
МЕХАНИКА • СЛЕПКОВ АЛЕКСАНДР ИВАНОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ  
ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ.  
СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

ЛИНЕЙНАЯ
АЛГЕБРА

ШИШКИН 
АЛЕКСАНДР АЛЕКСАНДРОВИЧ

ФИЗФАК МГУ

ФИЗИЧЕСКИЙ 
ФАКУЛЬТЕТ  
МГУ ИМЕНИ 

М.В. ЛОМОНОСОВА



Содержание

Гл. 1. Основные понятия. 3
§1. Что такое линейная алгебра? . . . . . . . . . . . . . . . . . . . . . . 3
§2. Числовые поля. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
§3. Линейная зависимость столбцов и строк. . . . . . . . . . . . . . . . 4
§4. Ранг матрицы. Теорема о базисном миноре. . . . . . . . . . . . . . 6

Гл. 2. Линейные пространства. 10
§1. Определение линейного пространства . . . . . . . . . . . . . . . . . 10
§2. Некоторые простейшие свойства линейных пространств. . . . . . . 12
§3. Линейная зависимость элементов линейного пространства. . . . . 13
§4. Базис и координаты элементов линейного пространства. . . . . . . 15
§5. Размерность линейного пространства. . . . . . . . . . . . . . . . . . 16
§6. Преобразование базиса и координат элементов линейного про-
странства. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
§7. Подпространства линейного пространства. . . . . . . . . . . . . . . 18
§8. Линейные оболочки. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
§9. Ранг матрицы и размерность линейной оболочки ее столбцов. Вы-
числение ранга матрицы. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
§10. Изоморфизм линейных пространств. . . . . . . . . . . . . . . . . . 23

Гл. 3. Система линейных уравнений. 25
§1. Критерий совместности общей линейной системы уравнений. . . . 25
§2. Однородные линейные системы уравнений. . . . . . . . . . . . . . . 25
§3. Общее решение неоднородной линейной системы уравнений. . . . 27

Гл. 4. Евклидово пространство. 29
§1. Определение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
§2. Основные метрические понятия в евклидовом пространстве. Нера-
венство Коши-Буняковского. . . . . . . . . . . . . . . . . . . . . . . . . 30
§3. Ортогональность элементов в евклидовом пространстве.
Ортонормированный базис в евклидовом пространстве. . . . . . . . . . 31
§4. Разложение евклидова пространства на прямую сумму его подпро-
странств. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
§5. Ортогональная матрица. . . . . . . . . . . . . . . . . . . . . . . . . 36
§6. Общий вид линейного функционала. . . . . . . . . . . . . . . . . . 38
§7. Изоморфизм евклидовых пространств. . . . . . . . . . . . . . . . . 38

Гл. 5. Линейные операторы в линейном конечномерном пространстве. 40
§1. Основные понятия. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
§2. Матрица линейного оператора. . . . . . . . . . . . . . . . . . . . . . 40
§3. Связь матриц оператора при переходе от одного базиса к другому. 42
§4. Действия над линейными операторами и соответствующие дей-
ствия над матрицами. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
§5. Собственные значения и собственные векторы линейных операторов. 45
§6. Симметричный (самосопряженный) линейный оператор в конечно-
мерном евклидовом пространстве. . . . . . . . . . . . . . . . . . . . . . 52

1



Гл. 6. Квадратичные формы. 57
§1. Общие понятия. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
§2. Изменение квадратичной формы при линейном преобразовании пе-
ременных. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
§3. Матод Лагранжа приведения квадратичной формы к каноническо-
му виду. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
§4. Приведение квадратичной формы ортогональным преобразованием
к каноническому виду. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
§5. Билинейные формы. Их связь с квадратичными формами. . . . . . 63
§6. Метод Якоби приведения квадратичной формы к каноническому
виду. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
§7. Закон инерции квадратичной формы. . . . . . . . . . . . . . . . . . 67
§8. Классификация квадратичных форм. . . . . . . . . . . . . . . . . . 68
§9. Численные методы решения систем линейных уравнений. . . . . . 70

п. 1. Итерационный метод Гаусса-Зейделя. . . . . . . . . . . . . 70
п. 2. Метод Зейделя. . . . . . . . . . . . . . . . . . . . . . . . . 70
п. 3. Метод исключения (Гаусса). . . . . . . . . . . . . . . . . . 71

Литература. 73

Заключение. 74

2



Гл. 1. Основные понятия.

§1. Что такое линейная алгебра?

Вы уже знакомы с элементарной алгеброй чисел, с векторной алгеброй и алгеб-
рой матриц. А теперь приступаем к изучению линейной алгебры. Что такое алгебра?
Алгебра — раздел математики, исследующий операции, аналогичные сложению, вы-
читанию, умножению и делению, и выполняемые не только над числами, но и над
другими математическими объектами, например, многочленами, векторами, матрица-
ми, операторами и т. д., т. е. над объектами самой различной природы. Современную
алгебру математики рассматривают как учение об операциях над любыми матема-
тическими объектами самой различной природы, как учение, формирующее общие
понятия и методы для всей математики. В центре внимания алгебры оказывают-
ся свойства операций, а не объекты, над которыми производятся операции. Одним
из разделов алгебры является линейная алгебра. Какими проблемами занимается
линейная алгебра?

В школе вы складывали действительные числа по одному правилу, а вектора —
по другому правилу. В алгебре матриц матрицы складываются по третьему прави-
лу. На первый взгляд кроме общего названия в этих трех операциях нет ничего
общего. Но если мы рассмотрим внимательнее операцию сложения в применении к
различным типам объектов, то увидим, что эти операции обладают многими общими
свойствами. Например,
для любых действительных чисел a, b: a + b = b + a;
для любых матриц A, B ∈ Am

n : A + B = B + A;
для любых векторов ~a,~b : ~a + ~b = ~b + ~a, т. е. выполняется переместительное свой-
ство. Можно привести и другие примеры общих свойств этой операции. Разглядеть
эти общие свойства операции нам порою мешает конкретная природа объектов рас-
сматриваемых совокупностей. Соблазнительно и следующее соображение: знание
общих свойств операции позволит избавить от нудных и однообразных повторений
при переходе от исследования одной совокупности к другой. Выход — рассмотреть
совокупность объектов лишенных конкретной природы. Изучить на них свойства
операций. А затем применять уже готовые результаты у объектам любой, но уже
конкретной природы. Хотим — к числам, хотим — векторам, а можно и к матрицам
и т. д., ибо различных алгебр (помимо трех выше перечисленных) в приложениях
сколько угодно много. Вот прежде всего чем занимается линейная алгебра.

Итак, линейная алгебра является наиболее широко используемым аппаратом для
всех разделов чистой и прикладной математики — от теории алгебраических чисел
до квантовой механики. Логическая структура линейной алгебры проста и основы-
вается на небольшом числе удобных в обращении понятий и аксиом. Тем не менее и
сегодня линейная алгебра, вследствие абстрактного характера ее основных понятий,
сохраняет за собой репутацию сложной науки. Ее изучение потребует от вас гораздо
больше усилий, чем аналитическая геометрия и даже математический анализ.

§2. Числовые поля.

Главными объектами изучения далее будут матрицы, линейные пространства и
многочлены от нескольких переменных. В определении каждого из них участвует
некоторое множество чисел, которое обозначим символом K. Выбор K зависит от
решаемой задачи и научной дисциплины. Например, с алгебраической точки зрения
результаты получают наиболее законченную форму, если в качестве K выбрать мно-
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жество всех комплексных чисел. Напротив - в геометрии и механике обычно рассмат-
риваются действительные числа, а в теории чисел в качестве K естественно брать
множество рациональных чисел и даже множество лишь целых чисел. Поэтому, что-
бы сделать результаты применимыми к более широкому кругу задач, целесообразно
заранее не фиксировать, какое именно индивидуальное множество понимается под
K. Так поступим и мы, но исключим из рассмотрения комплексные числа, хотя
все последующие построения справедливы и для K, содержащего комплексные чис-
ла. Это ограничение делается исключительно с целью сократить объем излагаемого
материала. Таким образом, в нашем курсе будут рассматриваться различные множе-
ства действительных чисел, над которыми совершаются четыре операции, именуемые
сложением, вычитанием, умножением, и делением, понимаемые всюду далее в смыс-
ле элементарной алгебры, т. е. алгебры, которую вы изучали в школе. При этом
в четвертой операции делитель всегда берется отличным от нуля. Это требование
будем считать выполненным всюду ниже. Пусть K0 — множество всех действитель-
ных чисел, а поскольку далее будут использоваться только действительные числа,
то договоримся их называть просто числами. Перечисленные выше четыре опера-
ции на множестве K0 обладают следующими свойствами: 1) выполнимость операций
для любых чисел из K0, 2) однозначность операций, 3) принадлежность результата
выполнения операции к числам того же множества K0.

Далеко не все известные вам операции обладают совокупностью таких свойств.
Например, выполнимо вычисление логарифма не на всем множестве K0, а только
для положительных чисел. Извлечение квадратного корня выполнимо на множестве
положительных чисел, но неоднозначно. Однако даже если операция однозначно
выполнима для всех чисел из рассматриваемого множества, результат ее выполнения
может не быть числом заданного множества. Так операция деления на множестве
целых чисел однозначно выполнима для любых двух чисел из этого множества, но
результат ее выполнения не обязательно будет целым числом. Итак, мы пришли к
очень важному в дальнейшем понятию.

О п р е д е л е н и е. Операция называется корректной относительно некото-
рого множества B чисел, если всякой паре чисел из B эта операция ставит в
соответствие однозначно определенное число из того же множества B.

Например, операция сложения корректна относительно множества N натураль-
ных чисел, так как сумма любых двух натуральных чисел есть натуральное число.
Но эта же операция не является корректной относительно множества T всех нечет-
ных чисел, ибо сумма любых двух нечетных чисел — четное число, т. е. результат
операции сложения не принадлежит множеству T . Операция умножения коррект-
на относительно множеств N и T , а операции вычитания и деления не являются
корректными относительно этих множеств.

О п р е д е л е н и е. Числовым полем K называется такое множество K чисел,
на котором корректны все все четыре операции.

Иными словами, числовое поле K есть такое множество K чисел, на котором
операции сложения, вычитания, умножения и деления однозначно выполнимы и
∀x, y ∈ K a) x + y ∈ K, б) x− y ∈ K, в) x · y ∈ K, г) x/y ∈ K(y 6= 0).

Очевидно, что множество целых чисел не является числовым полем. А множество
всех рациональных чисел и множество K являются числовыми полями.

§3. Линейная зависимость столбцов и строк.

О п р е д е л е н и е. Произвольная система чисел ap
k из поля K, расположенная

в виде прямоугольной таблицы, содержащей m строк и n столбцов, называется
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m × n-матрицей или матрицей размеров m × n и обозначается одним из следу-
ющих символов: 

a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
... . . . ...

am
1 am

2 . . . am
n

 = ||ap
k||mn = A.

З а м е ч а н и е. Иногда далее нам будет удобнее вместо верхнего и нижнего ин-
дексов использовать только нижние. Договоримся о правиле соответствия этих двух
записей:

1-я запись 2-я запись
верхний индекс первый индекс
нижний индекс второй индекс

т. е. ||ap
k||mn = ||apk||m,n.

Как и в курсе аналитической геометрии будем пользоваться правилом сокращен-
ного суммирования: всякий раз, когда в каком-либо выражении встречаются два
одинаковых индекса, верхний и нижний, то по этому индексу будет предполагаться
суммирование, т. е. запись akxk, k = s, n, (или, что то же самое, xka

k) означает

n∑
k=s

akxk.

Ограничимся рассмотрением матриц-столбцов, ибо все, что будет верно для столб-
цов, останется верным и для строк. Операции сложения столбцов и операция умно-
жения столбца на число введены нами в гл. 4 (Алгебра матриц) курса аналитической
геометрии.

О п р е д е л е н и е. Будем говорить, что один из столбцов Ak = ||ap
k||n, k =

1, m, например, Am представляет собой линейную комбинацию остальных столб-
цов, если найдутся такие числа x1, x2, . . . , xm−1 из поля K, что

Am = Akx
k, k = 1, m− 1. (1)

О п р е д е л е н и е. Столбцы A1, A2, . . . , Am называются линейно зависимыми,
если найдутся такие числа c1, c2, . . . , cm из поля K, не все равные нулю, что

Akc
k = θ. (2)

Теорема 1 Для того чтобы столбцы A1, A2, . . . , Am были линейно зависимы необ-
ходимо и достаточно, чтобы один из этих столбцов представлял собой линей-
ную комбинацию остальных.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть столбцы линейно зависи-
мы, т. е. найдутся такие числа c1, c2, . . . , cm, не все равные нулю, что имеет место
(2). Ради определенности предположим, что cm 6= 0. Тогда, умножив равенство (2)
на −1/cm и введя обозначение xk = −ck/cm, получим:

xkAk − Am = θ. (3)
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Прибавим к обеим частям равенства (3) столбец Am. Так как Am + θ = Am, а
Am + (−1)Am = θ, то приходим к равенству (1), т. е. столбец Am является линейной
комбинацией остальных столбцов.

Д о с т а т о ч н о с т ь. Пусть один из столбцов, например, Am есть линейная ком-
бинация остальных столбцов, т. е. имеем равенство (1), которое равносильно равен-
ству (3). Поскольку из чисел x1, x2, . . . , xm−1,−1 одно заведомо не равно нулю, то
равенство (3) говорит о линейной зависимости рассматриваемых столбцов. Теорема
доказана.

Равенство (2) можно записать в матричной форме, если через e обозначить
матрицу-строку, состоящую из столбцов A1, A2, . . . , Am, т. е. e = ||Ak||m, а через
C = ||ck||m — матрицу-столбец, состоящую из чисел c1, c2, . . . , cm. Тогда Akc

k = eC.
Следовательно, формула (2) примет вид:

eC = θ (4)

О п р е д е л е н и е. Столбцы A1, A2, . . . , Am называются линейно независимы-
ми, если равенство (4) выполняется тогда и только тогда, когда C = θ, т. е.
нулевой столбец.

Теорема 2 Если столбцы A1, A2, . . . , Am линейно независимы и имеет место ра-
венство eB = eC, то B = C.

Д о к а з а т е л ь с т в о. Из свойства 3
o
операции сложения матриц из eB = eC

следует, что eB − eC = θ. Из свойства 2
o
умножения матриц следует: e(B − C) = θ.

По определению линейной независимости это равенство имеет место тогда и только
тогда, когда B − C = θ, т. е. B = C. Что и требовалось доказать.

§4. Ранг матрицы. Теорема о базисном миноре.

Пусть дана матрица A = ||ap
k||mn . Фиксируем в ней некоторое число r столбцов

и такое же число строк. Элементы, стоящие на пересечении выделенных столбцов
и строк образуют матрицу r-порядка. Ее определитель называется минором r-го по-
рядка матрицы A. Заметим, что минор элемента определителя матрицы A — частный
случай минора r-го порядка этой матрицы, а именно: 1) матрица A — квадратная, 2)
r = n− 1.

О п р е д е л е н и е. Рангом матрицы A называется натуральное число r, если
у матрицы A есть минор r-го порядка, отличный от нуля, а все миноры r + 1-го
порядка равны нулю, и обозначается символом rang A. Минор r-го порядка, нерав-
ный нулю, называется базисным минором матрицы A и обозначается символом
Mb.

З а м е ч а н и е 1. Если у матрицы A хотя бы один элемент ap
k 6= 0, то заведомо

rang A ≥ 1. Если все ap
k = 0, то считается, что rang A = 0.

З а м е ч а н и е 2. Если у n×n-матрицы A отличен от нуля минор порядка n, т. е.
det A 6= 0, то его назовем базисным минором, а рангом — число n, хотя у матрицы
A нет минора n + 1-го порядка.

З а м е ч а н и е 3. У матрицы A может быть несколько базисных миноров, но все
они имеют один и тот же порядок r = rang A.

П р и м е р. Матрица A = ||apbk||nn имеет ранг, равный единице, так как все мино-
ры порядка ≥ 2 равны нулю (если найдутся такие p и k, для которых apbk 6= 0).

О п р е д е л е н и е. Столбцы (строки) матрицы A, на пересечении которых
находятся элементы базисного минора, называются базисными столбцами (стро-
ками).
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Теорема 3 (О базисном миноре) Базисные столбцы матрицы A линейно незави-
симы. Любой столбец матрицы A представляет собой линейную комбинацию ее
базисных столбцов, причем такое представление единственно.

Д о к а з а т е л ь с т в о. 1) Докажем вначале линейную независимость базисных
столбцов. Рассмотрим базисный минор матрицы A. Положим, для определенности,
что базисный минор расположен в первых r строках и в первых r столбцах матрицы
A, т. е. Mb = det||ap

k||rr 6= 0. Такое предположение не является ограничением, ибо, ес-
ли бы это было не так, то, переставляя строки и столбцы, всегда можно расположить
базисные строки и столбцы в первых r строках и столбцах, а затем перенумеровать
строки и столбцы. Докажем 1) методом от противного, т. е. положим, что базисные
столбцы линейно зависимы. Тогда, согласно теореме 1, один из базисных столбцов,
например, r-ый представляет собой линейную комбинацию остальных. Вычитая эту
линейную комбинацию из элементов r-го столбца, мы, согласно свойству 7, не из-
меним величину определителя Mb, но в результате r-ый столбец будет состоять из
нулей. По свойству 6 этот определитель равен нулю, т. е. Mb = 0. Полученное про-
тиворечие доказывает первую часть теоремы.
2) Пусть e — любое парное число от 1 по n, а k — любое целое число от 1 до m.
Рассмотрим определитель (r + 1) - го порядка:

D =

∣∣∣∣∣∣∣∣∣
a1

1 a1
2 . . . a1

r a1
e

. . . . . . . . . . . . . . .
ar

1 ar
2 . . . ar

r ar
e

ak
1 ak

2 . . . ak
r ak

e

∣∣∣∣∣∣∣∣∣
Могут представиться три случая:
а) e ≤ r, тогда D = 0, ибо определитель имеет два одинаковых столбца;
б) k ≤ r: D = 0, ибо определитель имеет две одинаковых строки;
в) e > r, k > r : D = 0, ибо D — минор (r + 1) - го порядка.
Итак, D = 0 при любых значениях k, e. Разложим определитель D по элементам
последней строки (формула 5∗∗):

r∑
p=1

ak
pA

k
p + ak

eA
k
e = 0.

Заметим, что, во-первых, алгебраические дополнения эдементов k - ой строки совсем
не зависят от элементов этой строки, что следует из определения алгебраического
дополнения, т. е. Ak

1, A
k
2, . . . , A

k
r , A

k
e одни и те же для всех k = 1, m, и, во-вторых,

Ak
e 6= 0, так как Ak

e = Mb. Поделим последнее равенство на Ak
e и перенесем все

слагаемые, кроме последнего, в правую часть. Вводя обозначение cp = −Ak
p/A

k
e ,

p = 1, r, получим: ak
e = ak

pc
p, где p = 1, r, k = 1, m, или в матричной форме:

||ak
e ||m = ||ak

p||mcp,

где p = 1, r, т. е. любой e - ый столбец является линейной комбинацией базис-
ных столбцов. Осталось показать что это представление единственно. Предположим
противное: есть еще одно представление e - го столбца — ||ak

e ||m = ||ak
p||mbp, где

p = 1, r. Вычтем из первого представления второе: θ = ||ak
p||m(cp − bp). Но ||ak

p||m,
p = 1, r — базисные столбцы и, следовательно, линейно независимы. Поэтому по-
следнее равенство возможно тогда и только тогда, когда cp − bp = 0. т. е. cp = bp,
p = 1, r. Полученное противоречие доказывает единственность разложения. Теорема
доказана.
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С л е д с т в и е 1. Для того, чтобы определитель D n-го порядка равнялся
нулю необходимо и достаточно, чтобы между его столбцами (строками) суще-
ствовала линейная зависимость.

Н е о б х о д и м о с т ь. Дано: D = 0. Требуется доказать: его столбцы линейно
зависимы. Так как D = 0, то базисный минор матрицы определителя D имеет поря-
док r < n. Поэтому после выделения r базисных столбцов найдется еще по крайней
мере один столбец, не попавший в число базисных. По теореме 3 такой столбец
представляет собой некоторую линейную комбинацию базисных столбцов. В состав
этой комбинации можно включить и все оставшиеся столбцы определителя D, поста-
вив перед ними, например, нулевые коэффициенты. Но тогда по теореме 1 столбцы
определителя D являются линейно зависимыми.

Д о с т а т о ч н о с т ь. Дано: столбцы D линейно зависимы. Требуется доказать:
D = 0. В силу теоремы 1 один из столбцов определителя D есть линейная комбина-
ция остальных столбцов. Если эту линейную комбинацию вычесть из этого столбца,
то по свойству 7 определитель D не изменится, но у него появится нулевой столбец.
Поэтому по свойству 6 D = 0. Что и требовалось доказать.

С л е д с т в и е 2.Нетривиальная совместность однородной линейной системы
уравнений.

Пусть дана однородная системы уравнений:

ap
kx

k = 0, p = 1, m, k = 1, n, (5)

с матрицей A = ||ap
k||mn . Система (5) всегда совместна, ибо имеет тривиальное реше-

ние: xk = 0, k = 1, n.
Естественно возникает вопрос: при каких условиях система (5) имеет, кроме

тривиального, еще и другие решения? Ответ на этот вопрос дает

Теорема 4 Для того чтобы система (5) имела нетривиальные решения, необхо-
димо и достаточно, чтобы ранг матрицы системы был меньше числа неизвест-
ных, т. е. r < n.

Н е о б х о д и м о с т ь. Дано: (5) имеет нетривиальные решения. Требуется дока-
зать: r < n.

Итак, существуют числа c1, c2, . . . , cn, не все равные нулю, обращающие систему
(5) в верные равенства, т. е.

ap
kc

k = 0, p = 1, m, k = 1, n,

или в матричной форме:
||ap

k||mn ck = θ, k = 1, n,

т. е. столбцы матрицы A линейно зависимы. Отсюда следует, что порядок базисного
минора r < n, ибо базисные столбцы являются линейно независимыми.

Д о с т а т о ч н о с т ь. Дано: r < n. Требуется доказать: (5) имеет нетривиальные
решения.

Так как r < n, то у матрицы A хотя бы один столбец является не базисным.
По теореме 3 этот столбец представляет собой линейную комбинацию базисных
столбцов, а значит и всех остальных столбцов матрицы A. Но тогда по теореме 1
столбцы матрицы A линейно зависимы, т. е. по определению линейной зависимости
найдутся такие числа c1, c2, . . . , cn, не все равные нулю, что справедливо равенство:

||ap
k||mn ck = θ, k = 1, n,
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или в координатах:
ap

kc
k = 0, p = 1, m, k = 1, n.

Последние равенства говорят о том, что совокупность n чисел c1, c2, . . . , cn представ-
ляет собой нетривиальное решение системы (5).

С л е д с т в и е 3. Для того, чтобы однородная линейная система n уравнений
с n неизвестными имела нетривиальные решения, необходимо и достаточно,
чтобы определитель матрицы этой системы был равен нулю.

С л е д с т в и е 4. Для того чтобы столбцы матрицы A были линейно зави-
симы, необходимо и достаточно, чтобы ее ранг был меньше числа ее столбцов,
т. е. r < n.
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Гл. 2. Линейные пространства.

Мы подошли к основному понятию нашего курса. Со времен Аристотеля извест-
но, что в основе любой науки лежит то, что можно назвать "принципом намеренно
неполного знания": абстракция и обобщение как раз и состоят в том, что определен-
ные свойства рассматриваемых объектов систематически игнорируются. Аксиомати-
ческий метод в математике представляет собой не что иное, как применение этого
принципа, и он отличается от других ситуаций, в которых работает "принцип наме-
ренно неполного знания"лишь тем, что все свойства, которые математик не склонен
игнорировать, т. е. которые он желает признать присущими изучаемым объектам, за-
ботливо и исчерпывающе перечисляются — и в дальнейшем запрещается опираться
на что-либо, кроме этих свойств (аксиом) и правил логики.

§1. Определение линейного пространства

О п р е д е л е н и е. Множество R элементов любой (но одной) природы x, y, e, . . .
называется линейным пространством, если

1
o
. Существует правило, с помощью которого любой упорядоченной паре эле-
ментов x, y из R ставится в соответствие третий элемент e из R, назы-
ваемый суммой элементов x, y и обозначаемый "x + y";

2
o
. существует еще одно правило, с помощью которого для любого элемента

x из R, и любого числа c из поля K ставится в соответствие элемент
φ из R, называемый произведением элемента x на число c и обозначаемый
символом "cx"или "xc";

3
o
. оба этих правила удовлетворяют 8 аксиомам:

аксиомы операции сложения:

a.1) ∀x, y ∈ R x + y = y + x (переместительное свойство),

a.2) ∀x, y, e ∈ R (x + y) + e = x + (y + e) (сочетательное свойство),

a.3) существует нулевой элемент θ такой, что x + θ = x ∀x ∈ R (особая роль
нулевого элемента),

a.4) ∀x ∈ R существует противоположный элемент x′ такой, что x + x′ = θ;

аксиомы операции умножения:

a.5) ∀x ∈ R 1 · x = x (особая роль числового множителя 1),

a.6) ∀x ∈ R и ∀c, b ∈ K c(bx) = (cb)x (сочетательное относительно числовых
множителей свойство);

аксиомы, связывающие операции сложения и умножения:

a.7) ∀c, b ∈ K и ∀x ∈ R (c + b)x = cx + bx (распределительное относительно
суммы числовых множителей свойство),

a.8) ∀c ∈ K и ∀x, y ∈ R c(x + y) = cx + cy (распределительное относительно
суммы элементов свойство).
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З а м е ч а н и е 1. В определении множество R элементов любой, но одной при-
роды.

З а м е ч а н и е 2. В а.6) операция умножения чисел cb и в а.7) операция сложе-
ния чисел b + c понимается в смысле операций в поле K, т. е. обычных школьных
операций сложения и умножения чисел.

З а м е ч а н и е 3. Аксиомы 1) - 8) не претендуют на логическую независимость.
Они просто являются удобным описанием объектов, которые мы желаем изучать.

З а м е ч а н и е 4. Линейное пространство можно интерпретировать как объеди-
нение трех объектов: множества R и двух правил, причем правила 1, 2

корректность

1 правило 2 правилоR поле K

4 аксиомы 2 аксиомы

2 аксиомы

�� HH

��HH

не произвольны, а удовлетворяют условию корректности и 8 аксиомам, из которых
4 относятся к первому правилу, две — ко второму правилу и еще две аксиомы
связывают эти операции друг с другом. Наконец, правило 2 зависит от поля K. Эта
схема, естественно, приводит нас к мысли, что добавляя или убирая в этой схеме
"кубики", т. е. вводя новые правила, или убирая часть старых, или меняя их, мы
получим другие объекты алгебры. Именно так они и строятся.

З а м е ч а н и е 5. В монографиях по алгебре элементы линейного пространства
часто называются точками или векторами. Так же, подчеркивая связь линейного
пространства с числовым полем K, линейное пространство R называется линейным
пространством R над полем K.

З а м е ч а н и е 6. Далее в этой главе, не упоминая о числовом поле K, над кото-
рым определено линейное пространство, будем полагать, что все числа принадлежат
этому числовому полю K.

З а м е ч а н и е 7. При нашем введении числового поля K линейное простран-
ство содержит или бесконечно много элементов или только один элемент. Нетрудно
проверить с помощью аксиом, что последний случай — это пространство, состоящее
из нулевого элемента. Это пространство будем называть тривиальным линейным
пространством и обозначать так же как и сам элемент буквой θ.

З а м е ч а н и е 8. Договоримся употреблять слово "эквивалентность"и писать
знак ≡ лишь тогда, когда выполняются три условия:

a) каждый элемент эквивалентен самому себе: ∀a, a ≡ a (рефлексивность)

б) высказывание, что два элемента являются эквивалентными, не требует уточ-
нения, какой из элементов рассматривается первым и какой вторым: ∀a, b, a ≡
b ⇒ b ≡ a (симметричность)

в) два элемента, эквивалентные третьему, эквивалентны между собой: ∀a, b, c a ≡
b и c ≡ b ⇒ a ≡ c (транзитивность).

Примеры линейных пространств.
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1) Множество K0 над полем K рациональных чисел с обычными операциями
сложения и умножения над числами в поле.

2) Множество K0 над полем K0 с теми же операциями, что и в 1).

3) Множество Ak
n всех k × n - матриц с двумя линейными операциями, введен-

ными в Гл. 4 курса аналитической геометрии (там же доказано выполнение
всех 8 аксиом определения линейного пространства). Если n = 1, т. е. имеем
множество столбцов одной высоты k, то линейное пространство обозначается
Tk, его элементы называются векторами, а элементы столбца — координатами
вектора.

4) Множество V3 всех свободных векторов в пространстве с двумя линейными
операциями (выполнение 8 аксиом доказано в курсе аналитической геометрии).

5) В математическом анализе рассматривается множество всех непрерывных на
сегменте [a, b] функций с обычными операциями сложения и умножения на
число (здесь θ есть функция, тождественно равная нулю на всем сегменте).
Это линейное пространство обозначается символом C[a,b].

6) C[a,b] — то же, что в 5), но функции имеют k непрерывных производных на
сегменте [a, b].

7) Рассмотрим множество R векторов на плоскости, начала которых совпадают с
началом координат, введенных на плоскости, а концы — в пределах первого
квадранта. Будет ли такое множество векторов с обычными линейными опе-
рациями образовывать линейное пространство? Ответ: нет, так как, например,
некорректна операция умножения вектора на число — при умножении вектора
на -1 получаем вектор, не принадлежащий рассматриваемому множеству.

8) Образует ли линейное пространство множество столбцов высоты n, у каждого
из которых совпадает первая и последняя координаты? Ответ: да.

Н а д о м:

1) Образуют ли линейное пространство множество всех векторов на плоскости
за исключением векторов, параллельных некоторой фиксированной прямой, с
обычными линейными операциями над векторами? Ответ: нет (некорректная
операция сложения)

2) Рассмотрите множества векторов с обычными операциями сложения и умно-
жения на число x = (a, b, c) таких, что а) a = 0, б) a = 0 или b = 0, в)
a + b = 0, г) a + b = 1. В каком из этих случаев совокупность будет линейным
пространством? Ответ: а) да, б) нет, в) да, г) нет.

§2. Некоторые простейшие свойства линейных пространств.

Из а.1) - а.8) можно получить следующие теоремы.

Теорема 1 В любом линейном пространстве существует единственный нулевой
элемент.
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Д о к а з а т е л ь с т в о. Существование хотя бы одного нулевого элемента утвер-
ждает а.3). Предположим, что таких элементов два: θ1 и θ2. Положим в а.3) x = θ1

и θ = θ2. Тогда θ1 + θ2 = θ1. Полагая в той же аксиоме x = θ2 и θ = θ1, получим
θ2 + θ1 = θ2. Так как по а.1) θ1 + θ2 = θ2 + θ1, то θ1 = θ2. Что и требовалось доказать.

Теорема 2 В любом линейном пространстве для каждого элемента существует
единственный противоположный элемент.

Д о к а з а т е л ь с т в о. Существование хотя бы одного противоположного эле-
мента утверждает а.4). Пусть для некоторого элемента x имеются два противо-
положных элемента x′1 и x′2. Рассмотрим сумму x + x′1 + x′2. С одной стороны,
x + x′1 + x′2 = (x + x′1) + x′2 = (по а.4)) = θ + x′2 = (по а.1)) = x′2 + θ = x′2. С
другой стороны, x + x′1 + x′2 = (по а.1)) = x′1 + x + x′2 = (по а.2)) = x′1 + (x + x′2) = (по
а.4)) = x′1 + θ = (по а.3))= x′1. Отсюда следует, что x′1 = x′2. Теорема доказана.

Теорема 3 Для любого элемента x линейного пространства имеет место равен-
ство 0 · x = θ.

Д о к а з а т е л ь с т в о. x = (по а.5)) = 1 · x = (1 + 0)x = (по а.7)) = 1 · x + 0 · x =
(по а.5)) = x + 0 · x, т. е. x = x + 0 · x. Прибавляя к обеим частям противоположный
элемент x′ для x, найдем x + x′ = x + 0 · x + x′. По а.1) и а.4): θ = 0 · x + θ = 0 · x.

Теорема 4 Для любого элемента x линейного пространства противоположный
элемент есть элемент (−1)x, т. е. x′ = (−1)x.

Д о к а з а т е л ь с т в о. x + (−1)x = (по а.5)) = 1 · x + (−1)x = (по а.7)) =
(1− 1)x = 0 · x = (по т.3) = θ, т. е. элемент (−1)x удовлетворяет а.4), т. е. является
противоположным для x.

Обозначим (−1)x = −x. Теперь можно ввести понятие разности элементов ли-
нейного пространства: x− y = x + y′ = x + (−y), т. е. разность элементов x и y есть
сумма x и противоположного к y элемента.

Н а д о м: Доказать, что 1) a · θ = θ, 2) −θ = θ.
Р е ш е н и е. ∀a ∈ K, ∀x ∈ R ax = (a.3)) = a(x + θ) = (а.8)) = ax + aθ, т. е.

ax = ax + aθ . Добавим к обеим частям последнего равенства элемент −ax. В силу
а.1), а.4) имеем θ = aθ. В частности, при a = −1 имеем: θ = −θ.

§3. Линейная зависимость элементов линейного пространства.

Пусть x1, x2, . . . , xn — элементы линейного пространства R, c1, c2, . . . , cn — числа
из K.

О п р е д е л е н и е. Элемент y = xkc
k называется линейной комбинацией эле-

ментов x1, x2, . . . , xn с коэффициентами c1, c2, . . . , cn.
Если c1 = c2 = . . . = cn = 0, то в силу теоремы 3 и а.3) y = θ.
О п р е д е л е н и е. Элементы x1, x2, . . . , xn называются линейно зависимыми,

если некоторая их линейная комбинациями, не все коэффициенты которой равны
нулю, дает элемент θ.

О п р е д е л е н и е. Элементы x1, x2, . . . , xn называются линейно независимы-
ми, если xkc

k = θ тогда и только тогда, когда все ck = 0, k = 1, n.
Все эти определения дословно повторяют аналогичные определения, которые бы-

ли даны для векторов в векторной алгебре и для столбцов в §3 гл. 1 нашего курса.
Только теперь природа элементов не конкретизируется.
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Теорема 5 Для того чтобы элементы x1, x2, . . . , xn были линейно зависимы, необ-
ходимо и достаточно, чтобы один из них был линейной комбинацией остальных.

Доказательство этой теоремы совпадает с доказательством теоремы 1 §3 Гл. 1.
Легко доказываются следующие теоремы.

Теорема 6 Если к элементам x1, x2, . . . , xn добавить нулевой элемент θ, то эле-
менты x1, x2, . . . , xn, θ линейно зависимы.

Для доказательства достаточно в линейной комбинации n + 1 элементов положить
c1 = c2 = . . . = cn = 0, cn+1 = 1.

Теорема 7 Если элементы x1, x2, . . . , xn линейно зависимы, то элементы x1, x2, . . . ,
xn, xn+1, . . . , xk так же линейно зависимы.

П р и м е р ы.

1) В пространстве Tn: e1 =


1
0
.
.
0

, e2 =


0
1
.
.
0

, . . . , en =


0
0
.
.
1

 линейно независи-

мы, так как y = ekc
k = ||ck||n = θ = ||0||n только тогда, когда все ck = 0, k = 1, n.

2) Элементы пространства Am
n :

e1 = E1
1 =


1 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

, e2 = E1
2 =


0 1 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0



. . . , em×n = Em
n =


0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

 линейно независимы, ибо y =

ekc
k =


c1 c2, . . . , cn

cn+1 cn+2, . . . , c2n

. . . . . . . . . . . .
cn(m−1)+1 cn(m−1)+2, . . . , cnm

 = θ = ||0||mn тогда и только тогда,

когда все ck = 0, k = 1, nm.

3) Элементы C[a,b]: e1 = sin2 x, e2 = 3 cos2 x, e3 = −1 — линейно зависимы, так как
y = ekc

k = 0 при c1 = 3, c2 = 1, c3 = 3.

4) Элементы C[a,b]: e1 = 1, e2 = x, e3 = x2, . . . , en+1 = xn, где n — любое фикси-
рованное натуральное число, линейно независимы, ибо линейная комбинация
y = c1+c2x+. . .+cn+1xn = 0 — конечное уравнение которое по основной теореме
алгебры при любых ck, не всех равных нулю, имеет не более n корней относи-
тельно x на [a, b]. Следовательно, нельзя выбрать нетривиальную совокупность
чисел ck так, чтобы это равенство выполнялось для всех x из сегмента [a, b].

Н а д о м: Доказать: если x, y, e — линейно независимые элементы пространства, то
этим же свойством обладают элементы x + y, y + e, e + x.
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§4. Базис и координаты элементов линейного пространства.

В векторной алгебре было введено понятие базиса. Каждый вектор в пространстве
задавался тремя числами — координатами в некотором базисе. Аналогичное понятие
введем в линейном пространстве. Точнее, понятие базиса в векторной алгебре —
частный случай того понятия, которое мы сейчас введем.

О п р е д е л е н и е. Совокупность n линейно независимых элементов e1, e2, . . . ,
en называется базисом линейного пространства R и обозначается символом
(ek)n, если для любого x из R существуют такие числа x1, x2, . . . , xn, что x = ekx

k,
причем эта линейная комбинация называется разложением элемента по базису
(ek)n, а числа xk — координатами элемента x в базисе (ek)n.

Теорема 8 Разложение любого элемента линейного пространства по данному
базису единственно.

Д о к а з а т е л ь с т в о. (От противного). Пусть x = eka
k и x = ekb

k. Вычтем из
первого разложения элемента x второе. Тогда θ = ek(a

k− bk). Так как e1, e2, . . . , en —
линейно независимы, то ak − bk = 0, т. е. ak = bk, k = 1, n.

П р и м е р ы.

1) Линейное пространство V3: любые три некомпланарные векторы образуют базис
(это доказано в курсе аналитической геометрии).

2) Линейное пространство T3: в примере 1) §3 приведены линейно независимые
элементы e1, e2, . . . , en, причем для каждого x = ||ak||n = eka

k, т. е. указанные
элементы образуют базис.

3) Линейное пространство Am
n : в примере 2) §3 указаны n×m линейно независи-

мых элементов Ep
k , p = 1, m, k = 1, n, причем

A = ||ap
k||mn =

m∑
p=1

n∑
k=1

Ep
ka

p
k,

т. е. (ek)nm — базис в линейном пространстве Am
n .

Значение базиса. После введения базиса абстрактные операции над элементами ли-
нейного пространства становятся обычными (точнее, привычными) операциями сло-
жения и умножения над числами — координатами элементов, что утверждает сле-
дующая

Теорема 9 При сложении двух элементов линейного пространства их коорди-
наты складываются. При умножении элемента на число все его координаты
умножаются на это число.

Д о к а з а т е л ь с т в о. Пусть x = eka
k, y = ekb

k. Тогда в силу аксиом линейного
пространства x + y = eka

k + ekb
k = (a.1, 2, 7) = ek(a

k + bk) и xc = (eka
k)c = (a.8, 5)

= ek(a
kc). Так как разложение по базису в силу теоремы 8 единственно, то теорема

доказана.
Разложение элемента x линейного пространства по базису (ek)n: x = eka

k — мож-
но записать и в другой форме. Для этого введем матрицы составленные из элементов
линейного пространства (в отличии от числовых матриц будем их обозначать малыми
буквами). Пусть e = (e1, e2, . . . , en) = ||ep||n. Обозначим Xe = ||ak||n матрицу-столбец,
состоящую из координат элемента x по базису (ek)n. Тогда разложение x по базису
(ek)n запишется так:

x = eka
k = eXe. (∗)
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Лемма 1 Пусть элементы x1, x2, . . . , xm линейного пространства R разложены
по базису (ep)n: xk = epa

p
k, k = 1, m. Тогда из линейной зависимости столбцов

матрицы A = ||ap
k||nm следует линейная зависимость элементов x1, x2, . . . , xm.

Д о к а з а т е л ь с т в о. Введем обозначение Xek = ||ap
k||n, k = 1, m, тогда xk =

epa
p
k = eXek. По условию столбцы Xek линейно зависимы, т. е. найдутся такие числа

c1, c2, . . . , cm не все равные нулю, что Xekc
k = θ. Рассмотрим линейную комбинацию

xkc
k = (eXek)c

k = (почему?) = e(Xkec
k) = eθ = (e1, e2, . . . , en) · ||0||n = e1 · 0 + e2 · 0 +

. . . + en · 0 = (по т.3 и а.3)) = θ, т. е. элементы x1, x2, . . . , xm линейно зависимы.

§5. Размерность линейного пространства.

О п р е д е л е н и е. Натуральное число n называется размерностью линейного
пространства R и обозначается символом dim R, если в линейном пространстве
R есть n линейно независимых элементов, а любые n + 1 элементов линейно
зависимы. Само пространство R называется n-мерным и обозначается символом
Rn.

Иначе говоря, размерность линейного пространства равняется максимальному
числу линейно независимых элементов этого пространства.

О п р е д е л е н и е. Линейное пространство называется бесконечномерным,
если в нем найдется любое наперед заданное число линейно независимых элемен-
тов этого пространства, и обозначается символом R∞.

Например, линейное пространство C[a,b] бесконечномерно, ибо как показано в
примере 4, §3 элементы ek = xk−1, k = 1, n, где n — любое натуральное число,
являются линейно независимыми. Также бесконечномерным является пространство
всех многочленов.

Теорема 10 Если Rn — линейное пространство размерности n, то в нем суще-
ствует базис из n элементов, причем в качестве базиса можно взять любые n
линейно независимых элементов.

Д о к а з а т е л ь с т в о. По определению размерности линейного пространства в
Rn имеются n линейно независимых элементов e1, e2, . . . , en. Для того чтобы убедить-
ся в том, что эти элементы образуют базис, достаточно показать, что произвольный
элемент x из Rn есть линейная комбинация элементов e1, e2, . . . , en. По определе-
нию размерности линейного пространства элементы x, e1, e2, . . . , en линейно зависи-
мы, т. е. существуют числа c0, c1, . . . , cn, не все равные нулю, такие, что xc0+ekc

k = θ.
Очевидно, что c0 6= 0, ибо иначе e1, e2, . . . , en были бы линейно зависимы. Обозначив
xk = −ck/c0, k = 1, n, получим x = ekx

k, т. е. (ek)n — базис в Rn.

Теорема 11 (Обратная) Если в линейном пространстве R есть базис из n эле-
ментов, то dim R = n.

Д о к а з а т е л ь с т в о. Пусть (ep)n — базис. По определению базиса e1, e2, . . . , en

линейно независимы. Покажем, что любые n + 1 элементов линейно зависимы. Рас-
смотрим произвольные элементы x1, x2, . . . , xn+1. Разложим каждый из них по бази-
су: xk = epa

p
k, k = 1, n + 1. Рассмотрим n×(n+1) -матрицу A = ||ap

k||nn+1. Очевидно ее
ранг ≤ n, т. е. меньше числа столбцов матрицы A. Тогда по следствию 4 к теореме
о базисном миноре столбцы матрицы A линейно зависимы. Следовательно, по лемме
1 элементы x1, x2, . . . , xn+1 линейно зависимы. Теорема доказана.

З а м е ч а н и е. Теперь на основании доказанных теорем можно утверждать, что

dim V3 = 3, dim Tn = n, dim Am
n = m · n.
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§6. Преобразование базиса и координат элементов линейного
пространства.

Пусть в линейном пространстве Rn даны два базиса (ek)n и (φk)n. Разложим
элементы входящие во второй базис, по первому базису:

φk = epa
p
k, k = 1, n (1)

Если ввести обозначения ||ap
k||nn = A, ||φk||n = φ, ||ek||n = e, то равенство (1) можно

записать в матричной форме:
φ = eA. (2)

Формула (1) (или, что то же самое, формула (2)) дает правило перехода от базиса
(ek)n к базису (φk)n, причем матрица A называется матрицей перехода. Заметим, что
любой k-ый столбец этой матрицы составлен из координат элемента φk по базису
(ek)n. При этом A — невырожденная матрица, ибо иначе по следствию 1 к теореме
о базисном миноре между столбцами матрицы A была бы зависимость, а значит в
силу равенства (2) и леммы 1 элементы φ1, φ2, . . . , φn были бы линейно зависимы, что
противоречит определению базиса. Поскольку D = det A 6= 0, то матрица A имеет
обратную A−1 = ||bp

k||nn, где bp
k = (1/D)

∑n
k=1 Ak

p, а Ak
p — алгебраическое дополнение

элемента ak
p матрицы A. Поэтому, умножив равенство (2) справа на A−1, получим

формулу перехода от базиса (φk)n к базису (ek)n:

e = φA−1, (3)

или в координатах:

ep = φkb
k
p = 1/D ·

n∑
k=1

φkA
k
p, p = 1, n. (4)

Итак, установлено, как преобразуется базис при линейном преобразовании.
Поставим еще одну задачу: выяснить, как при таком преобразовании изменятся

координаты произвольного элемента x пространства Rn?
Пусть элемент x в базисе (ek)n имеет координаты b1, b2, . . . , bn, т. е. определяется

матрицей-столбцом Xe = ||bk||n, а в базисе (φk)n — координатами c1, c2, . . . , cn, т. е.
задается матрицей-столбцом Xφ = ||ck||n. Таким образом,

x = ekb
k = eXe, x = φkc

k = φXφ.

Сравнивая эти равенства, имеем: eXe = φXφ. Но φ = eA. Поэтому φXφ = (eA)Xφ =

(свойство 1
o
операции умножения матриц) = e(AXφ). Следовательно,

eXe = e(AXφ).

В этом равенстве слева и справа стоят разложения одного и того же элемента по
базису (ek)n. В силу единственности разложения по данному базису имеем:

Xe = AXφ, (5)

или в координатах:
bk = ak

pc
p, k, p = 1, n. (6)

Умножив равенство (5) на матрицу A−1 слева, получим:

Xφ = A−1Xe. (7)

Равенство (7) в координатах:

ck = 1/D ·
n∑

p=1

Ap
kb

p, k = 1, n. (8)
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§7. Подпространства линейного пространства.

О п р е д е л е н и е. Подпространством линейного пространства R называет-
ся любое непустое множество M элементов этого пространства, на котором
корректны операции сложения и умножения на число, введенные в линейном про-
странстве R, т. е.
а) ∀x, y ∈ M x + y ∈ M, б) ∀c ∈ K и ∀x ∈ M xc ∈ M .

Сформулируем и докажем некоторые свойства подпространства линейного про-
странства.

Свойство 1 Всякое подпространство линейного пространства R есть линейное
пространство.

Д о к а з а т е л ь с т в о. Как следует из определения подпространства нам даны
множество M элементов и две линейные операции. Поэтому для доказательства
этого свойства достаточно проверить выполнение аксиом линейного пространства.
Выполнение а.1), 2), 5) - 8) очевидно, так как они имеют место для всех без исклю-
чения элементов пространства R. Осталось проверить а.3), а.4). Пусть x — любой
элемент из M . Тогда по определению подпространства: ∀c xc ∈ M . Если c = 0, то
по теореме 3 0 · x = θ, и, следовательно, множество M содержит нулевой элемент θ,
т. е. а.3) выполнена. Если же c = −1, то по теореме 4 (−1)x есть элемент противо-
положный элементу x, и, следовательно, множество M вместе с каждым элементом
x содержит и ему противоположный, т. е. а.4) выполнена.

П р и м е р ы.

1) Минимальное по размерности подпространство любого линейного пространства
R — θ.

2) Максимальное по размерности подпространство любого линейного простран-
ства — само линейное пространство.

3) Подпространства линейного пространства V3: двумерное — множество всех век-
торов, параллельных какой-либо плоскости; одномерное — множество всех век-
торов параллельных какой-либо прямой.

4) Пространство Tn: пусть k ≤ n. M — множество всех элементов ||ap||n из Tn,
для которых a1 = a2 = . . . = ak = 0.

5) Пространство Am
n : пусть e ≤ m, s ≤ n. M — множество всех матриц ||ap

k||mn из
Am

n , для которых ap
k = 0, p = 1, e, k = 1, s.

Свойство 2 dim M ≤ dim Rn.

Д о к а з а т е л ь с т в о. Пусть x1, x2, . . . , xn+1 — какие-либо элементы из M . Но
тогда они принадлежат пространству Rn, в котором любые n + 1 элементов линейно
зависимы. Очевидно, что это верно и на M .

Свойство 3 (о пополнении базиса) . Если (ep)k — базис в подпространстве M
линейного пространства Rn, причем k < n, то можно так выбрать элементы в
Rn ek+1, ek+2, . . . , en, что (ep)n будет базисом в Rn.
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Д о к а з а т е л ь с т в о. В линейном пространстве Rn существует по крайней
мере один элемент ek+1 такой, что элементы e1, e2, . . . , ek+1 — линейно независи-
мы. Действительно, если предположить противное, то ∀x ∈ Rn существуют чис-
ла c0, c1, . . . , ck, не все равные нулю, такие, что xc0 + epc

p = θ. Если c0 = 0, то
e1, e2, . . . , ek линейно зависимы, что противоречит предположению. Если c0 6= 0, то
получаем, что любой элемент x из Rn можно разложить по базису (ep)k, но это
противоречит условию k < n. Итак, существует элемент ek+1 такой, что элементы
e1, e2, . . . , ek+1 линейно независимы. Если k+1 = n, то (ep)k+1 — искомый базис в Rn.
Если k + 1 < n, то можно найти такой элемент ek+2, что e1, e2, . . . , ek+2 — линейно
независимы. Продолжая этот процесс, через конечное число шагов построим базис
(ep)n в пространстве Rn, в котором первые k элементов являются базисом в M .

§8. Линейные оболочки.

О п р е д е л е н и е. Линейной оболочкой заданного конечного множества эле-
ментов x1, x2, . . . , xk линейного пространства Rn над полем K называется со-
вокупность всех линейных комбинаций этих элементов и обозначается сим-
волом L(x1, x2, . . . , xk) = {x : x = xpc

p, cp ∈ V∞, p = 1, k}, причем множество
элементов x1, x2, . . . , xk называется системой, порождающей линейную оболоч-
ку L(x1, x2, . . . , xk).

Свойства линейной оболочки.

Свойство 1 Линейная оболочка L(x1, x2, . . . , xk) элементов пространства Rn яв-
ляется подпространством линейного пространства Rn.

Д о к а з а т е л ь с т в о. Достаточно показать корректность относительно множе-
ства L операций сложения и умножения на число введенных в пространстве Rn.
Пусть x, y ∈ L(x1, x2, . . . , xk), т. е. x = xpa

p и y = xpb
p. Тогда

а) x + y = xpa
p + xpb

p = (a.2,7) = xp(a
p + bp) = xpc

p ∈ L (cp = ap + bp),
b) ∀c ∈ K xc = (xpa

p)c = (a.2,5) = xp(a
pc) ∈ L.

Свойство 2 Линейная оболочка L(x1, x2, . . . , xk) является наименьшим подпро-
странством содержащим элементы x1, x2, . . . , xk. (Иными словами: она содер-
жится в любом подпространстве, имеющем эти элементы.)

Д о к а з а т е л ь с т в о. Очевидно, что x1, x2, . . . , xk ∈ L(x1, x2, . . . , xk), которая в
силу свойства 1 является подпространством линейного пространства Rn. С другой
стороны, любое подпространство пространства Rn, содержащее эти элементы, вклю-
чают в себя все их линейные комбинации, т. е. содержит в себе L(x1, x2, . . . , xk).

Свойство 3 Если какой-либо элемент из порождающей системы элементов x1, x2,
. . . , xk есть линейная комбинация остальных элементов этой системы, то его
можно убрать из порождающей системы, не изменив линейной оболочки.

Д о к а з а т е л ь с т в о. Пусть xk есть линейная комбинация остальных элемен-
тов порождающей системы. Тогда, во-первых, xk ∈ L(x1, x2, . . . , xk−1) и, во-вторых,
любая линейная комбинация элементов x1, x2, . . . , xk сводится к некоторой линейной
комбинации элементов x1, x2, . . . , xk−1, т. е. L(x1, x2, . . . , xk) ⊂ L(x1, x2, . . . , xk−1). С
другой стороны, по свойству 2 L(x1, x2, . . . , xk−1) ⊂ L(x1, x2, . . . , xk). Таким образом,
из этих двух включений имеем, что L(x1, x2, . . . , xk) = (x1, x2, . . . , xk−1).

П р и м е р ы.
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1) Линейная оболочка базисных элементов e1, e2, . . . , en линейного пространства
Rn совпадает со всем линейным пространством Rn, т. е. L(e1, e2, . . . , en) = Rn.

2) В пространстве V3 линейная оболочка пары неколлинеарных векторов ~a,~b со-
стоит из всех векторов, параллельных плоскости векторов ~a,~b, т. е. L(~a,~b) есть
подпространство V2 пространства V3.

3) В линейном пространстве C[a,b] линейная оболочка функций 1, x, . . . , xk есть
множество всех многочленов степени ≤ k.

Свойство 4 (Размерность и базис линейной оболочки). Пусть среди порождаю-
щих элементов x1, x2, . . . , xk имеются p ≤ k линейно независимых элементов,
например, x1, x2, . . . , xp, а остальные xp+1, . . . , xk представляют собой линейные
комбинации данных p элементов. Тогда
а) L(x1, x2, . . . , xk) = L(x1, x2, . . . , xp),
б) dim L(x1, x2, . . . , xk) = p,
в) (xi)p — базис линейной оболочки.

Д о к а з а т е л ь с т в о. Утверждение а) следует из свойства 3. По условию эле-
менты x1, x2, . . . , xp линейно независимы и по утверждению а) любой элемент ли-
нейной оболочки L(x1, x2, . . . , xk) является линейной комбинацией указанных p эле-
ментов. Следовательно, эти p элементов образуют базис линейной оболочки, и ее
размерность по теореме 11 равна p.

С л е д с т в и е. dim L(x1, x2, . . . , xk) равняется максимальному числу линейно
независимых элементов в порождающей системе элементов x1, x2, . . . , xk.

Рассмотрим одно из приложений понятия линейной оболочки.

§9. Ранг матрицы и размерность линейной оболочки ее столб-
цов. Вычисление ранга матрицы.

Рассмотрим матрицу A = ||ap
k||mn . Столбцы Ak = ||ap

k||m, k = 1, n матрицы A
являются элементами линейного пространства Tm. Пусть rang A = r и базисными
столбцами являются первые r столбцов A1, A2, . . . , Ar. Образуем линейную оболочку
столбцов матрицы A L(A1, A2, . . . , An).

Теорема 12 Размерность линейной оболочки столбцов матрицы A равна рангу
матрицы A, т. е. dim L(A1, A2, . . . , An) = rang A. Базисные столбцы матрицы A
являются базисом линейной оболочки столбцов матрицы A.

Д о к а з а т е л ь с т в о. По теореме о базисном миноре: 1) столбцы A1, A2, . . . , Ar

линейно независимы, 2) любой столбец матрицы A есть линейная комбинация ба-
зисных столбцов. Но тогда из свойства 4 линейной оболочки следует утверждение
теоремы.

С л е д с т в и е 1. Если rang A = r, то любые r + 1 столбцов (если они есть)
линейно зависимы.

Утверждение очевидно, ибо в пространстве размерности r любые r + 1 элементов
линейно зависимы.

С л е д с т в и е 2. Ранг матрицы A равен максимальному числу линейно неза-
висимых столбцов. (Cм. следствие к свойству 4 линейной оболочки).

С л е д с т в и е 3. Максимальное число линейно независимых столбцов равня-
ется максимальному числу линейно независимых строк. (При операции транспо-
нирования ранг матрицы не меняется).
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Рассмотрим некоторые элементарные операции над столбцами (строками) матри-
цы, которые, меняя матрицу, не меняют ранга. При доказательстве сохранения ранга
при совершении этих операций основным инструментом будет теорема 12. Формули-
ровки приведем только для столбцов, так как для строк они идентичны.

1
o
Перестановка столбцов. Переставим столбцы A1 и A2. Тогда L(A1, A2, . . . , Ak) =
L(A2, A1, . . . , Ak). Поэтому ранг не изменится.

2
o
Умножение любого столбца на число b 6= 0. Пусть первый столбец умножен
на b. Тогда L(A1b, A2, . . . , Ak) = L(A1, A2, . . . , Ak). Действительно, если x ∈
L(A1b, A2, . . . , Ak), то x = (A1b)c

1 + Apc
p = A1(bc

1) + Apc
p ∈ L(A1, A2, . . . , Ak).

Верно и обратное: если x ∈ L(A1, A2, . . . , Ak), то x = Apc
p = (A1b) · c1/b + Apc

p,
где справа p = 2, n, т. е. x ∈ L(A1b, A2, . . . , Ak). Поэтому ранг не изменится.

3
o
Прибавление к одному столбцу другого, умноженного на число b. Пусть к A1

прибавлен столбец A2b. Тогда L(A1 + A2b, A2, . . . , Ak) = L(A1, . . . , An). В самом
деле, если x ∈ L(A1 + A2b, A2, . . . , Ak), то x = (A1 + A2b)c

1 + A2c
2 + Apc

p =
A1c

1 + A2(bc
1 + c2) + Apc

p = A1c
1 + A2c̄

2 + Apc
p ∈ L(A1, A2, . . . , Ak). Аналогично

доказывается, что если x ∈ L(A1, A2, . . . , Ak), то x ∈ L(A1 + A2b, A2, . . . , Ak). А
тогда из первого равенства следует, что ранг не меняется.

4
o
Вычеркивание нулевого столбца. Пусть A1 — нулевой столбец. Тогда по свой-
ству 3 L(A1, A2, . . . , Ak) = L(A2, . . . , Ak), что означает, что ранг не меняется.

5
o
Вычеркивание столбца, являющегося линейной комбинацией других столбцов.
Ранг не меняется, что следует из свойства 3 линейной оболочки.

Опираясь на элементарные операции 1
o
− 5

o
, сформулируем метод вычисления

ранга матрицы.
Если все элементы матрицы A равны нулю, то ранг матрицы A равен нулю.
Если имеются элементы матрицы, отличные от нуля, то
Шаг 1. а) Переставляя строки и столбцы, переведем один из них в левый верхний
угол, т. е. на место элемента a1

1.
б) Далее комбинируя первую строку (первый столбец) с какой-либо другой (дру-

гим), сделаем элемент, стоящий на месте a1
1, равным 1 или -1.

в) Все элементы первой строки, кроме первого, сделаем равными нулю, вычитая
из всех столбцов поочередно первый, умноженный на соответствующий множитель.
В итоге получим: 

1 0 0 . . . 0 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .


Если все элементы в заштрихованной зоне равны нулю, то ранг матрицы A равен 1.
Если же в этой зоне есть элементы, отличные от нуля, то
Шаг 2. а) Переставляя строки и столбцы, поставим, один из них на место элемента
a2

2.
б) Комбинируя вторую строку (второй столбец) с какойлибо другой (другим),

сделаем элемент, стоящий на месте a2
2, равным 1 или -1 (при этом ни в коем случае

не трогать 1 столбец и первую строку!).
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в) Все элементы второй строки, лежащие правее элемента a2
2, сделаем равными

нулю. В итоге получим: 

1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .


Если в заштрихованной зоне все элементы равны нулю, то rang A = 2. Если же в
этой зоне есть элементы, отличные от нуля, то все повторяем в полной аналогии с
предыдущими двумя шагами, но уже в третьей строке и т. д.
В итоге на шаге r приходим к матрице:

1 0 0 . . . 0 0
6 0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
6 0 6 0 6 0 . . . 6 0 1
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .


ранг которой равен r.

П р и м е р. Вычислим ранг матрицы A (знак ∼ означает эквивалентность матрицы
в смысле ранга).

A =


0 2O 2

1∆ −3 −1
−2 0 −4
4 6 14


Вынесем из 1, 3, 4 строк множитель 2 и -2:

∼


0 1O 1

1∆ −3 −1
1 0 2
2 3 7

 ∼


1O 0 1

−3 1∆ −1
0 1 2
3 2 7

 ∼


1O 0 0

−3 1∆ 2
0 1 2
3 2 4

 ∼


1O 0

−3 1∆
0 1
3 2

 .

Итак, ранг матрицы равен 2. Как найти базисный минор Mb исходной матрицы?
Маркируем базисные столбцы и строки в последней матрице (O — первая строка и
первый столбец, ∆ — вторая строка и второй столбец). Следим за маркированны-
ми местами, проходя в обратном порядке все преобразования по вычислению ранга
матрицы. Затем вычеркиваем в исходной матрице маркированные строки и столбцы.
На пересечении вычеркнутых столбцов и строк стоят элементы, образующие квад-
ратную матрицу, определитель которой и есть искомый базисный минор исходной
матрицы, т. е.

Mb =

∣∣∣∣∣ 0 2
1 −3

∣∣∣∣∣ .
Докажем теперь две теоремы о ранге произведения матриц.

Теорема 13 Ранг произведения двух матриц не превосходит ранга каждого из
сомножителей.
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Д о к а з а т е л ь с т в о. Пусть даны матрицы A = ||ap
k||nm и B = ||bp

k||ms . Тогда
C = AB = ||cp

k||ns . Докажем:
1) rang C ≤ rang A. Так как по определению произведения матриц cp

k = ap
eb

e
k, то

зафиксировав k и меняя p от 1 по n, пролучим:

Ck = Apb
p
k,

где Ck, k = 1, s — столбцы матрицы C, Ap, p = 1, m — столбцы матрицы A. По
теореме 12 rang C = dim L(C1, C2, . . . , Cs), а rang A = dim L(A1, A2, . . . , Am). Так
как каждый столбец Ck есть линейная комбинация столбцов A1, A2, . . . , Am, то
L(C1, C2, . . . , Cs) ⊂ L(A1, A2, . . . , Am).

Следовательно, dim L(C1, C2, . . . , Cs) ≤ dim L(A1, A2, . . . , Am), а значит rang C ≤
rang A.

2) rang C ≤ rang B. rang C = rang CT = rang(AB)T = (т. 4, гл. 4 курса аналити-
ческой геометрии) = rang(BT AT ) ≤ (по 1) теоремы 13) ≤ rang BT = rang B.

Теорема 14 Если A — невырожденная n×n-матрица, а B — любая n×n-матрица,
то rang AB = rang B.

Д о к а з а т е л ь с т в о. Обозначим AB = C. По теореме 13 rang C ≤ rang B. Так
как det A 6= 0, то существует обратная матрица A−1. Умножив равенство AB = C
слева на A−1, получим: B = A−1C. Тогда по теореме 13 rang B ≤ rang C. Из двух
полученных неравенств следует, что rang B = rang C.

§10. Изоморфизм линейных пространств.

Оказывается, различные линейные пространства одной и той же размерности n с
алгебраической точки зрения тождественны. Поэтому, если в каком-либо конкретном
n-мерном линейном пространстве доказана теорема, сформулированная в терминах
линейных операций, то эта теорема верна в любом другом линейном пространстве
той же размерности n. Выгода такого подхода очевидна. Поэтому обоснуем его.

О п р е д е л е н и е. Соответствие Γ между элементами двух линейных про-
странств R и R′ (Γ : R → R′) называется взаимно однозначным, если при этом
соответствии
1) каждому элементу из R отвечает один и только один элемент из R′,
2) каждому элементу из R′ отвечает один и только один элемент из R.

О п р е д е л е н и е. Два линейных пространства R и R′ называются изоморф-
ными, если между элементами этих пространств можно установить взаимно
однозначное соответствие Γ так, что если элементам x, y из R отвечают со-
ответственно элементы x′, y′ из R′, то элементу x+ y отвечает элемент x′+ y′,
а элементу bx из R (∀b ∈ K) отвечает элемент bx′ из R′ (иными словами, суще-
ствует Γ : R → R′ такое, что Γ(x + y) = Γ(x) + Γ(y) и Γ(bx) = bΓ(x)), в этом
случае соответствие Γ называется изоморфизмом.

Какие же пространства являются изоморфными? Ответ на этот вопрос дают сле-
дующие две теоремы. Но в начале докажем одно вспомогательное утверждение.

Лемма 2 Изоморфизм Γ : R → R′ переводит нулевой элемент θ пространства R
в нулевой элемент θ′ пространства R′.

Д о к а з а т е л ь с т в о. Из определения изоморфизма следует, что ∀b ∈ K Γ(bx) =
bΓ(x). В частности, при b = 0 Γ(0 · x) = 0 · Γ(x). Но по теореме 3 а) 0 · x = θ ∈ R,
так как x ∈ R, б) 0 · Γ(x) = θ′ ∈ R′, так как Γ(x) ∈ R. Поэтому Γ(θ) = θ′. Что и
требовалось доказать.
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Теорема 15 Все линейные пространства одной и той же размерности n изо-
морфны между собой.

Д о к а з а т е л ь с т в о. Достаточно доказать, что любое линейное пространство
Rn изоморфно линейному пространству Tn, элементами которого являются матрицы-
столбцы ||xp||n высоты n. Пусть (ek)n — базис в линейном пространстве Rn. Тогда
каждый элемент x из Rn имеет в этом базисе разложение: x = ekx

k. Каждому
элементу x из Rn поставим в соответствие n действительных чисел x1, x2, . . . , xn

— координат этого элемента в базисе (ek)n, т. е. вполне определенный элемент x′ =
||xk||n пространства Tn. Установленное соответствие взаимно однозначно. Более того,
если элементам x = ekx

k, y = eky
k из Rn отвечают соответственно столбцы x′ =

||xk||n, y′ = ||yk||n из Tn, то в силу теоремы 9 элементу x + y из Rn соответствует
столбец ||xk + yk||n, т. е. элемент x′ + y′ из Tn, а элементу bx из Rn соответствует
столбец ||bxk||n, т. е. элемент bx′ из Tn. Теорема доказана.

Теорема 16 Любые два линейных пространства разных размерностей не изо-
морфны.

Д о к а з а т е л ь с т в о. Рассмотрим линейные пространства Rn и Rm. Пусть m <
n. В пространстве Rn существуют n линейно независимых элементов e1, e2, . . . , en.
Если бы существовал изоморфизм, то элементы e1, e2, . . . , en перешли бы в n элемен-
тов φ1, φ2, . . . , φn пространства Rm, которые необходимо были бы зависимыми, ибо
число элементов n больше размерности линейного пространства Rm. Постольку в
силу леммы 2 при изоморфизме нулевой элемент переходит в нулевой элемент, то
равной нулевому элементу линейной комбинации образов φkc

k, k = 1, n, где не все
ck равны нулю, должна соответствовать равная нулевому элементу линейная комби-
нация прообразов ekc

k, k = 1, n, что противоречит предположению об их линейной
независимости. Теорема доказана.
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Гл. 3. Система линейных уравнений.

§1. Критерий совместности общей линейной системы уравне-
ний.

Рассмотрим линейную систему m уравнений с n неизвестными:

AX = B, (1)

где A = ||ap
k||mn , X = ||xp||n, B = ||bp||m. Матрица A называется основной матрицей

системы. Если в матрице A добавить еще один столбец B, то получим матрицу A∗,
называемую расширенной матрицей системы (1).

Теорема 1 (Кронекера-Капелли) Для того чтобы система (1) была совместна,
необходимо и достаточно, чтобы rang A = rang A∗.

Н е о б х о д и м о с т ь. Пусть система (1) совместна, т. е. существуют числа c1, c2,
. . . , cn, которые при подстановке в систему (1) обращают все уравнения в верные
равенства. Эти равенства означают, что столбец свободных членов B есть линейная
комбинация столбцов матрицы A, т. е. этот столбец можно вычеркнуть из матрицы

A∗ (элементарная операция 5
o
, §9, гл. 2), не изменив при этом ранга. Таким образом,

rang A = rang A∗.
Д о с т а т о ч н о с т ь. Пусть rang A = rang A∗. Тогда базисный минор матрицы

A является базисным минором матрицы A∗. Следовательно, по теореме о базисном
миноре столбец свободных членов B есть линейная комбинация базисных столбцов,
а значит и всех столбцов матрицы A с числовыми коэффициентами c1, c2, . . . , cn. Эти
числа и являются решением системы. Теорема доказана.

§2. Однородные линейные системы уравнений.

Однородная система уравнений в матричной форме записывается так:

AX = θ, (2)

где A, X те же что и в §1, а θ — нулевой столбец высоты m. Пусть rang A = r.
Как следует из теоремы 4 гл. 1, система (2) нетривиально совместна при r < n.
Заметим, что всякое решение ||cp||n системы (2) является элементом пространства
Tn. Очевидно, что не всякий элемент пространства Tn является решением системы
(2). Таким образом, множество M всех решений стстемы (2) образует подмножество
множества всех элементов линейного пространства Tn. Операции сложения и умно-
жения на число, введенные в пространстве Tn, корректны на множестве M , т. е. а)
∀X, Y — решений системы (2) X + Y тоже решение (2), т. е. X + Y ∈ M ; б) ∀b ∈ K
и ∀X ∈ M bX ∈ M , так как bX — решение системы (2).

Итак, множество M всех решений системы (2) с указанными линейными опера-
циями является подпространством линейного пространства Tn. Осталось определить
его размерность.

О п р е д е л е н и е. Фундаментальной совокупностью решений (ФСР) систе-
мы (2) называется базис в пространстве решений.

Иными словами ФСР — максимальное число линейно независимых решений. Так
как в любом линейном пространстве базисов бесконечно много, то и ФСР также
бесконечно много. Если выбрана какая-либо ФСР, то любое решение системы (2)
есть некоторая линейная комбинация решений из ФСР и обратно, так как ФСР —
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базис в пространстве решений, то любая линейная комбинация решений из ФСР —
решение системы (2). Поэтому, чтобы найти всю совокупность решений системы (2),
достаточно построить ФСР. Число решений в ФСР определит согласно теореме 11
размерность пространства решений.

Будем считать, не умаляя общности рассуждений, что базисный минор Mb нахо-
дится в левом верхнем углу матрицы A, т. е. Mb = det ||ap

k||rr. В матрице A = ||ap
k||mn

каждая из последних m − r строк есть линейная комбинация базисных строк, т. е.
первых r строк. Поэтому в системе (2) последние m − r уравнений являются след-
ствием первых r. Значит, последние m − r уравнений из системы (2) можно убрать
и решать систему лишь из r первых уравнений. Кроме того, в левой части системы
оставим лишь r первых неизвестных, а последние n−r неизвестных перенесем в пра-
вую часть уравнений, задав их произвольным образом, т. е. xr+1 = cr+1, . . . , xn = cn.
Итак, система (2) примет вид:

ap
kx

k = −ap
ec

e, p = 1, r, k = 1, r, e = r + 1, n. (3)

Система (3) — система r уравнений с r неизвестными и определителем Mb 6= 0. Таким
образом, если фиксированы значения cr+1, . . . , cn, то система (3) имеет единственное
решение, определяемое формулами Крамера. Будем задавать значения cr+1, . . . , cn со-
гласно ниже приведенной таблицы:

1 2 n− r
cr+1 1 0 . . . 0
cr+2 0 1 . . . 0
. . . . . . . . . . . . . . .
cn 0 0 . . . 1

⇒ Y1 =



c1
1

. . .

. . .
cr
1

1
0
. . .
0


, Y2 =



c1
2

. . .

. . .
cr
2

0
1
. . .
0


, . . . , Yn−r =



c1
n−r

. . .

. . .
cr
n−2

0
0
. . .
1


т. е. каждому набору значений cp будет соответствовать решение системы (2), причем
эти решения Y1, Y2, . . . , Yn−r линейно независимы, ибо ранг матрицы, составленной
из этих столбцов, равен n − r. Чтобы убедиться в том, что построенное множество
решений образует базис в пространстве решений, достаточно показать, что любое ре-
шение X∗ = ||ck||n системы (2) является линейной комбинацией указанных решений.
Рассмотрим линейную комбинацию

X = Ykc
k+r, k = 1, n− r, (4)

где c1+r, . . . , cn — (n − r) последних координат решения X∗. Так как у X и X∗ по-
следние n− r координат совпадают, то это означает, что они удовлетворяют системе
(3) с одной и той же правой частью. А так как система (3) при этом имеет един-
ственное решение, то X = X∗. Таким образом, доказано, что Y1, Y2, . . . , Yn−r — ФСР
и по теореме 11 размерность пространства решений системы (2) равна n− r.

З а м е ч а н и е 1. Способ построения ФСР, приведенный выше, где все свобод-
ные члены полагались равными нулю, кроме одного, равного 1, дает особую ФСР,
именуемую нормальной. Очевидно, значения cr+1, . . . , cn можно задавать иначе, по-
лучая другие ФСР.

З а м е ч а н и е 2. Формула (4) при условии, что в ней cr+1, . . . , cn принимают
любые значения от −∞ до ∞ независимо друг от друга, определяет всю совокуп-
ность решений системы (2). Отсюда следует, что множество решений системы (2) —
линейная оболочка, натянутая на порождающую систему векторов Y1, Y2, . . . , Yn−r.
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§3. Общее решение неоднородной линейной системы уравнений.

Снова рассмотрим систему (1). Будем считать ее совместной, т. е. rang A =
rang A∗ = r. Определим все множество решений системы (1). Пусть X0 — неко-
торое решение системы (1), которое обычно называют частным решением системы
(1). Пусть Y1, Y2, . . . , Yn−r — ФСР соответствующей системе (1) однородной системы
уравнений, т. е. системы (2). Тогда ykc

k, k = 1, n− r, — общее решение системы (2),
где c1, c2, . . . , cn−r — любые действительные числа.

Теорема 2 Общее решение совместной неоднородной системы уравнений (1), ранг
матрицы которой равен r, имеет вид:

X = X0 + Ykc
k, k = 1, n− r. (5)

Д о к а з а т е л ь с т в о. Надо доказать: 1) при любых c1, c2, . . . , cn−r формула (5)
определяет решение системы (1) и 2) каждое решение X∗ системы (1) при опреде-
ленном выборе n− r постоянных задается формулой (5).
1) Умножим формулу (5) на матрицу A слева: AX = AX0 + A(Ykc

k) = B + θ = B,
т. е. первое утверждение доказано.
2) Рассмотрим X∗ −X0. Тогда A(X∗ −X0) = AX∗ −AX0 = B −B = θ, т. е. X∗ −X0

есть решение системы (2), а значит существуют такие числа c1, c2, . . . , cn−r, что
X∗ −X0 = Ykc

k по формуле (4). Отсюда X∗ = X0 + Ykc
k. Теорема доказана.

З а м е ч а н и е. Чтобы найти какое-нибудь частное решение X0, нужно взять r
базисных уравнений системы (1) и в них положить xr+1, . . . , xn равными чему угодно,
например, равными нулю. Затем по формулам Крамера найти x1, x2, . . . , xr.

О п р е д е л е н и е. Пусть M - подпространство линейного пространства R,
x — любой элемент из M , а x0 — любой фиксированный элемент из R. Тогда
совокупность H всех элементов y = x0 + x называется результатом сдвига под-
пространства M вдоль элемента x0 или гиперплоскостью.

З а м е ч е н и е. Если x0 ∈ M , то гиперплоскость H является подпространством
линейного пространства R той же размерности, что и M . Если же x0 /∈ M , то
гиперплоскость H не является линейным пространством. Действительно, как было
доказано ранее в линейном пространстве R нулевой элемент один (теорема 1, гл. 2).
Этот же элемент является нулевым во всех подпространствах этого пространства.
А в гиперплоскость H не входит нулевой элемент θ. Предположим противное, т. е.
существует элемент x из M такой, что x0 + x = θ, т. е. x = −x0 = (−1)x0. Но
x0 /∈ M т. е. x0 ∈ R − M . Поэтому в силу корректности операции умножения на
число и элемент (−1)x0 = x ∈ R−M , т. е. x /∈ M , что противоречит предположению.
Значит гиперплоскость H не имеет нулевого элемента и, следовательно, не является
линейным пространством.

Опираясь на только что введенное понятие, можно утверждать, что совокупность
решений неоднородной системы уравнений не является линейным пространством, а
образует гиперплоскость.

П р и м е р. Найти общее решение следующей системы уравнений:
x1 −2x2 +x3 +3x4 = 2

x2 −x3 −x4 = −1
x1 −x2 +2x4 = 1

(6)

Определим ранг матрицы A системы (6).

A =

 1 −2 1 3
0 1 −1 −1
1 −1 0 2

 ∼
 1 0 0 0

0 1 −1 −1
1 1 −1 −1

, т. е. ранг матрицы A равен 2. Послед-

ний столбец в матрице A∗ отличается от второго столбца матрицы A множителем -1.
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Значит его можно убрать из матрицы A∗, не изменив при этом ранга. Следовательно,
rang A∗ = rang A, т. е. система (6) совместна. Кроме того, n − r = 4 − 2 = 2. Таким
образом, исходная система (6) эквивалентна, например, такой системе:{

x2 = c3 +c4 −1
x1 −x2 = −2c4 +1

(7)

Полагая здесь c3 = c4 = 0, получим систему уравнений:{
x2 = −1

x1 −x2 = 1.

Решив ее, найдем частное решение системы (6):

X0 =


0

−1
0
0

 .

Теперь рассмотрим соответствующую системе (7) однородную систему уравнений:{
x2 = c3 +c4

x1 −x2 = −2c4.

Строим ФСР:

c3 c4

1 0 x1 = 1, x2 = 1
0 1 x1 = −1, x2 = 1

⇒ Y1 =


1
1
1
0

 , Y2 =


−1

1
0
1

 .

Общее решение исходной системы уравнений (6):

X = X0 + Y1a
1 + Y2a

2 =


0

−1
0
0

+ a1


1
1
1
0

+ a2


−1

1
0
1

 =


a1 − a2

−1 + a1 + a2

a1

a2

 . Непо-

средственной проверкой убеждаемся, что это множество решений не содержит ну-
левого элемента θ = ||0||4, т. е. не является линейным пространством, но является
гиперплоскостью.
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Гл. 4. Евклидово пространство.

§1. Определение.

В математическом анализе уже определено евклидово пространство как мно-
жество всевозможных упорядоченных совокупностей из n действительных чисел
(x1, x2, . . . , xn), называемых точками, в котором введено расстояние между двумя
точками M1(x1, x2, . . . , xn) и M2(y1, y2, . . . , yn) по формуле ρ(M1, M2) = ((x1 − y1)

2 +
(x2 − y2)

2 + . . . + (xn − yn)2)1/2. Это пример конкретного евклидова пространства ибо
его элементами являются конкретные объекты — упорядоченные совокупности n дей-
ствительных чисел. В нашем курсе изучаются абстрактные линейные пространства,
элементами которых являются объекты любой природы (векторы, числа, столбцы,
многочлены, функции, матрицы и т. д.). До сих пор мы не вводили понятия расстоя-
ния, понятий угла и длины в абстрактном линейном пространстве. Сделаем это, т. е.
введем абстрактное евклидово пространство. Таким образом, евклидово простран-
ство — это линейное пространство, в котором введены метрические соотношения,
или, как говорят, введена метрика. Однако вначале вспомним метрические соотно-
шения в пространстве V3, введенные нами в аналитической геометрии: длину век-
тора, угол между векторами и скалярное произведение двух векторов. Заметим, что
знание скалярного произведения любых двух векторов позволяет найти как длину
вектора: |~a| =

√
(~a,~a), так и угол между векторами: cos φ = (~a,~b)/(|~a||~b|). Следо-

вательно, в понятии скалярного произведения заключена возможность измерения
длин и углов, т. е. все, что связано с измерениями. В общем абстрактном линей-
ном пространстве нам будет удобнее ввести сначала скалярное произведение двух
элементов пространства, а затем из скалярного произведения получить определения
длины вектора и угла между элементами.

В этой главе будем рассматривать только числовое поле K0 — поле всех действи-
тельных чисел.

О п р е д е л е н и е. Линейное пространство называется евклидовым, если в
нем указано правило, ставящее в соответствие каждым двум элементам x, y
число, которое обозначим (x, y) и назовем скалярным произведением элементов
x, y. Это правило удовлетворяет следующим аксиомам:

a.1
o
. (x, y) = (y, x) (переместительное свойство),

a.2
o
. (x + y, e) = (x, e) + (y, e) (распределительное свойство),

a.3
o
. ∀a ∈ K0 (ax, y) = a(x, y),

a.4
o
. (x, x) > 0 при x 6= θ и (x, x) = 0 для x = θ.

П р и м е р ы.

1) V3 : (~a,~b) = |~a||~b| cos(~a,~b). Аксиомы 1
o
− 4

o
были установлены в векторной алгебре

(в курсе аналитической геометрии).
2) Tn : x = ||xk||n, y = ||yk||n. Введем скалярное произведение так: (x, y) = x1y1 +

x2y2 + . . . + xnyn. Проверьте сами выполнение аксиом 1
o
− 4

o
в этом случае.

3) C[a,b] : x(c), y(c) — элементы этого пространства. Пусть (x, y) =
b∫
a

x(c)y(c)dc. Про-

верьте сами выполнение аксиом 1
o
− 4

o
.

Евклидово пространство обозначается символом E или, если известна его раз-
мерность n, то — En. Если (ek)n — базис в евклидовом пространстве En и x, y —
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элементы этого пространства, то x = epx
p = eXe, y = eky

k = eYe, где использованы

обозначения, введенные в §6, гл. 2. Но тогда, как следует из a.1
o
− 3

o
,

(x, y) = (epx
p, eky

k) =
n∑

p,k=1

(ep, ek)x
pyk.

Если ввести обозначения apk = (ep, ek), то окончательно получим:

(x, y) = apkx
pyk, p, k = 1, n. (1)

Используя определение произведения матриц, равенство (1) можно записать в мат-
ричной форме, если обозначить A = ||apk||n,n:

(x, y) = XT
e AYe. (1′)

Формула (1) (или, что то же самое — формула (1′)) — выражение скалярного произ-
ведения в произвольном базисе. Из равенства (1) следует, что для каждого элемента
x из En

(x, θ) = (θ, x) = 0. (2)

§2. Основные метрические понятия в евклидовом пространстве.
Неравенство Коши-Буняковского.

О п р е д е л е н и е. Длиной элемента x пространства E называется
√

(x, x) и
обозначается |x|.

З а м е ч а н и е. В некоторых монографиях по алгебре, например, книге Ильина
В.А. и Поздняка Э.Г., таким образом введенная длина элемента называется нормой
элемента из E.

О п р е д е л е н и е. Если |x| = 1, то элемент x называется нормированным
элементом пространства E.

П р и м е р ы.

1) V3 : |~a| =
√

(~a,~a) — обычная длина вектора.

2) Tn : x = ||xk||n, |x| = (x1x1 + x2x2 + . . . + xnxn)1/2.

3) C[a,b] : |x| = (
b∫
a

x2(c)dc)1/2. Эту величину обозначают иногда ||x(c)|| и называ-

ют нормой функции x(c), чтобы избежать ложных ассоциаций, связанных со
словами "длина функции".

О п р е д е л е н и е. Углом между ненулевыми элементами x, y из E называет-
ся угол φ, определяемый условиями: 1) cos φ = (x, y)/(|x| · |y|), 2) 0 ≤ φ ≤ π.

В пространстве V3 это определение согласуется с обычным выражением угла
через скалярное произведение. В общем случае надо доказать корректность этого
определения, а именно показать, что для любых элементов x, y из E (x, y)/(|x| · |y|)
по модулю не превосходит 1 или, что то же самое,

|(x, y)| ≤ |x| · |y|.

Последнее неравенство называется неравенством Коши-Буняковского.
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Теорема 1 Для любых элементов x, y из E имеет место неравенство Коши-
Буняковского.

Д о к а з а т е л ь с т в о. Рассмотрим элемент ax− y, где a — любое число из K0.

По a.4
o
для каждого a имеем: (ax− y, ax− y) ≥ 0. А в силу a.1

o
− 3

o
это неравенство

можно записать так: a2(x, x)−2a(x, y)+(y, y) ≥ 0. Отсюда следует, что дискриминант
квадратного трехчлена D = (x, y)2 − (x, x)(y, y) ≤ 0, т. е. (x, y)2 ≤ (x, x) · (y, y) или
|(x, y)| ≤

√
(x, x)(y, y) = |x||y|. Что и требовалось доказать.

Из теоремы 1 следует корректность определения угла между элементами из E.
Приведем примеры неравенства Коши-Буняковского в конкретных пространствах:

1) V3 : |(~a,~b)| ≤ |~a| · |~b|.

2) Tn :
∣∣∣∣ n∑
k=1

xkyk

∣∣∣∣ ≤ (
n∑

k=1
(xk)2)1/2 · (

n∑
k=1

(yk)2)1/2.

3) C[a,b] :

∣∣∣∣∣ b∫
a

x(c)y(c)dc

∣∣∣∣∣ ≤ (
b∫
a

x2(c)dc)1/2 · (
b∫
a

y2(c)dc)1/2.

Н а д о м: Для каких элементов x, y имеет место равенство |(x, y)| = |x| · |y|?

§3. Ортогональность элементов в евклидовом пространстве.
Ортонормированный базис в евклидовом пространстве.

О п р е д е л е н и е. Элементы x, y из E называются ортогональными, если
(x, y) = 0.

По определению угла между элементами x, y это означает, что при x 6= θ, y 6=
θ cos φ = 0, т. е. φ = π/2.

Лемма 1 Взаимно ортогональные ненулевые элементы x1, x2, . . . , xk в E линейно
независимы.

Д о к а з а т е л ь с т в о. Предположим противное. Тогда xpc
p = θ, p = 1, k, где не

все cp равны нулю. Пусть c1 6= 0. Умножим это равенство по правилу скалярного
произведения на x1. В силу предположения о взаимной ортогональности элемен-
тов x1, x2, . . . , xk т. е. (xe, xp) = 0 при e 6= p, и того, что (θ, x1) = 0, мы получим:
c1(x1, x1) = 0. Отсюда следует, что (x1, x1) = 0, и, следовательно, x1 = θ, что проти-
воречит условию леммы.

О п р е д е л е н и е. Система элементов e1, . . . , en, удовлетворяющая условию
(ep, ek) = δpk, называется ортонормированной системой элементов.

Таким образом, система ортонормированных элементов — это совокупность нор-
мированных, взаимно ортогональных элементов.

Теорема 2 В n-мерном евклидовом пространстве En существует ортонормиро-
ванный базис (ek)n.

Д о к а з а т е л ь с т в о. Возьмем в En какой-либо базис (fk)n и с помощью неко-
торой процедуры, описанной ниже, построим n элементов e1, . . . , en, линейно выра-
жающихся через f1, . . . , fn и образующих ортонормированный базис.
Шаг 1. e1 = f1/|f1|.
Шаг 2. e2 будем искать в виде af2 + be1. Так как e2 должен удовлетворять условиям:
1) (e1, e2) = 0 и 2) (e2, e2) = 1, то из 1)⇒ (e1, e2) = (e1, af2+be1) = a(e1, f2)+b(e1, e1) =
a(e1, f2) + b = 0, т. е. b = −a(e1, f2). Поэтому e2 = ac2, где c2 = f2 − (e1, f2)e1. Теперь
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из 2) имеем a = 1/|c2|, где |c2| =
√

(c2, c2). Итак, e2 = c2/|c2|, где c2 = f2 − (e1, f2)e1.
Шаг 3. e3 будем искать в виде af3 + be2 + ce1. Так как элемент e3 должен удовле-
творять условиям: 1) (e1, e3) = 0, 2) (e2, e3) = 0, 3) (e3, e3) = 1, то из первых двух
условий имеем:{

a(f3, e1) + b(e2, e1) + c(e1, e1) = 0
a(f3, e2) + b(e2, e2) + c(e1, e2) = 0

⇒
{

a(f3, e1) + c = 0
a(f3, e2) + b = 0

⇒ c = −a(f3, e1)
b = −a(f3, e2)

.

Таким образом, e3 = ac3, где c3 = f3 − (f3, e2)e2 − (f3, e1)e1. Из 3) следует, что
a = 1/|c3|. Итак, окончательно e3 = c3/|c3|.
Шаг k. ek = ck/|ck|, где ck = fk − (fk, ek−1)ek−1 − . . .− (fk, e1)e1.
Покажем, что
Шаг k+1. ek+1 = ck+1/|ck+1|, где ck+1 = fk+1 − (fk+1, ek)ek − . . . − (fk+1, e1)e1. Надо
доказать: 1) ek+1 6= θ, 2) (ep, ek+1) = 0 для p = 1, k, 3) |ek+1| = 1.
Утверждение 3) очевидно. Как следует из формулы для ck+1, этот элемент линейно
выражается через f1, f2, . . . , fk, fk+1, так как e1, e2, . . . , ek — линейные комбинации
элементов f1, f2, . . . , fk. Но система элементов f1, f2, . . . , fk, fk+1 по предположению
линейно независима, и, следовательно, их линейная комбинация ck+1 6= θ, так как ко-
эффициент при fk+1 равен 1, т. е. отличен от 0. Значит, утверждение 1) имеет место.
Умножим ck+1 по правилу скалярного произведения на ep, p = 1, k, т. е. (ck+1, ep) =

(fk+1, ep)−
k∑

n=1
(fk+1, en)(en, ep) = (fk+1, ep)−

k∑
n=1

(fk+1, ep)δnp = (fk+1, ep)− (fk+1, ep) = 0.

Отсюда следует справедливость 2). Таким образом, по методу математической ин-
дукции представление для ck+1 верно для любого натурального k. т. е. для k = n.
Значит, завершив этот процесс ортогонализации базиса (fp)n, мы придем к ортонор-
мированному базису (ep)n. Теорема доказана.

З а м е ч а н и е. В любом евклидовом пространстве En существует много орто-
нормированных базисов. Мы построили лишь один из них. Укажем еще один. На
шаге 1 положим e1 = f2/|f2| и т. д.

С л е д с т в и е 1. В ортонормированном базисе (ep)n скалярное произведение
элементов x = epx

p = eXe, y = epy
p = eYe из пространства En имеет вид:

(x, y) = XT
e Ye (3)

или в координатах:

(x, y) =
n∑

p=1

xpyp. (3′)

Д о к а з а т е л ь с т в о. В произвольном базисе скалярное произведение в силу (1)
имеет вид (x, y) = XT

e AYe, где A = ||apk||n,n. В ортонормированном базисе apk = δpk,
т. е. A = E. Значит, из (1) следует (3).

С л е д с т в и е 2. Если в некотором базисе (ek)n скалярное произведение эле-
ментов x, y имеет вид (3), то базис (ek)n — ортонормированный.

Д о к а з а т е л ь с т в о. Так как в базисе (ek)n x = epx
p, y = epy

p, то (x, y) =
apkx

pyk. Но по условию (x, y) представимо в виде (3), т. е. apk = (ep, ek) = δpk. А это
и есть условие ортонормированности базиса

§4. Разложение евклидова пространства на прямую сумму его
подпространств.

О п р е д е л е н и е. Пусть - M — какое-либо подпространство евклидова про-
странства En. Тогда совокупность P всех элементов y пространства En, ортого-
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нальных к каждому элементу x подпространства M , называется ортогональным
дополнением подпространства M .

Иными словами, P — множество всех элементов y из En, для которых (x, y) = 0
для любого x из M .

Теорема 3 Если M — подпространство евклидова пространства En размерно-
сти k, где k ≤ n, то его ортогональное дополнение P является также под-
пространством евклидова пространства En размерности n − k, т. е. dim E =
dim M + dim P .

Д о к а з а т е л ь с т в о. Покажем прежде всего, что P — подпространство про-
странства En. Так как P — множество элементов из En, то для этого осталось
показать корректность на P введенных в En линейных операций. Пусть y1, y2 при-
надлежат P , т. е. для любого x из M (x, y1) = 0, (x, y2) = 0. Тогда: а) (x, y1 + y2) =

(a.1
o
) = (y1 + y2, x) = (a.2

o
) = (y1, x) + (y2, x) = 0 + 0 = 0, т. е. y1 + y2 ∈ P . б) для

любого числа b и любого x из M (by1, x) = b(y1, x) = b · 0 = 0, т. е. by1 ∈ P . Итак,
P — подпространство евклидова пространства En. Теперь докажем утверждение о
размерности P . Пусть (ep)k — ортонормированный базис в M . Если y ортогонален к
элементам e1, e2, . . . , ek, то он ортогонален и к любой их линейной комбинации, т. е.
к любому элементу из M . Поэтому условие y ∈ P эквивалентно условию:

(y, ei) = 0, i = 1, k. (4)

В силу свойства 3 (о пополнении базиса) подпространства линейного пространства,
изложенного в §7 гл. 2, базис (ep)k можно дополнить элементами fk+1, . . . , fn про-
странства En до базиса во всем пространстве En. Проведя процесс ортогонализации
(как в теореме 2) элементов e1, e2, . . . , ek, fk+1, . . . , fn, мы получим ортонормирован-
ный базис (ep)n всего пространства En, т. е.

(ep, ei) = δip, i, p = 1, n. (5)

В этом базисе элемент y из P имеет разложение y = epy
p. И, следовательно, система

(4) с учетом равенств (5) запишется так:

ypδpi = 0, i = 1, k. (6)

Матрица ||δpi||n,k однородной линейной системы уравнений (6) имеет ранг, равный
k. Но тогда, как показано в §2 гл. 3, совокупность всех решений y системы (6),
а значит и системы (4), образует линейное пространство размерности n − k, т. е.
размерность P равна n− k. Теорема доказана.

С л е д с т в и е. Базисом в P являются n−k последних элементов базиса (ep)n.
Действительно, элементы ek+1, . . . , en линейно независимы, ибо принадлежат ба-

зису. Их n − k и все они принадлежат P . Размерность P равна n − k. Значит по т.
10 гл. 2 указанная совокупность элементов образует базис в P .

О п р е д е л е н и е. Линейное пространство E называется прямой суммой
подпространств M и P , если каждый элемент x пространства E может быть
представлен, и притом единственным способом, в виде суммы элемента y из M
и элемента z из P .

Тот факт, что E есть прямая сумма подпространств M и P , символически запи-
сывается так: E = M ⊕ P .

П р и м е р ы.
1). Пусть E3 — линейное пространство векторов с закрепленными началами в

точке 0. Пусть K1, K2 — две различные прямые, проходящие через точку 0. Тогда
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плоскость P , содержащая эти две прямые, есть прямая сумма K1 и K2: P = K1⊕K2.
Действительно, для каждого вектора ~a, лежащего в плоскости P , разложение на
сумму векторов ~b из K1 и ~c из K2 единственно, что видно из рисунка.
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2). Пусть P1, P2 — две различные плоскости, проходящие через точку 0. Тогда
любой вектор ~a из E3 представим в виде суммы вектора ~b из P1 и вектора ~c из P2.

Но не единственным образом, так как помимо пред-HHH
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ставления ~a = ~b + ~c можно предложить и такое:

~a = (~b + ~d) + (~c− ~d).

где ~d — вектор, лежащий на пересечении плоскостей P1

и P2, и тем самым вектор ~b + ~d лежит в плоскости P1, а вектор ~c − ~d в плоскости
P2. Таким образом, пространство E3 не является прямой суммой P1 и P2, т. е. E3 6=
P1 ⊕ P2.

Теорема 4 Всякое евклидово пространство En можно представить в виде пря-
мой суммы любого подпространства M и его ортогонального дополнения P , т. е.
En = M ⊕ P .

Д о к а з а т е л ь с т в о. Как было показано при доказательстве теоремы 3, про-
извольный ортонормированный базис (ep)k в M можно пополнить до ортонормиро-
ванного базиса (ep)n по всем пространстве En, причем элементы ek+1, . . . , en в нем
образуют базис в P . Разложив любой элемент x из En по этому базису: x = epx

p, мы
получим, что этот элемент однозначно представлен в силу единственности разложе-
ния по базису в виде x = x′ + x′′, где x′ = epx

p, p = 1, k — совершенно определенный
элемент M , а x′′ = epx

p, p = k + 1, n — совершенно определенный элемент из P .
Покажем единственность этого представления. Предположим противное, т. е. пусть
есть другое представление x = y′ + y′′, где y′ ∈ M , y′′ ∈ P . Вычтем из первого
представления второе:

θ = (x′ − y′) + (x′′ − y′′). (7)

Так как x′, y′ ∈ M , то x′− y′ ∈ M . Так как x′′, y′′ ∈ P , то x′′− y′′ ∈ P . Следовательно,

(x′ − y′, x′′ − y′′) = 0. (8)

Умножим элемент (7) по правилу скалярного произведения на элемент x′ − y′. Тогда
(θ, x′−y′) = (x′−y′, x′−y′)+(x′′−y′′, x′−y′). Здесь левая часть равна 0 в силу равенства
(2), второе слагаемое справа равно нулю в силу (8). Значит, (x′ − y′, x′ − y′) = 0.

Поэтому по a.4
o

x′ − y′ = θ, т. е. x′ = y′. Умножив элемент (7) на x′′ − y′′ по правилу
скалярного произведения, аналогично только что рассмотренному случаю получаем:
x′′ = y′′. Пришли к противоречию с допущением о том, что разложение по базису не
единственно. Значит, это разложение единственно. Теорема доказана.

З а м е ч а н и е. Итак, доказано, что для каждого элемента x из En существует
единственная пара элементов: y из M и z из P , где M — заданное подпространство
пространства En, а P — ортогональное дополнение к M , такая, что x = y + z. При
этом часто x называют наклонной к подпространству M , y — проекцией элемента
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x на подпространство M , z — перпендикуляром, опущенным из элемента x на M , а
длина элемента |z| — расстоянием элемента x до M .

В качестве приложения и иллюстрации введенных понятий рассмотрим альтер-
нативу Фредгольма для линейной системы n уравнений с n неизвестными:

AX = B, (9)

где A = ||ap
k||nn, X = ||xp||n, B = ||bp||n. Далее нам потребуются две однородных

системы, соответствующих системе (9):

AX = θ (10)

и
AT X = θ, (11)

которую называют сопряженной однородной системой, соответствующей (9).

Теорема 5 (Альтернатива Фредгольма) Или система (10) имеет только нулевое
решение, и тогда система (9) имеет единственное решение при любом B из Tn.
Или система (10) имеет ненулевое решение, и тогда система (9) совместна то-
гда и только тогда, когда столбец свободных членов B ортогонален простран-
ству решений системы (11).

Д о к а з а т е л ь с т в о. Как было показано в курсе аналитической геометрии, ли-
нейная квадратная система уравнений имеет единственное решение тогда и только
тогда, когда определитель ее матрицы не равен 0. Значит, в первом утверждении
теоремы определитель матрицы системы (10), а тем самым и определитель матрицы
системы (9), не равен нулю. Но тогда система (9) имеет единственное решение пред-
ставимое формулами Крамера, для любого столбца B свободных членов. Докажем
вторую часть теоремы. Как следует из теоремы Кронекера-Капелли (теорема 1, гл.
3) система (9) совместна тогда и только тогда, когда столбец B является линейной
комбинацией столбцов A1, A2, . . . , An матрицы A этой системы. Иными словами B
принадлежит линейной оболочке столбцов матрицы A L(A1, A2, . . . , An) ≡ L(A) или,
как следует из теоремы 4, столбец B ортогонален P — ортогональному дополнению
к L(A). Таким образом, любой столбец X из P ортогонален к каждому элементу
из L(A). Последнее имеет место, если (X, Ak) = 0, k = 1, n. Расписав эту систему
равенств в координатах, получим:

n∑
p=1

ap
kx

p = 0, k = 1, n,

или в матричной форме: AT X = θ, т. е. X является решением системы (11), а со-
вокупность P всех таких X — пространством решений системы (11). Итак, для
совместности системы (9) необходимо и достаточно, чтобы столбец B был ортогона-
лен к пространству P решений системы (11).
Если система (10) имеет только нулевое решение, то и система (11) имеет лишь ну-
левое решение, так как по свойству 1 определителя det A = det AT 6= 0, т. е. P = θ.
Так как по формуле (2) (B, θ) = 0, то любой столбец B ортогонален нулевому столб-
цу. Следовательно, в этом случае система (9) разрешима для любого B из Tn, что
и доказано в первой части теоремы. Если же система (10) нетривиально совместна,
то и система (11) имеет ненулевые решения. Тогда P содержит и ненулевые эле-
менты. Поэтому здесь система (9) совместна тогда и только тогда, когда столбец B
ортогонален P . Теорема доказана.
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§5. Ортогональная матрица.

О п р е д е л е н и е. Квадратная матрица Q = ||qp
k||nn называется ортогональ-

ной, если
QQT = E. (12)

Сформулируем и докажем некоторые свойства ортогональной матрицы.

С в о й с т в о 1
o
.

QT = Q−1. (13)

Д о к а з а т е л ь с т в о. По теореме 5 гл. 4 курса аналитической геометрии det QT ·
det Q = det QT Q = det E = 1. Следовательно, det Q 6= 0. Поэтому матрица Q имеет
обратную матрицу Q−1. Умножив формулу (12) на Q−1 слева, придем к формуле (13).

З а м е ч а н и е. Так как по определению обратной матрицы QQ−1 = Q−1Q = E,
то в силу равенства (13) имеем:

QT Q = E. (14)

Каждое из равенств (13) и (14) может быть принято в качестве определения ортого-
нальной матрицы.

С в о й с т в о 2
o
.

det Q = ±1. (15)

Д о к а з а т е л ь с т в о. Как было показано при доказательстве свойства 1
o
, det QT ·

det Q = 1. Но в силу свойства 1 определителей det QT = det Q. Поэтому первое ра-

венство можно записать так: (det Q)2 = 1, что и означает выполнение свойства 2
o
.

С в о й с т в о 3
o
. Матрица обратная к ортогональной — ортогональная мат-

рица.
Д о к а з а т е л ь с т в о. Путь Q — ортогональная матрица, а Q−1 — ей обрат-

ная. Чтобы показать, что Q−1 — ортогональная матрица, воспользуемся определени-
ем ортогональной матрицы, т. е. покажем выполнение равенства (Q−1)T = (Q−1)−1.

Преобразуем левую часть равенства: (Q−1)T = (свойство 1
o
)= (QT )T = (определе-

ние транспонированной матрицы) = Q. Теперь рассмотрим правую часть равенства:
(Q−1)−1 = Q (по определению обратной матрицы). Так как в результате тожде-
ственных преобразований мы пришли к одному и тому же выражению, то исходное
равенство справедливо, и, следовательно, Q−1 — ортогональная матрица.

С в о й с т в о 4
o
. Матрица транспонированная к ортогональной — ортого-

нальная матрица.
Д о к а з а т е л ь с т в о. По аналогии с предыдущим: надо проверить справедли-

вость равенства
(QT )T = (QT )−1.

Но по определению транспонированной матрицы выражение слева есть матрица Q, а

справа, если заменить QT в силу свойства 1
o
на Q−1 и воспользоваться определением

обратной матрицы, так же стоит матрица Q. Значит равенство справедливо, и QT —
ортогональная матрица.

С в о й с т в о 5
o
. Если Q1 и Q2 — ортогональные матрицы, то Q1Q2 — орто-

гональная матрица.
Д о к а з а т е л ь с т в о. Покажем выполнимость равенства (13). (Q1Q2)

T = (по т.

4, гл. 4, курса аналитической геометрии) = QT
2 QT

1 = (по свойству 1
o
) = Q−1

2 Q−1
1 =

(по т. 9, гл. 4 курса аналитической геометрии) = (Q1Q2)
−1.
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С в о й с т в о 6
o
. n×n-матрица Q тогда и только тогда будет ортогональной,

когда сумма квадратов всех элементов любого ее столбца (строки) равна 1,
а сумма произведений соответствующих элементов любых двух ее столбцов
(строк) равна нулю.

Н е о б х о д и м о с т ь. Пусть Q — ортогональная матрица, т. е. имеют место (12)
и (14). Тогда из (12) следует, что

qp
k(q

T )k
e =

n∑
k=1

qp
kq

e
k = δpe. (15′)

т. е. для любых строк с индексами p, e имеет место утверждение свойства. А из (14)
то же самое следует для любых двух столбцов:

(qT )p
kq

k
e =

n∑
k=1

qk
pq

k
e = δpe. (15′′)

Д о с т а т о ч н о с т ь. Пусть выполнены (15′) или (15′′). Но из (15′) следует, что
QQT = E, т. е. согласно определению ортогональной матрицы Q — матрица орто-
гональная. А из (15′′) следует, что QT Q = E, т. е. в силу (14) Q — ортогональная
матрица.

С в о й с т в о 7
o
. Если (ek)n — ортонормированный базис в En, то базис (fk)n,

полученный преобразованием f = eQ, где Q — ортогональная матрица, также
будет ортонормированным базисом.

Д о к а з а т е л ь с т в о. В k-ом столбце матрицы Q стоят координаты элемента fk

в базисе (ep)n. Поэтому на основании свойства 6
o
, равенства (3) и ортонормирован-

ности базиса (ep)n имеем (fp, fk) = δpk, т. е. (fk)n — ортонормированный базис.

С в о й с т в о 8
o
.Если (fp)n и (ep)n — ортонормированные базисы, то матрица

Q, осуществляющая переход от одного базиса к другому: f = eQ, является
ортогональной.

Д о к а з а т е л ь с т в о. Так как f = eQ, то fk = epq
p
k, fp = ejq

i
p. Тогда (fk, fp) =

(eiq
i
k, ejq

j
p) = (формула (3′)) =

n∑
i=1

qi
kq

i
p =(из ортонормированности (fk)n) = δkp. Но

последнее равенство есть соотношение (15′′). Значит в силу свойства 6
o
матрица Q

ортогональная.
П р и м е р. Поворот на угол α в пространстве V2 есть ортогональное преобразо-

вание старых переменных x, y в новые x′′, y′′ по известным из курса аналитической
геометрии формулам: {

x′′ = x cos α + y sin α
y′′ = −x sin α + y cos α

Запишем это преобразование в матричной форме: пусть

X ′′ =

(
x′′

y′′

)
, X =

(
x
y

)
, Q =

(
cos α sin α

− sin α cos α

)
.

Тогда X ′′ = QX — ортогональное преобразование, а Q — ортогональная матрица.
Проверим выполнение свойств. Свойство det Q = cos2 α + sin2 α = 1, т. е. оно выпол-
нено. Отсюда обратное преобразование задается матрицей:

Q−1 =

(
cos α − sin α
sin α cos α

)
.
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Так как

QT =

(
cos α − sin α
sin α cos α

)
,

то QT = Q−1, т. е. выполнено свойство 1
o
. Очевидно выполнение равенств (15), т. е.

имеет место свойство 6
o
.

§6. Общий вид линейного функционала.

О п р е д е л е н и е. Функционалом в евклидовом пространстве En называется
любой наперед заданный закон Φ, по которому любому элементу x из En сопо-
ставляется определенное действительное число, обозначаемое символом Φ(x).

О п р е д е л е н и е. Функционал Φ, x ∈ En, называется линейным, если:
а) для любых x, y из En Φ(x + y) = Φ(x) + Φ(y),
б) для любого числа b из K0 и любого x из En Φ(bx) = bΦ(x).

Из условий а), б) по индукции легко получить следующее соотношение для ли-
нейного функционала: для любых x1, x2, . . . , xk из En и любых чисел b1, b2, . . . , bk из
K0 имеем:

Φ(xpb
p) = bpΦ(xp). (16)

Пример линейного функционала: Пусть x0 — фиксированный элемент En, x — лю-
бой элемент En. Тогда скалярное произведение (x, x0) — линейный функционал.
Действительно, скалярное произведение при фиксированном x0 — определенный за-
кон по которому любому элементу x из En ставится в соответствие определенное

число. Значит, это функционал. Далее из а.1
o
– 3

o
определения скалярного произ-

ведения следует, что это линейный функционал. Оказывается, приведенный пример
линейного функционала играет фундаментальную роль во всей теории линейных
функционалов. А именно, верна следующая

Теорема 6 Всякий линейный функционал Φ представим единственным образом
по формуле:

Φ(x) = (x, x0), (17)

где x0 — некоторый фиксированный элемент из En.

Д о к а з а т е л ь с т в о. Пусть (ep)n — ортонормированный базис в En. Так как
функционал определен на всем пространстве En, то, в частности, определены чис-
ла Φ(e1), Φ(e2), . . . , Φ(en). Пусть x0 — элемент En с координатами X0

e = ||Φ(ek)||n в
базисе (ep)n. Пусть x — любой элемент En с координатами Xe = ||ck||n в том же
базисе (ep)n, т. е. x = ekc

k. Тогда Φ(x) = Φ(ekc
k) =(формула (16))= ckΦ(ek) =(так

как (ep)n — ортонормированный базис, то по формуле (3))=(x, x0). Осталось дока-
зать единственность представления функционала Φ в виде скалярного произведения.
Пусть возможны два представления: Φ(x) = (x, x0) = (x, y). Но тогда для любого x

из En (x, x0)− (x, y) = (a.1
o
, 2

o
) = (x, x0 − y) = 0. В частности, при x = x0 − y имеем

(x0−y, x0−y), что в силу a.4
o
определения скалярного произведения возможно лишь

при x0 − y = θ, т. е. при x0 = y. Из полученного противоречия с предположением
следует единственность представления. Теорема доказана.

§7. Изоморфизм евклидовых пространств.

По аналогии с изоморфизмом линейных пространств вводится понятие изомор-
физма всех конечномерных евклидовых пространств.
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О п р е д е л е н и е. Два евклидовых пространства En и E ′′
n называются изо-

морфными, если между элементами этих пространств можно установить вза-
имно однозначное соответствие так, что если элементам пространства En x, y
отвечают соответственно элементы x′′, y′′ пространства E ′′

n, то элементу x+y
из En отвечает x′′ + y′′ из E ′′

n, а элементу bx (∀b ∈ K0) из En отвечает элемент
bx′′ из E ′′

n и, наконец, (x, y) = (x′′, y′′).

Теорема 7 Все евклидовы пространства одной и той же размерности n изоморф-
ны.

Д о к а з а т е л ь с т в о. Достаточно доказать, что любое n-мерное евклидово про-
странство E ′′

n изоморфно евклидову пространству En упорядоченных совокупностей
n действительных чисел вида x = (x1, x2, . . . , xn) со скалярным произведением

(x, y) = x1y1 + x2y2 + . . . + xnyn. (18)

Согласно теореме 2 в E ′′
n существует ортонормированный базис (e′′k)n. Каждому эле-

менту x′′ = e′′kx
k пространства E ′′

n поставим в соответствие n чисел x1, x2, . . . , xn

— координат этого элемента в базисе (ek)n, т. е. вполне определенный элемент
x = (x1, x2, . . . , xn) пространства En. Установленное соответствие взаимно однознач-
но. Кроме того, из теоремы 9 гл. 2 следует, что если элементам x′′, y′′ из E ′′

n, имеющим
в базисе (e′′k)n координаты Xe = ||xk||n, Ye = ||yk||n, отвечают соответственно элемен-
ты x = (x1, x2, . . . , xn) и y = (y1, y2, . . . , yn) пространства En, то элементу x′′ + y′′

соответствует элемент x + y, а элементу bx′′ соответствует элемент bx. Осталось
доказать, что (x′′, y′′) = (x, y). В силу ортонормированности базиса (e′′k)n и формулы
(3′): (x′′, y′′) = x1y1 +x2y2 + . . .+xnyn. C другой стороны, в силу формулы (18), опре-
деляющей скалярное произведение в пространстве En, этому же выражению равно
скалярное произведение (x, y). Теорема доказана.
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Гл. 5. Линейные операторы в линейном конечномер-
ном пространстве.

§1. Основные понятия.

Пусть Rn и Rk — линейные пространства над полем K, причем k ≤ n. Будем
называть оператором Â, действующим из Rn в Rk, соответствие вида Â : Rn →
Rk, сопоставляющее каждому элементу x пространства Rn некоторый элемент y
пространства Rk и обозначать символом y = Âx, при этом элемент x называется
прообразом, а соответствующий ему элемент y называется образом.

О п р е д е л е н и е. Оператор Â, действующий из Rn в Rk, называется линей-
ным, если для любых элементов x1 и x2 пространства Rn и любого числа b из
поля K
1) Â(x1 + x2) = Â(x1) + Â(x2) (свойство аддитивности оператора)
2) Â(bx1) = bÂ(x1) (свойство однородности оператора).

З а м е ч а н и е 1. Если k = 1, то линейный оператор Â, действующий из Rn в R1

называется линейной формой или линейным функционалом. Этому случаю посвящен
§6 гл. 4.

З а м е ч а н и е 2. Если пространство Rk совпадает с пространством Rn, то ли-
нейный оператор Â, действующий из Rn в Rn, называют также линейным преобра-
зованием пространства Rn.

Эта глава целиком будет посвящена последнему случаю, т. е. линейному опе-
ратору, действующему из Rn в Rn. Так как в этом случае не возникает проблемы
о том, куда и откуда действует оператор, то слова "действующий из Rn в Rn" за
ненадобностью будем опускать.

П р и м е р ы.

1. Нуль-оператор θ̂: для каждого x из R θ̂x = θ.

2. Единичный или тождественный оператор Ê: для всех x из R Êx = x.

3. Оператор умножения на число из поля K или оператор подобия: для каждого
x из R Âx = bx, где b — фиксированное число из K.

4. Оператор поворота на угол φ0 в линейном пространстве V2: для каждого вектора
~a = {ρ, φ} Â~a = ~b = {ρ, φ + φ0}.

5. Оператор дифференцирования D̂, заданный в линейном пространстве непре-
рывно дифференцируемых на сегменте [a, b] функций C1

[a,b], переводит элемен-
ты этого пространства в элементы пространства C[a,b]: для каждого x(t) ∈ C1

[a,b]

D̂x(t) = ẋ(t) ∈ C[a,b]. Иными словами, оператор D̂ действует на подпростран-
стве C1

[a,b] линейного пространства C[a,b]. Это единственный пример линейного
оператора в бесконечномерном пространстве, который мы рассмотрели в нашем
курсе, ибо наша цель — изучить линейные операторы, действующие в линейном
конечномерном пространстве.

§2. Матрица линейного оператора.

Пусть линейный оператор Â задан в линейном пространстве Rn, а (ep)n — неко-
торый базис в этом пространстве. Оказывается, достаточно выяснить результат при-
менения оператора Â к базисным векторам, чтобы задать этот оператор во всем
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пространстве Rn. Рассмотрим элементы Âep, p = 1, n. Разложим каждый из них по
базису (ep)n:

Âep = eka
k
p, p = 1, n, k = 1, n. (1)

Матрица Ae = ||ak
p||nn называется матрицей линейного оператора Â в базисе (ep)n.

Соотношение (1) запишем в матричной форме, воспользовавшись введенными в гл.
2 обозначениями e = ||ep||n, Âe = ||Âep||n:

Âe = eAe. (1′)

Лемма 1 Если C = ||ck
p||nm, то Â(eC) = (Âe)C.

Д о к а з а т е л ь с т в о. Â(eC) =(определение произведения матриц)= Â·||ekc
k
p||m =

||Â(ekc
k
p)||m =(свойство 2) определения линейного оператора)= ||(Âek)c

k
p||m = (опре-

деление произведения матриц)= (Âe)C. Лемма доказана.

Теорема 1 Пусть в базисе (ep)n линейного пространства Rn линейному операто-
ру Â соответствует матрица Ae. Тогда, если элемент x из Rn имеет в этом
базисе координаты Xe = ||xp||n, то его образ y = Âx будет иметь координаты,
определяемые формулой:

Ye = ||yp||n = AeXe. (2)

Д о к а з а т е л ь с т в о. Если x, y ∈ R, то по базису (ep)n они разложатся так:
x = eXe, y = eYe. Тогда y = Âx запишется так: eYe = Â(eXe) или в силу леммы 1 и
формулы (1′) eYe = eAeXe. Здесь слева и справа стоят разложения по базису (ep)n

равных элементов. Поэтому в силу единственности разложения по базису имеем:
Ye = AeXe.

Теорема 2 Если (ep)n — базис в линейном пространстве Rn, то каждая n × n-
матрица Ae = ||ak

p||nn является матрицей некоторого линейного оператора Â в
этом базисе.

Д о к а з а т е л ь с т в о. Построим оператор Â так: каждому x с координатами Xe

ставим в соответствие элемент y с координатами Ye, заданными равенством (2).
а) Этот оператор линеен, так как элементы x + z и bx имеют в силу теоремы 9, гл.
2, соответственно, координаты Xe + Ze, bXe и по формуле (2):
Ae(Xe + Ze) = AeXe + AeZe, т. е. Â(x + z) = Âx + Ây,
Ae(bXe) = b(AeXe), т. е. Â(bx) = b(Âx).
б) Вычислим матрицу этого оператора в базисе (ep)n. С этой целью вычислим коор-
динаты элемента Âep и поставим их, как следует из определения матрицы оператора,
в p-ый столбец матрицы. Тогда по формуле (2): (Âep)e = Ae||δi

p||n = ||ak
i δ

i
p||n = ||ak

p||n,
где ||δi

p||n — координаты ep в базисе (ei)n. Таким образом, матрица оператора в ука-
занном базисе ||ak

p||nn = Ae. Теорема доказана.
Объединяя теоремы 1 и 2, можно сделать вывод: при фиксированном базисе в

линейном пространстве Rn существует взаимно однозначное соответствие между
линейными операторами и матрицами порядка n× n.

П р и м е р ы.

1. Матрица нуль-оператора θ̂ в любом базисе имеет вид: θe = ||0||nn.

2. Матрица тождественного оператора Ê в любом базисе имеет вид: Ee = ||δp
k||nn.

3. Матрица оператора подобия Â в любом базисе имеет вид: Ae = ||bδp
k||nn.
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4. Матрица поворота на угол α в линейном простанстве V3 для ортонормирован-
ного базиса ~e1, ~e2 : Â~e1 = ~e1 cos α + ~e2 sin α, Â~e2 = −~e1 sin α + ~e2 cos α. Таким
образом,

Ae =

(
cos α − sin α
sin α cos α

)
— ортогональная матрица.

§3. Связь матриц оператора при переходе от одного базиса к
другому.

Пусть в базисах (ep)n и (fp)n матрицами оператора Â будут матрицы Ae и Af

cоответственно. Пусть P — матрица перехода от базиса (ep)n к базису (fp)n, т. е.
f = eP . Имеем: Âf = Â(eP ) =(лемма 1)= (Âe)P = (формула (1′))=e(AeP ). С другой
стороны, Âf = fAf = (eP )Af = e(PAf ). Таким образом, e(AeP ) = e(PAf ), где
слева и справа стоят разложения по базису (ep)n равных элементов. Поэтому в силу
единственности разложения по базису AeP = PAf . Умножив это равенство на P−1

слева, получим
Af = P−1AeP. (3)

Более того
det Af = det Ae, (4)

что следует из формулы (3), теоремы 5 гл. 4 курса аналитической геометрии и того,
что det P · det P−1 = 1.

§4. Действия над линейными операторами и соответствующие
действия над матрицами.

Пусть в линейном пространстве Rn заданы базис (ep)n и линейные операторы Â

и B̂.
О п р е д е л е н и е. Операторы Â и B̂ называются равными, если для каждого

x из Rn Âx = B̂x.

Утверждение 1 Если операторы равны, то в любом базисе равны матрицы этих
операторов.

Д о к а з а т е л ь с т в о. Так как для любого x из Rn Âx = B̂x, то при x = ep

Âep = B̂ep, т. е. при p = 1, n последние равенства можно записать так: Âe = B̂e или
по формуле (1′) eAe = eBe. Поэтому Ae = Be.

О п р е д е л е н и е. Суммой любых двух линейных операторов Â, B̂ называ-
ется оператор Ĉ такой, что для любого x из Rn Ĉx = Âx + B̂x и обозначается
символом Â + B̂.

Утверждение 2 Если Â, B̂ — линейные операторы в линейном пространстве Rn,
то Â + B̂ — также линейный оператор в том же линейном пространстве.

Д о к а з а т е л ь с т в о. Пусть Ĉ = Â + B̂. Надо доказать, что 1) для всех x, y из
Rn Ĉ(x + y) = Ĉx + Ĉy, 2) для любого x из Rn и любого b из поля K Ĉ(bx) = bĈx.
Из определения суммы операторов следует, что для любого e из Rn Ĉe = Âe + B̂e.
Поэтому, если e = x+y, то Ĉ(x+y) = Â(x+y)+B̂(x+y) =(из линейности Â, B̂)= Âx+
Ây+B̂x+B̂y = (a.1, 2 линейного пространства)= (Âx+B̂x)+(Ây+B̂y) =(определение
суммы операторов)= (Â + B̂)x + (Â + B̂)y = Ĉx + Ĉy, т. е. 1) доказано. Аналогич-
но, Ĉ(bx) =(определение суммы операторов)= Â(bx) + B̂(bx) =(линейность Â, B̂)
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= bÂx + bB̂x =(a.8 линейного пространства)= b(Âx + B̂x) =(определение суммы
операторов)=b(Â + B̂)x = bĈx.

Утверждение 3 Матрица суммы операторов Â, B̂ в любом базисе (ep)n равна
сумме матриц операторов Â, B̂ в этом же базисе, т. е.

Ce = (A + B)e = Ae + Be.

Д о к а з а т е л ь с т в о. eCe =(формула (1′))= Ĉe = ||Ĉep||n = ||Âep + B̂ep||n =

||Âep||n + ||B̂ep||n = Âe + B̂e =(формула (1′))= eAe + eBe = e(Ae + Be).
О п р е д е л е н и е. Произведением оператора Â на число b из K называет-

ся оператор Ĉ такой, что для каждого x из Rn Ĉx = b(Âx), и обозначается
символом bÂ.

Утверждение 4 Если Â — линейный оператор, действующий в линейном про-
странстве Rn над полем K, а число b принадлежит K, то оператор bÂ — линей-
ный.

Д о к а з а т е л ь с т в о. Пусть Ĉ = bÂ. Тогда для любых x, y из Rn Ĉ(x + y) =
b(Â(x+y)) = b(Âx+Ây) = b(Âx)+b(Ây) = Ĉx+Ĉy, т. е. первое требование линейно-
сти оператора выполнено. Теперь рассмотрим Ĉ(ax), где a ∈ K. Ĉ(ax) = b(Â(ax)) =
(линейность Â) = b(aÂx) = (a.6 линейного пространства) = (ba)Âx = a(bÂx) = aĈx,
т. е. и второе требование линейности оператора имеет место. Утверждение доказано.

Утверждение 5 Матрица оператора bÂ в любом базисе (ep)n равна матрице опе-
ратора Â в этом же базисе, умноженной на число b, т. е.

(bA)e = bAe.

Д о к а з а т е л ь с т в о. Пусть Ĉ = bÂ. Тогда eCe =(формула (1′))= Ĉe = ||Ĉep||n =

||bÂep||n = b||Âep||n = b(Âe) =(формула (1′))= beAe = ebAe. Поэтому Ce = bAe.

Теорема 3 Множество всех линейных операторов, действующих в линейном про-
странстве Rn над полем K, с указанными операциями сложения и умножения на
число b из того же поля K образуют линейное пространство.

Д о к а з а т е л ь с т в о. Надо проверить выполнение всех восьми аксиом линей-
ного пространства.
а.1) Â+ B̂ = B̂ + Â. Из определения операции сложения операторов следует, что для
всякого x из Rn (Â + B̂)x = Âx + B̂x = y1 + y2 и (B̂ + Â)x = B̂x + Âx = y2 + y1. Но
для любых y1, y2 из Rn y1 + y2 = y2 + y1. Поэтому а.1) выполнена.
а.2) (Â + B̂) + Ĉ = Â + (B̂ + Ĉ) доказывается так же, как а.1).
а.3) для всех операторов Â существует оператор θ̂ такой, что Â+θ̂ = Â (доказывается
по той же схеме, что и а.1)).
а.4) для всякого оператора Â существует оператор (−1)Â, такой что Â + (−1)Â = θ̂.
(для всякого x из Rn (Â + (−1)Â)x = Âx + (−1)Âx = y + (−1)y = y − y = θ т. е.
аксиома выполнена).
а.5) 1 · Â = Â, что следует из определения операции умножения оператора на число.
а.6) для всех a, b из K a(bÂ) = (ab)Â (докажите самостоятельно).
а.7) для всех a, b из K и любого Â (a + b)Â = aÂ + bÂ. Для каждого x из Rn

((a + b)Â)x = (a + b)(Âx) = (a + b)y = ay + by. С другой стороны, (aÂ + bÂ)x =
aÂx + bÂx = ay + by. Сравнивая эти равенства, приходим к выводу, что а.7) имеет
место.
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а.8) для любого a из K и любых Â, B̂ a(Â + B̂) = aÂ + aB̂. С одной стороны, для
всех x из Rn (a(Â + B̂))x = a((Â + B̂)x) = a(Âx + B̂x) = a(y1 + y2) = ay1 + ay2. С
другой стороны, (aÂ + aB̂)x = aÂx + aB̂x = ay1 + ay2. Из этих равенств следует
справедливость а.8). Теорема доказана.

З а д а ч а. Найти базис и определить размерность пространства U линейных опе-
раторов, действующих в пространстве Rn над полем K.

Р е ш е н и е. Между оператором Â и его матрицей Ae в базисе (ep)n существует
взаимно однозначное соответствие, что было доказано выше (теоремы 1, 2). Поэтому,
так как при этом в силу выше доказанных утверждений сумме операторов соответ-
ствует сумма их матриц, а произведению матриц на число оператор, умноженный
на это число, то пространства U и An

n изоморфны. Следовательно, размерность про-
странства U равна n2 и базис пространства U (Âp)n2 — множество линейных опера-
торов, у каждого из которых в базисе (ep)n матрица имеет все элементы равными
нулю, кроме единственного элемента, равного 1.

О п р е д е л е н и е. Произведением операторов Â, B̂ действующих в линейном
пространстве Rn, называется оператор Ĉ такой, что для всех x из Rn Ĉx =
Â(B̂x) и обозначается так: ÂB̂.

Утверждение 6 Если Â, B̂ — линейные операторы, то ÂB̂ — тоже линейный
оператор.

Д о к а з а т е л ь с т в о. Пусть ÂB̂ = Ĉ. Тогда для всех x, y из Rn Ĉ(x + y) =
Â(B̂(x + y)) =(линейность B̂) = Â(B̂x + B̂y) =(линейность Â)= Â(B̂x) + Â(B̂y) =
Ĉx+Ĉy, т. е. первое условие линейности оператора выполнено. Так как для любых x
из Rn и любого a из K Ĉ(ax) = Â(B̂(ax)) =(линейность B̂)= Â(aB̂x) = (линейность
Â)= aÂ(B̂x) = aĈx, то выполнено и второе условие линейности оператора.

Утверждение 7 Матрица оператора ÂB̂ в любом базисе (ep)n равна произведе-
нию матрицы оператора Â на матрицу оператора B̂ в том же базисе, т. е.
(AB)e = AeBe.

Д о к а з а т е л ь с т в о. Пусть Ĉ = ÂB̂. Тогда eCe =(формула (1′))= Ĉe = (Â(B̂e))
= (формула (1′))= Â(eBe) =(лемма 1)= (Âe)Be =(формула (1′))= (eAe)Be =(свойство
операции умножения матриц)= e(AeBe), т. е. eCe = e(AeBe) ⇒ утверждение.

З а м е ч а н и е. (AB)e = AeBe, (BA)e = BeAe. Как было показано в алгебре
матриц (гл. 4 курса аналитической геометрии), операция умножения матриц не об-
ладает свойством перестановочности, т. е. вообще говоря, AeBe 6= BeAe. Поэтому в
силу изоморфизма пространства операторов и пространства матриц An

n, вообще го-
воря ÂB̂ 6= B̂Â. Например, в линейном пространстве V2 заданы ортонормированный
базис ~e1, ~e2 и два оператора: оператор Â проектирует векторы из V2 на ось вектора
~e1, а оператор B̂ поворачивает векторы из V2 на угол π/2 против часовой стрелки.
Тогда ÂB̂~e1 = Â~e2 = θ, а B̂Â~e1 = B̂~e1 = ~e2. Но θ 6= ~e2, т. е. ÂB̂ 6= B̂Â.
Однако есть линейные операторы, обладающие свойством перестановочности:
1) для всех Â Âθ̂ = θ̂Â = θ̂ и 2) для всех Â ÂÊ = ÊÂ = Â.

Свойства операции умножения операторов.

1
o
. Сочетательное свойство относительно числового множителя: для любого a из K

и любых Â, B̂ из U a(ÂB̂) = (aÂ)B̂.

2
o
.Сочетательное свойство относительно операторного множителя: для любых Â, B̂,

Ĉ из U (ÂB̂)Ĉ = Â(B̂Ĉ).

3
o
. Распределительное свойство относительно сложения операторов: для любых Â,

B̂, Ĉ из U (Â + B̂)Ĉ = ÂĈ + B̂Ĉ и Ĉ(Â + B̂) = ĈÂ + ĈB̂.
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Д о к а з а т е л ь с т в о. 1
o
. Ĉ = ÂB̂ — линейный оператор, как следует из утвер-

ждения 6. Поэтому для любого x из Rn (a(ÂB̂)x = (aĈ)x =(линейность Ĉ)= Ĉ(ax) =
Â(B̂(ax)). С другой стороны, ((aÂ)B̂)x =(линейность Â)= Â(aB̂x) = (линейность

B̂)= Â(B̂(ax)). Из сравнения этих равенств следует свойство 1
o
.

2
o
. Из определения операции умножения операторов: для всех x из Rn имеем (Â(B̂Ĉ))x

= Â((B̂Ĉ)x) = Â(B̂(Ĉx)). С другой стороны, ((ÂB̂)Ĉ)x = (ÂB̂)(Ĉx) = Â(B̂(Ĉx)). От-

сюда следует справедливость свойства 2
o
.

3
o
. Докажем первое равенство, ибо второе доказывается аналогично. Для всех x из

Rn ((Â + B̂)Ĉ)x = (Â + B̂)(Ĉx) = Â(Ĉx) + B̂(Ĉx) = ÂĈx + B̂Ĉx, что и означает

выполнение свойства 3
o
.

З а м е ч а н и е. Если перемножается несколько одинаковых операторов, то для
сокращения записи введем обозначение Â · Â · . . . · Â = Ân при условии, что таких
сомножителей n. Очевидна и такая запись: Ân+k = ÂnÂk.

О п р е д е л е н и е. Линейный оператор B̂ называется обратным к оператору
Â, если B̂Â = ÂB̂ = Ê и обозначается символом B̂ = Â−1.

Утверждение 8 Если оператор Â в базисе (ep)n имеет матрицу Ae, то его об-
ратный оператор Â−1 имеет в том же базисе матрицу A−1

e .

Д о к а з а т е л ь с т в о. По определению обратного оператора и утверждению 7
BeAe = AeBe = E, т. е. из определения обратной матрицы имеем Be = A−1

e . Что и
требовалось доказать.

Утверждение 9 Линейный оператор Â имеет обратный Â−1, если его матрица
Ae в некотором базисе (ep)n является невырожденной.

Д о к а з а т е л ь с т в о. Если в некотором базисе (ep)n матрица Ae оператора Â
невырождена, то 1) как следует из равенства (4), матрица этого оператора будет
невырожденной в любом базисе пространства Rn, 2) она имеет обратную матрицу
Â−1

e . Но тогда по теореме 2 матрице A−1
e будет соответствовать линейный оператор,

который и является обратным.

§5. Собственные значения и собственные векторы линейных
операторов.

Пусть M — подпространство линейного пространства Rn над числовым полем K,
а Â — линейный оператор, действующий в этом линейном пространстве.

О п р е д е л е н и е. Пространство M называется инвариантным подпростран-
ством относительно оператора Â, если для любого x из M Âx также принадле-
жит M .

П р и м е р ы.
1) Для линейных операторов θ̂, Ê и подобия всякое подпространство линейного про-
странства является инвариантным.
2) В пространстве C1

[a,b] линейная оболочка L{a sin t+ b cos t} является инвариантным
подпространством относительно оператора дифференцирования D = ∂/∂t.

О п р е д е л е н и е. Число λ из поля K называется собственным значением
оператора Â, если существует ненулевой элемент x из Rn такой, что

Âx = λx. (5)

При этом элемент x называется собственным вектором оператора Â.
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З а м е ч а н и е. Иногда равенство (5) лучше записывать так:

(Â− λÊ)x = θ. (5′)

Утверждение 10 Если x, y - собственные векторы оператора Â, соответству-
ющие собственному значению λ, и a, b — какие угодно числа из поля K, то
ненулевой вектор ax + by (a2 + b2 6= 0) тоже собственный вектор оператора Â с
тем же собственным значением λ.

Д о к а з а т е л ь с т в о. Â(ax + by) =(линейность Â)= a(Âx) + b(Ây) =(формула
(5))= a(λx) + b(λy) =(a.8 линейного пространства) = λ(ax + by). Итак, Â(ax + by) =
λ(ax+by), т. е. согласно (5) ax+by — собственный вектор оператора Â с собственным
значением λ.

С л е д с т в и е. Каждому собственному вектору оператора Â соответствует
одномерное инвариантное подпространство относительно оператора Â.

Действительно, если x — собственный вектор оператора Â, то в силу утверждения
10 L = {ax} — множество собственных векторов и нулевой элемент θ. Поэтому при
a 6= 0 Â(ax) = λ(ax) = (λa)x ∈ L, а при a = 0 Âθ = θ, т. е. L — инвариантное
относительно оператора Â подпространство.

Лемма 2 Для любого линейного оператора Â, действующего в линейном про-
странстве Rn, Âθ = θ.

Д о к а з а т е л ь с т в о. Âθ =(т. 3, гл. 3)= Â(0 · x) =(линейность Â)= 0 · Âx =
0 · y = θ.

Теорема 4 Множество Mλ, содержащее нулевой элемент θ и все собственные
векторы, соответствующие собственному значению λ оператора Â образует
инвариантное относительно оператора Â подпространство.

Д о к а з а т е л ь с т в о. Если элемент y принадлежит Mλ, то

Ây = λy, (6)

ибо, если y 6= θ, то это следует из (5), а если y = θ, то из леммы 2. Далее,
а) Mλ — подпространство линейного пространства Rn, так как 1) для каждого x, y
из Mλ Â(x+y) =(линейность оператора Â)= Âx+Ây =(формула (6))= λx+λy =(a.8)
линейного пространства) = λ(x + y), т. е. x + y ∈ Mλ. 2) для любых x из Mλ и a из
K Â(ax) =(линейность оператора) = aÂx =(формула (6))= a · λx =(a.6) линейного
пространства)= λ(ax), т. е. ax ∈ Mλ.
б) Mλ — инвариантное относительно оператора Â подпространство, т. е. если y из
Mλ такой элемент, что Ây = λy, то Ây ∈ Mλ. Действительно, Â(Ây) =(по формуле
(6))= Â(λy) = (линейность оператора)= λ(Ây), т. е. Ây ∈ Mλ.

П р и м е р ы.
1) Для оператора θ̂ каждый элемент x 6= θ является собственным вектором с соб-
ственным значением λ = 0 т. е. θ̂x = 0 · x.
2) Для оператора Ê каждый элемент x 6= θ является собственным вектором с соб-
ственным значением λ = 1, т. е. Êx = 1 · x.
3) Для оператора подобия с коэффициентом подобия каждый элемент x 6= θ явля-
ется собственным вектором с собственным значением λ = b, т. е. Âx = bx.
4) Оператор поворота в V2 на угол α (0 < α < π) не имеет собственных векторов,
ибо из равенства (5) следует коллинеарность векторов, а при повороте на угол α
получающийся вектор не будет коллинеарен исходному вектору.
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5) В линейном пространстве C2
[a,b] оператор D̂2 = ∂2/∂t2 имеет собственный вектор

x = sin t с собственным значением λ = −1, т. е. D2 sin t = − sin t.
6) В пространстве V3 оператор Â поворота вокруг некоторой оси, проходящей через
нулевой элемент, на угол α, имеет собственные векторы — все векторы e этой оси с
собственным значением λ = 1.

Теорема 5 Собственные векторы оператора Â, соответствующие различным
собственным значениям, линейно независимы.

Д о к а з а т е л ь с т в о. Воспользуемся методом математической индукции. Пусть
λ1, λ2, . . . , λp — различные собственные значения оператора Â, а e1, e2, . . . , ep — соот-
ветствующие им собственные векторы. Так как e1 6= θ, то этот вектор является ли-
нейно независимым. Следовательно, для одного вектора утверждение теоремы верно.
Пусть теорема верна для k собственных векторов e1, e2, . . . , ek. Присоединим у этим
векторам вектор ek+1 и предположим, что

eia
i = θ, i = 1, k + 1. (7)

Применим к вектору (7) оператор Â, воспользуемся его линейностью и тем, что
Âei = λiei. В итоге получаем, что

λieia
i = θ. (8)

Теперь умножим вектор (7) на λk+1 и вычтем из равенства (8):

(λi − λk+1)eia
i = θ, i = 1, k.

Так как по условию λi−λk+1 6= 0 и e1, e2, . . . , ek — линейно независимы по предполо-
жению, то последнее равенство возможно тогда и только тогда, когда ai = 0, i = 1, k.
Но тогда из равенства (7) в силу того, что ek+1 6= θ, следует, что ak+1 = 0. Значит, все
коэффициенты линейной комбинации (7) равны нулю, т. е. векторы e1, e2, . . . , ek+1 —
линейно независимы. Таким образом, на основании метода математической индукции
утверждение теоремы доказано.

С л е д с т в и е. В n-мерном линейном пространстве линейный оператор Â не
может иметь более n собственных векторов с различными собственными значе-
ниями.

Д о к а з а т е л ь с т в о. (От противного). Пусть в Rn оператор Â имеет n + 1
собственных векторов с различными собственными значениями. Тогда по теореме 5
указанные собственные векторы e1, e2, . . . , en+1 линейно независимы. Следовательно,
они или образуют базис в пространстве Rn или входят в базис из большего числа
элементов. Значит, размерность пространства Rn ≥ n + 1, что противоречит условию
теоремы.

О п р е д е л е н и е. Уравнение

det(Ae − λE) = 0 (9)

называется храктеристическим уравнением линейного оператора Â, действую-
щего в линейном пространстве Rn, с матрицей Ae в некотором базисе (ep)n.

Утверждение 11 Характеристическое уравнение (9) не зависит от выбора базиса
в линейном пространстве.
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Д о к а з а т е л ь с т в о. Пусть (fp)n — базис, полученный из базиса (ep)n при
помощи невырожденного преобразования f = eP , т. е. det P 6= 0. Тогда, посколь-
ку Af = P−1AeP в силу (3) и PEP−1 = E, то det(Af − λE) = det(P−1AeP −
λP−1EP ) =(свойства операции умножения матриц)= det P−1(Ae − λE)P =(т. 5 гл.
4 курса аналитической геометрии)= det P−1 · det(Ae − λE) · det P = det(Ae − λE).
Отсюда следует утверждение теоремы.
На вопрос: "Как найти собственные значения оператора Â"? — ответ дает следующая

Теорема 6 Для того, чтобы число λ было собственным значением оператора
Â, действующего в линейном пространстве Rn над полем K, необходимо и до-
статочно, чтобы это число было решением характеристического уравнения (9)
оператора Â и принадлежало числовому полю K.

Н е о б х о д и м о с т ь. Пусть λ — собственное значение оператора Â, а x — соот-
ветствующий собственный вектор этого оператора, т. е. λ ∈ K и выполнено равенство
(5′). Пусть (ep)n — базис в Rn, а Ae = ||ap

k||nn — матрица оператора Â в этом бази-
се. Из равенства (5′) элементов пространства Rn следует равенство их координат в
базисе (ep)n. По формуле (2) элемент (Â − λÊ)x имеет координаты (Ae − λE)Xe, а
элемент θ — координаты — нулевой столбец, т. е. имеем:

(Ae − λE)Xe = θ, (10)

т. е. получили однородную систему уравнений относительно координат x1, x2, . . . , xn

вектора x в базисе (ep)n. Система (10) имеет нетривиальное решение тогда и только
тогда, когда, как следует из следствия 3 к теореме 3 гл. 1 (теореме о базисном
миноре), det(Ae − λE) = 0.

Д о с т а т о ч н о с т ь. Пусть λ ∈ K — решение характеристического уравнения
(9). Но тогда система (10) имеет согласно следствию 3 к теореме 3 гл. 1 нетриви-
альное решение Xe. А поскольку (10) означает равенство координат элементов про-
странства Rn в базисе (ep)n, то равны и сами эти элементы, т. е. верно равенство(5′),
причем x 6= θ. Поэтому λ — собственное значение оператора Â. Теорема доказана.

С л е д с т в и е 1. Если характеристическое уравнение (9) оператора Â имеет
n различных корней из поля K, то в некотором базисе (ep)n матрица оператора
Â имеет диагональный вид.

Д о к а з а т е л ь с т в о. Пусть λ1, λ2, . . . , λn из K — различные собственные зна-
чения оператора Â. Каждому λp соответствует собственный вектор ep. Тогда по тео-
реме 5 векторы e1, e2, . . . , en — линейно независимы, т. е. образуют базис в простран-
стве Rn. Но в таком базисе Âep = λpep, p = 1, n, т. е. матрица Ae оператора Â имеет
вид ||λpδ

p
k||.

С л е д с т в и е 2. Не каждый линейный оператор Â имеет собственное значе-
ние.

Д о к а з а т е л ь с т в о. Характеристическое уравнение (9) является уравнением
степени n относительно λ. Поэтому по основной теореме алгебры уравнение (9)
всегда имеет по крайней мере один корень, но не более n корней (следствие к т.
5). Однако корни этого уравнения могут не принадлежать числовому полю K, над
которым действует линейное пространство Rn. В этом случае оператор Â не имеет в
пространстве Rn собственных векторов.

Из теоремы 6 следует метод построения собственных значений и собственных
векторов линейного оператора Â:
1) Решаем характеристическое уравнение (9). Если есть действительные корни, при-
надлежащие числовому полю K, то имеем собственные значения λ1, λ2, . . . , λk (k ≤
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n).
2) Подставляя вместо λ значение λp, найденное в пункте 1), в систему уравнений
(10), находим координаты x1, x2, . . . , xn собственных векторов x, соответствующих
собственному значению λp, p = 1, k.

З а м е ч а н и е. Однородная система уравнений (10) с определителем матрицы
системы, равным нулю, имеет бесконечно много решений, образующих линейное
пространство. Оно является инвариантным подпространством относительно операто-
ра Â.

П р и м е р 1. Пусть в базисе (ep)3 пространства R3 над полем K рациональных
чисел оператор Â имеет матрицу:

Ae =

 2 −1 −1
0 −1 0
0 2 1

 .

Найти все собственные векторы оператора Â.
Р е ш е н и е. Характеристическое уравнение (9):∣∣∣∣∣∣∣

2− λ −1 −1
0 −1− λ 0
0 2 1− λ

∣∣∣∣∣∣∣ = 0.

Его решения: λ1 = 2, λ2 = 1, λ3 = −1 ∈ K.
Система (10): 

(2− λ)x1 − x2 − x3 = 0
−(1 + λ)x2 = 0

2x2 + (1− λ)x3 = 0
,

которая при λ1 = 2 имеет вид: 
−x2 − x3 = 0

−3x2 = 0
2x2 − x3 = 0

,

Ее ФСР:

Y1 =

 1
0
0

 .

Таким образом, все множество собственных векторов, соответствующих собственно-
му значению λ = 2, есть X1 = cY1, где c ∈ K, но c 6= 0.
При λ2 = 1: 

x1 − x2 − x3 = 0
2x2 = 0
2x2 = 0

⇒

ФСР: Y2 =

 1
0
1

 . Собственные векторы: X2 = cY2, где c ∈ K, c 6= 0.

При λ3 = −1: {
3x1 − x2 − x3 = 0

2x2 + 2x3 = 0
⇒

ФСР: Y3 =

 0
1

−1

 . Собственные векторы: X3 = cY3, где c ∈ K, c 6= 0.
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П р и м е р 2. Пусть в базисе (ep)2 линейного пространства R2 над полем K ра-
циональных чисел оператор Â имеет матрицу

Ae =

(
−1 2

3 1

)
.

Найти все собственные векторы Â.

Р е ш е н и е. Характеристическое уравнение(9):

∣∣∣∣∣ −1− λ 2
3 1− λ

∣∣∣∣∣ = 0 ⇒ λ2 − 7 =

0 ⇒ λ1,2 = ±
√

7 6∈ K. Значит, нет собственных значений и собственных векторов у
оператора Â.

З а м е ч а н и е. Если бы в примере 2 K = K0, то найденные значения λ были бы
собственными значениями, и по аналогии с примером 1 можно было бы найти все
собственные векторы оператора Â.

П р и м е р 3. Пусть в базисе (ep)3 линейного пространства R3 над полем K ра-
циональных чисел линейный оператор Â имеет матрицу

Ae =

 −1 −2 −2
0 1 0
0 0 1

 .

Найти все собственные векторы оператора Â.
Р е ш е н и е. Характеристическое уравнение (9):∣∣∣∣∣∣∣

−1− λ −2 −2
0 1− λ 0
0 0 1− λ

∣∣∣∣∣∣∣ = 0 ⇒ −(1 + λ)(1− λ)2 = 0,

т. е. собственные значения λ1 = −1, λ2,3 = 1 ∈ K. Система (10):
−(1 + λ)x1 − 2x2 − 2x3 = 0

(1− λ)x2 = 0
(1− λ)x3 = 0

при λ1 = −1 имеет вид:
−2x2 − 2x3 = 0

2x2 = 0
2x3 = 0

⇒ ФСР: Y1 =

 1
0
0

 .

Поэтому все собственные векторы, соответствующие собственному значению −1,
задаются линейной комбинацией X = cY1, где c ∈ K, c 6= 0. При λ2,3 = 1 система
(10) имеет вид:

x1 + x2 + x3 = 0.

Ранг матрицы этой системы равен 1. Поэтому размерность пространства решений
n− r = 3− 1 = 2. Значит ФСР состоит из двух линейно независимых решений:

Y1 =

 −1
1
0

 , Y2 =

 −1
0
1

 .

Поэтому множество всех собственных векторов, соответствующих собственному зна-
чению 1, задаются линейной комбинацией X = aY1 + bY2, где a2 + b2 6= 0, a, b,∈ K.
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П р и м е р 4. Решить задачу аналогичную примеру 3, но для матрицы

Ae =

 2 −1 0
0 1 −1
0 1 3

 .

Р е ш е н и е. Здесь характеристическое уравнение (9) имеет вид: (2−λ)(λ2−4λ+
4) = 0 ⇒ (2 − λ)3 = 0, т. е. оператор Â имеет единственное собственное значение
λ = 2 кратности 3. В этом случае система (10) принимает вид: x2 = 0, x3 + x2 = 0.
Ранг матрицы этой системы равен 2. Поэтому размерность пространства решений

равна 3 − 2 = 1, т. е. ФСР состоит из одного решения Y1 =

 1
0
0

 ⇒ множество

всех собственных векторов оператора Â, соответствующих собственному значению
2, имеет вид: X = cY1, c ∈ K, c 6= 0.

З а м е ч а н и е. 1) Если собственное значение λ — простой, т. е. не кратный, ко-
рень уравнения (9), то соответствующее ему инвариантное относительно оператора
Â подпространство — одномерно. Последние играют фундаментальную роль в при-
ложениях и именуются характеристическими направлениями.
2) Если собственное значение λ — корень кратности p характеристического уравне-
ния (9), то соответствующее ему инвариантное подпространство может иметь раз-
мерность k от 1 до p (см. примеры 3, 4).

П р и м е р 5. Пусть три единичных массы подвешены на пружинах с коэффи-
циентами упругости c1, c2, c3. Вычислить основные частоты колебаний системы для
случая, когда c1 = 8, c2 = 3, c3 = 11.

Р е ш е н и е. Если обозначить силы, действующие на массы че-
����P��PP��P

c1

m1
P��PP��P

c2

m2
P��PP��P

c3

m3

6

0

y
рез Kp, а отклонения от положения равновесия через v, то по
второму закону Ньютона получаем уравнения движения:

−y′′1 = K1 −K2 = c1y1 − c2(y2 − y1),
−y′′2 = K2 −K3 = c2(y2 − y1)− c3(y3 − y2),
−y′′3 = K3 = c3(y3 − y2).

Решение получившейся системы ищем в виде: yp = xp sin ωt. Тогда
после подстановки предполагаемого решения в систему уравнений,
получим:

Ax = λx, (11)

где λ = ω2, x = ||xp||3,

A =

 c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3

 =

 11 −3 0
−3 14 −11
0 −11 11

 .

Таким образом, мы пришли к задаче на собственные значения. Характеристическое
уравнение (9):

det(A− λE) =

∣∣∣∣∣∣∣
c1 + c2 − λ −c2 0

−c2 c2 + c3 − λ −c3

0 −c3 c3 − λ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

11− λ −3 0
−3 14− λ −11
0 −11 11− λ

∣∣∣∣∣∣∣ = 0,

т. е. λ3 − 36λ2 + 299λ − 264 = 0 ⇒ λ1 = 1, λ2 = 11, λ3 = 24. Итак, основные частоты
найдены. Это ω1 = 1, ω2 =

√
11, ω3 = 2

√
6. Решая систему (11) для каждого соб-

ственного значения, найдем соответствующие собственные векторы (с точностью до
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числового множителя, не равного нулю):

X1 =

 3
10
11

 , X2 =

 11
0

−3

 , X3 =

 3
−13

11

 ,

координаты которых — отношения амплитуд колебания масс, соответствующих дан-
ной основной частоте.

П р и м е р 6. Протяженная изотропная среда подвержена деформации, при кото-
рой единичный куб с ребрами

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 ,

переходит в переллелепипед с ребрами

f1 =

 1, 5
0, 5
0, 5

 , f2 =

 0, 5
1
0

 , f3 =

 0, 5
0
1

 .

Каковы главные оси деформации, т. е. направления, которые сохраняются при де-
формации?

Р е ш е н и е. Деформация описывается симметричной матрицей

Ae =

 1, 5 0, 5 0, 5
0, 5 1 0
0, 5 0 1

 ,

для которой Âek = fk, k = 1, 2, 3. Следовательно, указанная деформация — линейный
оператор Â, а искомые направления — собственные векторы этого оператора, точнее
его инвариантные подпространства. Матрица Ae — матрица оператора Â в базисе
(ep)3. Его характеристическое уравнение (9): −λ3+3, 5λ2−3, 5λ+1 = 0 имеет решения:
λ1 = 0, 5, λ2 = 1, λ3 = 2. Отвечающие им собственные векторы:

X1 = c ·

 −1
1
1

 , X2 = c ·

 0
1

−1

 , X3 = c ·

 2
1
1

 , c ∈ K0, c 6= 0.

Отметим попарную ортогональность собственных векторов, соответствующих раз-
личным собственным значениям, т. е. XT

p Xk = 0, p, k = 1, 2, 3, p 6= k.

§6. Симметричный (самосопряженный) линейный оператор в
конечномерном евклидовом пространстве.

Рассмотрим линейные операторы, действующие в евклидовом пространстве En.
Поэтому здесь числовое поле K = K0.

О п р е д е л е н и е. Линейный оператор Â, действующий в пространстве En,
называется симметричным, если для всех x, y из En выполняется равенство:

(Âx, y) = (x, Ây). (12)

О п р е д е л е н и е. Матрица A называется симметричной, если A = AT , т. е.
ap

k = ak
p, p, k = 1, n.
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Утверждение 12 Матрица симметричного оператора Â в ортонормированном
базисе симметрична.

Д о к а з а т е л ь с т в о. Пусть (ep)n — ортонормированный базис, а Ae = ||ap
k||nn —

матрица оператора Â в этом базисе. По формуле (1) Âep = eka
k
p. Поэтому (Âep, ei) =

ak
p(ek, ei) =(из ортонормированности базиса)= ak

pδ
i
k = ai

p. С другой стороны, ai
p =

(Âep, ei) =(симметричность оператора)=(ep, Âei) = (ep, eka
k
i ) = (ep, ek)a

k
i = (ортого-

нальность базиса) = δp
ka

k
i = ap

i .

Утверждение 13 Оператор Â симметричен, если в некотором ортонормирован-
ном базисе (ep)n имеет симметричную матрицу, т. е. Ae = AT

e .

Д о к а з а т е л ь с т в о. Как следует из равенства (3) гл. 4, скалярное произведе-
ние любых двух элементов в ортонормированном базисе равняется сумме произведе-
ний соответствующих координат перемножаемых элементов. Так как элемент Âx в
силу (2) имеет координаты AeXe, а элемент y — координаты Ye, то (Âx, y) =(формула
(3) гл. 4)= (AeXe)

T Ye =(теорема 4 гл. 4 курса аналитической геометрии)= XT
e AT

e Ye =
(симметричность матрицы Ae) = XT

e AeYe. С другой стороны, (x, Ây) = (формула (3)
гл. 4)= XT

e AeYe. Из этих двух равенств следует, что (Âx, y) = (x, Ây).

Утверждение 14 Симметричный оператор Â, действующий в пространстве En,
является симметричным в любом инвариантном относительно оператора Â под-
пространсве Mk (k ≤ n) пространства En.

Д о к а з а т е л ь с т в о. Поскольку Mk — инвариантное относительно оператора
Â подпространство, то для каждого x из Mk Âx ∈ Mk. А так как для любых x, y из
En выполняется (12), то, в частности, для всех x, y из Mk так же имеет место (12).

Теорема 7 Все корни характеристического уравнения симметричного оператора
— действительные числа.

Д о к а з а т е л ь с т в о. (от противного). Пусть Â — симметричный оператор, дей-
ствующий в En, а (ep)n — ортонормированный базис в En. Тогда по утверждению 12
Ae = AT

e . Пусть существует комплексное число λ = a+ib такое, что det(Ae−λE) = 0.
Тогда система (10) есть квадратная система однородных линейных уравнений с мат-
рицей Ae − λE, определенной на числовом поле K = C — поле всех комплексных
чисел. При введении числовых матриц (гл. 1) и решении систем линейных уравне-
ний (гл. 1 и 3) мы пользовались произвольным числовым полем K. Поэтому все, что
было в этих главах получено, справедливо и для числового поля C. Следователь-
но, система (10) имеет ненулевое решение Xe = ||xp||n тогда и только тогда, когда
когда определитель матрицы этой системы равен нулю. Но у нас это условие, как
отмечалось выше, выполнено. Значит, имеем решение: Xe = B + iC = ||bp||n + i||cp||n,
причем Xe 6= θ + iθ, где θ — нулевой столбец высоты n. Подставим это решение с
соответствующим значением λ = a + ib в систему (10). В итоге получим матричное
тождество: Ae(B + iC) = (a+ ib)(B + iC) или, приравнивая отдельно действительную
и отдельно мнимую части этого тождества, найдем, что

AeB = aB − bC, (13)

AeC = bB − aC. (14)

Применив операцию транспонирования к равенству (13), получим: BT AT
e = aBT −

bCT . Так как AT
e = Ae, то окончательно

BT Ae = aBT − bCT . (15)
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Умножим равенство (15) на матрицу C справа, а равенство (14) на матрицу BT

слева и из второго равенства вычтем первое: θ = b(BT B + CT C), что в координатах
запишется так:

b
n∑

k=1

((bk)2 + (ck)2) = 0. (16)

Так как Xe 6= θ+iθ, то среди чисел bk и ck имеются числа, отличные от 0, т. е. сумма,
стоящая в равенствое (16) отлична от нуля. Поэтому из (16) следует, что b = 0, что
противоречит предположению о том, что λ = a + ib — комплексное число.

З а м е ч а н и е. Теорема 7, как следует из утверждения 14, справедлива в каждом
инвариантном относительно симметричного оператора Â подпространстве Mk.

С л е д с т в и е. Оператор Â симметричный в En всегда имеет собственные
векторы.

Теорема 8 Если x — собственный вектор симметричного оператора Â в En, то
совокупность всех векторов y, ортогональных вектору x, образует инвариантное
относительно оператора Â подпространство Mn−1.

Д о к а з а т е л ь с т в о. Так как x — собственный вектор оператора Â, то, как сле-
дует из следствия к утверждению 10, линейная оболочка L(x) = {ax, a ∈ (−∞, +∞)}
— одномерное инвариантное относительно оператора подпространство линейного
пространства En. Но тогда совокупность M всех элементов y из En, ортогональных
к элементу x, — ортогональное дополнение подпространства L(x). Следовательно, по
теореме 3 гл. 4 M — подпространство линейного пространства En размерности n−1.
Осталось показать, что оно инвариантно относительно оператора Â, т. е. если y ∈ M ,
то и Ây ∈ M . Действительно, (Ây, x) = (симметричность Â)= (y, Âx) =(x— соб-

ственный вектор Â)= (y, λx) =(a.3
o
, 1

o
скалярного произведения)= λ(x, y) =(y ∈ M

— ортогональному дополнению к L(x))= 0, т. е. Ây ортогонально к x, т. е. Ây ∈ M .

Теорема 9 Для того, чтобы линейный оператор Â был симметричен, необходимо
и достаточно, чтобы в En существовал ортонормированный базис из собствен-
ных векторов оператора Â.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Так как Â — симметричный опе-
ратор, то в силу следствия к теореме 7 существует собственный вектор этого опе-
ратора X1. Тогда подпространство Mn−1 векторов, ортогональных x1, как следует из
теоремы 8, является инвариантным. Следовательно, к этому подпространству, как
утверждает замечание к теореме 7, снова применима теорема 7. Поэтому в Mn−1

существует собственный вектор этого оператора — x2, причем x2 ортогонален x1

(ведь x2 ∈ Mn−1, а Mn−1 ортогонально x1). Рассмотрим множество всех векторов
из Mn−1, ортогональных к x2. По теореме 8 это множество есть инвариантное под-
пространство Mn−2 относительно оператора Â. Следовательно, в Mn−2 существует
по теореме 7 собственный вектор оператора Â — x3, причем x3 ортогонален к x1,
x2. Продолжая этот процесс далее получим n ортогональных друг другу векторов
x1, x2, . . . , xn. Как показано в лемме 1 гл. 4 ортогональные векторы линейно неза-
висимы. Поэтому n построенных векторов образуют базис в En. Нормируя их, т. е.
полагая ep = xp/|xp|, p = 1, n, получим ортонормированный базис, состоящий, как
следует из утверждения 10, из собственных векторов.

Д о с т а т о ч н о с т ь. Пусть (ep)n — ортонормированный базис в En из собствен-
ных векторов оператора Â, соответствующих собственным значениям λ1, λ2, . . . , λn

(собственные значения с разными индексами могут совпадать). Как следует из фор-
мулы (1) элементы матрицы Ae оператора Â в данном базисе имеют вид: ak

p = λpδ
k
p ,
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т. е. матрица Ae — диагональная. Следовательно Ae = AT
e . Поэтому, в силу утвер-

ждения 13, оператор Â симметричен.

Утверждение 15 Собственные векторы симметричного оператора Â, соответ-
ствующие различным собственным значениям, ортогональны между собой.

Д о к а з а т е л ь с т в о. Пусть собственный вектор x1 соответствует собственному
значению λ1, а собственный вектор x2 — λ2, (λ1 6= λ2), т. е. Âx1 = λ1x1 и Âx2 = λ2x2.
Так как Â — симметричный оператор, то (Âx1, x2) = (x1, Âx2) или так: (λ1x1, x2) =

(x1, λ2x2) или после применения a.3
o
скалярного произведения λ1(x1, x2) = λ2(x1, x2)

или (λ1−λ2)(x1, x2) = 0. Так как λ1 6= λ2, то (x1, x2) = 0. Что и требовалось доказать.
В приложениях часто приходится сталкиваться с задачей вида: найти множество

всех элементов x из En, удовлетворяющих равенству

Âx = λx + b, (17)

где Â — симметричный оператор, действующий в En, b — фиксированный элемент
пространства En.

Р е ш е н и е. Пусть (ep)n — базис в En, в котором оператор Â имеет матрицу Ae,
элементы x, b — координаты Xe, Be. Тогда в силу формулы (1∗) и единственности
разложения по базису, получаем что равенство (17) равносильно следующей системе
линейных уравнений:

(Ae − λE)Xe = Be. (18)

По альтернативе Фредгольма система (18) или имеет единственное решение для
любого столбца Be при условии, что соответствующая однородная система уравнений

(Ae − λE)Xe = θ (19)

имеет только тривиальное решение, что возможно, если det(Ae − λE) 6= 0, т. е.
λ не является собственным значением оператора Â, или совместна, если столбец
Be ортогонален пространству решений соответствующей сопряженной однородной
системы уравнений, при условии, что система (19) имеет нетривиальное решение.
Последнее возможно, если det(Ae−λE) = 0, т. е. λ — собственное значение оператора
Â. Так как для симметричного оператора Ae = AT

e , то сопряженная система совпадает
с системой (19), решения которой в этом случае дает все множество собственных
векторов оператора Â, соответствующих данному собственному значению λ. Поэтому
в данном случае альтернатива Фредгольма имеет вид:
1) или λ не является собственным значением оператора Â, и тогда уравнение (17)
имеет единственное решение x при любом выборе элемента b из En;
2) или λ — собственное значение оператора Â, и тогда уравнение (17) имеет решение
тогда и только тогда, когда элемент b ортогонален к собственным векторам оператора
Â, соответствующим данному собственному значению.

Эта теорема легко распространяется на случай произвольного линейного опера-
тора Â, если ввести еще одно понятие.

О п р е д е л е н и е. Оператор Â∗, действующий в евклидовом пространстве
En, называется сопряженным к линейному оператору Â, если для любых x, y из
En выполняется соотношение:

(Âx, y) = (x, Â∗y). (20)

Утверждение 16 Если в ортонормированном базисе (ep)n оператор Â имеет мат-
рицу Ae, то ему сопряженный оператор Â∗ имеет матрицу A∗

e = AT
e .
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Д о к а з а т е л ь с т в о. Так как (ep)n — ортонормированный базис, то по формуле
(3) гл. 4 (Âx, y) = (Ae, Xe)

T Ye =(теорема 4 гл. 4, курса аналитической геометрии)=
XT

e AT
e Ye и (x, A∗y) = XT

e A∗
eYe. Но тогда из равенства (20) следует, что XT

e AT
e Ye =

XT
e A∗

eYe ⇒ A∗
e = AT

e .

Утверждение 17 Собственные значения операторов Â и Â∗ совпадают.

Д о к а з а т е л ь с т в о. Характеристические уравнения (9) для этих операторов
имеют вид:

det(Ae − λE) = 0 и det(AT
e − λE) = 0.

Но det(AT
e−λE) = det(Ae−λE)T =(1 свойство определителей n-го порядка)= det(Ae−

λE). Следовательно, характеристические уравнения этих операторов совпадают, что
и означает совпадение собственных значений.

Собственные же векторы у этих операторов будут различны, так как определя-
ются различными системами: для оператора Â — система (19), а для Â∗ — система:

(AT
e − λE)Xe = θ. (21)

Так как для произвольного оператора, вообще говоря, Ae 6= AT
e , то сопряженная од-

нородная система уравнений, соответствующая системе (18), уже не будет совпадать
с системой (19). Это система (21). Итак, в общем случае альтернатива Фредгольма
может быть сформулирована следующим образом:
1) или λ не является собственным значением оператора Â, и тогда уравнение (17)
имеет единственное решение x при любом выборе элемента b из En;
2) или λ — собственное значение оператора Â, и тогда уравнение (17) имеет решение
тогда и только тогда, когда элемент b ортогонален к собственным векторам оператора
Â∗, соответствующим данному собственному значению.
О п р е д е л е н и е. Линейный оператор Q̂, действующий в евклидовом простран-
стве E, называется ортогональным, если для любых x, y из E выполняется
равенство:

(Q̂x, Q̂y) = (x, y). (22)

Отсюда непосредственно следует, что если (ep)n — ортонормированный базис в
E, то (Q̂ep)n — также ортонормированный базис в E.

Утверждение 18 В любом ортонормированном базисе (ep)n матрица Qe ортого-
нального оператора Q̂ является ортогональной матрицей.

Д о к а з а т е л ь с т в о. Если (ep)n — ортонормированный базис, то по формуле
(3) гл. 4 (Q̂x, Q̂y) = (QeXe)

T QeYe = XT
e QT

e QeYe = XT
e (QT

e Qe)Ye и (x, y) = XT
e Ye. Тогда

в силу (22) QT
e Qe = E, что означает, что Qe — ортонормированная матрица.

Теорема 10 Для того чтобы линейный оператор Q̂ был ортогонален, необходимо
и достаточно, чтобы существовал оператор Q̂−1 и было выполнено равенство

Q̂∗ = Q̂−1, (23)

где Q̂∗ — оператор, сопряженный к Q̂, а Q̂−1 — оператор, обратный к Q̂.

Д о к а з а т е л ь с т в о. Пусть (ep)n — ортонормированный базис в En, в кото-
ром оператор Q̂ имеет матрицу Qe. Тогда Q∗

e = QT
e , и равенство (23) равносильно

равенству QT
e = Q−1

e , которое совпадает с (13) гл. 4. Как следует из теорем 1, 2
пространство операторов изоморфно пространству n× n-матриц. Но в пространстве
n× n-матриц эта теорема доказана. Следовательно, утверждение теоремы верно и в
пространстве операторов.
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Гл. 6. Квадратичные формы.

В этой главе будем рассматривать поле K0 — поле всех действительных чисел.

§1. Общие понятия.

О п р е д е л е н и е. Квадратичной формой называется функция n переменных
x1, x2, . . . , xn из K0 вида

φ(x1, x2, . . . , xn) = apkx
pxk, p, k = 1, n (1)

где apk ∈ K0, причем apk = akp, т. е. матрица квадратичной формы A = ||apk||nn

есть симметричная матрица.
П р и м е р. φ(x1, x2, x3) = 4x1x2 − x2x2 − 6x1x3 + 2x3x3 + 2x2x3. Так как у квад-

ратичной формы apk = akp, то все смешанные произведения надо разбить на сумму
двух равных слагаемых. Например: 4x1x2 = 2x1x2 + 2x2x1. В итоге получим матрицу
квадратичной формы:

A =

 0 2 −3
2 −1 1

−3 1 2

 .

З а м е ч а н и е. Выписывая матрицу квадратичной формы, не забывайте, что сме-
шанные члены в ней берутся удвоенными.

Очевидно, что матрица A однозначно определяет квадратичную форму.
В ы в о д: всякой квадратичной форме соответствует единственная симметричная

матрица A порядка n; обратно: если есть симметричная матрица A порядка n, то мы
можем написать квадратичную форму с матрицей A.

Квадратичную форму (1) можно записать в матричной форме, если ввести, как
обычно, обозначения: X = ||xk||n — матрица-столбец высоты n, XT = (x1, x2, . . . , xn)
— матрица-строка длины n. Тогда AX = ||apkx

k||n — матрица-столбец высоты n.
Если теперь эту матрицу умножить слева на матрицу XT , то получим I × I-матрицу
с элементом apkx

pxk — квадратичную форму (1), т. е.

φ(x1, . . . , xn) = XT AX. (2)

§2. Изменение квадратичной формы при линейном преобразо-
вании переменных.

Пусть P = ||pek||n,n, Q = ||qek||n,n, A = ||aek||n,n, B = ||bek||n,n, X = ||xk||n, Y =
||yk||n, Z = ||xk||n.

О п р е д е л е н и е. Линейным преобразованием переменных y1, . . . , yn в пере-
менные x1, . . . , xn называется преобразование вида

X = PY, (3)

причем, матрица P называется матрицей линейного преобразования (3).
З а м е ч а н и е. Здесь ради удобства изложения материала этой главы использу-

ется матричная форма записи оператора P̂ или, что то же самое, линейного преоб-
разования пространства.

Если P — невырожденная матрица, то преобразование (3) называется невырож-
денным. В противном случае оно называется вырожденным преобразованием. Пусть
P — невырожденная матрица, т. е. det P 6= 0. Тогда для этой матрицы существует
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обратная P−1, с помощью которой можно совершить линейное преобразование от
переменных x1, . . . , xn к переменным y1, . . . , yn:

Y = P−1X. (4)

Преобразование (4) называется обратным к преобразованию (3).
Пусть даны два последовательных преобразования Z → Y → X, т. е. преобразо-

вание (3) и преобразование
Y = QZ. (5)

Их можно заменить одним преобразованием Z → X, т. е. X = BZ, где B = PQ. К
этому выводу мы приходим, подставив значение Y из (5) в формулу (3).

О п р е д е л е н и е. Преобразование X = PQZ называется произведением пре-
образований (3) и (5).

Как следует из теоремы 5 гл. 4 курса аналитической геометрии, произведение
преобразований невырождено тогда и только тогда, когда каждый из сомножителей
является невырожденным преобразованием.

Теорема 1 Квадратичная форма XT AX после применения линейного преобразо-
вания (3) переходит в квадратичную форму Y T BY , где

B = P T AP. (6)

Д о к а з а т е л ь с т в о. XT AX =(формула (3))= (PY )T A(PY ) =(т. 4 гл. 4 курса

аналитической геометрии и свойство 1
o
операции умножения матриц)= Y T P T APY =

Y T (P T AP )Y . Теорема доказана.
З а м е ч а н и е. B — симметричная матрица. Действительно, BT =(формула (6))=

(P T AP )T =(т. 4 гл. 4 курса аналитической геометрии) = P T AT (P T )T =(определение
транспонированной матрицы)= P T AT P =(симметричность A)= P T AP =(формула
(6))= B.

Теорема 2 При любом невырожденном преобразовании переменных знак опреде-
лителя матрицы квадратичной формы не меняется.

Д о к а з а т е л ь с т в о. Пусть даны квадратичная форма XT AX и преобразова-
ние (3), причем det P 6= 0. В результате этого преобразования, как следует из тео-
ремы 1, квадратичная форма станет квадратичной формой Y T BY , где B = P T AP .
Но det(P T AP ) = (т. 5 гл. 4 курса аналитической геометрии)= det P T · det A · det P =
(свойство 1 определителя) = det A · (det P )2. Откуда следует утверждение теоремы.

О п р е д е л е н и е. Рангом квадратичной формы называется ранг матрицы
этой квадратичной формы.

Теорема 3 Ранг квадратичной формы сохраняется при любом невырожденном
линейном преобразовании переменных.

Д о к а з а т е л ь с т в о. Пусть дана квадратичная форма (2). Совершим преоб-
разование (3), причем det P 6= 0. Тогда в силу теоремы 1 придем к квадратичной
форме Y T BY , где B = P T AP . Так как det P = det P T 6= 0, то по теореме 14 гл. 2
rang B = rang P T A = rang A. Что и требовалось доказать.

Пусть квадратичная форма (2) некоторым линейным преобразованием (3) приве-
дена к виду:

bkk(y
k)2. (7)

О п р е д е л е н и е. Запись (7) называется каноническим видом квадратичной
формы.
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Теорема 4 Если квадратичная форма (2) невырожденным преобразованием (3)
приведена к каноническому виду (7), то число отличных от нуля коэффициентов
в (7) равно рангу r квадратичной формы.

Д о к а з а т е л ь с т в о. Так как по условию теоремы det P 6= 0, то в силу теоремы
3 квадратичная форма (7) имеет ранг r. С другой стороны, матрица квадратичной
формы (7) имеет диагональный вид ||bpkδpk||n,n. Следовательно, на ее главной диаго-
нали стоит r отличных от нуля элементов.

§3. Матод Лагранжа приведения квадратичной формы к кано-
ническому виду.

Теорема 5 Любую квадратичную форму можно привести к каноническому виду
(7) невырожденным преобразованием переменных.

Д о к а з а т е л ь с т в о. Проведем по методу математической индукции относи-
тельно числа переменных n. Если n = 1, то квадратичная форма φ(x1) = a11x

1x1 —
канонический вид квадратичной формы. Следовательно, в данном случае существует
тождественное преобразование, т. е. для n = 1 утверждение теоремы имеет место.
Считая теперь доказанным утверждения теоремы для n− 1, рассмотрим квадратич-
ную форму φ(x1, . . . , xn) = apkx

pxk и докажем для нее утверждение теоремы. Для
этого придется рассмотреть 2 случая.
а) Хотя бы один из коэффициентов akk 6= 0, k = 1, n. Пусть ради определенности
ann 6= 0. Выделим в квадратичной форме все члены, содержащие xn:

ann(xn)2 + 2aknx
kxn + aepx

exp, k = 1, n; p, e = 1, n− 1.

Теперь дополним выделенные члены до полного квадрата слагаемыми, не содержа-
щими xn. Тогда

φ(x1, . . . , xn) = ann(ckx
k)2 + φ(x1, . . . , xn−1).

где ck = akn/ann, k = 1, n. По предположению индукции квадратичная форма
φ(x1, . . . , xn−1) невырожденным преобразованием типа (3) приводится к канониче-
скому виду:

φ(y1, . . . , yn−1) = bkky
kyk, k = 1, n− 1.

Добавив к этому преобразованию соотношение yn = ckx
k, k = 1, n, получим преоб-

разование: 


y1

y2

. . .
yn−1

 = P


x1

x2

. . .
xn−1


yn = (akn/ann)xk.

(8)

Это преобразование невырожденное, так как определитель матрицы P этого преоб-
разования ∣∣∣∣∣∣∣∣∣

p1,1 . . . p1,n−1 0
. . . . . . . . . . . .

pn−1,1 . . . pn−1,n−1 0
c1 . . . cn−1 1

∣∣∣∣∣∣∣∣∣ = det P 6= 0.

Следовательно, квадратичная форма φ(x1, . . . , xn) примет канонический вид:

φ(y1, . . . , yn) = bkk(y
k)2 + ann(yn)2.
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б) Все akk = 0, k = 1, n. Пусть a12 6= 0. Тогда сделаем преобразование:
x1 = z1 − z2

x2 = z1 + z2

xk = zk, k = 3, n

Это преобразование невырожденное, так как определитель матрицы преобразования∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0 0
1 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2.

А в итоге, поскольку 2a12x
1x2 = 2a12((z

1)2 − (z2)2), в квадратичной форме появятся
квадраты сразу двух переменных с отличными от нуля коэффициентами, т. е. придем
к случаю а), для которого утверждение теоремы доказано.

Изложенный только что метод выделения полных квадратов называется методом
Лагранжа.

П р и м е р. Привести к каноническомиу виду квадратичную форму φ(x1, x2, x3) =
2x1x2 + 2x2x3. Матрица этой квадратичной формы 0 1 0

1 0 1
0 1 0

 .

Так как первый и третий столбцы совпадают, то rang A = 2. Поэтому в каноническом
виде в силу теоремы 4 один коэффициент будет равен 0. Так как это случай б), то
делаем преобразование:

x1 = z1 − z2

x2 = z1 + z2

x3 = z3

или X =

 1 −1 0
1 1 0
0 0 1

Z = P · Z, где det P = 2.

Тогда φ(z1, z2, z3) = 2(z1)2−2(z2)2+2z1z3+2z2z3 = 2((z1)2+z1z3+0.25(z3)2−0.25(z3)2)+
2z2z3−2(z2)2 = 2(z1+0.5z3)2−2((z2)2−z2z3+0.25(z3)2) = 2(z1+0.5z3)2−2(z2−0.5z3)2.
Иными словами, нами сделано преобразование переменных:

y1 = z1 + 0.5z3

y2 = z2 − 0.5z3

y3 = z3

или Y =

 1 0 0.5
0 1 −0.5
0 0 1

Z = P1 · Z, где det P1 = 1.

Итак,
φ(y1, y2, y3) = 2(y1)2 − 2(y2)2 + 0 · (y3)2.

Можно теперь указать и прямой переход от квадратичной формы φ(x1, x2, x3) к квад-
ратичной форме φ(y1, y2, y3), т. е. X = BY , где B = PP−1

1 . Так как

P−1
1 =

 1 0 −0.5
0 1 0.5
0 0 1

 , то B =

 1 −1 0
1 1 0
0 0 1


 1 0 −0.5

0 1 0.5
0 0 1

 =

 1 −1 −1
1 1 0
0 0 1

 ,

т. е. 
x1 = y1 − y2 − y3

x2 = y1 + y2

x3 = y3

После этого преобразования получим:

φ(y1, y2, y3) = 2(y1 − y2 − y3)(y1 + y2) + 2(y1 + y2)y3 = 2(y1)2 − 2(y2)2.
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§4. Приведение квадратичной формы ортогональным преобра-
зованием к каноническому виду.

Теорема 6 Существует ортогональное преобразование X = QY , где Q — орто-
гональная матрица, приводящее квадратичную форму XT AX к каноническому
виду.

Д о к а з а т е л ь с т в о. Рассмотрим произвольное евклидово пространство En с
ортонормированным базисом (ep)n. Введем на этом пространстве линейный оператор
Â, задав его матрицей Ae в базисе (ep)n, равной матрице A квадратичной формы
φ(x1, . . . , xn) = XT AX. Так как (ep)n — ортонормированный базис и A = AT , то по
утверждению 13 Â — симметричный оператор. По теореме 9 гл. 5 для оператора Â
в пространстве En существует ортонормированный базис (fp)n из собственных век-
торов этого оператора, в котором матрица Af оператора Â имеет диагональный вид:
Af = ||λpδpk||n,n. Обозначим через Q матрицу перехода от базиса (fp)n к базису (ep)n,
т. е. f = eQ. Так как оба базиса ортонормированны, то по свойству 8 ортогональной
матрицы (§4, гл. 4) Q — ортогональная матрица. Как следует из равенства (3) гл.
5 Af = Q−1AeQ или, так как Ae = A и Q−1 = QT , то Af = QT AQ. Применим к
квадратичной форме линейное преобразование X = QY . Тогда по теореме 1 мат-
рица квадратичной формы XT AX будет равна матрице QT AQ, т. е. матрице Af —
диагональной матрице.

З а м е ч а н и е 1. В этом случае коэффициенты канонического вида квадратич-
ной формы φ(y1, . . . , yn) равны собственным значениям оператора Â. Поэтому, решив
характеристическое уравнение (9), сразу можно записать канонический вид квадра-
тичной формы.

З а м е ч а н и е 2. Ортогональное преобразование X = QY , приводящее квад-
ратичную форму к каноническому виду, имеет матрицу Q, столбцы которой суть
координаты ортонормированного базиса из собственных векторов оператора Â в ба-
зисе (ep)n.

Теорема 7 Коэффициенты канонического вида квадратичной формы не зависят
от выбора ортогонального преобразования, приводящего квадратичную форму к
каноническому виду.

Д о к а з а т е л ь с т в о. Пусть ортогональное преобразование X = QY приводит
квадратичную форму XT AX к каноническому виду Y T BY = ap(y

p)2. Покажем, что
ap = λp, где λp — корень уравнения (9). Составим квадратичную форму с матрицей
A − λE: XT (A − λE)X. Ортогональное преобразование X = QY приводит матрицу
этой квадратичной формы согласно теореме 1 к виду: QT (A−λE)Q = B−λQT EQ =
B−λE = ||(ap−λ)δpk||n,n. Поэтому det QT (A−λE)Q =(теорема 5 гл. 4 курса аналити-
ческой геометрии)= det(A−λE) = det ||(ap−λ)δpk||n,n = (a1−λ) ·(a2−λ) · . . . ·(an−λ).
Отсюда следует, что ap — решение уравнения (9).

П р и м е р 1.

φ(x1, x2, x3) = 2x1x2 + 2x2x3. A =

 0 1 0
1 0 1
0 1 0

 — матрица квадратичной формы.

Поэтому A − λE =

 −λ 1 0
1 −λ 1
0 1 −λ

 и характеристическое уравнение имеет вид:

−λ3 = 2λ = 0. Откуда λ1 = 0, λ2 = 21/2, λ3 = −21/2. Теперь решая систему уравнений
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(A− λE)Xe = θ, т. е. систему 
−λx1 + x2 = 0

x1 − λx2 + x3 = 0
x2 − λx3 = 0,

при соответствующих значениях λ, найдем собственные векторы:

а) для λ1 = 0

{
x2 = 0

x1 + x3 = 0
⇒ x1 = −x3 ⇒ X1 = c

 −1
0
1

 , c 6= 0;

б) для λ2 = 21/2

{
−21/2x1 + x2 = 0 ⇒ x1 = 2−1/2x2

x2 − 21/2x3 = 0 ⇒ x3 = 2−1/2x2 ⇒ X2 = c

 1
21/2

1

 , c 6= 0;

в) для λ3 = −21/2

{
21/2x1 + x2 = 0
x2 + 21/2x3 = 0

⇒ X3 = c

 1
−21/2

1

 , c 6= 0.

A = AT , т. е. соответствующий оператор Â — симметричный. Следовательно, соб-
ственные векторы, соответствующие различным собственным значениям, ортого-
нальны. Нормируем их, т. е. требуем, чтобы (Xk, Xk) = 1, k = 1, 2, 3. Тогда: а)
2c2 = 1, т. е. c = 2−1/2, б) 4c2 = 1, т. е. c = 0.5, в) 4c2 = 1, т. е. c = 0.5. Итак,

f1 =

 −2−1/2

0
2−1/2

 , f2 =

 0.5
2−1/2

0.5

 , f3 =

 0.5
−2−1/2

0.5

 .

Поэтому матрица ортогонального преобразования X = QY имеет вид:

Q =

 −2−1/2 0.5 0.5
0 2−1/2 −2−1/2

2−1/2 0.5 0.5

 .

Это преобразование приводит квадратичную форму к каноническому виду:

φ(y1, y2, y3) = λ1(y
1)2 + λ2(y

2)2 + λ3(y
3)2 =

√
2(y2)2 +

√
2(y3)2.

П р и м е р 2. φ(x1, x2, x3) = 2x1x2 + 2x1x3 + 2x2x3. A =

 0 1 1
1 0 1
1 1 0

 , det(A− λE) =

0 ⇒ λ1,2 = −1, λ3 = 2. При λ = −1 система (A−λE)Xe = θ принимает вид: x1 = −c2−

c3. Поэтому базис в пространстве решений, т. е. ФСР, есть X1 =

 −1
1
0

 , X2 =

 −1
0
1

. Но (x1, x2) 6= 0, т. е. они не ортогональны. Поэтому применим алгоритм

ортогонализации: e1 = x1/|x1| =

 −2−1/2

2−1/2

0

; e2 = c2/|c2|, где c2 = x2 − (e1, x2)e1 =

 −1
0
1

− 2−1/2 ·

 −1/
√

2

1/
√

2
0

 =

 −0.5
−0.5

1

 , |c2| = 1.51/2, e2 =


−1/

√
6

−1/
√

6√
2/3

 .
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При λ = 2 e2 =

 1/
√

3

1/
√

3

1/
√

3

 . Поэтому X = QY , где

Q =


−1/

√
2 −1/

√
6 1/

√
3

1/
√

2 −1/
√

6 1/
√

3

0
√

2/3 1/
√

3

 .

Значит, φ(y1, y2, y3) = −(y1)2 − (y2)2 + 2(y3)2.

§5. Билинейные формы. Их связь с квадратичными формами.

Пусть в линейном пространстве Rn каждой упорядоченной паре элементов x, y
по некоторому правилу B ставится в соответствие число u. Тогда u = B(x, y) будем
называть числовой функцией от двух аргументов x, y в линейном пространстве Rn.

О п р е д е л е н и е. Числовая функция B(x, y) называется билинейной формой
от x, y, если для любых элементов x, y, e из Rn выполняются условия:

1. линейность по первому аргументу при фиксированном втором:
а) B(x + y, e) = B(x, e) + B(y, e),
б) для любого a из K0 B(ax, y) = B(x, y) · a;

2. линейность по второму аргументу при фиксированном первом:
в) B(x, y + e) = B(x, y) + B(x, e),
г) для любого a из K0 B(x, ay) = B(x, y) · a.

Из определения билинейной формы по индукции легко получить следующее со-
отношение. Если x, y — линейные комбинации каких-либо элементов пространства
Rn, т. е. x = apξp, p = 1, s; y = ckηk, k = 1, m, то

B(x, y) = B(apξp, c
kηk) = apckB(ξp, ηk). (9)

Выберем в пространстве Rn некоторый базис (ep)n. Тогда любые два элемента x, y
могут быть разложены по этому базису: x = epx

p, y = epy
p, p = 1, n. Обозначив

B(ep, ek) = bpk и применив формулу (9), получим:

B(x, y) = bpkx
pyk. (10)

Представление (10) называется общим видом билинейной формы в n-мерном линей-
ном пространстве, а матрица Be = ||bpk||n,n называется матрицей билинейной формы
B(x, y) в базисе (ep)n.

П р и м е р ы.
1) В линейном пространстве V3 скалярное произведение двух векторов (~a,~b) является

билинейной формой, т. е. B(~a,~b) = (~a,~b), что следует из свойств 1-4
o
скалярного

произведения векторов. Если в качестве базиса V3 взять векторы ~i,~j,~k, то bpp =
1, p = 1, 2, 3, bps = 0 при p 6= s, т. е. B~i,~j,~k = ||δps||3,3.
2) В пространстве C[a,b] билинейной формой является, например, функция B(x, y) =
b∫
a

x(c)y(c)dc. Но так как это пространство бесконечномерно, то эта билинейная форма
не имеет матрицы.

Введенную выше билинейную форму можно записать в матричной форме. Пусть
в Rn задан базис (ep)n. Тогда любой элемент пространства можно разложить по
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этому базису, т. е. x = epx
p = eXe, y = epy

p = eYe. Поэтому равенство (10) в силу
определения операции умножения матриц можно записать так:

B(x, y) = XT
e BeYe. (11)

Теорема 8 Пусть Be и Bf — матрицы билинейной формы B(x, y) в базисах (ep)n

и (fp)n, соответственно. Тогда, если P — матрица невырожденного преобразо-
вания, переводящего базис (ep)n в базис (fp)n, т. е. f = eP , то

Bf = P T BeP. (12)

Д о к а з а т е л ь с т в о. Пусть в базисе (ep)n элементы x, y имеют координаты
Xe, Ye, а в базисе (fp)n — Xf , Yf соответсвенно. Так как f = eP , det P 6= 0, то
по формуле (6) §6 гл. 2 имеем: Xe = PXf , Ye = PYf . Тогда B(x, y) =(формула

(11))= XT
e BeYe = (PXf )

T Be · (PYf ) =(свойство 2
o
операции умножения матриц)=

XT
f (P T BeP )Yf = XT

f BfYf . Отсюда следует утверждение теоремы.

П р и м е р. В пространстве V3 заданы базис ~e1 = ~i, ~e2 = ~j,~e3 = ~k и матрица

P =

 1 −1 0
0 2 1
0 0 −3

 линейного преобразования, в результате которого базис (~ep)3

перейдет в базис (~fp)3 по формуле f = eP , т. е. (f1 f2 f3) = (~e1 2~e2−~e1 ~e2− 3~e3) ⇒

~f1 =

 1
0
0

 , ~f2 =

 −1
2
0

 , ~f3 =

 0
1

−3

 . Найдем теперь в обоих базисах матрицу

билинейной формы, которая в базисе (ep)3 имеет вид B(x, y) = x1y1−2x1y2 +3x3y1−

x3y2, т. е. Be =

 1 −2 0
0 0 0
3 −1 0

 . По формуле (12) Bf = P T BeP =

 1 −5 −2
−1 5 2
−9 15 3

,
т. е. в этом базисе билинейная форма запишется так: B(x, y) = x1y1− 5x1y2− x2y1 +
5x2y2 − 2x1y3 − 9x3y1 + 2x2y3 + 15x3y2 + 3x3y3.

О п р е д е л е н и е. Билинейная форма B(x, y) называется симметричной, если
для любых x, y из Rn B(x, y) = B(y, x).

Теорема 9 Для того, чтобы билинейная форма B(x, y) была симметричной, необ-
ходимо и достаточно, чтобы в некотором базисе (ep)n ее матрица Be была сим-
метричной.

Н е о б х о д и м о с т ь. Пусть B(x, y) = B(y, x). Тогда в базисе (ep)n bkp = B(ek, ep)
= B(ep, ek) = bpk. Что и требовалось доказать.

Д о с т а т о ч н о с т ь. Пусть в базисе (ep)n Be = BT
e . Тогда по формуле (10)

B(x, y) = bpkx
pyk = bkpy

kxp = B(y, x). Теорема доказана.
Оказывается билинейная форма связана непосредственно с ранее введенной нами

квадратичной формой. А именно, если в билинейной форме положить y = x, то в
силу (10)

B(x, x) = bpkx
pxk (13)

— функция n переменных x1, . . . , xn, которые здесь интерпретируются как коор-
динаты элемента x пространства Rn в базисе (ep)n. В записи (13) есть подобные
члены bpkx

pxk и bkpx
kxp. Введем симметричную матрицу A: apk = akp = (bpk + bkp)/2,

akk = bkk. Тогда B(x, x) = A(x, x) = apkx
pxk — квадратичная форма. Отсюда следует,

что одну и ту же квадратичную форму можно получить из различных билиней-
ных форм B(x, y) = XT BY и B∗(x, y) = XT B∗Y , если только bpk + bkp = b∗pk + b∗kp,
k, p = 1, n.
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В ы в о д: каждой билинейной форме соответствует единственная квадратичная
форма; каждой квадратичной форме соответствует бесконечно много билинейных
форм, но среди них есть единственная симметричная билинейная форма.

П р и м е р. Если дана квадратичная форма φ(x1, x2, x3) = (x1)2−2x1x2 +3x2x3, то
соответствующая ей симметричная билинейная форма имеет вид B(x, y) = A(x, y) =
x1y1 − x1y2 − x2y1 + 1.5x2y3 + 1.5x3y2.

Любая симметричная билинейная форма A(x, y) может быть выражена через
квадратичные формы. Действительно, A(x + y, x + y) =(по свойству а) билинейной
формы)= A(x, x+y)+A(y, x+y) =(свойство б) билинейной формы)= A(x, x)+A(x, y)+
A(y, x) + A(y, y). Так как билинейная форма симметрична, то A(x, y) = A(y, x). Сле-
довательно,

A(x, y) = 0.5(A(x + y, x + y)− A(x, x)− A(y, y)).

О п р е д е л е н и е. Базис (ep)n в линейном пространстве Rn называется ка-
ноническим для билинейной формы B(x, y), если B(ep, ek) = 0, p 6= k, p, k = 1, n.

Теорема 9∗ Для того, чтобы билинейная форма B(x, y) была симметричной,
необходимо и достаточно, чтобы эта форма имела канонический базис.

Н е о б х о д и м о с т ь. Пусть форма B(x, y) — симметричная билинейная форма
A(x, y). Пусть в базисе (ep)n A(x, y) = XT

e AeYe. Соответствующая этой билиней-
ной форме квадратичная форма A(x, x) = XT

e AeXe по теореме 5 невырожденным
преобразованием X = PZ приводится к каноническому виду, т. е. матрица P T AeP
имеет диагональный вид. Этому преобразованию соответствует преобразование ба-
зиса (ep)n в базис (fp)n по формуле f = eP . Тогда, как следует из формулы (12),
Af = P T AeP , которая по выше доказанному является диагональной. Следовательно,
в этом базисе A(x, y) = akkx

kyk, т. е. akp = A(fk, fp) = 0 при k 6= p. Но это и означает,
что базис (fp)n — канонический.

Д о с т а т о ч н о с т ь. Пусть (ep)n — канонический базис. Тогда матрица Be би-
линейной формы в этом базисе имеет диагональный вид, так как bkp = B(ek, ep) = 0
при k 6= p. Но диагональная матрица совпадает со своей транспонированной, т. е.
Be = BT

e . А это означает, что билинейная форма B(x, y) является симметричной.

§6. Метод Якоби приведения квадратичной формы к канониче-
скому виду.

Пусть дана квадратичная форма XT AX. Как отмечалось в §5, ее можно рассмат-
ривать как частный случай билинейной формы, т. е. XT AX = A(x, x), где x1, . . . , xn

интерпретируются как координаты элемента x пространства Rn в базисе (ep)n. По-
этому проблему приведения квадратичной формы к каноническому виду можно рас-
сматривать как проблему выбора канонического базиса. Сделаем это с помощью
треугольного преобразования базисных элементов:

f1 = e1

f2 = c21e1 + e2

f3 = c31e1 + c32e2 + e3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fn = cn1e1 + cn2e2 + cn3e3 + . . . + en

(14)

Так как определитель матрицы преобразования отличен от нуля (равен 1), то f1, . . . , fn

образуют базис в Rn. Далее, нам потребуются угловые миноры матрицы A = Ae

квадратичной формы A(x, x) в базисе (ep)n : ∆k = det ||apk||k,k, k = 1, n− 1.
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Теорема 10 Пусть миноры ∆1, ∆2, . . . , ∆n−1 матрицы A квадратичной формы XT AX
отличны от нуля. Тогда существует единственное треугольное преобразование
(14) базисных элементов e1, e2, . . . , en приводящее квадратичную форму XT AX к
каноническому виду.

Д о к а з а т е л ь с т в о. Так как XT AX = A(x, x), то, как следует из §5, в любом
базисе (fp)n коэффициенты квадратичной формы вычисляются по формуле: apk =
A(fp, fk). Если форма A(x, x) в базисе (fp)n имеет канонический вид, то apk = 0
при p 6= k. Поэтому для доказательства теоремы достаточно построить с помощью
преобразования (14) базис (fp)n такой, что 1) в нем будут выполняться соотношения:

A(fp, fk) = 0, p 6= k, p, k = 1, n (15)

или, что то же, при p < k (ибо apk = akp), и 2) он (базис) единственный.
Так как в силу (14) fp = cp1e1 + cp2e2 + . . . + cp,p−1ep−1 + ep, то на основании формулы
(9) имеем:

A(fp, fk) = cp1A(e1, fk) + cp2A(e2, fk) + . . . + A(ep, fk).

Поэтому условия (15) будут иметь место, если

A(e1, fk) = 0, A(e2, fk) = 0, . . . , A(ek−1, fk) = 0, k = 2, n. (16)

Так как по соотношениям (14) fk = ck1e1 + ck2e2 + . . . + ek, то (16) примет вид:

ck1A(ep, e1) + ck2A(ep, e2) + . . . + A(ep, ek) = 0, p = 1, k − 1 k = 2, n.

Обозначив A(ep, ek) = bpk, запишем окончательно (16) так:
ck1b11 + ck2b12 + . . . + ck,k−1b1,k−1 + b1k = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ck1bk−1,1 + ck2bk−1,2 + . . . + ck,k−1bk−1,k−1 + bk−1,k = 0

(17)

Определитель системы (17) равен ∆k−1, который по условию теоремы отличен от ну-
ля. Следовательно, эта система имеет единственное решение. Таким образом, мож-
но построить единственное преобразование (14), приводящее квадратичную форму
A(x, x) к каноническому виду. Теорема доказана.

В заключение приведем формулы, по которым можно вычислить коэффициенты
cpk преобразования (14) и формулы для канонических коэффициентов λk квадратич-
ной формы.

Обозначим символом ∆k−1,p минор матрицы A, расположенный на пересечении
строк с номерами 1, 2, . . . , k − 1 и столбцов с номерами 1, 2, . . . , p − 1, p + 1, . . . , k.
Тогда из системы (17) по формулам Крамера находим, что

ckp = (−1)k+p ∆k−1,p

∆k−1

. (18)

Вычислим теперь λk. Так как λk = akk = A(fk, fk), то из равенств (14) следует, что
λ1 = A(f1, f1) = A(e1, e1) = a11 = ∆1, а при k = 2, n : λk = A(fk, fk) = A(ck1e1 +
ck2e2 + . . .+ ek, fk) =(в силу (16))= A(ek, fk) = A(ek, ck1e1 + . . .+ ek) = ck1b1k + ck2b2k +
. . . + ck,k−1bk−1,k + bkk = (формулы (18))= [(−1)k+1b1k∆k−1,1 + (−1)k+2b2k∆k−1,2 + . . . +
(−1)2k−1bk−1,k∆k−1,k−1 + bkk∆k−1]/∆k−1. Но [. . . . . .] — сумма произведений элементов
k-ой строки определителя ∆k на алгебраические дополнения этих элементов в том
же определителе. Следовательно, эта скобка равна самому определителю ∆k, т. е.
λk = ∆k/∆k−1. Итак,

λ1 = ∆1, λ2 =
∆2

∆1

, . . . , λn =
∆n

∆n−1

. (19)
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§7. Закон инерции квадратичной формы.

Как доказано в теореме 4, число ненулевых коэффициентов в каноническим виде
квадратичной формы постоянно, т. е. является инвариантом квадратичной формы
относительно преобразований, приводящих квадратичную форму к каноническому
виду. Оказывается, что число положительных и отрицательных коэффициентов в
канонической форме также постоянно, независимо от способа приведения невырож-
денным преобразованием к каноническому виду.

Теорема 11 (об инерции квадратичной формы) Число положительных и отри-
цательных коэффициентов в каноническом виде, к которому приводится квад-
ратичная форма невырожденным преобразованием, не зависит от выбора этого
преобразования.

Д о к а з а т е л ь с т в о. Пусть квадратичная форма φ(x1, . . . , xn) ранга r невы-
рожденным преобразованием Y = PX приведена к каноническому виду:

a1(y
1)2 + . . . + ak(y

k)2 − ak+1(y
k+1)2 − . . .− ar(y

r)2 (ap > 0, p = 1, r), (20)

а невырожденным преобразованием Z = CX — к виду:

b1(z
1)2 + . . . + be(z

e)2 − be+1(z
e+1)2 − . . .− br(z

r)2 (bp > 0, p = 1, r). (21)

Так как det P 6= 0, det C 6= 0, то задав значения x1, . . . , xn, однозначно из Y = PX
и Z = CX определим значения y1, . . . , yn и z1, . . . , zn. Тем самым формулы (20),
(21) определят значение квадратичной формы в точке x1, . . . , xn, т. е. их можно
приравнять:

a1(y
1)2 + . . . + ak(y

k)2 − ak+1(y
k+1)2 − . . .− ar(y

r)2 = b1(z
1)2 + . . .− br(z

r)2. (22)

Надо доказать, что k = e. Предположим противное, т. е. k > e. Как уже говорилось,
в равенстве (22) переменные y1, . . . , yn и z1, . . . , zn связаны с переменными x1, . . . , xn

соотношениями:

Y = PX ⇒



y1 = p1ix
i,

. . . . . . . . . ,
yk = pkix

i,
yk+1 = pk+1,ix

i,
. . . . . . . . . . . . ,
yn = pnix

i,

Z = CX ⇒



z1 = c1ix
i,

. . . . . . . . . ,
ze = ceix

i,
ze+1 = ce+1,ix

i,
. . . . . . . . . . . . ,
zn = cnix

i,
(i = 1, n).

(23)

Так как k > e, то число уравнений в системе (23) n − k + e < n. Найдем из этой
системы решение x1, . . . , xn, для которого

yk+1 = . . . = yn = 0, (24)

z1 = . . . = ze = 0. (25)
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В силу этих условий система (23) — однородная система уравнений, причем она
нетривиально совместна, так как число уравнений меньше числа неизвестных. По-
этому существуют числа x1, . . . , xn, не все равные нулю, которые удовлетворяют
системе (23) при условиях (24), (25). Теперь для этих значений x1, . . . , xn из ра-
венств Y = PX и Z = CX найдем y1, . . . , yk и ze+1, . . . , zn и подставим в равенство
(22), учитывая (24), (25):

a1(y
1)2 + . . . + ak(y

k)2 = −be+1(z
e+1)2 − . . .− br(z

r)2.

Но это равенство возможно, поскольку ap > 0, bp > 0, p = 1, r, тогда и только
тогда, когда y1 = . . . = yk = 0 и ze+1 = . . . = zr = 0. Но тогда, учитывая (24),
например, получаем,что Y = θ. Поэтому и так как det P 6= 0 из Y = PX получаем,
что X = θ. Пришли к противоречию с предположением, что X 6= θ, означающее, что
предположение k > e неверно. Аналогично доказывается, что k < e быть не может.
Таким образом, остается лишь один случай: k = e. Что и требовалось доказать.

§8. Классификация квадратичных форм.

О п р е д е л е н и е. Квадратичная форма XT AX называется
1) положительно (отрицательно) определенной, если для всех X XT AX ≥ 0 (≤ 0),
причем XT AX = 0 только при X = θ (такие формы называются также знако-
определенными);
2) Квазиопределенной, если она может принимать значения XT AX ≥ 0 (≤ 0) для
X 6= θ.
3) неопределенной, если она может принимать как положительные, так и от-
рицательные значения.

Теорема 12 Для того, чтобы квадратичная форма была положительно (отри-
цательно) определенной, необходимо и достаточно, чтобы все коэффициенты в
каноническом виде этой формы были строго положительны (отрицательны).

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть XT AX > 0 всюду, кроме
X = θ. Пусть невырожденным преобразованием Y = PX эта форма приведена к
каноническому виду

ak(y
k)2, k = 1, n. (26)

Требуется доказать, что ak > 0, k = 1, n. Зафиксируем k и положим y1 = . . . = yk−1 =
yk+1 = . . . = yn = 0, yk = 1. Тогда из системы Y = PX определим нетривиальное
решение X, для которого

0 < XT AX = Y T BY = φ(0, . . . , 0, 1, 0, . . . , 0) = ak ⇒ ak > 0.

Д о с т а т о ч н о с т ь. Пусть в квадратичной форме (26) ak > 0, k = 1, n. Требуется
доказать: XT AX > 0 при X 6= θ и XT AX = 0 при X = θ. Пусть X 6= θ. Тогда из
системы Y = PX определяем Y 6= θ. Поэтому XT AX = Y T BY = ak(y

k)2 > 0, так
как ak > 0 и не все yk равны нулю. Если же X = θ, то из системы Y = PX имеем
Y = Pθ = θ. Следовательно, XT AX = Y T BY = a1 · 0 + . . . + an · 0 = 0.

С л е д с т в и е. Если квадратичная форма положительно определена, то невы-
рожденным преобразованием ее можно привести к виду: (y1)2 + (y2)2 + . . . + (yn)2.

Теорема 13 (Критерий Сильвестра) Для того, чтобы квадратичная форма XT AX
была положительно определена, необходимо и достаточно, чтобы угловые мино-
ры матрицы A ∆k > 0, k = 1, n. Для того, чтобы эта квадратичная форма была
отрицательно определенной, необходимо и достаточно, чтобы знаки угловых
миноров чередовались, причем ∆1 < 0.
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Н е о б х о д и м о с т ь. Пусть квадратичная форма XT AX = A(x, x) положитель-
но определена. Докажем, что ∆k 6= 0, k = 1, n. Предположим противное, т. е. для
некоторого k ∆k = 0. Рассмотрим следующую квадратную однородную систему ли-
нейных уравнений:

aepx
p = 0, e, p = 1, k. (27)

Так как ∆k — определитель этой системы и ∆k = 0, то система (27) имеет ненулевое
решение x1, . . . , xk (не все xe равны нулю). Умножим первое из уравнений системы
(27) на x1, второе — на x2, . . ., последнее — на xk и сложим полученные соотно-
шения. В итоге получим равенство: aepx

exp = 0, e, p = 1, k, левая часть которого
представляет собой значение квадратичной формы A(x, x) для ненулевого вектора x
с координатами x1, . . . , xk, 0, . . . , 0. Это значение равно нулю, что противоречит зна-
коопределенности формы. Итак, ∆k 6= 0, k = 1, n. Поэтому можно применить метод
Якоби приведения формы A(x, x) к сумме квадратов и воспользоваться формулами
(19) для канонических коэффициентов λk. Если A(x, x) — положительно определен-
ная форма, то все канонические коэффициенты положительны. Но тогда из равенств
(19) следует, что ∆p > 0, p = 1, n. Если же A(x, x) — отрицательно определенная
форма, то все канонические коэффициенты отрицательны. Но тогда из формул (19)
следует, что знаки угловых миноров чередуются, причем ∆1 < 0.

Д о с т а т о ч н о с т ь. Пусть выполнены условия, наложенные на угловые миноры
в формулировке теоремы. Тогда форму A(x, x) можно привести к сумме квадратов
методом Якоби, причем канонические коэффициенты могут быть найдены по фор-
мулам (19). Если все угловые миноры положительны, то из (19) следует, что все
λp > 0, т. е. A(x, x) — положительно определенная. Если же знаки ∆p чередуются
и ∆1 < 0, то из соотношений (19) следует, что A(x, x) отрицательно определенная.
Теорема доказана.

З а д а ч и. Доказать:

1) Если A — матрица положительно определенной квадратичной формы, то A−1

— матрица положительно определенной квадратичной формы;

2) для всякой матрицы C, det C 6= 0, CT C — матрица положительно определенной
квадратичной формы;

3) если A — матрица положительно определенной квадратичной формы, то все
элементы главной диагонали больше нуля;

4) если квадратичная форма неотрицательная и akk = 0, то все элементы k-го и
k-ой строки матрицы этой квадратичной формы равны нулю.

Р е ш е н и е.
1) Если A — матрица положительно определенной квадратичной формы, то после
преобразования (3) матрица P T AP — матрица все той же положительно опреде-
ленной квадратичной формы, если det P 6= 0. Пусть P = A−1. Тогда P T AP =
(A−1)T AA−1 = (A−1)T = (AT )−1 = A−1 — матрица, как уже отмечалось выше, поло-
жительно определенной квадратичной формы.
2) Так как E — матрица положительно определенной формы, то при det C 6= 0
CT EC = CT C — матрица положительно определенной квадратичной формы.
3) Пусть, например, a22 = 0. Положим x1 = x3 = . . . = xn = 0, x2 = 1. Тогда
φ(x1, . . . , xn) = a22(x

2)2 = a22 = 0 при не всех xk равных 0, т. е. φ не положительно
определенная квадратичная форма.
4) Пусть, например, a33 = 0, но a13 6= 0. Положим x2 = x4 = . . . = xn = 0, x1 =
a 6= 0, x3 = b 6= 0. Тогда φ(x1, . . . , xn) = a11a

2 + 2a13ab. В силу 3) a11 ≥ 0. Пусть
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a11 = 1. Тогда φ = a(a + 2a13b). Можно подобрать a, b так, что a(a + 2a13b) < 0, что
противоречит условию, т. е. a13 = 0 и тогда φ = a2 ≥ 0.

§9. Численные методы решения систем линейных уравнений.

Рассмотрим систему уравнений:

AX = B, (1)

где A = ||ap
k||nn, X = ||xp||n, B = ||bp||n. Пусть det A 6= 0, т. е. система (1) имеет

единственное решение.

п. 1. Итерационный метод Гаусса-Зейделя.

Если ap
p 6= 0, p = 1, n, то системе (1) можно придать вид:

xp =
bp − ap

kx
k

ap
p

, k = 1, n, k 6= p, p = 1, n. (2)

Система (2) называется приведенной. Введя обозначения

mp =
bp

ap
p

и cp
k =

{
−ap

k/a
p
p при p 6= k

0 при p = k.

систему (2) запишем так:
X = M + CX, (3)

где C = ||cp
k||nn, M = ||mp||n. Система

Xk = M + CXk−1, k = 1, 2, 3, . . . , (4)

называется итерационной системой уравнений для системы (3). Взяв в качестве ну-
левого приближения X0 — любой числовой столбец высоты n и подставив его в
реккурентную формулу (4), получим X1 = M + CX0 и т. д. Метод итераций состоит
в замене точного решения системы (1) k-ой итерацией (4) с достаточно большим
номером k. Если при k → ∞ Xk → X̄, то X̄ — искомое решение системы (3),
обращающее эту систему уравнений в верные числовые равенства:

X̄ = M + cX̄. (5)

Будет ли схема сходящейся при k →∞? Ответ дают следующие достаточные условия
сходимости метода:

а) |ap
p| >

n∑
k = 1
k 6= p

|ap
k|, p = 1, n, или б) |ak

k| >
n∑

p = 1
p 6= k

|ap
k|, k = 1, n.

п. 2. Метод Зейделя.

Представим матрицу C системы (3) в виде C = B + D, где

B =


0 0 . . . 0
c1
1 0 . . . 0

. . . . . . . . . . . .
c1
n c2

n . . . 0

 , D =


0 . . . cn−1

1 cn
1

0 0 . . . cn−1
2

. . . . . . . . . . . .
0 0 . . . 0


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Тогда (3) есть система:
X = M + BX + DX, (6)

для которой итерационная система есть система: Xk = M + BXk + DXk−1 или

(E −B)Xk = M + DXk−1. (7)

Пусть X0 — любой числовой столбец высоты n. Тогда

(E −B)X1 = T,

где T = M + DX0 — известный нам столбец. Распишем последнюю систему:
x1 = t1

−c2
1x

1 + x2 = t2

. . . . . . . . . . . . . . . . . . . . . . . .
−cn

1x
1 − cn

2x
2 − . . .− cn

n−1x
n−1 + xn = tn

— треугольная система, которую легко решать сверху:

x1 = t1

x2 = t2 + c2
1t

1

x3 = t3 + c3
2(t

2 + c2
1t

1) + c3
1t

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Метод сходится, если матрица A: 1) симметричная и 2) положительная, т. е. все
решения уравнения det(A− λE) = 0 неотрицательны.

п. 3. Метод исключения (Гаусса).

Рассмотрим один из наиболее известных и широко применяемых прямых методов
решения систем линейных уравнений. Применим его сначала к системе из трех
уравнений с тремя неизвестными:

ap
kx

k = bp, p, k = 1, 2, 3. (8)

В такой системе по крайней мере один из коэффициентов a1
3, a

2
3, a

3
3 должен быть

отличен от нуля, иначе мы имели бы дело в этих трех уравнениях с двумя неизвест-
ными. Если a3

3 = 0, то можно переставить уравнения так, чтобы коэффициент при
x3 в третьем уравнении был отличен от нуля. Очевидно, что перестановка уравне-
ний оставляет систему неизменной, и ее решение прежним. Теперь умножим третье
уравнение вначале на a1

3/a
3
3 и вычтем из первого уравнения, а затем — на a2

3/a
3
3 и

вычтем из второго уравнения. В итоге будем иметь:
(a1

1 − a3
1a

1
3/a

3
3)x

1 + (a1
2 − a3

2a
1
3/a

3
3)x

2 = b1 − b3a1
3/a

3
3

(a2
1 − a3

1a
2
3/a

3
3)x

1 + (a2
2 − a3

2a
2
3/a

3
3)x

2 = b2 − b3a2
3/a

3
3

a3
1x

1 + a3
2x

2 + a3
3x

3 6= b3,
(9)

или, если переобозначить коэффициенты в первых двух уравнениях,
ā1

1x
1 + ā1

2x
2 = b̄1

ā2
1x

1 + ā2
2x

2 = b̄2

a3
1x

1 + a3
2x

2 + a3
3x

3 = b3.
(10)
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Если ā2
2 = 0, то переставим уравнения так, чтобы этот коэффициент стал отличным

от нуля. После этого умножим второе уравнение на ā1
2/ā

2
2 и вычтем из первого. Тогда

¯̄a1
1x

1 = ¯̄b
1

ā2
2x

2 = b̄2 − ā2
1x

1

a3
3x

3 = b3 − a3
1x

1 − a3
2x

2,

(11)

где ¯̄a1
1 = ā1

1 − ā2
1ā

1
2/ā

2
2,

¯̄b
1

= b̄1 − b̄2ā1
2/ā

2
2. Если ¯̄a1

1 = 0, то система вырождена. Будем
считать, что ¯̄a1

1 6= 0. Тогда из системы (11), начиная с первого уравнения, легко
определяются x1, x2, x3, т. е. решение исходной системы (8).

Теперь рассмотрим общий случай системы (1). Пусть an
n 6= 0. Вычтем из каж-

дого p-го уравнения (p = 1, n− 1) n-ое уравнение, умноженное на ap
n/a

n
n. Введем

обозначения:

āp
k = ap

k − an
ka

p
n/a

n
n, b̄p = bp − bnap

n/a
n
n, p = 1, n− 1, k = 1, n.

Тогда система (1) запишется так:

āp
kx

k = b̄p, p, k = 1, n− 1
an

i x
i = bn, i = 1, n.

(12)

Продолжая в том же духе, мы можем исключить xn−1 из первых n − 2 уравнений,
затем xn−2 из первых n− 3 уравнений и т. д., пока не придем к треугольной системе
уравнений: 

a
(n−1)
11 x1 = b

(n−1)
1

a
(n−2)
21 x1 + a

(n−2)
22 x2 = b

(n−2)
2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + . . . + annxn = bn,

(13)

где ради удобства записи верхние индексы элементов матриц заменены на первые
нижние. Из этой системы, начиная с первого уравнения, легко определяются неиз-
вестные.
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Заключение.

Для получения положительной оценки на экзамене необходимо уметь решать
следующие задачи:
Глава 2. Уметь находить

1) базис и размерность пространства,

2) координаты элемента x в заданном базисе,

3) переход от одного базиса к другому, матрицу этого перехода,

4) ранг матрицы.

Является ли

5) данное множество M подпространством линейного пространства?

6) данное множество элементов линейно зависимым или нет?

7) Образовать линейную оболочку из данной совокупности элементов. Опреде-
лить ее размерность.

Глава 3. Уметь находить

1) ФСР,

2) общее решение неоднородной системы уравнений.

3) Является ли данная система совместной?

Глава 4. Уметь

1) ортогонализировать базис,

2) дополнять до ортогонального базиса,

3) доказывать, что в каждом линейном конечномерном пространстве можно ввести
скалярное произведение.

4) Знать 4 свойства ортогональной матрицы и уметь ими пользоваться.

Глава 5. Уметь

1) выписывать матрицу линейного оператора. Например, для оператора проекти-
рования в пространстве V3 на прямую x = y = z.

2) Как изменится матрица оператора при изменении базиса?

3) находить собственные значения и собственные векторы линейного оператора.

Глава 6. Уметь

1) выписывать матрицу квадратичной формы и билинейной формы и наоборот,

2) приводить квадратичную к каноническому виду методами а) Якоби, б) Лагран-
жа, в) ортогональных преобразований.

3) Является ли данная квадратичная форма положительно определенной?
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