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Предисловие

Во второй части учебного пособия рассматриваются основ-
ные вопросы дифференциального и интегрального исчислений
функций многих переменных. Эта часть курса математического
анализа излагается на лекциях во II семестре. Как и в первой
части, теоретический материал минимизирован таким образом,
что его можно реально изложить в течение семестра при трех
часах лекций в неделю.

Изложение теоретического материала сопровождается иллю-
стрирующими примерами, значительное внимание уделяется при-
ложениям математических понятий и утверждений к вопросам
физики.

Пособие рассчитано на студентов I курса физического фа-
культета и преподавателей, ведущих занятия по математическо-
му анализу. Оно может быть использовано и на других факуль-
тетах МГУ, а также в других вузах.

При подготовке пособия к печати большую помощь, свя-
занную с компьютерным набором текста, оказали мне коллеги
по кафедре математики физического факультета МГУ, особенно
Н.Е. Шапкина, И.Е. Могилевский А.В. Барышев, А.В. Костин,
В.А. Осокина. Всем им я очень признателен. Особую благо-
дарность хочу выразить Г.Н. Медведеву, внимательно прочитав-
шему всю рукопись и сделавшему большое количество ценных
замечаний.

В.Ф. Бутузов



Гл а в а 9

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Многие физические величины описываются функциями
нескольких переменных. Например, u = T (x, y, z, t) — темпера-
тура в точке M(x, y, z) в момент времени t; это пример функции
четырех переменных.

§ 1. Понятие m-мерного координатного пространства

Определение. Совокупность m чисел называется упорядо-
ченной, если указано, какое из чисел считается первым, какое —
вторым, и т.д. Произвольную упорядоченную совокупность m
чисел будем обозначать так: (x1,x2, . . . ,xm), то есть числа запи-
сываются в порядке их номеров.

Определение. Множество всевозможных упорядоченных со-
вокупностей m чисел называется m-мерным координатным
пространством. Каждая из совокупностей m чисел называется
точкой m-мерного пространства.

Обозначение: M(x1,x2, . . . ,xm). Числа x1,x2, . . . ,xm называ-
ются координатами точки M . Точка O(0, 0, . . . , 0) называется
началом координат.
Введем расстояние между точками M1(x1,x2, . . . ,xm) и
M2(y1, y2, . . . , ym) по формуле

ρ(M1,M2) =
√
(x1 − y1)2 + . . .+ (xm − ym)2 . (9.1)

Эта формула хорошо известна из курса аналитической гео-
метрии для плоскости (m = 2) и трехмерного пространства
(m = 3).

Определение. Координатное пространство с введенным
по формуле (9.1) расстоянием между точками называется
m-мерным евклидовым пространством.

Обозначение: Rm.
Примеры.

1. R
1 — числовая прямая;

2. R
2 — евклидова плоскость;

3. R
3 — трехмерное евклидово пространство.
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Пусть A ∈ R
m, r > 0 — некоторое число. Множество

{M : ρ(M ,A) � r} называется m-мерным шаром радиуса r с
центром в точке A. Множество {M : ρ(M ,A) = r} называется
m-мерной сферой радиуса r. Множество {M : ρ(M ,A) < r} —
открытый m-мерный шар; открытый шар {M : ρ(M ,A) < ε}
называется ε-окрестностью точки A.

Пусть A(a1, . . . , am) ∈ R
m и d1, . . . , dm — некоторые положи-

тельные числа. Множество

{M(x1, . . . ,xm) : |x1 − a1| � d1, . . . , |xm − am| � dm}
называется m-мерным параллелепипедом.

Пусть {M} — какое-то множество точек из R
m.

Точка A называется внутренней точкой множества {M}, ес-
ли существует ε-окрестность точки A, целиком принадлежащая
множеству {M}.

Рис. 9.1.

Точка A называется граничной точкой множества {M}, если
в любой ε-окрестности точки A содержатся как точки множества
{M}, так и точки, которые этому множеству не принадлежат
(рис. 9.1).

Граничная точка может принадлежать, а может и не принад-
лежать множеству {M}.

Множество {M} называется открытым, если все его точ-
ки — внутренние.

Множество {M} называется замкнутым, если оно содержит
все свои граничные точки. При этом множество всех граничных
точек называется границей множества {M}.

Пример 1. Границей шара {M : ρ(M ,A) � r} является сфера
{M : ρ(M ,A) = r}. Эта же сфера является границей открытого
шара {M : ρ(M ,A) < r}.

Пример 2. В пространстве R
3 рассмотрим множество

G =

{
M(x1,x2,x3) : 0 � x1 � 1, 0 � x2 � 1, 0 � x3 � 1;
x1,x2,x3 − рациональные числа,

}
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то есть множество G представляет собой множество всех точек
с рациональными координатами, содержащихся в кубе

G = {M(x1,x2,x3) : 0 � xi � 1, i = 1, 2, 3} .
Докажите, что: а) каждая точка множества G является его гра-
ничной точкой; б) любая точка куба G также является граничной
точкой множества G, то есть границей множества G является
весь куб G.

Отметим, что G — счетное множество, а его граница G —
множество мощности континуума. Отметим также, что граница
куба G состоит из его шести граней.

Объединение множества {M} и его границы (то есть добав-
ление ко множеству {M} всех его граничных точек) называется
замыканием множества {M}. Замкнутое множество совпадает
со своим замыканием.

Пример 3. Замыканием множества G из примера 2 (см.
выше) является куб G.

Точка A называется предельной точкой множества {M}, если
в любой ε-окрестности точки A содержатся точки из множества
{M}, отличные от A (при этом предельная точка может как
принадлежать, так и не принадлежать множеству {M}).

Точка A называется изолированной точкой множества {M},
если она принадлежит {M} и существует ε-окрестность точки
A, в которой нет других точек из {M}, кроме A.

Задание 1. Докажите, что любая внутренняя точка множе-
ства является его предельной точкой, а граничная точка множе-
ства может быть его предельной точкой и может быть изолиро-
ванной точкой.

Задание 2. Докажите, что сфера — замкнутое множество.
Пример 4. Рассмотрим пространство R

2 (плоскость). Оно
является одновременно и открытым множеством, и замкнутым.
В самом деле, все точки этого множества — внутренние, поэто-
му R

2 — открытое множество. Граничных точек у R
2 нет, то

есть границей R
2 является пустое множество. Пустое множество

принадлежит любому множеству, поэтому R
2 — замкнутое мно-

жество.
Рассмотрим теперь пространство R

3 и произвольную плос-
кость в нем, то есть множество всех точек M(x1,x2,x3), коорди-
наты которых удовлетворяют уравнению Ax1 +Bx2 +Cx3 +D =
= 0; A,B,C и D — числа, причем A2 + B2 + �2 �= 0. Плоскость
является замкнутым множеством, поскольку все ее точки —
граничные точки этой плоскости, как множества в R

3.
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Множество {M} называется ограниченным, если все его
точки содержатся в некотором шаре.

Множество точек

L = {M(x1, . . . ,xm) : x1 = ϕ1(t), . . . ,xm = ϕm(t), α � t � β} ,
где ϕ1(t), . . . ,ϕm(t) — непрерывные на сегменте [α,β] функции,
называется непрерывной кривой в пространстве R

m. Если точки
A(ϕ1(α), . . . ,ϕm(α)) и B(ϕ1(β), . . . ,ϕm(β)) не совпадают, то они
называются концами кривой L. Говорят также, что кривая L
соединяет точки A и B. Если точки A и B совпадают, то кривая
называется замкнутой.

Множество точек{
M(x1, . . . ,xm): x1=x

0
1 + α1t, . . . ,xm=x0m + αmt,−∞ < t < +∞}

,

где x01, . . . ,x
0
m и α1, . . . ,αm — некоторые числа, называется пря-

мой в пространстве R
m. Эта прямая проходит через точку

M0

(
x01, . . . ,x

0
m

)
.

Множество {M} называется связным, если любые две его
точки можно соединить непрерывной кривой, все точки которой
принадлежат {M}.

Любое открытое связное множество, содержащее точку A,
называется окрестностью точки A.

Задание 3. Докажите, что в любой окрестности точки A
содержится некоторая ε-окрестность этой точки.

§ 2. Последовательности точек в R
m

Если каждому натуральному числу n поставлена в соответ-
ствие точка Mn ∈ R

m, то говорят, что задана последовательность
точек {Mn} в пространстве R

m.
Определение. Точка A ∈ R

m называется пределом последо-
вательности {Mn}, если

lim
n→+∞ ρ(Mn,A) = 0.

Обозначение:
lim

n→+∞Mn = A ,

или Mn → A при n→ +∞.

Лемма 1. Последовательность точек
{
Mn

(
x
(n)
1 , . . . ,x(n)m

)}
сходится к точке A(a1, . . . , am) тогда и только тогда, когда после-
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довательности
{
x
(n)
1

}
, . . . ,

{
x(n)m

}
координат точек Mn сходятся

к соответствующим координатам a1, . . . , am точки A.
Утверждение леммы 1 следует из формулы

ρ(Mn,A) =

√(
x
(n)
1 − a1

)2
+ . . .+

(
x
(n)
m − am

)2
.

Определение. Последовательность точек {Mn} называется
фундаментальной, если

∀ ε > 0 ∃N , такое, что ∀n > N и ∀m > N : ρ(Mn,Mm) < ε .

Лемма 2. Для того, чтобы последовательность{
Mn

(
x
(n)
1 , . . . ,x(n)m

)}
была фундаментальной, необходимо и достаточно, чтобы фун-

даментальными были числовые последовательности
{
x
(n)
1

}
, . . .

. . . ,
{
x(n)m

}
. (Докажите самостоятельно).

Теорема 1 (Критерий Коши сходимости последователь-
ности). Для того, чтобы последовательность {Mn} сходилась,
необходимо и достаточно, чтобы она была фундаментальной.
Доказательство. Пусть последовательность{

Mn

(
x
(n)
1 , . . . ,x(n)m

)}
—

фундаментальная. Тогда по лемме 2 последовательности{
x
(n)
1

}
, . . . ,

{
x(n)m

}
также являются фундаментальными, и,

следовательно, они сходятся. Отсюда следует (по лемме 1), что
сходится и последовательность {Mn}.

Доказательство того, что из сходимости последовательности
{Mn} вытекает ее фундаментальность, проводится аналогично.

Определение. Последовательность {Mn} называется ограни-
ченной, если все ее члены лежат в некотором шаре.

Эквивалентное определение. Последовательность {Mn}
называется ограниченной, если ∃ R > 0, такое, что
∀ n : ρ (Mn,O) � R (точка O — начало координат).

Теорема 2 (Больцано–Вейерштрасса). Из всякой ограни-
ченной последовательности {Mn} можно выделить сходящуюся
подпоследовательность.
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Доказательство. Пусть
{
Mn

(
x
(n)
1 , . . . ,x(n)m

)}
— ограничен-

ная последовательность, то есть ∃ R > 0 : ρ (Mn,O) =

=

√(
x
(n)
1

)2
+ . . .+

(
x
(n)
m

)2
� R. Отсюда получаем:

∣∣∣x(n)1

∣∣∣ �

� R, . . . ,
∣∣∣x(n)m

∣∣∣ � R, поэтому
{
x
(n)
1

}
, . . . ,

{
x(n)m

}
— ограниченные

числовые последовательности.
По теореме Больцано–Вейерштрасса для числовых последо-

вательностей из ограниченной последовательности
{
x
(n)
1

}
можно

выделить подпоследовательность
{
x
(kn)
1

}
, сходящуюся к некото-

рому числу a1.

Из подпоследовательности
{
x
(kn)
2

}
также можно выделить

сходящуюся подпоследовательность:
{
x
(mn)
2

}
→ a2. При этом{

x
(mn)
1

}
→ a1.

Из подпоследовательности
{
x
(mn)
3

}
можно выделить

сходящуюся подпоследовательность:
{
x
(ln)
3

}
→ a3. При этом{

x
(ln)
1

}
→ a1,

{
x
(ln)
2

}
→ a2.

Продолжая этот процесс, на m-ом шаге мы получим подпо-

следовательности
{
x
(pn)
1

}
→ a1,

{
x
(pn)
2

}
→ a2, . . .,

{
x
(pn)
m

}
→ am.

В силу леммы 1 подпоследовательность точек {Mpn} сходится к
точке A(a1, . . . , am). Теорема 2 доказана.

§ 3. Понятие функции многих переменных. Предел
функции многих переменных

Пусть {M(x1, . . . ,xm)} — множество точек пространства R
m

и пусть каждой точке M из этого множества поставлено в
соответствие некоторое число u. Тогда говорят, что на множестве
{M} определена функция m переменных.
Обозначения: u = f(x1, . . . ,xm) или u = f(M).

Множество {M} называется областью определения функ-
ции, а координаты x1, . . . ,xm — независимыми переменными
(или аргументами функции). Множество значений функции
будем обозначать {u}.

В случае функции двух переменных будем использовать обо-
значения u = f(x, y) или z = f(x, y). График функции двух
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переменных z = f(x, y) — поверхность в прямоугольной системе
координат Oxyz, точки которой имеют координаты (x, y, f(x, y))
(рис. 9.2).

Рис. 9.2.

Пусть функция u = f(M)
определена на множестве {M}
и точка A — предельная точка
множества {M}.

Определение 1 (по Ко-
ши). Число b называется пре-
делом функции u = f(M) в
точке A (при M → A), ес-
ли ∀ ε > 0 ∃ δ > 0, такое, что
∀M ∈ {M}, удовлетворяющей
условию 0 < ρ(M ,A) < δ, вы-

полняется неравенство |f(M)− b| < ε.
(Множество точек {M : 0 < ρ(M ,A) < δ} называется проко-

лотой δ-окрестностью точки A.)
Определение 2 (по Гейне). Число b называется пределом

функции u = f(M) в точке A (при M → A), если ∀ {Mn} →
→ A (Mn ∈ {M} ,Mn �= A) соответствующая последовательность
{f(Mn)} → b.
Обозначения: lim

M→A
f(M) = b или lim

x1→a1
.........
xm→am

f(x1, . . . ,xm) = b, где

A = A(a1, . . . , am).
Теорема 3. Определения 1 и 2 эквивалентны.

Доказательство проводится так же, как и для функции одной
переменной.

Примеры.
1. Рассмотрим функцию

u(x, y) = (x+ y) sin
1

x
sin

1

y
.

Она не определена на осях координат, однако точка
O(0, 0) — предельная точка ее области определения.
Справедливо равенство

lim
x→0
y→0

u(x, y) = 0 .

Для доказательства можно воспользоваться определением
предела функции по Коши и для произвольно заданного ε
взять δ =

ε

2
.
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2. Рассмотрим функцию

u(x, y) =
xy

x2 + y2
.

Докажем, что у этой функции не существует

lim
x→0
y→0

u(x, y) .

В самом деле, устремим точку (x, y) к началу координат по
прямой y = kx. Тогда

lim
y=kx
x→0

u(x, y) = lim
x→0

kx2

x2(1+ k2)
=

k

1+ k2
.

Таким образом, при стремлении точки (x, y) к началу коор-
динат по разным прямым, получаются разные предельные
значения, поэтому lim

x→0
y→0

u(x, y) не существует.

3. Рассмотрим функцию

u(x, y) =
x2y

x4 + y2
.

Устремим точку (x, y) к началу координат по прямой y = kx
(k �= 0). Тогда

lim
y=kx
x→0

u(x, y) = lim
x→0

kx3

x4 + kx2
= lim

x→0

kx

x2 + k2
= 0 .

Если точка (x, y) стремится к началу координат по оси x
(то есть y = 0) или по оси y (то есть x = 0), то предел
также равен нулю, поскольку на осях координат данная
фукнция равна нулю (за исключением точки O(0, 0), в
которой функция не определена).
Таким образом, при стремлении точки (x, y) к началу коор-
динат по любой прямой функция u(x, y) стремится к нулю.
Однако отсюда еще не следует существование lim

x→0
y→0

u(x, y).

В самом деле, устремим точку (x, y) к началу координат по
параболе y = kx2. Получим

lim
y=kx2

x→0

u(x, y) = lim
x→0

kx4

x4 + kx4
=

k

1+ k2
.
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По разным параболам получаем различные предельные зна-
чения. Следовательно, lim

x→0
y→0

u(x, y) не существует.

Если lim
M→A

f(M) = 0, то функция f(M) называется бесконеч-

но малой в точке A (или бесконечно малой при M → A).
Пусть f(M) и g(M) — бесконечно малые функции в точке A.

Если существует lim
M→A

f(M)

g(M)
и этот предел равен C �= 0 (равен

1; равен 0), то говорят, что функции f(M) и g(M) являются
бесконечно малыми одного порядка в точке A (являются экви-
валентыми бесконечно малыми в точке A; говорят, что функция
f(M) является бесконечно малой более высокого порядка в точке
A, чем функция g(M), и пишут f = o(g) при M → A).

Пример. Функции f(x, y) = x3 + y3 и g(x, y) = x2 + y2 явля-
ются бесконечно малыми в точке O(0, 0). Рассмотрим предел

lim
x→0
y→0

f(x, y)

g(x, y)
= lim

x→0
y→0

x3 + y3

x2 + y2
.

Для вычисления предела перейдем к полярным координатам: x =
= r cosϕ, y = r sinϕ. Тогда получим

lim
x→0
y→0

x3 + y3

x2 + y2
= lim

r→0

r3
(
cos3 ϕ+ sin3 ϕ

)
r2

= lim
r→0

r
(
cos3 ϕ+ sin3 ϕ

)
= 0.

Следовательно, x3 + y3 = o
(
x2 + y2

)
при M(x, y) → O(0, 0).

Теорема 4. Если функции f(M) и g(M) определены на мно-
жестве {M} и существуют пределы lim

M→A
f(M) = b, lim

M→A
g(M) =

= c, то существуют пределы

lim
M→A

[f(M)± g(M)] = b± c , lim
M→A

f(M)g(M) = bc ,

и если c �= 0, то существует lim
M→A

f(M)

g(M)
=
b

c
.

Доказательство теоремы проводится так же, как и доказатель-
ство аналогичной теоремы для функций одной переменной.

Пусть точка A — предельная точка области определения
функции f(M).

Определение. Говорят, что функция f(M) удовлетворяет в
точке A условию Коши, если ∀ ε > 0 ∃ δ > 0, такое, что для
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любых точек M1 и M2 из проколотой δ-окрестности точки A (при
этом точки M1 и M2 берутся из области определения функции
f(M)) выполняется неравенство

|f(M2)− f(M1)| < ε .

Теорема 5 (Критерий Коши существования предела
функции в данной точке). Для того, чтобы функция f(M)
имела предел в точке A, необходимо и достаточно, чтобы она
удовлетворяла в этой точке условию Коши.
Доказательство теоремы проводится так же, как и аналогичной
теоремы для функции одной переменной.

Введем теперь понятие предела функции f(M) при M → ∞.
Пусть функция f(M) определена на множестве {M}, которое

содержит точки, расположенные сколь угодно далеко от начала
координат (точки O).

Определение (по Коши). Число b называется пределом
функции f(M) при M → ∞, если ∀ ε > 0 ∃R > 0, такое, что для
любой точки M из множества {M}, удовлетворяющей условию
ρ(M ,O) > R, выполняется неравенство

|f(M)− b| < ε .

Обозначение: lim
M→∞

f(M) = b или lim
x1→∞
......

xm→∞

= b.

Задача 1. Сформулируйте определение предела функции
f(M) при M → ∞ по Гейне и докажите эквивалентность опре-
делений по Коши и Гейне.

Примеры (при вычислении предела функции f(x, y) при
M(x, y) → ∞ часто оказывается полезным переход к полярным
координатам).

1.

lim
x→∞
y→∞

x+ y

x2 + y2
= lim

r→∞
r(cosϕ+ sinϕ)

r2
lim
r→∞

cosϕ+ sinϕ

r
= 0 .

2. lim
x→∞
y→∞

x2 − y2

x2 + y2
не существует, так как, перейдя к полярным

координатам, получаем
x2 − y2

x2 + y2
= cos2 ϕ− sin2 ϕ = cos 2ϕ и,

следовательно, на лучах ϕ = const функция имеет посто-
янное значение; поэтому при M(x, y) → ∞ по различным
лучам получаются разные предельные значения функции.



16 Гл. 9. Функции многих переменных

§ 4. Непрерывность функции многих переменных

Пусть функция u = f(M) определена на множестве {M} ⊂
⊂ R

m и пусть точка A ∈ {M} и является предельной точкой
множества {M}.

Определение. Функция u = f(M) называется непрерывной
в точке A, если

lim
M→A

f(M) = f(A) . (9.2)

Точка разрыва функции u = f(M) — это предельная точка
множества {M}, в которой f(M) не является непрерывной.

Определение. Приращением (полным приращением) функ-
ции u = f(M) в точке A называется функция Δu = f(M)− f(A).

Условие (9.2) непрерывности функции в точке A можно за-
писать в виде

lim
M→A

Δu = lim
M→A

[f(M)− f(A)] = 0 . (9.3)

Равенство (9.3) называется разностной формой условия
непрерывности функции в точке A.

Пусть точки M и A имеют координаты: M (x1, . . . ,xm) и
A (a1, . . . , am). Положим Δx1 = x1 − a1, . . . ,Δxm = xm − am, то-
гда x1 = a1 +Δx1, . . . ,xm = am +Δxm,

Δu = f(M)− f(A) = f (a1 +Δx1, . . . , am +Δxm)− f (a1, . . . , am) .

Разностная форма условия непрерывности функции принимает
вид

lim
Δx1→∞
.........
Δxm→∞

Δu = 0 .

Введем теперь понятие непрерывности функции по отдель-
ным переменным.

Рассмотрим функцию двух переменных u = f(x, y). Зафикси-
руем значение аргумента y, положив y = y0 (рис. 9.3). Получаем
функцию одной переменной f(x, y0). Если эта функция непре-
рывна в точке x0, то есть lim

x→x0
f(x, y0) = f(x0, y0), то будем го-

ворить, что функция u = f(x, y) непрерывна в точке M0(x0, y0)
по переменной x.

Аналогично определяется непрерывность функции f(x, y) в
точке M0 по переменной y.

Сформулируем другое (эквивалентное) определение. Из точ-
ки M0(x0, y0) перейдем в точку M(x0 + Δx, y0), то есть дадим
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Рис. 9.3. Рис. 9.4.

приращение Δx аргументу x (рис. 9.4). Функция u = f(x, y)
получит приращение

Δxu = f(x0 +Δx, y0)− f(x0, y0) .

Оно является функцией одной переменной Δx и называется
частным приращением функции f(x, y) в точке M0, соответ-
ствующим приращению Δx аргумента x.

Определение. Функция u = f(x, y) называется непрерыв-
ной в точке M0(x0, y0) по переменной x, если lim

Δx→0
Δxu = 0.

Аналогично определяется непрерывность функции
u = f(x1, . . . ,xm) в данной точке по отдельным переменным.

Непрерывность функции, определенную условием (9.2) (или
(9.3)), называют также непрерывностью по совокупности пере-
менных.

Теорема 6. Если функция u = f(x, y) определена в окрест-
ности точки M0(x0, y0) и непрерывна в точке M0, то она непре-
рывна в этой точке по отдельным переменным.
Доказательство. По условию lim

x→x0
y→y0

f(x, y) = f(x0, y0). В частно-

сти, lim
x→x0

f(x, y0) = f(x0, y0), а это означает, что f(x, y) непре-

рывна в точке M0 по переменной x. Аналогично доказывается
непрерывность в точке M0 по переменной y.

Замечание. Обратное к теореме 6 утверждение не верно.
Пример.

u(x, y) =

{ xy

x2 + y2
, x2 + y2 �= 0 ,

0 , x = y = 0 .

Функция u(x, y) непрерывна в точке O(0, 0) по отдельным
переменным. В самом деле, u(x, 0) = 0, отсюда следует, что
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lim
x→0

u(x, 0) = 0 = u(0, 0), то есть функция u(x, y) непрерывна в

точке O(0, 0) по переменной x. Аналогично доказывается непре-
рывность функции в точке O(0, 0) по переменной y.

Но lim
x→0
y→0

u(x, y) не существует (см. пример 2 на стр. 13), по-

этому функция u(x, y) разрывна в точке O(0, 0) по совокупности
переменных.

Рассмотрим еще два примера.
1. Функция

u(x, y) =

⎧⎨⎩ x2y

x4 + y2
, x2 + y2 �= 0 ,

0 , x = y = 0 .

непрерывна в точке O(0, 0) вдоль каждой прямой, прохо-
дящей через точку O, так как вдоль каждой такой прямой

lim
(x,y)→(0,0)

u(x, y) = 0 = u(0, 0) (это было показано выше),

но вместе с тем, эта функция не является непрерывной в
точке O по совокупности переменных, так как lim

x→0
y→0

u(x, y)

не существует.
2.

u(x, y) =

{
(x+ y) sin

1

x
sin

1

y
, x �= 0 , y �= 0 ,

0 , x = y = 0 .

Так как lim
x→0
y→0

(x + y) sin
1

x
sin

1

y
= 0 = u(0, 0), то эта функция

непрерывна в точке O(0, 0) по совокупности переменных. Вме-
сте с тем, она не определена на осях координат (кроме точки
O(0, 0)), и поэтому не является непрерывной по отдельным пере-
менным в точке O(0, 0).

Вопрос: как этот пример соотносится с утверждением теоре-

мы 6?

Основные теоремы о непрерывных функциях

Теорема 7 (арифметические операции над непрерывны-
ми функциями). Если функции f(M) и g(M) определены на
множестве {M} и непрерывны в точке A, то f(M) ± g(M),

f(M)g(M),
f(M)

g(M)
(при условии g(A) �= 0) непрерывны в точке A.
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Утверждение теоремы 7 следует из теоремы 4 и определения
непрерывности.

Пусть аргументы функции u = f(x1, . . . ,xm) являются не
независимыми переменными, а функциями переменных t1, . . . , tk:

x1 = ϕ1(t1, . . . , tk), . . . ,xm = ϕm(t1, . . . , tk), (9.4)

причем функции (9.4) определены на множестве {K(t1, . . . , tk)} ⊂
⊂ R

k.
В этом случае будем говорить, что на множестве {K} опреде-

лена сложная функция u = f (ϕ1(t1, . . . , tk), . . . ,ϕm(t1, . . . , tk)).
Теорема 8 (о непрерывности сложной функции). Пусть

функции (9.4) непрерывны в точке A(a1, . . . , ak), а функция
u = f(x1, . . . ,xm) непрерывна в точке B(b1, . . . , bm), где b1 =
= ϕ1(a1, . . . , ak), . . . , bm = ϕm(a1, . . . , ak). Тогда сложная функция
u = f (ϕ1(t1, . . . , tk), . . . ,ϕm(t1, . . . , tk)) непрерывна в точке A.

(Докажите самостоятельно).
Теорема 9 (об устойчивости знака непрерывной функ-

ции). Если функция u = f(M) непрерывна в точке A и f(A) >
> 0 (< 0), то ∃ δ-окрестность точки A, в которой f(M) > 0 (< 0).

Указание: для доказательства теоремы воспользуйтесь опре-
делением непрерывности функции в точке A и возьмите ε =
= |f(A)|.

Теорема 10 (о прохождение непрерывной функции через
любое промежуточное значение). Пусть функция u = f(M) =
= f(x1, . . . ,xm) непрерывна на связном множестве {M}, пусть
M1 и M2 — две любые точки из {M}, f(M1) = u1, f(M2) = u2,
и пусть u0 — любое число из сегмента [u1,u2].

Тогда на любой непрерывной кривой L, соединяющей точки
M1 и M2 и целиком принадлежащей множеству {M}, найдется
такая точка M0, такая, что f(M0) = u0.
Доказательство. Пусть

L = {M(x1, . . . ,xm) : x1 = ϕ1(t), . . . ,xm = ϕm(t),α � t � β} —

непрерывная кривая, соединяющая точки M1 и M2 и целиком
принадлежащая множеству {M} (рис. 9.5).

Точки M1 и M2 имеют координаты: M1 (ϕ1(α), . . . ,ϕm(α)),
M2 (ϕ1(β), . . . ,ϕm(β)).

На кривой L заданная функция является сложной функцией
переменной t:
u = f (ϕ1(t), . . . ,ϕm(t)) =: F (t), причем по теореме 8 функция
F (t) непрерывна на сегменте [α,β]. На концах сегмента [α,β]
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функция F (t) имеет значения F (α) = f (ϕ1(α), . . . ,ϕm(α)) =
= f(M1) = u1 и F (β) = f(M2) = u2.

Рис. 9.5.

В силу известной теоре-
мы для функции одной пе-
ременной ∀u0 ∈ [u1,u2] ∃ t0 ∈
∈ [α,β], такое, что F (t0) =
= u0. Но F (t0) = f(ϕ1(t0), . . .
. . . ,ϕm(t0)) = f(M0), причем
точка M0(ϕ1(t0), . . . ,ϕm(t0)) ∈
∈ L.

Итак, ∃ точка M0 ∈ L:
f(M0) = u0, что и требовалось
доказать.

Для доказательства следующих трех теорем (первой и второй
теорем Вейерштрасса и теоремы Кантора) нам понадобится

Лемма 3. Пусть {M} — замкнутое множество и пусть по-
следовательность точек {Mn} → A, причем все Mn ∈ {M}. Тогда
A ∈ {M}.
Доказательство. Так как {Mn} → A, то в любой ε-окрестности
точки A содержатся члены последовательности {Mn}. Тем са-
мым, в любой ε-окрестности точки A содержатся точки из мно-
жества {M}. Поэтому точка A — либо внутренняя точка мно-
жества {M}, и тогда она принадлежит этому множеству как и
всякая внутренняя точка, либо A — граничная точка множества
{M}, и тогда она принадлежит {M}, так как множество {M} —
замкнутое множество (то есть содержит все свои граничные
точки). Таким образом, в любом случае A ∈ {M}. Лемма 3
доказана.

Замечание. Это утверждение аналогично следующему утвер-
ждению для одномерного случая: если все xn ∈ [a, b] и {xn} → c,
то c ∈ [a, b].

Определение. Функция u = f(M) называется ограниченной
на множестве {M}, если ∃ числа C1 и C2, такие, что ∀M ∈
∈ {M} : C1 � f(M) � C2.

Теорема 11 (первая теорема Вейерштрасса). Если функ-
ция u = f(M) непрерывна на замкнутом ограниченном множе-
стве {M}, то она ограничена на этом множестве.
Доказательство. Допустим, что u = f(M) не ограниче-
на на множестве {M}. Тогда ∀ натурального числа n
∃Mn ∈ {M} : |f(Mn)| > n. Тем самым последовательность
{f(Mn)} — бесконечно большая. Из ограниченной последова-
тельности точек {Mn} можно выделить сходящуюся подпоследо-
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вательность. Пусть подпоследовательность {Mkn} → A. В силу
леммы 3 точка A ∈ {M} и поэтому функция f(M) непрерывна в
точке A. Следовательно, {f(Mkn)} → f(A), а это противоречит
тому, что {f(Mkn)} — бесконечно большая последовательность.
Полученное противоречие доказывает, что наше предположение
не верно и, следовательно, функция u = f(M) ограничена на
множестве {M}.

Замечание. Если множестве {M} не является ограниченным
или не является замкнутым, то непрерывная на таком множестве
функция u = f(M) может быть неограниченной на этом множе-
стве.

Задание. Придумайте соответствующие примеры.
Определение. Число U называется точной верхней гранью

функции u = f(M) на множестве {M}, если
1. ∀M ∈ {M} : f(M) � U;
2. ∀ числа Ũ < U∃ M̃ ∈ {M} : f(M̃) > Ũ .
Обозначение: U = sup

{M}
f(M).

Аналогично определяется точная нижняя грань функции:
inf
{M}

f(M).

Теорема 12 (вторая теорема Вейерштрасса). Непрерывная
на замкнутом ограниченном множестве функция достигает на
этом множестве своих точных нижней и верхней граней.

Теорема доказывается так же, как и аналогичная теорема для
функции одной переменной.

Определение. Функция u = f(M) называется равномерно
непрерывной на множестве {M}, если ∀ ε > 0 ∃ δ > 0 (зависящее
только от ε), такое, что ∀M1 и M2 из множества {M}, удовле-
творяющих условию ρ (M1,M2) < δ, выполняется неравенство

|f(M1)− f(M2)| < ε.

Задание. Придумайте пример функции двух переменных
u = f(x, y), которая является: а) равномерно непрерывной на
некотором множестве; б) непрерывной, но не равномерно непре-
рывной на некотором множестве.

Теорема 13 (Кантора). Непрерывная на замкнутом огра-
ниченном множестве функция равномерно непрерывна на этом
множестве.

Теорема доказывается так же, как и для функции одной
переменной.
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Задание. Придумайте примеры, когда двумерное множество
не является ограниченным или не является замкнутым, и непре-
рывная на таком множестве функция f(x, y):

а) не достигает своих точных граней;
б) не является равномерно непрерывной.

§ 5. Частные производные и дифференцируемость

Пусть точкаM(x1, . . . ,xm) — внутренняя точка области опре-
деления функции u = f(M) = f(x1, . . . ,xm). Рассмотрим частное
приращение функции в этой точке, соответствующее прираще-
нию Δxk аргумента xk:

Δxk
u = f(x1, . . . ,xk−1,xk +Δxk,xk+1, . . . ,xm)−

−f(x1, . . . ,xk, . . . ,xm) ;

Δxk
u зависит только от Δxk (при фиксированной точке M(x1, . . .

. . . ,xm)).

Определение. Если существует lim
Δxk→0

Δxk
u

Δxk
, то он называет-

ся частной производной функции u = f(x1, . . . ,xm) в точке M
по переменной xk.

Для частной производной по переменной xk в точке M ис-

пользуются различные обозначения: u′x
k
(M),

∂u

∂xk
(M),

∂f

∂xk
(M),

ux
k
(M).
Вычисление частных производных производится по тем же

правилам, что и вычисление производных функций одной пере-
менной.

Примеры.

1. u = xy,
∂u

∂x
= yxy−1,

∂u

∂y
= xy lnx.

2. u(x, y) =

{
1 на осях координат,
0 в остальных точках.

Найдем частное приращение Δxu в точке O(0, 0) (рис. 9.6):
Δxu = u(Δx, 0) − u(0, 0) = 1 − 1 = 0. Следовательно,

lim
Δx→0

Δxu

Δx
= 0, то есть

∂u

∂x
(0, 0) = 0. Аналогично находим:

∂u

∂y
(0, 0) = 0.

Отметим, что lim
x→0
y→0

u(x, y) не существует, и, значит, функция
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u(x, y) не является непрерывной в точке O(0, 0). Таким
образом, это пример функции, разрывной в точке, но тем
не менее имеющей в этой точке частные производные. Для
функций одной переменной такая ситуация невозможна.

Рис. 9.6. Рис. 9.7.

Физический смысл частной производной. Частная произ-

водная
∂u

∂x
(M) характеризует скорость изменения функции в

точке M в направлении оси Ox.
Замечание. Если M — граничная точка области определения

функции, то для нее введенное определение частной производной
может быть непригодно. Например, для точки M0 на рис. 9.7
не существует частное приращение Δxu. В этом случае, если
∂u

∂x
(M) существует во внутренних точках M области определе-

ния функции, то полагают
∂u

∂x
(M0) = lim

M→M0

∂u

∂x
(M) (если этот

предел существует).
Рассмотрим теперь полное приращение Δu функции u =

= f(x1, . . . ,xm) во внутренней точке M(x1, . . . ,xm) из области
определения функции:

Δu = f(x1 +Δx1, . . . ,xm +Δxm)− f(x1, . . . ,xm).

Определение. Функция f(x1, . . . ,xm) называется дифферен-
цируемой в точке M(x1, . . . ,xm), если ее полное приращение в
этой точке можно представить в виде

Δu = A1Δx1 + . . .+AmΔxm + α1Δx1 + . . .+ αmΔxm, (9.5)

где A1, . . . ,Am — какие-то числа (то есть они не зависят от
Δx1, . . . ,Δxm), αi = αi(Δx1, . . . ,Δxm), i = 1, 2, . . . ,m — беско-
нечно малые функции при {Δx1 → 0, . . . ,Δxm → 0}, равные ну-
лю при Δx1 = . . . = Δxm = 0 (то есть αi(0, . . . , 0) = 0).
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Равенство (9.5) назовем условием дифференцируемости
функции в точке M(x1, . . . ,xm).

Физический смысл дифференцируемости функции многих
переменных

Поставим такой вопрос: можно ли скорость изменения функ-
ции u(x, y) по любому направлению в точке M выразить через

скорости
∂u

∂x
(M) и

∂u

∂y
(M)? Оказывается, что не всегда. Если

u(x, y) дифференцируема в точке M , то можно. Это станет ясно
из дальнейшего.

Вспомним, что для функции y = f(x) одной переменной x
условие дифференцируемости имело вид: Δy = AΔx + αΔx =
= AΔx+ o(Δx).

Возникает вопрос: Каков аналог слагаемого o(Δx) в слу-
чае функции m переменных? Можно предположить, что ана-
логом будет сумма [o(Δx1) + . . .+ o(Δxm)]. Но это не верно!
Чтобы дать правильный ответ на поставленный вопрос, обо-
значим буквой ρ расстояние между точками M(x1, . . . ,xm) и
M ′(x1 +Δx1, . . . ,xm +Δxm) (рис. 9.8).

Рис. 9.8.

Докажем, что условие (9.5) дифференцируемости функции
u = f(x1, . . . ,xm) в точке M можно записать в виде

Δu = A1Δx1 + . . .+AmΔxm + o(ρ), (9.6)

причем слагаемое o(ρ) = 0 при ρ = 0. Обозначим сумму α1Δx1 +
+ . . . + αmΔxm, входящую в правую часть равенства (9.5), бук-

вой h. Если ρ =

√
(Δx1)

2 + . . .+ (Δxm)2 = 0, то Δx1 = . . . =
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= Δxm = 0, поэтому αi(0, . . . , 0) = 0 и, следовательно, h = 0.
Если же ρ �= 0, то

h

ρ
=
α1Δx1 + . . .+ αmΔxm

ρ
= α1

Δx1
ρ

+ . . .+ αm
Δxm
ρ

,

и так как {Δx1 → 0, . . . ,Δxm → 0} при ρ → 0, то все αi → 0

при ρ → 0, а поскольку
∣∣∣Δxi
ρ

∣∣∣ � 1, то
h

ρ
→ 0 при ρ → 0. Таким

образом, h = o(ρ) при ρ → 0 и h = 0 при ρ = 0. Мы доказали,
что из (9.5) следует (9.6).

Докажем, что верно и обратное, то есть если приращение
Δu функции u = f(x1, . . . ,xm) в точке M можно представить
в виде (9.6), где слагаемое o(ρ) равно нулю при ρ = 0, то
Δu можно представить и в виде (9.5), причем все αi → 0 при
{Δx1 → 0, . . . ,Δxm → 0} и αi = 0 при Δx1 = . . . = Δxm = 0.
Обозначим слагаемое o(ρ) в равенстве (9.6) буквой h. Если ρ �= 0,
то

h =
h

ρ
· ρ

2

ρ
=
h

ρ

Δx21 + . . .+Δx2m
ρ

=

=
[
h

ρ
· Δx1

ρ

]
Δx1 + . . .+

[
h

ρ
· Δxm

ρ

]
Δxm.

Для каждого i = 1, 2, . . . ,m обозначим функцию
h

ρ
· Δxi

ρ
через

αi. Она определена при ρ �= 0 и так как
h

ρ
=

o(ρ)

ρ
→ 0 при

ρ → 0 и
∣∣∣Δxi
ρ

∣∣∣ � 1, то αi → 0 при ρ → 0 и, значит, αi → 0

при {Δx1 → 0, . . . ,Δxm → 0}. Если ρ = 0, то есть Δx1 = . . . =
= Δxm = 0, то положим αi = 0 (i = 1, 2, . . . ,m). Таким образом,
мы представили функцию h в виде h = α1Δx1 + . . . + αmΔxm,
причем функции αi → 0 при {Δx1 → 0, . . . ,Δxm → 0} и αi = 0
при Δx1 = . . . = Δxm = 0. Это означает, что условие (9.6) можно
записать в виде (9.5).

Замечание. Если функция u = f(x1, . . . ,xm) дифференцируе-
ма в точке M , то она и непрерывна в точке M .

В самом деле, если функция u = f(x1, . . . ,xm) дифференци-
руема в точке M , то ее полное приращение Δu в этой точке мож-
но представить в виде (9.5), откуда следует, что lim

Δx1→0
......

Δxm→0

Δu = 0,

а это и означает (согласно разностной форме условия непрерыв-
ности функции), что данная функция непрерывна в точке M .
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Связь дифференцируемости с существованием частных
производных. Для функции одной переменной y = f(x) су-
ществование производной в точке x0 является необходимым и
достаточным условием дифференцируемости функции в точке
x0. Для функции многих переменных существование частных
производных в точке M0 уже не является достаточным условием
ее дифференцируемости в этой точке.

Теорема 14 (необходимое условие дифференцируемости
функции). Если функция u = f(x1, . . . ,xm) дифференцируема в
точке M(x1, . . . ,xm), то она имеет в точке M частные производ-
ные по всем переменным.
Доказательство. Запишем условие дифференцируемости функ-
ции в точке M в виде (9.5):

Δu = A1Δx1 + . . .+AmΔxm + α1Δx1 + . . .+ αmΔxm.

Положим все Δxi = 0, кроме Δxk, а Δxk �= 0, где k — любой
номер от 1 до m. Тогда Δu = Δxk

u = AkΔxk + αkΔxk, где Ak —

число, αk → 0 при Δxk → 0. Отсюда получаем:
Δxk

u

Δxk
= Ak +

+ αk → Ak при Δxk → 0, то есть ∃ lim
Δxk→0

Δxk
u

Δxk
= Ak.

Таким образом, существует
∂u

∂xk
(M) = Ak (k = 1, 2 . . . ,m).

Теорема доказана.
Следствие. Условие (9.5) дифференцируемости функции в

точке M можно записать в виде

Δu =
∂u

∂x1
(M)Δx1 + . . .+

∂u

∂xm
(M)Δxm + α1Δx1 + . . .+ αmΔxm.

(9.7)
Отметим, что обратное к теореме 14 утверждение не верно.
Пример.

u(x, y) =

{
1 на осях координат,

0 в остальных точках.

∂u

∂x
(0, 0) =

∂u

∂y
(0, 0) = 0 (это было показано ранее), но функ-

ция u(x, y) не является непрерывной в точке O(0, 0), а потому не
дифференцируема в точке O(0, 0).

Таким образом, существование частных производных — толь-
ко необходимое, но не достаточное условие дифференцируемости
функции в данной точке.



5. Частные производные и дифференцируемость 27

Теорема 15 (достаточное условие дифференцируемости
функции). Если функция u = f(x1, . . . ,xm) имеет частные про-
изводные по всем переменным в некоторой ε-окрестности точки
M(x1, . . . ,xm), причем в самой точке M эти частные производ-
ные непрерывны, то функция дифференцируема в точке M .

Рис. 9.9.

Доказательство. Прове-
дем доказательство тео-
ремы для функции двух
переменных u = f(x, y)
(для сокращения запи-
си). Пусть частные про-
изводные f ′x и f ′y суще-
ствуют в ε-окрестности
точки M(x, y) и непре-
рывны в самой точке M .

Возьмем Δx и Δy
столь малыми, чтобы
точка M1(x + Δx, y +
+ Δy) лежала в этой
ε-окрестности точки M , и рассмотрим полное приращение функ-
ции в точке M :

Δu = f(x+Δx, y +Δy)− f(x, y) =

= [f(x+Δx, y +Δy)− f(x, y +Δy)] + [f(x, y +Δy)− f(x, y)] =

= f ′x(x+ θ1Δx, y +Δy) ·Δx+ f ′y(x, y + θ2Δy) ·Δy ,
где 0 < θi < 1, i = 1, 2.

К разностям в квадратных скобках мы применили формулу
Лагранжа конечных приращений, при этом производные f ′x и f ′y
берутся в промежуточных точках M3 и M4 (рис. 9.9).

Так как по условию теоремы f ′x и f ′y непрерывны в точ-

ке M(x, y), то f ′x(x + θ1Δx, y + Δy) = f ′x(x, y) + α1, f
′
y(x, y +

+ θ2Δy) = f ′y(x, y) + α2, где α1 и α2 → 0 при
{
Δx→0

Δy→0

}
, α1 = α2 =

= 0 при Δx = Δy = 0.
Следовательно,

Δu = f ′x(x, y)Δx+ f ′y(x, y)Δy + α1Δx+ α2Δy,

то есть выполнено условие дифференцируемости функции f(x, y)
в виде (9.7). Теорема 15 доказана.
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Задания.
1.

u(x, y) =

⎧⎨⎩ (x2 + y2) sin
1√

x2 + y2
, x2 + y2 �= 0

0 , x2 + y2 = 0.

Докажите, что u(x, y) имеет частные производные u′x и
u′y во всех точках плоскости, эти частные производные
не являются непрерывными в точке O(0, 0), но функция
u(x, y) дифференцируема в точке O(0, 0).
Этот пример показывает, что условие теоремы 15 является
только достаточным, но не необходимым условием диффе-
ренцируемости функции.

2.

u(x, y) =

{
1, на осях координат,

0, во всех остальных точках.

Докажите, что частные производные u′x и u′y непрерывны в
точке O(0, 0). Вместе с тем, эта функция не дифференци-
руема в точке O(0, 0).
Объясните, почему этот пример не противоречит теоре-
ме 15.

Дифференцируемость сложной функции

Рассмотрим сложную функцию z = f (ϕ(u, v),ψ(u, v)), то есть
z = f(x, y), где x = ϕ(u, v), y = ψ(u, v).

Теорема 16. Пусть:
1. функции x = ϕ(u, v), y = ψ(u, v) дифференцируемы в точке

(u0, v0);
2. функция z = f(x, y) дифференцируема в точке (x0, y0), где
x0 = ϕ(u0, v0), y0 = ψ(u0, v0).

Тогда сложная функция z = f (ϕ(u, v),ψ(u, v)) дифференцируема
в точке (u0, v0).
Доказательство. Дадим произвольные приращения Δu и Δv ар-
гументам u и v в точке (u0, v0). Функции x = ϕ(u, v) и y = ψ(u, v)
получат приращения Δx и Δy, которые в силу условия 1 можно
представить в виде

Δx =
∂ϕ

∂u
(u0, v0)Δu+

∂ϕ

∂v
(u0, v0)Δv + α1Δu+ α2Δv,

Δy =
∂ψ

∂u
(u0, v0)Δu+

∂ψ

∂v
(u0, v0)Δv + β1Δu+ β2Δv,

(9.8)

где α1,α2,β1,β2 → 0 при {Δu→ 0,Δv → 0} и αi = βi = 0 при
Δu = Δv = 0.
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Этим приращениям Δx и Δy соответствует приращение Δz
функции z = f(x, y) в точке (x0, y0), которое в силу условия 2
можно записать в виде

Δz =
∂f

∂x
(x0, y0)Δx+

∂f

∂y
(x0, y0)Δy + γ1Δx+ γ2Δy, (9.9)

где γ1, γ2 → 0 при (Δx → 0,Δy → 0), γ1 = γ2 = 0 при Δx =
= Δy = 0, и, следовательно, γ1, γ2 → 0 при {Δu→ 0,Δv → 0},
γ1 = γ2 = 0 при Δu = Δv = 0.

Подставляя (9.8) в (9.9), приходим к равенству, которое за-
пишем в виде

Δz = AΔu+BΔv + αΔu+ βΔv, (9.10)

где

A =
∂f

∂x
(x0, y0) · ∂ϕ∂u (u0, v0) +

∂f

∂y
(x0, y0) · ∂ψ∂u (u0, v0)

и

B =
∂f

∂x
(x0, y0) · ∂ϕ∂v (u0, v0) +

∂f

∂y
(x0, y0) · ∂ψ∂v (u0, v0) —

числа, а

α =
∂f

∂x
α1 +

∂f

∂y
β1 +

∂ϕ

∂u
γ1 +

∂ψ

∂u
γ2 + γ1α1 + γ2β1

и

β =
∂f

∂x
α2 +

∂f

∂y
β2 +

∂ϕ

∂v
γ1 +

∂ψ

∂v
γ2 + γ1α2 + γ2β2 —

функции, удовлетворяющие, очевидно, условиям

α и β → 0 при (Δu→ 0,Δv → 0) , α = β = 0 при Δu = Δv = 0.

Равенство (9.10) означает, что сложная функция
z = f (ϕ(u, v),ψ(u, v)) дифференцируема в точке (u0, v0). Теорема
доказана.

Из равенства (9.10) следуют формулы для производных слож-
ной функции:

∂z

∂u
(u0, v0) =

∂f

∂x
(x0, y0) · ∂ϕ∂u (u0, v0) +

∂f

∂y
(x0, y0) · ∂ψ∂u (u0, v0),

∂z

∂v
(u0, v0) =

∂f

∂x
(x0, y0) · ∂ϕ∂v (u0, v0) +

∂f

∂y
(x0, y0) · ∂ψ∂v (u0, v0).
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Эти же формулы запишем в более кратком виде:

∂z

∂u
=

∂z

∂x
· ∂x
∂u

+
∂z

∂y
· ∂y
∂u

,
∂z

∂v
=

∂z

∂x
· ∂x
∂v

+
∂z

∂y
· ∂y
∂v
. (9.11)

При такой записи более наглядно видна зависимость z от u
и v через каждый из аргументов x и y.

Примеры.

1. Рассмотрим уравнение y
∂z

∂x
− x

∂z

∂y
= 0 (это уравнение на-

зывается уравнением в частных производных; требуется
найти функцию z(x, y), удовлетворяющую этому уравне-
нию).
Пусть f(t) — произвольная дифференцируемая функция
аргумента t. Проверим, что функция z = f

(
x2 + y2

)
удо-

влетворяет данному уравнению. Найдем ее частные произ-
водные

∂z

∂x
= f ′

(
x2 + y2

) · 2x, ∂z

∂y
= f ′

(
x2 + y2

) · 2y
и подставим эти выражения в уравнение:

y
∂z

∂x
− x

∂z

∂y
= (2xy − 2xy) · f ′ (x2 + y2

)
= 0.

Таким образом, любая функция z = f
(
x2 + y2

)
, где f(t) —

дифференцируемая функция, является решением данного
уравнения.

2. Вычислим частные производные по x и по y функции

z = f
(
x− y2,x2 + y3

)
.

Введем обозначения: u = x− y2, v = x2 + y3. Тогда

∂z

∂x
= f ′u + f ′v · 2x, ∂z

∂y
= f ′u · (−2y) + f ′v · 3y2.

Рассмотрим теперь более общий случай сложной фукнции:

u = f (x1, . . . ,xm) ,

где x1 = ϕ1 (t1, . . . , tk) , . . . ,xm = ϕm (t1, . . . , tk). Для ее частных
производных имеет место формула, которая выводится аналогич-
но формулам (9.11):

∂u

∂ti
=

∂u

∂x1
· ∂x1
∂ti

+ . . .+
∂u

∂xm
· ∂xm
∂ti

=
m∑
j=1

∂u

∂xj
· ∂xj
∂ti

(i = 1, . . . , k).

(9.12)
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Дифференциал функции многих переменных

Пусть функция u = f (x1, . . . ,xm) дифференцируема в точке
M . Тогда ее приращение в этой точке можно представить в виде

Δu =
(
∂u

∂x1
(M)Δx1 + . . .+

∂u

∂xm
(M)Δxm

)
+

+(α1Δx1 + . . .+ αmΔxm) ,

где αi → 0 при {Δx1 → 0, . . . ,Δxm → 0}, αi = 0 при Δx1 = . . . =
= Δxm = 0, i = 1, . . . ,m.

Обе суммы, заключенные в круглые скобки в пра-
вой части равенства, являются бесконечно малыми при
{Δx1 → 0, . . . ,Δxm → 0}. При этом первая сумма является
линейной относительно Δx1, . . . ,Δxm частью приращения
функции, а вторая сумма — бесконечно малой более высокого
порядка, чем линейная часть, при {Δx1 → 0, . . . ,Δxm → 0} .

Определение. Дифференциалом (первым дифференциалом)
функции u = f(M) в точке M называется линейная относитель-
но Δx1, . . . ,Δxm часть приращения функции в точке M :

du =
∂u

∂x1
(M)Δx1 + . . .+

∂u

∂xm
(M)Δxm.

Дифференциалом независимой переменной xi будем называть
приращение этой переменной:

dxi = Δxi, i = 1, 2, . . . ,m.

Выражение для дифференциала функции в точке M запи-
шется теперь так:

du =
∂u

∂x1
(M)dx1 + . . .+

∂u

∂xm
(M)dxm =

m∑
j=1

∂u

∂xj
(M)dxj. (9.13)

Лемма 4 (об инвариантности формы первого дифферен-
циала). Формула (9.13) остается в силе, если x1, . . . ,xm яв-
ляются не независимыми переменными, а дифференцируемыми
функциями каких-то независимых переменных.
Доказательство. Пусть u = f(x1, . . . ,xm) — дифференцируемая
функция, а xj = ϕj(t1, . . . , tk) — дифференцируемые функции
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независимых переменных t1, . . . , tk (j = 1, . . . ,m). Тогда, исполь-
зуя формулу (9.12), можно записать цепочку равенств:

du =
k∑

i=1

∂u

∂ti
dti =

k∑
i=1

(
m∑
j=1

∂u

∂xj

∂xj
∂ti

)
dti =

m∑
j=1

∂u

∂xj

(
k∑

i=1

∂xj
∂ti

dti

)
=

=
m∑
j=1

∂u

∂xj

(
∂xj
∂t1

dt1 + . . .+
∂xj
∂tk

dtk
)
=

m∑
j=1

∂u

∂xj
dxj.

Первое равенство в этой цепочке написано в соответствии
с определением дифференциала функции, во втором равенстве
используется формула (9.12), третье равенство получено пу-
тем изменения порядка суммирования и, наконец, в послед-
нем равенстве использовано то, что дифференциал функции
xj = ϕj(t1, . . . , tk) выражается (согласно определению дифферен-
циала функции) формулой

dxj =
∂xj
∂t1

dt1 + . . .+
∂xj
∂tk

dtk.

Итак,

du =
m∑
j=1

∂u

∂xj
dxj , (9.14)

то есть формула (9.13) имеет место и в том случае, когда x1, . . .
. . . ,xm — дифференцируемые функции каких-либо независимых
переменных. Лемма 5 доказана.

Замечание. Отличие формулы (9.14) от формулы (9.13) со-
стоит в том, что в формуле (9.13) dxj = Δxj — приращение
переменной xj , а в формуле (9.14) dxj — дифференциал функции
xj = ϕj(t1, . . . , tk), поэтому, здесь, вообще говоря, dxj �= Δxj .
Таким образом, формула (9.14) показывает, что сохраняется фор-
ма (вид) выражения для дифференциала функции, а содержание
(наполнение) этой формулы изменяется.

Пример. Пусть u = xy. Тогда

du = y · xy−1 · dx+ xy · lnx · dy —

дифференциал данной функции в точке (x, y). В точке (1, 1) du =
= dx; в точке (1, 0) du = 0 (отметим, что это не число, а функция
аргументов dx и dy, равная тождественно нулю).
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Правила дифференцирования
Пусть u и v — дифференцируемые функции аргументов x1, . . .
. . . ,xm.

Тогда:
1. d(cu) = c du (c = const),
2. d(u± v) = du± dv,
3. d(uv) = v du+ u dv,

4. d
(
u

v

)
=
v du− u dv

v2
(v �= 0).

Докажем, например, формулу 4. Введем функцию w =
u

v
,

она является сложной функцией аргументов x1, . . . ,xm. В силу
леммы 5

dw =
∂w

∂u
· du+

∂w

∂v
· dv =

1

v
du− u

v2
dv =

vdu− udv

v2
,

что и требовалось доказать.

§ 6. Геометрический смысл дифференцируемости
функции

I. Касательная плоскость и нормаль к поверхности
Напомним, что для функции одной переменной y = f(x) из

дифференцируемости в точке x0 следует существование каса-
тельной к графику функции в точке (x0, f(x0)).

Рассмотрим функцию двух переменных z = f(x, y), (x, y) ∈
∈ D. Ее графиком является поверхность

S = {N (x, y, f(x, y)) , (x, y) ∈ D}
в прямоугольной системе координат Oxyz (рис. 9.10). Пусть
N0(x0, y0, z0) ∈ S, z0 = f(x0, y0). Проведем через точку N0 плос-
кость P . Пусть N(x, y, z) — произвольная точка на поверхности
S, z = f(x, y); NN1⊥P , N1 ∈ P .

Определение. Плоскость P , проходящая через точку N0

поверхности S, называется касательной плоскостью к поверх-
ности S в этой точке, если при N → N0 (N ∈ S) расстояние
ρ (N ,N1) является бесконечно малой величиной более высокого
порядка, чем ρ (N ,N0), то есть

lim
N→N0
(N∈S)

ρ (N ,N1)

ρ (N ,N0)
= 0.

2 В.Ф. Бутузов
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Рис. 9.10.

Так как
ρ (N ,N1)

ρ (N ,N0)
= sin∠NN0N1, то из написанного предель-

ного равенства следует, что ∠NN0N1 → 0 при N → N0.
Теорема 17. Если функция z = f(x, y) дифференцируема в

точке M0(x0, y0), то в точке N0(x0, y0, z0), где z0 = f(x0, y0),
существует касательная плоскость к графику этой функции.
Доказательство. Пусть N(x, y, z) ∈ S, z = f(x, y). Положим x−
− x0 = Δx, y − y0 = Δy, z − z0 = f(x, y) − f(x0, y0) = Δz. Так
как функция z = f(x, y) дифференцируема в точке M0, то ее
приращение Δz можно представить в виде

Δz =
∂z

∂x
(M0)Δx+

∂z

∂y
(M0)Δy + o(ρ),

где ρ = ρ(M ,M0) =
√

(Δx)2 + (Δy)2 . Введем обозначения:
∂z

∂x
(M0) = A,

∂z

∂y
(M0) = B и перепишем условие дифференциру-

емости в виде

z − z0 = A(x− x0) +B(y − y0) + o(ρ).

Рассмотрим плоскость P , заданную уравнением

Z − z0 = A(x− x0) +B(y − y0),

и докажем, что она является касательной плоскостью к поверх-
ности S в точке N0(x0, y0, z0).
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Плоскость P проходит через точку N0(x0, y0, z0) и имеет
вектор нормали �n = {A,B,−1}. Нам надо доказать, что

ρ (N ,N1)

ρ (N ,N0)
→ 0 при N → N0 (N ∈ S), где NN1⊥P , N1 ∈ P.

Пусть N2 — точка пересечения прямой NM с плоскостью P .
Точка N2 имеет координаты (x, y,Z = z0 +A(x− x0) +B(y − y0)),
поэтому ρ(N ,N2) = |z − Z| = o(ρ). Так как ρ(N ,N1) � ρ(N ,N2)
(перпендикуляр меньше наклонной), а ρ(N ,N0) � ρ(M ,M0) = ρ,
то

ρ (N ,N1)

ρ (N ,N0)
�

ρ (N ,N2)

ρ (M ,M0)
=
o(ρ)

ρ
→ 0 при N → N0,

и, следовательно,
ρ (N ,N1)

ρ (N ,N0)
→ 0 при N → N0 (N ∈ S). Теорема

доказана.
Итак, плоскость, заданная уравнением

Z − z0 =
∂z

∂x
(M0)(x− x0) +

∂z

∂y
(M0)(y − y0),

является касательной плоскостью к поверхности S (графику
фукнции z = f(x, y)) в точке N0(x0, y0, z0).

Вектор �n =
{
∂z

∂x
(M0),

∂z

∂y
(M0),−1

}
называется вектором

нормали к поверхности S в точке N0(x0, y0, z0).
Примеры.

1. Пусть поверхность S задана уравнением z = x2 + y2 (это
параболоид вращения).

Рис. 9.11.

Тогда точка N0(1, 2, 5) ∈ S;
M0(1, 2),

∂z

∂x
(M0) = 2,

∂z

∂y
(M0) = 4.

Уравнение касательной плоскости к
данной поверхности в точке N0:

Z − 5 = 2(x− 1) + 4(y − 2).

2. Пусть поверхность S задана урав-

нением z =
√
x2 + y2 (это кониче-

ская поверхность, рис. 9.11).
В точке (0, 0) функция не дифференцируема, и в точке

O(0, 0, 0) касательная плоскость к поверхности S не существует.

2*
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Возьмем точку N0(0, 1, 1) ∈ S. Так как
∂z

∂x
(0, 1) = 0,

∂z

∂y
(0, 1) = 1, то уравнение касательной плоскости к поверхности

S в точке N0 имеет вид Z − 1 = y − 1 или Z = y. Эта плоскость
содержит образующую конуса.

II. Производная по направлению и градиент

Частная производная
∂u

∂x
характеризует скорость изменения

функции по направлению оси Ox. Скорость изменения функции
по произвольному направлению характеризуется производной по
этому направлению.

Рис. 9.12.

Пусть функция u =
= f(x, y, z) = f(M) опре-
делена в окрестности точ-
ки M0 ∈ R

3. Проведем че-
рез точкуM0 какую-нибудь
прямую L и выберем на ней
одно из двух возможных
направлений, оно характе-
ризуется единичным векто-

ром
−→
l (рис. 9.12). Пусть

M — произвольная точка
из указанной окрестности,

лежащая на прямой L. Через M0M обозначим величину направ-

ленного отрезка
−−−→
M0M , то есть

M0M =

⎧⎨⎩
∣∣∣−−−→M0M

∣∣∣ , если
−−−→
M0M ↑↑ �l,

−
∣∣∣−−−→M0M

∣∣∣ , если
−−−→
M0M ↑↓ �l.

Определение. Если существует lim
M→M0
(M∈L)

f(M)− f(M0)

M0M
, то он на-

зывается производной функции u = f(M) в точке M0 по направ-

лению
−→
l и обозначается

∂u

∂l
(M0) или u

′
−→
l
(M0).

Установим связь между производной по направлению и част-
ными производными функции в данной точке M0.

Пусть M0(x0, y0, z0), M(x, y, z) ∈ L,
−→
l = {cosα, cosβ, cos γ},

M0M = t. Тогда x = x0 + t cosα, y = y0 + t cosβ, z = z0 + t cos γ,
(−∞ < t <∞) — параметрические уравнения прямой L.
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На прямой L:

u = f(M) = f(x, y, z) =

= f(x0 + t cosα, y0 + t cosβ, z0 + t cos γ) =: ϕ(t)—

сложная функция одной переменной t, в частности f(M0) = ϕ(0).
Поэтому

∂u

∂l
(M0) = lim

M→M0

f(M)− f(M0)

M0M
= lim

t→0

ϕ(t)− ϕ(0)

t
=
dϕ

dt
(0),

если этот предел существует.
Если функция u = f(x, y, z) дифференцируема в точке M0, то по
правилу дифференцирования сложной функции получаем:

dϕ

dt
(0) =

∂u

∂x
(M0)

dx

dt
(0) +

∂u

∂y
(M0)

dy

dt
(0) +

∂u

∂z
(M0)

dz

dt
(0),

а поскольку для любого t, в том числе и для t = 0,

dx

dt
= cosα,

dy

dt
= cosβ,

dz

dt
= cos γ, то

∂u

∂l
(M0) =

∂u

∂x
(M0) cosα+

∂u

∂y
(M0) cosβ +

∂u

∂z
(M0) cos γ. (9.15)

Формула (9.15) имеет простой физический смысл: она пока-
зывает, что если функция u = f(M) дифференцируема в точке
M0, то в этой точке скорость изменения функции по заданно-

му направлению
−→
l является линейной комбинацией скоростей

изменения этой функции по направлениям координатных осей

(то есть линейной комбинацией частных производных
∂u

∂x
,
∂u

∂y

и
∂u

∂z
), причем коэффициентами этой линейной комбинации вы-

ступают координаты cosα, cosβ, cos γ единичного вектора
−→
l ,

задающего направление; эти коэффициенты являются весовы-
ми множителями, показывающими, какую долю вносит каждая
частная производная в производную (скорость) по направлению
�l = {cosα, cosβ, cos γ}. В частности, если

−→
l = {1, 0, 0}, то есть

направление
−→
l совпадает с направлением оси Ox, то из формулы

(9.15), как и следует ожидать, получаем
∂u

∂l
(M0) =

∂u

∂x
(M0).
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Определение. Градиентом дифференцируемой функции u =
= f(x, y, z) в точке M0 называется вектор

gradu(M0) =
∂u

∂x
(M0) ·�i+ ∂u

∂y
(M0) ·�j + ∂u

∂z
(M0) · �k,

где �i,�j,�k — единичные векторы осей координат.
Правую часть формулы (9.15) можно теперь записать в виде

скалярного произведения векторов gradu(M0) и
−→
l :

∂u

∂l
(M0) =

(
gradu(M0) · −→l

)
, (9.16)

откуда следует, что

∂u

∂l
(M0) = |gradu| ·

∣∣∣−→l ∣∣∣ · cosϕ = |gradu| · cosϕ = Пр�l gradu(M0),

(9.17)

где ϕ — угол между векторами gradu(M0) и
−→
l (рис. 9.13),

Пр�l gradu(M0) — проекция вектора gradu(M0) на направление−→
l .

Рис. 9.13.

Из (9.17) получаем:(
∂u

∂l
(M0)

)
max

= |gradu(M0)|

(при ϕ = 0), Таким образом,
вектор gradu в точке M0 по-
казывает направление наиболь-
шего роста функции u = f(M)

в этой точке, а |gradu| есть скорость роста функции u = f(M) в
точке M0 в этом направлении.

Отсюда следует, что вектор gradu однозначно определяется
самой функцией u = f(M) и не зависит от выбора системы
координат.

Геометрический смысл градиента
Поверхность S, определяемая уравнением f(x, y, z) =

= c = const, называется поверхностью уровня функции
u = f(x, y, z). Можно доказать, что вектор gradu в точке
M0 поверхности уровня S коллинеарен вектору нормали к
поверхности S в этой точке. Покажем это на примере.

Пример. u = x2 + y2 + z2.
S : x2 + y2 + z2 = c > 0 — поверхностью уровня данной

функции является сфера радиуса
√
c .
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Рис. 9.14.

Пусть c = 14. Тогда
M(1, 2, 3) ∈ S. В точке M
gradu = {2, 4, 6}. Убедимся в
том, что gradu(M) || −→n , где −→n
— вектор нормали к поверхности
S в точке M . В самом деле,−→n || −→r = {1, 2, 3} (рис. 9.14),
а так как gradu(M) = 2−→r ,
то gradu(M) || −→r , поэтому
gradu(M) || −→n .

Физические примеры.
Электростатическое поле, то

есть электрическое поле неподвижных зарядов, можно описать с
помощью скалярной функции u(M) — потенциала электриче-
ского поля. Поверхности уровня u(M) = c — эквипотенциаль-
ные поверхности. Напряженность электрического поля выража-
ется формулой −→

E = − grad u(M).

Рис. 9.15.

В частности, потенциал
электростатического поля
точечного заряда e, поме-
щенного в начало коорди-

нат, имеет вид u(M) = k
e

r
,

где M — точка с коорди-
натами (x, y, z) (рис. 9.15),

r =
√
x2 + y2 + z2 , посто-

янная k зависит от выбора
системы единиц. Для на-
пряженности электрическо-
го поля получаем выраже-
ние:

−→
E (M) = − gradu(M) =

ke

r2

(
∂r

∂x
�i+

∂r

∂y
�j +

∂r

∂z
�k
)
=

=
ke

r2

(
x

r
�i+

y

r
�j +

z

r
�k
)
=
ke

r3
· �r,

где �r = x�i+ y�j + z�k.
Поле тяготения точечной массы m, находящейся в начале

координат, описывается ньютоновым потенциалом u(M) = γ
m

r
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(γ — гравитационная постоянная). Сила
−→
F (M), с которой мас-

са m притягивает единичную массу, помещенную в точку
M(x, y, z), выражается формулой

−→
F (M) = gradu(M) = −γm

r3
· −→r ,

где �r = x�i+ y�j + z�k, r =
√
x2 + y2 + z2 .

Замечание. Если в каждой точке M области G задан вектор−→a (M), то говорят, что в области G задано векторное поле−→a (M). Векторное поле вида −→a (M) = gradu(M) называется по-
тенциальным, а функция u(M) называется потенциалом этого
векторного поля. Рассмотренные электростатическое и гравита-

ционное поля
−→
E (M) и

−→
F (M) — потенциальные векторные поля.

Понятие производной по направлению и градиента можно
ввести для функции любого числа переменных m � 2.

Рис. 9.16. Рис. 9.17.

При m = 2 имеем: u = u(x, y),

∂u

∂l
(M) =

∂u

∂x
(M) cosα+

∂u

∂y
(M) sinα,

где α — угол между вектором �l и осью Ox (рис. 9.16),

gradu(M) =
∂u

∂x
(M) ·�i+ ∂u

∂y
(M) ·�j.

Пример. u = x2 + y3. Найти
∂u

∂l
(M), если M(1, 2), а вектор �l

составляет угол в 30◦ с осью Ox (рис. 9.17).
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Так как
∂u

∂x
(M) = 2,

∂u

∂y
(M) = 12, gradu(M) = 2 ·�i + 12 · �j,

�l = {cos 30◦, sin 30◦} =

{√
3

2
,
1

2

}
, то

∂u

∂l
(M) =

(
gradu(M) ·�l

)
=

= 2 ·
√
3

2
+

1

2
· 12 =

√
3 + 6.

В общем m-мерном случае имеем: u = u(x1, . . . ,xm);−−−−→
M1M2 = {y1 − x1, . . . , ym − xm} — m-мерный вектор (рис. 9.18);∣∣∣−−−−→M1M2

∣∣∣ = ρ(M1,M2) =
√

(y1 − x1)2 + . . .+ (ym − xm)2 ; скаляр-

ное произведение векторов −→a = {a1, . . . , am} и
−→
b = {b1, . . . , bm}

определяется формулой −→a −→b = a1b1 + . . .+ ambm, а угол ϕ между

векторами −→a и
−→
b — формулой

cosϕ =

(−→a −→b )
|−→a | · |−→b |

;

Рис. 9.18.

−→
l = {cosα1, . . . , cosαm} — единичный вектор

(∣∣∣−→l ∣∣∣ = 1
)
, за-

дающий направление; gradu(M) =
{
∂u

∂x1
(M), . . . ,

∂u

∂xm
(M)

}
;

∂u

∂l
(M) = gradu(M) · −→l =

m∑
j=1

∂u

∂xj
(M) · cosαj ;

формула (9.17) также остается в силе.
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§ 7. Частные производные и дифференциалы высших
порядков

Пусть функция u = f(x1, . . . ,xm) имеет частную производную
∂u

∂xi
в некоторой окрестности точки M . Тогда

∂u

∂xi
является функ-

цией переменных x1, . . . ,xm, определенной в этой окрестности
точки M .

Определение. Если функция
∂u

∂xi
имеет в точке M частную

производную по переменной xk, то есть существует
∂

∂xk

(
∂u

∂xi

)
в

точке M , то она называется второй частной производной (или
частной производной 2-го порядка) функции u по переменным
xi, xk в точке M .

Для этой второй частной производной используются раз-

личные обозначения:
∂2u

∂xk∂xi
(M), u

(2)
xixk(M), u′′xixk

(M), f ′′xixk
(M),

fxixk
(M).

Если k �= i, то частная производная 2-го порядка называется
смешанной частной производной 2-го порядка.

Частные производные более высокого порядка

вводятся по индукции: n-я частная производная (или частная
производная n-го порядка) функции u = f(x1, . . . ,xm) по аргу-
ментам xi1 ,xi2 , . . . ,xin в точке M определяется равенством

∂nu

∂xin∂xin−1
. . . ∂xi1

=
∂

∂xin

(
∂n−1u

∂xin−1
. . . ∂xi1

)
Если не все номера i1, . . . , in равны друг другу, то эта частная

производная называется смешанной частной производной n-го
порядка.

Примеры.
1. Пусть u = xy. Тогда

∂u

∂x
= y xy−1,

∂u

∂y
= xy lnx,

∂2u

∂y∂x
= xy−1 + y xy−1 lnx,

∂2u

∂x∂y
= y xy−1 lnx+ xy · 1

x
.

Обратим внимание на то, что в этом примере
∂2u

∂y∂x
=

∂2u

∂x∂y
.

Возникает вопрос: всегда ли выполняется это равенство? Следу-
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ющий пример показывает, что ответ на этот вопрос — отрица-
тельный.

2. Пусть u(x, y) =

{
xy, |y| � |x| ,

−xy, |y| > |x| . (рис. 9.19) Найдем

uxy(0, 0) и uyx(0, 0).
Для любого y �= 0 в достаточно малой окрестности точки

(0, y) имеем (см. рис. 9.19): u(x, y) = −xy, поэтому ux(x, y) = −y,
в частности ux(0, y) = −y. Заметим, что последнее равенство
верно и при y = 0, то есть ux(0, 0) = 0. В самом деле, поскольку
u(x, 0) = 0, то ux(x, 0) = 0 и, в частности, ux(0, 0) = 0.

Рис. 9.19.

Итак, для любого y спра-
ведливо равенство ux(0, y) =
= −y. Используя это равен-
ство, находим:

uxy(0, y) = −1,

в частности,

uxy(0, 0) = −1.

Аналогичные вычисле-
ния приводят к равенству
uyx(0, 0) = 1.

Таким образом, в данном
примере uxy(0, 0) �= uyx(0, 0).

Замечание. Отметим, что в данном примере частные произ-
водные ux(x, y) и uy(x, y) не существуют в точках (x, y), лежа-
щих на прямых y = x и y = −x (за исключением точки (0, 0)),
так как в этих точках функция u(x, y) разрывна и по переменной
x, и по переменной y. Поэтому не существует такой окрестности
точки (0, 0), во всех точках которой функция u(x, y) имеет част-
ные производные ux(x, y) и uy(x, y). Это, однако, не препятствует
существованию частных производных второго порядка uxy(0, 0)
и uyx(0, 0), поскольку для их определения достаточно, чтобы
частная производная первого порядка ux существовала в точках
оси y, а частная производная uy — в точках оси x, что и имеет
место в нашем примере.

Задание. Пусть u(x, t) =
1√
t
e−

x2

4t , −∞ < x <∞, t > 0.

1)Докажите, что функция u(x, t) удовлетворяет уравнению теп-
лопроводности

ut = uxx.



44 Гл. 9. Функции многих переменных

Это уравнение играет важную роль в математической физике.
Оно описывает процесс распространения тепла в одномерном
стержне, функция u(x, t) — это температура в точке стержня с
координатой x в момент времени t. Данная функция называется
фундаментальным решением уравнения теплопроводности, она
описывает изменение температуры в разных точках x бесконеч-
ного стержня с изменением времени t в том случае, когда до
начального момента времени t = 0 температура во всех точках
стержня равнялась нулю, а в момент t = 0 стержню сообщено
некоторое количество тепла в точке x = 0.
2) Постройте следующие графики температуры u(x, t):

1. графики u(x, t) как функции x при трех фиксированных
значениях времени t1, t2 и t3, таких, что 0 < t1 < t2 < t3;

2. графики u(x, t) как функции t при трех фиксированных
значениях x: x = 0, x = x1 и x = x2, причем 0 < x1 < x2.

Теорема 18 (о равенстве смешанных производных). Если
в некоторой окрестности точки M0(x0, y0) функция u = f(x, y)
имеет смешанные частные производные f ′′xy и f ′′yx, и если эти
смешанные производные непрерывны в точке M0, то они равны
в этой точке:

f ′′xy(x0, y0) = f ′′yx(x0, y0).

Доказательство. Рассмотрим квадрат M0M1M2M3 со сторонами,
параллельными осям координат и равными h, причем возьмем h
столь малым, чтобы квадрат целиком лежал в указанной окрест-
ности точки M0 (рис. 9.20). Введем функции

F (h) = f(M2)− f(M1)− f(M3) + f(M0) =

= f(x0 + h, y0 + h)− f(x0 + h,h)− f(x0, y0 + h) + f(x0, y0)

и

ϕ(x) = f(x, y0 + h)− f(x, y0).

Тогда

F (h) = ϕ(x0 + h)− ϕ(x0). (9.18)

Применяя формулу Лагранжа конечных приращений, приходим
к равенствам

F (h) = ϕ′(x0 + θ1h)·h = [f ′x(x0 + θ1h, y0 + h)− f ′x(x0 + θ1h, y0)]·h,

где θ1 — некоторое число из интервала 0 < θ1 < 1.
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Рис. 9.20.

К разности, стоящей в квад-
ратных скобках, снова применим
формулу Лагранжа (теперь по
переменной y), получим равен-
ство

F (h) = f ′′xy(x0 + θ1h, y0 + θ2h) · h2,
где θ2 — некоторое число из ин-
тервала 0 < θ2 < 1.

Так как по условию функ-
ция f ′′xy непрерывна в точке
M0(x0, y0), то f

′′
xy(x0 + θ1h, y0 + θ2h) можно представить в виде

f ′′xy(x0 + θ1h, y0 + θ2h) = f ′′xy(x0, y0) + α(h), где α(h) → 0 при
h→ 0. Таким образом,

F (h) =
[
f ′′xy(x0, y0) + α(h)

] · h2. (9.19)

Введем еще одну функцию:

ψ(y) = f(x0 + h, y)− f(x0, y0).

Тогда F (h) = ψ(y0 + h)− ψ(y0) и, преобразуя это выражение
для F (h) таким же образом, как и выражение (9.18), приходим
к равенству

F (h) =
[
f ′′yx(x0, y0) + β(h)

] · h2, (9.20)

где β(h) → 0 при h→ 0.
Приравняем выражения (9.19) и (9.20) для F (h), сократим

равенство на h2 и перейдем к пределу при h → 0. Получим
равенство f ′′xy(x0, y0) = f ′′yx(x0, y0), что и требовалось доказать.

Замечание. Имеет место более сильная теорема, нежели тео-
рема 18, а именно: если u = f(x, y) имеет в окрестности точки
M0(x0, y0) частные производные f ′x, f ′y и f ′′xy, причем f ′′xy непре-
рывна в точке M0, то в точке M0 существует f ′′yx и справедливо
равенство

f ′′xy(x0, y0) = f ′′yx(x0, y0).

Определение. Функция u = f(x1, . . . ,xm) называется два-
жды дифференцируемой в точке M0(x

0
1, . . . ,x

0
m), если она диф-

ференцируема в некоторой окрестности точки M0 и все ее част-
ные производные 1-го порядка дифференцируемы в самой точке
M0.
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Понятие n-кратной дифференцируемости функции вводится
по индукции. Пусть уже введено понятие (n − 1)-кратной диф-
ференцируемости функции u = f(x1, . . . ,xm). Будем говорить,
что эта функция n раз дифференцируема в точке M0, если она
(n− 1) раз дифференцируема в некоторой окрестности точки M0

и все ее частные производные (n− 1)-го порядка дифференциру-
емы в самой точке M0.

Отметим, что если функция u = f(x1, . . . ,xm) n раз диффе-
ренцируема в точке M0, то эта функция и все ее частные произ-
водные до (n− 2)-го порядка включительно дифференцируемы в
некоторой окрестности точки M0 (докажите это).

Сформулируем еще две теоремы о равенстве смешанных про-
изводных.

Теорема 18а. Если функция u = f(x, y) дважды дифферен-
цируема в точке M0(x0, y0), то

f ′′xy(x0, y0) = f ′′yx(x0, y0).

Доказательство проводится сходно с тем, как была доказана
теорема 18 (см. [1]).

Теорема 18б. Если функция u = f(x1, . . . ,xm) n раз диф-
ференцируема в точке M0, то все ее смешанные частные произ-
водные в точке M0 до n-го порядка включительно не зависят от
порядка дифференцирования.

Дифференциалы высших порядков
Рассмотрим сначала функцию двух переменных. Пусть функ-

ция u = f(x, y) независимых переменных x и y дважды диффе-
ренцируема в точке M0(x0, y0), то есть она дифференцируема в

некоторой окрестности точки M0 и ее частные производные
∂u

∂x

и
∂u

∂y
дифференцируемы в точке M0. Рассмотрим дифференциал

функции в окрестности точки M0:

du =
∂u

∂x
(x, y)dx+

∂u

∂y
(x, y)dy. (9.21)

Отметим, что дифференциал du является функцией четырех
переменных: x , y , dx , dy.

Чтобы ввести дифференциал второго порядка функции u =
= f(x, y), будем рассматривать du как функцию только x и y, то
есть так, как если бы dx и dy были фиксированными числами
(постоянными множителями).
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Так как
∂u

∂x
и

∂u

∂y
дифференцируемы в точке M0, то du

является дифференцируемой функцией переменных x и y в точке
M0.

Определение. Дифференциалом второго порядка (или вто-
рым дифференциалом) функции u = f(x, y) в точкеM0 называет-
ся дифференциал от первого дифференциала du при следующих
условиях:

1. du рассматривается как функция только x и y,

2. при вычислении дифференциалов от
∂u

∂x
(x, y) и

∂u

∂y
(x, y)

приращения Δx и Δy независимых переменных x и y
берутся такими же, как в выражении (9.21) для du, то есть
равными dx и dy.

Итак,
d2u = d(du)

при указанных двух условиях.
Из (9.21) и правил дифференцирования следует, что

d2u = d
(
∂u

∂x
dx+

∂u

∂y
dy
)
=

[
d
(
∂u

∂x

)]
· dx+

[
d
(
∂u

∂y

)]
· dy =

=
[
∂

∂x

(
∂u

∂x

)
dx+

∂

∂y

(
∂u

∂x

)
dy
]
dx+

+
[
∂

∂x

(
∂u

∂y

)
dx+

∂

∂y

(
∂u

∂y

)
dy
]
dy =

=
∂2u

∂x2
(dx)2 + 2

∂2u

∂x∂y
dxdy +

∂2u

∂y2
(dy)2. (9.22)

Отметим, что производные 2-го порядка в равенстве (9.22)

берутся в точке M0, а равенство
∂2u

∂x∂y
=

∂2u

∂y∂x
следует из теоре-

мы 18а.
Пример. Пусть u = xy; M0(1, 0). Требуется найти d2u

∣∣
M0

.

Находим частные производные сначала первого, а затем вто-
рого порядка:

ux = y xy−1, uy = xy lnx,

uxx = y (y − 1)xy−2, uxy = xy−1 + y xy−1 lnx, uyy = xy (lnx)2 .

По формуле (9.22) получаем:

d2u
∣∣
M0

= uxx(M0) dx
2 + 2uxy(M0) dxdy + uyy(M0) dy

2 =

= 0 · dx2 + 2 dx dy + 0 · dy2 = 2 dx dy.
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Заметим, что выражение (9.22) для d2u похоже на квадрат
двучлена. Его действительно можно записать как квадрат дву-
члена, но не обычного, а символического (или операторного)
двучлена.

Назовем оператором правило, посредством которого каждой
функции из заданного множества функций, ставится в соответ-
ствие некоторая функция из, вообще говоря, другого множества
(одна функция преобразуется в другую функцию). Так, операцию
нахождения частной производной функции u(x, y) по аргументу
x можно рассматривать как действие оператора (будем обозна-

чать его
∂

∂x
), который функцию u(x, y) преобразует (переводит)

в функцию
∂u

∂x
(x, y):

∂

∂x
u =

∂u

∂x
. Аналогично определяется опе-

ратор
∂

∂y
частной производной по y.

Оператор d =
∂

∂x
dx +

∂

∂y
dy назовем оператором дифферен-

циала. При действии этого оператора на функцию u(x, y) полу-

чается дифференциал функции: du =
∂u

∂x
dx+

∂u

∂y
dy.

Произведение операторов определим следующим образом:

∂

∂x
· ∂
∂y

=
∂2

∂x∂y
;
∂

∂x
· ∂
∂x

=
(
∂

∂x

)2

=
∂2

∂x2
;
(
∂

∂x

)k

·
(
∂

∂y

)l

=
∂k+l

∂xk∂yl
,

k и l — натуральные числа.
Определим n-ю степень оператора d как n-ю степень двучле-

на
∂

∂x
dx+

∂

∂y
dy. Тогда

d2 =
(
∂

∂x
dx+

∂

∂y
dy
)2

=
∂2

∂x2
(dx)2 + 2

∂2

∂x∂y
dxdy +

∂2

∂y2
(dy)2.

Второй дифференциал функции u(x, y) можно теперь запи-
сать в виде

d2u =
(
∂

∂x
dx+

∂

∂y
dy
)2

u.

Дифференциал n-го порядка функции вводится по индук-
ции.

Если функция u(x, y) n раз дифференцируема в точке M0

(то есть (n − 1) раз дифференцируема в некоторой окрестности
точки M0 и все ее частные производные (n− 1)-го порядка диф-
ференцируемы в точке M0), то дифференциалом d

nu n-го поряд-
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ка функции u(x, y) в точке M0 назовем дифференциал в точке
M0 от дифференциала (n − 1)-го порядка при таких же двух
условиях, как и при определении дифференциала 2-го порядка
(разумеется с заменой во втором условии частных производных
первого порядка на частные производные (n− 1)-го порядка):

dnu = d
(
dn−1u

)
(n = 2, 3, . . .). (9.23)

По индукции нетрудно доказать операторную формулу

dnu =
(
∂

∂x
dx+

∂

∂y
dy
)n

u. (9.24)

В случае функции m независимых переменных u = f(x1, . . .
. . . ,xm) дифференциал n-го порядка вводится индуктивно по
формуле (9.23), оператор дифференциала имеет вид

d =
∂

∂x1
dx1 + . . .+

∂

∂xm
dxm,

и справедлива формула

dnu =
(
∂

∂x1
dx1 + . . .+

∂

∂xm
dxm

)n

u. (9.25)

В частности,

d2u =
(
∂

∂x1
dx1 + . . .+

∂

∂xm
dxm

)2

u =
m∑

i,j=1

∂2u

∂xi∂xj
dxidxj. (9.26)

Если аргументы x и y функции u(x, y) не являются неза-
висимыми переменными, а являются дифференцируемыми функ-
циями каких-то независимых переменных t1, . . . , tk, то фор-
мула (9.24) изменится (то же самое относится к функции
u = f(x1, . . . ,xm) и формуле (9.25)). Действительно, в силу ин-
вариантности формы 1-го дифференциала имеем:

du =
∂u

∂x
dx+

∂u

∂y
dy,

где dx и dy являются функциями t1, . . . , tk, dt1, . . . , dtk, а
∂u

∂x

и
∂u

∂y
— функциями t1, . . . , tk. При вычислении второго диффе-

ренциала d2u, как дифференциала от первого дифференциала,
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рассматриваем du как функцию t1, . . . , tk, то есть учитываем
зависимость от t1, . . . , tk всех входящих в du слагаемых и сомно-
жителей:

d2u = d
(
∂u

∂x
dx+

∂u

∂y
dy
)
=

=
[
d
(
∂u

∂x

)]
dx+

∂u

∂x
d2x+

[
d
(
∂u

∂y

)]
dy +

∂u

∂y
d2y =

=

[(
∂

∂x
dx+

∂

∂y
dy
)2
u

]
+
{
∂u

∂x
d2x+

∂u

∂y
d2y

}
.

Мы видим, что по сравнению со случаем, когда x и y —
независимые переменные, выражение для d2u содержит допол-
нительные слагаемые (они заключены в фигурные скобки).

Таким образом, форма второго дифференциала не инвариант-
на. То же самое относится к дифференциалам более высокого
порядка. Исключением из этого является случай, представлен-
ный далее в замечании.

Замечание. Если x и y — линейные функции t1, . . . , tk, то
есть

x = α1t1 + . . .+ αktk + αk+1, y = β1t1 + . . .+ βktk + βk+1,

αi и βi — числа, то dx = α1dt1 + . . . + αkdtk не зависит от
t1, . . . , tk, и поэтому d2x = d(dx) = 0. Аналогично, d2y = 0, и,

следовательно, d2u =
(
∂

∂x
dx+

∂

∂y
dy
)2

u, то есть формула (9.24)

при n = 2 остается в силе. То же самое будет для n > 2.
И также, если x1, . . . ,xm — линейные функции t1, . . . , tk, то

есть

xi = αi1t1 + . . .+ αiktk + αi,k+1, i = 1, . . . ,m, (9.27)

то формула (9.25) остается в силе, где dxi — дифференциалы
функций (9.27). Это замечание понадобится нам в следующем
параграфе.

§ 8. Формула Тейлора

Для функции u = F (t) одной переменной имеет место тео-
рема: если функция u = F (t) (n + 1) раз дифференцируема в
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окрестности точки t = t0, то ∀t из этой окрестности справедливо
равенство (формула Тейлора):

F (t) = F (t0) + F ′(t0)(t− t0) + . . .+
1

n!
F (n)(t0)(t− t0)

n+

+
1

(n+ 1)!
F (n+1)(t0 + θ(t− t0)) · (t− t0)

n+1, где 0 < θ < 1.

Положим t − t0 = Δt = dt. Так как F (k)(t0)(t − t0)
k =

= F (k)(t0)(dt)
k = dkF

∣∣
t=t0

, то, обозначив F (t)− F (t0) через Δu,
формулу Тейлора запишем в виде

Δu = dF |t=t0
+ . . .+

1

n!
dnF |t=t0

+
1

(n+ 1)!
dn+1F

∣∣
t=t0+θΔt

(9.28)
Таким образом, формула (9.28) — это обычная формула Тей-

лора для фукнции одной переменной, но записанная в специаль-
ном виде — через дифференциалы функции.

Для функции многих переменных имеет место аналогичная
формула.

Теорема 19. Если функция u = f(x1, . . . ,xm) (n+ 1) раз диф-
ференцируема в ε-окрестности точки M0

(
x01, . . . ,x

0
m

)
, то ∀ точки

M
(
x01 +Δx1, . . . ,x

0
m +Δxm

)
из этой ε-окрестности приращение

функции Δu = f(M)− f(M0) можно представить в виде

Δu = du|M0
+

1

2!
d2u

∣∣∣
M0

+ . . .+
1

n!
dnu

∣∣∣
M0

+
1

(n+ 1)!
dn+1u

∣∣∣∣
N ,

(9.29)

где N — некоторая точка, лежащая на отрезке M0M , а диффе-
ренциалы dku вычисляются по формуле

dku =
(
∂

∂x1
Δx1 + . . .+

∂

∂xm
Δxm

)k

u.

Рис. 9.21.

Формула (9.29) называ-
ется формулой Тейлора для
функции u = f(M) с цен-
тром разложения в точке
M0.
Доказательство.

Зафиксируем точку M(x01 +
+ Δx1, . . . ,x

0
m + Δxm) из

указанной ε-окрестности
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точки M0 (рис. 9.21). Уравнения отрезка M0M можно записать
в виде

x1 = x01 + tΔx1, . . . ,xm = x0m + tΔxm, 0 � t � 1. (9.30)

Точка M0 соответствует t = 0, точка M соответствует t = 1.
На отрезке M0M имеем:

u = f
(
x01 + tΔx1, . . . ,x

0
m + tΔxm

)
=: F (t) —

сложная функция одной переменной t, причем F (t) (n + 1) раз
дифференцируема на отрезке 0 � t � 1.

Заметим, что

Δu = f(M)− f(M0) = F (1)− F (0). (9.31)

Применим к разности F (1)− F (0) формулу (9.28). Для этого
в формуле (9.28) нужно положить t0 = 0, t = 1, dt = Δt = 1 −
− 0 = 1. Получим

F (1)− F (0) = dF |t=0 + . . .+
1

n!
dnF

∣∣∣
t=0

+
1

(n+ 1)!
dn+1F

∣∣∣∣
t=θ.

(9.32)

Так как x1, . . . ,xm — линейные функции переменной t
(см.(9.30)), то дифференциалы dkF можно вычислить по форму-
ле (9.25) (см. замечание на стр. 50), то есть

dkF
∣∣
t=0

=
(
∂

∂x1
dx1 + . . .+

∂

∂xm
dxm

)k

u

∣∣∣∣
M0

, k = 1, 2, . . . ,n,

где dx1, . . . , dxm — дифференциалы функций (9.30): dx1 = dt ·
·Δx1 = Δx1, . . . , dxm = dt ·Δxm = Δxm. Итак,

dkF
∣∣
t=0

=
(
∂

∂x1
Δx1 + . . .+

∂

∂xm
Δxm

)k

u

∣∣∣∣
M0

= dku
∣∣
M0

, k = 1, 2, . . . ,n,

(9.33)
и, аналогично,

dn+1F
∣∣
t=θ

=

=
(
∂

∂x1
Δx1 + . . .+

∂

∂xm
Δxm

)n+1

u

∣∣∣∣
N(x01+θΔx1,...,x0m+θΔxm)

=

= dn+1u
∣∣
N
.

(9.34)
Так как 0 < θ < 1, то точка N лежит на отрезке M0M .

Подставляя выражения (9.33) и (9.34) в правую часть ра-
венства (9.32) и учитывая (9.31), приходим к формуле (9.29).
Теорема доказана.
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Следствия.
1. При n = 0 из (9.29) получаем формулу Лагранжа конечных

приращений для функции многих переменных:

Δu = f
(
x01 +Δx1, . . . ,x

0
m +Δxm

)− f
(
x01, . . . ,x

0
m

)
=

= du|N =
∂f

∂x1
(N)Δx1 + . . .+

∂f

∂xm
(N)Δxm.

2. Формулу Тейлора можно записать не через дифференци-
алы функции, а через ее производные. Для этого нужно
раскрыть выражения для дифференциалов dku:

dku
∣∣
M0

=
(
∂

∂x1
Δx1 +

∂

∂xm
Δxm

)k

u

∣∣∣∣
M0

=

=
m∑

i1=1

m∑
i2=1

· · ·
m∑

ik=1

∂ku

∂xi1 . . . ∂xik
(M0)Δxi1 . . .Δxik ,

в частности, d2u
∣∣
M0

=
m∑

i,j=1

∂2u

∂xi∂xj
(M0)ΔxiΔxj.

Кроме того, положим Δxi = xi − x0i (i = 1, . . . ,m). Тогда из
(9.29) получим равенство

f(x1, . . . ,xm) = f
(
x01, . . . ,x

0
m

)
+

∂f

∂x1
(M0)

(
x1 − x01

)
+ . . .+

+
∂f

∂xm
(M0)

(
xm − x0m

)
+

1

2

∂2f

∂x21
(M0)

(
x1 − x01

)2
+ . . .+

+
1

n!

∂nf

∂xnm
(M0)

(
xm − x0m

)n
+Rn+1 =: Pn(x1, . . . ,xm) +Rn+1,

где Pn (x1, . . . ,xm) — многочлен, зависящий от x1, . . . ,xm
(степень которого не превосходит n), обладающий тем
свойством, что все его частные производные до n-го по-
рядка включительно в точке M0 равны соответствующим
частным производным функции f(x1, . . . ,xm) в точке M0

(он называется многочленом Тейлора функции f(M)), а

Rn+1 =
1

(n+ 1)!
dn+1u

∣∣
N

— остаточный член.

Замечание. Положим ρ = ρ(M0,M) =
√
Δx21 + . . .+Δx2m .

Нетрудно доказать, что при условии теоремы 19 справедливо ра-
венство Rn+1 = o(ρn). Это выражение называется формой Пеано
остаточного члена. Как и в случае функции одной переменной
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остаточный член в форме Пеано можно получить при более
слабых требованиях, чем в теореме 19. В частности, для n = 2
справедлива

Теорема 19а. Если функция u = f(M) дважды дифференци-
руема в точке M0, то приращение функции Δu = f(M)− f(M0)
можно представить в виде

Δu = du|M0
+

1

2
d2u

∣∣
M0

+ o
(
ρ2
)
, (9.35)

где ρ = ρ(M0,M).
Доказательство. Введем функцию

g(M) = f(M)− f(M0)− du|M0
− 1

2
d2u

∣∣
M0
.

Нам нужно доказать, что g(M) = o
(
ρ2
)
при ρ → 0. Запишем

более подробное выражение для g(M):

g(M) = g(x1, . . . ,xm) = f(M)− f(M0)−
m∑
i=1

∂f

∂xi
(M0)

(
xi − x0i

)−
−1

2

m∑
i,j=1

∂2f

∂xi∂xj
(M0)

(
xi − x0i

) (
xj − x0j

)
.

Нетрудно проверить, что

g(M0) = 0,
∂g

∂xi
(M0) = 0,

∂2g

∂xi∂xj
(M0) = 0, i, j = 1, . . . ,m. (9.36)

Функция g(M) отличается от дважды дифференцируемой в
точке M0 функции f(M) на многочлен второй степени, поэтому
функция g(M) также дважды дифференцируема в точке M0, то
есть g(M) дифференцируема в некоторой ε-окрестности точки

M0 и ее частные производные
∂g

∂xi
дифференцируемы в точке M0.

По определению дифференцируемости приращение функции
∂g

∂xi
в точке M0 можно представить в виде

Δ
(
∂g

∂xi

)
=

∂g

∂xi
(M)− ∂g

∂xi
(M0) = d

(
∂g

∂xi

)∣∣∣
M0

+ o(ρ) =

=
m∑
j=1

∂2g

∂xj∂xi
(M0)

(
xj − x0j

)
+ o(ρ).
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Отсюда, учитывая равенства (9.36), получаем:
∂g

∂xi
(M) = o(ρ),

где ρ = ρ(M0,M).
Запишем теперь разность g(M)− g(M0) по формуле Лагран-

жа:

g(M)− g(M0) =
m∑
i=1

∂g

∂xi
(N)

(
xi − x0i

)
, (9.37)

где N — некоторая точка на отрезке M0M . Так как ρ(M0,N) �
� ρ(M0,M) = ρ, то

∂g

∂xi
(N) = o (ρ(M0,N)) = o(ρ),

а поскольку g(M0) = 0 и
∣∣xi − x0i

∣∣ � ρ, то из равенства (9.37)
следует:

g(M) =
m∑
i=1

o(ρ)
(
xi − x0i

)
= o

(
ρ2
)
.

Теорема доказана.
Пример. Пусть u(x, y) = xy, M0(1, 0). Тогда u(M0) = 1,

∂u

∂x
(M0) = 0,

∂u

∂y
(M0) = 0, поэтому du|M0

= 0,

а d2u
∣∣
M0

= 2dxdy (см. пример в §7), причем для точки M(x, y)
имеем равенства dx = Δx = x − 1, dy = Δy = y − 0 = y,

ρ(M0,M) =
√

(x− 1)2 + y2 .
Применяя формулу (9.35), получаем:

Δu = xy − 1 =
1

2
· 2(x− 1)y + o

(
ρ2
)
,

откуда xy = 1− y + xy + o
(
(x− 1)2 + y2

)
.

В достаточно малой окрестности точки M0(1, 0) для прибли-
женного вычисления xy можно использовать формулу xy ≈ 1 −
− y + xy.

§ 9. Локальный экстремум

Пусть функция u = f(M) определена в некоторой окрестно-
сти точки M0 ∈ R

m.
Определение. Говорят, что функция u = f(M) имеет в точке

M0 локальный максимум (минимум), если существует такая ε-
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окрестность точкиM0, в которой f(M) < f(M0) (f(M) > f(M0))
при M �=M0.

Теорема 20 (необходимое условие экстремума). Если в
точке M0

(
x01, . . . ,x

0
m

)
функция u = f(x1, . . . ,xm) имеет локаль-

ный экстремум и если в точке M0 существует частная производ-

ная
∂u

∂xk
, то

∂u

∂xk
(M0) = 0.

Доказательство. Зафиксируем все аргументы функции, кроме xk,
положив xi = x0i (i �= k), и рассмотрим функцию одной перемен-
ной f

(
x01, . . . ,x

0
k−1,xk,x

0
k+1, . . . ,x

0
m

)
=: ϕ(xk). Эта функция име-

ет локальный экстремум в точке xk = x0k и имеет производную в

точке x0k: ϕ
′(x0k) =

∂u

∂xk
(M0). По теореме о необходимом условии

экстремума для функции одной переменной ϕ′(x0k) = 0, то есть
∂u

∂xk
(M0) = 0. Теорема доказана.

Следствие. Если функция u = f(M) имеет в точке M0 ло-
кальный экстремум и дифференцируема в точке M0, то

du|M0
=

∂u

∂x1
(M0)dx1 + . . .+

∂u

∂xm
(M0)dxm = 0.

Замечание. Условие du|M0
= 0 является только необходимым,

но не достаточным условием локального экстремума в точке M0

дифференцируемой функции. Приведем соответствующий при-
мер.

Пусть u = xy, тогда
∂u

∂x
(0, 0) = 0,

∂u

∂y
(0, 0) = 0, поэтому

du|(0,0) = 0. Однако в точке O(0, 0) экстремума у данной функ-

ции нет, так как в любой окрестности точки O(0, 0) функция
принимает как положительные, так и отрицательные значения,
то есть как значения, большие, чем u(0, 0) = 0, так и значения,
меньшие u(0, 0).

Точку M0, в которой du = 0, будем называть точкой воз-
можного экстремума дифференцируемой функции u(M). Чтобы
установить, имеет ли функция в такой точке M0 экстремум или
нет, нужны достаточные условия экстремума. Чтобы сформули-
ровать такие условия, нам понадобятся некоторые сведения о
квадратичных формах.
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Некоторые сведения о квадратичных формах

Функция

Q(x1, . . . ,xm) =
m∑

i,j=1

aijxixj =

= a11x
2
1 + a12x1x2 + . . .+ a1mx1xm + a21x2x1 + . . .+ ammx

2
m,

где aij — числа, aij = aji, называется квадратичной формой от
переменных x1, . . . ,xm.

Квадратичная форма называется положительно определен-
ной (отрицательно определенной), если Q(x1, . . . ,xm) � 0 (� 0)
∀ (x1, . . . ,xm), причем Q = 0 лишь в начале координат, то есть
при x1 = . . . = xm = 0.

Пример. Q(x1,x2) = x21 + 2x22 — положительно определенная
квадратичная форма.

Положительно и отрицательно определенные квадратичные
формы называются знакоопределенными.

Квадратичная форма называется квазизнакоопределенной,
если она принимает значения либо только неотрицательные, ли-
бо только неположительные, но при этом обращается в нуль не
только в начале координат.

Пример. Q(x1,x2) = x21 − 4x1x2 + 4x22 = (x1 − 2x2)
2 — ква-

зиположительно определенная квадратичная форма, поскольку
она принимает, очевидно, только неотрицательные значения, но
обращается в нуль не только в начале координат, например,
Q(2, 1) = 0.

Квадратичная форма называется знакопеременной, если она
принимает как положительные, так и отрицательные значения.

Пример. Q(x1,x2) = 2x21 − 3x1x2 − x22 — знакопеременная
квадратичная форма: Q(1, 0) = 2 > 0, Q(0, 1) = −1 < 0.

Матрица

A =

⎛⎜⎝ a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
am1 am2 · · · amm

⎞⎟⎠
называется матрицей квадратичной формы Q =

m∑
i,j=1

aijxixj .

Отметим, что A — симметричная матрица, так как aij = aji.



58 Гл. 9. Функции многих переменных

Миноры

δ1 = a11, δ2 =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ , . . . ,
δk =

∣∣∣∣∣ a11 · · · a1k
· · · · · · · · ·
ak1 · · · akk

∣∣∣∣∣ , . . . , δm =

∣∣∣∣∣ a11 · · · a1m
· · · · · · · · ·
am1 · · · amm

∣∣∣∣∣
называются угловыми минорами матрицы A.

Критерий Сильвестра знакоопределенности квадратичной
формы

Для того, чтобы квадратичная форма Q =
m∑

i,j=1

aijxixj была

положительно определенной, необходимо и достаточно, чтобы
все угловые миноры матрицы A были положительны:

δ1 > 0, δ2 > 0, . . . , δm > 0.

Для того, чтобы квадратичная форма была отрицательно
определенной, необходимо и достаточно, чтобы знаки угловых
миноров чередовались следующим образом:

δ1 > 0, δ2 < 0, δ3 < 0, δ4 > 0, . . . .

Достаточные условия экстремума
Для функции одной переменной y = f(x) достаточным усло-

вием минимума (максимума) в точке x0 является условие
f ′(x0) = 0, f ′′(x0) > 0 (< 0).

Это же условие можно записать через дифференциалы функ-
ции в точке x0:

dy|x0= f ′(x0) ·Δx= 0, d2y
∣∣
x0
= f ′′(x0) · (Δx)2 > 0 (< 0) ∀ Δx �= 0.

Аналогичное достаточное условие имеет место и для функции
многих переменных.

Напомним, что для функции u = f(x1, . . . ,xm) первый и вто-
рой дифференциалы в точке M0 имеют вид:

du|M0
=

m∑
i=1

∂u

∂xi
(M0) ·Δxi,

d2u
∣∣
M0

=
m∑

i,j=1

∂2u

∂xi∂xj
(M0) ·Δxi ·Δxj (формула (9.26) из §7).
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Отметим, что d2u
∣∣
M0

— квадратичная форма от переменных

Δx1, . . . ,Δxm.
Теорема 21. Пусть выполнены условия: 1) функция

u = f(M) = f(x1, . . . ,xm) дважды дифференцируема в точке
M0(x

0
1, . . . ,x

0
m); 2) du|M0

= 0; 3) d2u
∣∣
M0

— положительно (от-

рицательно) определенная квадратичная форма от переменных
Δx1, . . . ,Δxm.

Тогда функция u = f(M) имеет в точке M0 локальный мини-
мум (максимум).
Доказательство. Рассмотрим случай, когда d2u

∣∣
M0

— положи-

тельно определенная квадратичная форма.
Согласно определению локального минимума требуется до-

казать, что существует δ-окрестность точки M0, в которой для
любой точки M (отличной от M0) выполнено неравенство

Δu = f(M)− f(M0) > 0.

Пусть M
(
x01 +Δx1, . . . ,x

0
m +Δxm

)
— произвольная точка из

окрестности точки M0. Согласно теореме 19а Δu можно предста-
вить в виде

Δu = f(M)− f(M0) = du|M0
+

1

2
d2u

∣∣
M0

+ o
(
ρ2
)
,

где ρ = ρ(M ,M0) =
√

Δx21 + . . .+Δx2m . Так как du|M0
= 0, то

Δu =
1

2

m∑
i,j=1

∂2u

∂xi∂xj
(M0)ΔxiΔxj + o

(
ρ2
)
=

=
1

2
ρ2

(
m∑

i,j=1

∂2u

∂xi∂xj
(M0)

Δxi
ρ

· Δxj
ρ

+
o
(
ρ2
)

ρ2

)
.

Введем обозначения:
∂2u

∂xi∂xj
(M0) = aij ,

Δxi
ρ

= hi,

Q =
m∑

i,j=1

aijhihj , α(ρ) =
o
(
ρ2
)

ρ2
.

Тогда

Δu =
1

2
ρ2 (Q+ α(ρ)) ,
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величины h1, . . . ,hm удовлетворяют равенству

h21 + h22 + . . .+ h2m = 1, (9.38)

а α(ρ) → 0 при ρ→ 0.
Уравнение (9.38) является уравнением сферы радиуса 1 в про-

странстве R
m точек с координатами (h1, . . . ,hm). Квадратичная

форма Q в силу условия 3 теоремы является положительно опре-
деленной, то есть Q > 0 ∀h1, . . . ,hm, одновременно не равных
нулю. В частности,

Q(h1, . . . ,hm) > 0 во всех точках сферы (9.38).

Кроме того, Q(h1, . . . ,hm) — непрерывная функция переменных
h1, . . . ,hm, а сфера (9.38) — ограниченное замкнутое множество.
По второй теореме Вейерштрасса функция Q достигает на сфере
(9.38) своей точной нижней грани, то есть имеет на сфере (9.38)
минимальное значение. Обозначим его буквой m. Тогда Q(h1, . . .
. . . ,hm) � m > 0 на сфере (9.38).

Так как α(ρ) → 0 при ρ→ 0, то ∃ δ > 0, такое, что |α(ρ)| < m
при 0 < ρ < δ. Поэтому в δ-окрестности точки M0 имеем:

Δu =
1

2
ρ2 [Q+ α(ρ)] > 0

при ρ �= 0, то есть при M �=M0, что и требовалось доказать.
Теорема 22. Пусть выполнены условия 1 и 2 теоремы 21, а

вместо условия 3 выполнено условие 3′: d2u
∣∣
M0

— знакоперемен-

ная квадратичная форма. Тогда в точке M0 экстремума функций
нет.
Доказательство. Как и при доказательстве теоремы 21 введем

обозначение
∂2u

∂xi∂xj
(M0) = aij . В силу условия 3′ существуют

Δx′1, . . . ,Δx
′
m, такие, что число

Q′ =
m∑

i,j=1

∂2u

∂xi∂xj
(M0)Δx

′
iΔx

′
j =

m∑
i,j=1

aijΔx
′
iΔx

′
j > 0,

и также существуют Δx′′1, . . . ,Δx
′′
m, такие, что число

Q′′ =
m∑

i,j=1

aijΔx
′′
iΔx

′′
j < 0.
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Обозначим через M1 точку с координатами (x01 + Δx′1, . . .
. . . ,x0m + Δx′m), а через M2 — точку с координатами(
x01 +Δx′′1, . . . ,x

0
m +Δx′′m

)
(рис. 9.22).

Положим ρ′ = ρ(M1,M0) =
√
(Δx′1)

2 + . . .+ (Δx′m)2 .

Рис. 9.22.

Отметим, что ρ′ —
вполне определенное поло-
жительное число. Произ-
вольная точка Mt на отрезке
M0M1 имеет координаты
Mt(x01 + tΔx′1, . . . ,x

0
m +

+ tΔx′m), причем 0 � t � 1,
точка M0 соответствует
t = 0, точка M1 соответству-

ет t = 1, ρ2 (Mt,M0) = t2ρ′2.
Согласно теореме 19а имеем:

Δu = f(Mt)− f(M0) = du|M0
+

1

2
d2u

∣∣
M0

+ o
(
t2ρ′2

)
=

=
1

2

m∑
i,j=1

aij(tΔx′i)(tΔx
′
j) + o

(
t2
)
=

=
1

2
t2

(
m∑

i,j=1

aijΔx′iΔx
′
j +

o
(
t2
)

t2

)
=

1

2
t2
(
Q′ + o(t2)

t2

)
.

Так как
o
(
t2
)

t2
→ 0 при t→ 0, то ∃ δ > 0, такое, что∣∣∣∣o(t2)t2

∣∣∣∣ < Q′ при 0 < t < δ.

Отсюда следует, что на отрезке M0Mδ выполнено неравенство
Δu = f(M)− f(M0) > 0 при M �=M0.

Аналогично доказывается, что на отрезке M0M2 существует
точка M ′

δ, такая, что на отрезке M0M
′
δ выполнено неравенство:

Δu < 0 при M �=M0.
Таким образом, в любой окрестности точки M0 имеются

точки M , для которых Δu = f(M) − f(M0) > 0, и также име-
ются точки, для которых Δu < 0. Следовательно, в точке M0

экстремума функции нет. Теорема доказана.
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Примеры.
1. u = xy (x > 0). Для нахождения точек возможного экстре-

мума данной функции рассмотрим систему уравнений:{
ux = y xy−1 = 0,
uy = xy lnx = 0,

из которой находим: x = 1, y = 0. Следовательно,
M0(1, 0) — точка возможного экстремума данной функции.
Так как d2u

∣∣
M0

= 2ΔxΔy — знакопеременная квадратичная

форма (это выражение для d2u
∣∣
M0

получено в §7), то в

точке M0(1, 0) экстремума функции нет.

2. u = x2 + 2xy + 2y2 + xz + z3 − 4z.

Для нахождения точек возможного экстремума этой функ-
ции составим систему уравнений⎧⎨⎩ ux = 2x+ 2y + z = 0,

uy = 2x+ 4y = 0,

uz = x+ 3z2 − 4 = 0.

Она имеет два решения:

x1 = 1, y1 = −1

2
, z1 = −1 и x2 = −4

3
, y2 =

2

3
, z2 =

4

3
,

и, следовательно, получаем две точки возможного экстре-

мума функции: M1

(
1,−1

2
,−1

)
и M2

(
−4

3
,
2

3
,
4

3

)
.

Чтобы установить, имеет ли функция экстремумы в точках
M1 и M2, исследуем второй дифференциал d2u в этих точ-
ках. С этой целью вычислим частные производные второго
порядка:

uxx = 2, uxy = 2, uxz = 1;
uyx = 2, uyy = 4, uyz = 0;
uzx = 1, uzy = 0, uzz = 6z;

и составим матрицу квадратичной формы d2u:(
2 2 1
2 4 0
1 0 6z

)
Вычислим ее угловые миноры:

δ1 = 2 > 0, δ2 = 4 > 0, δ3 = 24z − 4.
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В точке M1 имеем: δ1 > 0, δ2 > 0, δ3 = −28 < 0, поэтому,

согласно критерию Сильвестра, d2u
∣∣
M1

не является знако-

определенной квадратичной формой. Нетрудно усмотреть,
что эта квадратичная форма — знакопеременная. В самом
деле,

d2u
M1
Δx�=0
Δy=Δz=0

= 2 (Δx)2 > 0, d2u
M1
Δx=Δy=0
Δz �=0

= −6 (Δz)2 < 0.

По теореме 22 в точке M1 экстремума функции нет.
В точке M2 имеем: δ1 > 0, δ2 > 0, δ3 = 28 > 0, поэтому
d2u

∣∣
M2

— положительно определенная квадратичная форма

и, следовательно, в точке M2 функция имеет локальный
минимум.

Замечание. Если du|M0
= 0, а d2u

∣∣
M0

— квазизнакоопреде-

ленная квадратичная форма, то в точке M0 экстремум может
быть, а может и не быть (нужно дополнительное исследование).

Случай функции двух переменных
Если u = u(x, y), то

d2u
∣∣
M0

=
∂2u

∂x2
(M0)(Δx)

2 + 2
∂2u

∂x∂y
(M0)ΔxΔy +

∂2u

∂y2
(M0)(Δy)

2

или (обозначим производные второго порядка через a11, a12, a22)

d2u
∣∣
M0

= a11(Δx)
2 + 2a12ΔxΔy + a22(Δy)

2.

Пусть выполнены условия 1 и 2 теоремы 21.
Тогда: I. Если D = a11a22 − a212 > 0, то в точке M0 функция

u(x, y) имеет локальный экстремум: минимум, если a11 > 0;
максимум, если a11 < 0.
II. Если D < 0, то в точке M0 экстремума функции нет.
III. Если D = 0, то в точке M0 экстремум может быть, а может
и не быть.

Задание. Доказать сформулированные утверждения I и II.
Для случая III рассмотреть примеры: u = x4 + y4, точка

M0(0, 0); u = x3y3, точка M0(0, 0).



Гл а в а 10

НЕЯВНЫЕ ФУНКЦИИ

§ 1. О неявных функциях, определяемых одним
уравнением

Функция y = f(x), x ∈ X может быть задана путем непо-
средственного (явного) указания правила f , по которому каж-
дому числу x из области определения функции (то есть из
множества X) ставится в соответствие определенное число y.
В таком случае говорят, что функция задана явно. Например,
y = x2, x ∈ (−∞,+∞) — явно заданная функция.

Существует и другой способ задания функции y = f(x), в
котором правило f задается не непосредственно, а «спрятано» в
уравнении, связывающем переменные x и y. Например, уравне-
ние

x2 + y2 − 1 = 0, (10.1)

рассматриваемое в полуполосе {(x, y) : − 1 � x � 1, y � 0} как
уравнение относительно y, имеет решение y =

√
1− x2 , и тем

самым определяет функцию

y = f(x) :=
√
1− x2 , x ∈ [−1; 1], (10.2)

но при этом правило f изначально задано не в явном виде, а
«спрятано» в уравнении (10.1).

Рассмотрим более общее уравнение с двумя переменными x
и y:

F (x, y) = 0. (10.3)

Если для любого числа x из множества X уравнение (10.3)
имеет относительно y решение y = f(x), то говорят, что уравне-
ние (10.3) задает неявно функцию y = f(x), x ∈ X, а сама эта
функция называется неявной функцией, определяемой уравне-
нием (10.3).

Итак, неявная функция y = f(x) — это решение уравнения
(10.3) относительно y, то есть

∀x ∈ X : F (x, f(x)) = 0.
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Возвращаясь к уравнению (10.1), можно теперь сказать, что это
уравнение определяет неявную функцию (10.2).

Мы рассмотрим вопрос о том, при каких условиях на функ-
цию F (x, y) уравнение (10.3) определяет неявную функцию
y = f(x), а также вопрос о непрерывности и дифференцируемо-
сти неявной функции.

При этом нужно различать существование неявной функции,
то есть существование решения уравнения (10.3) относительно
y, и возможность найти эту неявную функцию в явном виде. Так,
например, неявная функция y = f(x), определяемая уравнением
(10.1) легко находится в явном виде (10.2), а неявная функция
y = f(x), определяемая уравнением

2y + sin y − x = 0,

как мы увидим ниже, существует, однако найти ее в явном виде
не представляется возможным.

Теорема 1. Пусть выполнены условия:
1. функция F (x, y) определена и непрерывна в прямоугольни-

ке Q = {(x, y) : a < x < b, c � y � d};
2. ∀x ∈ (a, b) : F (x, c) · F (x, d) < 0 (это условие означает, что

функция F (x, y) имеет разные знаки на нижней и верхней
сторонах прямоугольника Q);

3. для любого x из интервала (a, b) функция F (x, y) является
строго монотонной функцией переменной y на сегменте
[c, d].

Тогда:
1) в прямоугольнике Q уравнение

F (x, y) = 0

определяет единственную неявную функцию вида

y = f(x), x ∈ (a, b),

то есть ∀x ∈ (a, b) уравнение (10.3) имеет единственное решение
относительно y, принадлежащее сегменту [c, d];
2) неявная функция y = f(x) непрерывна на интервале (a, b).
Доказательство. 1) Зафиксируем любое число x из интервала
(a, b) и рассмотрим при этом значении x функцию F (x, y) ар-
гумента y на сегменте [c, d]. Эта функция непрерывна на сег-
менте [c, d] (условие 1) и имеет на концах сегмента значения
разных знаков (условие 2). Следовательно, существует y ∈ (c, d),

3 В.Ф. Бутузов
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такое, что F (x, y) = 0. В силу строгой монотонности F (x, y) по
переменной y (условие 3) такое значение y единственно (для
фиксированного x). Итак, ∀x ∈ (a, b) уравнение (10.3) имеет
единственное решение относительно y. Обозначим это решение
так: y = f(x).

Таким образом, существование и единственность неявной
функции вида y = f(x), x ∈ (a, b), определяемой уравнением
(10.3), доказано.

2) Докажем непрерывность неявной функции y = f(x) на
интервале (a, b), то есть непрерывность в каждой точке x0 ∈
∈ (a, b). По определению непрерывности нужно доказать, что
∀ε > 0 ∃δ > 0, такое, что

|f(x)− f(x0)| < ε при |x− x0| < δ. (10.4)

Зададим произвольное ε > 0 (такое, что f(x0) − ε � c и
f(x0) + ε � d) и будем считать (для определенности), что
функция F (x, y) при фиксированном x является возрастаю-
щей функцией переменной y (см. условие 3). Тогда F (x0, y) <
< F (x0, f(x0)) = 0 при y < f(x0) и F (x0, y) > 0 при y > f(x0), в
частности,

F (x0, f(x0)− ε) < 0 и F (x0, f(x0) + ε) > 0. (10.5)

Рассмотрим функцию F (x, y) на прямых y = f(x0) − ε и y =
= f(x0) + ε. Из неравенств (10.5) в силу устойчивости знака
непрерывной функции следует, что в некоторой δ-окрестности
точки x0 будут выполнены неравенства

F (x, f(x0)− ε) < 0 и F (x, f(x0) + ε) > 0

Рис. 10.1.

(на рис. 10.1 эти неравенства
отмечены знаками + и −).

В свою очередь, из этих
неравенств следует, что для
любого x из δ-окрестности
точки x0 корень уравне-
ния (10.3), то есть чис-
ло y = f(x), лежит меж-
ду f(x0) − ε и f(x0) + ε.
Иными словами, в пре-
делах δ-окрестности точки
x0 график неявной функции
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y = f(x) лежит в полосе между прямыми y = f(x0) − ε и
y = f(x0) + ε (см. рис. 10.1). Итак, справедливы неравенства

f(x0)− ε < f(x) < f(x0) + ε при |x− x0| < δ,

то есть выполнено условие (10.4), что и требовалось доказать.
Теорема 1 доказана.

Пример. Рассмотрим уравнение

F (x, y) := 2y + sin y − x = 0, (x, y) ∈ R
2. (10.6)

Докажем, что оно определяет единственную неявную функ-
цию вида

y = f(x), x ∈ (−∞,+∞).

Зафиксируем произвольное значение x и рассмотрим функ-

цию F (x, y) при этом значении x. Положим y = y1 =
x

2
− 1, тогда

F (x, y1) = −2+ sin y1 < 0. Положим теперь y = y2 =
x

2
+ 1, тогда

F (x, y2) = 2+ sin y2 > 0. Следовательно, существует y ∈ (y1, y2),
такое, что F (x, y) = 0. Обозначим это значение y через f(x).
Итак, ∀x уравнение (10.6) имеет решение y = f(x).

Так как F ′
y(x, y) = 2 + cos y > 0, то при каждом x функция

F (x, y) является возрастающей функцией переменной y и, сле-
довательно, уравнение (10.6) определяет единственную неявную
функцию вида y = f(x), x ∈ (−∞,+∞).

Как уже отмечалось, эту неявную функцию мы не можем
найти в явном виде. Однако, мы можем «увидеть» эту функцию,
построив график функции x = 2y + sin y (см. рис. 10.2).

Существенным условием в теореме 1 было условие стро-
гой монотонности функции F (x, y) по переменной y. Достаточ-
ным условием, обеспечивающим строгую монотонность функции
F (x, y) по переменной y, является знакопостоянство частной про-
изводной F ′

y(x, y). Это условие использовалось в рассмотренном
примере и будет использовано в следующей теореме.

Теорема 2. Пусть выполнены условия:
1. функция F (x, y) определена и непрерывна в некоторой

окрестности точки M0(x0, y0) (обозначим эту окрестность
буквой ω);

2. в окрестности ω существует частная производная F ′
y(x, y),

непрерывная в точке M0;
3. F (x0, y0) = 0, F ′

y(x0, y0) �= 0.

3*
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Рис. 10.2.

Тогда существует прямоугольник

Q = {(x, y) : |x− x0| < d, |y − y0| � c ; d > 0, c > 0},
целиком содержащийся в окрестности ω точки M0, в котором
уравнение F (x, y) = 0 определяет единственную неявную функ-
цию вида y = f(x), и эта функция непрерывна при |x− x0| < d.
Доказательство. Пусть (для определенности) F ′

y(x0, y0) > 0 (см.
условие 3). В силу непрерывности F ′

y(x, y) в точке M0 (усло-
вие 2) и устойчивости знака непрерывной функции найдется
прямоугольник

Q̃ =
{
(x, y) : |x− x0| < d̃, |y − y0| � c ; d̃ > 0, c > 0

}
,

целиком содержащийся в окрестности ω точки M0, в котором
F ′
y(x, y) > 0 и, следовательно, функция F (x, y) является возрас-

тающей функцией переменной y на сегменте [y0 − c, y0 + c] для
любого x ∈ (x0 − d̃,x0 + d̃).

Рассмотрим функцию F (x0, y) на сегменте y0 − c � y � y0 + c.
Так как она возрастает на этом сегменте и так как F (x0, y0) = 0
(условие 3), то

F (x0, y0 − c) < 0 и F (x0, y0 + c) > 0. (10.7)

Рассмотрим теперь функцию F (x, y) на нижней и верх-

ней сторонах прямоугольника Q̃, то есть рассмотрим функции
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F (x, y0 − c) и F (x, y0 + c) при |x− x0| < d̃. В силу непрерывности
этих функций (условие 1) и неравенств (10.7) найдется интер-

вал x0 − d < x < x0 + d (d � d̃), такой, что на этом интервале
F (x, y0 − c) < 0, F (x, y0 + c) > 0, и, следовательно,

F (x, y0 − c) · F (x0, y0 + c) < 0 при |x− x0| < d.

Таким образом, мы построили прямоугольник Q =
= {(x, y) : |x − x0| < d, |y − y0| � c}, в котором выполнены все
условия теоремы 1.

По теореме 1 в прямоугольнике Q уравнение (10.3) определя-
ет единственную неявную функцию вида y = f(x), и эта функция
непрерывна при |x− x0| < d. Теорема 2 доказана.

Замечание 1. Отметим, что теорема 2 (в отличие от теоре-
мы 1) носит локальный характер — в ней идет речь о существо-
вании и непрерывности неявной функции y = f(x) в окрестности
точки M0(x0, y0), координаты которой удовлетворяют уравнению
(10.3). Отметим также, что значение неявной функции y = f(x)
в точке x0 равно y0: f(x0) = y0.

Замечание 2. Если выполнены все условия теоремы 2, кроме
условия F ′

y(x0, y0) �= 0, то есть если F ′
y(x0, y0) = 0, то заключение

теоремы 2 становится, вообще говоря, неверным. Рассмотрим,
например, уравнение

F (x, y) := x2 + y2 − 1 = 0 (10.8)

в окрестности точки M0(1; 0). Заметим, что F (1; 0) = 0 и
F ′
y(1; 0) = 0, то есть условие F ′

y(1; 0) �= 0 нарушено. При этом в
окрестности точки M0 заключение теоремы не выполнено: при
x > 1 уравнение (10.8) не имеет решений относительно y, то есть
не определяет неявной функции вида y = f(x), а при x < 1 имеет
два непрерывных решения: y =

√
1− x2 и y = −√

1− x2 , то есть
не выполнено утверждение о единственности неявной функции.

Вместе с тем, условие F ′
y(x0, y0) �= 0 не является необходи-

мым условием того, чтобы заключение теоремы 2 имело место.
Например, уравнение x3 − y3 = 0 в окрестности точки M0(0; 0)
определяет единственную неявную функцию вида y = f(x), а
именно, функцию y = x, но при этом F ′

y(0; 0) = 0.
Перейдем теперь к вопросу о дифференцируемости неявной

функции y = f(x), определенной уравнением (10.3).
Теорема 3. Пусть выполнены условия теоремы 2 и пусть

функция F (x, y) дифференцируема в точке M0(x0, y0). Тогда
неявная функция y = f(x), определяемая уравнением (10.3),
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дифференцируема в точке x0, и ее производная в этой точке
выражается формулой

f ′(x0) = −F ′

x(x0, y0)

F ′

y(x0, y0)
.

Доказательство. Так как функция F (x, y) дифференцируема в
точке M0(x0, y0), то ее приращение в этой точке можно предста-
вить в виде:

ΔF := F (x0 +Δx, y0 +Δy)− F (x0, y0) =

= F ′
x(x0, y0)Δx+ F ′

y(x0, y0)Δy + α1Δx+ α2Δy, (10.9)

где α1 и α2 — функции аргументов Δx и Δy, бесконечно малые
при {Δx→ 0, Δy → 0}.

Возьмем Δx �= 0 столь малым, что |Δx| < d, то есть x0 −
− d < x0 + Δx < x0 + d, где (x0 − d,x0 + d) — интервал, на
котором определена неявная функция y = f(x) из теоремы 2,
а Δy положим равным приращению неявной функции в точке
x0, то есть Δy = f(x0 + Δx) − f(x0) = f(x0 + Δx) − y0. Для
выбранных Δx и Δy имеем:

ΔF = F (x0 +Δx, f(x0 +Δx))− F (x0, y0) = 0

(поскольку F (x, f(x)) = 0 ∀x ∈ (x0 − d,x0 + d)), и следовательно,
из (10.9) получаем:

F ′
x(x0, y0)Δx+ F ′

y(x0, y0)[f(x0 +Δx)− f(x0)]+

+ α1Δx+ α2[f(x0 +Δx)− f(x0)] = 0,

откуда следует равенство

f(x0 +Δx)− f(x0)

Δx
= −F ′

x(x0, y0) + α1

F ′

y(x0, y0) + α2

.

Перейдем в этом равенстве к пределу при Δx → 0. Так как
неявная функция y = f(x) непрерывна в точке x0 (теорема 2),
то Δy = f(x0 + Δx) − f(x0) → 0 при Δx → 0. Следовательно,
α1 → 0 и α2 → 0 при Δx→ 0, а поскольку F ′

y(x0, y0) �= 0 (условие
3 теоремы 2), то предел правой части равенства существует

и равен −F ′

x(x0, y0)

F ′

y(x0, y0)
. Значит, существует предел и левой части

равенства, а этот предел и есть f ′(x0) (по определению про-
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изводной). Таким образом, в пределе при Δx → 0 приходим к

равенству f ′(x0) = −F ′

x(x0, y0)

F ′

y(x0, y0)
. Теорема 3 доказана.

Следствие. Если функция F (x, y) дифференцируема в пря-
моугольнике Q (см. теорему 2), то неявная функция y = f(x)
дифференцируема на интервале (x0 − d,x0 + d) и ее производная
выражается формулой

f ′(x) = − F ′

x(x, y)

F ′

y(x, y)

∣∣∣∣
y=f(x)

. (10.10)

Замечание. Если функция F (x, y) дифференцируема в прямо-
угольнике Q k раз, то и неявная функция y = f(x) дифференци-
руема на интервале (x0 − d,x0 + d) k раз; для нахождения f ′′(x)
нужно взять производную от f ′(x) и так далее.

Пример. Рассмотрим снова уравнение (10.6)

F (x, y) := 2y + sin y − x = 0, (x, y) ∈ R
2.

Оно определяет единственную неявную функцию вида y = f(x),
x ∈ (−∞,+∞), причем эта функция дифференцируема в каждой
точке в силу теоремы 3. По формуле (10.10) находим:

f ′(x) = − F ′

x(x, y)

F ′

y(x, y)

∣∣∣∣
y=f(x)

=
1

2+ cos f(x)
.

Дифференцируя f ′(x), находим f ′′(x):

f ′′(x) = [f ′(x)]′ = − 1

[2+ cos f(x)]2
(− sin f(x))f ′(x) = sin f(x)

[2+ cos f(x)]3
,

и далее можно найти производные более высокого порядка функ-
ции f(x).

Заметим, что для вычисления f ′(x) и f ′′(x) в какой-то точ-
ке x с помощью полученных формул сначала нужно найти из
уравнения (10.6) соответствующее значение f(x). Для произ-
вольно заданного x это можно сделать только приближенно, но
для x, кратного 2π, нетрудно найти точное значение f(x) (см.
рис. 10.2): f(2kπ) = kπ, k ∈ Z. Например, для x = 2π получаем:
f(2π) = π, f ′(2π) = 1, f ′′(2π) = 0.

Рассмотрим теперь уравнение, которое является обобщением
уравнения (10.3):

F (x1, . . . ,xn, y) = 0. (10.11)
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Решение этого уравнения относительно y является функцией n
переменных: y = f(x1, . . . ,xn) и называется неявной функцией,
определяемой уравнением (10.11).

Теорема 4. Пусть выполнены условия:
1. функция F (x1, . . . ,xn, y) определена и дифференцируема в

некоторой окрестности ω точки M0

(
x01, . . . ,x

0
n, y

0
)
;

2. частная производная F ′
y(x1, . . . ,xn, y) непрерывна в точке

M0;
3. F

(
x01, . . . ,x

0
n, y

0
)
= 0, F ′

y

(
x01, . . . ,x

0
n, y

0
) �= 0.

Тогда существует параллелепипед

Q =
{
(x1, . . . ,xn, y) :

∣∣xi − x0i
∣∣ < di, i = 1, . . . ,n,∣∣y − y0

∣∣ � c; di > 0, c > 0
}
,

целиком содержащийся в окрестности ω точки M0, в котором
уравнение (10.11) определяет единственную неявную функцию
вида y = f(x1, . . . ,xn), эта неявная функция дифференцируема
в параллелепипеде

{
(x1, . . . ,xn, y) :

∣∣xi − x0i
∣∣ < di, i = 1, . . . ,n

}
и

ее частные производные выражаются формулой

∂f

∂xi
(x1, . . . ,xn) = − F ′

xi
(x1, . . . ,xn, y)

F ′

y(x1, . . . ,xn, y)

∣∣∣∣
y=f(x1,...,xn)

. (10.12)

Доказательство теоремы 4 проводится аналогично доказатель-
ству теорем 2 и 3.

§ 2. О неявных функциях, определяемых системой
уравнений

Рассмотрим систему m уравнений⎧⎪⎨⎪⎩
F1(x1, . . . ,xn, y1, . . . , ym) = 0,
F2(x1, . . . ,xn, y1, . . . , ym) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fm(x1, . . . ,xn, y1, . . . , ym) = 0.

(10.13)

Решение этой системы относительно y1, . . . , ym

y1 = f1(x1, . . . ,xn), . . . , ym = fm(x1, . . . ,xn) (10.14)

называется системой неявных функций, определяемой систе-
мой уравнений (10.13).
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Мы рассмотрим вопросы о существовании, единственности
и дифференцируемости неявных функций вида (10.14), опре-
деляемых системой уравнений (10.13). При рассмотрении этих
вопросов важную роль играет определитель

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂y1

∂F1

∂y2
. . .

∂F1

∂ym

∂F2

∂y1

∂F2

∂y2
. . .

∂F2

∂ym

· · · · · · · · · · · ·
∂Fm

∂y1

∂Fm

∂y2
. . .

∂Fm

∂ym

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Он называется определителем Якоби или якобианом функций
F1,F2, . . . ,Fm по переменным y1, y2, . . . , ym. Для него будем ис-
пользовать также более краткое обозначение

Δ =
D(F1, . . . ,Fm)

D(y1, . . . , ym)
.

Теорема 5. Пусть выполнены условия:
1. функции

F1(x1, . . . ,xn, y1, . . . , ym), . . . , Fm(x1, . . . ,xn, y1, . . . , ym)

определены и дифференцируемы в некоторой окрестности
ω точки M0

(
x01, . . . ,x

0
n, y

0
1, . . . , y

0
m

)
;

2. частные производные
∂Fi

∂yj
(i, j = 1, . . . ,m), входящие в яко-

биан Δ, непрерывны в точке M0;

3. F1(M0) = 0, ...,Fm(M0) = 0, Δ(M0) =
D(F1, . . . ,Fm)

D(y1, . . . , ym)

∣∣∣∣
M0

�= 0.

Тогда существует параллелепипед

Q =
{
(x1, . . . ,xn, y1, . . . , ym) :

∣∣xi − x0i
∣∣ < di, i = 1, . . . ,n;∣∣yj − y0j

∣∣ � cj , j = 1, . . . ,m; di > 0, cj > 0
}
,

целиком содержащийся в окрестности ω точки M0, в котором
система уравнений (10.13) определяет единственную систему
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неявных функций вида (10.14), и эти неявные функции диффе-
ренцируемы в параллелепипеде{

(x1, . . . ,xn) :
∣∣xi − x0i

∣∣ < di, i = 1, . . . ,n
}
.

Доказательство. При m = 1 (то есть когда система (10.13) состо-
ит из одного уравнения) справедливость утверждения теоремы 5
следует из теоремы 4. При m > 1 теорему 5 можно доказать по
индукции (см. [1]).

Мы проведем доказательство теоремы 5 для m = 2. В этом
случае система (10.13) состоит из двух уравнений, которые за-
пишем в виде

F1(x, y1, y2) = 0, F2(x, y1, y2) = 0, (10.15)

где x = (x1,x2, . . . ,xn). Точка M0 имеет координаты x0, y01, y
0
2, где

x0 = (x01,x
0
2, . . . ,x

0
n), и, согласно условию 3,

F1(M0) = 0, F2(M0) = 0, Δ(M0) =

∣∣∣∣∣∣∣∣
∂F1

∂y1
(M0)

∂F1

∂y2
(M0)

∂F2

∂y1
(M0)

∂F2

∂y2
(M0)

∣∣∣∣∣∣∣∣ �= 0.

(10.16)

Из последнего неравенства следует, что некоторые из элементов
якобиана Δ(M0) отличны от нуля. Пусть (для определенности)
∂F1

∂y1
(M0) �= 0.

Рассмотрим первое уравнение системы (10.15) в окрестности
точки M0 как уравнение относительно y1:

F1(x, y1, y2) = 0. (10.17)

Так как F1(M0) = 0 и
∂F1

∂y1
(M0) �= 0, то для уравнения (10.17)

выполнены условия теоремы 4, согласно которой в некотором
параллелепипеде с центром M0 уравнение (10.17) имеет решение
относительно y1:

y1 = f(x, y2), (10.18)

причем f(x0, y02) = y01, f(x, y2) — дифференцируемая функция и

ее частная производная
∂f

∂y2
выражается формулой (см. (10.12))

∂f

∂y2
(x, y2) = −

∂F1

∂y2
(x, y1, y2)

∂F1

∂y1
(x, y1, y2)

∣∣∣∣∣∣
y1=f(x,y2)

.
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Подставив функцию (10.18) во второе уравнение системы
(10.15), получим уравнение

F2(x, f(x, y2), y2) =: g(x, y2) = 0. (10.19)

Будем рассматривать это уравнение как уравнение относительно
y2 в окрестности точки M ′

0

(
x0, y02

)
и убедимся в том, что для

него выполнены все условия теоремы 4.
Так как F2(x, y1, y2) и f(x, y2) — дифференцируемые функ-

ции, то функция g(x, y2) дифференцируема в некоторой окрест-
ности точки M ′

0, то есть выполнено условие 1 теоремы 4.
Частная производная

∂g

∂y2
(x, y2) =

[
∂F2

∂y1
· ∂f
∂y2

+
∂F2

∂y2

]
y1=f(x,y2)

=

=

⎡⎣∂F2

∂y1

⎛⎝−
∂F1

∂y2
∂F1

∂y1

⎞⎠+
∂F2

∂y2

⎤⎦
y1=f(x,y2)

= Δ ·
(
∂F1

∂y1

)−1
∣∣∣∣
y1=f(x,y2)

(10.20)

непрерывна в точке M ′
0 в силу непрерывности в точке M0

частных производных
∂Fi

∂yj
(i, j = 1, 2), входящих в якобиан Δ,

непрерывности в точке M ′
0 функции (10.18) и отличия от нуля

производной
∂F1

∂y1
(M0). Таким образом, условие 2 теоремы 4 вы-

полнено.
Наконец,

g(M ′
0) = F2

(
x0, f(x0, y02), y

0
2

)
= F2

(
x0, y01, y

0
2

)
= F2(M0) = 0

(см. (10.16)), а

∂g

∂y2
(M ′

0) = Δ(M0) ·
(
∂F1

∂y1
(M0)

)−1

�= 0

(см. (10.20) и (10.16)), то есть выполнено условие 3 теоремы 4.
Согласно теореме 4 в некотором параллелепипеде с цен-

тром M ′
0 уравнение (10.19) имеет единственное решение относи-

тельно y2:
y2 = f2(x), (10.21)

причем f2(x) — дифференцируемая функция.
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Подставляя это решение в (10.18), получим дифференцируе-
мую функцию

y1 = f(x, f2(x)) =: f1(x). (10.22)

Таким образом, в некотором параллелепипеде с центром в
точке M0 система уравнений (10.15) имеет единственное реше-
ние вида (10.21), (10.22), то есть определяет единственную пару
неявных функций вида (10.21), (10.22), причем f1(x) и f2(x) —
дифференцируемые функции.
Теорема 5 для m = 2 доказана.

Вычисление производных неявных функций y1 = f1(x)
и y2 = f2(x). Если подставить (мысленно) в систему уравнений
(10.15) функции y1 = f1(x), y2 = f2(x), являющиеся решением
этой системы, то получим тождества

F1(x, f1(x), f2(x)) = 0, F2(x, f1(x), f2(x)) = 0.

Продифференцируем эти тождества по какому-то из аргументов
xi (i = 1, 2, . . . ,n):[

∂F1

∂xi
+
∂F1

∂y1
· ∂f1
∂xi

+
∂F1

∂y2
· ∂f2
∂xi

]∣∣∣
y1=f1(x), y2=f2(x)

= 0,[
∂F2

∂xi
+
∂F2

∂y1
· ∂f1
∂xi

+
∂F2

∂y2
· ∂f2
∂xi

]∣∣∣
y1=f1(x), y2=f2(x)

= 0.
(10.23)

Из этой системы двух линейных уравнений относительно про-

изводных
∂f1
∂xi

и
∂f2
∂xi

однозначно определяются указанные про-

изводные, поскольку определителем системы является якобиан

Δ =
D(F1,F2)

D(y1, y2)
, который отличен от нуля в точке M0 (см. (10.16)),

а в силу непрерывности отличен от нуля и в некоторой окрест-
ности точки M0.

Отметим, что выражения для производных
∂f1
∂xi

и
∂f2
∂xi

, кото-

рые нетрудно получить из (10.23), будут содержать сами неявные

функции f1(x) и f2(x) и, следовательно, чтобы вычислить
∂f1
∂xi

и

∂f2
∂xi

в данной точке x, нужно сначала найти значения неявных

функций в этой точке, а для этого нужно решить систему (10.15)
относительно y1 и y2 для данной точки x.

Если функции F1(x, y1, y2) и F2(x, y1, y2) дифференцируемы k
раз в окрестности точки M0, то неявные функции y1 = f1(x) и
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y2 = f2(x) также дифференцируемы k раз. Их частные производ-
ные второго порядка можно найти, дифференцируя производные
∂f1
∂xi

и
∂f2
∂xi

, найденные из системы (10.23), и так далее.

Пример. Доказать, что система уравнений

x2 + y2 + z2 − 3 = 0, x+ y + z − 1 = 0 (10.24)

определяет в окрестности точки M0(1; 1;−1) единственную пару
неявных функций вида y = f1(x), z = f2(x) и найти производные
первого и второго порядков этих неявных функций в точке x = 1.
Решение. Функции

F1 := x2 + y2 + z2 − 3 и F2 := x+ y + z − 1

дифференцируемы в любой окрестности точки M0(1; 1;−1); их
частные производные

∂F1

∂y
= 2y,

∂F1

∂z
= 2z,

∂F2

∂y
= 1,

∂F2

∂z
= 1

непрерывны в точке M0;

F1(M0) = 0, F2(M0) = 0,
D(F1,F2)

D(y, z)

∣∣∣∣
M0

=

∣∣∣∣2 −2
1 1

∣∣∣∣ = 4 �= 0.

Таким образом, для системы уравнений (10.24) выполнены все
условия теоремы 5, согласно которой в некоторой окрестности
точки M0 система уравнений (10.24) определяет единственную
пару функций вида y = f1(x), z = f2(x), дифференцируемых в
окрестности точки x = 1. Более того, поскольку функции F1 и
F2 дифференцируемы любое число раз, то неявные функции y =
= f1(x) и z = f2(x) также дифференцируемы любое число раз в
окрестности точки x = 1. Отметим также, что

f1(1) = 1, f2(1) = −1. (10.25)

Система уравнений для нахождения f ′1(x) и f ′2(x) получается
аналогично системе (10.23), то есть путем подстановки в систему
(10.24) неявных функций y = f1(x), z = f2(x) и дифференциро-
вания полученных тождеств по x. Это дает тождества

2x+ 2f1(x)f
′
1(x) + 2f2(x)f

′
2(x) = 0,

1+ f ′1(x) + f ′2(x) = 0,



78 Гл. 10. Неявные функции

из которых находим f ′1(x) и f
′
2(x):

f ′1(x) =
f2(x)− x

f1(x)− f2(x)
, f ′2(x) =

x− f1(x)

f1(x)− f2(x)
. (10.26)

Полагая в этих формулах x = 1 и учитывая равенства (10.25),
находим f ′1(1) и f

′
2(1):

f ′1(1) = −1, f ′2(1) = 0. (10.27)

Далее, используя формулы (10.26), находим f ′′1 (x) и f
′′
2 (x):

f ′′1 (x) =
(f ′2(x)− 1)(f1(x)− f2(x))− (f2(x)− x)(f ′1(x)− f ′2(x))

(f1(x)− f2(x))
2

,

f ′′2 (x) =
(1− f ′1(x))(f1(x)− f2(x))− (x− f1(x))(f

′

1(x)− f ′2(x))

(f1(x)− f2(x))
2

.

Полагая в этих формулах x = 1 и учитывая равенства (10.25) и
(10.27), получаем:

f ′′1 (1) = −1, f ′′2 (1) = 1.

Задание. Нарисуйте сферу и плоскость, которые задаются
уравнениями (10.24) в прямоугольной системе координат Oxyz.
Изобразите окружность (обозначим ее ω), по которой пересека-
ются сфера и плоскость, и отметьте на ней точку M0(1; 1;−1).
Выделите в малой окрестности этой точки дугу окружности ω и
рассмотрите проекции этой дуги на координатные плоскости Oxy
и Ozx. Эти проекции являются графиками функций y = f1(x) и
z = f2(x), то есть тех самых неявных функций, которые опреде-
ляются уравнениями (10.24) в окрестности точки M0.

Отметьте теперь на окружности ω точку M1(−1; 1; 1) и по-
пробуйте спроектировать дугу этой окружности, содержащую
точку M1, на плоскости Oxy и Ozx. С какими трудностями вы
столкнетесь? Объясните их.

§ 3. Зависимость функций

Понятие зависимости функций. В курсе линейной алгебры
было введено понятие линейной зависимости элементов линей-
ного пространства. В частности, в пространстве C[a, b] функций,
непрерывных на сегменте [a, b], линейная зависимость функций
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y1(x), y2(x), ..., ym(x) означает, что хотя бы одна из этих функций
является линейной комбинацией остальных:

yk(x) = C1y1(x) + ...+Ck−1yk−1(x) +Ck+1yk+1(x) + ...+Cmym(x),

где Ci — некоторые числа.
В этом параграфе мы введем более общее понятие зависи-

мости функций, которое включает в себя как частный случай
понятие линейной зависимости.

Начнем с примера:

y1(x) = x, y2(x) = x2, a � x � b.

Функции y1(x) и y2(x) не являются линейно зависимыми на
сегменте [a, b], так как ни при каком числе C равенство y1(x) =
= Cy2(x), то есть x = Cx2 (и также равенство y2(x) = Cy1(x),
то есть x2 = Cx), не может выполняться для всех x из сегмента
[a, b]. Вместе с тем, между данными функциями существует
зависимость, а именно,

y2(x) = y21(x) ∀x ∈ [a, b],

но эта зависимость нелинейная.
Перейдем к общему понятию зависимости функций, которое

мы введем для дифференцируемых функций, поскольку рассмат-
риваемые ниже теоремы о зависимости и независимости функ-
ций относятся к дифференцируемым функциям.

Пусть функции

y1 = f1(x1, ...,xn), y2 = f2(x1, ...,xn), ..., ym = fm(x1, ...,xn)
(10.28)

определены и дифференцируемы в некоторой области D ⊂ R
n

(областью мы называем открытое связное множество точек из
R
n).

Определение. Функция yk = fk(x1, ...,xn) называется зависимой
в области D от остальных функций системы (10.28), если для
всех точек области D эту функцию можно представить в виде

yk = Φ(y1, ..., yk−1, yk+1, ..., ym), (10.29)

где Φ(y1, ..., yk−1, yk+1, ..., ym) — дифференцируемая функция
своих аргументов.

Замечания.
1. Равенство (10.29) нужно понимать так: если вместо y1, .., ym
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подставить функции (10.28), то получится тождество, справед-
ливое для всех x = (x1,x2, ...,xn) из области D,

fk(x) ≡ Φ
(
f1(x), ..., fk−1(x), fk+1(x), ..., fm(x)

)
.

2. В данном определении существенно то, что функция Φ зависит
только от y1, ..., ym (кроме yk) и не зависит от x1, ...,xn.
Определение. Функции (10.28) называются зависимыми в об-
ласти D, если одна из них (все равно какая) зависит в этой
области от остальных функций. В противном случае функции
(10.28) называются независимыми в области D.
Примеры.
1. Функции

y1 = x1 + x2 + x3 + x4, y2 = x1 − x2 + x3 − x4,

y3 = (x1 + x3)
2 + (x2 + x4)

2

зависимы в любой области D ⊂ R
4, поскольку для любой точ-

ки (x1,x2,x3,x4) выполняется равенство y3 =
1

2

(
y21 + y22

)
, и

функция Φ =
1

2

(
y21 + y22

)
является, очевидно, дифференцируемой

функцией.
2. Докажем, что функции

y1 = x1 + x2 и y2 = x1x2 (10.30)

являются независимыми в любой окрестности точки M0(0; 0).
(Интуитивно ясно, что сумму x1 + x2 нельзя выразить через
произведение x1x2, и также x1x2 нельзя выразить через x1 + x2).

Предположим, что функции (10.30) зависимы в некоторой
окрестности ω точки M0. Тогда для всех точек (x1,x2) из этой
окрестности либо y1 = Φ(y2), либо y2 = Φ(y1).

Допустим, что y1 = Φ(y2), то есть для любой точки (x1,x2)
из ω выполняется равенство

x1 + x2 = Φ(x1x2). (10.31)

Рассмотрим отрезок L1 = {(x1,x2) : −δ � x1 � δ, x2 = 0} пря-
мой x2 = 0, содержащийся в ω. На этом отрезке x1x2 = 0,
x1 + x2 = x1, поэтому равенство (10.31) принимает вид x1 =
= Φ(0) = const, но это противоречит тому, что на отрезке L1

координата x1 не является постоянной, а изменяется от −δ до δ.
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Если допустить, что y2 = Φ(y1), то есть

x1x2 = Φ(x1 + x2), (10.32)

то к аналогичному противоречию придем, рассмотрев отрезок L2

прямой x1 = −x2. содержащийся в ω. На отрезке L2 равенство
(10.32) принимает вид −x21 = Φ(0) = const, но это противоречит
тому, что на этом отрезке координата x1 не является постоянной.

Итак, ни одна из функций (10.30) не зависит от другой в
любой окрестности точки M0(0, 0), и, значит, эти функции в
любой окрестности точки M0 независимы.

Задание. Докажите, что функции (10.30) независимы в лю-
бой области из R

2.
3. Рассмотрим функции

y1 =

{
x2, x � 0,
0, x � 0;

y2 =

⎧⎨⎩ x2, x � 0,
0, −1 < x < 0,

(x+ 1)2, x � −1.

Докажем, что:
а) функция y1 зависит от функции y2 в некоторой окрестности
любой точки x числовой прямой;
но, вместе с тем,
б) функция y1 не зависит от функции y2 на всей числовой
прямой.

Для любой точки x можно указать такую окрестность, в
которой зависимость y1 от y2 при x > −1 выражается формулой
y1 = Φ1(y2) := y2, а при x � −1 — формулой y1 = Φ2(y2) := 0.
Это доказывает утверждение а). Таким образом, в некоторой
окрестности любой точки x данные функции зависимы.

Доказательство утверждения б) проведем методом от против-
ного. Допустим, что y1 зависит от y2 на всей числовой прямой, то
есть существует дифференцируемая функция Φ(y2), такая, что
для всех x выполняется равенство y1(x) = Φ(y2(x)). Положим
в этом равенстве x = −2. Так как y1(−2) = 0, y2(−2) = 1, то
получим Φ(1) = 0. Положим теперь x = 1. Поскольку y1(1) =
= 1, y2(1) = 1, приходим к равенству Φ(1) = 1, которое противо-
речит равенству Φ(1) = 0. Полученное противоречие доказывает,
что функция y1(x) не зависит от функции y2(x) на всей числовой
прямой.
Задание. Докажите, что функция y2 не зависит от функции y1
на всей числовой прямой (тем самым будет доказано, что данные
функции независимы на всей числовой прямой).
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Достаточное условие независимости функций.
Вернемся к функциям (10.28). Пусть n � m. Выберем какие-
нибудь m аргументов xi1 ,xi2 , ...,xim и составим якобиан

D(f1, ..., fm)

D(xi1 , ...,xim)
. (10.33)

Теорема 6 (достаточное условие независимости функций). Если
функции (10.28) определены и дифференцируемы в окрестности
ω точки M0

(
x01, ...x

0
m

)
, и какой-нибудь якобиан вида (10.33) не

равен нулю в точке M0, то функции (10.28) независимы в ω.
Доказательство. Пусть (для определенности) якобиан

D(f1, ..., fm)

D(x1, ...,xm)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

∂f1
∂x2

...
∂f1
∂xm

.........................
∂fk
∂x1

∂fk
∂x2

...
∂fk
∂xm

.........................
∂fm
∂x1

∂fm
∂x2

...
∂fm
∂xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10.34)

отличен от нуля в точке M0.
Допустим, что функции (10.28) зависимы в окрестности ω.

Тогда одна из них, например, yk = fk(x1, ...,xn) зависит в ω от
остальных функций:

yk = Φ(y1, ..., yk−1, yk+1, ..., ym),

где Φ — дифференцируемая функция, то есть для всех x =
= (x1,x2, ...,xn) ∈ ω выполняется равенство

fk(x) = Φ
(
f1(x), .., fk−1(x), fk+1(x), ..., fm(x)

)
.

По правилу дифференцирования сложной функции получаем:

∂fk
∂x1

=
∂Φ

∂y1
· ∂f1
∂x1

+ ...+

+
∂Φ

∂yk−1
· ∂fk−1

∂x1
+

∂Φ

∂yk+1
· ∂fk+1

∂x1
+ ...+

∂Φ

∂ym
· ∂fm
∂x1

,

....................................................................................................
∂fk
∂xm

=
∂Φ

∂y1
· ∂f1
∂xm

+ ...+

+
∂Φ

∂yk−1
· ∂fk−1

∂xm
+

∂Φ

∂yk+1
· ∂fk+1

∂xm
+ ...+

∂Φ

∂ym
· ∂fm
∂xm

.
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Эти равенства показывают, что k-я строка якобиана (10.33) яв-
ляется линейной комбинацией остальных строк с коэффициен-

тами
∂Φ

∂y1
, . . . ,

∂Φ

∂yk−1
,
∂Φ

∂yk+1
, . . . ,

∂Φ

∂ym
. Следовательно,этот якобиан

равен нулю во всех точках окрестности ω, в том числе и в точке
M0. Но это противоречит условию теоремы, и, значит, функции
(10.28) независимы в ω. Теорема 6 доказана.
Следствие. Если функции (10.28) зависимы в ω, то все якобианы
вида (10.33) равны нулю во всех точках ω.

Для якобиана (10.34) это доказано по ходу доказательства
теоремы 6, для любого другого якобиана вида (10.33) утвержде-
ние доказывается аналогично.
Замечание. В теореме 6 мы доказали, что достаточным условием
независимости функций (10.28) в окрестности ω точки M0 яв-
ляется отличие от нуля в точке M0 какого-либо якобиана вида
(10.33) (назовем это условие условием I), а согласно следствию
из этой теоремы необходимым условием зависимости функций в
ω является тождественное равенство нулю в ω всех якобианов
вида (10.33) (назовем это условие условием II).

Отметим, что условие I не является необходимым условием
независимости функций (10.28) в окрестности точки M0. Так в
примере 2 якобиан

D(f1, f2)

D(x1,x2)
=

∣∣∣∣ 1 1
x2 x1

∣∣∣∣ = x2 − x1

является единственным якобианом вида (10.33), и он, очевидно,
равен нулю в точке M0(0; 0), но функции y1 и y2, как было
показано, независимы в любой окрестности точки M0.

Аналогично, условие II не является достаточным условием
зависимости функций (10.28) в окрестности ω точки M0. В
качестве примера рассмотрим функции

y1(x1,x2) =

{
f1(x1,x2) �≡ 0, (x1,x2) ∈ D1,
0, (x1,x2) ∈ D2 ∪ l,

y2(x1,x2) =

{
0, (x1,x2) ∈ D1 ∪ l,
f2(x1,x2) �≡ 0, (x1,x2) ∈ D2,

где D1 и D2 — подобласти, на которые область D раз-
делена отрезком l, параллельным оси x2 (рис. 10.3).
Нетрудно доказать (сделайте это самостоятельно), что
функции f1 и f2 можно выбрать так, что y1 и y2 бу-
дут дифференцируемыми функциями во всей области D.



84 Гл. 10. Неявные функции

Рис. 10.3.

При этом якобиан
D(y1, y2)

D(x1,x2)
(он является единственным
в данном случае якобианом
вида (10.33)) тождественно
равен нулю в области
D, но функции y1 и y2
являются независимыми
в области D (докажите
это).

Общая теорема о зависимости и независимости функций
Снова вернемся к функциям (10.28), и, чтобы сформулировать
общую теорему о зависимости и независимости этой совокупно-
сти функций, введем (m× n)-матрицу, составленную из частных
производных первого порядка функций (10.28):

A =

⎛⎜⎜⎝
∂f1
∂x1

. . .
∂f1
∂xn

. . . . . . . . . . . .
∂fm
∂x1

. . .
∂fm
∂xn

⎞⎟⎟⎠
Выберем r строк этой матрицы с номерами i1, i2, ..., ir и r столб-
цов с номерами j1, j2, ..., jr. Пересечение этих строк и столбцов
образует минор r-ого порядка матрицы A, являющейся якобиа-
ном функций fi1 , fi2 , ..., fir по переменным xj1 ,xj2 , ...,xjr :

D(fi1 , fi2 , ..., fir )

D(xj1 ,xj2 , ...,xjr )
(10.35)

Теорема 7. (Общая теорема о зависимости и независимости
функций).
Пусть выполнены следующие условия:

1. функции (10.28) определены и дифференцируемы в окрест-
ности ω точки M0

(
x01, ...,x

0
n

)
;

2. все частные производные
∂fi
∂xj

(i = 1, ...,m; j = 1, ...,n)

непрерывны в точке M0;
3. существует минор r-ого порядка матрицы A (минор вида

(10.35)), отличный от нуля в точке M0;
4. все миноры (r + 1)-го порядка матрицы A тождественно

равны нулю в окрестности ω точки M0.
Тогда:
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1. r функций, представленных в указанном в условии 3 ми-
норе r-го порядка, независимы в ω;

2. каждая из остальных (m− r) функций зависит от указан-
ных в предыдущем пункте r функций в некоторой окрест-
ности ω1 точки M0 (ω1 ⊂ ω).

Первое утверждение следует из теоремы 6, доказательство вто-
рого утверждения имеется в [1].
Пример. Обратимся снова к функциям y1, y2, y3 из примера 1
(стр. 80):

y1 = x1 + x2 + x3 + x4, y2 = x1 − x2 + x3 − x4,

y3 = (x1 + x3)
2 + (x2 + x4)

2. (10.36)

Составим для этих функций матрицу A:

A =

(
1 1 1 1
1 −1 1 −1

2(x1 + x3) 2(x2 + x4) 2(x1 + x3) 2(x2 + x4)

)
Минор

M =

∣∣∣∣ 1 1
1 − 1

∣∣∣∣ ,
образованный пересечением первых двух строк и первых двух
столбцов матрицы A, отличен от нуля в любой точке (он равен
−2), а все миноры третьего порядка матрицы A тождественно
равны нулю (проверьте это). Поэтому, согласно теореме 7, функ-
ции y1 и y2 независимы в любой окрестности любой точки, а
функция y3 зависит от y1 и y2.

Чтобы получить явный вид этой зависимости, выразим из
первых двух уравнений системы (10.36) x1 и x2 через остальные
переменные (это можно сделать, поскольку минор M отличен от
нуля):

x1 =
1

2
(y1 + y2)− x3, x2 =

1

2
(y1 − y2)− x4.

Подставив эти выражения в третье уравнение (10.36), приходим
к равенству

y3 =
[
1

2
(y1 + y2)

]2
+
[
1

2
(y1 − y2)

]2
=

1

2

(
y21 + y22

)
. (10.37)

Полученное равенство выражает зависимость функции y3 от
функций y1 и y2 в любой области. Отметим, что доказательство
утверждения 2 теоремы 7 проводится способом, аналогичным
тому, как была получена формула (10.37) в данном примере (см.
[1]).
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§ 4. Условный экстремум

Понятие условного экстремума. Задача об условном экс-
тремуме функции u = f(x1,x2, ...,xn) — это задача нахождения
точек локального экстремума данной функции при условии, что
ее аргументы x1,x2, ...,xn не являются независимыми перемен-
ными, а связаны между собой некоторыми равенствами (услови-
ями связи).

Рассмотрим пример. Требуется найти экстремумы функции

u =
√
x2 + y2 при условии, что ее аргументы x и y связаны

равенством (условием связи) x+ y = 1. Тем самым точки экстре-
мума данной функции ищутся не на всей плоскости (x, y), а на
прямой x+ y = 1.

Рис. 10.4.

Графиком функции u =
√
x2 + y2

является коническая поверхность
(рис. 10.4). Наглядно видно, что
в некоторой точке M0 прямой
x + y = 1 функция имеет мини-
мальное значение по отношению к
другим точкам этой прямой. Для
нахождения точки M0 выразим из
условия связи y через x : y = 1− x
и подставим это выражение в фор-

мулу функции: u =
√
x2 + (1− x)2 .

Получили функцию одной неза-
висимой переменной x. Ее производ-

ная u′ = 2x− 2(1− x)

2

√
x2 + (1− x)2

равна ну-

лю при x =
1

2
, отрицательна при x <

1

2
и положительна при

x >
1

2
. Поэтому в точке x =

1

2
функция u =

√
x2 + (1− x)2

имеет минимум, и, следовательно, на прямой x+ y = 1 функция

u =
√
x2 + y2 имеет минимальное значение в точке с абсциссой

x =
1

2
, то есть в точке M0

(
1

2
,
1

2

)
. Иными словами, функция

u =
√
x2 + y2 имеет в точке M0

(
1

2
,
1

2

)
условный минимум при

условии связи x+ y = 1.
Перейдем к общей постановке задачи об условном экстремуме

функции.
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Рассматривается функция

u = f(x1,x2, ...,xn) = f(M) (10.38)

при условии, что ее аргументы связаны между собой m соотно-
шениями (условиями связи), m < n:

F1(x1, ...,xn) = 0, ...,Fm(x1, ...,xn) = 0. (10.39)

Пусть координаты точки M0

(
x01, ...,x

0
n

)
удовлетворяют уравнени-

ям (10.39).
Определение. Говорят, что функция u = f (M) имеет в точке
M0 условный максимум (минимум) при условиях связи (10.39),
если существует окрестность точки M0, такая, что для любой
точки M(x1, ...,xn) (M �= M0) этой окрестности, координаты
которой удовлетворяют уравнениям (10.39), выполняется нера-
венство f (M) > f (M0) (f (M) < f (M0)).

Иначе говоря, условный минимум (максимум) — это наимень-
шее (наибольшее) значение функции в точке M0 по отношению
не ко всем точкам из некоторой окрестности точки M0, а только
к тем из них, которые связаны между собой условиями связи.

Экстремум функции без условий связи (то есть тот
экстремум, который рассматривался в главе 9) будем называть
безусловным.

Два метода решения задачи об условном экстремуме
Первый метод. Сведение к задаче о безусловном экстре-

муме. Пусть для системы уравнений (10.39) в окрестности ω
точки M0

(
x01, ...,x

0
n

)
выполнены условия теоремы 5 о неявных

функциях:

1. функции F1(x1, ...,xn), ...,Fm(x1, ...,xn) дифференцируемы
в окрестности ω точки M0;

2. частные производные
∂Fi

∂xj
(i, j = 1, ...,m) непрерывны в

точке M0;
3.

F1 (M0) = 0, ...,Fm (M0) = 0,
D (F1, ...,Fm)

D (x1, ...,xm)

∣∣∣∣
M0

�= 0. (10.40)

Тогда в некотором параллелепипеде Q, содержащемся в ω,
система уравнений (10.39) имеет единственное решение относи-
тельно x1, ...,xm:

x1 = ϕ1(xm+1, ...,xn), ...,xm = ϕm(xm+1, ...,xn), (10.41)
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причем ϕ1, ...ϕm — дифференцируемые функции, и справедливы
равенства

ϕ1

(
x0m+1, ...,x

0
n

)
= x01, ...,ϕm

(
x0m+1, ...,x

0
n

)
= x0m.

В указанном параллелепипеде Q условия связи (10.39) эквива-
лентны соотношениям (10.41), в которых xm+1, ...,xn можно рас-
сматривать как независимые переменные, а x1, ...,xm являются
функциями этих независимых переменных.

Если удается найти функции (10.41) в явном виде, то, под-
ставляя их вместо x1, ...,xm в формулу (10.38), получаем:

u = f
(
ϕ1 (xm+1, ...,xn) , ...,ϕm (xm+1, ...,xn) ,xm+1, ...,xn

)
=:

=: g (xm+1, ...,xn) = g (M ′) , (10.42)

где M ′ =M ′ (xm+1, ...,xn) ∈ R
n−m.

Функция g (xm+1, ...,xn) является функцией n−m независи-
мых переменных xm+1, ...,xn. Если эта функция имеет (безуслов-
ный) экстремум в точке M ′

0

(
x0m+1, ...,x

0
n

)
, то функция f (M)

имеет в точке M0

(
x01, ...,x

0
n

)
условный экстремум при условиях

связи (10.39) (или, что то же самое, при условиях связи (10.41)),
и обратно.

Таким образом, задача об условном экстремуме функции
f (M) при условиях связи (10.39) сводится в параллелепипеде
Q к задаче о безусловном экстремуме функции g (M ′). Именно
такой подход был использован в рассмотренном в начале пара-
графа примере.

Второй метод (метод Лагранжа).
В этом методе не будут использоваться явные выражения

для неявных функций (10.41), хотя по-прежнему будем считать,
что условие (10.40) выполнено, и потому в параллелепипеде Q
с центром в точке M0

(
x01, ...,x

0
n

)
уравнения (10.39) определяют

единственную совокупность неявных функций вида (10.41).
Введем так называемую функцию Лагранжа:

Φ(M) = f (M) + λ1F1 (M) + λ2F2 (M) + ...+ λmFm (M) ,

где f (M) — функция (10.38), F1 (M) , ...,Fm (M) — функции из
(10.39), λ1, ...,λm — неизвестные пока числа (они называются
множителями Лагранжа).

Заметим, что в точках

M
(
ϕ1 (xm+1, ...,xn) , ..,ϕm (xm+1, ...,xn) ,xm+1, ...,xn

)
,
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удовлетворяющих условиям связи (10.39), выполняются равен-
ства

Φ(M) = f (M) = g (M ′) ,

где M ′ =M ′ (xm+1, ...,xn) , g (M ′) — функция из (10.42). Итак,

g (xm+1, ...,xn) =
= Φ

(
ϕ1 (xm+1, ...,xn) , ..,ϕm (xm+1, ...,xn) ,xm+1, ...,xn

)
.
(10.43)

Выведем при условиях (10.40) необходимое (по Лагранжу)
условие условного экстремума функции f (M) в точке M0 при
условиях связи (10.39).

Пусть функция f (M) (а значит и функция Φ(M)) диффе-
ренцируема в точке M0

(
x01, ...,x

0
n

)
, и пусть f (M) (а значит и

Φ(M)) имеет в точке M0 условный экстремум при условиях свя-
зи (10.39). Тогда функция g (M ′) имеет безусловный экстремум
в точке M ′

0

(
x0m+1, ...,x

0
n

)
. Поэтому

dg
∣∣
M ′

0

= 0.

Это равенство в силу (10.43) можно записать в виде

dg
∣∣
M ′

0

=
∂Φ

∂x1
(M0) dx1 + ...+

∂Φ

∂xm
(M0) dxm+

+
∂Φ

∂xm+1
(M0) dxm+1 + ...+

∂Φ

∂xn
(M0) dxn = 0,

(10.44)

где dxm+1, ..., dxn — дифференциалы независимых переменных
xm+1, ...,xn, а dx1, ..., dxm — дифференциалы функций (10.41) в
точке M ′

0.
Докажем, что числа λ1, ...,λm можно выбрать так, что будут

выполнены равенства

∂Φ

∂x1
(M0) = 0, ...,

∂Φ

∂xm
(M0) = 0. (10.45)

Напишем равенства (10.45) в развернутом виде:⎧⎪⎪⎨⎪⎪⎩
∂f

∂x1
(M0) + λ1

∂F1

∂x1
(M0) + ...+ λm

∂Fm

∂x1
(M0) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂f

∂xm
(M0) + λ1

∂F1

∂xm
(M0) + ...+ λm

∂Fm

∂xm
(M0) = 0.
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Написанные равенства представляют собой систему m линей-
ных уравнений относительно λ1, ...,λm, а определитель этой си-
стемы является транспонированным по отношению к якобиану
D (F1, ...,Fm)

D (x1, ...,xm)

∣∣∣∣
M0

, отличному от нуля в силу (10.40). Следователь-

но, из этой системы однозначно определяются λ1, ...,λm.
В силу (10.45) равенство (10.44) принимает вид

∂Φ

∂xm+1
(M0) dxm+1 + ...+

∂Φ

∂xn
(M0) dxn = 0, (10.46)

а поскольку dxm+1, ..., dxn — дифференциалы независимых пере-
менных, то из (10.46) следуют равенства

∂Φ

∂xm+1
(M0) = 0, ...,

∂Φ

∂xn
(M0) = 0. (10.47)

В самом деле, если положить в (10.46) dxm+1 �= 0, dxm+2 =
= ... = dxn = 0 (такой выбор возможен именно потому,
что xm+1, ...,xn — независимые переменные), то получим
∂Φ

∂xm+1
(M0) = 0, и аналогичным образом получаются остальные

равенства в (10.47).
Проведенные рассуждения позволяют сформулировать следу-

ющую теорему, связанную с равенствами (10.45) и (10.47).
Теорема 8 (необходимое по Лагранжу условие условного
экстремума). Пусть выполнены условия (10.40) и пусть функ-
ция f(M) дифференцируема в точке M0 и имеет в этой точ-
ке условный экстремум при условиях связи (10.39). Тогда су-
ществует функция Лагранжа Φ(M) = f (M) + λ1F1 (M) + ... +
+ λmFm (M) (то есть существуют числа λ1, ...,λm), такая что
все ее частные производные первого порядка в точке M0 равны
нулю:

∂Φ

∂xi
(M0) = 0, i = 1, ...,n. (10.48)

Теорема 8 дает возможность предложить следующий алго-
ритм отыскания точек условного экстремума функции f (M) при
условиях связи (10.39).

Вводим функцию Лагранжа

Φ = f (x1, ...,xn) + λ1F1 (x1, ...,xn) + ...+ λmFm (x1, ...,xn)

с неопределенными пока коэффициентами λ1, ...,λm и составляем
систему уравнений, используя равенства (10.39) и (10.48):

F1 = 0, ...,Fm = 0,
∂Φ

∂x1
= 0, ...,

∂Φ

∂xn
= 0. (10.49)
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Система (10.49) содержит n+m уравнений относительно n+m
неизвестных: x1, ...,xn,λ1, ...,λm.

Пусть x01, ...,x
0
n,λ

0
1, ...,λ

0
m — решение системы (10.49). Тогда

в точке M0

(
x01, ...,x

0
n

)
функция Лагранжа

Φ = f (x1, ...,xn) + λ01F1 (x1, ...,xn) + ...+ λ0mFm (x1, ...,xn)

удовлетворяет условию (10.48). В силу теоремы 8 это означает,
что точка M0 является точкой возможного условного экстремума
функции f (M) при условиях связи (10.39).

Чтобы установить, имеет ли на самом деле функция f (M)
условный экстремум в точке M0, воспользуемся тем, что вопрос
об условном экстремуме функции f (M) в точке M0 эквивален-
тен вопросу о безусловном экстремуме функции g (M ′) в точке
M ′

0

(
x0m+1, ...,x

0
n

)
(см. (10.42)).

В свою очередь, чтобы установить, имеет ли функция g (M ′)
безусловный экстремум в точке M ′

0, нужно рассмотреть второй
дифференциал функции g (M ′) в точке M ′

0 (в связи с этим будем
считать, что функции f (M) , F1 (M) , ...,Fn (M), а значит и
g (M ′), дважды дифференцируемы):

d2g
∣∣
M ′

0

= Q(dxm+1, ..., dxn),

где Q — квадратичная форма относительно dxm+1, ..., dxn. Если
эта квадратичная форма знакоопределенная, то функция g (M ′)
имеет в точке M ′

0 экстремум, а значит функция f (M) имеет
в точке M0 условный экстремум при условиях связи (10.39).
Если же эта квадратичная форма знакопеременная, то условного
экстремума функции f (M) в точке M0 нет.

Это и есть достаточное условие наличия или отсутствия
условного экстремума функции f (M) в точке M0 при условиях
связи (10.39).

Вычисление квадратичной формы Q(dxm+1, ..., dxn)
Встает вопрос о том, как вычислить квадратичную форму
Q(dxm+1, ..., dxn), то есть как найти ее коэффициенты, если нам
не известны явные выражения функций (10.41), хотя сами эти
функции существуют в силу условий (10.40).

Из (10.43) следует, что первый дифференциал функции
g (M ′) можно записать в виде

dg
∣∣
M ′ =

(
∂

∂x1
dx1 + ...+

∂

∂xn
dxn

)
Φ
∣∣∣
M(ϕ1,...,ϕm,xm+1,...,xn)

,
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здесь dxm+1, ..., dxn — дифференциалы независимых перемен-
ных, а dx1, ..., dxm — дифференциалы функций (10.41) в точке
M ′(xm+1, ...,xn):

dxi = dϕi

∣∣
M ′ , i = 1, ...,m. (10.50)

В точкеM ′
0

(
x0m+1, ...,x

0
n

)
второй дифференциал d2g

∣∣
M ′

0

имеет вид

d2g
∣∣
M ′

0

=
(
∂

∂x1
dx1 + ...+

∂

∂xn
dxn

)2

Φ

∣∣∣∣
M0

+

+
[
∂Φ

∂x1
(M0) d

2x1 + ...+
∂Φ

∂xm
(M0) d

2xm
]
.

В силу (10.48) каждое слагаемое в квадратных скобках равно
нулю, и значит

d2g
∣∣
M ′

0

=
(
∂

∂x1
dx1 + ...+

∂

∂xn
dxn

)2

Φ

∣∣∣∣
M0

, (10.51)

где dxi (i = 1, ...,m) выражаются формулой (10.50) при M ′ =
=M ′

0.

Таким образом, для нахождения d2g
∣∣
M ′

0

, то есть для вычисле-

ния квадратичной формы нужно вычислить второй дифференци-
ал функции Лагранжа Φ(M) в точке M0, причем так, как если
бы все аргументы x1, ...,xn были независимыми переменными, а
затем заменить dx1, ..., dxm дифференциалами неявных функций
(10.41) в точке M ′

0.
В свою очередь, чтобы найти дифференциалы dϕ1, ..., dϕm

функций (10.41) в точке M ′
0, не используя явных выражений для

этих функций (у нас нет этих явных выражений), поступим так.
Предположим, что в уравнения (10.39) вместо x1, ...,xm подстав-
лены функции (10.41). Тогда получатся тождества относительно
xm+1, ...,xn:

F1(ϕ1, ...,ϕm,xm+1, ...,xn) = 0, ...,Fm(ϕ1, ...,ϕm,xm+1, ...,xn) = 0.
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Дифференцируя эти тождества в точке M ′
0 и используя инвари-

антность формы первого дифференциала, приходим к равенствам

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F1

∂x1
(M0) dϕ1

∣∣∣
M ′

0

+ ...+
∂F1

∂xm
(M0) dϕm

∣∣∣
M ′

0

+

+
∂F1

∂x1
(M0) dxm+1 + ...+

∂F1

∂xn
(M0) dxn = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂Fm

∂x1
(M0) dϕ1

∣∣∣
M ′

0

+ ...+
∂Fm

∂xm
(M0) dϕm

∣∣∣
M ′

0

+

+
∂Fm

∂x1
(M0) dxm+1 + ...+

∂Fm

∂xn
(M0) dxn = 0.

(10.52)

Эти равенства представляют собой систему m линейных урав-
нений относительно дифференциалов dϕ1

∣∣
M ′

0

, ..., dϕm

∣∣
M ′

0

, причем

определитель системы равен якобиану
D (F1, ...,Fm)

D (x1, ...,xm)

∣∣∣∣
M0

, отлич-

ному от нуля в силу (10.40).
Следовательно, из этой системы однозначно находятся ис-

комые дифференциалы dϕi

∣∣
M ′

0

(i = 1, ...,m), как функции от

dxm+1, ..., dxn. Подставляя выражения для dϕi

∣∣
M ′

0

вместо dxi
(i = 1, ...,m) в формулу (10.51), получаем искомую квадратич-
ную форму

d2g
∣∣
M ′

0

= Q (dxm+1, ..., dxn) . (10.53)

Пример. Найдем экстремумы функции u = x + y при условии
связи xy − 1 = 0.

В данном случае для решения задачи можно было бы исполь-
зовать первый метод, поскольку из условия связи можно выра-
зить в явном виде один из аргументов функции через другой (на-

пример, y =
1

x
), после чего задача сводится к отысканию точек

безусловного экстремума функции одной переменной u = x +
1

x
(решите задачу этим методом), но мы применим для решения
метод Лагранжа.

Введем функцию Лагранжа

Φ = x+ y + λ(xy − 1),
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где λ — пока не определенный множитель, и составим систему
уравнений (10.49), которая в нашем примере имеет вид⎧⎪⎪⎪⎨⎪⎪⎪⎩

F1 := xy − 1 = 0,
∂Φ

∂x
= 1+ λy = 0,

∂Φ

∂y
= 1+ λx = 0.

Эта система имеет два решения:

x = 1, y = 1, λ = −1 и x = −1, y = −1, λ = 1.

Таким образом, имеем две точки возможного условного экстре-
мума функции u = x+ y при условии связи xy − 1 = 0:
точка M1(1; 1), при этом Φ = x+ y − (xy − 1), и
точка M2(−1;−1), при этом Φ = x+ y + (xy − 1).

Далее в соответствии с описанным алгоритмом вычислим
второй дифференциал функции Лагранжа, причем так, как если
бы x и y были независимыми переменными. Для точки M1(1; 1)
имеем:

dΦ = dx+ dy − ydx− xdy,
d2Φ = −2dxdy.

Выразим теперь dy через dx, используя условие связи F1 := xy −
− 1 = 0. Система уравнений (10.52) состоит в нашем примере из
одного уравнения:

∂F1

∂x
(M1) · dx+

∂F1

∂y
(M1) · dy = 0, то есть dx+ dy = 0,

откуда dy = −dx. Подставляя это выражение для dy в равенство
d2Φ = −2dxdy, находим квадратичную форму Q (см. (10.53)):

d2g
∣∣
x=1

= Q(dx) = 2(dx)2.

Так как Q(dx) — положительно определенная квадратичная фор-
ма, то в точке M1(1; 1) функция u = x + y имеет условный
минимум (u (M1) = 2) при условии связи xy − 1 = 0.

Аналогично доказывается, что в точке M2(−1;−1) функция
u = x+ y имеет условный максимум (u (M2) = −2) при условии
связи xy − 1 = 0 (проведите доказательство самостоятельно).

Рассмотренный пример имеет наглядную геометрическую ил-
люстрацию. Линиями уровня функции u = x+ y (то есть лини-
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Рис. 10.5.

ями на плоскости (x, y), на которых функция имеет постоянное
значение) являются прямые x + y = c = const, а условие связи
xy − 1 = 0 является уравнением гиперболы. На рис. 10.5 изобра-
жены линии уровня для нескольких значений c (c < −2, c = −2,
c = 0, c = 2, c > 2) и гипербола xy − 1 = 0, в точках которой
ищутся экстремумы функции u = x+ y.

Через точку M1(1; 1) гиперболы проходит линия уровня
x+ y = 2, а через любую другую точку гиперболы в окрестности
точки M1 проходит линия уровня x + y = c, где c > 2. Таким
образом, в точке M1 функция u = x + y имеет наименьшее
значение (u (M1) = 2) по отношению ко всем другим точкам
гиперболы из окрестности точки M1 (разумеется, окрестность
точки M1 должна быть не слишком большой, чтобы в нее не
попали точки другой ветви гиперболы).

Также наглядно видно, что в точке M2(−1;−1), через ко-
торую проходит линия уровня x + y = −2, функция u = x + y
имеет наибольшее значение (u (M2) = −2) по отношению ко всем
другим точкам гиперболы из окрестности точки M2.
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ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО

ИСЧИСЛЕНИЯ К ИССЛЕДОВАНИЮ ПЛОСКИХ

КРИВЫХ

С помощью дифференциального исчисления мы умеем нахо-
дить точки локального экстремума функции, промежутки моно-
тонности, направление выпуклости, точки перегиба и асимптоты
графиков функций. Здесь мы рассмотрим применение дифферен-
циального исчисления к другим геометрическим вопросам: ка-
сание плоских кривых, огибающая семейства кривых, кривизна
плоской кривой.

§ 1. Касание плоских кривых

Рис. 11.1. Прямая L —
общая касательная к
кривым L1 и L2 в точ-

ке M0.

Если две плоские кривые имеют об-
щую точку M0 и в этой точке — общую
касательную, то говорят, что эти кривые
касаются (соприкасаются) в точке M0

(рис. 11.1).
Пусть кривые L1 и L2 являются гра-

фиками функций y = f1(x) и y = f2(x), и
пусть они касаются в точке M0(x0, f1(x0))
(рис. 11.2). Пусть n — натуральное число.

Рис. 11.2.

Говорят, что порядок касания кривых L1 и L2 в точке M0

равен n, если существует отличный от нуля предел

lim
x→x0

|f2(x)− f1(x)|
|x− x0|n+1

. (11.1)
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Если предел (11.1) равен нулю, то говорят, что порядок касания
кривых L1 и L2 в точке M0 выше n.

Если порядок касания выше любого n, то говорят, что поря-
док касания бесконечный.

Примеры.
1) Графики функций y = x4 и y = x3 касаются в точке O(0; 0),

общей касательной графиков является ось Ox (докажите это).

Так как lim
x→0

∣∣x3 − x4
∣∣

|x|n+1
=

⎧⎨⎩
0, n < 2,

1, n = 2,

∞, n > 2,
то порядок касания данных кривых в точке O равен 2.

2) Рассмотрим функции y = 0 и y =

{
e−1/x2 , x �= 0,

0, x = 0.
Нетрудно доказать (сделайте это), что порядок касания графиков
этих функций в точке O(0; 0) — бесконечный.

Теорема 1. Пусть кривые L1 и L2 являются графиками функ-
ций y = f1(x) и y = f2(x) и пусть функции f1(x) и f2(x) (n+ 1)
раз дифференцируемы в точке x0. Тогда:

10. если f1(x0) = f2(x0), f
′
1(x0) = f ′2(x0), . . . ,

f
(n)
1 (x0) = f

(n)
2 (x0), f

(n+1)
1 (x0) �= f

(n+1)
2 (x0), (11.2)

то порядок касания кривых L1 и L2 в точке M0(x0, f1(x0)) равен
n;

20. обратно: если порядок касания кривых L1 и L2 в точке
M0 равен n, то выполнены соотношения (11.2).
Доказательство. 10. Пусть выполнены соотношения (11.2). Ис-
пользуя формулу Тейлора и эти соотношения, получаем:

f2(x)− f1(x) =
[
f2(x0) + · · ·+ 1

n!
f
(n)
2 (x0)(x− x0)

n+

+
1

(n+ 1)!
f
(n+1)
2 (x0)(x− x0)

n+1 + o
(
(x− x0)

n+1
)]−

−
[
f1(x0) + · · ·+ 1

n!
f
(n)
1 (x0)(x− x0)

n+

+
1

(n+ 1)!
f
(n+1)
1 (x0)(x− x0)

n+1 + o
(
(x− x0)

n+1
)]

=

=
1

(n+ 1)!

[
f
(n+1)
2 (x0)− f

(n+1)
1 (x0)

]
(x− x0)

n+1 + o
(
(x− x0)

n+1
)
,

причем число A =
1

(n+ 1)!

[
f
(n+1)
2 (x0)− f

(n+1)
1 (x0)

]
�= 0.

4 В.Ф. Бутузов
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Отсюда следует:

lim
x→x0

|f2(x)− f1(x)|
|x− x0|n+1

= |A| �= 0,

а это и означает, согласно определению, что порядок касания
кривых L1 и L2 в точке M0 равен n. Утверждение 10 доказано.

20. Пусть порядок касания кривых L1 и L2 в точке M0 равен
n. Если предположить, что цепочка равенств в (11.2) нарушается
при некотором k � n, то получим, в силу доказанного в п.10, что
порядок касания кривых L1 и L2 в точке M0 равен k − 1 < n, а
если допустить, что в (11.2) выполняются все равенства и, кроме

того, f
(n+1)
1 (x0) = f

(n+1)
2 (x0), то получим, что порядок касания

выше n. И то, и другое противоречит условию. Следовательно,
выполнены соотношения (11.2). Теорема доказана.

Примеры. 1) Рассмотрим графики функций y = x и y = sinx,
они имеют общую точку O(0; 0) (рис. 11.3). В данном примере
f1(x) = x, f2(x) = sinx. Несложные вычисления (проделайте их)
приводят к соотношениям:

f1(0) = f2(0) = 0, f ′1(0) = f ′2(0) = 1, f ′′1 (0) = f ′′2 (0) = 0,
f ′′′1 (0) = 0 �= f ′′′2 (0) = −1.

Отсюда по теореме 1 следует, что порядок касания графиков
данных функций в точке O(0; 0) равен 2.

Рис. 11.3.

2) Пусть кривая
L1 является графиком
функции y = f(x), а
L2 — касательная к
графику этой функции
в точке M0(x0, f(x0)),
и пусть существует
f ′′(x0). Докажите, что:
если f ′′(x0) �= 0, то
порядок касания кривых
L1 и L2 в точке M0

равен 1;
если f ′′(x0) = 0 и существует f ′′′(x0), то порядок касания кривых
L1 и L2 в точке M0 не ниже 2.
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§ 2. Огибающая однопараметрического семейства
кривых

Особые точки кривых

Пусть Oxy — прямоугольная система координат на плоскости.
Кривая на плоскости Oxy может быть задана:

явно, то есть уравнением вида y = f(x) или x = f(y);

неявно, то есть уравнением вида F (x, y) = 0;

параметрически, то есть уравнениями x = ϕ(t), y = ψ(t), где t —
параметр, принимающий значения из некоторого промежутка.

В дальнейшем будем считать, что функции, входящие в урав-
нения кривых, непрерывно дифференцируемы, то есть имеют
непрерывные производные первого порядка.

Пусть кривая L задана неявно уравнением F (x, y) = 0, и

пусть точка M0(x0, y0) ∈ L (то есть F (x0, y0) = 0) и F 2
x (x0, y0) +

+ F 2
y (x0, y0) �= 0. Пусть, например, Fy(x0, y0) �= 0. Тогда в неко-

торой окрестности точки M0 в силу теоремы о неявной функции
кривая L может быть задана явным уравнением вида y = f(x),
причем функция y = f(x) (решение уравнения F (x, y) = 0 от-
носительно y) дифференцируема и ее производная выражается
формулой

f ′(x) = −Fx(x, y)

Fy(x, y)

∣∣∣
y=f(x)

(11.3)

Если же F 2
x (x0, y0) + F 2

y (x0, y0) = 0, то есть Fx(x0, y0) =
= Fy(x0, y0) = 0, то в окрестности точки M0(x0, y0) кривая L
может не иметь явного уравнения.

Рис. 11.4.

Точку M0(x0, y0) кривой L, для
которой F 2

x (x0, y0) + F 2
y (x0, y0) = 0 ( �=

�= 0) будем называть особой (обыкно-
венной) точкой этой кривой.
Пример. Уравнение x2 − y2 = 0
(здесь F (x, y) = x2 − y2) задает
кривую, состоящую из двух пря-
мых, пересекающихся в точке O(0; 0)
(рис. 11.4). Точка O — осо-
бая точка этой кривой, так как
Fx(0; 0) = Fy(0; 0) = 0. Очевидно, что
в окрестности точки O обе прямые

4*



100 Гл. 11. Приложения диф. исчисления к исследованию плоских кривых

нельзя задать одним и тем же уравнением вида y = f(x) или
x = f(y). Любая точка (a; a) или (a;−a), где a �= 0, является
обыкновенной точкой данной кривой.

Пусть кривая L задана параметрически: x = ϕ(t), y = ψ(t) и

пусть ϕ′2(t0) + ψ′2(t0) �= 0. Пусть, например, ϕ′(t0) �= 0. Тогда
в силу непрерывности ϕ′(t) �= 0 и сохраняет знак в некоторой
окрестности точки t0, поэтому x = ϕ(t) — строго монотонная
функция в этой окрестности точки t0 и, следовательно, имеет об-
ратную функцию t = ϕ−1(x). Подставив ее в уравнение y = ψ(t),
получим явное уравнение кривой L: y = ψ(ϕ−1(x)) =: f(x) в
некоторой окрестности точки M0(ϕ(t0),ψ(t0)). Отметим, что

f ′(x) = ψ′(t)

ϕ′(t)

∣∣∣
t=ϕ−1(x)

. (11.4)

Аналогичная ситуация возникает в случае, когда ψ′(t0) �= 0.
В этом случае кривая L будет иметь явное уравне-
ние x = ϕ(ψ−1(y)) =: g(y) в некоторой окрестности точки
M0(ϕ(t0),ψ(t0)).

Если же ϕ′2(t0) + ψ′2(t0) = 0, то есть ϕ′(t0) = ψ′(t0) = 0, то
в окрестности точки M0(ϕ(t0),ψ(t0)) кривая L может не иметь
явного уравнения.

Точку M0(ϕ(t0),ψ(t0)) кривой L, для которой ϕ′2(t0) +
+ ψ′2(t0) = 0 ( �= 0) будем называть особой (обыкновенной) точ-
кой этой кривой.

Рис. 11.5.

К особым точкам кривой, за-
данной параметрически, будем от-
носить также кратные точки кри-
вой, то есть точки, соответствую-
щие нескольким значениям пара-
метра t.

Пример. Рассмотрим кривую,
заданную параметрически уравне-
ниями

x = t2, y = t2(1+ t), t ∈ (−∞,+∞).

Здесь ϕ(t) = t2, ψ(t) = t2(1+ t), и,
следовательно, ϕ′(0) = ψ′(0) = 0.

Значению t = 0 соответствует на кривой точка O(0; 0). Согласно
определению, она является особой точкой кривой. На рис. 11.5
видно, что в окрестности точки O кривая не имеет явного
уравнения, поскольку каждому x > 0 соответствуют два
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значения y и также каждому y > 0 соответствуют два значения
x. Любая точка этой кривой при t �= 0 является обыкновенной
точкой.

Огибающая семейства плоских кривых

Рассмотрим уравнение

F (x, y, a) = 0. (11.5)

Пусть при каждом фиксированном значении переменной a (из
некоторого промежутка) уравнение (11.5) задает плоскую кри-
вую на плоскости Oxy. Изменяя a (в пределах указанного
промежутка), будем получать различные кривые. Совокупность
всех этих кривых называется однопараметрическим семей-
ством кривых, переменная a называется параметром, а урав-
нение (11.5) — уравнением однопараметрического семейства
кривых.

Рис. 11.6.

Пример. Уравнение

y − (x− a)2 = 0, a ∈ R

задает однопараметрическое се-
мейство парабол (рис. 11.6).

Заметим, что ось Ox касается
всех парабол семейства.

Определение. Кривая, кото-
рая: 1) в каждой своей точке ка-
сается и притом только одной кри-
вой данного семейства и
2) в различных точках касается различных кривых семейства,
называется огибающей данного семейства кривых.

В рассмотренном примере ось Ox (прямая y = 0) —
огибающая семейства парабол.

Необходимое условие огибающей

Рис. 11.7.

Пусть однопараметрическое семей-
ство кривых, заданное уравнением
(11.5), имеет огибающую. Рассмот-
рим точку M(x, y) на огибающей
(рис. 11.7). Так как в этой точке
огибающая касается некоторой кривой
семейства, а этой кривой соответству-
ет определенное значение параметра
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a, то, тем самым, каждая точка M(x, y) огибающей соответ-
ствует определенному значению параметра a, причем различные
точки огибающей соответствуют различным значениям a (в си-
лу определения огибающей). Таким образом, координаты точки
M(x, y) огибающей являются функциями параметра a. Обозна-
чим их так:

x = ϕ(a), y = ψ(a).

Эти уравнения являются параметрическими уравнениями
огибающей. Будем считать, что ϕ(a) и ψ(a) — дифференцируе-
мые функции, и выведем систему уравнений, решением которой
являются эти функции.

Так как точка M(ϕ(a),ψ(a)) огибающей лежит также на
кривой семейства, отвечающей данному значению параметра a,
то ее координаты удовлетворяют уравнению (11.5):

F (ϕ(a),ψ(a), a) = 0. (11.6)

Равенство (11.6) выполняется для любого значения a, то есть
является тождеством. Продифференцируем его по a:

Fx · ϕ′(a) + Fy · ψ′(a) + Fa

∣∣∣∣x=ϕ(a)
y=ψ(a)

= 0. (11.7)

Так как огибающая и кривая семейства касаются в точке
M(ϕ(a),ψ(a)), то они имеют в этой точке общую касатель-
ную, и, значит, одинаковые угловые коэффициенты касатель-
ной. Равенство этих угловых коэффициентов, используя фор-
мулы (11.3) и (11.4), запишем в виде (при условии ϕ′(a) �=
�= 0, Fy(ϕ(a),ψ(a), a) �= 0)

ψ′(a)

ϕ′(a)
= −Fx(x, y, a)

Fy(x, y, a)

∣∣∣∣x=ϕ(a)
y=ψ(a)

,

откуда получаем

Fx · ϕ′(a) + Fy · ψ′(a)
∣∣∣∣x=ϕ(a)
y=ψ(a)

= 0. (11.8)

Заметим, что это равенство верно и в том случае, когда ϕ′(a) = 0
и Fy(ϕ(a),ψ(a), a) = 0. В силу (11.8) из (11.7) следует равенство

Fa

(
ϕ(a),ψ(a), a

)
= 0. (11.9)
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Итак, если огибающая семейства кривых, заданного урав-
нением (11.5), существует, то функции x = ϕ(a), y = ψ(a),
описывающие огибающую, удовлетворяют равенствам (11.6)
и (11.9), то есть эти функции являются решением системы
уравнений

F (x, y, a) = 0, Fa(x, y, a) = 0. (11.10)

Это и есть необходимое условие огибающей.
Если система (11.10) не имеет решения относительно x и y,

то у семейства кривых (11.5) огибающей нет. Если же система
(11.10) имеет решение x = ϕ(a), y = ψ(a), то эти функции могут
описывать огибающую, но могут быть и уравнениями кривой, ко-
торая не является огибающей. Дело в том, что равенство (11.8) и,
следовательно, равенство (11.9), имеет место не только в случае
касания огибающей и кривой семейства в точке M(ϕ(a),ψ(a)),
а также и тога, когда в этой точке либо Fx = Fy = 0, либо
ϕ′(a) = ψ′(a) = 0. В этом случае точка M(ϕ(a),ψ(a)) будет
особой точкой либо кривой семейства (11.5), либо кривой, опи-
сываемой уравнениями x = ϕ(a), y = ψ(a).

Кривая, определяемая системой (11.10), называется дискри-
минантной кривой семейства (11.5). Если кривые семейства и
дискриминантная кривая не имеют особых точек, то дискрими-
нантная кривая является огибающей. В противном случае дис-
криминантная кривая может быть либо огибающей, либо множе-
ством особых точек, либо частично тем и частично другим.

Примеры. 1) Рассмотрим уравнение

(x− a)3 − (y − a)2 = 0, a ∈ R.

Оно задает семейство кривых, называемых полукубическими
параболами. Название объясняется тем, что уравнение можно
записать в виде y − a = ±(x− a)3/2, и эпитет «полукубические»,
относящийся к кривым этого семейства, обусловлен показателем
степени, равным 3/2.

В данном примере F (x, y, a) = (x − a)3 − (y − a)2, поэтому
Fa(x, y, a) = −3(x − a)2 + 2(y − a), а система (11.10) имеет два
решения

x = a, y = a и x = a+
4

9
, y = a+

8

27
(убедитесь в этом).

Таким образом, дискриминантная кривая состоит из двух пря-
мых, уравнения которых можно записать так:

y = x и y = x− 4

27
.
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Рис. 11.8.

В точках прямой x = a, y = a выполняются равенства Fx =
= Fy = 0, то есть эта прямая является множеством особых
точек кривых семейства (рис. 11.8).

Прямая x = a + 4/9, y = a + 8/27 является огибающей: в
каждой своей точке она касается некоторой кривой семейства, а
в различных точках касается различных кривых семейства (см.
рис. 11.8).

Рис. 11.9.

2) Кривая y = f(x), имеющая каса-
тельную в каждой точке, является оги-
бающей семейства касательных к этой
кривой.

Выведем уравнение семейства каса-
тельных к параболе y = x2. Возьмем на
параболе произвольную точку M(a; a2).
(рис 11.9). Угловой коэффициент каса-
тельной в этой точке равен y′(a) = 2a,
а уравнение касательной имеет вид

y − a2 = 2a(x− a) и�� y = 2ax− a2 (−∞ < a <∞).

Это и есть уравнение однопараметрического семейства касатель-
ных к параболе y = x2.
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Замечание. Понятие огибающей используется в теории диф-
ференциальных уравнений. Рассмотрим уравнение

dy

dx
= f(x, y).

Оно называется дифференциальным уравнением первого поряд-
ка, и задача состоит в том, чтобы найти все функции y = y(x),
удовлетворяющие этому уравнению. В курсе дифференциальных
уравнений будет доказано, что общее решение данного уравне-
ния зависит от одной произвольной постоянной: y = Φ(x, c), где
c — произвольная постоянная, а функция Φ определяется правой
частью уравнения, то есть функцией f(x, y). Запишем общее
решение в виде

F (x, y, c) := y − Φ(x, c) = 0.

Таким образом, общее решение задает однопараметрическое се-
мейство кривых на плоскости (x, y), в качестве параметра высту-
пает произвольная постоянная c.

Если это семейство кривых имеет огибающую, то она явля-
ется графиком так называемого особого решения дифференци-
ального уравнения.

Рис. 11.10.

Пример. Рассмотрим
уравнение

dy

dx
= 3y2/3.

Его общее решение найдем,
записав уравнение в ви-

де
dy

3y2/3
= dx, откуда, ин-

тегрируя обе части равен-
ства, получаем: y1/3 = x+ c
или y = (x + c)3, где c —
произвольная постоянная,
c ∈ R. Найденное общее ре-
шение дифференциального
уравнения задает семей-
ство кубических парабол
(рис. 11.10). Оно имеет огибающую — ось Ox. Это видно непо-
средственно на рисунке (ось Ox касается всех кривых семей-
ства), а, кроме того, можно найти огибающую, используя систе-
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му уравнений (11.10), которая в данном случае имеет решение
x = −c, y = 0, задающее ось Ox. Через каждую точку (x, y), не
лежащую на оси Ox, проходит одно решение дифференциального
уравнения, а через каждую точку оси Ox проходят 2 решения:
одно из них изображается кубической параболой, а другое — это
особое решение y = 0.

§ 3. Кривизна плоской кривой

Рис. 11.11.

Рассмотрим плоскую кривую, изображенную на
рисунке 11.11. Выделим на ней два участка одина-
ковой длины (I и II). Наглядно видно, что искрив-
ленность на участке II больше, чем на участке I.
Наша задача состоит в том, чтобы ввести количе-
ственную характеристику искривленности плоской
кривой (меру искривленности). Эту меру искривлен-
ности мы назовем в дальнейшем кривизной плоской
кривой.

Пусть дана плоская кривая L, в каждой точке которой су-
ществует касательная. Будем в каждой точке рассматривать
направленную касательную. За направление касательной при-
мем то, которое соответствует направлению движения точки
по кривой, и будем отмечать его стрелкой. Пусть M0 и M —
две точки на кривой L. Обозначим через �ϕ угол, на который
повернется направленная касательная при движении по кривой
L из точки M0 в точку M (рис. 11.12). Будем считать �ϕ � 0.

Рис. 11.12.

Через �l обозначим длину дуги M0M . Яс-
но, что чем больше искривленность участ-
ка M0M кривой L, тем на больший угол
�ϕ повернется касательная, и наоборот, чем
больше угол �ϕ (при заданной длине дуги
M0M), тем больше искривленность участка
кривой M0M . Эти наглядные представления
положим в основу определения кривизны
кривой.

Определение. Средней кривизной участка кривой M0M на-

зывается отношение
�ϕ

�l
.

Обозначение: k
M0M

=
�ϕ

�l
.

Кривизной кривой L в точке M0 называется lim
M→M0
M∈L

k
M0M

.
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Обозначение: k(M0) = lim
M→M0
M∈L

k
M0M

.

Замечание. Согласно нашему определению кривизна (как
средняя, так и в точке) неотрицательна (так как �ϕ � 0, �l > 0).
Иногда вводят кривизну со знаком, в этом случае знак отражает
направление выпуклости кривой.

Примеры.

Рис. 11.13.

1) Если L — прямая, то для любого ее
отрезка M0M имеем: �ϕ = 0 (рис. 11.13), по-
этому k

M0M
= 0, k(M0) = 0, то есть кривизна

прямой (как средняя, так и в каждой точке)
равна нулю.

2) Длина �l дуги M0M окружности ради-
уса R выражается формулой �l = R· �ϕ (рис. 11.14), поэтому

k
M0M

=
�ϕ

�l
=

1

R
, k(M0) =

1

R
, то есть как средняя кривизна

любой дуги окружности, так и кривизна в каждой ее точке,

равны
1

R
. Отметим, что при R → ∞ кривизна окружности стре-

мится к нулю, и в этом смысле дуга окружности очень большого
радиуса мало отличается от прямой. Заметим, что прямая и
окружность — кривые постоянной кривизны.

Рис. 11.14. Рис. 11.15.

3) Рассмотрим эллипс, заданный уравнением

x2

a2
+
y2

b2
= 1, где a > b (рис. 11.15).

Интуитивно ясно, что кривизна эллипса в точке M1 меньше, чем
в точке M2: k(M1) < k(M2). Чтобы доказать это строго, нужно
научиться вычислять кривизну в точке.
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Вычисление кривизны кривой

Рис. 11.16.

1) Пусть кривая L задана
явным уравнением y = f(x),
причем f(x) — дважды
дифференцируемая функция.
Обозначим буквой α угол
между направленной каса-
тельной к кривой L в точ-
ке M (при движении в
сторону возрастания x) и
осью Ox (рис. 11.16). То-

гда −π
2
< α <

π

2
(на рисун-

ке 11.16 α > 0). Значение α для точки M0(x0, f(x0)) обозначим
через α0. Положим �α = α− α0, тогда �ϕ = | �α|. По определе-
нию средней кривизны

k
M0M

=
�ϕ

� l
=

∣∣∣�α
� l

∣∣∣ ,
а для кривизны в точке M0 получаем:

k(M0) = lim
M→M0
M∈L

k
M0M

= lim
Δl→0

∣∣∣�α
� l

∣∣∣ = ∣∣∣dα
dl

∣∣∣
x=x0

.

Величины α и l, где l — длина кривой, отсчитываемая от точки
M0, являются функциями x, а именно: α = arctg f ′(x), поскольку

tgα = f ′(x), поэтому dα
∣∣∣
x=x0

=
f ′′(x0)

1+ f ′2(x0)
dx;

l = l
M0M

=

x∫
x0

√
1+ f ′2(s) ds (см. §13 гл. 5), поэтому dl

∣∣∣
x=x0

=

=
√
1+ f ′2(x0) dx.

Следовательно, для кривизны кривой, заданной уравнением
y = f(x), в точке M0(x0, f(x0)) получается формула

k(M0) =
∣∣∣dα
dl

∣∣∣
x=x0

=
|f ′′(x0)|[

1+ f ′2(x0)
]3/2 . (11.11)

Формула (11.11) показывает, что кривизна k(M0) тем больше,
чем больше |f ′′(x0)|. В случае прямой, заданной уравнением y =
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= kx+ b, функция f(x) = kx + b, f ′′(x) ≡ 0 и кривизна во всех
точках равна нулю.

Пусть f ′′(x0) �= 0. Построим окружность радиуса R =
1

k(M0)
,

которая касается кривой L в точке M0(x0, f(x0)) и имеет в
окрестности точки M0 такое же направление выпуклости, как и
кривая L (рис. 11.17). Эта окружность называется кругом кри-
визны кривой L в точке M0, ее радиус R называется радиусом
кривизны, а центр — центром кривизны кривой L в точке M0.

Рис. 11.17.

Можно доказать (сделайте это само-
стоятельно), что порядок касания ука-
занной окружности и кривой L в точке
M0 не ниже 2.

Эта окружность называется так-
же соприкасающейся окружностью для
кривой L в точке M0.
Пример. Рассмотри параболу, за-

данную уравнением y = x2, и точку
M0(0; 0) на этой параболе (рис. 11.18).
Так как в данном примере f(x) = x2,
то f ′(0) = 0, f ′′(0) = 2, и по формуле (11.11) получаем:
k(M0) = 2 — кривизна параболы в точке M0. Следовательно,

R =
1

k(M0)
=

1

2
— радиус кривизны параболы в точке M0, а

уравнение соприкасающейся окружности для параболы в точке
M0 имеет вид

x2 +
(
y − 1

2

)2

=
1

4
.

Рис. 11.18.

Задание. Докажите (пользуясь
теоремой 1 или определением), что
порядок касания параболы y = x2 и
соприкасающейся окружности в точке
M0 равен 2.

2) Пусть кривая L задана парамет-
рически:

x = ϕ(t), y = ψ(t),

параметр t изменяется на некотором
промежутке. Тогда

dl =
√
ϕ′2(t) + ψ′2(t) dt; tgα =

ψ′(t)

ϕ′(t)
, α = arctg

ψ′(t)

ϕ′(t)
,
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dα =
ψ′′(t)ϕ′(t)− ϕ′′(t)ψ′(t)

ϕ′2(t) + ψ′2(t)
dt.

Пусть точка M0 кривой L имеет координаты (ϕ(t0),ψ(t0)).
Для кривизны кривой L в точке M0 получается формула

k(M0) =
∣∣∣dα
dl

∣∣∣
t=t0

=
|ψ′′(t0)ϕ

′(t0)− ϕ′′(t0)ψ
′(t0)|[

ϕ′2(t0) + ψ′2(t0)
]3/2 . (11.12)

Пример. Рассмотрим эллипс (рис. 11.15), заданный уравне-
нием

x2

a2
+
y2

b2
= 1, где a > b.

Перейдем к параметрическим уравнениям эллипса:

x = a cos t, y = b sin t, 0 � t � 2π.

Здесь ϕ(t) = a cos t, ψ(t) = b sin t, поэтому

ϕ′(t) = −a sin t, ψ′(t) = b cos t, ϕ′′(t) = −a cos t, ψ′′(t) = −b sin t.
Для точки M(ϕ(t),ψ(t)) по формуле (11.12) получаем:

k(M) =

∣∣ab sin2 t+ ab cos2 t
∣∣(

a2 sin2 t+ b2 cos2 t
)3/2 =

ab(
a2 sin2 t+ b2 cos2 t

)3/2 .
На рисунке 11.15 точка M1 соответствует t = π/2, а точка M2 —
t = 0. Поэтому

k(M1) =
ab

a3
=

b

a2
, k(M2) =

ab

b3
=

a

b2
,

а поскольку a > b, то k(M1) < K(M2).
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КРАТНЫЕ ИНТЕГРАЛЫ

§ 1. Площадь плоской фигуры

Под плоской фигурой будем понимать любое множество точек
плоскости.

Из курса школьной геометрии известно понятие площади
многоугольника. При выбранной единице измерения площадей
площадь каждого многоугольника выражается некоторым чис-
лом.

Рис. 12.1.

Рассмотрим ограниченную
плоскую фигуру G. Многоугольник
Qв будем называть вписанным в
фигуру G, а многоугольник Qо —
описанным около фигуры G, если
Qв ⊂ G ⊂ Qо (рис. 12.1). Через Pв и
Pо обозначим площади вписанного
и описанного многоугольников.
Очевидно, что Pв � Pо.

Пусть {Pв} — множество пло-
щадей всех вписанных в фигуру G многоугольников. Оно огра-
ничено сверху (площадью любого описанного многоугольника)
и, следовательно, существует sup {Pв}, который обозначим P .
Если в фигуру G нельзя вписать ни одного многоугольника, то
положим P = 0.

Аналогично, множество {Pо} площадей всевозможных опи-
санных многоугольников ограничено снизу (например, числом
нуль) и, следовательно, существует inf {Pо} =: P .

Рис. 12.2.

Числа P и P называются нижней и
верхней площадью фигуры G.

Утверждение: P � P .
Если допустить, что P > P (см.

рис. 12.2), то найдутся такие Pв и
Pо, для которых выполнено неравенство
Pо < Pв, чего не может быть. Таким образом, для любых Pв и Pо
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выполняются неравенства

Pв � P � P � Pо. (12.1)

Определение. Плоская фигура G называется квадрируемой,
если P = P . При этом число P = P = P называется площадью
фигуры G (по Жордану).

Примеры.
1. Всякий многоугольник является, очевидно, квадрируемой фи-
гурой в смысле данного определения, и его площадь по Жордану
равна площади, введенной в элементарной геометрии.
2. Примером неквадрируемой фигуры является множество точек
G = {(x, y) : 0 � x � 1, 0 � y � 1, x и y − рациональные числа}.
Так как P = 0, P = 1 (обоснуйте это), то P �= P , поэтому фигура
G не квадрируема.

Теорема 1. Для того, чтобы плоская фигура была квадри-
руемой, необходимо и достаточно, чтобы ∀ε > 0 существовали
такие вписанный и описанный многоугольники, для которых
Pо − Pв < ε.
Доказательство. 1) Необходимость. Пусть G — квадрируе-

мая фигура, то есть P = P = P . Согласно определению точных
граней числового множества ∀ε > 0 найдутся такие вписанный
и описанный многоугольники, площади которых удовлетворяют
неравенствам

P − Pв <
ε

2
, Pо − P <

ε

2
.

Складывая эти неравенства, получаем Pо − Pв < ε, и, тем самым,
утверждение о необходимости доказано.

Рис. 12.3.

2) Достаточность. Пусть
∀ε > 0 существуют Qв и Qо, для
которых Pо − Pв < ε. Отсюда и
из неравенств (12.1) следует, что
0 � P − P < ε, а так как ε — про-
извольное положительное число,
то P − P = 0, то есть P = P . Это
и означает (по определению), что
фигура G квадрируема. Утвер-
ждение о достаточности доказа-
но.

Пусть функция y = f(x) неот-
рицательна и непрерывна на сегменте [a, b] (рис. 12.3). Фигура,
ограниченная графиком этой функции, отрезком [a, b] оси Ox и
двумя вертикальными отрезками (x = a и x = b; каждый из этих
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отрезков может вырождаться в точку), называется криволиней-
ной трапецией.

Теорема 2. Криволинейная трапеция квадрируема и ее пло-
щадь P выражается формулой

P =

b∫
a

f(x)dx (12.2)

Рис. 12.4.

Доказательство. Так как функция
f(x) непрерывна на сегменте [a, b],
то она интегрируема на этом сег-
менте. Поэтому ∀ε > 0 найдет-
ся такое разбиение сегмента [a, b],
для которого S − s < ε, где S и
s — верхняя и нижняя суммы это-
го разбиения. Заметим, что S —
площадь описанного около криво-
линейной трапеции ступенчатого
многоугольника (S = Pо), а s —
площадь вписанного ступенчатого
многоугольника (s = Pв) (рис. 12.4). Таким образом, для ∀ε > 0
существуют такие вписанный и описанный многоугольники, для
которых Pо − Pв < ε. Следовательно, согласно теореме 1, криво-
линейная трапеция квадрируема.

Пусть ее площадь равна P . Тогда для любых Qв и Qо вы-
полняются неравенства Pв � P � Pо, в частности, s � P � S.
Перейдем в этих неравенствах к пределу при Δ → 0 (Δ —
максимальная длина частичного сегмента разбиения сегмента

[a, b]). Так как lim
Δ→0

s = lim
Δ→0

S =
b∫
a
f(x)dx (лемма Дарбу), то

Рис. 12.5.

P =
b∫
a
f(x)dx. Теорема 2 доказа-

на.
Примеры. 1. Найти площадь

фигуры, ограниченной эллипсом
x2

a2
+
y2

b2
= 1 (рис. 12.5).

Искомая площадь P в че-
тыре раза больше площади за-
штрихованной фигуры, а ее
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можно вычислить по формуле (12.2), в которой нужно положить

a = 0, b = a, f(x) = b

√
1− x2

a2
. Итак,

P = 4b

a∫

0

√
1− x2

a2
dx.

Для вычисления интеграла можно сделать замену перемен-

ной x = a sin t, 0 � t �
π

2
. В результате получим P = πab.

Рис. 12.6.

2. На рис. 12.6 изображена плоская
фигура, ограниченная отрезками OA и
OB, а также непрерывной кривой, за-
данной в полярных координатах урав-
нением

r = r(ϕ), ϕ1 � ϕ � ϕ2 .

Такая фигура называется криволиней-
ным сектором. Площадь P криволинейного сектора выражается
формулой

P =
1

2

ϕ2∫
ϕ1

r2(ϕ)dϕ.

Обоснование этой формулы будет дано ниже.

§ 2. Двойные интегралы

Областью (открытой областью) обычно называют любое
открытое связное множество в R

n. Объединение области и ее
границы называется замкнутой областью. В дальнейшем, если
замкнутость не существенна, под словом область будем понимать
либо открытую, либо замкнутую область. Если же замкнутость
существенна, то будем говорить «замкнутая область».

Введем понятие диаметра множества. Пусть G — ограничен-
ное множество точек в пространстве R

n, в частости, на плоско-
сти, и пусть M1 и M2 — две произвольные точки из G. Число-
вое множество {ρ(M1,M2)} ограничено сверху и, следовательно,
имеет точную верхнюю грань. Число

d = sup
M1∈G
M2∈G

{ρ(M1,M2)}
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называется диаметром множества G.
Примеры: диаметр прямоугольника равен его диагонали,

диаметр эллипса равен его бо́льшей оси.

Рис. 12.7.

Пусть G — квадрируемая
(и, следовательно, ограничен-
ная) область (открытая или за-
мкнутая) на плоскости (x, y)
и пусть в области G опре-
делена ограниченная функция
z = f(x, y) = f(K) (K = (x, y)).
Разобьем область G на n квад-

рируемых частей Gi: G =
n⋃

i=1

Gi

(рис. 12.7), так что любые две
части Gi и Gj не имеют общих
внутренних точек; в каждой части Gi возьмем произвольным
образом точку Ki(ξi, ηi) и составим сумму

I(Gi,Ki) =
n∑

i=1

f(Ki)P (Gi), где P (Gi)− площадь Gi.

Число I(Gi,Ki) называется интегральной суммой функции
f(x, y), соответствующей данному разбиению области G и данно-
му выбору промежуточных точек Ki. Введем обозначение: di —
диаметр Gi, d = max

1�i�n
di.

Определение предела интегральных сумм при d→ 0 вводит-
ся так же, как для определенного интеграла. Если существует
lim
d→0

I(Gi,Ki) = I, то число I называется двойным интегралом

от функции f(x, y) по области G и обозначается так:

I =

∫ ∫

G

f(x, y)dxdy (иногда так:

∫

G

f(K)dS),

а функция f(x, y) называется интегрируемой в области G.
Геометрический смысл двойного интеграла
Если f(x, y), (x, y) ∈ G — непрерывная неотрицательная

функция, то

∫ ∫

G

f(x, y) — объем тела, изображенного на рисун-

ке 12.8. Если f(x, y) = 1, то любая интегральная сумма такой
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функции равна
n∑

i=1

1 · P (Gi) = P (G) — площади области G, и

поэтому
∫ ∫
G

dxdy = P (G).

Рис. 12.8.

Многие физические ве-
личины выражаются через
двойные интегралы. Напри-
мер, если ρ(x, y) — плот-
ность электрического за-
ряда в области G, то∫ ∫

G

ρ(x, y)dxdy — величи-

на заряда, содержащегося в
этой области.

Для двойных интегра-
лов можно развить такую
же теорию, как для опреде-
ленных интегралов.

Для произвольного раз-

биения G =
n⋃

i=1

Gi введем

верхнюю и нижнюю суммы Дарбу функции f(x, y):

S =
n∑

i=1

MiP (Gi) , s =
n∑

i=1

miP (Gi) ,

где Mi = sup
Gi

f(x, y), mi = inf
Gi

f(x, y), P (Gi) — площадь Gi.

Суммы Дарбу обладают такими же свойствами, как и в
случае определенного интеграла, в частности, существуют I =
= sup {s}, I = inf {S}, при этом I � I, lim

d→0
s = I, lim

d→0
S = I

(лемма Дарбу).
Теорема 3. Для того, чтобы ограниченная в квадрируе-

мой области G функция f(x, y) была интегрируемой в этой
области, необходимо и достаточно, чтобы I = I . При этом∫ ∫
G

f(x, y)dxdy = I = I.

Теорема 4. Для того, чтобы ограниченная в квадрируемой
области G функция f(x, y) была интегрируемой в этой области,
необходимо и достаточно, чтобы ∀ ε > 0 существовало разбиение
области G, у которого S − s < ε.

Теорема 5. Если функция f(x, y) непрерывна в замкнутой
квадрируемой области, то она интегрируема в этой области.
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Определение. Множество точек на плоскости называется
множеством площади нуль, если ∀ ε > 0 существует конечное
число многоугольников, содержащих в себе все точки этого
множества и имеющих сумму площадей меньшую, чем ε.

Теорема 6. Если функция f(x, y) ограничена в квадрируе-
мой области G и непрерывна в этой области, за исключением
множества точек площади нуль, то эта функция интегрируема в
области G.

Теоремы 3–6 доказываются так же, как для определенного
интеграла.

Двойные интегралы обладают такими же свойствами, как
определенные интегралы.

§ 3. Вычисление двойных интегралов с помощью
повторного интегрирования

1) Сначала рассмотрим случай, когда функция f(x, y) опре-
делена в прямоугольнике Q = {(x, y) : a � x � b, c � y � d}.

Теорема 7. Пусть:

1. существует двойной интеграл

∫ ∫

Q

f(x, y)dxdy,

2. ∀x ∈[a, b] существует определенный интегралI(x) =

d∫
c

f(x, y)dy.

Тогда существует определенный интеграл

b∫
a

I(x)dx (он называет-

ся повторным и записывается в виде

b∫
a

dx

d∫
c

f(x, y)dy) и справед-

ливо равенство

∫ ∫

Q

f(x, y)dxdy =

b∫
a

dx

d∫
c

f(x, y)dy,

то есть двойной интеграл равен повторному.
Доказательство. Разобьем сегмент [a, b] на n частичных сегмен-
тов точками a = x0 < x1 < . . . < xn = b, а сегмент [c, d] — на
m частичных сегментов точками c = y0 < y1 < . . . < ym = d.
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Рис. 12.9. Рис. 12.10.

Проведем через точки разбиения прямые, параллельные осям
координат (координатные линии). Прямоугольник Q разобьется
на mn частичных прямоугольников (рис. 12.9)

Qij = {(x, y) : xi−1 � x � xi, yj−1 � y � yj}
(i = 1, . . . ,n; j = 1, . . . ,m).

Положим mij = inf
Qij

f(x, y), Mij = sup
Qij

f(x, y). Δxi = xi − xi−1,

Δyj = yj − yj−1, dij— диаметр Qij , d = max
1�i�n
1�j�m

dij . Отметим, что

P (Qij) = Δxi ·Δyj.
На каждом частичном сегменте [xi−1,xi] возьмем произволь-

ным образом точку ξi (рис. 12.10). Так как

mij � f(ξi, y) �Mij при yj−1 � y � yj , то

yj∫
yj−1

mijdy �

yj∫
yj−1

f(ξi, y)dy �

yj∫
yj−1

Mijdy

или

mijΔyj �

yj∫
yj−1

f(ξi, y)dy �MijΔyj (i = 1, . . . ,n; j = 1, . . . ,m)

Просуммируем эти неравенства по j от 1 до m при каждом i:

m∑
j=1

mijΔyj �

d∫
c

f(ξi, y)dy �

m∑
j=1

MijΔyj .
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Заметим, что средняя часть неравенств есть I(ξi).
Умножим эти неравенства на Δxi и просуммируем по i от 1 до
n:

n∑
i=1

m∑
j=1

mijΔxiΔyj �
n∑

i=1

I(ξi)Δxi �
n∑

i=1

m∑
j=1

MijΔxiΔyj.

Средняя часть полученных неравенств является интегральной
суммой функции I(x), соответствующей разбиению сегмента
[a, b] на частичные сегменты [xi−1,xi], а левая и правая части —
нижней и верхней суммами функции f(x, y), соответствующими
разбиению прямоугольника Q на частичные прямоугольники Qij

(поскольку Δxi ·Δyj = P (Qij)).
Перейдем к пределу при d → 0. Тогда все Δxi → 0. Из

условия 1) в силу теоремы 3 и леммы Дарбу следует, что пределы
левой и правой частей неравенств равны двойному интегралу∫ ∫
Q

f(x, y)dxdy. Следовательно, существует предел средней ча-

сти, а это и есть по определению интеграл
b∫
a
I(x)dx. В результате

получаем равенство

∫ ∫

Q

f(x, y)dxdy =

b∫
a

I(x)dx =

b∫
a

dx

d∫
c

f(x, y)dy.

Теорема доказана.
Замечание. Поменяв в условиях теоремы 7 местами x и y,

получим равенство

∫ ∫

Q

f(x, y)dxdy =

d∫
c

dy

b∫
a

f(x, y)dx.

Пример. Пусть Q = {(x, y) : 0 � x � 1, 0 � y � 1}.∫ ∫

Q

xexydxdy =

1∫

0

dx

1∫

0

xexydy =

1∫

0

dx · exy
∣∣∣∣y=1

y=0

=

1∫

0

(ex − 1)dx =

= (ex − x)|10 = e− 1− 1 = e− 2.
Задание. Попробуйте вычислить этот двойной интеграл, ин-

тегрируя сначала по x, а потом по y, и посмотрите, что из этого
получится.
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Рис. 12.11.

2) Пусть теперь функция f(x, y) определена в области
G = {(x, y) : y1(x) � y � y2(x), a � x � b}, где y1(x) и y2(x) —
непрерывные функции (рис. 12.11).

Теорема 7′. Пусть:

1. существует двойной интеграл

∫ ∫

G

f(x, y)dxdy,

2.∀x∈ [a, b] существует определенный интеграл I(x) =

y2(x)∫

y1(x)

f(x, y)dy.

Тогда существует повторный интеграл

b∫
a

I(x)dx =

b∫
a

dx

y2(x)∫

y1(x)

f(x, y)dy

и он равен двойному интегралу:

∫ ∫

G

f(x, y)dxdy =

b∫
a

dx

y2(x)∫

y1(x)

f(x, y)dy.

Теорема 7′ доказывается путем введения прямоугольника
Q = {(x, y) : a � x � y, c � y � d}, содержащего область G
(рис. 12.11), и применения теоремы 7 к функции

F (x, y) =

{
f(x, y), (x, y) ∈ G,
0 , (x, y) ∈ Q\G.
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Примеры.
1. Область G ограничена прямой y = x и параболой y = x2

(рис. 12.12). Вычислить I =
∫ ∫
G

xy2dxdy.

1-й способ.

I =

1∫

0

dx

x∫

x2

xy2dy =
1

3

1∫

0

x
(
x3 − x6

)
dx =

1

3

(
x5

5
− x8

8

)∣∣∣∣1
0

=
1

40
.

2-й способ. I =

1∫

0

dy

√
y∫

y

xy2dx = . . . =
1

40
.

Рис. 12.12. Рис. 12.13.

2. Область G — криволинейная трапеция (рис. 12.13).

P (G) =

∫ ∫

G

dxdy =

b∫
a

dx

f(x)∫

0

dy =

b∫
a

f(x)dx.

Еще раз получили формулу площади криволинейной тра-
пеции.

§ 4. Замена переменных в двойном интеграле

Рассмотрим двойной интеграл
∫ ∫
G

f(x, y)dxdy. Перейдем от

переменных (x, y) к новым переменным (u, v) посредством фор-
мул

x = ϕ(u, v), y = ψ(u, v), (u, v) ∈ g. (12.3)
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При некоторых условиях на область G, функцию f(x, y) и функ-
ции (12.3) имеет место формула

∫ ∫

G

f(x, y)dxdy =

∫ ∫
g

f (ϕ(u, v),ψ(u, v))

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ dudv, (12.4)

где

D(x, y)

D(u, v)
=

∣∣∣∣∣ ϕ
′

u ϕ
′

v

ψ
′

u ψ
′

v

∣∣∣∣∣ — якобиан функций (12.3) по u и v.

Формула (12.4) называется формулой замены переменных в
двойном интеграле.

Рассмотрим (нестрогий) вывод формулы (12.4). Пусть функ-
ции (12.3) удовлетворяют условиям:
I. Если точка (u, v) пробегает область g, то точка (x, y) =
= (ϕ(u, v),ψ(u, v)) пробегает область G, причем различным точ-
кам (u, v) из области g соответствуют различные точки (x, y) из
области G.
II. Функции ϕ(u, v) и ψ(u, v) имеют в области g непрерывные
частные производные первого порядка.

III.
D(x, y)

D(u, v)
=

∣∣∣∣∣∣
ϕ

′

u ϕ
′

v

ψ
′

u ψ
′

v

∣∣∣∣∣∣ �= 0 ∀ (u, v) ∈ g.

Зафиксируем переменную u, положив u = u0 = const. Тогда
из уравнений (12.3) получим:

x = ϕ(u0, v), y = ψ(u0, v). (12.5)

Рис. 12.14.

Уравнения (12.5) являются пара-
метрическими уравнениями кри-
вой, лежащей в области G (роль
параметра играет v). Аналогич-
но, положив v = v0 = const, по-
лучим параметрические уравне-
ния другой кривой, лежащей в
области G:

x = ϕ(u, v0), y = ψ(u, v0), (12.6)

u — параметр. Кривые (12.5) и (12.6) пересекаются в точке
M0(x0, y0), где x0 = ϕ(u0, v0), y0 = ψ(u0, v0) (рис. 12.14).
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В силу условия I точка M0(x0, y0) соответствует только одной
точке (u0, v0) из области g. Таким образом, точка M0 однозначно
определяется парой чисел (u0, v0). Поэтому эти числа можно
рассматривать как новые координаты точки M0. Кривая (12.5),
на которой координата u постоянна, а меняется только коорди-
ната v, называется координатной v-линией, а кривая (12.6) —
координатной u-линией. Так как координатные линии (12.5)
и (12.6), вообще говоря, кривые, то числа u0 и v0 называются
криволинейными координатами точки M0.

Рис. 12.15.

Итак, равенства (12.3)
можно рассматривать как
формулы, посредством ко-
торых в области G вводятся
криволинейные координаты
точек.

Рассмотрим две пары
близких координатных
линий в области G. Они
ограничивают криволиней-
ный четырехугольник Q
(рис. 12.15). Вычислим
приближенно площадь этого четырехугольника, заменив его

параллелограммом, построенным на векторах
→
l1 и

→
l2.

→
l1= {ϕ(u+Δu, v)− ϕ(u, v),ψ(u+Δu, v)− ψ(u, v)} =
=

{
ϕ

′

u ·Δu,ψ′

u ·Δu} ,
→
l2=

{
ϕ

′

v ·Δv,ψ′

v ·Δv
}
,

где производные ϕ
′

u, ψ
′

u, ϕ
′

v, ψ
′

v берутся в некоторых промежу-
точных точках.

P (Q) ≈
∣∣∣[→l1 ×

→
l2

]∣∣∣ = |

∣∣∣∣∣∣∣
→
i

→
j

→
k

ϕ
′

uΔu ψ
′

uΔu 0

ϕ
′

vΔv ψ
′

vΔv 0

∣∣∣∣∣∣∣ | =
=

∣∣∣(ϕ′

uψ
′

v − ϕ
′

vψ
′

u

)
Δu ·Δv· →k

∣∣∣ ≈ ∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣
(ũ,ṽ)

·Δu ·Δv
(считаем Δu > 0, Δv > 0), (ũ, ṽ) — какая-нибудь точка криволи-
нейного четырехугольника.

Разобьем область g на частичные области gij отрезками пря-
мых u = ui и v = vj (i = 0, 1, . . . ,n; j = 0, 1, . . . ,m) (рис. 12.16).
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Рис. 12.16. Рис. 12.17.

При этом область G разобьется на частичные области Gij коор-
динатными u и v-линиями (рис. 12.17): G =

⋃
i,j
Gij .

Положим Δui = ui − ui−1, Δvj = vj − vj−1.
В каждой частичной области Gij возьмем в качестве про-

межуточной точки точку Kij(xij, yij), где xij = ϕ(ũi, ṽj), yij =
= ψ(ũi, ṽj), и составим интегральную сумму функции f(x, y) для
полученного разбиения области G. Учитывая, что

P (Gij) ≈
∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣
(ũi,ṽj)

·Δui ·Δvj ,
получаем

I(Gij ,Kij) =
∑
i,j
f(xij , yij)P (Gij) ≈

≈ ∑
i,j
f (ϕ(ũi, ṽj),ψ(ũi, ṽj))

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣
(ũi,ṽj)

·Δui ·Δvj .
(12.7)

Так как ΔuiΔvj = P (gij), то сумма в правой части ра-
венства (12.7) является интегральной суммой для функции

f (ϕ(u, v),ψ(u, v))

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣, соответствующей разбиению области

g на частичные области gi,j (в рамках нашего нестрогого вывода
не обращаем внимания на то, что примыкающие к границе ча-
стичные области gij не являются прямоугольниками).

Пусть g и G — замкнутые квадрируемые области, а функция
f(x, y) ограничена в области G и непрерывна всюду, кроме, быть
может, множества точек площади нуль. Тогда, перейдя в равен-
стве (12.7) к пределу при d → 0 (d — максимальный диаметр
gij), получим равенство (12.4):∫ ∫

G

f(x, y)dxdy =

∫ ∫
g

f (ϕ(u, v),ψ(u, v))

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ dudv.
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Рис. 12.18.

Замечания.
1. Равенства (12.3) можно рассматривать как формулы, зада-

ющие отображение области g на плоскости (u, v) на область
G на плоскости (x, y) (рис. 12.18).
Область g — прообраз области G, область G — образ
области g при отображении (12.3).

2. При f(x, y) = 1 из формулы (12.4) следует:∫ ∫

G

dxdy = P (G) =

∫ ∫
g

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ dudv
— формула площади области G в криволинейных координа-
тах. Произведение dxdy можно назвать элементом площа-
ди в декартовых прямоугольных координатах: ds = dxdy,

а ds =

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ dudv — элемент площади в криволиней-

ных координатах.

Рис. 12.19.

Геометрический смысл якобиана

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣: модуль якоби-

ана — коэффициент растяжения площади при отображении
(12.3) (рис. 12.19).
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3. Если условия I или III нарушаются на множестве точек
площади нуль (например, в конечном числе точек или кри-
вых), то формула (12.4) остается в силе.

4. Если область g — прямоугольник, а ϕ и ψ — линейные
функции u и v: ϕ = a11u + a12v + b1, ψ = a21u+ a22v + b2,
то проведенный вывод формулы (12.4) становится строгим
(все приближенные равенства становятся точными).

Примеры.
1. Полярные координаты.

Формулы, связывающие декартовы прямоугольные координа-
ты (x, y) и полярные координаты (r,ϕ):

x = r cosϕ, y = r sinϕ (r � 0, 0 � ϕ � 2π) (12.8)

Рис. 12.20. Рис. 12.21.

Пара чисел (r0,ϕ0) — полярные координаты точки M0

(рис. 12.20). С другой стороны, равенства (12.8) задают
отображение заштрихованной полуполосы на плоскости (r,ϕ)
(рис. 12.21) на всю плоскость (x, y).

D(x, y)

D(r,ϕ)
=

∣∣∣∣ cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣ = r .

Якобиан равен нулю на отрезке [r = 0, 0 � ϕ � 2π] — множестве
точек площади нуль, поэтому формулу (12.4) можно применять;
ds = rdrdϕ — элемент площади в полярных координатах.

2. Вычислить I =

∫ ∫

G

(
x2 + 2y2

)
dxdy, где

G =
{
(x, y) : a2 � x2 + y2 � b2

}
— кольцо (рис. 12.22).

Замена переменных: x = r cosϕ, y = r sinϕ; (r,ϕ) ∈ g =
= {(r,ϕ) : a � r � b, 0 � ϕ � 2π} — прямоугольник (рис. 12.23).
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Рис. 12.22. Рис. 12.23.

I =

∫ ∫
g

(
r2 cos2 ϕ+ 2r2 sin2 ϕ

)
rdrdϕ =

=

b∫
a

dr · r3
2π∫

0

(
1+ cos 2ϕ

2
+ 2

1− cos 2ϕ

2

)
dϕ =

3π

4

(
b4 − a4

)
.

3. Площадь криволинейного сектора.

Рис. 12.24. Рис. 12.25.

Область G на плоскости (x, y) — криволинейный сектор
(рис. 12.24). Ее прообраз на плоскости (r,ϕ) — криволинейная
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трапеция g (рис. 12.25).

P (G) =

∫ ∫

G

dxdy =

(делаем замену переменных x = r cosϕ, y = r sinϕ)

=

∫ ∫
g

rdrdϕ =

ϕ2∫
ϕ1

dϕ

r(ϕ)∫

0

rdr =

ϕ2∫
ϕ1

dϕ · r
2

2

∣∣∣∣r(ϕ)
0

=
1

2

ϕ2∫
ϕ1

r2(ϕ)dϕ.

4. Найти площадь фигуры, ограниченной кривой

Рис. 12.26.

(
x2

a2
+
y2

b2

)2

=
xy

ab
(a > 0, b > 0).

P (G) =

∫ ∫

G

dxdy.

Замена переменных:

x = ar cosϕ, y = br sinϕ

(обобщенные полярные координаты).
Уравнение кривой в новых координатах: r4 = r2 cosϕ sinϕ,

откуда r =
√
cosϕ sinϕ (0 � ϕ �

π

2
,π � ϕ �

3π

2
, ���. 12.26).

Так как
D(x, y)

D(r,ϕ)
= abr, то

P (G) = 2

π/2∫

0

dϕ

√
cosϕ sinϕ∫

0

abrdr = ab

π/2∫

0

cosϕ sinϕdϕ =
ab

2
.

§ 5. Тройные интегралы

Тройные (и также n-кратные) интегралы вводятся анало-
гично двойным интегралам. Понятия кубируемости и объема
тела (области) в трехмерном пространстве вводятся аналогично
понятию площади плоской фигуры с использованием множеств
всевозможных вписанных и описанных для данного тела много-
гранников.
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Пусть в кубируемой области T ⊂ R
3 задана ограниченная

функция u = f(x, y, z) = f(M). Разобьем область T на n кубиру-
емых частей без общих внутренних точек у любых двух частей:

T =
n⋃

i=1

Ti, в каждой части Ti возьмем произвольным образом

точку Mi(ξi, ηi, ζi) и составим интегральную сумму

I(Ti,Mi) =
n∑

i=1

f(ξi, ηi, ζi) · V (Ti),

где V (Ti) — объем Ti. Пусть di — диаметр Ti, d = max
1�i�n

di.

Предел интегральных сумм при d → 0 называется тройным
интегралом от функции f(x, y, z) по области T и обозначается
так: ∫ ∫ ∫

T

f(x, y, z)dxdydz или

∫

T

f(M)dV.

Для тройных интегралов имеют место теоремы, аналогичные
теоремам 3 – 6 для двойных интегралов. Если f(x, y, z) = 1, то∫ ∫ ∫

T

dxdydz = V (T ) — объем тела T .

Физический пример: если ρ(x, y, z) — плотность материаль-
ного тела T в точке (x, y, z), то

∫ ∫ ∫
T

ρ(x, y, z)dxdydz = m —

масса тела T .
Тройные интегралы обладают такими же свойствами, как и

двойные интегралы.

Вычисление тройных интегралов с помощью повторного
интегрирования

1) Рассмотрим область

T = {(x, y, z) : (x, y) ∈ G, z1(x, y) � z � z2(x, y)} ,

где G — квадрируемая область на плоскости (x, y), z1(x, y) и
z2(x, y) — непрерывные в области G функции (рис. 12.27). Пусть
в области T задана ограниченная функция u = f(x, y, z).

5 В.Ф. Бутузов
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Рис. 12.27. Рис. 12.28.

Теорема 8. Пусть

1) существует тройной интеграл

∫ ∫ ∫

T

f(x, y, z)dxdydz;

2) ∀(x, y) ∈ G существует определенный интеграл

I(x, y) =

z2(x,y)∫

z1(x,y)

f(x, y, z)dz.

Тогда существует повторный интеграл
∫ ∫
G

I(x, y)dxdy (его запи-

сывают в виде

∫ ∫

G

dxdy

z2(x,y)∫

z1(x,y)

f(x, y, z)dz) и он равен тройному

интегралу:

∫ ∫ ∫

T

f(x, y, z)dxdydz =

∫ ∫

G

dxdy

z2(x,y)∫

z1(x,y)

f(x, y, z)dz.

Теорема 8 доказывается аналогично теореме 7′.
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Следствие. Если для двойного интеграла
∫ ∫
G

I(x, y)dxdy вы-

полнено условие теоремы 7′, то его можно представить в виде
повторного интеграла (см. рис. 12.28):

∫ ∫

G

I(x, y)dxdy =

b∫
a

dx

y2(x)∫

y1(x)

I(x, y)dy =

b∫
a

dx

y2(x)∫

y1(x)

dy

z2(x,y)∫

z1(x,y)

f(x, y, z)dz.

Таким образом, вычисление тройного интеграла сводится в этом
случае к трехкратному вычислению определенных интегралов.

Пример 1. Область T ограничена поверхностями x2 + y2 = z2

и z = 1 (рис. 12.29). Вычислить I =
∫ ∫ ∫
T

(x2 + y2)dxdydz.

Рис. 12.29.

I =

∫ ∫

G

dxdy

1∫
√

x2+y2

(
x2 + y2

)
dz =

∫ ∫

G

dxdy
(
x2 + y2

)(
1−

√
x2 + y2

)
,

где G — круг радиуса 1 с центром в начале координат на
плоскости (x, y).

В двойном интеграле по области G перейдем к полярным
координатам: x = r cosϕ, y = r sinϕ, 0 � r � 1, 0 � ϕ � 2π.
Получим

I =

2π∫

0

dϕ

1∫

0

r2(1− r)rdr = 2π

(
r4

4
− r5

5

)∣∣∣∣1
0

=
π

10
.

5*
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Рис. 12.30.

2) Пусть в сечении ку-
бируемой области T плоско-
стью x = const получается
квадрируемая фигура G(x),
a � x � b (рис. 12.30). Пусть
в области T задана функция
f(x, y, z).

Теорема 9. Пусть

1) существует тройной интеграл

∫ ∫ ∫

T

f(x, y, z)dxdydz;

2) ∀x ∈ [a, b] существует двойной интеграл

I(x) =

∫ ∫

G(x)

f(x, y, z)dydz.

Тогда существует интеграл
b∫
a
I(x)dx (он называется повторным

и записывается в виде
b∫
a
dx

∫ ∫
G(x)

f(x, y, z)dydz) и выполняется ра-

венство

∫ ∫ ∫

T

f(x, y, z)dxdydz =

b∫
a

dx

∫ ∫

G(x)

f(x, y, z)dydz,

то есть тройной интеграл равен повторному.
Следствие. Если f(x, y, z) = 1, то по данной формуле полу-

чаем:

∫ ∫ ∫

T

dxdydz = V (T ) =

b∫
a

dx

∫ ∫

G(x)

dydz

︸ ︷︷ ︸
P (x)

=

b∫
a

P (x)dx,

где P (x) — площадь фигуры G(x).
Пример 2. Тот же интеграл, что в примере 1:

I =

∫ ∫ ∫

T

(
x2 + y2

)
dxdydz =

1∫

0

dz

∫ ∫

G(z)

(
x2 + y2

)
dxdy (рис. 12.31).
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Рис. 12.31.

Во внутреннем интеграле пе-
рейдем к полярным координа-
там: x = r cosϕ, y = r sinϕ,
0 � r � z, 0 � ϕ � 2π. Получим
∫ ∫

G(z)

(
x2 + y2

)
dxdy =

=

2π∫

0

dϕ

z∫

0

r2 · r · dr = π

2
z4.

Следовательно I =
π

2

1∫

0

z4dz =
π

10
.

Замена переменных в тройном интеграле

Рассмотрим тройной интеграл

∫ ∫ ∫

T

f(x, y, z)dxdydz. Перей-

дем от переменных (x, y, z) к новым переменным (u, v,w) с
помощью формул

x = ϕ(u, v,w), y = ψ(u, v,w), z = χ(u, v,w), (u, v,w) ∈ g. (12.9)
Пусть выполнены условия:
I. Если точка (u, v,w) пробегает область g, то соответствующая
точка (x, y, z) = (ϕ,ψ,χ) пробегает область T , причем различным
точкам (u, v,w) ∈ g соответствуют различные точки (x, y, z) ∈ T
(иначе говоря, каждая точка (x, y, z) из области T соответствует
только одной точке (u, v,w) из области g).
II. Функции ϕ, ψ, χ имеют непрерывные частные производные
первого порядка в области g.

III.
D(x, y, z)

D(u, v,w)
�= 0 ∀(u, v,w) ∈ g.

Из условия I следует, что задание тройки чисел (u, v,w)
однозначно определяет точку M(x, y, z) =M(ϕ,ψ,χ) из области
T . Поэтому тройку чисел (u, v,w) можно назвать новыми (кри-
волинейными) координатами точки M .

Зафиксируем значение координаты u, положив u = u0 =
= const. Из уравнений (12.9) получим:

x = ϕ(u0, v,w), y = ψ(u0, v,w), z = χ(u0, v,w).
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Эти уравнения являются параметрическими уравнениями неко-
торой поверхности в области T (в качестве параметров высту-
пают переменные v и w). Естественно назвать эту поверхность
координатной поверхностью.

Аналогично, положив v = v0, или w = w0, получим другие
координатные поверхности.

Зафиксируем теперь значения двух координат, положив u =
= u0, v = v0. Из уравнений (12.9) получим:

x = ϕ(u0, v0,w), y = ψ(u0, v0,w), z = χ(u0, v0,w).

Это — параметрические уравнения некоторой кривой в области
T (параметром является переменная w). Естественно назвать
эту кривую координатной w-линией. Аналогично определяются
координатные u-линия и v-линия.

Рис. 12.32.

Формулы (12.9) можно рассматривать как отображение об-
ласти g в пространстве переменных (u, v,w) на область T в
пространстве переменных (x, y, z) (рис. 12.32).

Пусть g и T — замкнутые кубируемые области, а функция
f(x, y, z) ограничена в области T и непрерывна всюду в этой
области, за исключением, быть может, множества точек объема
нуль. Тогда справедлива формула:∫ ∫ ∫

T

f(x, y, z)dxdydz =

=

∫ ∫ ∫
g

f(ϕ(u, v,w),ψ(u, v,w),χ(u, v,w)) ·
∣∣∣∣D(x, y, z)

D(u, v,w)

∣∣∣∣ · dudvdw.(12.10)

Формула (12.10) называется формулой замены переменных в
тройном интеграле.
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Рис. 12.33.

Если f(x, y, z) = 1, то из формулы (12.10) получаем выраже-
ние объема тела в криволинейных координатах:∫ ∫ ∫

t

dxdydz = V (T ) =

∫ ∫ ∫
g

∣∣∣∣D(x, y, z)

D(u, v,w)

∣∣∣∣ dudvdw.
dV = dxdydz — элемент объема в прямоугольных координа-

тах,

dV =

∣∣∣∣D(x, y, z)

D(u, v,w)

∣∣∣∣ dudvdw — элемент объема в криволинейных

координатах (рис. 12.33).
Модуль якобиана — коэффициент растяжения объема при

отображении (12.9).
Замечание. Понятие множества точек объема нуль в про-

странстве вводится аналогично понятию множества точек пло-
щади нуль на плоскости. Формула (12.10) остается в силе, если
условия I или III нарушаются на множестве точек объема нуль.

Примеры наиболее важных криволинейных координат

Рис. 12.34.

1) Цилиндрические координаты.
Тройка чисел (r,ϕ, z) называ-
ется цилиндрическими коорди-
натами точки M (рис. 12.34).
Координатная поверхность r =
= const — цилиндрическая по-
верхность. Формулы, связываю-
щие декартовы прямоугольные
координаты (x, y, z) и цилиндри-
ческие координаты:

x = r cosϕ, y = r sinϕ, z = z (r � 0, 0 � ϕ � 2π, −∞ < z < +∞)
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D(x, y, z)

D(r,ϕ, z)
= r; dV = rdrdϕdz — элемент объема в цилиндриче-

ских координатах.

Рис. 12.35.

2) Сферические координаты.
Тройка чисел (r, θ,ϕ) — сфе-
рические координаты точки M
(рис. 12.35). Координатная поверх-
ность r = const — сфера. Форму-
лы, связывающие декартовы пря-
моугольные координаты (x, y, z) и
сферические координаты:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,
(r � 0, 0 � θ � π, 0 � ϕ � 2π).

D(x, y, z)

D(r, θ,ϕ)
= r2 sin θ, dV = r2 sin θdrdθdϕ — элемент объема в

сферических координатах.
Пример. Найти объем тела T , ограниченного поверхностью:(

x2

a2
+
y2

b2
+
z2

c2

)2

=
x2

a2
+
y2

b2
(рис. 12.36).

Рис. 12.36.

В сечении поверхности
плоскостью z = 0 получа-

ются эллипс
x2

a2
+

y2

b2
= 1

и точка O(0, 0, 0). В сече-
нии плоскостью x = 0 полу-
чается кривая 4-го порядка(
y2

b2
+
z2

c2

)2

=
y2

b2
. При поворо-

те вокруг оси Oz эта кривая
деформируется каким-то обра-

зом, оставаясь замкнутой кривой, а точка M движется по эллип-
су. В результате получается «бублик» без дырки.

V =

∫ ∫ ∫

T

dxdydz .

Перейдем к обобщенным сферическим координатам

x = ar sin θ cosϕ,
y = br sin θ sinϕ,
z = cr cos θ,

(0 � θ � π, 0 � ϕ � 2π) .
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Рис. 12.37.

Уравнение поверхности в но-
вых координатах:

r4 = r2 sin2 θ .

Оно распадается на два уравне-
ния:

r = 0 и r = sin θ .

Тело g, ограниченное этими
поверхностями, изображено на
рис. 12.37.

D(x, y, z)

D(r, θ,ϕ)
= abcr2 sin θ .

V =

∫ ∫ ∫
g

∣∣∣∣D(x, y, z)

D(r, θ,ϕ)

∣∣∣∣ drdθdϕ =

2π∫

0

dϕ

π∫

0

dθ

sin θ∫

0

abcr2 sin θdr =

= 2πabc

π∫

0

sin θ · 1

3
r3
∣∣∣sin θ

0
dθ =

2

3
πabc

π∫

0

sin4 θdθ =
π2

4
abc.
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КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

§ 1. Длина кривой

Пусть на плоскости задана прямоугольная система координат
Oxy. Рассмотрим множество точек {M(x, y)}, координаты кото-
рых задаются уравнениями

x = ϕ(t), y = ψ(t), α � t � β, (13.1)

где ϕ(t) и ψ(t) — непрерывные функции на сегменте [α,β].
Если некоторая точка M(x, y) из этого множества соответ-

ствует нескольким значениям t ∈ [α,β], то такую точку назовем
кратной.

Пусть различным значениям t ∈ [α,β] соответствуют различ-
ные точки M(x, y), то есть множество M(x, y) не содержит
кратных точек. Тогда множество {M(ϕ(t),ψ(t))}, где α � t � β,
назовем простой плоской незамкнутой кривой. Переменную
t назовем параметром и будем говорить, что уравнения (13.1)
задают кривую параметрически.

Точки A (ϕ(α),ψ(α)) и B (ϕ(β),ψ(β)) назовем граничными
точками или концами кривой. Саму кривую называют также
кривой AB или дугой AB. Если точки A и B совпадают, а
остальные точки не являются кратными, то кривая называется
простой замкнутой кривой.
Примеры.
1) x = cos t, y = sin t;
a) если 0 � t � π, то кривая — простая незамкнутая (полуокруж-
ность);
б) если 0 � t � 2π, то кривая — простая замкнутая (окружность);
в) если 0 � t � 4π, то кривая — не простая (все ее точки —
двукратные, кроме точки (1; 0), которая является трехкратной).
2) График непрерывной функции y = f(x), a � x � b можно
рассматривать как простую незамкнутую кривую, записав ее
параметрические уравнения в виде

x = t, y = f(t), a � t � b.
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Рис. 13.1.

Рассмотрим простую (за-
мкнутую или незамкну-
тую) кривую, заданную
уравнениями (13.1). Разо-
бьем сегмент [α,β] на n
частей точками

α = t0 < t1 < ... < tn = β.

Каждому значению ti
соответствует точка
Mi (ϕ(ti),ψ(ti)) на кривой
(рис. 13.1). Впишем в кри-
вую ломаную AM1M2...B.
Длина Δli i-го звена ломаной равна (рис. 13.2)

Δli =

√
(ϕ(ti)− ϕ(ti−1))

2 + (ψ(ti)− ψ(ti−1))
2 ,

а длина l(ti) всей ломаной выражается равенством

l(ti) =
n∑

i=1

Δli =
n∑

i=1

√
(ϕ(ti)− ϕ(ti−1))

2 + (ψ(ti)− ψ(ti−1))
2 .

(13.2)
Пусть Δt = max

1�i�n
Δti, где Δti = ti − ti−1.

Рис. 13.2.

Определение. Число l назы-
вается пределом длин лома-
ных l(ti) при Δt → 0, ес-
ли ∀ε > 0 ∃δ > 0, такое, что
для любого разбиения сегмен-
та [α,β], у которого Δt < δ,
выполняется неравенство

0 � l − l(ti) < ε.

Если существует lim
Δ→0

l(ti) = l, то кривая называется спрямляе-

мой, а число l называется длиной кривой (иногда говорят «дли-
ной дуги кривой»).
Теорема 1. Пусть простая кривая задана параметрическими
уравнениями

x = ϕ(t), y = ψ(t), α � t � β,
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и пусть функции ϕ(t) и ψ(t) имеют непрерывные производные
ϕ′(t) и ψ′(t) на сегменте [α,β].
Тогда кривая спрямляема, и ее длина l выражается формулой

l =

β∫
α

√
ϕ′2(t) + ψ′2(t) dt. (13.3)

Рис. 13.3.

a) Доказательство «на пальцах»
(рис. 13.3).

dx = dϕ(t) = ϕ′(t)dt,

dy = dψ(t) = ψ′(t)dt,

dl =
√
dx2 + dy2 =

√
ϕ′2(t) + ψ′2(t) dt,

поэтому

l =

β∫
α

dl =

β∫
α

√
ϕ′2(t) + ψ′2(t) dt.

б) «Аккуратное» доказательство.
Нужно доказать, что

lim
Δ→0

l(ti) =

β∫
α

√
ϕ′2(t) + ψ′2(t) dt. (13.4)

Длина ломаной l(ti) выражается формулой (13.2). По формуле
Лагранжа конечных приращений получаем равенства:

ϕ(ti)− ϕ(ti−1) = ϕ′(ξi)Δti, ξi ∈ [ti−1, ti],

ψ(ti)− ψ(ti−1) = ψ′(ξ∗i )Δti, ξ∗i ∈ [ti−1, ti].

Следовательно,

l(ti) =
n∑

i=1

√
ϕ′2(ξi) + ψ′2(ξ∗i )Δti.

Введем функцию f(t) =

√
ϕ′2(t) + ψ′2(t) . Она непрерывна и, сле-

довательно, интегрируема на сегменте [α,β]. Интегральная сум-
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ма этой функции, соответствующая разбиению сегмента [α,β]
на частичные сегменты [ti−1, ti] и выбору точек ξi в качестве
промежуточных точек, имеет вид

I(ti, ξi) =
n∑

i=1

f(ξi)Δti =
n∑

i=1

√
ϕ′2(ξi) + ψ′2(ξi)Δti.

По определению определенного интеграла

lim
Δt→0

I(ti, ξi) =

β∫
α

√
ϕ′2(t) + ψ′2(t) dt. (13.5)

В силу (13.5) для обоснования равенства (13.4) достаточно до-
казать, что

lim
Δt→0

(l(ti)− I(ti, ξi)) = 0.

Для этого нам понадобится вспомогательное алгебраическое
неравенство ∣∣∣√a2 + b2 −

√
a2 + c2

∣∣∣ � |b− c|. (13.6)

Рис. 13.4.

Геометрическое доказатель-
ство справедливости этого
неравенства представлено на
рис. 13.4: согласно неравен-
ству треугольника выполне-
но неравенство (13.6). Ис-
пользуя неравенство (13.6), а
также выражения для l(ti) и
I(ti, ξi), получаем:

|l(ti)− I(ti, ξi)| =

=

∣∣∣∣∣ n∑
i=1

(√
ϕ′2(ξi) + ψ′2(ξ∗i ) −

√
ϕ′2(ξi) + ψ′2(ξi)

)
Δti

∣∣∣∣∣ �
�

n∑
i=1

|ψ′(ξ∗i )− ψ′(ξi)| ·Δti.
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Зададим теперь произвольное ε > 0. Так как функция ψ′(t) по
условию непрерывна на сегменте [α,β], то ∃δ > 0, такое, что при
Δti < δ будет выполнено неравенство

|ψ′(ξ∗i )− ψ′(ξi)| < ε

β − α
.

Следовательно, при Δti < δ, i = 1, 2, ...,n (то есть при Δt < δ),
выполняется неравенство

|l(ti)− I(ti, ξi)| < ε

β − α

n∑
i=1

Δti = ε,

а это и означает, что

lim
Δt→0

(l(ti)− I(ti, ξi)) = 0.

Теорема 1 доказана.
Следствия.

Рис. 13.5.

1. Возьмем на кривой AB произволь-
ную точку C(ϕ(γ),ψ(γ)), γ ∈ [α,β]
(рис. 13.5). Для длин кривых AC, CB
и AB справедливы равенства

l
AC

=

γ∫
α

√
ϕ′2(t) + ψ′2(t) dt,

l
CB

=

β∫
γ

√
ϕ′2(t) + ψ′2(t) dt, l

AB
=

β∫
α

√
ϕ′2(t) + ψ′2(t) dt.

Так как

γ∫
α

+

β∫
γ

=

β∫
α

, то l
AC

+ l
CB

= l
AB

. Это свойство называется

аддитивностью длины кривой.
2. Пусть кривая задана в прямоугольной системе координат
уравнением y = f(x), a � x � b, причем функция f(x) имеет
на сегменте [a, b] непрерывную производную f ′(x). Перейдем к
параметрическим уравнениям кривой:

x = t, y = f(t), a � t � b.
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По формуле (13.3), в которой нужно положить ϕ(t) = t, ψ(t) =
= f(t), получаем:

l =

b∫
a

√
1+ f ′2(t) dt =

b∫
a

√
1+ f ′2(x) dx.

3. Пусть кривая задана в полярных координатах уравнением
r = r(ϕ), ϕ1 � ϕ � ϕ2 (рис. 13.6), причем функция r(ϕ) имеет
на сегменте [ϕ1,ϕ2] непрерывную производную r′(ϕ). Переходя к
декартовым координатам, получим уравнения кривой в парамет-
рической форме (ϕ — параметр):

x = r(ϕ) cosϕ, y = r(ϕ) sinϕ, ϕ1 � ϕ � ϕ2.

Рис. 13.6.

Так как

x′(ϕ) = r′(ϕ) cosϕ− r(ϕ) sinϕ,
y′(ϕ) = r′(ϕ) sinϕ+ r(ϕ) cosϕ,

то, применяя формулу (13.3), получаем

l =

ϕ2∫
ϕ1

√
x′2(ϕ) + y′2(ϕ) dϕ =

=

ϕ2∫
ϕ1

√
r2(ϕ) + r′2(ϕ) dϕ.

4. Если кривая задана в полярных координатах уравнением
ϕ = ϕ(r), r1 � r � r2, то

l =

r2∫
r1

√
1+ r2ϕ′2(r) dr

(выведите эту формулу самостоятельно).
Примеры.
1) x = R cos t, y = R sin t, 0 � t � 2π (окружность радиуса R с
центром в начале координат).

l =

2π∫

0

√
(−R sin t)2 + (R cos t)2 dt = R

2π∫

0

dt = 2πR.
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2) r = R = const > 0, 0 � ϕ � 2π (та же окружность, но заданная
уравнением в полярных координатах: r = r(ϕ) = R).

l =

2π∫

0

√
r2(ϕ) + r′2(ϕ) dϕ =

2π∫

0

√
R2 + 0 dϕ = R

2π∫

0

dϕ = 2πR.

3) y = x2, 0 � x � 1 (часть параболы).

l =

1∫

0

√
1+ (2x)2 dx =

[
x

√
x2 +

1

4
+

1

4
ln

(
x+

√
x2 +

1

4

)]∣∣∣∣1
0

=

=

√
5

2
+

1

4
ln
(
2+

√
5
)
.

Замечание о пространственной кривой.
Простая пространственная кривая определяется как множе-

ство точек {M(x, y, z) : x = ϕ(t), y = ψ(t), z = χ(t), α � t � β},
где ϕ(t), ψ(t) и χ(t) — непрерывные функции на сегменте [α,β],
причем множество {M(x, y, z)} не содержит кратных точек.

Понятие длины кривой вводится таким же образом, как и для
плоской кривой, и длина кривой выражается формулой

l =

β∫
α

√
ϕ′2(t) + ψ′2(t) + χ′2(t) dt.

Пример. x = R cos t, y = R sin t, z = ht — винтовая линия. Пусть
0 � t � 2π (один виток), тогда

l =

2π∫

0

√
R2 + h2 dt = 2π

√
R2 + h2 .

§ 2. Криволинейные интегралы первого рода

Пусть L — простая спрямляемая кривая на плоскости, задан-
ная параметрически:

x = ϕ(t), y = ψ(t), α � t � β,
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Рис. 13.7.

(то есть ϕ(t) и ψ(t) — непрерывные функции на сегменте [α,β], и
различным значениям t из сегмента [α,β] соответствуют различ-
ные точки M (ϕ(t),ψ(t)); если A (ϕ(α),ψ(α)) = B (ϕ(β),ψ(β)),
то кривая — замкнутая.) Пусть на кривой L задана ограниченная
функция z = f(x, y). Разобьем сегмент [α,β] на n частей точками
α = t0 < t1 < ... < tn = β. При этом кривая L разобьется на n
частей точками A = M0,M1, ...,Mn = B (рис. 13.7). Точка Mi

имеет координаты (ϕ(ti),ψ(ti)). Обозначим через Δli длину ча-
сти Mi−1Mi кривой и положим Δl = max

1�i�n
Δli. Выберем на каж-

дой дуге Mi−1Mi какую-нибудь точку Ki(ξi, ηi) (см. рис. 13.7) и
составим интегральную сумму

I (Mi,Ki) =
n∑

i=1

f(ξi, ηi)Δli.

Предел интегральных сумм I (Mi,Ki) при Δl → 0 (если он су-
ществует) называется криволинейным интегралом первого рода
от функции f(x, y) по кривой L и обозначается так:∫

L

f(x, y)dl или

∫

AB

f(x, y)dl.

Из этого определения следует, что

∫

L

f(x, y)dl не зависит от того,

в каком направлении пробегается кривая L, то есть∫

AB

f(x, y)dl =

∫

BA

f(x, y)dl.

Если f(x, y) ≡ 1, то

∫

L

dl = l — длина кривой L.

Физический пример: если ρ(x, y) — линейная плотность в

точке (x, y) материальной кривой L, то m =

∫

L

ρ(x, y)dl — масса

кривой L.
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Вычисление криволинейных интегралов первого рода с
помощью определенных интегралов.
Теорема 2. Пусть
1) простая кривая L задана параметрически уравнениями

x = ϕ(t), y = ψ(t), α � t � β,

и пусть функции ϕ(t) и ψ(t) имеют на сегменте [α,β] непрерыв-
ные производные ϕ′(t) и ψ′(t), одновременно не равные нулю,

то есть ϕ′2(t) + ψ′2(t) �= 0 (в таком случае кривая L называется
гладкой);
2) функция f(x, y) непрерывна вдоль кривой L.

Тогда криволинейный интеграл

∫

L

f(x, y)dl существует, и спра-

ведливо равенство

∫

L

f(x, y)dl =

β∫
α

f(ϕ(t),ψ(t))

√
ϕ′2(t) + ψ′2(t) dt. (13.7)

Рис. 13.8.

Доказательство. Разобьем сег-
мент [α,β] на n частичных сег-
ментов точками α = t0 < t1 <
< ... < tn = β. При этом кривая
L разобьется на n частей точка-
ми A = M0,M1, ...,Mn = B, где
Mi = (ϕ(ti),ψ(ti)) (рис. 13.8).

Введем обозначения:
Δti = ti − ti−1, Δt = max

1�i�n
Δti,

Δli =

ti∫
ti−1

√
ϕ′2(t) + ψ′2(t) dt — длина i-ой части кривой,

Δl = max
1�i�n

Δli.

Отметим, что Δl → 0 при Δt→ 0 (это очевидно), и обратно,
Δt→ 0 при Δl → 0 (это следует из того, что√

ϕ′2(t) + ψ′2(t) � min
[α,β]

√
ϕ′2(t) + ψ′2(t) = m > 0,
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Рис. 13.9.

и поэтому Δli � m · Δti; следо-

вательно, Δti �
Δli
m

и Δt �
Δl

m
).

На каждой дуге Mi−1Mi возь-
мем произвольным образом точку
Ki (ϕ(τi),ψ(τi)) (рис. 13.9) и соста-
вим интегральную сумму

I(Mi,Ki) =
n∑

i=1

f(ϕ(τi),ψ(τi))Δli =

=
n∑

i=1

ti∫
ti−1

f (ϕ(τi),ψ(τi))

√
ϕ′2(t) + ψ′2(t) dt.

Требуется доказать, что lim I (Mi,Ki) при Δl→ 0 (или, что то же
самое, при Δt→ 0) существует и равен определенному интегралу

I =

β∫
α

f (ϕ(t),ψ(t))

√
ϕ′2(t) + ψ′2(t) dt.

Представим интеграл I в виде

I =
n∑

i=1

ti∫
ti−1

f (ϕ(t),ψ(t))

√
ϕ′2(t) + ψ′2(t) dt

и рассмотрим разность

I (Mi,Ki)− I =

=
n∑

i=1

ti∫
ti−1

[
f (ϕ(τi),ψ(τi))− f (ϕ(t),ψ(t))

]√
ϕ′2(t) + ψ′2(t) dt.(13.8)

Нам нужно доказать, что lim
Δt→0

(I (Mi,Ki)− I) = 0, то есть

∀ε > 0 ∃δ > 0, такое, что для любого разбиения сегмента [α,β],
у которого Δt < δ, и любого выбора точек Ki выполняется
неравенство

|I (Mi,Ki)− I| < ε.

Функция f(ϕ(t),ψ(t)) непрерывна на сегменте [α,β] и, следо-
вательно, равномерно непрерывна на этом сегменте. Поэтому
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∀ε > 0 ∃δ > 0, такое, что если Δt < δ, то ∀τi и t ∈ [ti−1, ti]
выполняется неравенство

|f (ϕ(τi),ψ(τi))− f (ϕ(t),ψ(t))| < ε

l
,

где l =

β∫
α

√
ϕ′2(t) + ψ′2(t) dt — длина кривой L. Из (13.8) полу-

чаем, что если Δt < δ, то

|I (Mi,Ki)− I| < ε

l

n∑
i=1

ti∫
ti−1

√
ϕ′2(t) + ψ′2(t) dt =

=
ε

l

n∑
i=1

Δli =
ε

l
· l = ε.

Итак, если Δt < δ, то |I (Mi,Ki)− I| < ε, что и требовалось
доказать.
Замечания.

1. Выражение dl =

√
ϕ′2(t) + ψ′2(t) dt представляет собой диф-

ференциал функции l(t) =

t∫
α

√
ϕ′2(s) + ψ′2(s) ds, которая назы-

вается переменной дугой и при каждом t ∈ [α,β] равна длине
кривой AM , где A(ϕ(α)),ψ(α)), M(ϕ(t)),ψ(t)).

Если кривая L задана уравнением y = y(x), a � x � b (в
декартовых координатах), причем функция y(x) имеет непрерыв-
ную производную y′(x) на сегменте [a, b], то

dl =

√
1+ y′2(x) dx,

∫

L

f(x, y)dl =

b∫
a

f(x, y(x))

√
1+ y′2(x) dx.

Если кривая L задана в полярных координатах уравнением
r = r(ϕ), ϕ1 � ϕ � ϕ2, причем функция r(ϕ) имеет непрерывную

производную r′(ϕ), то dl =
√
r2(ϕ) + r′2(ϕ) dϕ и

∫

L

f(x, y)dl =

ϕ2∫
ϕ1

f
(
r(ϕ) cosϕ, r(ϕ) sinϕ

)√
r2(ϕ) + r′2(ϕ) dϕ.
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Рис. 13.10.

2. Непрерывная кривая, состоящая из конеч-
ного числа гладких кривых, называется ку-
сочно гладкой (рис. 13.10). Если кривая L —
кусочно гладкая, а функция f(x, y) — кусоч-
но непрерывная вдоль кривой L, то формула
(13.7) остается в силе.
3. Криволинейные интегралы первого рода обладают такими же
свойствами, как и определенные интегралы (линейность, адди-
тивность, оценка по модулю, формула среднего значения).
4. Криволинейные интегралы первого рода в пространстве вво-
дятся аналогично тому, как это сделано на плоскости. Если

L = {(x, y, z) : x = ϕ(t), y = ψ(t), z = χ(t), α � t � β} —

кусочно гладкая кривая в пространстве, то

∫

L

f(x, y, z)dl =

β∫
α

f (ϕ(t),ψ(t),χ(t))

√
ϕ′2(t) + ψ′2(t) + χ′2(t) dt.

Примеры.

1. Вычислить интеграл

∫

L

xdl, где кривая L задана уравнением

y = x2, 0 � x � 1.

∫

L

xdl =

1∫

0

x
√
1+ 4x2 dx =

1

12

(
1+ 4x2

) 3
2

∣∣∣∣1
0

=
1

12

(
5
√
5 − 1

)
.

Рис. 13.11.

2. Вычислить интеграл

∫

L

xydl, где L — дуга

эллипса
x2

a2
+
y2

b2
=1, x � 0, y � 0 (рис. 13.11).

Запишем уравнения L в параметрическом ви-

де: x = a cos t, y = b sin t, 0 � t �
π

2
. Тогда

∫

L

xydl =

π
2∫

0

ab cos t sin t
√
a2 sin2 t+ b2 cos2 t dt =
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=
ab

2

π
2∫

0

sin 2t

√
a2 + b2

2
+
b2 − a2

2
cos 2t dt =

= (проведите вычисления) =
ab(a3 − b3)

3(a2 − b2)
.

§ 3. Криволинейные интегралы второго рода

Пусть L : x = ϕ(t), y = ψ(t), α � t � β — простая незамкну-
тая спрямляемая кривая, на которой заданы две функции: P (x, y)
и Q(x, y).

Рис. 13.12.

Разобьем сегмент [α,β] на
n частичных сегментов точка-
ми α = t0 < t1 < ... < tn =
= β. Кривая L разобьется при
этом на n частей точками
A = M0,M1, ...,Mn = B в на-
правлении от A к B (рис.
13.12). Обозначим координаты
точки Mi через (xi, yi), где
xi = ϕ(ti), yi = ψ(ti), и положим
Δxi = xi − xi−1, Δyi = yi − yi−1,

Δli — длина части Mi−1Mi кривой, Δl = max
1�i�n

Δli. На каждой

дуге Mi−1Mi возьмем произвольным образом точку Ki(ξi, ηi) и
составим две интегральные суммы следующего вида:

I1 (Mi,Ki) =
n∑

i=1

P (ξi, ηi)Δxi, I2 (Mi,Ki) =
n∑

i=1

Q(ξi, ηi)Δyi.

Если существует lim
Δl→0

Ik (Mi,Ki) = Ik (k = 1, 2), то он называ-

ется криволинейным интегралом второго рода и обозначается
так:

I1 =

∫

AB

P (x, y)dx, I2 =

∫

AB

Q(x, y)dy.

Сумма I = I1 + I2 =

∫

AB

P (x, y)dx+Q(x, y)dy называется общим

криволинейным интегралом второго рода.
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Рис. 13.13.

Из определения следует, что кри-
волинейный интеграл второго ро-
да зависит от того, в каком на-
правлении пробегается кривая L,
то есть от того, какая из точек A
и B считается начальной, а какая
конечной. Если двигаться от B к
A, то все Δxi и Δyi в интеграль-
ных суммах изменят знак и, сле-
довательно, интегралы также из-
менят знак, то есть∫

AB

Pdx = −
∫

BA

Pdx,

∫

AB

Qdy = −
∫

BA

Qdy.

Физический пример. Пусть материальная точка движет-
ся по кривой AB из точки A в точку B под действи-
ем силы �F (x, y) = P (x, y)�i + Q(x, y)�j (рис. 13.13). Тогда(
�F · �dl

)
= Pdx + Qdy — работа силы при перемещении точки

на вектор �dl = dx ·�i + dy · �j, а

∫

AB

(
�F · �dl

)
=

∫

AB

Pdx + Qdy —

работа силы при перемещении точки по кривой AB из точки
A в точку B.
Вычисление криволинейных интегралов второго рода с по-
мощью определенных интегралов.
Теорема 3. Пусть
1) гладкая незамкнутая кривая AB задана уравнениями x = ϕ(t),
y = ψ(t), α � t � β;
2) функции P (x, y) и Q(x, y) непрерывны вдоль кривой AB.
Тогда криволинейные интегралы второго рода от функций
P (x, y) и Q(x, y) существуют, и справедливы равенства

∫

AB

P (x, y)dx =

β∫
α

P (ϕ(t),ψ(t))ϕ′(t)dt,

∫

AB

Q(x, y)dy =

β∫
α

Q (ϕ(t),ψ(t))ψ′(t)dt.

(13.9)

Доказательство теоремы 3 аналогично доказательству теоре-
мы 2.
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Замечания.
1. Если гладкая кривая AB задана в декартовых координатах
уравнением y = y(x), a � x � b, A = (a, y(a)), B = (b, y(b))
(слово «гладкая» означает, что функция y(x) имеет на [a, b]
непрерывную производную y′(x)), то

∫

AB

P (x, y)dx+Q(x, y)dy =

b∫
a

[P (x, y(x)) +Q(x, y(x))y′(x)] dx.

(13.10)
2. Если L — замкнутая кривая (замкнутый контур), то есть
точки A и B совпадают, то криволинейный интеграл второго
рода по кривой L вводится так же, как и для незамкнутой кри-

вой, но только теперь в обозначении

∫

AB

Pdx+Qdy не отражено,

в каком направлении пробегается кривая. Договоримся считать
положительным то направление обхода замкнутого контура, при
котором область, лежащая внутри контура, остается слева по
отношению к движущейся по контуру точке (рис. 13.14). Ин-
теграл по замкнутому контуру L в положительном направлении
обозначается так: ∮

L

Pdx+Qdy.

Рис. 13.14.

3. Криволинейные интегралы второго рода в
пространстве вводятся аналогично интегралам
на плоскости. Если кривая AB задана уравне-
ниями x = ϕ(t), y = ψ(t), z = χ(t), α � t � β,
то

I =

∫

AB

P (x, y, z)dx+Q(x, y, z)dy+R(x, y, z)dz =

=

β∫
α

[P (ϕ,ψ,χ)ϕ′(t) +Q(ϕ,ψ,χ)ψ′(t) +R(ϕ,ψ,χ)χ′(t)] dt.

Интеграл I записывается также в виде:

I =

∫

AB

(
�F · �dl

)
,
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где �F = P ·�i+Q ·�j +R · �k, �dl = dx ·�i+ dy ·�j + dz · �k,
(
�F · �dl

)
—

скалярное произведение векторов �F и �dl, и называется циркуля-
цией векторного поля �F вдоль кривой AB.
Примеры.

1. Вычислить интеграл −1

2

∮

L

ydx − xdy, где L — эллипс

x2

a2
+
y2

b2
= 1. Перейдем к параметрическим уравнениям эллипса:

x = a cos t, y = b sin t, 0 � t � 2π,

и воспользуемся формулами (13.9):

−1

2

∮

L

ydx− xdy = −1

2

2π∫

0

[b sin t(−a sin t)− a cos t(b cos t)] dt =

=
1

2
ab

2π∫

0

dt = πab = Sэл

Рис. 13.15.

(площадь фигуры, ограниченной эл-
липсом).

В следующем параграфе будет вы-
ведена формула Грина, из которой, в
частности, следует, что если плоская
фигура G ограничена кусочно гладким
контуром L (рис. 13.15), то

S(G) =
1

2

∮
xdy − ydx.

2. Вычислить интеграл I =

∫

AB

2xydx + x2dy по трем кри-

вым, соединяющим точки A(0, 0) и B(1, 1) и изображенным на
рис. 13.16. Воспользуемся формулой (13.10).

1) y = x; I1 =

1∫

0

2x · xdx+ x2dx =

1∫

0

3x2dx = x3
∣∣∣1
0
= 1;
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2) y = x2; I2 =

1∫

0

2x · x2dx+ x2 · 2xdx =

1∫

0

4x3dx = x4
∣∣∣1
0
= 1;

3) ломаная ACB; I3 =

1∫

0

2x · 0dx+

1∫

0

12 · dy = 1.

Рис. 13.16.

Таким образом, I1 = I2 = I3.
Это не случайно! Можно доказать, что
значение интеграла I не зависит от
кривой, соединяющей точки A и B.
Как это доказать и в каких случаях
интеграл не зависит от пути интегри-
рования — об этом пойдет речь в §5.

Связь между криволинейными
интегралами первого и второго ро-
да. Пусть гладкая кривая AB задана
в декартовых координатах уравнением
y = y(x), a � x � b. Обозначим через

α(x) угол между направленной касательной к кривой в точке
M(x, y(x)) и осью Ox. Направление касательной выберем в со-
ответствии с направлением движения по кривой (рис. 13.17):
при движении от A к B:

−π

2
< α <

π

2
, tgα = y′(x), cosα =

1√
1+ y′2(x)

, sinα =
y′(x)√
+y′2(x)

;

при движении от B к A:

Рис. 13.17.

π

2
< α <

3π

2
, tgα = y′(x),

cosα = − 1√
1+ y′2(x)

,

sinα = − y′(x)√
1+ y′2(x)

.

Рассмотрим два криволинейных инте-
грала:
криволинейный интеграл второго рода

∫

AB

P (x, y)dx =

b∫
a

P (x, y(x))dx
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и криволинейный интеграл первого рода∫

AB

P (x, y) cosαdl =

=

b∫
a

P (x, y(x))
1√

1+ y′2
·
√
1+ y′2 dx =

b∫
a

P (x, y(x))dx.

Из написанных равенств следует, что∫

AB

P (x, y)dx =

∫

AB

P (x, y) cosαdl.

Аналогично получается равенство∫

AB

Q(x, y)dy =

∫

AB

Q(x, y) sinαdl.

Таким образом,∫

AB

P (x, y)dx+Q(x, y)dy =

∫

AB

(P (x, y) cosα+Q(x, y) sinα) dl

— формула, связывающая криволинейные интегралы первого и
второго рода.

Если ввести векторы �F (x, y) = {P (x, y),Q(x, y)} и
�τ = {cosα, sinα} — единичный вектор направленной касательной
к кривой, то полученную формулу можно записать так:∫

AB

P (x, y)dx+Q(x, y)dy =

∫

AB

(
�F · �τ

)
dl.

Аналогичные формулы имеют место для криволинейных инте-
гралов по пространственной кривой AB:∫

AB

Pdx+Qdy +Rdz =

∫

AB

(P cosα+Q cosβ +R cos γ) dl =

∫

AB

(
�F · �τ

)
dl,

где �F = {P ,Q,R}, �τ = {cosα, cosβ, cos γ} — единичный вектор
направленной касательной к кривой.
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§ 4. Формула Грина

Пусть y = y1(x) и y = y2(x) (a � x � b) — уравнения двух ку-
сочно гладких кривых в декартовых координатах, y1(x) � y2(x).
Область

G ={(x, y): a � x � b, y1(x) � y � y2(x)}

назовем «y-трапециевидной» (рис. 13.18). Аналогично определя-
ется «x-трапециевидная» область.

Рис. 13.18.

Замкнутую область G назовем
простой, если ее можно разбить как
на конечное число «x-трапециевид-
ных» областей, так и на конечное чис-
ло «y-трапециевидных» областей (без
общих внутренних точек у любых
двух областей).
Примеры простых областей: прямо-
угольник, круг, кольцо (рис. 13.19).

Рис. 13.19.

Рис. 13.20.

Границу области G обозначим буквой
L. Она может состоять из конечного числа
замкнутых контуров (рис. 13.20). Как было
оговорено ранее, направление обхода кон-
тура считается положительным, если при
этом обходе область G остается слева от
движущейся по контуру точки.
Теорема 4. Пусть функции P (x, y) и

Q(x, y) и их частные производные
∂P (x, y)

∂y

и
∂Q(x, y)

∂x
непрерывны в простой области G с кусочно-гладкой
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границей L. Тогда

∫ ∫

G

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮

L

Pdx+Qdy (13.11)

где интеграл по границе L берется в положительном направле-
нии.
Формула (13.11) называется формулой Грина.
Доказательство. Рассмотрим сначала случай, когда G —
«y-трапециевидная» область (рис. 13.21) и докажем, что

Рис. 13.21.

∫ ∫

G

∂P

∂y
dxdy = −

∮

L

Pdx. (13.12)

Сводя двойной интеграл к повторно-
му, получаем:

∫ ∫

G

∂P

∂y
(x, y)dxdy =

b∫
a

dx

y2(x)∫

y1(x)

∂P

∂y
(x, y)dy =

=

b∫
a

dx · P (x, y)
∣∣∣∣∣∣
y2(x)

y1(x)

=

b∫
a

P (x, y2(x))dx−
b∫
a

P (x, y1(x))dx, (13.13)

Определенные интегралы в правой части (13.13) выразим через
криволинейные интегралы соответственно по кривым CD и AB:

b∫
a

P (x, y2(x))dx =

∫

DC

P (x, y)dx = −
∫

CD

P (x, y)dx,

b∫
a

P (x, y1(x))dx =

∫

AB

P (x, y)dx.
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Используя полученные равенства, а также равенства∫

BC

P (x, y)dx = 0 и

∫

DA

P (x, y)dx = 0, запишем (13.12) в виде:

∫ ∫

G

∂P

∂y
(x, y)dxdy =

= −
∫

CD

Pdx−
∫

DA

Pdx−
∫

AB

Pdx−
∫

BC

Pdx = −
∮

L

Pdx.

Тем самым, справедливость равенства (13.12) доказана для
«y-трапециевидной» области.

Рис. 13.22.

Пусть теперь G — простая об-
ласть. Разобьем ее на конечное
число «y-трапециевидных» обла-

стей Gi, (i = 1, 2, ...,n): G =
n⋃

i=1

Gi

(рис. 13.22). Напишем для каж-
дой области Gi равенство (13.12):

∫ ∫

Gi

∂P

∂y
dxdy = −

∮

Li

Pdx.

Суммируя эти равенства по i от 1 до n, получим в левой части

интеграл

∫ ∫

G

∂P

∂y
dxdy, а в правой части — интеграл −

∮

L

Pdx, так

как криволинейный интеграл по каждой внутренней раздели-
тельной линии берется дважды, причем в противоположных на-
правлениях, и потому сумма таких интегралов равна нулю. Итак,
для каждой простой области справедливо равенство (13.12).

Аналогично можно доказать, используя разбиения G на «x-
трапециевидные» области, что

∫ ∫

G

∂Q

∂x
dxdy =

∮

L

Qdy. (13.14)

Вычитая (13.12) из (13.14), получаем формулу (13.11):
∫ ∫

G

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮

L

Pdx+Qdy.
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Теорема 4 доказана.
Замечание. Можно доказать, что формула Грина справедлива не
только для простых областей, но и для любой области, граница
которой состоит из конечного числа кусочно-гладких кривых.
Следствие. Полагая в (13.11) Q = x, P = 0, а затем Q = 0,
P = −y, получаем:∫ ∫

G

dxdy =

∮
xdy и

∫ ∫

G

dxdy = −
∮

L

ydx,

то есть

S (G) =

∮

L

xdy и S (G) = −
∮

L

ydx, (13.15)

где S (G) — площадь области G.
Пусть α и β — произвольные числа, такие, что α + β = 1.

Умножая первое равенство (13.15) на α, а второе на β, и скла-
дывая, приходим к формуле

S (G) =

∮

L

αxdy − βydx (α+ β = 1).

Наиболее употребительна эта формула при α = β =
1

2
:

S (G) =
1

2

∮

L

xdy − ydx. (13.16)

Примеры. 1) Вычислить интеграл

I =

∮

L

(
x2 − y

)
dx+

(
x+ y2

)
dy,

где L — окружность (x− x0)
2 + (y − y0)

2 = R2.

Здесь P = x2 − y, Q = x+ y2,
∂P

∂y
= −1,

∂Q

∂x
= 1. По формуле

Грина

I =

∫ ∫

G

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫ ∫

G

2dxdy = 2S(G) = 2πR2.
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Рис. 13.23.

2) Найти площадь области,
ограниченной астроидой

x
2
3 + y

2
3 = a

2
3 (рис. 13.23).

Напишем параметрические
уравнения астроиды:

x = a cos3 t, y = a sin3 t,

0 � t � 2π.

По формуле (13.16)находим:

S =
1

2

∮

L

xdy − ydx =

=
1

2

2π∫

0

[
a cos3 t · a · 3 sin2 t cos t− a sin3 t

(−a · 3 cos2 t sin t)] dt =
=

3

2
a2

2π∫

0

sin2 t cos2 tdt =
3

8
a2

2π∫

0

sin2 2tdt =
3

8
πa2.

§ 5. Условия независимости криволинейного
интеграла второго рода от пути интегрирования

В §3 был рассмотрен пример, в котором криволинейный ин-
теграл второго рода по трем различным кривым, соединяющим
две данные точки, имел одно и то же значение. В этом параграфе
мы установим условия, при которых криволинейный интеграл
второго рода не зависит от пути интегрирования, то есть
для двух данных точек значение интеграла одно и то же для
любой кривой, соединяющий это точки.

Рис. 13.24.

Нам понадобится понятие односвязной обла-
сти. Областью мы называем открытое связное
множество. Объединение области и ее грани-
цы называется замкнутой обастью. Область G
на плоскости называется односвязной, если она
обладает следующими свойством: для любого
замкнутого контура L, лежащего в области G,
часть плоскости, ограниченная этим контуром,
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целиком принадлежит G.
Примеры. Открытые круг и прямоугольник — односвязные об-
ласти.
Кольцо, круг с выколотой точкой (рис. 13.24) не являются одно-
связными областями.
Теорема 5. I. Пусть функции P (x, y) и Q(x, y) непрерывны в
области G. Тогда следующие три утверждения эквивалентны (то
есть из каждого из них следуют два другие):
1. Для любого замкнутого кусочно-гладкого контура L ⊂ G вы-
полняется равенство

∮

L

Pdx+Qdy = 0.

2. Для любых двух фиксированных точек A и B ∈ G криволиней-

ный интеграл

∫

AB

Pdx+Qdy не зависит от пути интегрирования

(то есть от кривой, соединяющей точки A и B и лежащей в
области G).
3. Выражение Pdx+Qdy является полным дифференциалом, то
есть существует функция u(x, y) = u(M), такая, что

du(x, y) = P (x, y)dx+Q(x, y)dy.

При этом для любой кусочно-гладкой кривой AB ⊂ G выполня-
ется равенство

∫

AB

Pdx+Qdy = u(B)− u(A). (13.17)

II. Если, кроме того, область G — односвязная, а функции P и

Q имеют в области G непрерывные производные
∂P

∂y
и
∂Q

∂x
, то

каждое из условий 1-3 эквивалентно условию

4.
∂P

∂y
=
∂Q

∂x
в области G.

Доказательство проведем по схеме:

I. 1 → 2 → 3 → 1; II. 3 → 4 → 1.

6 В.Ф. Бутузов
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Рис. 13.25.

I. а) 1 → 2. Пусть выполнено условие 1. Рас-
смотрим две произвольные точки A и B ∈ G
и две произвольные кривые, соединяющие
эти точки: ACB и ADB (рис. 13.25). В силу
условия 1

∫

ACBDA

Pdx+Qdy = 0, то есть

∫

ACB

Pdx+Qdy +

∫

BDA

Pdx+Qdy = 0,

откуда

∫

ACB

Pdx+Qdy = −
∫

BDA

Pdx+Qdy =

∫

ADB

Pdx+Qdy.

Таким образом, выполнено условие 2.
б) 2 → 3. Пусть M0(x0, y0) — фиксированная точка области G,
а M(x, y) — произвольная точка. В силу условия 2 интеграл∫

M0M

Pdx + Qdy не зависит от выбора кривой M0M , а зависит

только от точки M(x, y), то есть является функцией от x и y.
Обозначим эту функцию u(x, y):

u(x, y) =

∫

M0M

Pdx+Qdy.

Докажем, что

∂u

∂x
= P (x, y) и

∂u

∂y
= Q(x, y).

Отсюда, так как P и Q — непрерывные функции, последует, что
u(x, y) — дифференцируемая функция, причем

du =
∂u

∂x
dx+

∂u

∂y
dy = Pdx+Qdy,

то есть выражение Pdx + Qdy является полным дифференциа-
лом.
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Зафиксируем точкуM(x, y) и дадим приращение Δx перемен-
ной x (рис. 13.26). Функция u(x, y) получит частное приращение

Δxu = u(x+Δx, y)− u(x, y) =

∫

M0M1

Pdx+Qdy −
∫

M0M

Pdx+Qdy =

=

∫

MM1

Pdx+Qdy =

x+Δx∫
x

P (x, y)dx = P (ξ, y)Δx,

где ξ ∈ [x,x + Δx] (последнее равенство получено с помощью
формулы среднего значения). Отсюда следует, что

Δxu

Δx
= P (ξ, y) → P (x, y) при Δx→ 0,

Рис. 13.26.

то есть функция u(x, y) имеет
в точке M(x, y) частную про-
изводную по переменной x и
∂u

∂x
= P (x, y). Аналогично до-

казывается, что
∂u

∂y
= Q(x, y).

Докажем, что верна форму-
ла (13.17):∫

AB

Pdx+Qdy =

∫

AM0

Pdx+Qdy+

+

∫

M0B

Pdx+Qdy =

∫

M0B

Pdx+Qdy −
∫

M0A

Pdx+Qdy = u(B)− u(A).

Рис. 13.27.

в) 3 → 1. Пусть выполнено условие 3, и,
следовательно, верна формула (13.17). Возь-
мем произвольный замкнутый контур L ⊂ G
(рис. 13.27, A = B). По формуле (13.17) полу-
чаем: ∮

L

Pdx+Qdy = u(B)− u(A) = 0,

то есть выполнено условие 1.
II. г) 3 → 4. Пусть выполнено условие 3, то есть существует

6*
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функция u(x, y), такая, что
∂u

∂x
= P (x, y) и

∂u

∂y
= Q(x, y). Тогда

∂2u

∂y∂x
=

∂P

∂y
и

∂2u

∂x∂y
=

∂Q

∂x
. Так как

∂P

∂y
и
∂Q

∂x
— непрерывные

функции, то
∂2u

∂y∂x
=

∂2u

∂x∂y
, то есть

∂P

∂y
=
∂Q

∂x
, и, значит, выпол-

нено условие 4.
Замечание. Односвязность области G здесь не использовалась.

Рис. 13.28.

д) 4 → 1. Пусть выполнено условие 4, то

есть
∂P

∂y
=

∂Q

∂x
в области G, и G — од-

носвязная область. Возьмем произвольный
замкнутый контур L ⊂ G (рис. 13.28). В
силу односвязности области G область D,
ограниченная контуром L, целиком принад-
лежит области G. По формуле Грина

∮

L

Pdx+Qdy =

∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy = 0,

то есть выполнено условие 1.
Теорема 5 доказана.
Замечание. Аналогичная теорема имеет место для криволиней-
ных интегралов второго рода в пространстве, то есть для ин-

тегралов вида

∫

AB

Pdx + Qdy + Rdz, где P ,Q,R — функции от

x, y, z. В частности, условие 3 принимает вид: существует функ-
ция u(x, y, z), такая, что du = Pdx + Qdy + Rdz, а условие 4
содержит теперь три равенства:

∂P

∂y
=
∂Q

∂x
,
∂Q

∂z
=
∂R

∂y
,
∂R

∂x
=
∂P

∂z
.

Утверждения 1 −→ 2 −→ 3 −→ 1 и 3 −→ 4 доказываются так же,
как и в теореме 5, а для доказательства утверждения 4 −→ 1
нужна формула Стокса. О ней речь пойдет в следующей главе.
Примеры. 1) Вернемся к примеру из §3:

I =

B(1,1)∫

A(0,0)

2xydx+ x2dy.



5. Условия независимости интеграла второго рода от пути ... 165

Так как 2xydx+ x2dy = du, где u = x2y, то интеграл I не зависит
от пути интегрирования: I = u(1, 1)− u(0, 0) = 1− 0 = 1.
2) Если область G не является односвязной, то из условия 4
может не следовать условие 1. Приведем пример.

Рис. 13.29.

Если P = − y

x2 + y2
, Q =

x

x2 + y2
, то

∂P

∂y
=

∂Q

∂x
=

y2 − x2

(x2 + y2)2
, то есть вы-

полнено условие 4. При этом P ,

Q,
∂P

∂y
,

∂Q

∂x
определены и непре-

рывны всюду, кроме точки (0, 0).
Рассмотрим область G с выколо-
той точкой (0, 0). Она не являет-
ся односвязной. Возьмем окружность
L : x = R cos t, y = R sin t, 0 � t � 2π
(рис. 13.29). Так как

∮

L

Pdx+Qdy =

2π∫

0

[− sin t(− sin t)dt+ cos t cos tdt] =

2π∫

0

dt = 2π �= 0,

то условие 1 не выполнено.

Рис. 13.30.

3) Вычислить

∫

AB

xdx+ ydy√
x2 + y2

, где AB —

кривая, расположенная в кольце между
концентрическими окружностями радиу-
сов a и b с центром в начале координат
(рис. 13.30).
В данном примере

P (x, y) =
x√

x2 + y2
, Q(x, y) =

y√
x2 + y2

.

Проверим, выполнено ли условие 4 теоремы 5:

∂P

∂y
=

∂

∂y

(
x√

x2 + y2

)
= −1

2
x
(
x2 + y2

)− 3
2 · 2y = − xy(

x2 + y2
) 3
2

,

∂Q

∂x
=

∂

∂x

(
y√

x2 + y2

)
= − xy(

x2 + y2
) 3
2

, x2 + y2 �= 0.
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Итак,
∂P

∂y
=

∂Q

∂x
при x2 + y2 �= 0, то есть условие 4 теоремы 5

выполнено в любой односвязной области, не содержащей начала
координат, и, следовательно, в любой такой области существует
функция u(x, y), такая, что

Рис. 13.31.

∂u

∂x
= P (x, y),

∂u

∂y
= Q(x, y).

Как найти u(x, y)? В данном
примере ее нетрудно «угадать»:

u =
√
x2 + y2 . Поэтому I = u(B) −

− u(A) = b − a. Но можно най-
ти u(x, y) и без угадывания (см.
рис. 13.31):

u(x, y) =

∫

ACB

Pdx+Qdy =

x∫
x0

P (x, y0)dx+

y∫
y0

Q(x, y)dy =

=

x∫
x0

x√
x2 + y20

dx+

y∫
y0

y√
x2 + y2

dy + C =

=
√
x2 + y20

∣∣∣x
x0

+
√
x2 + y2

∣∣∣∣y
y0

+ C =

=
√
x2 + y20 −

√
x20 + y20 +

√
x2 + y2 −

√
x2 + y20 + C =

=
√
x2 + y2 −

√
x20 + y20 + C.

Если взять C =
√
x20 + y20 , то u =

√
x2 + y2 .

4) Физический пример. Пусть в области G задано векторное

поле, то есть в каждой точке M области G задан вектор
−→
F (M).

Если
−→
F (M) — вектор силы, то говорят о силовом векторном

поле.
Примеры силовых векторных полей: поле тяготения точечной

массы
−→
F (M) = −γm

r3
−→r , электростатическое поле точечного за-

ряда
−→
E (M) =

ke

r3
−→r (см. § 6 главы 9).
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Векторное поле называется потенциальным, если существу-

ет такая функция u(M), что
−→
F (M) = gradu(M) (понятие потен-

циального поля уже упоминалось ранее — в главе 9). Функция

u(M) называется потенциалом векторного поля
−→
F (M). Пусть−→

F (M) = P (M) · −→i + Q(M) · −→j + R(M) · −→k — потенциальное
силовое поле в пространстве. Тогда

−→
F (M) = gradu(M) =

∂u

∂x
· −→i +

∂u

∂y
· −→j +

∂u

∂z
· −→k ,

и, следовательно,

P =
∂u

∂x
, Q =

∂u

∂y
, R =

∂u

∂z
.

Поэтому Pdx+Qdy + Rdz =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz = du — пол-

ный дифференциал.
Криволинейный интеграл∫

AB

Pdx+Qdy +Rdz =

∫

AB

(−→
F · −→dl

)
есть работа силового поля

−→
F (M) при перемещении материальной

точки по кривой AB из точки A в точку B. Так как Pdx+Qdy +
+Rdz = du — полный дифференциал, то по теореме 5∫

AB

Pdx+Qdy +Rdz = u(B)− u(A),

то есть работа потенциального силового поля не зависит от пути,
по которому материальная точка перемещается из точки A в
точку B, а зависит лишь от начальной и конечной точек A и B:
она равна разности потенциалов в точках B и A.

В частности, если
−→
F (M) = −γm

r3
−→r — поле тяготения точеч-

ной массы m, то
−→
F = gradu(M), где u(M) = γ

m

r
— ньютонов-

ский потенциал, и для работы этого силового поля получаем
выражение ∫

AB

(−→
F · −→dl

)
= γm

(
1

r
B

− 1

r
A

)
.

Здесь r
M

— расстояние от точки M до точки, в которой нахо-
дится масса m.
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ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ

§ 1. Площадь поверхности

В отличие от кривой, длина которой определялась как предел
длин вписанных в нее ломаных, площадь поверхности нельзя
определить как предел площадей вписанных в поверхность мно-
гогранников. Подтверждением этому служит известный пример
Шварца (см. [1]).

Рис. 14.1.

Пусть поверхность P задана урав-
нением

z = f(x, y), (x, y) ∈ G,

и пусть функция f(x, y) диффе-
ренцируема в области G. Тогда в
каждой точке поверхности суще-
ствуют касательная плоскость и
нормаль.

Разобьем поверхность P с по-
мощью кусочно-гладких кривых

на n частей: P =
n⋃

i=1

Pi. Проекцию

Pi на плоскость Oxy обозначим Gi (рис. 14.1): G =
n⋃

i=1

Gi.

На каждой части Pi возьмем произвольную точку
Mi(xi, yi, zi) (zi = f(xi, yi)) и проведем через нее касательную
плоскость к поверхности P . Пусть Si — площадь той части
касательной плоскости, проекцией которой на плоскость Oxy
является область Gi.

Составим сумму

S(Pi,Mi) =
n∑

i=1

Si.
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Пусть di — диаметр Pi, d = max
1�i�n

di.

Определение. Число S называется пределом сумм S(Pi,Mi)
при d→ 0, если ∀ ε > 0 ∃ δ > 0, такое, что для любого разбиения
поверхности P , у которого d < δ, и для любого выбора точек Mi

выполняется неравенство

|S(Pi,Mi)− S| < ε.

Если существует lim
d→0

S(Pi,Mi) = S, то число S называется

площадью поверхности P , а сама поверхность P называется
квадрируемой.
Теорема 1. Пусть поверхность P задана уравнением

z = f(x, y), (x, y) ∈ G,

где G — ограниченная замкнутая область, и пусть функция
f(x, y) имеет в области G непрерывные частные производные
fx(x, y) и fy(x, y) (такую поверхность назовем гладкой).

Тогда поверхность P квадрируема и ее площадь выражается
формулой

S =

∫ ∫

G

√
1+ f2x(x, y) + f2y (x, y) dxdy. (14.1)

Доказательство. Разобьем поверхность P кусочно-гладкими кри-

выми на n частей: P =
n⋃

i=1

Pi. При этом область G разобьется на

n частей Gi (i = 1, 2, ..., n), где Gi — проекция Pi на плоскость
Oxy.

На каждой части Pi возьмем произвольную точку
Mi(xi, yi, zi), где zi = f(xi, yi), и проведем через точку Mi

касательную плоскость к поверхности P . Уравнение касательной
плоскости имеет вид

z − zi = fx(xi, yi)(x− xi) + fy(xi, yi)(y − yi).

Вектор �ni = {−fx(xi, yi),−fy(xi, yi), 1} является вектором норма-
ли к поверхности P в точке Mi. Обозначим через γi угол между
вектором �ni и осью Oz (рис. 14.2). Тогда

cos γi =
1√

1+ f2x(xi, yi) + f2y (xi, yi)
.
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Рис. 14.2.

Пусть Si — площадь той части каса-
тельной плоскости, которая проектиру-
ется на частичную область Gi. Восполь-
зуемся тем, что площадь S(Gi) области
Gi и площадь Si связаны равенством

S(Gi) = Si · cos γi,

откуда следует, что

Si =
√
1+ f2x(xi, yi) + f2y (xi, yi) · S(Gi).

Суммируя величины Si по i от 1 до n, получаем:

n∑
i=1

Si = S(Pi,Mi) =
n∑

i=1

√
1+ f2x(xi, yi) + f2y (xi, yi) · S(Gi).

(14.2)
По определению площадь поверхности P — это предел сумм
S(Pi,Mi) при d→ 0, где d = max

1�i�n
di, di — диаметр Pi.

Правая часть в равенстве (14.2) является интегральной сум-
мой для двойного интеграла по области G от непрерывной функ-
ции √

1+ f2x(x, y) + f2y (x, y) .

При d → 0 максимальный диаметр областей Gi также
стремится к нулю. Поэтому предел правой части равенства
(14.2) при d → 0 существует и равен двойному интегралу∫ ∫
G

√
1+ f2x(x, y) + f2y (x, y) dxdy. Следовательно, существует

lim
d→0

S(Pi,Mi), то есть поверхность P квадрируема и ее площадь

выражается формулой (14.1). Теорема 1 доказана.
Пример. Найти площадь части параболоида вращения z =

= x2 + y2, отсекаемой плоскостью z = 1 (рис. 14.3).
По формуле (14.1) получаем:

S =

∫ ∫

G

√
1+ 4x2 + 4y2 dxdy.
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Рис. 14.3.

Для вычисления двойного интеграла по
кругу G перейдем к полярным координа-
там: x = r cosϕ, y = r sinϕ (0 � ϕ � 2π,
0 � r � 1). Получим

S =

2π∫

0

dϕ

1∫

0

√
1+ 4r2 · rdr =

= 2π
1

8

(
1+ 4r2

)3/2 · 2
3

∣∣∣1
0
=
π

6

(
5
√
5 − 1

)
.

Вычисление площади поверхности, заданной параметриче-
ски. Задание поверхности P уравнением z = f(x, y) (и также
уравнением y = f(z,x) или уравнением x = f(y, z)) называется
явным заданием.

Поверхность может быть задана уравнением вида

F (x, y, z) = 0,

не разрешенным относительно ни одной из переменных x, y и z
(неявное задание).

Например, уравнение

x2 + y2 + z2 −R2 = 0

(здесь F (x, y, z) = x2 + y2 + z2 − R2) задает сферу радиуса R с
центром в начале координат.

Поверхность может быть задана параметрически уравнени-
ями

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), (u, v) ∈ g. (14.3)

Переменные u и v называются параметрами. Каждой точке
(u, v) из области g соответствует по формулам (14.3) точка
M(x, y, z) поверхности. Пусть различным точкам (u, v) соот-
ветствуют различные точки M(x, y, z). Тогда пару чисел (u, v)
можно назвать криволинейными координатами точки M на по-
верхности. Линии u = const и v = const — координатные линии
на поверхности.

Пример. x = R sinu cos v, y = R sinu sin v, z = R cosu (R =
= const > 0, 0 � u � π, 0 � v � 2π) — это параметрические
уравнения сферы радиуса R с центром в начале координат.
Криволинейные координаты u и v точки M на сфере — это «ши-
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рота» и «долгота» точки M (с тем отличием от географических
широты и долготы, что географическая широта отсчитывается
от экватора, а в нашем примере «широта» u отчитывается от
оси Oz, географическая долгота отсчитывается от Гривичского
меридиана, а в нашем примере «долгота» v отсчитывается от
плоскости Oxz).

Рис. 14.4.

Координатные линии u = const и
v = const — это параллели и ме-
ридианы (рис. 14.4). Параметры u
и v в уравнениях сферы часто обо-
значают буквами θ и ϕ.

Вернемся к уравнениям (14.3),
задающим поверхность P . Введем
вектор

�r =
−−→
OM = x ·�i+ y ·�j + z · �k —

радиус–вектор точки M(x, y, z)
(рис. 14.5). Тогда уравнения (14.3) поверхности P можно запи-
сать в виде одного векторного уравнения

�r = ϕ(u, v)�i+ ψ(u, v)�j + χ(u, v)�k =: �r(u, v).

Рис. 14.5.

Частные производные перво-
го порядка вектор-функции �r(u, v)
выражаются следующими форму-
лами (при условии, что функции ϕ,
ψ и χ имеют частные производные
первого порядка):

�ru = ϕu�i+ ψu�j + χu
�k,

�rv = ϕv
�i+ ψv

�j + χv
�k.

Из геометрических (и также
физических) соображений ясно,

что вектор �ru(u, v) является касательным вектором к линии
v = const в точке M(ϕ(u, v),ψ(u, v),χ(u, v)) (см. рис. 14.5), а
вектор �rv(u, v) — касательным вектором к линии u = const в точ-
ке M . Поэтому векторы �ru(u, v) и �rv(u, v) лежат в касательной
плоскости к поверхности P в точке M(ϕ(u, v),ψ(u, v),χ(u, v)) и,
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следовательно, вектор �n = [�ru × �rv] является вектором нормали к
поверхности P в точке M . Вектор �n запишем в виде

�n =

∣∣∣∣∣∣
�i �j �k
ϕu ψu χu

ϕv ψv χv

∣∣∣∣∣∣ =
∣∣∣∣ ψu χu

ψv χv

∣∣∣∣ ·�i+
+

∣∣∣∣ χu ϕu

χv ϕv

∣∣∣∣ ·�j + ∣∣∣∣ ϕu ψu

ϕv ψv

∣∣∣∣ · �k =:

=: A(u, v) ·�i+B(u, v) ·�j + C(u, v) · �k.

Рис. 14.6.

Рассмотрим на
поверхности P две пары
близких координатных
линий (рис. 14.6). Они
ограничивают криволи-
нейный четырехуголь-
ник MM1M3M2 —
«элемент» поверхности
P . Вычислим прибли-
женно его площадь dS,
заменив криволиней-
ный четырехугольник
параллелограммом,
построенным на векто-

рах
−−−→
MM1 = �ru · du и−−−→

MM2 = �rv · dv (считаем
du > 0, dv > 0):

dS =
∣∣[�rudu× �rvdv]

∣∣ = ∣∣[�ru × �rv]
∣∣ dudv =

=
∣∣∣A�i+B�j + C�k

∣∣∣ dudv =
√
A2 +B2 + C2 dudv.

Суммируя по всем «элементам» поверхности P , приходим к фор-
муле площади поверхности, заданной параметрически:

S =

∫ ∫
g

√
A2 +B2 + C2 dudv. (14.4)

(отметим, что A, B и C — функции переменных u и v).
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Запишем формулу (14.4) в другом виде. С этой целью обо-
значим буквой α угол между векторами �ru и �rv. Тогда√

A2 +B2 + C2 = |[�ru × �rv]| =
= |�ru| · |�rv| · sinα = |�ru| · |�rv| ·

√
1− cos2 α =

=
√

|�ru|2 · |�rv|2 − |�ru|2 · |�rv|2 · cos2 α =
√
�ru2 · �rv2 − (�ru · �rv)2 .

Введем обозначения:

�ru2 = ϕ2
u + ψ2

u + χ2
u = E(u, v), �rv2 = ϕ2

v + ψ2
v + χ2

v = G(u, v)

(�ru · �rv) = ϕuϕv + ψuψv + χuχv = F (u, v).

Тогда A2 +B2 +C2 = EG− F 2, и формула (14.4) принимает вид

S =

∫ ∫
g

√
EG− F 2 dudv. (14.5)

Рис. 14.7.

Замечания. 1) Формулы (14.4)
и (14.5) имеют место при сле-
дующих условиях: функции ϕ,
ψ и χ имеют непрерывные
частные производные первого
порядка в замкнутой ограни-
ченной области g, различным
внутренним точкам (u, v) об-
ласти g соответствуют различ-
ные точки (ϕ,ψ,χ) поверхно-
сти, а координаты A, B и C
вектора нормали �n не обраща-
ются одновременно в нуль ни

в одной точке (u, v) области g (при этом �ru �= �0 и �rv �= �0). В таком
случае поверхность P называется гладкой.

Формулы (14.4) и (14.5) остаются в силе и в том случае,
когда A, B и C одновременно равны нулю на множестве точек
площади нуль, в частности, в конечном числе точек. В случае
сферы A = B = C = 0 при u = 0 и u = π (на полюсах сферы).

2) Рассмотрим на поверхности P две близкие точки M(u, v)
и M1(u + du, v + dv) (рис. 14.7), через которые по поверхности
проходит кривая. Вычислим приближенно длину dl «элемен-
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та» кривой, заменив его вектором
−−−→
MM1 = �r(u + du, v + dv) −

− �r(u, v) = �rudu+ �rvdv:

dl =
∣∣∣−−−→MM1

∣∣∣ = |�rudu+ �rvdv| =
√

(�rudu+ �rvdv)2 =

=
√
�ru2(du)2 + 2(�ru · �rv)dudv + �rv2(dv)2 =

=
√
E(du)2 + 2Fdudv +G(dv)2 .

Рис. 14.8.

Квадратичная форма

E(du)2 + 2Fdudv +G(dv)2

называется первой квадратичной
формой поверхности. Угловые мино-

ры матрицы

(
E F
F G

)
этой квадра-

тичной формы равны E = �ru2 > 0 и
EG − F 2 = A2 + B2 + C2 > 0. Сле-
довательно, эта квадратичная форма
положительно определенная.

С помощью первой квадратичной формы вычисляются на
поверхности площади (формула (14.5)), а также длины кривых
и углы между кривыми. Если кривая AB на поверхности зада-
на параметрически уравнениями u = u(t), v = v(t), α � t � β
(рис. 14.8), то ее длина выражается формулой

lAB =

β∫
α

√
E(u′)2 + 2Fu′v′ +G(v′)2 dt.

Говорят, что первая квадратичная форма определяет метрику
поверхности.

Существует еще так называемая вторая квадратичная фор-
ма поверхности. Она позволяет вычислить кривизну поверхно-
сти (см. [1]).

Пример. Рассмотрим сферу, заданную параметрически:

x = R sinu cos v, y = R sinu sin v, z = R cosu
(0 � u � π, 0 � v � 2π).
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Так как

�ru = R cosu cos v ·�i+R cosu sin v ·�j −R sinu · �k,
�rv = −R sinu sin v ·�i+R sinu cos v ·�j,

то

E = �ru
2 = R2, G = �rv

2 = R2 sin2 u, F = (�ru · �rv) = 0,

EG− F 2 = R4 sin2 u.

По формуле (14.5) находим площадь сферы:

S =

2π∫

0

dv

π∫

0

du
√
R4 sin2 u = R2

2π∫

0

dv

π∫

0

sinudu = R2 · 2π · 2 = 4πR2.

§ 2. Поверхностные интегралы первого рода

Пусть P — квадрируемая поверхность, заданная явным урав-
нением или параметрически, и пусть на поверхности P опреде-
лена ограниченная функция f(M) = f(x, y, z). Разобьем поверх-

ность P на n квадрируемых частей: P =
n⋃

i=1

Pi, на каждой части

Pi возьмем произвольную точку Mi и составим интегральную
сумму

I(Pi,Mi) =
n∑

i=1

f(Mi)S(Pi),

где S(Pi) — площадь Pi.
Пусть di — диаметр Pi, d = max

1�i�n
di.

Если существует lim
d→0

I(Pi,Mi) = I, то число I называется

поверхностным интегралом первого рода от функции f(M) по
поверхности P и обозначается так:

I =

∫ ∫

P

f(M) ds или I =

∫ ∫

P

f(x, y, z) ds.

Поверхностный интеграл первого рода является обобщением по-
нятия двойного интеграла на случай, когда область интегриро-
вания — не плоская, а произвольная поверхность.
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Примеры. 1) Если f(M) = 1, то
∫ ∫
P

ds = S(P ) — площадь

поверхности P .
2) Если P — заряженная поверхность и ρ(M) — поверхностная
плотность заряда в точке M , то

∫ ∫
P

ρ(M) ds = q — суммарный

заряд поверхности P .
Теорема 2. Пусть: 1) поверхность P задана уравнением

z = z(x, y), (x, y) ∈ G, где G — квадрируемая замкнутая область,
а функция z(x, y) имеет в области G непрерывные частные про-
изводные zx(x, y) и zy(x, y) (то есть P — гладкая поверхность);
2) функция f(M) = f(x, y, z) непрерывна на поверхности P .

Тогда поверхностный интеграл первого рода от функции
f(M) по поверхности P существует, и справедливо равенство

∫ ∫

P

f(x, y, z) ds =

∫ ∫

G

f(x, y, z(x, y))
√
1+ z2x(x, y) + z2y(x, y) dxdy.

(14.6)
Доказательство. Разобьем поверхность P на квадрируемые ча-

сти: P =
n⋃

i=1

Pi. Пусть Gi — проекция Pi на плоскость Oxy,

так что G =
n⋃

i=1

Gi. Выберем на каждой части Pi произвольным

образом точку Mi и составим интегральную сумму

I(Pi,Mi) =
n∑

i=1

f(Mi)S(Pi). (14.7)

Двойной интеграл в правой части равенства (14.6) обозначим
буквой I и запишем в виде

I =
n∑

i=1

∫ ∫

Gi

f(x, y, z)
√
1+ z2x + z2y dxdy.

Каждое слагаемое в правой части написанного равенства преоб-
разуем по формуле среднего значения:

I =
n∑

i=1

f(Ki)

∫ ∫

Gi

√
1+ z2x + z2y dxdy,
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где Ki ∈ Pi. Так как
∫ ∫
Gi

√
1+ z2x + z2y dxdy = S(Pi), то

I =
n∑

i=1

f(Ki)S(Pi). (14.8)

Вычитая (14.8) из (14.7), получаем:

I(Pi,Mi)− I =
n∑

i=1

[f(Mi)− f(Ki)]S(Pi). (14.9)

Зададим произвольное ε > 0. Так как функция f(M) непрерывна
на поверхности P , которая является ограниченным замкнутым
множеством в силу условия 1) теоремы, то f(M) равномерно
непрерывна на поверхности P . Поэтому ∃ δ > 0, такое, что если
di = диаметр Pi < δ, то для любых двух точек Mi и Ki на
поверхности Pi будет выполнено неравенство

|f(Mi)− f(Ki)| < ε

S(P )
,

где S(P ) — площадь поверхности P .
Следовательно, для любого разбиения поверхности P , у ко-

торого d < δ, из равенства (14.9) следует:

|I(Pi,Mi)− I| < ε

S(P )

n∑
i=1

S(Pi) = ε.

Рис. 14.9.

Это означает, что lim
d→0

(I(Pi,Mi)− I) = 0, то

есть существует lim
d→0

I(Pi,Mi) = I, а так как

lim
d→0

I(Pi,Mi) — это и есть поверхностный

интеграл
∫ ∫
P

f(x, y, z) ds, а I — двойной

интеграл из правой части равенства (14.6),
то тем самым доказана справедливость ра-
венства (14.6). Теорема 2 доказана.
Пример. Вычислить

∫ ∫
P

(x2 + y2) ds, где

P — граница тела, заданного неравенства-

ми
√
x2 + y2 � z � 1.

Эти неравенства задают конус, ограниченный основанием
P1, лежащим в плоскости z = 1, и боковой поверхностью P2
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(рис. 14.9). Вычислим отдельно поверхностные интегралы по
поверхностям P1 и P2.
P1: z = 1, (x, y) ∈ G = {(x, y) : x2 + y2 � 1}. По формуле (14.6):

∫ ∫

P1

(x2 + y2) ds =

∫ ∫

G

(x2 + y2)
√
1+ 0+ 0 dxdy =

=

2π∫

0

dϕ

1∫

0

r2 · rdr = 2π · r
4

4

∣∣∣∣1
0

=
π

2
.

P2: z =
√
x2 + y2 , (x, y) ∈ G. По формуле (14.6):

∫ ∫

P2

(
x2 + y2

)
dS =

=

∫ ∫

G

(
x2 + y2

)√
1+

(
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

dxdy =

=
√
2

∫ ∫

G

(
x2 + y2

)
dxdy =

√
2

2
π.

Итак,

∫ ∫

P

=

∫ ∫

P1

+

∫ ∫

P2

=
(
1+

√
2
)
π

2
.

Замечание. Если гладкая поверхность P задана параметриче-
ски

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), (u, v) ∈ g,

то поверхностный интеграл первого рода от функции f(x, y, z)
по поверхности P вычисляется по формуле

∫ ∫

P

f(x, y, z) ds =

∫ ∫
g

f(ϕ(u, v),ψ(u, v),χ(u, v))
√
EG− F 2 dudv.

(14.10)

§ 3. Поверхностные интегралы второго рода

Понятие стороны поверхности. Если поверхность задана
уравнением z = f(x, y), (x, y) ∈ G, то на основе наглядных пред-
ставлений можно различать у нее верхнюю и нижнюю сторо-
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ны. У поверхности, ограничивающей некоторое тело, например
у сферы, можно различать внешнюю и внутреннюю стороны.
Введем понятие стороны поверхности.

Рассмотрим поверхность P , в каждой точке M которой суще-
ствует касательная плоскость. Вектор нормали к поверхности в
точке M обозначим �n(M). Пусть в каждой точке M поверхности
P можно задать вектор �n(M) так, что вектор-функция �n(M),
M ∈ P будет непрерывной на всей поверхности, то есть в каж-
дой точке поверхности непрерывны координаты вектор-функции
�n(M). В таком случае будем говорить, что на поверхности P
задано непрерывное векторное поле нормалей �n(M), и под
стороной поверхности будем понимать множество всех ее точек
с заданными в них векторами нормали, образующими непре-
рывное векторное поле �n(M). Заметим, что в этом случае
вектор-функция −�n(M), M ∈ P также задает непрерывное век-
торное поле нормалей на поверхности P . Будем считать, что это
поле нормалей относится к другой стороне поверхности.

Таким образом, если на поверхности P существует непре-
рывное векторное поле нормалей �n(M), то эта поверхность
имеет две стороны: на одной стороне поле нормалей задается
вектор-функцией �n(M), M ∈ P , а на другой — вектор-функцией
−�n(M), M ∈ P . Такая поверхность называется двусторонней.

Если же на поверхности P не существует непрерывного век-
торного поля нормалей (при наличии вектора нормали в каждой
точке поверхности), то поверхность P принято называть одно-
сторонней.

Рис. 14.10.

Примером двусторонней поверхно-
сти является сфера. На одной ее сто-
роне вектор �n(M) в каждой точке
направлен внутрь шара (это внутрен-
няя сторона сферы), а на другой сто-
роне — наружу (это внешняя сторона
сферы).

Двусторонняя поверхность P ха-
рактеризуется следующим свойством:
для любой точки M ∈ P и для любого
замкнутого контура, проходящего по
поверхности P через точку M и не
пересекающегося с границей поверх-

ности, заданный в точке M вектор нормали �n(M), непрерывно
изменяясь при движении точки по контуру, не изменит своего
направления (на противоположное) при возвращении точки в
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исходное положение (рис. 14.10). На односторонней поверхности
существует такой контур, при обходе которого и возвращении
точки в исходное положение направление вектора нормали изме-
нится на противоположное.

Рис. 14.11.

Примером односторонней по-
верхности является лист Мëбиу-
са. Его можно изготовить из пря-
моугольной полоски бумаги, по-
вернув ее узкие стороны и склеив
их так, чтобы совпадали верши-
ны прямоугольника, являющиеся
концами одной и той же диагона-
ли (то есть точки A и C, B и D,
рис. 14.11).

Гладкая поверхность, задан-
ная уравнением z = f(x, y), является двусторонней. На од-
ной стороне поверхности непрерывное векторное поле нормалей
можно задать вектор–функцией �n(M) = {−fx(x, y),−fy(x, y), 1}
(верхняя сторона поверхности), а на другой стороне —
вектор-функцией −�n(M) = {fx(x, y), fy(x, y),−1} (нижняя сто-
рона поверхности).

Если гладкая двусторонняя поверхность задана параметриче-
ски:

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), (u, v) ∈ g,

то на одной стороне непрерывное векторное поле нормалей мож-
но задать вектор-функцией �n(M) = {A,B,C}, а на другой сто-
роне — вектор-функцией −�n(M) = {−A,−B,−C}.

Двусторонняя поверхность называется также ориентируе-
мой, а выбор определенной стороны называется ориентацией
поверхности.

Понятия двусторонней и односторонней поверхности можно
ввести и для кусочно-гладких поверхностей (то есть поверхно-
стей, составленных из нескольких гладких поверхностей). При-
мером кусочно-гладкой двусторонней поверхности является по-
верхность параллелепипеда.

Определение поверхностных интегралов второго рода.
Пусть P — гладкая двусторонняя поверхность. Выберем на ней
одну из сторон, то есть фиксируем непрерывное поле норма-
лей �n(M). Обозначим через α(M), β(M), γ(M) углы меж-
ду вектором �n(M) и осями координат. Если |�n(M)| = 1, то
�n(M) = {cosα, cosβ, cos γ}.
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Пусть на поверхности P определены три функции: P (M),
Q(M), R(M). Рассмотрим поверхностные интегралы первого ро-
да

I1 =

∫ ∫

P

P (M) cosα(M) dS, I2 =

∫ ∫

P

Q(M) cosβ(M) dS,

I3 =

∫ ∫

P

R(M) cos γ(M) dS.

Они называются поверхностными интегралами второго ро-
да соответственно от функций P , Q, R по выбранной сто-
роне поверхности P . Для них используются также следующие
обозначения:

I1 =

∫ ∫

P

P dydz, I2 =

∫ ∫

P

Qdzdx, I3 =

∫ ∫

P

Rdxdy

(смысл этих обозначений состоит в том, что dydz = dS · cosα —
площадь проекции элемента поверхности с площадью dS на
плоскость Oyz, и также dzdx = dS · cosβ и dxdy = dS · cos γ).

Если выбрать другую сторону поверхности, то вектор �n(M)
во всех точках изменит направление, поэтому его координаты
{cosα, cosβ, cos γ} изменят знак и, следовательно, интегралы I1,
I2, I3 изменят знак. В этом отношении поверхностные интегралы
второго рода аналогичны криволинейным интегралам второго
рода, которые изменяют знак при изменении направления дви-
жения по кривой.

Сумма

I = I1 + I2 + I3 =

∫ ∫

P

P dydz +Qdzdx+Rdxdy =

=

∫ ∫

P

(P cosα+Q cosβ +R cos γ) dS

называется общим поверхностным интегралом второго рода.
Если ввести вектор-функцию �a(M) = {P (M),Q(M),R(M)},

то общий интеграл I можно записать в виде

I =

∫ ∫

P

(�a · �n) dS.
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Рис. 14.12.

Физический пример. Если �a(M) =
= �v(M) — скорость в точке M
течения жидкости, заполняющей
какую-то часть пространства, то∫ ∫
P

(�v · �n) dS представляет собой

поток жидкости через ориенти-
рованную поверхность P , то есть
количество (объем) жидкости, про-
текающей за единицу времени че-
рез поверхность P с выбранным на
ней непрерывным векторным полем
единичных нормалей:

(�v · �n) dS — поток жидкости че-
рез элемент поверхности с площадью dS (рис. 14.12);∫ ∫

P

(�v · �n) dS — поток жидкости через ориентированную по-

верхность P .
В общем случае интеграл

∫ ∫
P

(�a · �n) ds называется потоком

векторного поля �a(M) через ориентированную поверхность P .
Вычисление поверхностных интегралов второго рода пу-

тем сведения к двойным интегралам.
1) Пусть гладкая поверхность P задана уравнением

z = f(x, y), (x, y) ∈ G.

Выберем, например, верхнюю сторону поверхности P , на которой

�n(M) = {−fx(x, y),−fy(x, y), 1}.

Тогда cosα(M) =
−fx√

1+ f2x + f2y⎛⎝на нижней стороне поверхности cosα(M) =
fx√

1+ f2x + f2y

⎞⎠;

cosβ(M) =
−fy√

1+ f2x + f2y

; cos γ(M) =
1√

1+ f2x + f2y

.
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Пусть функции P , Q, R непрерывны на поверхности P . По
формуле (14.6) получаем:

I1 =

∫ ∫

P

P (x, y, z) cosα(M) dS =

=

∫ ∫

G

P (x, y, f(x, y))
−fx(x, y)√
1+ f2x + f2y

·
√
1+ f2x + f2y dxdy =

= −
∫ ∫

G

P (x, y, f(x, y))fx(x, y) dxdy,

I2 =

∫ ∫

P

Q(x, y, z) cosβ(M) dS =

= −
∫ ∫

G

Q(x, y, f(x, y))fy(x, y) dxdy,

I3 =

∫ ∫

P

R(x, y, z) cos γ(M) dS =

∫ ∫

G

R(x, y, f(x, y)) dxdy.

(14.11)

2) Пусть гладкая двусторонняя поверхность P задана пара-
метрически:

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), (u, v) ∈ g.

Выберем ту сторону поверхности, на которой �n = {A,B,C}.
Тогда

cosα =
A√

A2 +B2 + C2
=

A√
EG− F 2

,

cosβ(M) =
B√

EG− F 2
, cos γ(M) =

C√
EG− F 2

.
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По формуле (14.10) получаем:

I1 =

∫ ∫

P

P cosαds =

∫ ∫
g

P (ϕ(u, v),ψ(u, v),χ(u, v))×

× A√
EG− F 2

√
EG− F 2 dudv =

∫ ∫
g

P (ϕ,ψ,χ)A(u, v) dudv,

I2 =

∫ ∫
g

Q(ϕ,ψ,χ)B(u, v) dudv,

I3 =

∫ ∫
g

R(ϕ,ψ,χ)C(u, v) dudv.

(14.12)

Все эти формулы верны и тогда, когда поверхность P —
кусочно-гладкая, то есть составлена из конечного числа гладких
поверхностей, а функции P , Q, R — кусочно непрерывные на
поверхности P .

Пример. Вычислить поверхностный интеграл

I =
1

3

∫ ∫

P

x dydz + y dzdx+ z dxdy

по внешней стороне эллипсоида P :

x2

a2
+
y2

b2
+
z2

c2
= 1,

то есть вектор �n(M) в каждой точке M эллипсоида направлен
наружу, а не внутрь тела, ограниченного эллипсоидом.

Перейдем к параметрическим уравнениям эллипсоида:

x = a sinu cos v, y = b sinu sin v, z = c cosu,
(u, v) ∈ g = {(u, v) : 0 � u � π, 0 � v � 2π}.
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Вычислим координаты вектора нормали

�n = [�ru × �rv] =

∣∣∣∣∣∣
�i �j �k
ϕu ψu χu

ϕv ψv χv

∣∣∣∣∣∣ = A�i+B�j + C�k :

A =

∣∣∣∣ ψu χu
ψv χv

∣∣∣∣ = ∣∣∣∣ b cosu sin v −c sinu
b sinu cos v 0

∣∣∣∣ = bc sin2 u cos v,

B =

∣∣∣∣ χu ϕu

χv ϕv

∣∣∣∣ = ∣∣∣∣ −c sinu a cosu sin v
0 −a sinu sin v

∣∣∣∣ = ac sin2 u sin v,

C =

∣∣∣∣ ϕu ψu

ϕv ψv

∣∣∣∣ = ∣∣∣∣ a cosu cos v b cosu sin v
−a sinu sin v b sinu cos v

∣∣∣∣ = ab sinu cosu.

Рис. 14.13.

Для внешней стороны эллипсоида

�n = {A,B,C},
что легко установить по первому октанту

{0 � u �
π

2
, 0 � v �

π

2
}, для которого углы

α, β, γ — острые (рис. 14.13).
По формулам (14.12) получаем:

I =
1

3

∫ ∫
g

(xA+ yB + zC) dudv =

=
1

3

∫ ∫
g

(
abc sin3u cos2v + abc sin3u sin2v + abc sinu cos2u

)
dudv =

=
1

3
abc

∫ ∫
g

sinu dudv =
1

3
abc

2π∫

0

dv

π∫

0

sinu du =
4

3
πabc —

объем тела, ограниченного эллипсоидом. Этот результат — не
случайный. В следующем параграфе будет получена формула
Остроградского–Гаусса, из которой последует, что объем любого
тела, ограниченного кусочно-гладкой поверхностью P , вычис-
ляется с помощью такого же поверхностного интеграла, как в
рассмотренном примере:

V =
1

3

∫ ∫

P

x dydz + y dzdx+ z dxdy.
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§ 4. Формула Остроградского–Гаусса

Пусть функции z1(x, y) и z2(x, y) определены и непрерыв-
ны в ограниченной связной замкнутой области D, причем
z1(x, y) � z2(x, y), (x, y) ∈ D.

Область G = {(x, y, z) : (x, y) ∈ D, z1(x, y) � z � z2(x, y)} на-
зовем «z-цилиндрической» (рис. 14.14). Аналогично определяют-
ся «x-цилиндрическая» и «y-цилиндрическая» области.

Рис. 14.14.

Область G назовем
простой, если ее можно
разбить на конечное число
«x-цилиндрических» обла-
стей, и также на конечное
число «y-цилиндрических»
областей, и на конечное
число «z-цилиндрических»
областей.
Пример: параллелепипед и
шар — простые области.

Границу области G, то
есть ограничивающую ее по-
верхность, будем обозначать
буквой P .
Теорема 3. Пусть функции P (x, y, z), Q(x, y, z), R(x, y, z) и их

частные производные
∂P

∂x
,
∂Q

∂y
,
∂R

∂z
непрерывны в простой об-

ласти G, ограниченной кусочно-гладкой поверхностью P . Тогда
справедливо равенство

∫ ∫ ∫

G

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz =

=

∫ ∫

P

(P cosα+Q cosβ +R cos γ) ds =

=

∫ ∫

P

P dydz +Qdzdx+Rdxdy,

(14.13)

где поверхностный интеграл второго рода берется по внешней
стороне поверхности P (то есть α, β, γ — углы между внешней
нормалью к поверхности P и осями координат).

Формула (14.13) называется формулой Остроградского–
Гаусса. Она была получена М.В. Остроградским в 1827 г. в связи
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с рассмотрением задачи о распространении тепла в твердом
теле. Гаусс получил эту формулу ранее в частном случае, когда
P = x, Q = y, R = z.

Доказательство. a) Рассмотрим сначала случай, когда G —
«z-цилиндрическая» область, и докажем справедливость равен-
ства

∫ ∫ ∫

G

∂R

∂z
(x, y, z) dxdydz =

∫ ∫

P

R(x, y, z) cos γ ds. (14.14)

Сводя тройной интеграл к повторному, получаем:

∫ ∫ ∫

G

∂R

∂z
(x, y, z) dxdydz =

∫ ∫

D

dxdy

z2(x,y)∫

z1(x,y)

∂R

∂z
dz =

=

∫ ∫

D

dxdy · R(x, y, z)
∣∣∣z2(x,y)
z1(x,y)

=

=

∫ ∫

D

R(x, y, z2(x, y)) dxdy −
∫ ∫

D

R(x, y, z1(x, y)) dxdy.

(14.15)

Первый из двойных интегралов в правой части (14.15) выразим
через поверхностный интеграл по верхней стороне поверхности
P2 (z = z2(x, y)), а второй — через поверхностный интеграл
по нижней стороне поверхности P1 (z = z1(x, y)) (см. формулу
(14.11)):

∫ ∫

D

R(x, y, z2(x, y)) dxdy =

∫ ∫

P2

R(x, y, z) cos γ ds,

∫ ∫

D

R(x, y, z1(x, y)) dxdy = −
∫ ∫

P1

R(x, y, z) cos γ ds.

Обозначим через P3 боковую (цилиндрическую) поверхность об-
ласти G. Так как в точках этой поверхности �n ⊥ Oz, то cos γ = 0,
и поэтому ∫ ∫

P3

R(x, y, z) cos γ ds = 0.
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Равенство (14.15) можно теперь записать в виде

∫ ∫ ∫

G

∂R

∂z
dxdydz =

∫ ∫

P2

R cos γ ds+

∫ ∫

P1

R cos γ ds+

∫ ∫

P3

R cos γ ds =

=

∫ ∫

P

R cos γ ds,

где поверхностный интеграл берется по внешней стороне по-
верхности P . Тем самым, справедливость равенства (14.14) для
«z-цилиндрической» области доказана.

б) Пусть теперь G — простая область. Разобъем ее на ко-
нечное число «z-цилиндрических» областей Gi с границами Pi
(i = 1, 2, 3, ..., n). Запишем для каждой области Gi равенство
(14.14): ∫ ∫ ∫

Gi

∂R

∂z
dxdydz =

∫ ∫

Pi

R(x, y, z) cos γ ds.

Суммируя эти равенства по i от 1 до n, получим в левой

части интеграл

∫ ∫ ∫

G

∂R

∂z
dxdydz, а в правой части интеграл

∫ ∫
P

R(x, y, z) cos γ dxdy, поскольку поверхностные интегралы по

вспомогательным поверхностям, разделяющим область G на ча-
сти Gi, берутся дважды, причем один раз по одной стороне
каждой такой поверхности, а другой раз — по другой стороне
(рис. 14.15), и поэтому сумма двух таких интегралов равна нулю.

Итак, для простой области G справедливо равенство

∫ ∫ ∫

G

∂R

∂z
dxdydz =

∫ ∫

P

R(x, y, z) cos γ ds.

Аналогично выводятся равенства (путем разбиения области G на
«x-цилиндрические», а затем на «y-цилиндрические» области):

∫ ∫ ∫

G

∂P

∂x
dxdydz =

∫ ∫

P

P (x, y, z) cosαds, (14.16)

∫ ∫ ∫

G

∂Q

∂y
dxdydz =

∫ ∫

P

Q(x, y, z) cosβ ds. (14.17)
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Складывая (14.14), (14.16) и (14.17), приходим к равенству
(14.13):

∫ ∫ ∫

G

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz =

∫ ∫

P

(P cosα+Q cosβ +R cos γ) ds.

Теорема 3 доказана.

Рис. 14.15.

Замечания. 1) Введем вектор-функцию �a =
= {P ,Q,R} и скалярную функцию, кото-
рая называется дивергенцией векторного по-

ля �a: div�a =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
. Тогда формулу

Остроградского–Гаусса можно записать в виде

∫ ∫ ∫

G

div�a dxdydz =

∫ ∫

P

(�a · �n) ds.

2) Можно доказать, что формула
Остроградского–Гаусса верна для любой области

G, граница которой состоит из конечного числа кусочно-гладких
поверхностей.

Следствие. Если функции P , Q, R таковы, что

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= 1,

то из формулы Остроградского-Гаусса получим выражение для
объема области G через поверхностный интеграл:

V (G) =

∫ ∫ ∫

G

dxdydz =

∫ ∫

P

(P cosα+Q cosβ +R cos γ) ds.

В частности, если P =
1

3
x, Q =

1

3
y, R =

1

3
z, то

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
=

= 1, и для объема V (G) получается формула:

V (G) =
1

3

∫ ∫

P

(x cosα+ y cosβ + z cos γ) ds =

=
1

3

∫ ∫

P

x dydz + y dzdx+ z dxdy,
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где поверхностный интеграл берется по внешней стороне поверх-
ности P . Эту формулу можно записать в виде

V (G) =
1

3

∫ ∫

P

(�r · �n) ds, где �r = {x, y, z}.

Пример. Вычислить

I =

∫ ∫

P

(
x2 + f1(y, z)

)
dydz + (cos y + f2(x, z)) dzdx+

+(z + f3(x, y)) dxdy,

где P — внешняя сторона сферы x2 + y2 + z2 = R2. Здесь
P = x2 + f1(y, z), Q = cos y + f2(x, z), R = z + f3(x, y), поэтому
∂P

∂x
= 2x,

∂Q

∂y
= − sin y,

∂R

∂z
= 1. По формуле Остроградского–

Гаусса

I =

∫ ∫ ∫

G

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz =

=

∫ ∫ ∫

G

(2x− sin y + 1) dxdydz =
4

3
πR3.

§ 5. Формула Стокса

Пусть P — двусторонняя поверхность, ограниченная конту-
ром L. Выберем одну из сторон поверхности, то есть ориентируем
поверхность. Введем положительное направление обхода кон-
тура L, соответствующее ориентации поверхности, следую-
щим образом: если наблюдатель находится на выбранной стороне
поверхности (то есть направление от ног к голове совпадает с
направлением вектора нормали), то при обходе контура в поло-
жительном направлении он оставляет поверхность слева от себя
(рис. 14.16).

Если граница поверхности состоит из нескольких контуров,
то для каждого из них положительное направление обхода опре-
деляется таким же образом (рис. 14.17). Выбор положительного
направления обхода контура называется также согласованием
ориентации контура с ориентацией поверхности.

Определение. Назовем поверхность P «xyz-проектируемой»,
если она взаимно однозначно проектируется на каждую
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Рис. 14.16. Рис. 14.17.

координатную плоскость прямоугольной системы координат
Oxyz.

Такую поверхность можно задать любым из трех уравнений
вида:

z = f1(x, y), (x, y) ∈ D1;
x = f2(y, z), (y, z) ∈ D2;
y = f3(z,x), (z,x) ∈ D3.

(14.18)

Рис. 14.18.

Простейшим примером такой
поверхности является плоский тре-
угольник ABC, изображенный на
рисунке 14.18. В дальнейшем под
гладкой «xyz-проектируемой» по-
верхностью будем понимать такую
поверхность P , которая удовлетво-
ряет следующим условиям:

функции f1, f2 и f3 из урав-
нений (14.18) имеют непрерывные
частные производные первого по-
рядка в замкнутых ограниченных
областях D1, D2 и D3, а границей

поверхности P является замкнутый кусочно-гладкий контур, вза-
имно однозначно проектирующийся на границу каждой области
Di (i = 1, 2, 3).

Теорема 4. Пусть
1) функции P (x, y, z), Q(x, y, z), R(x, y, z) и их частные произ-
водные первого порядка непрерывны в области G;
2) гладкая «xyz-проектируемая» поверхность P , ограниченная
контуром L, расположена внутри области G.
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Тогда справедливо равенство

∮

L

Pdx+Qdy +Rdz =

∫ ∫

P

[(
∂Q

∂x
− ∂P

∂y

)
cos γ+

+
(
∂R

∂y
− ∂Q

∂z

)
cosα+

(
∂P

∂z
− ∂R

∂x

)
cosβ

]
ds,

(14.19)

где α, β, γ — углы между вектором нормали на выбранной сто-
роне поверхности P и осями Ox, Oy, Oz, а ориентация контура
L согласована с ориентацией поверхности P .

Рис. 14.19.

Формула (14.19) называется
формулой Стокса. Она выража-
ет криволинейный интеграл по за-
мкнутому контуру L через по-
верхностный интеграл второго ро-
да по поверхности P , ограничен-
ной контуром L.

Доказательство. Запишем
уравнение поверхности P в виде

z = f(x, y), (x, y) ∈ D,

где D — проекция поверхности P
на плоскость Oxy.

Обозначим буквой l проекцию контура L на плоскость Oxy.
Контур l является границей области D (рис. 14.19).

Рассмотрим криволинейный интеграл
∮
L

P (x, y, z) dx. Преоб-

разуем его в интеграл по поверхности P по следующей схеме:

∮

L

(1)−→
∮

l

(2)−→
∫ ∫

D

(3)−→
∫ ∫

P

.

Для определенности будем рассматривать верхнюю сторону
поверхности P . При этом контур L пробегается в соответствую-
щем положительном направлении (см. рис. 14.19).

(1) Пусть параметрические уравнения контура l имеют вид

x = ϕ(t), y = ψ(t), α � t � β,

и контур l пробегается в положительном направлении при воз-
растании t от α до β.

7 В.Ф. Бутузов
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Тогда параметрические уравнения контура L можно записать
в виде

x = ϕ(t), y = ψ(t), z = f(ϕ(t),ψ(t)), α � t � β.

Поэтому

∮

L

P (x, y, z) dx =

β∫
α

P (ϕ(t),ψ(t), f(ϕ(t),ψ(t)))ϕ′(t) dt,

∮

l

P (x, y, f(x, y)) dx =

β∫
α

P (ϕ(t),ψ(t), f(ϕ(t),ψ(t)))ϕ′(t) dt,

откуда следует равенство

∮

L

P (x, y, z) dx =

∮

l

P (x, y, f(x, y)) dx.

(2) Согласно формуле Грина

∮

l

Pdx+Qdy =

∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy

справедливо равенство

∮

l

P (x, y, f(x, y)) dx = −
∫ ∫

D

∂

∂y
P (x, y, f(x, y)) dxdy =

= −
∫ ∫

D

(
∂P

∂y
+
∂P

∂z
· ∂f
∂y

)
dxdy.

(3) Вектор −→n =
{
−∂f

∂x
,−∂f

∂y
, 1
}

является вектором норма-

ли на верхней стороне поверхности P , поэтому его координа-
ты пропорциональны координатам единичного вектора нормали
{cosα, cosβ, cos γ}, в частности

−∂f

∂y

cosβ
=

1

cos γ
, откуда

∂f

∂y
= −cos β

cos γ
.
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Следовательно,

−
∫ ∫

D

(
∂P

∂y
+
∂P

∂z
· ∂f
∂y

)
dxdy =

=

∫ ∫

D

(
∂P

∂z
cosβ − ∂P

∂y
cos γ

)
1

cos γ
dxdy =

=

∫ ∫

D

(
∂P

∂z
cosβ − ∂P

∂y
cos γ

)√
1+ f2x + f2y dxdy =

=

∫ ∫

P

(
∂P

∂z
cosβ − ∂P

∂y
cos γ

)
ds (см. формулу (14.6)).

Итак, ∮

L

Pdx =

∫ ∫

P

(
∂P

∂z
cosβ − ∂P

∂y
cos γ

)
ds. (14.20)

Аналогично можно доказать, что∮

L

Qdy =

∫ ∫

P

(
∂Q

∂x
cos γ − ∂Q

∂z
cosα

)
ds, (14.21)

∮

L

Rdz =

∫ ∫

P

(
∂R

∂y
cosα− ∂R

∂x
cosβ

)
ds. (14.22)

Складывая равенства (14.20), (14.21) и (14.22), приходим к ра-
венству (14.19). Теорема 4 доказана.

Замечания. 1) Введем вектор-функцию −→a = {P ,Q,R} и
вектор-функцию, которая называется ротором векторного поля−→a (M):

rot−→a =

∣∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣ =
=

(
∂R

∂y
− ∂Q

∂z

)−→
i +

(
∂P

∂z
− ∂R

∂x

)−→
j +

(
∂Q

∂x
− ∂P

∂y

)−→
k .

Тогда формулу Стокса можно записать в виде∮

L

(−→a · d−→l
)
=

∫ ∫

P

(rot−→a · −→n ) ds.

7*
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Эта формула читается так: циркуляция векторного поля −→a (M)
вдоль замкнутого контура L равна потоку векторного поля
rot−→a (M) через поверхность, натянутую на контур L.

2) Если поверхность P не является «xyz-проектируемой»,
но допускает разбиение на конечное число «xyz-проектируемых»
поверхностей, то формула Стокса остается в силе.

Примером такой поверхности является полусфера, располо-
женная в полупространстве z � 0 (рис. 14.20). Ее можно разбить
на 4 «xyz-проектируемые» части.

Рис. 14.20.

3) Если поверхность P представ-
ляет собой плоскую область, располо-
женную в плоскости, перпендикулярной
к оси координат, то она не являет-
ся «xyz-проектируемой». Однако, формула
Стокса верна и в этом случае. Более того,
для такой поверхности формула Стокса пе-
реходит в формулу Грина. Пусть, например,
плоская поверхность P перпендикулярна к
оси Oz. Тогда cosα = cosβ = 0, cos γ = 1,∮

L

Rdz = 0 и из формулы Стокса получаем:

∮

L

Pdx+Qdy =

∫ ∫

P

(
∂Q

∂x
− ∂P

∂y

)
dxdy (формула Грина).

4) Формула Стокса остается в силе, если граница поверхно-
сти P состоит из нескольких замкнутых контуров. При этом в
левой части формулы нужно написать сумму криволинейных ин-
тегралов по всем этим контурам, пробегаемым в положительном
направлении.

5) Для запоминания формулы Стокса полезно заметить, что
первое слагаемое под знаком интеграла в правой части формулы
(14.19) является произведением подинтегральной функции из
правой части формулы Грина на cos γ, а два следующих слагае-
мых получаются из первого циклической перестановкой:

P → Q
↖ ↙

R
;
x → y
↖ ↙

z
;
α → β
↖ ↙

γ
.



6. Независимость криволинейного интеграла второго рода от пути... 197

§ 6. Условия независимости криволинейного
интеграла второго рода от пути интегрирования в

пространстве

Пусть G — область в пространстве R
3, то есть открытое

связное множество. Будем называть область G поверхностно
односвязной, если для любого замкнутого контура L, лежащего
в области G, существует поверхность, ограниченная контуром L
и целиком лежащая в области G.

Примеры. Шар, параллелепипед, область между двумя кон-
центрическими сферами — поверхностно односвязные области;
тор не является поверхностно односвязной областью.

Теорема 5. I. Пусть функции P (x, y, z), Q(x, y, z), R(x, y, z)
определены и непрерывны в области G. Тогда следующие три
условия эквивалентны:

1. Для любого замкнутого кусочно-гладкого контура L, рас-
положенного в области G, справедливо равенство

∮

L

Pdx+Qdy +Rdz = 0.

2. Для любых двух точек A и B области G криволинейный
интеграл

∫
AB

Pdx+Qdy +Rdz не зависит от пути интегри-

рования, расположенного в области G.
3. Выражение P (x, y, z)dx+Q(x, y, z)dy+R(x, y, z)dz являет-

ся полным дифференциалом, то есть в области G существу-
ет функция u = u(x, y, z), такая, что

du = Pdx+Qdy +Rdz.

При этом для любой кусочно-гладкой кривой AB, лежащей
в области G, имеет место равенство

∫

AB

Pdx+Qdy +Rdz = u(B)− u(A).

II. Если область G — поверхностно односвязная, а функции
P , Q, R имеют в области G непрерывные частные производные
первого порядка, то каждое из условий 1–3 эквивалентно усло-
вию

4.
∂P

∂y
=
∂Q

∂x
,
∂Q

∂z
=
∂R

∂y
,
∂R

∂x
=
∂P

∂z
во всех точках области G.
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Если ввести вектор-функцию −→a = {P ,Q,R}, то условие 4

можно записать в виде rot−→a =
−→
0 .

Доказательства утверждений I и II проводятся по той же схе-
ме, что и в аналогичной теореме для криволинейных интегралов
на плоскости:

1 → 2 → 3 → 1 и 3 → 4 → 1.

Отличие состоит лишь в том, что при доказательстве утвер-
ждения 4 → 1 нужно воспользоваться не формулой Грина, а
формулой Стокса.

Замечание. Функция u(x, y, z) из условия 3 может быть най-
дена по формуле

u(x, y, z) =

(x,y,z)∫

(x0,y0,z0)

Pdx+Qdy +Rdz =

=

x∫
x0

P (x, y0, z0) dx+

y∫
y0

Q(x, y, z0) dy +

z∫
z0

R(x, y, z) dz + C,

где (x0, y0, z0) — какая-нибудь фиксированная точка, C — произ-
вольная постоянная, а в качестве кривой интегрирования взята
ломаная, отрезки которой параллельны осям координат.
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