, 𝑥2, . . . , 𝑥𝑛).

И тогда

(1) 𝑀 � 𝐴 ⇔ для всех 𝑚1 ∈𝑀 𝑀 � 𝐵(𝑚1).
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Но
𝐵(𝑚1) = ∀𝑥2 . . . ∀𝑥𝑛𝐴(𝑚1, 𝑥2, . . . , 𝑥𝑛);

это формула в сигнатуре Ω ∪𝑀 . Применим к ней предположение индукции:

(2) 𝑀 � ∀𝑥2 . . . ∀𝑥𝑛𝐴(𝑚1, 𝑥2, . . . , 𝑥𝑛)⇔

для всех 𝑚2, . . . ,𝑚𝑛 ∈𝑀 𝑀 � 𝐴(𝑚1,𝑚2, . . . ,𝑚𝑛).

Из (1) и (2) получаем утверждение леммы. Это — шаг индукции, а базис (при 𝑛 = 1) очевиден. �

Теперь рассмотрим сигнатуру Ω, содержащую предикатный символ равенства (=) (и, возможно, другие
символы). В этой сигнатуре рассмотрим теорию 𝐸𝑞Ω со следующими стандартными аксиомами равенства.

(О) Аксиомы теории 𝐸𝑞 (лекция 7, пример 1) — рефлексивность, симметричность и транзитивность.

(I) ∀𝑥1 . . . ∀𝑥𝑛∀𝑦1 . . . ∀𝑦𝑛(
𝑛⋀︀

𝑖=1

𝑥𝑖 = 𝑦𝑖 → (𝑃𝑛(𝑥1, . . . , 𝑥𝑛)↔𝑃𝑛(𝑦1, . . . , 𝑦𝑛)))

для всех 𝑃𝑛 ∈ 𝑃𝑟𝑒𝑑Ω.

(II) ∀𝑥1 . . . ∀𝑥𝑛∀𝑦1 . . . ∀𝑦𝑛(
𝑛⋀︀

𝑖=1

𝑥𝑖 = 𝑦𝑖 → 𝑓𝑛(𝑥1, . . . , 𝑥𝑛) = 𝑓𝑛(𝑦1, . . . , 𝑦𝑛))

для всех 𝑓𝑛 ∈ 𝐹𝑢𝑛Ω.
Запишем эти аксиомы в сокращенном виде:

(𝐼) ∀−→𝑥 ∀−→𝑦 (−→𝑥 = −→𝑦 → (𝑃𝑛(−→𝑥 )↔𝑃𝑛(−→𝑦 ))).

(𝐼𝐼) ∀−→𝑥 ∀−→𝑦 (−→𝑥 = −→𝑦 → 𝑓𝑛(−→𝑥 ) = 𝑓𝑛(−→𝑦 )).

Здесь ∀ обозначает кванторы ∀ по всем переменным 𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛, а −→𝑥 = −→𝑦 — сокращение для 𝑥1 = 𝑦1∧ . . .∧
𝑥𝑛 = 𝑦𝑛.

Лемма 8.4. Eсли 𝑀 — нормальная модель сигнатуры с равенством Ω, то 𝑀 � 𝐸𝑞Ω.

Доказательство Для аксиом (0) это тривиально (и уже отмечалось).
По лемме 8.3, формула (I) верна в 𝑀 , если и только если для всех −→𝑚,

−→
𝑚′ ∈𝑀𝑛

𝑀 � −→𝑚 =
−→
𝑚′ → (𝑃 (−→𝑚)↔𝑃 (

−→
𝑚′))

(где −→𝑚 =
−→
𝑚′ — сокращение для 𝑚1 = 𝑚′

1 ∧ . . . ∧𝑚𝑛 = 𝑚′
𝑛).

Но последнее утверждение очевидно: в нормальной модели
𝑀 � −→𝑚 =

−→
𝑚′ означает, что −→𝑚 и

−→
𝑚′ совпадают; тогда и

|𝑃 (−→𝑚)|𝑀 = |𝑃 (
−→
𝑚′)|𝑀 , а потому |𝑃 (−→𝑚)↔𝑃 (

−→
𝑚′)|𝑀 = 1.

Следовательно, верна импликация
−→𝑚 =

−→
𝑚′ → (𝑃 (−→𝑚)↔𝑃 (

−→
𝑚′)).

Аналогично рассуждаем для формулы (II):

𝑀 � −→𝑚 =
−→
𝑚′ → 𝑓(−→𝑚) = 𝑓(

−→
𝑚′),

т.к. из совпадения −→𝑚 и
−→
𝑚′ следует совпадение 𝑓𝑀 (−→𝑚) и 𝑓𝑀 (

−→
𝑚′). �

Покажем теперь, как из произвольной модели теории 𝐸𝑞Ω построить элементарно эквивалентную нормаль-
ную модель.

Пусть 𝑀 � 𝐸𝑞Ω. Тогда предикат =𝑀 задает отношение эквивалентности на 𝑀 , которое мы обозначим ≈.
Т.е.

𝑚1 ≈ 𝑚2 ⇔ =𝑀(𝑚1,𝑚2) = 1 ⇔ 𝑀 � 𝑚1 = 𝑚2.

Это действительно отношение эквивалентности, благодаря аксиомам 𝐸𝑞. Класс эквивалентности элемента 𝑚 по
≈ обозначим через ̃︀𝑚.

На фактормножестве 𝑀/≈ зададим нормальную модель ̃︁𝑀 сигнатуры Ω следующим образом:

𝑐̃︁𝑀 := ̃︁𝑐𝑀 ,
𝑓𝑘̃︁𝑀 (̃︁𝑚1, . . . , ̃︁𝑚𝑘) := ˜𝑓𝑘𝑀 (𝑚1, . . . ,𝑚𝑘),

𝑃 𝑘̃︁𝑀 (̃︁𝑚1, . . . , ̃︁𝑚𝑘) := 𝑃 𝑘
𝑀 (𝑚1, . . . ,𝑚𝑘)

(где соответственно, 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω, 𝑓
𝑘 ∈ 𝐹𝑢𝑛Ω, 𝑃

𝑘 ∈ 𝑃𝑟𝑒𝑑Ω).
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Лемма 8.5. ̃︁𝑀 корректно определена.

Доказательство Надо проверить, что если заменить 𝑚𝑖 на эквивалентные элементы, то правые части в
определении 𝑓𝑘̃︁𝑀 и 𝑃 𝑘̃︁𝑀 не изменятся.

Действительно, пусть 𝑚1 ≈ 𝑚′
1, . . . ,𝑚𝑘 ≈ 𝑚′

𝑘. Это означает, что
𝑀 � 𝑚𝑖 = 𝑚′

𝑖 для 𝑖 ≤ 𝑘, и тогда, в обозначениях из леммы 8.4, 𝑀 � −→𝑚 =
−→
𝑚′, где −→𝑚 = (𝑚1, . . . ,𝑚𝑘),

−→
𝑚′ =

(𝑚′
1, . . . ,𝑚

′
𝑘). Как уже мы видели в лемме 8.4, из аксиомы (I) тогда следует, что 𝑀 � 𝑓(−→𝑚) = 𝑓(

−→
𝑚′), т.е.

𝑓𝑀 (−→𝑚) = 𝑓𝑀 (
−→
𝑚′) (т.к. модель нормальна).

Аналогично, из аксиомы (II) получаем: 𝑀 � 𝑃 (−→𝑚)↔𝑃 (
−→
𝑚′), т.е. 𝑃𝑀 (−→𝑚) = 𝑃𝑀 (

−→
𝑚′). �

Лекция 9

На прошлой лекции по модели 𝑀 стандартной теории равенства 𝐸𝑞Ω мы построили модель ̃︁𝑀 с носителем
𝑀/≈. Тогда имеется сюръекция

𝛼 : 𝑀 −→𝑀/≈,

переводящая каждый элемент 𝑚 ∈𝑀 в его класс эквивалентности ̃︀𝑚. Благодаря определению ̃︁𝑀 , 𝛼 — сильный
гомоморфизм, т.е.

∙ 𝛼(𝑓𝑀 (−→𝑚)) = 𝑓̃︁𝑀 (𝛼−→𝑚) (для −→𝑚 ∈𝑀𝑘, 𝑓𝑘 ∈ 𝐹𝑢𝑛Ω),

∙ 𝑃𝑀 (−→𝑚) = 𝑃̃︁𝑀 (𝛼−→𝑚) (для −→𝑚 ∈𝑀𝑘, 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω), кроме случая, когда 𝑃 есть =.

Для символа = также имеем16

=𝑀 (𝑚1,𝑚2) = =̃︁𝑀 (𝛼(𝑚1), 𝛼(𝑚2)).

Теорема 9.1. (Лемма о нормализации)

(1) Для любого оцененного терма 𝑡 ∈ 𝑇𝑚Ω∪𝑀

|𝛼 · 𝑡|̃︁𝑀 = ̃︂|𝑡|𝑀 .
(2) Для любой оцененной формулы 𝐴 ∈ 𝐹𝑚Ω∪𝑀

|𝛼 ·𝐴|̃︁𝑀 = |𝐴|𝑀 .

(3) 𝑀 ≡ ̃︁𝑀 .

Доказательство См. теорему 7.4. В доказательстве используется только то, что 𝛼 — сюръекция.17 �

Итак, для теорий, содержащих стандартные аксиомы равенства, можно рассматривать только нормальные
модели.

Теорема 9.2. Пусть 𝑇 — теория в сигнатуре с равенством Ω, содержащая 𝐸𝑞Ω. Предположим, что все
нормальные модели 𝑇 изоморфны (такая теория называется сильно категоричной). Тогда 𝑇 полна.

Доказательство По лемме 7.1 достаточно доказать, что все модели 𝑇 элементарно эквивалентны.
Рассмотрим модели 𝑀,𝑀 ′ � 𝑇 . По лемме 8.5, 𝑀 ≡ ̃︁𝑀 , 𝑀 ′ ≡ ̃︁𝑀 ′. Поэтому ̃︁𝑀, ̃︁𝑀 ′ � 𝑇 . T.к. эти модели

нормальны, по условию они изоморфны. Следовательно, ̃︁𝑀 ≡ ̃︁𝑀 ′ (теорема 8.1). В итоге имеем 𝑀 ≡𝑀 ′. �

Пример 1 В сигнатуре {=} рассмотрим теорию 𝐸𝑞 ∪ {𝐴=𝑛}, где

𝐴=𝑛 := ∃𝑥1 . . . ∃𝑥𝑛(
⋀︁
𝑖 ̸=𝑗

(𝑥𝑖 ̸= 𝑥𝑗) ∧ ∀𝑥𝑛+1

⋁︁
𝑖≤𝑛

(𝑥𝑛+1 = 𝑥𝑖)).

(Здесь мы используем обычное сокращение: (𝑥𝑖 ̸= 𝑥𝑗) := ¬(𝑥𝑖 = 𝑥𝑗).)
Эта аксиома утверждает, что в (нормальной) модели ровно 𝑛 элементов. Очевидно, что данная теория сильно

категорична.
16Здесь знак = употребляется в двух смыслах.
17Можно заметить, что для нормальных моделей сигнатуры с равенством сюръективный гомоморфизм всегда биективен: условие

𝑀 � 𝑚1 = 𝑚2 ⇔ 𝑀 ′ � 𝛼(𝑚1) = 𝛼(𝑚2) как раз и означает, что 𝛼 — биекция. Но сейчас у нас другой случай.
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Пример 2 Теперь рассмотрим теорию линейных порядков 𝐿𝑂 в сигнатуре с 2-местными предикатными
символами <, =. Кроме стандартных аксиом равенства, она содержит аксиомы:

∀𝑥 ¬(𝑥 < 𝑥) (иррефлексивность)
∀𝑥∀𝑦∀𝑧 (𝑥 < 𝑦 ∧ 𝑦 < 𝑧 → 𝑥 < 𝑧) (транзитивность)
∀𝑥∀𝑦 (𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦) (линейность)
Каждая теория 𝐿𝑂+𝐴=𝑛 сильно категорична, потому что конечные линейные порядки с одинаковым числом

элементов изоморфны.
Пример 3 Рассмотрим сигнатуру групп, содержащую равенство (=), константу 𝑒 (“единица”), функциональ-

ныe символы: · (2-местный, “умножение”), −1 (1-местный, “обращение”).
Используем привычную запись: 𝑡1 · 𝑡2, 𝑡−1.
Рассмотрим в этой сигнатуре теорию групп 𝐺𝑟 со следующими аксиомами.
I. Стандартные аксиомы равенства.
II. Аксиомы групп.

∀𝑥∀𝑦∀𝑧((𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧)).

∀𝑥((𝑥 · 𝑒 = 𝑥) ∧ (𝑒 · 𝑥 = 𝑥)).

∀𝑥((𝑥 · 𝑥−1 = 𝑒) ∧ (𝑥−1 · 𝑥 = 𝑒)).

Ясно, что модели теории групп — в точности группы (с единицей и операциями умножения и обращения). У
этой теории имеются полные расширения:

1. Теории 𝐺𝑟 + 𝐴=𝑝, где 𝑝 — простое (лекция 7), сильно категоричны (т.к. группа простого порядка —-
циклическая), а потому полны.

2. Если к 𝐺𝑟 добавить аксиому коммутативности умножения, получится теория абелевых групп 𝐴𝐺𝑟. Теория
𝐺𝑟 +𝐴=6 неполна (почему?), но 𝐴𝐺𝑟 +𝐴=6 полна, т.к. сильно категорична: ее модели изоморфны Z6.

В дальнейшем мы рассматриваем только теории с равенством и нормальные модели; отдельные исключения
будут оговариваться.

Теория конечной модели
Определение 44. Теория 𝑇 называется конечно аксиоматизируемой, если она эквивалентна некоторой конеч-
ной теории.

Очевидно, что конечная теория 𝑇 эквивалентна теории, состоящей из одной формулы
⋀︀
𝑇 .

Теорема 9.3. В конечной сигнатуре с равенством элементарная теория конечной модели конечно аксиома-
тизируема и сильно категорична.

Доказательство Пусть 𝑀 — конечная модель конечной сигнатуры Ω.
Мы построим формулу 𝐴𝑀 , которая полностью описывает 𝑀 .
Пусть 𝑀 = {𝑚1, . . . ,𝑚𝑛}. Положим

𝐴𝑀 := ∃𝑣1 . . . ∃𝑣𝑛𝜓𝑀 (𝑣1, . . . , 𝑣𝑛),

где

𝜓𝑀 (𝑎1, . . . , 𝑎𝑛) :=
⋀︁

1≤𝑖<𝑗≤𝑛

(𝑎𝑖 ̸= 𝑎𝑗) ∧ ∀𝑣𝑛+1

𝑛⋁︁
𝑖=1

(𝑣𝑛+1 = 𝑎𝑖)∧

⋀︁
{𝑐 = 𝑎𝑖 | 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω, 𝑐𝑀 равно 𝑚𝑖}∧⋀︁

{𝑓𝑘(𝑎𝑖1 , . . . , 𝑎𝑖𝑘) = 𝑎𝑗 | 𝑓𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑓
𝑘
𝑀 (𝑚𝑖1 , . . . ,𝑚𝑖𝑘) равно 𝑚𝑗}∧⋀︁

{𝑃 𝑘(𝑎𝑖1 , . . . , 𝑎𝑖𝑘) | 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑀 � 𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘)}∧⋀︁
{¬𝑃 𝑘(𝑎𝑖1 , . . . , 𝑎𝑖𝑘) | 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑀 ̸�𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘)}.

Лемма 9.4. Для нормальной модели 𝑀 ′ сигнатуры Ω

𝑀 ′ � 𝐴𝑀 ⇔ 𝑀 ′ ∼= 𝑀.
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Доказательство
(⇐) Заметим, что

𝑀 � 𝜓𝑀 (𝑚1, . . . ,𝑚𝑛).

Действительно,

𝜓𝑀 (𝑚1, . . . ,𝑚𝑛) =
⋀︁

1≤𝑖<𝑗≤𝑛

(𝑚𝑖 ̸= 𝑚𝑗) ∧ ∀𝑣𝑛+1

𝑛⋁︁
𝑖=1

(𝑣𝑛+1 = 𝑚𝑖)∧

⋀︁
{𝑐 = 𝑚𝑖 | 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω, 𝑐𝑀 равно 𝑚𝑖}∧⋀︁

{𝑓𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘) = 𝑚𝑗 | 𝑓𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑓
𝑘
𝑀 (𝑚𝑖1 , . . . ,𝑚𝑖𝑘) равно 𝑚𝑗}∧⋀︁

{𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘) | 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑀 � 𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘)}∧⋀︁
{¬𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘) | 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑀 ̸�𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘)}.

Проверим, что все 6 членов этой конъюнкции (все они — тоже конъюнкции, кроме второго) истинны в 𝑀 .

(1) 𝑀 �
⋀︀

1≤𝑖<𝑗≤𝑛

(𝑚𝑖 ̸= 𝑚𝑗), т.к. 𝑀 нормальна и все 𝑚𝑖 различны,

(2) 𝑀 � ∀𝑣𝑛+1

𝑛⋁︀
𝑖=1

(𝑣𝑛+1 = 𝑚𝑖), т.к. всякий элемент из 𝑀 равен одному из 𝑚𝑖.

(3) 𝑀 �
⋀︀
{𝑐 = 𝑚𝑖 | 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω, 𝑐𝑀 равно 𝑚𝑖},

т.к. для всякой константы 𝑐, 𝑀 � 𝑐 = 𝑚𝑖, если 𝑐𝑀 равно 𝑚𝑖 — это очевидно, по определению истинности
(см. определения 36, 37 лекции 7).

(4) Аналогично, для четвертого члена имеем: 𝑀 � 𝑓(𝑚𝑖1 , . . . ,𝑚𝑖𝑘) = 𝑚𝑗 , если 𝑓𝑀 (𝑚𝑖1 , . . . ,𝑚𝑖𝑘) равно 𝑚𝑗 .

(5) Истинность пятого члена означает, что 𝑀 � 𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘), если 𝑀 � 𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘). Это тривиаль-
ность.

(6) Также очевидно.

Теперь по лемме 8.3, из 𝑀 � 𝜓𝑀 (𝑚1, . . . ,𝑚𝑛) получаем 𝑀 � 𝐴𝑀 . И тогда, если 𝑀 ∼= 𝑀 ′, то и 𝑀 ′ � 𝐴𝑀 — по
теореме 8.1.

(⇒) Предположим, что 𝑀 ′ � 𝐴𝑀 и построим изоморфизм 𝑀 на 𝑀 ′. Снова по лемме 8.3, найдутся
𝑚′

1, . . . ,𝑚
′
𝑛 ∈𝑀 ′, для которых

𝑀 ′ � 𝜓𝑀 (𝑚′
1, . . . ,𝑚

′
𝑛).

Для удобства опять распишем 𝜓𝑀 (𝑚′
1, . . . ,𝑚

′
𝑛):⋀︁

1≤𝑖<𝑗≤𝑛

(𝑚′
𝑖 ̸= 𝑚′

𝑗) ∧ ∀𝑣𝑛+1

𝑛⋁︁
𝑖=1

(𝑣𝑛+1 = 𝑚′
𝑖)∧

⋀︁
{𝑐 = 𝑚′

𝑖 | 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω, 𝑐𝑀 равно 𝑚𝑖}∧⋀︁
{𝑓𝑘(𝑚′

𝑖1 , . . . ,𝑚
′
𝑖𝑘

) = 𝑚′
𝑗 | 𝑓𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑓

𝑘
𝑀 (𝑚𝑖1 , . . . ,𝑚𝑖𝑘) равно 𝑚𝑗}∧⋀︁

{𝑃 𝑘(𝑚′
𝑖1 , . . . ,𝑚

′
𝑖𝑘

) | 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑀 � 𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘)}∧⋀︁
{¬𝑃 𝑘(𝑚′

𝑖1 , . . . ,𝑚
′
𝑖𝑘

) | 𝑃 𝑘 ∈ 𝑃𝑟𝑒𝑑Ω, 𝑀 ̸�𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘)}.

Докажем, что отображение 𝜙, переводящее каждый 𝑚𝑖 в 𝑚′
𝑖 — искомый изоморфизм.

1. 𝜙 — инъекция. Это обеспечивает 1-й член конъюнкции: при 𝑖 < 𝑗 𝑀 � 𝑚′
𝑖 ̸= 𝑚′

𝑗 , т.е. 𝑚′
𝑖 и 𝑚′

𝑗 не совпадают.
2. 𝜙 — сюръекция. Об этом говорит 2-й член конъюнкции: любой элемент 𝑚′ ∈𝑀 ′ равен одному из 𝑚′

𝑖, т.к.

𝑀 �
𝑛⋁︀

𝑖=1

(𝑚′ = 𝑚′
𝑖) и 𝑀 нормальна.

3. 𝜙(𝑐𝑀 ) равно 𝑐𝑀 ′ . Это получается из 3-го члена: если 𝑐𝑀 равно 𝑚𝑖, то 𝑀 ′ � 𝑐 = 𝑚′
𝑖, т.е. 𝑐𝑀 ′ равно 𝑚′

𝑖

(которое и есть 𝜙(𝑐𝑀 )).
4. 𝜙(𝑓𝑘𝑀 (𝑚𝑖1 , . . . ,𝑚𝑖𝑘)) равно 𝑓𝑘𝑀 ′(𝜙(𝑚𝑖1), . . . , 𝜙(𝑚𝑖𝑘)), т.е. 𝑓𝑘𝑀 ′(𝑚′

𝑖1
, . . . ,𝑚′

𝑖𝑘
).

В самом деле, если 𝑓𝑘𝑀 (𝑚𝑖1 , . . . ,𝑚𝑖𝑘) равно 𝑚𝑗 , то из 4-го члена,
𝑀 ′ � 𝑚′

𝑗 = 𝑓𝑘(𝑚′
𝑖1
, . . . ,𝑚′

𝑖𝑘
), т.е. 𝜙(𝑚𝑗) равно 𝑓𝑘𝑀 ′(𝑚′

𝑖1
, . . . ,𝑚′

𝑖𝑘
).

5. 𝑀 ′ � 𝑃 𝑘(𝑚′
𝑖1
, . . . ,𝑚′

𝑖𝑘
)⇔𝑀 � 𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘).

Действительно, если 𝑀 � 𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘), то из 5-го члена, 𝑀 ′ � 𝑃 𝑘(𝑚′
𝑖1
, . . . ,𝑚′

𝑖𝑘
).

Если же 𝑀 ̸�𝑃 𝑘(𝑚𝑖1 , . . . ,𝑚𝑖𝑘), то из 6-го члена, 𝑀 ′ ̸�𝑃 𝑘(𝑚′
𝑖1
, . . . ,𝑚′

𝑖𝑘
). �
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Продолжим доказательство теоремы 9.3.
Заметим, что 𝑇ℎ(𝑀) ∼ {𝐴𝑀}.18 Действительно, по лемме 9.4 𝐴𝑀 ∈ 𝑇ℎ(𝑀) и значит,

𝑀 ′ � 𝑇ℎ(𝑀) ⇒𝑀 ′ � 𝐴𝑀 .

Обратно, пусть 𝑀 ′ � 𝐴𝑀 . По той же лемме, 𝑀 ′ ∼= 𝑀 . И тогда 𝑀 ′ � 𝑇ℎ(𝑀).
Итак, 𝑇ℎ(𝑀) конечно аксиоматизируема.
Также 𝑇ℎ(𝑀) сильно категорична, т.к. эквивалентная ей теория {𝐴𝑀} сильно категорична по лемме 9.4. �

Следствие 9.5. Если 𝑀 — конечная модель и 𝑀 ′ ≡𝑀 , то 𝑀 ′ ∼= 𝑀 .

Доказательство Если 𝑀 ′ ≡𝑀 , то 𝑀 ′ � 𝑇ℎ(𝑀). Тогда, по теореме 9.3, 𝑀 ′ ∼= 𝑀 . �

Общезначимость и равносильность
Определение 45. Замкнутые формулы 𝐴,𝐵 (в некоторой сигнатуре) называются равносильными, если фор-
мула 𝐴↔𝐵 общезначима (см. определение 11 лекции 6).

Как и в логике высказываний, равносильность обозначается знаком ∼. И мы имеем аналог леммы 2.3:

Лемма 9.6. 𝐴 ∼ 𝐵 тогда и только тогда, когда для любой модели 𝑀 (данной сигнатуры) |𝐴|𝑀 = |𝐵|𝑀 .

Лемма 9.7. Пусть 𝐴(
−→
𝑏 ) — формула сигнатуры Ω; −→𝑥 , −→𝑦 — списки (той же длины, что

−→
𝑏 ) различных

связанных переменных, не входящих в 𝐴.

(1) ∀−→𝑥 𝐴(−→𝑥 ) ∼ ∀−→𝑦 𝐴(−→𝑦 ).

(2) Если формула 𝐴 замкнута, 𝑥 — связанная переменная, не входящая в 𝐴, то 𝐴 ∼ ∀𝑥𝐴.

Здесь ∀−→𝑥 обозначает последовательность кванторов ∀ по переменным из списка −→𝑥 ; аналогично — для −→𝑦 .

Доказательство (1) следует из леммы 8.3: получается, что

𝑀 � ∀−→𝑥 𝐴(−→𝑥 )⇔ для всех −→𝑚 из 𝑀, 𝑀 � 𝐴(−→𝑚).

и
𝑀 � ∀−→𝑦 𝐴(−→𝑦 )⇔ для всех −→𝑚 из 𝑀, 𝑀 � 𝐴(−→𝑚).

Поэтому
𝑀 � ∀−→𝑥 𝐴(−→𝑥 ) ⇔ 𝑀 � ∀−→𝑦 𝐴(−→𝑦 ).

Значит, эти формулы равносильны (лемма 9.4).
(2) — очевидное следствие определения истинности. Действительно, в этом случае 𝑀 � ∀𝑥𝐴 (где ∀𝑥𝐴 полу-

чается как ∀𝑥[𝑥/𝑎]𝐴 с переменной 𝑎, не входящей в 𝐴) равносильно 𝑀 � 𝐴, т.к. при замене фиктивного 𝑎 на
любое 𝑚 с формулой 𝐴 ничего не произойдет. �

Определение 46. Пусть 𝑏1, . . . , 𝑏𝑛 — список параметров формулы 𝐴 в алфавитном порядке19, и пусть 𝑥1, . . . , 𝑥𝑛
— список первых связанных переменных, не входящих в 𝐴, также в алфавитном порядке. Тогда универсальным
замыканием формулы 𝐴 называется формула
∀𝑥1 . . . ∀𝑥𝑛[𝑥1, . . . , 𝑥𝑛/𝑏1, . . . , 𝑏𝑛]𝐴.

Так определенное универсальное замыкание задается однозначно по 𝐴. Но на самом деле нас интересует эта
формула с точностью до равносильности. Леммы 8.3, 9.7 показывают, что мы можем расположить 𝑏1, . . . , 𝑏𝑛 в
любом порядке, и переменные 𝑥1, . . . , 𝑥𝑛 тоже можно выбрать как угодно — лишь бы они не входили в 𝐴 —
все построенные формулы окажутся равносильными. Поэтому универсальным замыканием называют любую из
них.

Универсальное замыкание 𝐴 (какое-нибудь) будем обозначать ∀𝐴.
Теперь можно определить общезначимость и равносильность для произвольных формул.

Определение 47. Формула 𝐴 называется общезначимой, если общезначимо ее универсальное замыкание.
Формулы 𝐴,𝐵 называются равносильными, если общезначима формула ∀ (𝐴↔𝐵).

18Эквивалентность здесь понимается относительно нормальных моделей. Если рассматривать произвольные модели, то надо
добавить еще 𝐸𝑞Ω.

19Этот порядок задается нумерацией множества 𝐹𝑉 𝑎𝑟, см. лекцию 6.
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Для произвольных формул общезначимость по-прежнему обозначается знаком �, а равносильность — знаком
∼.

Таким образом, по лемме 8.3

� 𝐴(−→𝑎 ) ⇔ для любой модели 𝑀 и −→𝑚 из 𝑀, 𝑀 � 𝐴(−→𝑚), 20

𝐴(−→𝑎 ) ∼ 𝐵(−→𝑎 ) ⇔ для любой модели 𝑀 и −→𝑚 из 𝑀, |𝐴(−→𝑚)|𝑀 = |𝐵(−→𝑚)|𝑀 .

Лемма 9.8.

(1) ∼ задает отношение эквивалентности на 𝐹𝑚Ω.

(2) 𝐴 ∼ ∀−→𝑥 [−→𝑥 /
−→
𝑏 ]𝐴, если

−→
𝑏 — список различных свободных переменных, не входящих в 𝐴; −→𝑥 — список

различных связанных переменных, не входящих в 𝐴,

Доказательство (1) Можно использовать замечание перед формулировкой леммы. Ясно, что если |𝐴(−→𝑚)|𝑀 =
|𝐵(−→𝑚)|𝑀 и |𝐵(−→𝑚)|𝑀 = |𝐶(−→𝑚)|𝑀 , то |𝐴(−→𝑚)|𝑀 = |𝐶(−→𝑚)|𝑀 .

(2) Применяем несколько раз лемму 9.7 и транзитивность ∼. �

Пусть теперь 𝐹 (𝑃1, . . . , 𝑃𝑛) — пропозициональная формула, построенная из пропозициональных переменных
𝑃1, . . . , 𝑃𝑛, а 𝐵1, . . . , 𝐵𝑛 — формулы сигнатуры Ω. Пусть 𝑆 — подстановка, заменяющая каждое вхождение 𝑃𝑖

на 𝐵𝑖. При этой замене из 𝐹 получится формула сигнатуры Ω, которую мы обозначим 𝑆𝐹 , или 𝐹 (𝐵1, . . . , 𝐵𝑛).
Такая формула называется подстановочным примером формулы 𝐹 .

Сформулируем две леммы, которые докажем на следующей лекции.

Лемма 9.9. (Лемма о тавтологиях) Подстановочные примеры тавтологий общезначимы.

Лемма 9.10.

(1) Если 𝐹1 ∼ 𝐹2, то 𝑆𝐹1 ∼ 𝑆𝐹2 (для любых пропозоциональных формул 𝐹1, 𝐹2 и подстановки 𝑆).
(2) ¬∀𝑥[𝑥/𝑎]𝐴 ∼ ∃𝑥[𝑥/𝑎]¬𝐴.
(3) ¬∃𝑥[𝑥/𝑎]𝐴 ∼ ∀𝑥[𝑥/𝑎]¬𝐴.
(4)

𝐾

𝑥[𝑥/𝑎](𝐴 ∘𝐵) ∼ (

𝐾

𝑥[𝑥/𝑎]𝐴 ∘𝐵), если 𝑎 не входит в 𝐵 (и 𝑥 не входит ни в 𝐴, ни в 𝐵).
Здесь

𝐾

обозначает квантор ∀ или ∃, а ∘ — связку ∨ или ∧.
(5) Если 𝐴 ∼ 𝐵, то ¬𝐴 ∼ ¬𝐵.
(6) Если 𝐴 ∼ 𝐴′ и 𝐵 ∼ 𝐵′ то (𝐴 ∘𝐵) ∼ (𝐴′ ∘𝐵′) (где ∘ — это ∨, ∧ или →).
(7) Если 𝐴 ∼ 𝐵, то

𝐾

𝑥[𝑥/𝑎]𝐴 ∼

𝐾

𝑥[𝑥/𝑎]𝐵 (при условии, что 𝑥 не входит ни в 𝐴, ни в 𝐵).
(8)

𝐾

𝑥[𝑥/𝑎]𝐴 ∼

𝐾

𝑦[𝑦/𝑎]𝐴 ∼

𝐾

𝑦[𝑦/𝑏][𝑏/𝑎]𝐴, если 𝑥, 𝑦, 𝑏 не входят в 𝐴 (здесь 𝑥, 𝑦 ∈ 𝐵𝑉 𝑎𝑟, 𝑎, 𝑏 ∈ 𝐹𝑉 𝑎𝑟) .

Лекция 10
Лемма 9.9. (Лемма о тавтологиях) Подстановочные примеры тавтологий общезначимы.

Доказательство Рассмотрим подстановку 𝑆, заменяющую 𝑃1, . . . , 𝑃𝑛 на 𝐵1, . . . , 𝐵𝑛. Формулы 𝐵𝑖 запишем
как 𝐵𝑖(𝑎1, . . . , 𝑎𝑘), считая, что список свободных переменных 𝑎1, . . . , 𝑎𝑘 содержит все параметры этих формул.

Рассмотрим произвольную модель 𝑀 данной сигнатуры и ее элементы 𝑚1, . . . ,𝑚𝑘.
Обозначим 𝐵′

𝑖 := 𝐵𝑖(𝑚1, . . . ,𝑚𝑘) (это — оцененные в 𝑀 формулы), и построим оценку пропозициональных
переменных 𝜃 : 𝑉 𝑎𝑟 −→ {0, 1} так:

𝜃(𝑃𝑖) := |𝐵′
𝑖|𝑀 .

Утверждение Для любой пропозициональной формулы 𝐹 (𝑃1, . . . , 𝑃𝑛)

𝜃(𝐹 ) = |𝑆𝐹 (𝑚1, . . . ,𝑚𝑘)|𝑀 .

Это легко проверяется по индукции (по длине 𝐹 ). Действительно, если 𝐹 = 𝑃𝑖, то это следует из определения
𝜃, т.к. 𝑆𝑃𝑖 = 𝐵𝑖. A шаг индукции очевиден: например, при 𝐹 = 𝐹1 ∧ 𝐹2 имеем: 𝑆𝐹 = 𝑆𝐹1 ∧ 𝑆𝐹2,

𝜃(𝐹 ) = min(𝜃(𝐹1), 𝜃(𝐹2)),

|𝑆𝐹 (𝑚1, . . . ,𝑚𝑘)|𝑀 = min(|𝑆𝐹1(𝑚1, . . . ,𝑚𝑘)|𝑀 , |𝑆𝐹2(𝑚1, . . . ,𝑚𝑘)|𝑀 ),

и можно применить предположение индукции.
Из доказанного утверждения сразу следует, что если 𝐹 — тавтология, то 𝑀 � 𝑆𝐹 (𝑚1, . . . ,𝑚𝑘) для любой 𝑀

и при любом выборе 𝑚1, . . . ,𝑚𝑘. Это дает общезначимость 𝑆𝐹 . �
20Подразумевается, что 𝑀 — в нужной сигнатуре, а −→𝑚 — список ее элементов нужной длины.
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Лемма 9.10.

(1) Если 𝐹1 ∼ 𝐹2, то 𝑆𝐹1 ∼ 𝑆𝐹2 (для любых пропозоциональных формул 𝐹1, 𝐹2 и подстановки 𝑆).

(2) ¬∀𝑥[𝑥/𝑎]𝐴 ∼ ∃𝑥[𝑥/𝑎]¬𝐴.

(3) ¬∃𝑥[𝑥/𝑎]𝐴 ∼ ∀𝑥[𝑥/𝑎]¬𝐴.

(4)

𝐾

𝑥[𝑥/𝑎](𝐴 ∘𝐵) ∼ (

𝐾

𝑥[𝑥/𝑎]𝐴 ∘𝐵), если 𝑎 не входит в 𝐵 (и 𝑥 не входит ни в 𝐴, ни в 𝐵).

Здесь

𝐾

обозначает квантор ∀ или ∃, а ∘ — связку ∨ или ∧.

(5) Если 𝐴 ∼ 𝐵, то ¬𝐴 ∼ ¬𝐵.

(6) Если 𝐴 ∼ 𝐴′ и 𝐵 ∼ 𝐵′ то (𝐴 ∘𝐵) ∼ (𝐴′ ∘𝐵′) (где ∘ — это ∨, ∧ или →).

(7) Если 𝐴 ∼ 𝐵, то

𝐾

𝑥[𝑥/𝑎]𝐴 ∼

𝐾

𝑥[𝑥/𝑎]𝐵 (при условии, что 𝑥 не входит ни в 𝐴, ни в 𝐵).

(8)

𝐾

𝑥[𝑥/𝑎]𝐴 ∼

𝐾

𝑦[𝑦/𝑎]𝐴 ∼

𝐾

𝑦[𝑦/𝑏][𝑏/𝑎]𝐴, если 𝑥, 𝑦, 𝑏 не входят в 𝐴 (здесь 𝑥, 𝑦 ∈ 𝐵𝑉 𝑎𝑟, 𝑎, 𝑏 ∈ 𝐹𝑉 𝑎𝑟) .

Доказательство (1) Если (𝐹1↔𝐹2) — тавтология, то по лемме 9.9
� 𝑆(𝐹1↔𝐹2). Но 𝑆(𝐹1↔𝐹2) = (𝑆𝐹1↔𝑆𝐹2). Тогда по определению равносильности 𝑆𝐹1 ∼ 𝑆𝐹2.

(2) Запишем 𝐴 как 𝐴(𝑎,
−→
𝑏 ); надо проверить, что в любой модели 𝑀 для всех −→𝑚

|¬∀𝑥𝐴(𝑥,−→𝑚)|𝑀 = |∃𝑥¬𝐴(𝑥,−→𝑚)|𝑀 .

Но это сразу следует из определения истинности:

|¬∀𝑥𝐴(𝑥,−→𝑚)|𝑀 = 1 ⇔ |∀𝑥𝐴(𝑥,−→𝑚)|𝑀 = 0 ⇔

не для всех 𝑘 ∈𝑀 |𝐴(𝑘,−→𝑚)|𝑀 = 1 ⇔

найдется 𝑘 ∈𝑀, для которого |𝐴(𝑘,−→𝑚)|𝑀 = 0 ⇔

найдется 𝑘 ∈𝑀, для которого |¬𝐴(𝑘,−→𝑚)|𝑀 = 1 ⇔ |∃𝑥¬𝐴(𝑥,−→𝑚)|𝑀 = 1.

(3) Доказывается аналогично (2) (упражнение).
(4) Проверим это для

𝐾

= ∃ и ∘ = ∧; остальные случаи разбираются аналогично.
Запишем 𝐴 как 𝐴(𝑎,

−→
𝑏 ), а 𝐵 — как 𝐵(

−→
𝑏 ) (поскольку 𝑎 не входит в 𝐵). Надо доказать, что в любой модели

𝑀 для любого −→𝑚

(*) |∃𝑥(𝐴(𝑥,−→𝑚) ∧𝐵(−→𝑚))|𝑀 = 1 ⇔ |∃𝑥𝐴(𝑥,−→𝑚) ∧𝐵(−→𝑚)|𝑀 = 1.

В самом деле,

|∃𝑥(𝐴(𝑥,−→𝑚) ∧𝐵(−→𝑚))|𝑀 = 1 ⇔ найдется 𝑘, такое что |𝐴(𝑘,−→𝑚) ∧𝐵(−→𝑚)|𝑀 = 1 ⇔

найдется 𝑘, такое что (|𝐴(𝑘,−→𝑚)|𝑀 = 1 и |𝐵(−→𝑚)|𝑀 = 1).

Но условие |𝐵(−→𝑚)|𝑀 = 1 не зависит от 𝑘. Поэтому

найдется 𝑘, такое что (|𝐴(𝑘,−→𝑚)|𝑀 = 1 и |𝐵(−→𝑚)|𝑀 = 1) ⇔
(найдется 𝑘, такое что |𝐴(𝑘,−→𝑚)|𝑀 = 1) и |𝐵(−→𝑚)|𝑀 = 1 ⇔
|∃𝑥𝐴(𝑥,−→𝑚)|𝑀 = 1 и |𝐵(−→𝑚)|𝑀 = 1 ⇔ |∃𝑥𝐴(𝑥,−→𝑚) ∧𝐵(−→𝑚)|𝑀 = 1.

Таким образом, (*) выполняется.
(8) Рассмотрим случай

𝐾

= ∃. Запишем 𝐴 как 𝐴(𝑎,−→𝑒 ), где −→𝑒 — список всех параметров, кроме 𝑎. По
определению истинности, в модели 𝑀 для любого −→𝑚

|∃𝑥𝐴(𝑥,−→𝑚)|𝑀 = max
𝑘∈𝑀

|𝐴(𝑘,−→𝑚)|𝑀 .

По тому же определению,
|∃𝑦𝐴(𝑦,−→𝑚)|𝑀 = max

𝑘∈𝑀
|𝐴(𝑘,−→𝑚)|𝑀 .

Т.е. первая равносильность из (8) очевидна.
Вторая равносильность тоже очевидна, т.к. выражения [𝑦/𝑎]𝐴 и [𝑦/𝑏][𝑏/𝑎]𝐴 совпадают: если заменить в 𝐴

все вхождения 𝑎 на новую букву 𝑏, а потом все вхождения 𝑏 — на 𝑦, то это все равно, что сразу заменить все 𝑎
на 𝑦.

Остальные утверждения леммы проверяются достаточно легко. �
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Предваренная нормальная форма
Определение 48. Предваренная нормальная форма (ПНФ) — это формула вида

𝐾

1𝑥1 . . .

𝐾

𝑛𝑥𝑛[𝑥1, . . . , 𝑥𝑛/𝑎1, . . . , 𝑎𝑛]𝐴,

где

𝐾

1, . . . ,

𝐾

𝑛 — кванторы, 𝐴 — формула без кванторов, 𝑎1, . . . , 𝑎𝑛 — (различные) свободные переменные,
𝑥1, . . . , 𝑥𝑛 — (различные) связанные переменные, не входящие в 𝐴. Формула без кванторов тоже считается
ПНФ.

Мы докажем, что всякая формула первого порядка равносильна некоторой ПНФ. Начнем со вспомогатель-
ного преобразования формул.

Определение 49. Формула с тесными отрицаниями (TO) — это формула, построенная из литералов (т.е.
атомарных формул и их отрицаний) с помощью конъюнкции, дизъюнкции и кванторов.

Точное определение — индуктивное:

∙ Если 𝐴 — атомарная формула, то 𝐴 и ¬𝐴 — ТО-формулы.

∙ Если 𝐴,𝐵 — ТО-формулы, то (𝐴 ∧𝐵) и (𝐴 ∨𝐵) — ТО-формулы.

∙ Если 𝐴 — ТО-формулa, 𝑎 ∈ 𝐹𝑉 𝑎𝑟, 𝑥 ∈ 𝐵𝑉 𝑎𝑟, 𝑥 не входит в 𝐴, то ∀𝑥[𝑥/𝑎]𝐴 и ∃𝑥[𝑥/𝑎]𝐴 — ТО-формулы.

Лемма 10.1. Всякая формула первого порядка равносильна некоторой ТО-формуле.

Доказательство Идея доказательства состоит в том, что импликацию можно выразить через отрицание и
дизъюнкцию, а все отрицания можно задвинуть вглубь, используя законы Де Моргана и лемму 9.10 (2),(3).

Аккуратное доказательство проводится по индукции: именно, индукцией по длине формулы 𝐴, доказываем,
что 𝐴 равносильна ТО-формуле, в которую входят те же переменные21.

Предположим, что утверждение доказано для всех формул, которые короче, чем 𝐴. По лемме 6.1, возможны
следующие случаи.

(1) 𝐴 — атомарная. Тогда 𝐴 — ТО-формулa, и доказывать нечего.
(2) 𝐴 = (𝐵 ∘ 𝐶), где ∘ — это ∧ или ∨. Формулы 𝐵, 𝐶 — короче, и по предположению индукции, найдутся

ТО-формулы 𝐵1, 𝐶1, такие что 𝐵 ∼ 𝐵1, 𝐶 ∼ 𝐶1. Тогда, по лемме 9.10 (6), 𝐴 ∼ (𝐵1 ∘ 𝐶1), а по определению
49, (𝐵1 ∘ 𝐶1) — ТО-формулa. Переменные в ней — те же, что в 𝐴, т.к. по предположению индукции, они не
изменяются при переходе от 𝐵 к 𝐵1 и от 𝐶 к 𝐶1.

(3) 𝐴 = (𝐵 → 𝐶). Из логики высказываний (лемма 9.10 (1)) получаем 𝐴 ∼ (¬𝐵 ∨ 𝐶). Формулы ¬𝐵, 𝐶 —
короче, чем 𝐴, и тогда найдутся ТО-формулы 𝐵1, 𝐶1, такие что ¬𝐵 ∼ 𝐵1, 𝐶 ∼ 𝐶1. По лемме 9.10 (6),(9),
𝐴 ∼ (𝐵1 ∨ 𝐶1), и (𝐵1 ∨ 𝐶1) — ТО-формулa. Переменные не меняются — по предположению индукции (как и в
случае (2)).

(4) 𝐴 =

𝐾

𝑥[𝑥/𝑎]𝐵, 𝑥 не входит в 𝐵. По предположению индукции, 𝐵 ∼ 𝐵1 для некоторой ТО-формулы 𝐵1 с
теми же переменными. Поэтому 𝑥 не входит в 𝐵1, и, по лемме 9.10 (7), 𝐴 ∼

𝐾

𝑥[𝑥/𝑎]𝐵1. Ясно, что

𝐾

𝑥[𝑥/𝑎]𝐵1 —
ТО-формулa, и переменные из 𝐴 в ней сохраняются.

(5) 𝐴 = ¬𝐵. Тогда рассмотрим все возможности для 𝐵.
(5.1) 𝐵 — атомарная. Тогда 𝐴 — ТО-формулa, и доказывать нечего.
(5.2) 𝐵 = (𝐶 ∨ 𝐷). Из логики высказываний (закон Де Моргана) имеем: 𝐴 ∼ (¬𝐶 ∧¬𝐷). Формулы ¬𝐶, ¬𝐷 —

короче, поэтому найдутся ТО-формулы 𝐶1, 𝐷1, для которых ¬𝐶 ∼ 𝐶1, ¬𝐷 ∼ 𝐷1. По лемме 9.10, 𝐴 ∼ (𝐶1 ∧𝐷1),
и снова получаем ТО-формулу. Переменные, как и раньше, сохраняются.

(5.3) 𝐵 = (𝐶 ∧𝐷). Этот случай аналогичен (5.2).
(5.4) 𝐵 = (𝐶 → 𝐷). Из логики высказываний, 𝐴 = ¬(𝐶 → 𝐷) ∼ (𝐶 ∧¬𝐷). Т.к. 𝐶, ¬𝐷 — короче, чем 𝐴, имеем

ТО-формулы 𝐶1, 𝐷1, для которых 𝐶 ∼ 𝐶1, ¬𝐷 ∼ 𝐷1. По лемме 9.10 (6), 𝐴 ∼ (𝐶1 ∧𝐷1).
(5.5) 𝐵 = ∀𝑥[𝑥/𝑎]𝐶, 𝑥 не входит в 𝐶. По лемме 9.10 (2), 𝐴 = ¬𝐵 ∼ ∃𝑥[𝑥/𝑎]¬𝐶. Т.к. ¬𝐶 — короче, чем 𝐴,

имеется ТО-формула 𝐶1, такая что ¬𝐶 ∼ 𝐶1. Из-за сохранения переменных, 𝑥 не входит в 𝐶1. По лемме 9.10
(7),

∃𝑥[𝑥/𝑎]¬𝐶 ∼ ∃𝑥[𝑥/𝑎]𝐶1.

Итак, 𝐴 равносильна ТО-формуле ∃𝑥[𝑥/𝑎]𝐶1 с теми же переменными.
(5.6) 𝐵 = ∃𝑥[𝑥/𝑎]𝐶. Этот случай аналогичен (5.5).
(5.7) 𝐵 = ¬𝐶. По логике высказываний, 𝐴 = ¬¬𝐶 ∼ 𝐶. По предположению индукции, имеем ТО-формулу

𝐶1 ∼ 𝐶. Итак, 𝐴 ∼ 𝐶1. �
21Последнее дополнение — техническое, оно понадобится далее в случаях (4), (5.5); в лекции оно не упоминалось.
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Теорема 10.2. Любая формула первого порядка равносильна некоторой ПНФ.

Доказательство Благодаря лемме 10.1, достаточно доказать это для ТО-формул. Т.е. индукцией по длине
ТО-формулы 𝐴 доказываем, что 𝐴 равносильна ПНФ. По лемме 6.1, возникают такие случаи.

(1) 𝐴 — литерал. Тогда 𝐴 — ПНФ, по определению.
(2) 𝐴 = (𝐵 ∘ 𝐶), где ∘ — это ∨ или ∧. По предположению индукции, 𝐵 ∼ 𝐵′, 𝐶 ∼ 𝐶 ′ для некоторых ПНФ

𝐵′, 𝐶 ′. Тогда, по лемме 9.10, 𝐴 = (𝐵 ∘ 𝐶) ∼ (𝐵′ ∘ 𝐶 ′). Теперь нужна еще одна лемма.

Лемма 10.3. Если 𝐴, 𝐵 — ПНФ, ∘ = ∨ или ∧, то формула (𝐴 ∘𝐵) равносильна ПНФ.

Доказательство Доказываем индукцией по числу кванторов в (𝐴 ∘𝐵).
Если кванторов нет, то это уже ПНФ, и доказывать нечего.
Если есть кванторы, то мы можем считать, что они есть в 𝐴: если они есть только в 𝐵, можно переставить

𝐴 и 𝐵 — т.к. (𝐴 ∘𝐵) ∼ (𝐵 ∘𝐴) (логика высказываний).
Итак, пусть 𝐴 =

𝐾

𝑥[𝑥/𝑎]𝐴1.
Случай 1. 𝑎, 𝑥 не входят в 𝐵.
По лемме 9.10,

(𝐴 ∘𝐵) = (

𝐾

𝑥[𝑥/𝑎]𝐴1 ∘𝐵) ∼

𝐾

𝑥[𝑥/𝑎](𝐴1 ∘𝐵).

Число кванторов в 𝐴1 ∘ 𝐵 меньше, чем в 𝐴 ∘ 𝐵, и, по предположению индукции, (𝐴1 ∘ 𝐵) ∼ 𝐶 для некоторой
ПНФ 𝐶.

(1.1) Если 𝑥 не входит в 𝐶, то, опять по лемме 9.10,

𝐾

𝑥[𝑥/𝑎](𝐴1 ∘𝐵) ∼

𝐾

𝑥[𝑥/𝑎]𝐶.

Таким образом, (𝐴 ∘𝐵) равносильна ПНФ

𝐾

𝑥[𝑥/𝑎]𝐶.
(1.2) Если 𝑥 входит в 𝐶, то возьмем новую связанную переменную 𝑦, которой нет в 𝐴1, 𝐵, 𝐶. По лемме 9.10,

𝐴 =

𝐾

𝑥[𝑥/𝑎]𝐴1 ∼

𝐾

𝑦[𝑦/𝑎]𝐴1, и далее (𝐴 ∘𝐵) ∼ (

𝐾

𝑦[𝑦/𝑎]𝐴1 ∘𝐵). Теперь, как в (1.1):

(

𝐾

𝑦[𝑦/𝑎]𝐴1 ∘𝐵) ∼

𝐾

𝑦[𝑦/𝑎]𝐶.

Случай 2. 𝑎 или 𝑥 входит в 𝐵.
Тогда можно эти переменные переименовать. А именно, выберем 𝑏 ∈ 𝐹𝑉 𝑎𝑟, 𝑦 ∈ 𝐵𝑉 𝑎𝑟, которые не входят в

𝐵. По лемме 9.10,
𝐴 =

𝐾

𝑥[𝑥/𝑎]𝐴1 ∼

𝐾

𝑦[𝑦/𝑏][𝑏/𝑎]𝐴1.

Формула
𝐾

𝑦[𝑦/𝑏][𝑏/𝑎]𝐴1 равносильна ПНФ, согласно случаю 1 (где вместо 𝐴1 надо использовать [𝑏/𝑎]𝐴1). �

Возвращаемся к доказательству теоремы 10.2, случай (2). По лемме 10.3 получаем, что (𝐵′ ∘ 𝐶 ′) равносильна
ПНФ, поэтому и 𝐴 равносильна ПНФ.

(3) 𝐴 =

𝐾

𝑥[𝑥/𝑎]𝐵.
По предположению индукции, имеется ПНФ 𝐵′, равносильная 𝐵. Выберем какую-нибудь связанную пере-

менную 𝑦, не входящую ни в 𝐵, ни в 𝐵′. По лемме 9.10 получаем:

𝐴 =

𝐾

𝑥[𝑥/𝑎]𝐵 ∼

𝐾

𝑦[𝑦/𝑎]𝐵 ∼

𝐾

𝑦[𝑦/𝑎]𝐵′.

Формула

𝐾

𝑦[𝑦/𝑎]𝐵′ — ПНФ. �

Пример Рассмотрим формулу ∀𝑥𝑃 (𝑥) ∨ ∃𝑥𝑄(𝑥). Она приводится к ПНФ следующим образом:

(∀𝑥𝑃 (𝑥) ∨ ∃𝑥𝑄(𝑥)) ∼ (∀𝑥𝑃 (𝑥) ∨ ∃𝑦𝑄(𝑦)) ∼ ∀𝑥 (𝑃 (𝑥) ∨ ∃𝑦𝑄(𝑦)) ∼ ∀𝑥∃𝑦 (𝑃 (𝑥) ∨ 𝑄(𝑦)).

Подробнее, это происходит так:

(∀𝑥[𝑥/𝑎]𝑃 (𝑎) ∨ ∃𝑥[𝑥/𝑎]𝑄(𝑎)) ∼ (∀𝑥[𝑥/𝑎]𝑃 (𝑎) ∨ ∃𝑦[𝑦/𝑏]𝑄(𝑏))

∼ ∀𝑥 [𝑥/𝑎](𝑃 (𝑎) ∨ ∃𝑦[𝑦/𝑏]𝑄(𝑏)) ∼ ∀𝑥∃𝑦 [𝑥, 𝑦/𝑎, 𝑏](𝑃 (𝑎) ∨ 𝑄(𝑏)).

Замечание В логике высказываний мы можем выяснить, является ли данная формула тавтологией, приведя
ее к СДНФ. В логике предикатов аналогичный метод не работает: у одной и той же формулы могут быть
несколько совершенно разных ПНФ. И по данной ПНФ непонятно, как установить общезначимость. В частности,
неверно, что

�

𝐾

𝑥1 . . .

𝐾

𝑥𝑛[𝑥1, . . . , 𝑥𝑛/𝑎1, . . . , 𝑎𝑛]𝐴 ⇒ � 𝐴.

Например, формула ∃𝑥∀𝑦 (𝑃 (𝑥) → 𝑃 (𝑦)) общезначима, т.к.

∃𝑥∀𝑦 (𝑃 (𝑥) → 𝑃 (𝑦)) ∼ ∃𝑥∀𝑦 (¬𝑃 (𝑥) ∨ 𝑃 (𝑦)) ∼

∃𝑥 (¬𝑃 (𝑥) ∨ ∀𝑦𝑃 (𝑦)) ∼ (∃𝑥¬𝑃 (𝑥) ∨ ∀𝑦𝑃 (𝑦)) ∼ (¬∀𝑥𝑃 (𝑥) ∨ ∀𝑦𝑃 (𝑦))

∼ (¬∀𝑥𝑃 (𝑥) ∨ ∀𝑥𝑃 (𝑥)).

При этом 𝑃 (𝑥) → 𝑃 (𝑦) — совсем не общезначима.
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Лекция 11

Исчисление предикатов
Исчисление предикатов в сигнатуре Ω — это аксиоматическая система гильбертовского типа. Она обозначается
через 𝑃𝐶Ω и задается следующими аксиомами и правилами вывода.

I. 10 схем аксиом исчисления высказываний 𝐶𝐿 (см. лекцию 4). Но теперь 𝐴,𝐵,𝐶 могут быть любыми
формулами сигнатуры Ω.

II. Предикатные аксиомы

(1) ∀𝑥[𝑥/𝑎]𝐴→ [𝑡/𝑎]𝐴.

(2) [𝑡/𝑎]𝐴→ ∃𝑥[𝑥/𝑎]𝐴.

(3) ∀𝑥[𝑥/𝑎](𝐴→ 𝐵) → (𝐴→ ∀𝑥[𝑥/𝑎]𝐵).

(4) ∀𝑥[𝑥/𝑎](𝐵 → 𝐴) → (∃𝑥[𝑥/𝑎]𝐵 → 𝐴).

Здесь 𝐴,𝐵 — произвольные формулы, 𝑡 — произвольный терм, 𝑎 — свободная переменная, 𝑥 — связанная
переменная. Формула [𝑡/𝑎]𝐴 получается из 𝐴 заменой всех вхождений 𝑎 на 𝑡.22

Ограничения Переменная 𝑥 не должна входить в 𝐴 и 𝐵. В аксиомах 3, 4 переменная 𝑎 не должна входить в
𝐴.

III. Правила вывода.
𝑀𝑜𝑑𝑢𝑠 𝑃𝑜𝑛𝑒𝑛𝑠 (𝑀𝑃 )

𝐴, 𝐴→ 𝐵

𝐵
,

𝐺𝑒𝑛 (правило обобщения)
𝐴

∀𝑥[𝑥/𝑎]𝐴
.

Здесь предполагается, что 𝑥 не входит в 𝐴.

Определение вывода в исчислении предикатов аналогично исчислению высказываний, но здесь добавляется
еще правило 𝐺𝑒𝑛.

Определение 50. Пусть Γ — некоторое множество формул сигнатуры Ω. Вывод формулы 𝐴 в 𝑃𝐶Ω из Γ— это
конечная последовательность формул, каждая из которых — аксиома или принадлежит Γ или получается из
предыдущих по правилу MP или Gen, a последняя формула есть 𝐴.

Т.e. это последовательность формул 𝐴1, . . . , 𝐴𝑛 = 𝐴, где для всех 𝑘 выполняется одно из условий:

∙ 𝐴𝑘 — аксиома,

∙ 𝐴𝑘 ∈ Γ,

∙ существуют 𝑖, 𝑗 < 𝑘, для которых 𝐴𝑗 = 𝐴𝑖 → 𝐴𝑘,

∙ существуeт 𝑖 < 𝑘 и переменные 𝑥, 𝑎 такие, что 𝐴𝑘 = ∀𝑥[𝑥/𝑎]𝐴𝑖.

Формула 𝐴 выводима из Γ, если существует ee вывод из Γ; обозначение: Γ ⊢𝑃𝐶Ω 𝐴.

Для этой выводимости сохраняется лемма 4.2 с тем же доказательством:

Лемма 11.1.

(1) Если ∆ ⊆ Γ и ∆ ⊢ 𝐴, то Γ ⊢ 𝐴.

(2) Если Γ ⊢ 𝐴, то существует конечное ∆ ⊆ Γ, для которого ∆ ⊢ 𝐴.

(3) Если ∆ ⊢ Γ и Γ ⊢ 𝐴, то ∆ ⊢ 𝐴.

Лемма 11.2. Пусть 𝐴 — пропозициональная формула, 𝑆𝐴 — ее подстановочный пример в сигнатуре Ω. Если
⊢𝐶𝐿 𝐴, то ⊢𝑃𝐶Ω 𝑆𝐴.

Поскольку теоремы 𝐶𝐿 — это в точности тавтологии (лекция 5), то лемму можно сформулировать так: все
подстановочные примеры тавтологий выводимы в исчислении предикатов.

22Формально [𝑡/𝑎]𝐴 надо определять индукцией по длине 𝐴 и доказывать, что получается формула.
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Доказательство Индукция по длине вывода 𝐴 в 𝐶𝐿.
1. Если 𝐴 — аксиома, то 𝑆𝐴 — аксиома того же вида. Это получается из того, что подстановка 𝑆 дистрибу-

тивна относительно логических связок. Например, если 𝐴 — аксиома 1:

𝐴 = 𝐵 → (𝐶 → 𝐵),

то
𝑆𝐴 = 𝑆𝐵 → (𝑆𝐶 → 𝑆𝐵),

и это аксиома I.1 (в исчислении предикатов). Аналогично для других аксиом.
2. Пусть 𝐴 получается по правилу MP из 𝐵 и 𝐵 → 𝐴. По предположению индукции, в 𝑃𝐶Ω выводимы 𝑆𝐵

и 𝑆(𝐵 → 𝐴). Но 𝑆(𝐵 → 𝐴) = 𝑆𝐵 → 𝑆𝐴. Применив MP в исчислении предикатов, получим ⊢𝑃𝐶Ω 𝑆𝐴. �

Лемма 11.3. Некоторые теоремы и допустимые правила в 𝑃𝐶Ω.

(1) ∀𝑥[𝑥/𝑎]𝐴→ 𝐴 (𝑥 не входит в 𝐴).

(2) 𝐴→ ∃𝑥[𝑥/𝑎]𝐴 (𝑥 не входит в 𝐴).

(3)
𝐴→ 𝐵

𝐴→ ∀𝑥[𝑥/𝑎]𝐵
.

(4)
𝐵 → 𝐴

∃𝑥[𝑥/𝑎]𝐵 → 𝐴
.

В двух последних правилах переменная 𝑥 не входит в 𝐴,𝐵; переменная 𝑎 не входит в 𝐴.

Правила (3), (4) называются ослабленными правилами Бернайса. В исходной (не ослабленной) форме 𝑥
может входить в 𝐴; этот вариант разберем чуть позже.

Доказательство (1), (2) Тривиальные случаи аксиом II.1, II.2 для 𝑡 = 𝑥.
(3) (Mы опускаем индекс при ⊢.) Рассматриваем выводы из некоторого множества гипотез Γ.
Пусть Γ ⊢ 𝐴 → 𝐵. По правилу 𝐺𝑒𝑛 тогда Γ ⊢ ∀𝑥[𝑥/𝑎](𝐴 → 𝐵). По аксиоме II.3, Γ ⊢ ∀𝑥[𝑥/𝑎](𝐴 → 𝐵) → (𝐴 →

∀𝑥[𝑥/𝑎]𝐵). Теперь Γ ⊢ 𝐴→ ∀𝑥[𝑥/𝑎]𝐵 по 𝑀𝑃 .
(4) Аналогичное рассуждение с аксиомой II.4. (Упражнение.) �

Лемма 11.4. ⊢𝑃𝐶Ω K𝑦[𝑦/𝑎]𝐴→ K𝑥[𝑥/𝑎]𝐴,
где K— квантор, а переменные 𝑥, 𝑦 не входят в 𝐴.

Доказательство Рассмотрим случай K= ∀.
⊢ ∀𝑦[𝑦/𝑎]𝐴→ [𝑥/𝑎]𝐴 — аксиома II.1. Тогда ⊢ ∀𝑦[𝑦/𝑎]𝐴→ ∀𝑥[𝑥/𝑎]𝐴 по правилу Бернайса.
Случай K= ∃ разбирается аналогично (упражнение). �

Лемма 11.5. (Ослабленная теорема дедукции) Если Γ, 𝐴 ⊢𝑃𝐶Ω
𝐵 без применения правила 𝐺𝑒𝑛, то Γ ⊢𝑃𝐶Ω

𝐴→ 𝐵.

Доказательство Доказательство — такое же, как для теоремы дедукции в 𝐶𝐿 (см. лекцию 4). �

Лемма 11.6. В исчислении предикатов допустимо правило силлогизма

𝐴→ 𝐵, 𝐵 → 𝐶

𝐴→ 𝐶
.

Доказательство Из теоремы дедукции следует, что это правило — производное. См. лекцию 4. �

Лемма 11.7. В 𝑃𝐶Ω в выводах из гипотез допустимы правила Бернайса:

(1)
𝐴→ 𝐵

𝐴→ ∀𝑥[𝑥/𝑎]𝐵
.

(2)
𝐵 → 𝐴

∃𝑥[𝑥/𝑎]𝐵 → 𝐴
.

где 𝑥 не входит в 𝐵; переменная 𝑎 не входит в 𝐴.
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Доказательство Докажем допустимость 1го правила; второе рассматривается аналогично.
Пусть Γ ⊢ 𝐴→ 𝐵. Выберем переменную 𝑦, не входящую ни в 𝐴, ни в 𝐵. Тогда по лемме 10.3

Γ ⊢ 𝐴→ ∀𝑦[𝑦/𝑎]𝐵.

По лемме 11.4,
⊢ ∀𝑦[𝑦/𝑎]𝐵 → ∀𝑥[𝑥/𝑎]𝐵.

Отсюда по правилу силлогизма
Γ ⊢ 𝐴→ ∀𝑥[𝑥/𝑎]𝐵.

�

Теорема 11.8. (Теорема дедукции) Если 𝐴 — замкнутая формула, то

Γ, 𝐴 ⊢𝑃𝐶Ω 𝐵 ⇔ Γ ⊢𝑃𝐶Ω 𝐴→ 𝐵.

Доказательство Утверждение (⇐) легко получается по 𝑀𝑃 (для любой 𝐴); см. лекцию 4.
(⇒) доказываем по индукции. Доказательство — как в лекции 4 и лемме 11.5, но еще надо рассмотреть

случай, когда 𝐵 получается по правилу 𝐺𝑒𝑛.
Итак, пусть 𝐵 = ∀𝑥[𝑥/𝑎]𝐶 и Γ, 𝐴 ⊢ 𝐶. По предположению индукции Γ ⊢ 𝐴→ 𝐶. Тогда по правилу Бернайса

(поскольку 𝐴 замкнута) получаем
Γ ⊢ 𝐴→ ∀𝑥[𝑥/𝑎]𝐶, т.е. Γ ⊢ 𝐴→ 𝐵. �

Следствие 11.9. Для любой конечной теории 𝑇 и формулы 𝐴 сигнатуры Ω

𝑇 ⊢𝑃𝐶Ω
𝐴 ⇔ ⊢𝑃𝐶Ω

(
⋀︁
𝑇 ) → 𝐴.

Здесь
⋀︀
𝑇 обозначает конъюнкцию всех формул из 𝑇 .23

Доказательство (Мы опять опускаем индекс при ⊢.) По теореме дедукции

(*)
⋀︀
𝑇 ⊢ 𝐴 ⇔ ⊢ (

⋀︀
𝑇 ) → 𝐴.

Заметим также, что

(**) 𝑇 ⊢ 𝐴 ⇔
⋀︀
𝑇 ⊢ 𝐴.

Действительно, 𝑇 ⊢
⋀︀
𝑇 — по допустимому правилу введения ∧ (см. лекцию 5); его надо применить несколько

раз. Поэтому из
⋀︀
𝑇 ⊢ 𝐴 по транзитивности (лемма 10.1(3)) следует 𝑇 ⊢ 𝐴.

Обратно,
⋀︀
𝑇 ⊢ 𝑇 по аксиомам I.3, I.4 и MP. Поэтому из 𝑇 ⊢ 𝐴 по транзитивности следует

⋀︀
𝑇 ⊢ 𝐴.

Утверждение следствия получается из (*) и (**). �

Корректность исчисления предикатов
Теорема 11.10. (Теорема о корректности исчисления предикатов)

(1) Пусть 𝑇 — теория 1го порядка в сигнатуре Ω. Тогда для любой формулы 𝐴 этой сигнатуры

𝑇 ⊢𝑃𝐶Ω 𝐴⇒ 𝑇 � ∀𝐴.

(2) Для любой формулы 𝐴 сигнатуры Ω
⊢𝑃𝐶Ω

𝐴 ⇒ � 𝐴,

т.е. все теоремы исчисления предикатов общезначимы.

Доказательство Очевидно, что (2) следует из (1): надо взять 𝑇 = ∅ и вспомнить, что по определению
общезначимость 𝐴 равносильна общезначимости ∀𝐴 (лекция 9).

(1) доказывается индукцией по длине вывода 𝐴 в 𝑇 аналогично теореме корректности для исчисления вы-
сказываний (теорема 4.5).

(1.1) Если 𝐴 ∈ 𝑇 , то доказывать нечего: 𝐴 истинна во всех моделях 𝑇 и ∀𝐴 = 𝐴, т.к. 𝐴 замкнута.
(1.2) Все аксиомы группы I — подстановочные примеры аксиом 𝐶𝐿. Например, предикатная формула 𝐴 →

(𝐵 → 𝐴) — пример пропозициональной аксиомы 𝑃1 → (𝑃2 → 𝑃1) и т.д. Аксиомы 𝐶𝐿 — тавтологии (теорема
корректности 4.5). Поэтому аксиомы группы I общезначимы по лемме о тавтологиях (лемма 9.5).

23Не имеет значения, в каком порядке берутся формулы и расставляются скобки в конъюнкции: утверждение от этого не зависит.
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(1.3) Пусть 𝐴 получается по 𝑀𝑃 из 𝐵 и 𝐵 → 𝐴. Выводы этих формул короче, и по предположению индукции

𝑇 � ∀𝐵, 𝑇 � ∀(𝐵 → 𝐴).

Рассмотрим любую модель𝑀 теории 𝑇 и докажем, что𝑀 � ∀𝐴. По лемме 8.3 для этого надо заменить свободные
переменные из 𝐴 (обозначим их список −→𝑎 ) на произвольныe элементы из 𝑀 (обозначим этот список −→𝑚) и
доказать, что полученная оцененная формула (обозначим ее 𝐴1) истинна в 𝑀 .

Заметим, что при замене −→𝑎 на −→𝑚 в формуле 𝐵 могут остаться еще какие-то свободные переменные; заменим
их тоже на элементы из 𝑀 (как угодно), и получим оцененную формулу 𝐵1. Поскольку 𝑇 � ∀𝐵 и 𝑀 � 𝑇 , имеем
𝑀 � ∀𝐵, и по лемме 8.3, 𝑀 � 𝐵1.

Аналогично 𝑀 � ∀(𝐵 → 𝐴), откуда 𝑀 � 𝐵1 → 𝐴1 по лемме 8.3. Теперь из истинности 𝐵1 → 𝐴1 и 𝐵1 следует
истинность 𝐴1 (по определению значения импликации; см. лекцию 7).

(1.4) Пусть 𝐴 получается по правилу 𝐺𝑒𝑛, т.е. 𝐴 = ∀𝑥[𝑥/𝑎]𝐵, 𝑇 ⊢ 𝐵. Вывод 𝐵 короче, и по предположению
индукции 𝑇 � ∀𝐵.

Случай 1 Если 𝑎 входит в 𝐵, то ∀𝐵 и ∀ ∀𝑥[𝑥/𝑎]𝐵 могут отличаться только порядком кванторов. Из леммы
8.3 следует, что эти формулы равносильны. Поэтому 𝑇 � ∀𝐴.

Случай 2 𝑎 не входит в 𝐵. В этом случае тоже из 𝑀 � ∀𝐵 следует 𝑀 � ∀𝐴.
В самом деле, пусть 𝐵 = 𝐵(

−→
𝑏 ), 𝑎 не входит в

−→
𝑏 . Допустим, что 𝑀 � ∀𝐵. Тогда для всех наборов −→𝑚 элементов

из 𝑀 (той же длины, что
−→
𝑏 ) 𝑀 � 𝐵(−→𝑚).

В формуле 𝐴 = ∀𝑥[𝑥/𝑎]𝐵(
−→
𝑏 ) остаются все те же свободные переменные

−→
𝑏 . Поэтому 𝑀 � ∀ ∀𝑥[𝑥/𝑎]𝐵(

−→
𝑏 )

означает, что для для всех −→𝑚 из 𝑀
𝑀 � ∀𝑥[𝑥/𝑎]𝐵(−→𝑚).

Но это — то же, что 𝑀 � 𝐵(−→𝑚): т.к. переменная 𝑎 в 𝐵(−→𝑚) не входит, любая ее замена оказывается фиктивной.
Итак, 𝑀 � ∀𝐴.

(1.5) 𝐴 — аксиома II.3:
𝐴 = ∀𝑥[𝑥/𝑎](𝐶 → 𝐵) → (𝐶 → ∀𝑥[𝑥/𝑎]𝐵),

где 𝑥 не входит в 𝐴 и 𝐵, 𝑎 не входит в 𝐶. Докажем общезначимость этой формулы. Выберем модель 𝑀 и
возьмем произвольную замену свободных переменных на элементы из 𝑀 . Получим оцененную формулу

𝐴1 = ∀𝑥[𝑥/𝑎](𝐶1 → 𝐵1) → (𝐶1 → ∀𝑥[𝑥/𝑎]𝐵1).

Т.к. 𝑎 не входит в 𝐶, здесь 𝐶1 — замкнутая (т.е. тоже оцененная) формула, а 𝐵1 может содержать только одну
свободную переменную 𝑎 (поскольку формула ∀𝑥[𝑥/𝑎]𝐵1 замкнута). Запишем 𝐵1 как 𝐵1(𝑎) и соответственно

𝐴1 = ∀𝑥(𝐶1 → 𝐵1(𝑥)) → (𝐶1 → ∀𝑥𝐵1(𝑥)).

Докажем, что 𝑀 � 𝐴1. Предположим
𝑀 � ∀𝑥(𝐶1 → 𝐵1(𝑥))

и проверим, что 𝑀 � 𝐶1 → ∀𝑥𝐵1(𝑥). В свою очередь, для этого предположим

𝑀 � 𝐶1

и докажем 𝑀 � ∀𝑥𝐵1(𝑥). Возьмем любое 𝑚 ∈𝑀 . Из 𝑀 � ∀𝑥(𝐶1 → 𝐵1(𝑥)) следует

𝑀 � 𝐶1 → 𝐵1(𝑚).

Тогда из 𝑀 � 𝐶1 следует 𝑀 � 𝐵1(𝑚). Поскольку 𝑚 произвольно, получаем 𝑀 � ∀𝑥𝐵1(𝑥), что и требовалось.
(1.6) 𝐴 — аксиома II.4. Этот случай аналогичен предыдущему. Доказательство — упражнение.
Оставшиеся аксиомы II.1, II.2 будут рассмотрены на следующей лекции. �

Лекция 12

Корректностъ исчисления предикатов (окончание)
Для завершения доказательства теоремы корректности 11.10 осталось проверить общезначимость аксиом II.1 и
II.2. Рассмотрим II.1 (II.2 проверяется аналогично — упражнение).

Рассуждаем как в случае II.3 (лекция 11). Нам надо доказать общезначимость формулы

𝐴(𝑎,
−→
𝑏 ) := ∀𝑥[𝑥/𝑎]𝐵 → [𝑡/𝑎]𝐵,
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где
−→
𝑏 — список дополнительных параметров (кроме 𝑎).24 Тогда запишем 𝐵 как 𝐵(𝑎,

−→
𝑏 ), 𝑡 — как 𝑡(𝑎,

−→
𝑏 ).

Рассмотрим модель 𝑀 и заменим набор параметров 𝑎,
−→
𝑏 на набор произвольных элементов 𝑞,−→𝑚 из 𝑀 .

Получим оцененную формулу

𝐴(𝑞,−→𝑚) = ∀𝑥[𝑥/𝑎]𝐵(𝑎,−→𝑚) → [𝑡(𝑞,−→𝑚)/𝑎]𝐵(𝑎,−→𝑚).

Обозначим
𝐵1(𝑎) := 𝐵(𝑎,−→𝑚), 𝑡1 := 𝑡(𝑞,−→𝑚)

и перепишем формулу 𝐴(𝑞,−→𝑚):
𝐴(𝑞,−→𝑚) = ∀𝑥[𝑥/𝑎]𝐵1(𝑎) → 𝐵1(𝑡1).

Здесь 𝐵1(𝑡1) обозначает [𝑡1/𝑎]𝐵1(𝑎).
Нам надо доказать, что 𝑀 � 𝐴(𝑞,−→𝑚). Для этого предположим

𝑀 � ∀𝑥[𝑥/𝑎]𝐵1(𝑎)

и докажем
𝑀 � 𝐵1(𝑡1).

Достаточно будет установить следующий факт:

Лемма 12.1. Пусть 𝐵1(𝑎) ∈ 𝐹𝑚Ω∪𝑀 , 𝑟(𝑎) ∈ 𝑇𝑚Ω∪𝑀 , 𝑡1 ∈ 𝐶𝑇𝑚Ω∪𝑀 . Тогда

(1) |𝑟(𝑡1)|𝑀 = |𝑟(|𝑡1|𝑀 )|𝑀 ,

(2) |𝐵1(𝑡1)|𝑀 = |𝐵1(|𝑡1|𝑀 )|𝑀 .

(Здесь 𝑟(𝑡1) обозначает [𝑡1/𝑎]𝑟(𝑎).)
Из утверждения (2) получаем 𝑀 � 𝐵1(𝑡1) (в предположении 𝑀 � ∀𝑥[𝑥/𝑎]𝐵1(𝑎)), поскольку из 𝑀 �

∀𝑥[𝑥/𝑎]𝐵1(𝑎) следует 𝑀 � 𝐵1(|𝑡1|𝑀 ).

Доказательство (леммы). Индекс 𝑀 при | . . . | не пишем. С некоторыми изменениями повторяется доказа-
тельство теоремы 7.4.

(1) Индукция по длине 𝑟.
(1.1) (базис индукции). 𝑟 = 𝑐, для 𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡Ω. Тогда 𝑎 не входит в 𝑟, и доказывать нечего.
(1.2) (базис индукции). 𝑟 = 𝑚, для 𝑚 ∈𝑀 . Опять 𝑎 не входит в 𝑟, и все очевидно.
(1.3) (базис индукции). 𝑟 = 𝑎. Тогда

𝑟(𝑡1) = 𝑡1, 𝑟(|𝑡1|) = |𝑡1|,

и также
|𝑡1| = ||𝑡1||,

по определению значения оцененного терма (лекция 7, опр. 4): |𝑚| = 𝑚 для всех 𝑚 ∈𝑀 .
(1.3) (шаг индукции). 𝑟(𝑎) = 𝑓(𝑟1(𝑎), . . . , 𝑟𝑛(𝑎)). Тогда

𝑟(𝑡1) = 𝑓(𝑟1(𝑡1), . . . , 𝑟𝑛(𝑡𝑛)), 𝑟(|𝑡1|) = 𝑓(𝑟1(|𝑡1|), . . . , 𝑟𝑛(|𝑡𝑛|)),

и

(*) |𝑟(𝑡1)| = 𝑓𝑀 (|𝑟1(𝑡1)|, . . . , |𝑟𝑛(𝑡1)|), |𝑟(|𝑡1|)| = 𝑓𝑀 (|𝑟1(|𝑡1|)|, . . . , |𝑟𝑛(|𝑡𝑛|)|).

Но по предположению индукции для термов 𝑟𝑖

|𝑟𝑖(𝑡1)| = |𝑟𝑖(|𝑡1|)|.

Поэтому из (*) имеем:
|𝑟(𝑡1)| = |𝑟(|𝑡1|)|.

(2) Индукция по числу связок и кванторов в 𝐵1(𝑎).
(2.1) (базис индукции) 𝐵1(𝑎) = 𝑃 (𝑟1(𝑎), . . . , 𝑟𝑛(𝑎)) — атомарная. Доказательство аналогично (1.3) — упраж-

нение.
(2.2) (шаг индукции) 𝐵1 получается применением ∧,∨,→ или ¬. Эти случаи почти очевидны — упражнение.
(2.3) (шаг индукции) 𝐵1(𝑎) = ∃𝑥[𝑥/𝑏]𝐶(𝑎, 𝑏).

24Переменная 𝑎 в формулу 𝐴 может попасть из терма 𝑡. Если она не входит в 𝑡 (и в 𝐴), рассуждение не меняется.
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Тогда

(**) |𝐵1(𝑡1)| = |∃𝑥[𝑥/𝑏]𝐶(𝑡1, 𝑏)| = max
𝑙∈𝑀

|𝐶(𝑡1, 𝑙)|, |𝐵1(|𝑡1|)| = |∃𝑥[𝑥/𝑏]𝐶(|𝑡1|, 𝑏)| = max
𝑙∈𝑀

|𝐶(|𝑡1|, 𝑙)|.

По предположению индукции, примененному к формуле 𝐶(𝑎, 𝑙),

|𝐶(𝑡1, 𝑙)| = |𝐶(|𝑡1|, 𝑙)|

для каждого 𝑙 ∈𝑀 . Теперь из (**) получаем

|𝐵1(𝑡1)| = |𝐵1(|𝑡1|)|.

(2.4) (шаг индукции) 𝐵1(𝑎) = ∀𝑥[𝑥/𝑏]𝐶(𝑎, 𝑏).
Доказательство аналогично (2.3): ∃ заменяется на ∀, a max — на min. �

Исчисление предикатов с равенством
Определение 51. Пусть Ω — сигнатура, содержащая предикатный символ равенства =. Исчисление преди-
катов с равенством в сигнатуре Ω получается из обычного исчисления предикатов 𝑃𝐶Ω добавлением аксиом
стандартной теории равенства 𝐸𝑞Ω (см. лекцию 8).

Для теорий в такой сигнатуре можно рассматривать нормальные модели и логическое следование на них:
𝑇 �норм 𝐴 означает, что (замкнутая) формула 𝐴 истинна во всех нормальных моделях теории 𝑇 .

Также можно определить нормальную общезначимость: формула 𝐴 нормально общезначима, если ее уни-
версальное замыкание ∀𝐴 истинно во всех нормальных моделях данной сигнатуры.

Теорема 12.2. (Теорема о корректности исчисления предикатов с равенством)

(1) Пусть 𝑇 — теория 1го порядка с равенством в сигнатуре Ω. Тогда для любой замкнутой формулы 𝐴
этой сигнатуры

𝑇 ⊢𝑃𝐶=
Ω
𝐴⇒ 𝑇 �норм 𝐴.

(2) Для любой формулы 𝐴 сигнатуры Ω
⊢𝑃𝐶Ω 𝐴 ⇒ �норм 𝐴,

т.е. все теоремы исчисления предикатов с равенством нормально общезначимы.

Доказательство (1) Пусть 𝑇 ⊢𝑃𝐶=
Ω
𝐴. По определению, это означает 𝑇∪𝐸𝑞Ω ⊢𝑃𝐶Ω

𝐴. По теореме корректности
11.10

𝑇 ∪ 𝐸𝑞Ω � 𝐴.

Если 𝑀 � 𝑇 и 𝑀 нормальна, то 𝑀 � 𝐸𝑞Ω (лемма 8.4). Тогда 𝑀 � 𝐴.
(2) Как и в теореме 11.10, рассмотрим 𝑇 = ∅ и применим (1) для ∀𝐴. �

Непротиворечивость
Определение 52. Теория 𝑇 в сигнатуре Ω называется противоречивой, если для некоторой формулы 𝐴 в этой
сигнатуре

𝑇 ⊢𝑃𝐶Ω 𝐴 и 𝑇 ⊢𝑃𝐶Ω ¬𝐴.
Аналогично, теория 𝑇 в сигнатуре Ω с равенством противоречива, если 𝑇 ⊢𝑃𝐶=

Ω
𝐴 и 𝑇 ⊢𝑃𝐶=

Ω
¬𝐴 для некото-

рой формулы 𝐴 сигнатуры Ω.

Лемма 12.3. Если теория 𝑇 в сигнатуре Ω противоречива, то 𝑇 ⊢𝑃𝐶Ω
𝐵 для любой формулы сигнатуры 𝐵;

аналогично — для теорий с равенством.

Доказательство См. лемму 5.4 (2). �

Следствие 12.4. (1) Если теория 1го порядка выполнима, то она непротиворечива.

(2) Если теория 1го порядка с равенством нормально выполнима (т.е. имеет нормальную модель), то она
непротиворечива.

Доказательство (1) Предположим, что теория 𝑇 в сигнатуре Ω противоречива. Предположим, что 𝑀 � 𝑇 .
Возьмем какую-нибудь замкнутую формулу 𝐵, истинную в 𝑀 (например, формулу вида 𝐴 → 𝐴). По лемме
12.3, 𝑇 ⊢𝑃𝐶Ω

¬𝐵. Тогда по теореме корректности 11.10, 𝑇 � ¬𝐵. Следовательно, 𝑀 � ¬𝐵, что противоречит
выбору 𝐵.

(2) Аналогично, с использованием 𝑃𝐶=
Ω . �
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Пример: арифметика Пеано
Арифметика Пеано (PA) — это теория 1го порядка в сигнатуре {0, 1,+, ·,=} (см. лекцию 6) со следующими
аксиомами:

(1) ∀𝑥 (𝑥+ 1 ̸= 0).

(2) ∀𝑥∀𝑦 (𝑥+ 1 = 𝑦 + 1 → 𝑥 = 𝑦).

(3) ∀𝑥 (𝑥 ̸= 0 → ∃𝑦 (𝑦 + 1 = 𝑥)).

(4) ∀𝑥 (𝑥+ 0 = 0).

(5) ∀𝑥 (𝑥+ (𝑦 + 1) = (𝑥+ 𝑦) + 1).

(6) ∀𝑥 (𝑥 · 0 = 0).

(7) ∀𝑥∀𝑦 (𝑥 · (𝑦 + 1) = 𝑥 · 𝑦 + 𝑥).

(8) ∀ (𝐴(0) ∧ ∀𝑥 (𝐴(𝑥) → 𝐴(𝑥+ 1)) → ∀𝑥𝐴(𝑥)).

Здесь (1)–(7) — конкретные формулы, a (8) — схема, т.е. бесконечное множество аксиом определенного вида.
Предполагается, что 𝐴 — формула с несколькими свободными переменными, т.е. 𝐴 = 𝐴(𝑎, . . .). 𝐴(0), 𝐴(𝑥)
обозначают соответственно [0/𝑎]𝐴, [𝑥/𝑎]𝐴; ∀𝑥 (𝐴(𝑥) → 𝐴(𝑥+ 1)) — это формула ∀𝑥 [𝑥/𝑎](𝐴→ [𝑎+ 1/𝑎]𝐴).

(8) называется схемой аксиом индукции. Она выражает принцип математической индукции: если какое-то
свойство 𝐴 верно для 0 и из истинности 𝐴 для 𝑥 следует истинность для 𝑥+ 1, то 𝐴 верно для всех 𝑥. Однако
в теории 𝑃𝐴 индукция постулируется только для тех свойств, которые можно записать формулами в данной
сигнатуре.

Хотя теория 𝑃𝐴 и называется “aрифметика Пеано”, она отличается от той, которую рассматривал сам Пе-
ано: в его теории индукция применима ко всем свойствам натуральных чисел. Теория Пеано (в современном
понимании) соответствует арифметике 2го порядка, которая в нашем курсе не изучается.

Теорема 𝑃𝐴 непротиворечива.
“Доказательство”. 𝑃𝐴 имеет стандартную модель N: множество натуральных чисел (включая 0), где +

интерпретируется как операция сложения, · — как операция умножения, константа 0 — как число нуль, константа
1 — как число единица. Все аксиомы 𝑃𝐴 верны в этой модели. По следствию 12.4, 𝑃𝐴 непротиворечива.

Это — метаматематическое рассуждение; в нем предполагается известным, что такое натуральные числа и
какие у них свойства. Чтобы дать строгое математическое доказательство, нужна формальная теория, где мы
можем определить множество натуральных чисел. Это делается в аксиоматической теории множеств, о чем
будет сказано кратко в лекции 14.

Модальное исчисление S5

Некоторые части логики предикатов можно превратить в логики высказываний — так называемые модальные
логики. В модальных логиках к обычным булевым связкам добавляются модальные связки, в простейшем случае
— одноместная связка “необходимо” (�).

В отличие от булевых связок, логические свойства связки � не очевидны и допускают много вариаций.
Первые модальные исчисления были построены К.Льюисом (1918) и названы им S1,..., S5. А вообще имеется
огромное число (континуум) различных модальных логик.

В этом курсе мы рассмотрим только исчисление S5. Современная формулировка его была дана Гёделем
(1933).

Определение 53. Множество модальных формул 𝑀𝐹𝑚 строится по следующим правилам:

∙ Если 𝐴 ∈ 𝑉 𝑎𝑟, то 𝐴 ∈𝑀𝐹𝑚.

∙ Если 𝐴,𝐵 ∈𝑀𝐹𝑚, то (𝐴 ∧𝐵) ∈𝑀𝐹𝑚.

∙ Если 𝐴,𝐵 ∈𝑀𝐹𝑚, то (𝐴 ∨𝐵) ∈𝑀𝐹𝑚.

∙ Если 𝐴,𝐵 ∈𝑀𝐹𝑚, то (𝐴→ 𝐵) ∈𝑀𝐹𝑚.

∙ Если 𝐴 ∈𝑀𝐹𝑚, то ¬𝐴 ∈𝑀𝐹𝑚.

∙ Если 𝐴 ∈𝑀𝐹𝑚, то �𝐴 ∈𝑀𝐹𝑚.
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Также будем использовать связку “возможно” (3), которая определяется как сокращение:

3 := ¬�¬

.
Схемы аксиом S5
(I) Схемы (1)–(10) из 𝐶𝐿, но для модальных формул.
(II)

(𝐴𝐾) �(𝐴→ 𝐵) → (�𝐴→ �𝐵),

(𝐴𝑇 ) �𝐴→ 𝐴,

(𝐴4) �𝐴→ ��𝐴,

(𝐴5) 3�𝐴→ �𝐴.

Правила вывода S5
Modus Ponens (MP),

Правило добавления � (Nec):
𝐴

�𝐴
Понятия вывода и выводимости в 𝑆5 определяются аналогично 𝐶𝐿 (с учетом дополнительного правила),

точное определение оставляется читателю.

Семантика Крипке для S5

Определение 54. Пусть𝑊 ̸= ∅ — множество. Оценка (пропозициональных переменных) на𝑊 — это отображе-
ние 𝑉 𝑎𝑟 −→ 𝒫(𝑊 ). Модель Крипке25 на 𝑊 — это пара (𝑊, 𝜃), где 𝜃 — оценка на 𝑊 . 𝑊 называется множеством
(возможных) миров этой модели.

Определение 55. Для модели Крипке 𝑀 = (𝑊, 𝜃), мира 𝑢 ∈𝑊 и модальной формулы 𝐴 определяем значение
𝐴 в 𝑢; оно обозначается |𝐴|𝑀𝑢 . Определение дается индукцией по длине 𝐴 сразу для всех миров 𝑢:

∙ |𝑃𝑖|𝑀𝑢 = 1 ⇔ 𝑢 ∈ 𝜃(𝑃𝑖) для каждой переменной 𝑃𝑖,

∙ |𝐴 ∧𝐵|𝑀𝑢 = min(|𝐴|𝑀𝑢 , |𝐵|𝑀𝑢 ),

∙ |𝐴 ∨𝐵|𝑀𝑢 = max(|𝐴|𝑀𝑢 , |𝐵|𝑀𝑢 ),

∙ |¬𝐴|𝑀𝑢 = 1 − |𝐴|𝑀𝑢 ,

∙ |𝐴→ 𝐵|𝑀𝑢 = max(1 − |𝐴|𝑀𝑢 , |𝐵|𝑀𝑢 ),

∙ |�𝐴|𝑀𝑢 = min
𝑣∈𝑊

|𝐴|𝑀𝑣 .

Чтобы доказать корректность этого определения, нужна лемма об однозначном анализе формул, аналогич-
ная лемме 1.1. См. лекцию 1.

Вместо |𝐴|𝑀𝑢 = 1 пишут также 𝑀,𝑢 � 𝐴 и говорят, что формула 𝐴 истинна в модели 𝑀 в мире 𝑢.
В этих обозначениях определение 55 записывается так:

∙ 𝑀,𝑢 � 𝑃𝑖 ⇔ 𝑢 ∈ 𝜃(𝑃𝑖),

∙ 𝑀,𝑢 � 𝐴 ∧𝐵 ⇔ 𝑀,𝑢 � 𝐴 и 𝑀,𝑢 � 𝐵,

∙ 𝑀,𝑢 � 𝐴 ∨𝐵 ⇔ 𝑀,𝑢 � 𝐴 или 𝑀,𝑢 � 𝐵,

∙ 𝑀,𝑢 � ¬𝐴 ⇔ 𝑀,𝑢 ̸�𝐴,

∙ 𝑀,𝑢 � 𝐴→ 𝐵 ⇔ 𝑀,𝑢 ̸�𝐴 или 𝑀,𝑢 � 𝐵,

∙ 𝑀,𝑢 � �𝐴 ⇔ ∀𝑣 ∈𝑊 𝑀, 𝑣 � 𝐴.

Из определения сразу получаем:
𝑀,𝑢 � 3𝐴 ⇔ ∃𝑣 ∈𝑊 𝑀, 𝑣 � 𝐴.

Таким образом, в семантике Крипке “необходимо” (�) понимается как истинность во всех мирах (“всегда”), а
“возможно” (3) — как истинность в некоторых мирах (“иногда”).

25Иногда говорят: модель Крипке – Лейбница
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Определение 56. Модальная формула 𝐴 общезначима на (непустом) множестве 𝑊 , если она истинна во всех
мирах в любой модели Крипке на 𝑊 .

Общезначимость 𝐴 на 𝑊 обозначается 𝑊 � 𝐴.

Теорема 12.5. (теорема корректности для 𝑆5)
Если ⊢𝑆5 𝐴, то 𝑊 � 𝐴 для любого 𝑊 ̸= ∅.

Это утверждение можно доказать индукцией по длине вывода 𝐴. У нас оно получится как следствие другой
теоремы на следующей лекции.

Стандартный перевод модальных формул
Определение 57. Рассмотрим сигнатуру сo счетным множеством одноместных предикатных символов:
𝑃 1
1 , 𝑃

1
2 , . . . Стандартный перевод (или перевод Вайсберга) 𝐴 ↦→ 𝐴* модальных формул в формулы 1го порядка

в этой сигнатуре определяется по индукции:

∙ 𝑃 *
𝑖 := 𝑃 1

𝑖 (𝑎),

∙ (𝐴 ∘𝐵)* := (𝐴* ∘𝐵*) для ∘ = ∨,→,∧,

∙ (¬𝐴)* := ¬𝐴*,

∙ (�𝐴)* := ∀𝑥 [𝑥/𝑎]𝐴*, где 𝑥 — первая связанная переменная (в общем списке 𝐵𝑉 𝑎𝑟 — см. лекцию 6), не
входящая в 𝐴.26

Таким образом, 𝐴* — формула с одной свободной переменной 𝑎 или замкнутая.

Определение 58. Каждой модели Крипке 𝑀 = (𝑊, 𝜃) поставим в соответствие модель 𝑀* сигнатуры
{𝑃 1

1 , 𝑃
1
2 , . . .} с носителем 𝑊 . А именно, полагаем для каждого 𝑢 ∈𝑊

𝑀* � 𝑃 1
𝑖 (𝑢) ⇔ 𝑀,𝑢 � 𝑃𝑖.

Это можно записать и так:
|𝑃 1

𝑖 (𝑢)|𝑀* := |𝑃𝑖|𝑀𝑢 .

Лемма 12.6. Для любой модальной формулы 𝐴

|𝐴*(𝑢)|𝑀* = |𝐴|𝑀𝑢 .

Доказательство Индукцией по длине 𝐴 доказываем утверждение для всех 𝑢.
Если 𝐴 — переменная, утверждение следует из определений 57, 58.
Если 𝐴 имеет вид отрицания, конъюнкции, дизъюнкции или импликации, утверждение легко следует из

определений истинности для модальных формул и формул 1го порядка — упражнение.
Пусть 𝐴 = �𝐵. Тогда по определению 5 лекции 7 и опр. 55 выше,

|𝐴*(𝑢)|𝑀* = |(∀𝑥 [𝑥/𝑎]𝐵*)(𝑢)|𝑀* = min
𝑣∈𝑊

|𝐵*(𝑣)|𝑀* ,

|𝐴|𝑀𝑢 = min
𝑣∈𝑊

|𝐵|𝑀𝑣 .

По предположению индукции, |𝐵*(𝑣)|𝑀* = |𝐵|𝑀𝑣 . Поэтому утверждение верно для 𝐴. �

Лемма 12.7. 27 Для любой модальной формулы 𝐴 и непустого 𝑊

𝑊 � ∀𝑥 [𝑥/𝑎]𝐴* в классической логике ⇔ 𝑊 � 𝐴 в модальной логике .

Доказательство (⇒) Доказываем от противного. Пусть 𝑊 ̸�𝐴, тогда для некоторой модели Крипке 𝑀 на
𝑊 и какого-то мира 𝑢 ∈𝑊

𝑀,𝑢 ̸�𝐴.

Отсюда по лемме 12.6
𝑀* ̸�𝐴*(𝑢),

следовательно,
𝑀* ̸� ∀𝑥 [𝑥/𝑎]𝐴*,

26Можно взять и любую другую переменную, не попавшую в 𝐴, но мы выбираем первую для единообразия.
27На лекции в формулировке этой леммы была допущена неточность: запись ∀𝑢𝐴*(𝑢) неправомерна.
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и потому
𝑊 ̸�∀𝑥 [𝑥/𝑎]𝐴*.

(⇐) Тоже рассуждаем от противного. Пусть

𝑊 ̸�∀𝑥 [𝑥/𝑎]𝐴*.

Тогда найдется модель 𝜇 нашей сигнатуры (с одноместными предикатами) с носителем 𝑊 такая, что

𝜇 ̸�∀𝑥 [𝑥/𝑎]𝐴*.

т.е. для некоторого 𝑢 ∈𝑊

(♯) 𝜇 ̸�𝐴*(𝑢).

Но 𝜇 = 𝑀* для некоторой модели Крипке 𝑀 на 𝑊 : она однозначно задается равенствами

|𝑃𝑖|𝑀𝑣 = |𝑃 1
𝑖 (𝑣)|𝜇

для всех 𝑣, 𝑖. Поэтому из (♯) по лемме 12.6 получаем

𝑀,𝑢 ̸�𝐴.

Таким образом, 𝑊 ̸�𝐴. �

Лекция 13

Свойства исчисления S5

На прошлой лекции мы для каждой модальной формулы 𝐴 построили перевод 𝐴*(𝑎) — формулу в сигнатуре с
одноместными предикатами. ,

Теорема 13.1. Следующие утверждения эквивалентны:

(1) ⊢𝑆5 𝐴,

(2) ⊢𝑃𝐶 𝐴*,

(3) � 𝐴*,

(4) 𝑊 � 𝐴* на всех конечных 𝑊 ,

(5) 𝑊 � 𝐴 на всех 𝑊 ,

(6) 𝑊 � 𝐴 на всех конечных 𝑊 .

Здесь 𝑃𝐶 понимается как исчисление предикатов в сигнатуре с одноместными предикатами 𝑃 1
𝑖 и без равен-

ства.

Доказательство
Доказывать будем следующие импликации:

1 ⇒ 2 ⇒ 3 ⇒ 4

⇑ ⇓ ⇓
6 5 ⇒ 6

(1 ⇒ 2). Индукция по длине вывода 𝐴 в 𝑆5.

∙ Если 𝐴 — аксиома группы (I), то 𝐴* — аксиома 𝑃𝐶 того же вида (из группы I). Например, если 𝐴 =
(𝐵 ∧ 𝐶) → 𝐵, то 𝐴* = (𝐵* ∧ 𝐶*) → 𝐵* и т.д.

∙ Пусть
𝐴 = (�(𝐶 → 𝐵) → (�𝐶 → �𝐵)).

Тогда
𝐴* = (∀𝑥(𝐶*(𝑥) → 𝐵*(𝑥)) → (∀𝑥𝐶*(𝑥) → ∀𝑥𝐵*(𝑥))).
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Тогда ⊢𝑃𝐶 𝐴* получим по теореме дедукции (она применима, т.к. все гипотезы — замкнутые) из следуюшей
выводимости:

∀𝑥(𝐶*(𝑥) → 𝐵*(𝑥)),∀𝑥𝐶*(𝑥) ⊢ ∀𝑥𝐵*(𝑥).

А это доказывается непосредственно:

1. ∀𝑥(𝐶*(𝑥) → 𝐵*(𝑥)) — гипотеза.

2. ∀𝑥(𝐶*(𝑥) → 𝐵*(𝑥)) → (𝐶*(𝑎) → 𝐵*(𝑎)) — аксиома II.1 из PC.

3. 𝐶*(𝑎) → 𝐵*(𝑎) — 1, 2, MP.

4. ∀𝑥𝐶*(𝑥) — гипотеза.

5. ∀𝑥𝐶*(𝑥) → 𝐶*(𝑎) — аксиома II.1 из PC.

6. 𝐶*(𝑎) — 4, 5, MP.

7. 𝐵*(𝑎) — 3, 6, MP.

8. ∀𝑥𝐵*(𝑥) — 7, Gen.

∙ Пусть 𝐴 = (�𝐵 → 𝐵). Тогда 𝐴* = ∀𝑥𝐵*(𝑥) → 𝐵*(𝑎) — аксиома.

∙ 𝐴 = (�𝐵 → ��𝐵). Тогда 𝐴* = (∀𝑥𝐵*(𝑥) → ∀𝑦∀𝑥𝐵*(𝑥)) получается с помощью правила Бернайса из
∀𝑥𝐵*(𝑥) → ∀𝑥𝐵*(𝑥) (примера тавтологии — см. лемму 11.2).

∙ 𝐴 = (3�𝐵 → �𝐵). Тогда 𝐴* = (∃𝑦∀𝑥𝐵*(𝑥) → ∀𝑥𝐵*(𝑥)) получается из ∀𝑥𝐵*(𝑥) → ∀𝑥𝐵*(𝑥) с помощью
второго правила Бернайса.

∙ 𝐴 получается по 𝑀𝑃 из 𝐵, 𝐵 → 𝐴. По предположению индукции,

⊢𝑃𝐶 𝐵*, 𝐵* → 𝐴*.

Тогда ⊢𝑃𝐶 𝐴* по 𝑀𝑃 .

∙ 𝐴 = �𝐵 получается по 𝑁𝑒𝑐 из 𝐵. Тогда 𝐴* = ∀𝑥𝐵*(𝑥). По предположению индукции, ⊢𝑃𝐶 𝐵*(𝑎). Отсюда
⊢𝑃𝐶 𝐴* по 𝐺𝑒𝑛.

(2 ⇒ 3). Это следует из теоремы корректности для 𝑃𝐶.
(3 ⇒ 4), (5 ⇒ 6) oчевидны.
(4 ⇒ 6). Получается из леммы 12.7.28

(3 ⇒ 5). Получается из леммы 12.7.
(6 ⇒ 1). Это — теорема o полноте 𝑆5 относительно конечных моделей Крипке. Ее доказательство занимает

всю оставшуюся часть лекции.

Определение 59. Модальные формулы 𝐴, 𝐵 доказуемо эквивалентны в 𝑆5, если ⊢𝑆5 𝐴↔𝐵. Обозначение:
𝐴 ≡𝑆5 𝐵.

Далее мы будем опускать индекс 𝑆5.

Лемма 13.2. (Некоторые синтаксические свойства 𝑆5)

(1) Допустимы правила монотонности

𝐴→ 𝐵
,

�𝐴→ �𝐵

𝐴→ 𝐵
.

3𝐴→ 3𝐵

(2) ≡ задает отношение эквивалентности на 𝑀𝐹𝑚.

(3) ≡ согласовано со всеми связками:
если 𝐴 ≡ 𝐴′, то �𝐴 ≡ �𝐴′, ¬𝐴 ≡ ¬𝐴′;
если 𝐴 ≡ 𝐴′ и 𝐵 ≡ 𝐵′, то (𝐴 ∘𝐵) ≡ (𝐴′ ∘𝐵′) для ∘ = ∨,∧,→.

(4) Если 𝐴 — подформула формулы 𝐵 и 𝐴 ≡ 𝐴′, то замена вхождения 𝐴 на 𝐴′ в 𝐵 даст эквивалентную
формулу: 𝐵(...𝐴...) ≡ 𝐵(...𝐴′...).

(5) 3(𝐴 ∨𝐵) ≡ 3𝐴 ∨3𝐵.

(6) 3(𝐴 ∧3𝐵) ≡ 3𝐴 ∧3𝐵.
28𝑊 � 𝐴* означает то же, что 𝑊 � ∀𝑥[𝑥/𝑎]𝐴*(𝑎).
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(7) 3(𝐴 ∧�𝐵) ≡ 3𝐴 ∧�𝐵.

(8) �(𝐴 ∧𝐵) ≡ �𝐴 ∧�𝐵.

Доказательство (не слишком трудное) опускаем.

Определение 60. Модальные формулы глубины 1 определяются по индукции:

∙ 𝑃𝑖 — глубины 1,

∙ если 𝐴 — глубины 1, то ¬𝐴 — глубины 1,

∙ если 𝐴,𝐵 — глубины 1, то 𝐴 ∘𝐵 — глубины 1 для ∘ = ∨,∧,→.

∙ если 𝐴 ∈ 𝐹𝑚 (классическая формула), то 3𝐴 — глубины 1.

Лемма 13.3. (о нормальной форме для формул глубины 1). Если 𝐴 — глубины 1, то 𝐴 ≡
⋁︀
𝑖

𝐴𝑖, где 𝐴𝑖 — вида⋀︀
𝑗

𝑄𝑖𝑗, а каждое 𝑄𝑖𝑗 — либо литерал, либо формула вида 3𝐷 или ¬3𝐷, где 𝐷 — классическая.

Доказательство Из определения 60 следует, что формула 𝐴 имеет вид 𝐵(𝑃1, . . . , 𝑃𝑛,3𝐶1, . . . ,3𝐶𝑚), где
𝐵(𝑃1, . . . , 𝑃𝑛, 𝑃𝑛+1, . . . , 𝑃𝑛+𝑚) и 𝐶1, . . . ,3𝐶𝑚 — классические формулы. (Это легко доказывается по индукции.)

Формулу 𝐵 можно привести к СДНФ: 𝐵 ∼
⋁︀
𝑖

𝐵𝑖, где 𝐵𝑖 — элементарные конъюнкции. По теореме полноты

для 𝐶𝐿 тогда
⊢𝐶𝐿 𝐵↔

⋁︁
𝑖

𝐵𝑖.

Тогда, пoдставив формулы 3𝐶1, . . . ,3𝐶𝑚 вместо 𝑃𝑛+1, . . . , 𝑃𝑛+𝑚 в этот вывод, получим

⊢𝑆5 𝐴↔
⋁︁
𝑖

𝐴𝑖,

где 𝐴𝑖 = 𝐵𝑖(𝑃1, . . . , 𝑃𝑛,3𝐶1, . . . ,3𝐶𝑚). Поскольку 𝐵𝑖 — элементарная конъюнкция, 𝐴𝑖 окажется конъюнкцией
формул 𝑃1, . . . , 𝑃𝑛,3𝐶1, . . . ,3𝐶𝑚 или их отрицаний, что и требовалось. �

Лемма 13.4. Существует лишь конечное число попарно не эквивалентных формул глубины 1 от переменных
𝑃1, . . . , 𝑃𝑛.

Доказательство Достаточно рассмотреть нормальные формы из предыдущей леммы.
С точностью до ≡, имеется конечное число конъюнкций 𝐴𝑖. Действительно, каждая из них содержит лите-

ралы от 𝑃1, . . . , 𝑃𝑛 и формулы вида 3𝐷, ¬𝐷, где 𝐷 — классическая формула от 𝑃1, . . . , 𝑃𝑛. Такиe формулы 𝐷
приводятся к СДНФ в 𝐶𝐿, и тем более, в 𝑆5. И если 𝐷 ≡ 𝐷′, то 3𝐷 ≡ 3𝐷′, ¬3𝐷 ≡ ¬3𝐷′ — по лемме 13.2.

Из конечного числа 𝐴𝑖 можно построить лишь конечное число их дизъюнкций с точностью до ≡ (здесь снова
пользуемся леммой 13.2). �

Лемма 13.5. В 𝑆5 всякая формула эквивалентна формуле глубины 1 (от тех же переменных).

Доказательство Запишем эквивалентную формулу, используя связку 3 вместо � (это можно сделать, т.к.
�𝐴 ≡ ¬3¬𝐴). Далее рассуждаем индукцией по длине формулы.

Нетривиален только шаг индукции для формулы вида 3𝐴. По предположению индукции, 𝐴 эквивалентна
формуле глубины 1, и значит, нормальной форме из леммы 13.3. Тогда 3𝐴 ≡

⋁︀
𝑖

3𝐴𝑖 (лемма 13.2 (5),(3)).

Рассмотрим 3𝐴𝑖 = 3
⋀︀
𝑗

𝑄𝑖𝑗 . Используя лемму 13.2 (6),(7) (и эквивалентность ¬3𝐷 ≡ �¬𝐷), преобразуем

эту формулу в конъюнкцию формул вида 3𝑃𝑘, 3𝐷, �𝐷 (где 𝐷 — классическая), т.е. в формулу глубины 1. �

Из лемм 13.4, 13.5 получаем

Предложение 13.6. (о локальной табличности 𝑆5)
Существует конечное число формул от переменных 𝑃1, . . . , 𝑃𝑛, попарно не эквивалентных в 𝑆5.

Упражнение Оцените количество этих формул в зависимости от 𝑛.

Определение 61. Для множества модальных формул Γ выводимость формулы 𝐴, (обозначение: Γ ⊢𝑆5 𝐴)
означает, что существует вывод 𝐴 с использованием формул из Γ, аксиом 𝑆5 и правила MP (но не 𝐺𝑒𝑛).

Γ противоречиво в S5, если Γ ⊢𝑆5 𝐴,¬𝐴 для некоторой формулы 𝐴.
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Легко видеть, что для этой выводимости сохраняются лемма 5.4 и теорема дедукции 4.4.
Пусть Φ — множество всех модальных формул от 𝑃1, . . . , 𝑃𝑛. Рассматриваем непротиворечивые (в 𝑆5) под-

множества Φ.

Определение 62. Множество Γ ⊆ Φ называется максимальным), если оно непротиворечиво, а всякое его
собственное расширение внутри Φ противоречиво.

Лемма 13.7. Всякое непротиворечивое множество содержится в максимальном.

Доказательство Если Γ непротиворечиво, но не максимально, то найдется 𝐴 такая, что Γ ∪ {𝐴} непротиво-
речиво. Тогда и Γ ∪ {𝐴′ ∈ Φ | 𝐴′ ≡ 𝐴} непротиворечиво. Действительно, если противоречие выводится из
Γ, 𝐴,𝐴′

1, . . . , 𝐴
′
𝑘 и все 𝐴′

𝑖 эквивалентны 𝐴, то оно выводится уже из Γ ∪ {𝐴} — поскольку ⊢𝑆5 𝐴 → 𝐴′
𝑖, a тогда

Γ ∪ {𝐴} ⊢ 𝐴′
𝑖 (по MP).

Если же мы будем расширять Γ, добавляя вместе с каждой формулой все эквивалентные ей, то за конечное
число шагов мы получим все Φ — это следует из локальной табличности 𝑆5. Значит, за (меньшее) конечное
число таких шагов мы можем получить максимальное множество. �

Лемма 13.8. (свойства максимальных множеств)
Для максимального Γ сохраняются свойства из леммы 5.6:

(0) Γ ⊢ 𝐵 ⇒ 𝐵 ∈ Γ (для 𝐵 ∈ Φ);

(1) ¬𝐵 ∈ Γ ⇔ 𝐵 ̸∈ Γ;

(2) (𝐵 ∧ 𝐶) ∈ Γ ⇔ (𝐵 ∈ Γ и 𝐶 ∈ Γ);

(3) (𝐵 ∨ 𝐶) ∈ Γ ⇔ (𝐵 ∈ Γ или 𝐶 ∈ Γ);

(4) (𝐵 → 𝐶) ∈ Γ ⇔ (𝐵 ̸∈ Γ или 𝐶 ∈ Γ).

Определение 63. Определим отношение достижимости на максимальных множествах:

Γ𝑅∆ := ∀𝐴 (�𝐴 ∈ Γ ⇒ 𝐴 ∈ ∆).

Лемма 13.9. 𝑅 — отношение экавивалентности.

Доказательство

∙ Рефлексивность.
Пусть �𝐴 ∈ Γ. Т.к. �𝐴 → 𝐴 — аксиома S5, она лежит в Γ (лемма 13.8 (0)). Тогда Γ ⊢ 𝐴 по MP, a потому
𝐴 ∈ Γ (опять по 13.8 (0)). По определению 𝑅 имеем Γ𝑅Γ.

∙ Транзитивность.
Предположим Γ𝑅∆𝑅Ξ и докажем Γ𝑅Ξ.
Пусть �𝐴 ∈ Γ. Т.к. �𝐴→ ��𝐴 — аксиома S5, она лежит в Γ. Тогда Γ ⊢ ��𝐴 по MP, a потому ��𝐴 ∈ Γ.
Теперь из Γ𝑅∆ получаем, что �𝐴 ∈ ∆. И из ∆𝑅Ξ — что 𝐴 ∈ Ξ.

∙ Симметричность.
Предположим Γ𝑅∆ и докажем ∆𝑅Γ.
Пусть �𝐴 ∈ ∆. Тогда 3�𝐴 = ¬�¬�𝐴 ∈ Γ. В самом деле, иначе �¬�𝐴 ∈ Γ (лемма 13.8(1)). А тогда
¬�𝐴 ∈ ∆ (т.к. Γ𝑅∆), что дает противоречие в ∆.
Таким образом, 3�𝐴 ∈ Γ. Кроме того, (3�𝐴 → 𝐴) ∈ Γ — это аксиома 𝑆5. Отсюда по 𝑀𝑃 и 13.8(0)
получаем 𝐴 ∈ Γ, что и требовалось.

�

Доказываем теперь импликацию 6 ⇒ 1 из теоремы 13.1: для данной формулы 𝐴, не выводимой в 𝑆5, построим
опровергающую конечную модель Крипке.

Т.к. ̸⊢𝑆5𝐴, множество {¬𝐴} непротиворечиво. По лемме 13.7 построим максимальное множество Γ, содержа-
щее ¬𝐴. Пусть

𝑊 := {∆ | Γ𝑅∆}.
Из предложения 13.6 и леммы 13.8 следует, что 𝑊 конечно. Зададим оценку на 𝑊 :

𝜃(𝑃𝑖) := {∆ | 𝑃𝑖 ∈ ∆}

и рассмотрим модель Крипке 𝑀 := (𝑊, 𝜃).
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Лемма 13.10. (основная лемма)
𝑀,∆ � 𝐵 ⇔ 𝐵 ∈ ∆

для всех 𝐵(𝑃1, . . . , 𝑃𝑛) и ∆ ∈𝑊 .

Доказательство Индукция по длине 𝐵.

∙ 𝐵 — переменная. Тогда утверждение верно по определению 𝜃.

∙ 𝐵 = (𝐶 ∨𝐷). Тогда по определению 5 лекции 12, предположению индукции и лемме 13.8 (3)

𝑀,∆ � 𝐵 ⇔ (𝑀,∆ � 𝐶 или 𝑀,∆ � 𝐷) ⇔ (𝐶 ∈ ∆ или 𝐷 ∈ ∆)

⇔ (𝐶 ∨𝐷) ∈ ∆,

что и требовалось.

∙ Случаи связок ∧,→,¬ разбираются аналогично (упражнение).

∙ 𝐵 = �𝐶. Проверим эквивалентность
𝑀,∆ � �𝐶 ⇔ �𝐶 ∈ ∆.

(⇐) Пусть �𝐶 ∈ ∆. Чтобы доказать 𝑀,∆ � �𝐶, рассмотрим Ψ ∈ 𝑊 . Поскольку 𝑅 — отношение эк-
вивалентности и Γ𝑅∆, Γ𝑅Ψ, получаем ∆𝑅Ψ. Тогда 𝐶 ∈ Ψ (по определению 𝑅). Отсюда 𝑀,Ψ � 𝐶, по
предположению индукции.

(⇒) Предположим �𝐶 ̸∈ ∆ и докажем 𝑀,∆ ̸��𝐶. Для этого надо построить Ψ ∈𝑊 такое, что 𝑀,Ψ ̸�𝐶.

Рассмотрим множество
𝑉 := {𝐷 | �𝐷 ∈ ∆} ∪ {¬𝐶}.

Покажем, что 𝑉 непротиворечиво. Действительно, иначе бы (по лемме 5.4)

𝐷1, . . . , 𝐷𝑘 ⊢𝑆5 𝐶

для некоторых 𝐷1, . . . , 𝐷𝑘, где �𝐷1, . . . ,�𝐷𝑘 ∈ ∆. Тогда по теореме дедукции

⊢𝑆5

⋀︁
𝑖

𝐷𝑖 → 𝐶,

откуда по правилу монотонности

(*) ⊢𝑆5 �(
⋀︁
𝑖

𝐷𝑖) → �𝐶.

Но по лемме 13.2 (8) (многократно)
�(

⋀︁
𝑖

𝐷𝑖) ≡
⋀︁
𝑖

�𝐷𝑖.

Вспоминая, что �𝐷𝑖 ∈ ∆, получаем (
⋀︀

𝑖 �𝐷𝑖) ∈ ∆ по лемме 13.8. Из той же леммы следует, что макси-
мальное множество содержит вместе с каждой формулой и все ей эквивалентные. Поэтому �(

⋀︀
𝑖𝐷𝑖) ∈ ∆,

и из (*) по MP следует �𝐶 ∈ ∆. Это противоречит исходному предположению.

Итак, 𝑉 непротиворечиво. Выберем максимальное Ψ, содержащее 𝑉 . Из определения 𝑉 получается: ∆𝑅Ψ,
𝐶 ̸∈ Ψ (т.к. ¬𝐶 ∈ Ψ). Тогда:

Γ𝑅Ψ по транзитивности 𝑅 (т.е. Ψ ∈𝑊 ),

𝑀,Ψ ̸�𝐶 по предположению индукции, т.к. 𝐶 ̸∈ Ψ.

�

Наконец, из леммы 13.10 следует 𝑊 ̸�𝐴, что и требовалось. �
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Лекция 14

Полнота исчисления предикатов и ее следствия
Мощностью сигнатуры Ω (обозначение: |Ω|) назовем мощность29 множества всех ее символов, т.е. множества
𝑃𝑟𝑒𝑑Ω ∪ 𝐶𝑜𝑛𝑠𝑡Ω ∪ 𝐹𝑢𝑛Ω.

Теорема 14.1. (о существовании модели)

(1) Пусть 𝑇 — непротиворечивая теория без равенства в сигнатуре Ω. Тогда 𝑇 имеет модель мощности
|Ω| или счетную, если Ω конечна.

(2) Пусть 𝑇 — непротиворечивая теория с равенством в сигнатуре Ω. Тогда 𝑇 имеет нормальную модель
мощности ≤ |Ω| или не более, чем счетную, если Ω конечна.

Доказательство Утверждение (1) в этом курсе не доказывается.
(2) получается из (1) следующим образом.
Напомним, что непротиворечивость теории с равенством 𝑇 понимается относительно 𝑃𝐶=

Ω , т.е. как непро-
тиворечивость теории 𝑇 ∪ 𝐸𝑞Ω относительно 𝑃𝐶Ω. Согласно (1), 𝑇 ∪ 𝐸𝑞Ω имеет модель 𝑀 мощности |Ω| (или
счетную). По лемме о нормализации (теорема 8.5), 𝑀 ≡ ̃︁𝑀 , где ̃︁𝑀 — нормальная модель с носителем 𝑀/≈.
Тогда |̃︁𝑀 | ≤ |𝑀 |.30 Таким образом, ̃︁𝑀 — модель 𝑇 нужной мощности. �

Теорема 14.2. (Гёделя о полноте)

(1) Для теории 𝑇 и замкнутой формулы 𝐴 сигнатуры Ω

𝑇 � 𝐴⇒ 𝑇 ⊢𝑃𝐶Ω
𝐴.

(2) Для любой формулы 𝐴 сигнатуры Ω
� 𝐴 ⇒ ⊢𝑃𝐶Ω

𝐴.

(1=) Для теории с равенством 𝑇 и замкнутой формулы 𝐴 сигнатуры Ω

𝑇 �норм 𝐴⇒ 𝑇 ⊢𝑃𝐶=
Ω
𝐴.

(2=) Для любой формулы 𝐴 сигнатуры с равенством Ω

�норм 𝐴 ⇒ ⊢𝑃𝐶=
Ω
𝐴.

Доказательство (Не пишем индексы при ⊢.) (1) Если 𝑇 ̸⊢𝐴, то 𝑇 ∪{¬𝐴} непротиворечива (по лемме 5.4; она
переносится на предикатный случай). По теореме 14.1 эта теория выполнима, и значит, 𝑇 ̸� 𝐴.

(2) По определению � 𝐴 означает � ∀𝐴. А в силу (1) для 𝑇 = ∅ из � ∀𝐴 следует ⊢ ∀𝐴. Наконец, ⊢ ∀𝐴 → 𝐴
(по аксиоме II.1 и правилу силлогизма). Тогда по MP получаем ⊢ 𝐴.

(1=) Аналогично (1). Если 𝑇 ̸⊢𝐴, то 𝑇 ∪ {¬𝐴} непротиворечива в 𝑃𝐶=
Ω , а потому нормально выполнима по

теореме 14.1. Следовательно, 𝑇 ̸� норм𝐴.
(2=) получается из (1=) аналогично (2). �

Далее мы рассматриваем опять только теории с равенством и нормальные модели.

Теорема 14.3. (Гёделя — Мальцева о компактности) Если любое конечное подмножество теории 𝑇 выпол-
нимо, то и 𝑇 выполнима.

Доказательство Если все конечные подмножества 𝑇 выполнимы, то они непротиворечивы (следствие 12.4).
Тогда 𝑇 непротиворечива (лемма 10.1) и следовательно, выполнима (теорема 14.1). �

Теорема 14.4. (Лёвенгейма — Сколема о понижении мощности) Если теория в сигнатуре Ω выполнима, то
она имеет модель мощности ≤ max(|Ω|,ℵ0).

Доказательство Если теория выполнима, то она непротиворечива (следствие 12.4). Тогда по теореме 14.1
она имеет модель нужной мощности. �

Теорема 14.5. (о повышении мощности)
29Пока что мы опираемся на интуитивное представление о мощности; некоторое уточнение будет дано в конце лекции.
30Это один из вариантов аксиомы выбора, о чем упомянем в конце лекции.
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(1) Если теория имеет конечные модели неограниченной мощности, то она имеет и бесконечную модель.

(2) Если теория в сигнатуре Ω имеет бесконечную модель, то она имеет модели любой бесконечной мощ-
ности 𝑘 ≥ |Ω|.

Доказательство (1) Пусть 𝑇 — данная теория. Согласно условию, для любого натурального 𝑛 теория 𝑇
имеет конечную модель мощности больше 𝑛.

Рассмотрим сигнатуру Ω+, которая получается из Ω добавлением счетного множества новых констант
{𝑐1, 𝑐2, . . .}. В этой сигнатуре построим теорию

𝑇+ := 𝑇 ∪ {𝑐𝑖 ̸= 𝑐𝑗 | 𝑖 < 𝑗}.

Докажем, что 𝑇+ выполнима. По теореме компактности достаточно доказать, что любая конечная 𝑇 ′ ⊂ 𝑇
выполнима. В самом деле,

𝑇 ′ ⊂ 𝑇 ∪ {𝑐𝑖 ̸= 𝑐𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}

для некоторого 𝑛. Пусть 𝑀 — модель теории 𝑇 мощности > 𝑛. Превратим ее в модель 𝑀 ′ сигнатуры Ω+, добавив
интерпретацию констант 𝑐1, . . . , 𝑐𝑛 какими-нибудь различными элементами, а остальных новых констант — как
угодно. Тогда 𝑀 ′ � 𝑇 ∪ {𝑐𝑖 ̸= 𝑐𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}, и подавно 𝑀 ′ � 𝑇 ′.

Итак, 𝑇+ выполнима. Если 𝑀+ � 𝑇+, то 𝑀+ � 𝑇 , и она бесконечна, т.к. все ее элементы (𝑐𝑖)𝑀+ различны.
Рассматривая 𝑀+ в сигнатуре Ω, получаем бесконечную модель теории 𝑇 .

(2) Аналогично (1), рассмотрим сигнатуру Ω+ с множеством новых констант {𝑐𝑖 | 𝑖 ∈ 𝑘}, где 𝑘 — данная
бесконечная мощность. В этой сигнатуре построим теорию

𝑇+ := 𝑇 ∪ {𝑐𝑖 ̸= 𝑐𝑗 | 𝑖, 𝑗 ∈ 𝑘; 𝑖 ̸= 𝑗}.

Любая конечная 𝑇 ′ ⊂ 𝑇+ содержится в некоторой теории

𝑇 ∪ {𝑐𝑖 ̸= 𝑐𝑗 | 𝑖, 𝑗 ∈ 𝐼},

где 𝐼 — конечное подмножество 𝑘. Последняя теория выполнима в бесконечной модели теории 𝑇 , с интерпрета-
цией констант 𝑐𝑖 для 𝑖 ∈ 𝐼 какими-нибудь различными элементами, а остальных новых констант — произвольно.
Тогда по теореме компактности 𝑇+ выполнима.

Из теории множеств следует, что |Ω+| = 𝑘.31 Пo теореме 14.4 𝑇+ имеет модель 𝑀+ мощности ≤ 𝑘. В этой
модели интерпретации всех констант 𝑐𝑖 различны (см. опредeление 𝑇+), поэтому ее мощность ≥ 𝑘. Значит,
|𝑀+| = 𝑘. Рассматривая 𝑀+ в сигнатуре Ω, получим модель 𝑇 мощности 𝑘. �

Дополнительные замечания Из теоремы о повышении мощности следует такой факт:
Признак полноты Лося — Вотa Пусть 𝑇 — теория в конечной или счетной сигнатуре, не имеющая

конечных моделей. Если 𝑘 — бесконечная мощность и все модели 𝑇 мощности 𝑘 изоморфны, то 𝑇 полна.
Доказательство — упражнение для читателя.

О нестандартных моделях арифметики
Пусть N — стандартная модель 𝑃𝐴 (см. лекцию 12).

Теорема 14.6. Существует счетная модель 𝑀 такая, что 𝑀 ≡ N, но 𝑀 ̸∼= N.

Доказательство Построим теорию в сигнатуре 𝑃𝐴 с дополнительной новой константой 𝑐.

𝑇 := 𝑇ℎ(N) ∪ {𝑐 ̸= 0, 𝑐 ̸= 1, . . . , 𝑐 ̸= 𝑛, . . .},

где 𝑛 обозначает терм 1 + (1 + (1 + ..))⏟  ⏞  
n раз

.

В стандартной модели, очевидно, имеем |𝑛|N = 𝑛.
Как и в предыдущих теоремах, докажем выполнимость 𝑇 , используя компактность. Для этого рассмотрим

𝑇𝑛 := 𝑇ℎ(N) ∪ {𝑐 ̸= 0, 𝑐 ̸= 1, . . . , 𝑐 ̸= 𝑛}.

Пусть 𝑀𝑛 — модель N с интерпретацией 𝑐𝑀 ′ := 𝑛+ 1. Тогда 𝑀𝑛 � 𝑇𝑛. Таким образом, любая 𝑇𝑛 выполнима.
По компактности, 𝑇 выполнима, a по теореме Лёвенгейма — Сколема, она имеет не более, чем счетную

модель 𝑀+.
31Здесь мы используем следующий факт: если |𝑋| ≤ |𝑌 |, то |𝑋 ∪ 𝑌 | = |𝑌 |. Чтобы его доказать, нужна аксиома выбора.
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Заметим, что 𝑀+ � 𝑇ℎ(N) и N � 𝑚 ̸= 𝑛 при 𝑚 ̸= 𝑛. Поэтому и
𝑀+ � 𝑚 ̸= 𝑛 при 𝑚 ̸= 𝑛. Значит, 𝑀+ бесконечна, и следовательно, счетна.

Кроме того, для всех 𝑛, 𝑀+ � 𝑐 ̸= 𝑛, или32

𝑀+ � 𝑐𝑀+ ̸= 𝑛.

Рассмотрим теперь 𝑀+ в исходной сигнатуре арифметики. Обозначим эту модель через 𝑀 . Имеем:

(*) 𝑀 � 𝑐𝑀+ ̸= 𝑛

для всех 𝑛, a также 𝑀 � 𝑇ℎ(N), т.е. 𝑀 ≡ N.
Наконец, докажем, что 𝑀 ̸∼= N. Предположим противное, и пусть

𝛼 : 𝑀 ∼= N. Из (*) по теореме 7.4 получаем
N � 𝛼(𝑐𝑀+) ̸= 𝑛,

т.е.
𝛼(𝑐𝑀+) ̸= |𝑛|N.

Но |𝑛|N = 𝑛, т.е. 𝛼(𝑐𝑀+) не равно никакому натуральному числу. Противоречие. �

Замечание Можно показать, что в модели 𝑀 новые элементы — бесконечно большие, т.е. больше всех нату-
ральных чисел (упражнение).

Наивная теория множеств
Будем строить аксиоматику теории множеств в сигнатуре с двумя двуместными предикатными символами ∈,=.

Рассмотрим сначала теорию 𝒩 (“наивную теорию множеств”) со следующими аксиомами.

(1) (аксиома объемности)

∀𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑥↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦).

(2) (схема аксиом свертывания)

∀ ∃𝑦∀𝑥 (𝑥 ∈ 𝑦↔𝐴(𝑥, . . .)).

Здесь 𝐴(𝑥, . . .) — произвольная формулa, в которой один параметр (например, 𝑎) заменен на связанную
переменную 𝑥. Отметим, что 𝑦 не входит в 𝐴.

Смысл аксиомы объемности: если 2 множества состоят из одних и тех же элементов, то они равны.
Смысл аксиомы свертывания: существует множество 𝑦, состоящее из всех 𝑥, обладающих свойством 𝐴, т.е.

𝑦 = {𝑥 | 𝐴(𝑥, . . .)}.

Предложение 14.7. Теория 𝒩 противоречива.

Доказательство
Выведем противоречие в 𝒩 ; это доказательство — формализация парадокса Рассела.
1. ∀𝑥 (𝑥 ∈ 𝑎↔𝑥 ̸∈ 𝑥) → (𝑎 ∈ 𝑎↔ 𝑎 ̸∈ 𝑎) — аксиома II.1 исчисления предикатов.
2. (𝑎 ∈ 𝑎↔ 𝑎 ̸∈ 𝑎) → ∃𝑦 (𝑦 ∈ 𝑦↔ 𝑦 ̸∈ 𝑦) — аксиома II.2 исчисления предикатов.
3. ∀𝑥 (𝑥 ∈ 𝑎↔𝑥 ̸∈ 𝑥) → ∃𝑦 (𝑦 ∈ 𝑦↔ 𝑦 ̸∈ 𝑦) — по правилу силлогизма из 1, 2.
4. ∃𝑦 ∀𝑥(𝑥 ∈ 𝑦↔𝑥 ̸∈ 𝑥) → ∃𝑦 (𝑦 ∈ 𝑦↔ 𝑦 ̸∈ 𝑦) — 3, второе правило Бернайса.
5. ∃𝑦 ∀𝑥(𝑥 ∈ 𝑦↔𝑥 ̸∈ 𝑥) — аксиома свертывания для (𝑎 ̸∈ 𝑎).
6. ∃𝑦 (𝑦 ∈ 𝑦↔ 𝑦 ̸∈ 𝑦) — 4, 5, MP.
7. (𝐴↔¬𝐴) → 𝐵 ∧ ¬𝐵 — подстановочный пример тавтологии (с любыми 𝐴,𝐵). В частности,

(𝑎 ∈ 𝑎↔ 𝑎 ̸∈ 𝑎) → 𝐵 ∧ ¬𝐵,

где 𝐵 — любая замкнутая формула.
8. ∃𝑦 (𝑦 ∈ 𝑦↔ 𝑦 ̸∈ 𝑦) → 𝐵 ∧ ¬𝐵 — 7, второе правило Бернайса.
9. 𝐵 ∧ ¬𝐵 — 6, 8, MP. �

32𝑐𝑀+ — это элемент модели, а потому оцененный терм.
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Теория множеств Цермело
Самая известная аксиоматическая теория множеств — это теория Цермело – Френкеля с аксиомой выбора (ZFC).
В этом курсе мы рассмотрим очень кратко более слабую теорию Цермело (Z). 33

Сигнатура теории Z состоит из ∈,=. Ee аксиомы — это аксиома объемности, некоторые варианты аксиомы
свертывания и еще 2 особые аксиомы (бесконечности и выбора).

1. Аксиома объемности — такая же, как в 𝒩 :

∀𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑥↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦).

Введем обозначение
𝑎 ⊆ 𝑏 := ∀𝑥 (𝑥 ∈ 𝑎↔𝑥 ∈ 𝑏)

(“𝑎 — подмножество 𝑏”). Вот равносильная формулировка аксиомы объемности:

∀𝑥∀𝑦 (𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥→ 𝑥 = 𝑦).

2. Аксиома пары.
∀𝑥∀𝑦∃𝑧∀𝑢 (𝑢 ∈ 𝑧↔ (𝑢 = 𝑥 ∨ 𝑢 = 𝑦)).

Смысл этой аксиомы: для всех 𝑥, 𝑦 можно построить множество 𝑧 = {𝑥, 𝑦} (неупорядоченную пару). Если 𝑥 = 𝑦,
то получается множество {𝑥, 𝑥}, которое обозначается просто {𝑥}; это множество состоит из 1 элемента 𝑥.

Имея неупорядоченные пары, можно определить упорядоченные пары (по Куратовскому):

(𝑥, 𝑦) := {{𝑥}, {𝑥, 𝑦}}.

Лемма (в теории с аксиомами 1,2)

⊢ ∀((𝑥, 𝑦) = (𝑥′, 𝑦′) → 𝑥 = 𝑥′ ∧ 𝑦 = 𝑦′)).

3. Аксиома объединения.
∀𝑥∃𝑦∀𝑧 (𝑧 ∈ 𝑦↔∃𝑢 (𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑥)).

T.e. 𝑦 = {𝑧 | ∃𝑢 (𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑥)}. Другими словами, множество 𝑦 является объединением всех множеств,
являющихся элементами множества 𝑥, то есть 𝑦 =

⋃︀
𝑢⊆𝑥 𝑢. Такое 𝑦 называется объединением множества 𝑥 и

обозначается
⋃︀
𝑥.

Теперь можем определить:
𝑥 ∪ 𝑦 :=

⋃︁
{𝑥, 𝑦},

{𝑥, 𝑦, 𝑧} := {𝑥, 𝑦} ∪ {𝑧}

и т.п.
4. Аксиома степени.

∀𝑥∃𝑦∀𝑧 (𝑧 ∈ 𝑦↔ 𝑧 ⊆ 𝑥).

Т.е. 𝑦 = {𝑧 | 𝑧 ⊆ 𝑥} — множество всех подмножеств 𝑥. Оно обычно обозначается 𝒫(𝑥).
5. Схема аксиом выделения — ослабленный вариант свертывания.

∀ ∀𝑥∃𝑦∀𝑧 (𝑧 ∈ 𝑦↔ (𝑧 ∈ 𝑥 ∧𝐴(𝑧, . . .))).

В этой теории мы не можем строить произвольные множества вида
{𝑥 | 𝐴(𝑥, . . .)}. Однако неформально можно рассматривать такие совокупности (классы). Некоторые классы
заведомо не являются множествами (они называются собственными). Например 𝑅 := {𝑥 | 𝑥 ̸∈ 𝑥} — собственный
класс; в нашей теории это доказывается, см. предыдущий раздел.

Аксиома выделения утверждает, что пересечение любого класса
{𝑧 | 𝐴(𝑧, . . .)} с любым множеством 𝑥 — множество. Или: подкласс любого множества — множество.

Предложение 14.8. (1) (существование пустого множества) 𝑍 ⊢ ∃𝑦∀𝑥𝑥 ̸∈ 𝑦.

(2) Пусть 𝑉 := {𝑥 | 𝑥 = 𝑥} — класс всех множеств. Тогда

𝑍 ⊢ (𝑉 — собственный класс).
33См. также лекции Л.Д. Беклемишева “Аксиомы теории множеств”

на http://www.mi-ras.ru/ bekl/logic2013.html
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Доказательство (1) Существует хотя бы одно множество, формально: ⊢𝑃𝐶= ∃𝑥(𝑥 = 𝑥). Это получается из
аксиомы равенства ∀𝑥(𝑥 = 𝑥) и теоремы ∀𝑥𝐴→ ∃𝑥𝐴, которую легко доказать (упражнение).

Взяв это 𝑥, по аксиоме выделения построим

𝑦 := {𝑧 | 𝑧 ∈ 𝑥 ∧ 𝑧 ̸= 𝑧}.

Очевидно, что 𝑦 пусто.
(2) Очевидно, что 𝑅 ⊆ 𝑉 . По аксиоме выделения, если 𝑉 — множество, то и 𝑅 — множество. �

Из аксиомы объемности следует, что все пустые множества равны. Поэтому можно ввести обозначение ∅.
Теперь мы можем последовательно (по индукции) определить натуральные числа:

0 := ∅, 1 := {0}, 2 := {0, 1}, . . . , 𝑛+ 1 := 𝑛 ∪ {𝑛}, . . .

(определение фон Неймана). T.е. получается 𝑛 = {0, 1, . . . , 𝑛 − 1}. Однако для построения множества всех
натуральных чисел нужна дополнительная аксиома.

6. Аксиома бесконечности.
∃𝑥 (0 ∈ 𝑥 ∧ ∀𝑦 (𝑦 ∈ 𝑥→ (𝑦 ∪ {𝑦}) ∈ 𝑥)).

Множество 𝑥 назовем индуктивным, если оно имеет свойства, указанные в этой аксиоме, т.е. содержит 0 и
вместе с каждым 𝑦 содержит ‘𝑦 + 1’. Аксиома утверждает, что существует индуктивное множество. Теперь
можно определить множество натуральных чисел 𝜔 как наименьшее индуктивное множество:

𝜔 := {𝑦 | ∀𝑥 (𝑥 индуктивно → 𝑦 ∈ 𝑥)}.

Этот класс — действительно множество по аксиоме выделения, т.к. 𝜔 ⊆ 𝑥0 для индуктивного множества 𝑥0
(какого-то, которое существует по аксиоме бесконечности).

Дальше можно развивать арифметику в 𝜔 и в частности, превратить его в модель 𝑃𝐴.

Также можно определить декартово произведение (и доказать в 𝑍, что оно всегда существует):

𝑎× 𝑏 := {(𝑥, 𝑦) | 𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑏}.

Затем определяем
𝑓 — функция := ∀𝑧(𝑧 ∈ 𝑓 → ∃𝑥∃𝑦 𝑧 = (𝑥, 𝑦)).

После этого можно определить формулы (упражнение)
[𝑓 — биекция 𝑎 на 𝑏]

и
[𝑓 — инъекция 𝑎 в 𝑏]
и сравнение множеств по мощности:

𝑎 ∼ 𝑏 := ∃𝑓 [𝑓— биекция 𝑎 на 𝑏],

𝑎 ⪯ 𝑏 := ∃𝑓 [𝑓— инъекция 𝑎 в 𝑏].

Предложение 14.9. (1) ∼ задает отношение эквивалентности (на классе всех множеств 𝑉 ).

(2) ⪯ задает рефлексивное и транзитивное отношение на 𝑉 .

Доказательство — нетрудное рассуждение, которое формализуется в 𝑍.

Теорема 14.10. (Теорема Кантора — Бернштейна)

𝑍 ⊢ ∀𝑥∀𝑦 (𝑥 ⪯ 𝑦 ∧ 𝑦 ⪯ 𝑥→ 𝑥 ∼ 𝑦).

Доказательство опускаем.34
Теперь можем записывать 𝑎 ∼ 𝑏 как |𝑎| = |𝑏| (мощность 𝑎 равна мощности 𝑏), a 𝑎 ⪯ 𝑏 как |𝑎| ≤ |𝑏| (мощность

𝑎 меньше или равна мощности 𝑏), не уточняя при этом само понятие “мощность”.

Теорема 14.11. (Теорема Кантора)
𝑍 ⊢ ∀𝑥 |𝑥| < |𝒫(𝑥)|.

34Содержательное доказательство можно найти, например, в книге Н.К. Верещагина и А.Х. Шеня “Начала теории множеств”.
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Доказательство Имеется инъекция 𝑥 в 𝒫(𝑥): она отображает каждый 𝑎 ∈ 𝑥 в {𝑎}.
𝑥 ̸∼ 𝒫(𝑥) доказывается от противного.35
Предположим, что 𝑓 : 𝑥 −→ 𝒫(𝑥) — биекция. Тогда для некоторого 𝑦 ∈ 𝑥

{𝑧 ∈ 𝑥 | 𝑧 ̸∈ 𝑓(𝑧)} = 𝑓(𝑦).

Поэтому для всех 𝑧 ∈ 𝑥
𝑧 ∈ 𝑓(𝑦) ↔ 𝑧 ̸∈ 𝑓(𝑧).

Тогда
𝑦 ∈ 𝑓(𝑦) ↔ 𝑦 ̸∈ 𝑓(𝑦).

Противоречие. �

7. Аксиома выбора. Запишем ее (не совсем формально) в двух вариантах.
(I) Если 𝑥 — непустое множество попарно не пересекающихся непустых множеств (разбиение), то

∃𝑦∀𝑧 (𝑧 ∈ 𝑥→ |𝑧 ∩ 𝑦| = 1)).

(II) Если существует отображение 𝑥 на 𝑦 (сюръекция), то |𝑦| ≤ |𝑥|.
Из аксиомы выбора следует теорема o сравнении мощностей:

∀𝑥∀𝑦 (|𝑥| ≤ |𝑦| ∨ |𝑦 ≤ |𝑥|).

Кроме того, явно определяются “мощности” — это множества специального вида (кардиналы).
Другое известное следствие аксиомы выбора — лемма Цорна. Она утверждает, что если в частично упоря-

доченном множестве 𝑋 каждая цепь (линейно упорядоченное подмножество) ограничена сверху, то 𝑋 имеет
максимальный элемент.

Лекция 15

Алгоритмы
Свойства алгоритмов (вычислительных устройств), неформально.

1. Алгоритмы работают со словами. Слово — это конечная последовательность символов (букв), взятых из
некоторого конечного алфавита. Слово может быть пустым.

2. Алгоритм основан на программе. Программа — конечный набор команд, которые записываются словами.
3. Алгоритм содержит “процессор”, который обращается к программе и изменяет текущее состояние (слово).
4. Имеется начальное слово (вход) и заключительное слово (выход). Если заключительное слово не появля-

ется, алгоритм работает бесконечно долго (зацикливание).
5. Вычисление разбивается на дискретные шаги.
6. Вычисление детерминированно (т.е. каждый следующий шаг однозначно определен) и не обращается к

случайным данным.
Имеется несколько точных определений алгоритма (рекурсивные функции, машины Тьюринга, абстрактные

RAM и др.). Все они оказываются эквивалентными. Философский тезис Чёрча — Тьюринга утверждает, что
они полностью соответствуют интуитивному пониманию вычислимости.

Вычислимые функции
Будем записывать положительные натуральные числа как последовательности единиц, нуль - как 0. Конечный
кортеж натуральных чисел (𝑛1, . . . , 𝑛𝑘) записывается как 𝑛1♯ . . . ♯𝑛𝑘, где ♯ — специальный символ (разделитель).

Рассматриваем частичные функции 𝑓 из N𝑘 в N. Это записывается так: 𝑓 : N𝑘−̃→N. Если функция всюду
определена (тотальна), пишем
𝑓 : N𝑘 −→ N.

Также рассматриваем функции на словах. Если ∆ — конечный алфавит, ∆* — множество всех слов в нем,
то рассматриваем частичные функции 𝑓 из ∆* в ∆*. Обозначения аналогичны: 𝑓 : ∆*−̃→∆*, 𝑓 : ∆* −→ ∆*.

Область определения 𝑓 обозначается 𝑑𝑜𝑚𝑓 , область значений — 𝑖𝑚 𝑓 . В частности, возможно, что 𝑑𝑜𝑚𝑓 = ∅
(пустая функция).

Определение 64. Функция 𝑓 : N𝑘−̃→N или 𝑓 : ∆*−̃→∆* называется вычислимой, если существует алгоритм
𝑀 со следующими свойствами.

∙ Если 𝑥 ∈ 𝑑𝑜𝑚𝑓 , то 𝑀 на входе 𝑥 заканчивает работу и выдает 𝑓(𝑥). Это записывается так: 𝑀 : 𝑥 |⇒ 𝑓(𝑥)

∙ Если 𝑥 ̸∈ 𝑑𝑜𝑚𝑓 , то 𝑀 на входе 𝑥 зацикливается. Это записывается так: 𝑀 : 𝑥 |⇒
35Рассуждение похоже на парадокс Рассела. В истории было наоборот: теорема Кантора появилась раньше.
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Разрешимость и перечислимость
Определение 65. Множество слов 𝐴 ⊆ ∆* называется разрешимым, если его характеристическая функция
𝜒𝐴 вычислима.

(Функция 𝜒𝐴 : ∆* −→ {0, 1} принимает значение 1 на 𝐴 и 0 на его дополнении.)
Аналогично определяются разрешимые подмножества N𝑘.

Предложение 15.1. (1) Если 𝐴 разрешимо, то его дополнение (−𝐴) (до ∆* или N𝑘) разрешимо.

(2) Если 𝐴 и 𝐵 разрешимы, то 𝐴 ∩𝐵, 𝐴 ∪𝐵 разрешимы.

Следствие 15.2. Конечные множества разрешимы.

Определение 66. Множество слов 𝐴 ⊆ ∆* (или 𝐴 ⊆ N𝑘) называется полуразрешимым, если его полухаракте-
ристическая функция 𝜒−

𝐴 вычислима.
(Частичная функция 𝜒−

𝐴 : ∆*−̃→{1} принимает значение 1 на 𝐴 и не определена на его дополнении.)

Предложение 15.3. Если 𝐴 и 𝐵 полуразрешимы, то 𝐴 ∩𝐵, 𝐴 ∪𝐵 полуразрешимы.

Теорема 15.4. (теорема Поста) Множество слов 𝐴 ⊆ ∆* разрешимо ⇔ 𝐴 и −𝐴 полуразрешимы.

Определение 67. Множество 𝐴 ⊆ ∆* (или 𝐴 ⊆ N𝑘) называется перечислимым, если оно пусто или является
множеством значений некоторой вычислимой последовательности, т.е. тотальной функции N −→ ∆*.

Теорема 15.5. Существуют вычислимые биекции N −→ N𝑘 и N −→ ∆* (для конечного ∆), причем обратные
биекции тоже вычислимы.

Теорема 15.6. Множество 𝐴 ⊆ ∆* (или 𝐴 ⊆ N𝑘) перечислимо, если только если оно полуразрешимо.

Доказательство Рассмотрим сначала случай 𝐴 ⊆ N.
(Tолько если). ∅ разрешимо.
Пусть 𝐴 = 𝑖𝑚 𝑓 для вычислимой 𝑓 : N −→ N. Тогда 𝜒−

𝐴 вычислима по следующему алгоритму.
0. Пусть на входе дано 𝑛.
1. Полагаем 𝑖 := 0.
2. В цикле по 𝑖 проверяем, верно ли 𝑓(𝑖) = 𝑛. Если да, выдаем 1 и заканчиваем работу. Если нет, полагаем

𝑖 := 𝑖+ 1 и продолжаем цикл.
(Если). ∅ перечислимо.
Пусть 𝐴 ̸= ∅. Выберем 𝑎0 ∈ 𝐴.
Пусть 𝛾 : N −→ N × N — вычислимая биекция (теорема 15.5). Пусть 𝛾(𝑛) = (𝛼(𝑛), 𝛽(𝑛)). Тогда 𝛼 и 𝛽 тоже

вычислимы.
Построим последовательность 𝑓 , перечисляющую 𝐴 следующим образом. Для нахождения 𝑓(𝑛) делаем 𝛽(𝑛)

шагов в вычислении 𝜒−
𝐴(𝛼(𝑛)) (или меньше, если вычисление заканчивается раньше). Если за это время вычис-

ление закончилось, полагаем 𝑓(𝑛) := 𝛼(𝑛). Иначе полагаем 𝑓(𝑛) := 𝑎0.
Тогда 𝑖𝑚 𝑓 = 𝐴. Действительно, включение ⊆ очевидно (почему?).
Обратно, пусть 𝑎 ∈ 𝐴. Тогда 𝜒−

𝐴(𝑎) вычислится через сколько-то (𝑘) шагов. Т.к. 𝛾 — биекция, имеем 𝛾(𝑛) =
(𝑎, 𝑘) для некоторого 𝑛. T.e. 𝛼(𝑛) = 𝑎, 𝛽(𝑛) = 𝑘. По построению тогда 𝑓(𝑛) = 𝑎.

Общий случай сводится к случаю 𝐴 ⊆ N с помощью теоремы 15.5. �

Теорема 15.7. Пусть ℎ : ∆* −→ ∆* — вычислимая тотальная функция.

(1) Если 𝐴 ⊆ ∆* разрешимо, то ℎ−1(𝐴) разрешимо.

(2) Если 𝐴 ⊆ ∆* перечислимо, то ℎ[𝐴] (образ 𝐴) и ℎ−1(𝐴) перечислимы.

Доказательство
(1) 𝜒ℎ−1(𝐴) = 𝜒𝐴 · ℎ, a композиция вычислимых функций вычислима.
(2) Для прообраза: 𝜒−

ℎ−1(𝐴) = 𝜒−
𝐴 · ℎ. И используем предыдущую теорему.

Для образа. Если 𝐴 = ∅, все очевидно. Если 𝐴 = 𝑖𝑚 𝑓 для вычислимой 𝑓 , то ℎ[𝐴] = 𝑖𝑚 (ℎ · 𝑓). �
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Универсальная вычислимая функция. Неразрешимость
Ключевой результат теории алгоритмов следующий:

Теорема 15.8. (об универсальной вычислимой функции) Существует вычислимая функция 𝐹 : N2−̃→N такая,
что для любой вычислимой
𝑓 : N−̃→N существует 𝑚 такое, что

для всех 𝑛 𝐹 (𝑚,𝑛) ≃ 𝑓(𝑛).

Здесь ≃ означает условное равенство, т.е. обе части определены одновременно и равны, когда определены.

Идея доказательства: нумеруем программы, работающие с натуральными числами. 𝐹 вычисляется компью-
тером, который по номеру программы восстанавливает саму программу и запускает ее на различных входах.
T.e. 𝐹 (𝑚,𝑛) — результат работы программы с номером 𝑚 на входе 𝑛 (если этот результат существует).

Обозначим через 𝜙𝑚 вычислимую функцию с номером 𝑚, т.е.

𝜙𝑚(𝑛) ≃ 𝐹 (𝑚,𝑛).

Тогда всякая вычислимая 𝑓 : N−̃→N совпадает с 𝜙𝑚, где 𝑚 — номер программы, вычисляющей 𝑓 .

Теорема 15.9. Существует перечислимое неразрешимое подмножество в N.

Доказательство Пусть
𝑑(𝑥) ≃ 𝐹 (𝑥, 𝑥) ≃ 𝜙𝑥(𝑥).

Рассмотрим
𝐾 := 𝑑𝑜𝑚𝑑.

Ясно, что 𝐾 полуразрешимо, т.е. перечислимо. Докажем, что (−𝐾) не перечислимо.
Допустим противное. Тогда −𝐾 = 𝑑𝑜𝑚𝜙𝑛, где 𝜙𝑛 = 𝜒−

−𝐾 . Тогда для любого 𝑥

𝑥 ̸∈ 𝐾 ⇔ 𝑥 ∈ 𝑑𝑜𝑚𝜙𝑛.

В частности,
𝑛 ̸∈ 𝐾 ⇔ 𝑛 ∈ 𝑑𝑜𝑚𝜙𝑛.

Но по определению 𝐾
𝑛 ∈ 𝐾 ⇔ 𝑛 ∈ 𝑑𝑜𝑚𝜙𝑛.

Таким образом,
𝑛 ∈ 𝐾 ⇔ 𝑛 ̸∈ 𝐾.

Противоречие, аналогичное парадоксу Рассела и доказательству теоремы Кантора. �

O разрешимости теорий первого порядка
Рассмотрим теории в конечной сигнатуре Ω.

Лемма 15.10. Множества 𝐹𝑚Ω, 𝐶𝐹𝑚Ω разрешимы.

Для теории 𝑇 ⊆ 𝐶𝐹𝑚Ω обозначим через [𝑇 ] множество всех ее замкнутых теорем, т.е. [𝑇 ] = {𝐴 ∈ 𝐶𝐹𝑚Ω |
𝑇 ⊢ 𝐴}.

Теорема 15.11. Если 𝑇 — разрешимое множество, то множество [𝑇 ] перечислимо.

Доказательство Будем записывать доказательства в 𝑇 в виде 𝐴1♯ . . . ♯𝐴𝑛. Пусть Док(𝑇 ) — множество всех
этих доказательств.

Заметим, что Док(𝑇 ) разрешимо: по любой последовательности формул можно узнать, является ли она
правильно построенным доказательством, т.к. элементы 𝑇 и аксиомы исчисления предикатов распознаются
алгоритмически, а применения правил вывода — также.

Имеем: [𝑇 ] = ℎ[Док(𝑇 )] ∩ 𝐶𝐹𝑚Ω, где ℎ — вычислимая функция, выбирающая последний член кортежа. По
теореме 15.7 множество ℎ[Док(𝑇 )] перечислимо. По лемме 15.10 𝐶𝐹𝑚Ω разрешимо и следовательно, перечисли-
мо. Пересечение сохраняет перечислимость по предложению 15.3. �

Теорема 15.12. Если 𝑇 — разрешимое множество и 𝑇 полна, то множество [𝑇 ] разрешимо.
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Доказательство По теореме 15.11 это множество перечислимо. Поэтому достаточно доказать перечислимость
его дополнения и применить теорему Поста.

Имеем:
−[𝑇 ] = −𝐶𝐹𝑚Ω ∪ (𝐶𝐹𝑚Ω∖[𝑇 ]).

Первое множество перечислимо, ввиду разрешимости 𝐶𝐹𝑚Ω. Поскольку 𝑇 полна,

𝐶𝐹𝑚Ω∖[𝑇 ] = {𝐴 ∈ 𝐶𝐹𝑚Ω | 𝑇 ⊢ ¬𝐴}.

Тогда это множество равно 𝑓−1([𝑇 ]), где 𝑓 — вычислимая функция, которая добавляет в начале слова знак ¬.
По теореме 15.7 оно перечислимо. Объединение сохраняет перечислимость. �

Теорема Гёделя о неполноте
Напомним, что определимые (в арифметической сигнатуре {+,×, 0, 1,=}) подмножества стандартной модели N
называются арифметическими.

Теорема 15.13. (Гёделя об определимости) Всякое перечислимое подмножество N является арифметиче-
ским.

Теорема 15.14. (первая теорема Гёделя о неполноте) Пусть 𝑇 — теория в сигнатуре 𝑃𝐴 с разрешимым
множеством аксиом, причем N � 𝑇 . Тогда 𝑇 неполна. В частности, 𝑃𝐴 неполна.

Доказательство Допустим, что 𝑇 полна. По теореме 15.12 [𝑇 ] разрешимо. Поскольку N � 𝑇 , получаем
[𝑇 ] = 𝑇ℎ(N) и значит, 𝑇ℎ(N) разрешима.

Рассмотрим теперь множество 𝐾, построенное в теореме 15.9. По теореме 15.13 существует формула 𝐴 (с
одной свободной переменной) такая, что для всех 𝑛

𝑛 ∈ 𝐾 ⇔ N � 𝐴(𝑛).

Здесь 𝐴(𝑛) — формула, оцененная в N. Заметим, что

N � 𝐴(𝑛) ⇔ N � 𝐴(𝑛),

где 𝑛 — терм (сумма единиц); это следует из леммы 12.1. Таким образом,

𝑛 ∈ 𝐾 ⇔ 𝐴(𝑛) ∈ 𝑇ℎ(N).

Поэтому
𝐾 = ℎ−1(𝑇ℎ(N)),

где ℎ — вычислимая функция, переводящая число 𝑛 в формулу 𝐴(𝑛). По теореме 15.7 𝐾 разрешимо. Противо-
речие.

Итак, 𝑇 неполна. �
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