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1 Линейные пространства

1.1 Линейное (векторное) пространство

Определение 1.1.1 Множество V называется линейным (векторным) пространством над
некоторым полем K , если заданы операция + сложения двух элементов множества V и операция
умножения · элементов множества V на элементы поля K, которые удовлетворяют следующим
условиям (аксиомам):

(i) a + b = b + a ∀a, b ∈ V ,

(ii) (a + b) + c = a + (b + c) ∀a, b, c ∈ V ,

(iii) ∃0 ∈ V : a + 0 = a ∀a ∈ V ,

(iv) ∀a ∈ V ∃(−a) : a + (−a) = 0,

(v) λ · (a + b) = λ · a + λ · b ∀a, b ∈ V , ∀λ ∈ K,
(vi) (λ + µ) · a = λ · a + µ · a ∀a ∈ V , ∀λ, µ ∈ K,
(vii) λ · (µ · a) = (λµ) · a ∀a ∈ V , ∀λ, µ ∈ K,
(viii) 1 · a = a ∀a ∈ V .

Первые 4 свойства определяют на V структуру абелевой группы, а последние 4 свойства —
структуру алгебры над полем K.

Элементы множества V обычно называются векторами, а элементы поля K — скалярами или
числами. Обычно мы будем опускать знак умножения ·.

В нашем курсе поле K всегда будет предполагаться полем вещественных или комплексных
чисел.
Свойства линейного пространства:

(i) нулевой элемент в множестве V определен однозначно,

(ii) для любого элемента обратный элемент определен однозначно,

(iii) 0 · a = 0 ∀a ∈ V ,

(iv) λ · 0 = 0 ∀λ ∈ K,
(v) (−a) = (−1) · a ∀a ∈ V ,

(vi) если λ · a = 0, то либо λ = 0, либо a = 0.

Доказательство.

(i) если 0′ — другой нулевой элемент, то 0 = 0 + 0′ = 0′.

(ii) если b + a = 0, то (−a) = (−a) + 0 = (−a) + b + a = (−a) + a + b = 0 + b = b.

(iii) 0 = a+(−a) = 1a+(−a) = (1+0)a+(−a) = 1a+0a+(−a) = a+0a+(−a) = a+(−a)+0a =
0 + 0a = 0a.

(iv) если λ = 0, то равенство 0 · 0 = 0 доказано в предыдущем пункте; если λ 6= 0, то a + λa =
λλ−1a + λ0 = λ(λ−1a + 0) = λ(λ−1a) = a, и λ0 = 0 следует из единственности нулевого
элемента.

(v) a+(−1)a = 1a+(−1)a = (1+(−1))a = 0a = 0, поэтому (−1)a = (−a) в силу единственности
обратного элемента.

(vi) пусть λ · a = 0; если λ 6= 0, то a = λ−1λa = λ−10 = 0.

2



¤
Примеры линейных пространств:

(i) множество, состоящее из одного элемента {0} является линейным пространством над любым
полем,

(ii) множество векторов на прямой, на плоскости, в пространстве,

(iii) наборы из n чисел, V = {a1, . . . , an : ai ∈ K}, где сложение и умножение на скаляры
определяется покомпонетно,

(iv) множество Kn[t] — множество многочленов степени не выше n с коэффициентами из поля
K от переменной t,

(v) множество функций F (x), определенных на некотором произвольном множестве X, со
значениям в множестве K,

(vi) множество решений однородной системы линейных уравнений,

(vii) R является линейным пространством над полем Q,

(viii) C является линейным пространством над полем R.

Определение 1.1.2 Пусть дано линейное пространство V . Линейной функцией (линейным
функционалом) называют отображение f : V → K, обладающее свойствами: f(a+b) = f(a)+f(b)
и f(λa) = λf(a) ∀a, b ∈ V, λ ∈ K.

(ix) множество линейных функционалов является линейным пространством (оно называется
двойственным пространством к V ).

Определение 1.1.3 Пусть дано линейное пространство W , его непустое подмножество V ⊂
W называется подпространством, если оно замкнуто относительно операций, определенных в
пространстве W , т.е., если выполнены следующие свойства:

1) a + b ∈ V ∀a, b ∈ V ,
2) λa ∈ V ∀a ∈ V, λ ∈ K.

Лемма 1.1.4 Подпространство V линейного пространства W само является линейным
пространством над тем же полем и с теми же операциями, что и W .

Доказательство. Все условия определения линейного пространства выполнены, т.к. все
элементы V являются элементами W , а для элементов W они выполнены по определению. ¤
Примеры подпространств. Пусть пространство W — это множество векторов на плоскости,

тогда следующие множества будут подпространствами:
1) {0},
2) множество всех векторов, коллинеарных некоторому заданному вектору,
3) само пространство W .

1.2 Линейные подмногообразия

Определение 1.2.1 Пусть дано линейное пространство W , его элемент a ∈ W и его
подпространство V ⊂ W . Линейным подмногообразием называется множество всех векторов вида
a + v, где v ∈ V .

Для линейных подмногообразий удобно пользоваться обозначением a + V .

Лемма 1.2.2 Линейное подмногообразие a + V является линейным подпространством
пространства W тогда и только тогда, когда a ∈ V .
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Доказательство.
1) если a ∈ V , то a + V = 0 + V = V (совпадают как множества).
2) пусть a + V является подпространством. Т.к. a ∈ a + V , то 2a ∈ a + V , что равносильно

существованию некоторого b ∈ V , такого что 2a = a + b, но тогда получаем, что a = b, т.е. a ∈ V .
¤

Лемма 1.2.3 a1 + V = a2 + V ⇐⇒ a1 − a2 ∈ V .

Доказательство.
⇒: пусть a1 + V = a2 + V , тогда a1 ∈ a1 + V = a2 + V , значит, найдется такой вектор b ∈ V ,

что a1 = a2 + b, т.е. a1 − a2 ∈ V .
⇐: пусть a1 − a2 ∈ V , т.е. a1 − a2 = v ∈ V . Возьмем произвольный элемент b ∈ a1 + V .

Тогда b = a1 + b′ для какого-то вектора b′ ∈ V . Покажем, что b ∈ a2 + V . Действительно,
b = a1 + b′ = a2 + (v + b′), причем v + b′ ∈ V . ¤

1.3 Аффинное пространство

Определение 1.3.1 Аффинным пространством называется тройка (A, V,+), состоящая из
множества A, векторного пространства V и операции сложения + : A× V → A, (т.е. складывать
можно элемент множества A с элементом векторного пространства, при этом в результате
получается элемент множества A), которая удовлетворяет следующим свойствам:

1) для любых A,B ∈ A существует единственный вектор v ∈ V , такой что B = A + v;
2) A + 0 = A для любого A ∈ A, где 0 — нулевой вектор;
3) (A + v) + w = A + (v + w) для любых A ∈ A, v, w ∈ V .

В обозначении аффинного пространства часто опускают знак плюс и пишут просто (A, V ).
Также, если из контекста понятно, какое пространство V имеется в виду, то и его не указывают
и говорят об аффинном пространстве A. Элементы аффинного пространства (или множества
A) называют точками. Любая пара точек A,B ∈ A однозначно определяет вектор v равенством
B = A + v (свойство 1) и такой вектор обозначается AB.

Примеры:
1) A — это обычная плоскость, V — двумерное векторное пространство векторов плоскости, +

— приложение вектора к точке.
2) Рассмотрим систему линейных уравнений AX = B, где A — матрица, X, B — столбцы. Пусть

A — множество решений этой системы, V — множество решений соотвтетсвующей однородной
системы AX = 0, + — суммирование столбцов. Если XB ∈ A и X0 ∈ V , то XB + X0 ∈ A.

3) Возьмем какое-нибудь векторное пространство V , в качествеA возьмем его же, + — операция
сложения в этом векторном пространстве.

Последний пример показывает, что имеется естественное соответствие между векторными и
аффинными пространствами, и теория аффинных пространств полностью параллельна теории
векторных пространств, поэтому в дальнейшем мы ограничимся только случаем векторных
пространств, постоянно помня, что все результаты могут быть сформулированы в терминах точек
и векторов аффинного пространства. Отождествляя A и V , мы будем иногда называть элементы
векторного пространства точками.

1.4 Линейная зависимость векторов

Определение 1.4.1 Пусть дано линейное пространство V и некоторая система (множество)
векторов {vi : i ∈ I} ⊂ V этого пространства. Если множество индексов I (а, значит, и система
векторов) конечно (I = {1, . . . , n}), их линейной комбинацией называется выражение вида λ1v1 +
. . . + λnvn, где λi — это числа (скаляры) из поля K. Если множество I бесконечно, линейной
комбинацией бесконечной системы векторов называется выражение аналогичного вида,

∑
i∈I λivi,

в котором лишь конечное число скаляров λi отлично от нуля.

Определение 1.4.2 Линейной оболочкой системы векторов линейного пространства
называется множество всех векторов, являющихся их линейной комбинацией.
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Линейная оболочка системы векторов e1, . . . , en часто обозначается 〈e1, . . . , en〉.
Определение 1.4.3 Система векторов {ai : i ∈ I} называется линейно зависимой, если

существуют числа λi, не все равные нулю, такие, что
∑

k∈I λiai = 0, в противном случае система
векторов называется линейно независимой.

Лемма 1.4.4 Если система векторов {ai : i ∈ I} линейно зависима, то один из них
является линейной комбинацией остальных.

Доказательство. Пусть λ1a1 + . . . + λkak = 0, причем существует λi 6= 0, тогда имеем
λiai = −λ1a1 − . . . − λi−1ai−1 − λi+1ai+1 − . . . λkak, умножив обе части этого равенства на λ−1

i ,
получим, что ai есть линейная комбинация остальных векторов. ¤

Лемма 1.4.5 Если система векторов a1, . . . , an линейно независима, а система векторов
a1, . . . , an, an+1 линейно зависима, то an+1 является линейной комбинацией векторов a1, . . . , an.

Доказательство. аналогично доказательству предыдущей леммы, с тем лишь замечанием,
что если λn+1 = 0, то ненулевой коэффициент λi находится среди первых n скаляров, но тогда
первые n векторов линейно зависимы, что противоречит предположению. ¤

Лемма 1.4.6 Пусть дана линейно независимая система векторов e1, . . . , en и пусть
существует линейно независимая система векторов f1, . . . , fm ∈ 〈e1, . . . , en〉, тогда m 6 n.

Доказательство. Пусть fi = ai1e1+. . .+ainen, aij ∈ K, i = 1, . . . , m. Т.к. f1, . . . , fm — линейно
независимая система векторов, то

x1f1 + . . . + xmfm = 0 ⇐⇒ x1 = . . . = xm = 0. (1)

Подставляя в линейную комбинацию из (1) выражение fi через e1, . . . , en, получаем:

0 = x1(a11e1 + . . . a1nen) + . . . + xm(am1e1 + . . . + amnen) =
= (x1a11 + . . . + xmam1)e1 + . . . + (x1a1n + . . . + xmamn)en,

что равносильно (т.к. e1, . . . , en — линейно независимая система векторов) системе уравнений:
{

x1a11 + . . . + xmam1 = 0
. . .

x1a1n + . . . + xmamn = 0.

Если m > n, то эта система имеет ненулевое решение, что противоречит (1). ¤

Определение 1.4.7 Пусть V ⊂ W — линейное подпространство линейного пространства W .
Система векторов a1, . . . , an называется линейно независимой относительно подпространства V ,
если из равенства λ1a1 + . . . + λnan ∈ V следует, что все λ1, . . . , λn равны нулю.

1.5 Размерность

Определение 1.5.1 Определим ранг системы векторов: пусть S - непустая система векторов
в некотором линейном пространстве V , тогда:

1) если S состоит только из 0 ∈ V , то ранг r(S) := 0;
2) пусть e1 — произвольный ненулевой вектор из системы S; если существует такой вектор

e2, что система {e1, e2} будет линейно независимой, то рассмотрим эту систему векторов; если,
далее, существует такой вектор e3, что система {e1, e2, e3} будет линейно независимой, то будем
рассматривать эту систему векторов, и т.д.;

3а) если процедура в п.2) закончится на конечном шаге, т.е. мы дойдем до линейно независимой
системы векторов {e1, . . . , en} и далее уже нельзя будет найти вектор en+1, чтобы расширить эту
систему, то определим ранг как r(S) := n;

3б) если процедура в п.2) не закончится на конечном шаге, то ранг r(S) := ∞.
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Докажем, что наше определение корректно. Сначала предположим, что, действуя, как в п.2),
двумя способами, мы получили две конечные системы векторов e1, . . . , en и f1, . . . , fm, и пусть
m 6= n. Тогда без ограничения общности можно считать, что m > n. Но, т.к. по определению к
системе векторов e1, . . . , en больше нельзя добавить ни одного вектора, то все fi ∈ 〈e1, . . . , en〉,
i = 1, . . . , m, и по лемме 1.4.6 имеем m 6 n. Получили противоречие.

Теперь предположим, что один способ нам дал конечную систему векторов e1, . . . , en, а второй
способ выбора векторов f1, f2, . . . не заканчивается ни на каком конечном шаге. Но тогда система
векторов f1, . . . , fn+1 линейно независима, и еще одно применение леммы 1.4.6 дает противоречие.

Определение 1.5.2 Размерность линейного пространства V равна dimV := r(V ).
Пространство V называется конечномерным, если dimV < ∞. В противном случае пространство
называется бесконечномерным.

Примеры бесконечномерных векторных пространств: множество R над полем Q, пространство
непрерывных функций на отрезке (докажите).

Определение 1.5.3 Система линейно независимых векторов в пространстве V называется
максимальной, если при добавлении любого другого вектора система векторов становится
линейно зависимой.

Следствие 1.5.4 В любом конечномерном пространстве существует максимальная
система векторов.

Определение 1.5.5 Максимальная система векторов называется базисом пространства.

Бесконечномерные пространства мы почти не будем рассматривать в нашем курсе и все
следующие определения, леммы и теоремы относятся к случаю конечномерных пространств.
Полезным упражнением является проверка истинности таких утверждений в бесконечномерном
случае (иногда сложно даже переформулировать конечномерные утверждения)

Лемма 1.5.6 Пусть дано подпространство V некоторого векторного пространства W , и
пусть e1, . . . , er — базис в V . Тогда его можно дополнить до базиса всего пространства.

Доказательство. Т.к. e1, . . . , er — базис, то эти векторы линейно независимы; тогда, просто
проделав процедуру п.2) в определении ранга системы векторов, мы получим базис всего
пространства. ¤

Описанная в этой лемме система веторов называетсяотносительным базисом (относительно
подпространства V ). Точнее,

Определение 1.5.7 система векторов er+1, . . . , en называется относительным базисом
относительно подпространства V , если, дополнив ее базисом подпространства V , мы получим
базис пространства W .

В частности, относительный базис представляет собой линейно независимую относительно
подпространства V систему векторов.

Лемма 1.5.8 Если V — подпространство векторного пространства W , то dimV 6 dimW .
Если же dimV = dimW , то V = W .

Доказательство. Из предыдущей леммы следует, что количество векторов в базисе
подпространства не превышает количества векторов в базисе всего пространства, отсюда
вытекает первое утверждение леммы. Докажем второе утверждение. Пусть V 6= W , т.е.
существует вектор w ∈ W , w /∈ V . Выберем базис e1, . . . , er в V . Тогда система векторов
e1, . . . , er, w будет линейно независимой в W , что невозможно, т.к. dimW = r. Действительно,
если λ1e1 + . . . + λrer + λv = 0 и хотя бы один из коэффициентов не равен нулю, то λ 6= 0
(противоречие с тем, что e1, . . . , er — базис в V ), но тогда вектор w есть линейная комбинация
векторов e1, . . . , er, что противоречит предположению. ¤

Замечание: второе утверждение леммы неверно в бесконечномерном случае.
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1.6 Пересечение и сумма подпространств

Лемма 1.6.1 Пусть даны два линейных подпространства V1 и V2 пространства W , тогда
V1 ∩ V2 также является линейным подпространством.

Доказательство. Для доказательство необходимо проверить, что множество V1∩V2 замкнуто
относительно операций сложения и умножения на скаляры. Т.к. множества V1 и V2 замкнуты
относительно этих операций, то ∀x, y ∈ V1∩V2, ∀λ ∈ K получаем, что x+y, λx ∈ V1 и x+y, λx ∈ V1,
следовательно, x + y, λx ∈ V1 ∩ V2. ¤
Замечание. В отличие от пересечения, объединение подпространств V1 ∪ V2 в общем случае

не будет линейным подпространством. Например, если V1 = 〈√2〉, а V2 = 〈√3〉 над полем Q, то
вектор

√
2 +

√
3 не будет принадлежать V1 ∪ V2.

Определение 1.6.2 Суммой V1 + V2 подпространств V1 и V2 называется множество всех
векторов v ∈ W , которые можно представить в виде суммы v = v1 + v2, где v1 ∈ V1 и v2 ∈ V2, т.е.
V1 + V2 = 〈V1 ∪ V2〉.
Лемма 1.6.3 Для любых двух подпространств V1 и V2 их сумма V1 + V2 также будет

линейным пространством.

Доказательство. Возьмем произвольные векторы a, b ∈ V1 + V2, a = a1 + a2, b = b1 + b2,
a1, b1 ∈ V1, a2, b2 ∈ V2. Тогда a+b = (a1+b1)+(a2+b2) ∈ V1+V2. Аналогично доказывается, что для
λ ∈ K, a ∈ V1+V2, их произведение λa ∈ V1+V2. Очевидно, что все условия определения линейного
пространства будут выполнены, следовательно V1 + V2 является линейным пространством. ¤

Теорема 1.6.4 dimV1 + dim V2 = dim(V1 + V2) + dim(V1 ∩ V2).

Доказательство. Пусть e1, . . . , er — базис в V1 ∩ V2, dim(V1 ∩ V2) = r. Т.к. V1 ∩ V2 ⊂ V1 и
V1 ∩ V2 ⊂ V2, то этот базис можно дополнить до базисов в V1 и V2.

Пусть e1, . . . , er, er+1, . . . , er+p — базис в V1, dimV1 = r + p; e1, . . . , er, er+p+1, . . . , er+p+q — базис
в V2, dimV1 = r + q. Докажем, что e1, . . . , er, er+1, . . . , er+p, er+p+1, . . . , er+p+q — базис в V1 + V2:

1) (линейная независимость). Пусть λ1e1 + . . . + λr+p+qer+p+q = 0, тогда

λ1e1 + . . . + λrer + λr+1er+1 + . . . + λr+per+p︸ ︷︷ ︸
∈V1

=

= −(λr+p+1er+p+1 + . . . + λr+p+qer+p+q)︸ ︷︷ ︸
∈V2

= v,

следовательно, v ∈ V1 ∩ V2, и его можно разложить по базису, v = α1 + . . . + αrer, тогда

0 = v − v = α1 + . . . + αrer + λr+p+1er+p+1 + . . . + λr+p+qer+p+q,

следовательно λr+p+1 = . . . = λr+p+q = 0 и α1 = . . . = αr = 0, т.к. e1, . . . , er, erp+1, . . . , er+p+q

линейно независимы. Поэтому v = 0. Но тогда v = λ1e1 + . . .+λrer +λr+1er+1 + . . .+λr+per+p = 0,
и из линейной независимости системы векторов e1, . . . , er, er+1, . . . , er+p заключаем, что λ1 =
. . . = λr = λr+1 = . . . = λr+p = 0. Итак, все λi = 0, i = 1, . . . , r + p + q, следовательно
e1, . . . , er, er+1, . . . , er+p, er+p+1, . . . , er+p+q линейно независимы.

2) (максимальность). Возьмем произвольный вектор a ∈ V1 + V2, a = a1 + a2, где a1 ∈ V1,
a2 ∈ V2. Разложим векторы a1 и a2 по базисам,

a1 = λ1e1 + . . . + λrer + λr+1er+1 + . . . + λr+per+p,

a2 = µ1e1 + . . . + µrer + µr+p+1er+p+1 + . . . + µr+p+qer+p+q,

тогда

a = (λ1 + µ1)e1 + . . . + (λr + µr)er + λr+1er+1 + . . . + λr+per+p +
+ µr+p+1er+p+1 + . . . + µr+p+qer+p+q,

следовательно система векторов e1, . . . , er, er+1, . . . , er+p, er+p+1, . . . , er+p+q является базисом в 1+
2, значит, dim(V1 + V2) = r + p + q, откуда следует утверждение теоремы. ¤
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1.7 Прямая сумма подпространств. Внешняя прямая сумма

Определение 1.7.1 Сумма подпространств V1+V2 называется прямой суммой (обозначение
V1 ⊕ V2), если V1 ∩ V2 = {0}.

Следствие 1.7.2 dim(V1 ⊕ V2) = dimV1 + dim V2.

Доказательство. Утверждение следствия очевидно вытекает из предыдущей теоремы. ¤

Лемма 1.7.3 Следующие утверждения эквиваленты:

(i) сумма V1 + V2 прямая;

(ii) dimV1 + dimV2 = dim(V1 + V2);

(iii) разложение любого вектора a вида a = v1 + v2, где v1 ∈ V1, v2 ∈ V2, единственно;

(iv) если 0 = v1 + v2, где v1 ∈ V1, v2 ∈ V2, то v1 = v2 = 0.

Доказательство. То, что 1) ⇐⇒ 2), вытекает из последнего следствия предыдущей лекции.
Докажем, что 1) ⇒ 4). Пусть 0 = v1 + v2, v1 ∈ V1, v2 ∈ V2, но v1 6= 0, а следовательно и v2 6= 0,

тогда получаем, что v2 = −v1, т.е. v2 ∈ V1 и , следовательно V1∩V2 3 v2 6= 0, т.е. сумма не прямая.
1) ⇐ 4) доказывается аналогично. Если сумма не прямая, то ∃v ∈ V1 ∩ V2, v 6= 0, тогда v ∈ V1,

−v ∈ V2 и 0 = v + (−v).
Докажем 4) ⇒ 3). Пусть у некоторого вектора a есть два разложения, a = v1 + v2 = v′1 + v′2,

v1, v
′
1 ∈ V1, v2, v

′
2 ∈ V2, тогда 0 = (v1 = v′1)︸ ︷︷ ︸

∈V1

+(v2 − v′2)︸ ︷︷ ︸
∈V2

. Но тогда v1 − v′1 = v2 − v′2 = 0.

То, что 4) ⇐ 3) очевидно, т.к. разложение любого вектора единственно, то и разложение
нулевого вектора единственно. ¤

Понятие прямой суммы можно обобщить на любое конечное число подпространств: сумма
V1 + . . . + Vn будет прямой, если

∀i = 1, . . . , n Vi ∩ (V1 + . . . + Vi−1 + Vi+1 + . . . + Vn) = {0}. (2)

Если сумма V1 + . . . + Vn прямая, то для любого вектора a из этой суммы разложение вида
a = v1 + . . . + vn, где vi ∈ Vi, i = 1, . . . , n, единственно.

Замечание. Условие (2) более сильное, чем условие Vi ∩ Vj = {0} ∀i, j = 1, . . . , n. Например,
если взять три прямые (вектора, коллинеарные этим прямым), пересекающиеся в одной точке,
то сумма любых двух из них будет прямой суммой, но сумма всех трех — нет, т.к. любой вектор
третьей прямой можно представить в виде суммы векторов первых двух прямых, следовательно
его разложение не будет единственно.

Внешняя прямая сумма

Определение 1.7.4 Внешней прямой суммой двух линейных пространств V1, V2 над одним
полем K (не обязательно являющихся подпространствами одного пространства) называется новое
линейное пространство V1 ⊕ V2 над полем K, состоящее из всех пар (v1, v2), где vi ∈ Vi, i = 1, 2, с
операциями сложения и умножения на скаляры:

1) (v1, v2) + (v′1, v
′
2) = (v1 + v′1, v2 + v′2),

2) λ(v1, v2) = (λv1, λv2),
где vi, v

′
i ∈ Vi, λ ∈ K.

Если при этом отождествить сами пространства V1 и V2 с подмножествами внешней прямой
суммы следующим образом: V1 ↔ (V1, 0) и V2 ↔ (0, V2), то их можно рассматривать как
подпространства пространства V1 ⊕ V2.
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1.8 Координаты

Определение 1.8.1 Пусть дано линейное пространство V и базис e1, . . . , en этого
пространства, тогда любой вектор x ∈ V можно представить в виде x = λ1e1 + . . . + λnen. Числа
λ1, . . . , λn ∈ K называются координатами вектора x в этом базисе.

Введем некоторые соглашения для записи координат. Индексы у координат мы обычно будем
писать не снизу, а сверху, т.е. не xi, а xi. Вместо длинной записи x = x1e1 + . . . + xnen мы часто
будем писать xiei, на самом деле подразумевая сумму

∑n
i=1 xiei. Координаты векторов мы часто

будем записывать в виде столбцов, т.е. x =




x1

...
xn


.

Корректность определения координат следует из свойств базиса (линейная независимость и
максимальность).

Замена координат

Пусть нам даны два базиса e1, . . . , en и ẽ1, . . . , ẽn одного векторного пространства, тогда можно
записать следующие равенства:

ẽ1 = c1
1e1 + . . . + cn

1en,

. . . . . . . . .

ẽn = c1
ne1 + . . . + cn

nen,

которые равносильны одному матричному равенству

(ẽ1 . . . ẽn) = (e1 . . . en)




c1
1 . . . c1

n
...

. . .
...

cn
1 . . . cn

n


 .

Матрица

C =




c1
1 . . . c1

n
...

. . .
...

cn
1 . . . cn

n




называется матрицей перехода от базиса e1, . . . , en к базису ẽ1, . . . , ẽn.

Лемма 1.8.2 Пусть x1, . . . , xn — координаты вектора x в базисе e1, . . . , en, а x̃1, . . . , x̃n —
координаты этого же вектора в базисе ẽ1, . . . , ẽn. Тогда




x1

...
xn


 = C




x̃1

...
x̃n


 .

Доказательство. Так как xjej = x = x̃iẽi = x̃iejc
j
i = (x̃icj

i )ej , из линейной независимости
векторов e1, . . . , en следует равенство координат: xj = x̃icj

i ∀j (подразумевается суммирование по
индексу i). ¤

1.9 Изоморфизмы векторных пространств

Определение 1.9.1 Пусть даны два линейных пространства V и W над одним полем K.
Тогда биективное (т.е. взаимно однозначное) отображение f : V → W называется изоморфизмом,
если выполнены следующие условия (условия линейности):

1) f(v1 + v2) = f(v1) + f(v2) ∀v1, v2 ∈ V ,
2) f(λv) = λf(v) ∀v ∈ V, λ ∈ K.
Два линейных пространства V и W называются изоморфными (V ∼= W ), если между ними

существует изоморфизм.
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Лемма 1.9.2 Если f : V → W — изоморфизм, то обратное отображение f−1 : W → V
также будет изоморфизмом.

Доказательство. поскольку отображение f взаимно однозначно. Докажем только первый
пункт, т.е., что f−1(w1 + w2) = f−1(w1) + f−1(w2) ∀w1, w2 ∈ W (второй пункт доказывается
аналогично):

f(f−1(w1) + f−1(w2)) = f(f−1(w1)) + f(f−1(w2)) = w1 + w2 = f(f−1(w1 + w2)),

следовательно f−1(w1) + f−1(w2) = f−1(w1 + w2), т.к. отображение f взаимно однозначно. ¤
Таким образом, изоморфность является отношением эквивалентности, т.е. обладает свойствами

симметричности (любое пространство изоморфно самому себе), рефлексивности (если V
изоморфно W , то W изоморфно V ) и транзитивности (если V изоморфно W и W изоморфно U ,
то V изоморфно U).

Лемма 1.9.3 Если dimV = n, то V изоморфно пространству Kn столбцов (строк) из n
элементов.

Доказательство. Пусть e1, . . . , en — базис в V , тогда построим отображение f : V → Kn

следующим образом: если x = xiei, то f(x) =




x1

...
xn


. Легко проверить, что это отображение

будет изоморфизмом, а следовательно V ∼= Kn. ¤

Следствие 1.9.4 Если dimV = dimW , то V ∼= W .

Доказательство. Пусть dimV = dimW = n, тогда V ∼= Kn ∼= W . ¤
Верно и обратное:

Лемма 1.9.5 Если V ∼= W , то dimV = dimW .

Доказательство. Допустим, что dimV < dimW , пусть e1, . . . , en — базис в W , тогда вектора
f(e1), . . . , f(en) ∈ V должны быть линейно независимыми. Действительно, если λ1f(e1) + . . . +
λnf(en) = 0, то, применив к обеим частям этого равенства отображение f−1, получим λ1e1 + . . .+
λnen = 0, откуда λ1 = . . . = λn = 0. Но их линейная независимость противоречит предположению
dimV < n. ¤

Лемма 1.9.6 Пусть dimV = dimW , а отображение f : V → W удовлетворяет условиям
линейности:
1) f(v1 + v2) = f(v1) + f(v2) ∀v1, v2 ∈ V ,
2) f(λv) = λf(v) ∀v ∈ V, λ ∈ K.
Пусть e1, . . . , en — базис в V . Тогда f является изоморфизмом тогда и только тогда, когда

f(e1), . . . , f(en) — базис в W .

Доказательство. Если f — изоморфизм, то из равенства λ1f(e1)+ . . .+λnf(en) = 0 следует
f(λ1e1 + . . . + λnen) = 0, откуда заключаем, что λ1e1 + . . . + λnen = 0, значит, все λi = 0.

Обратно, пусть f(e1, . . . , f(en)) — базис в W . Для проверки взаимной однозначности
отображения f достаточно проверить, что отображение f−1 корректно определено. Пусть w ∈ W
имеет разложение по базису w = w1f(e1)+. . .+wnf(en). Тогда определим отображение g : W → V
равенством g(w) = w1e1 + . . . + wnen. Очевидная проверка показывает, что g = f−1. ¤
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1.10 Двойственное векторное пространство

Напомним, что линейным функционалом на векторном пространстве V (над полем K) называется
отображение f : V → K, удовлетворяющее условиям линейности

1) f(v1 + v2) = f(v1) + f(v2) ∀v1, v2 ∈ V ;
2) f(λv) = λf(v) ∀v ∈ V, λ ∈ K.
Зададим на множестве V ′ всех линейных функционалов f : V → K, операции:
1) (f1 + f2)(v) = f1(v) + f2(v), f1, f2 ∈ V ′;
2) (λf)(v) = λf(v), f ∈ V ′, λ ∈ K.
Эти операции превращают V ′ в линейное пространство. Это пространство называется

двойственным пространством к V .

Лемма 1.10.1 V ∼= V ′.

Доказательство. Пусть e1, . . . , en — базис в V , тогда докажем, что ε1, . . . , εn будет базисом
в V ′, где функционалы εi ∈ V ′, i = 1, . . . , n, определяются равенствами εi(ej) = δi

j (δi
j — символ

Кронекера, т.е. δi
j =

{
1 при i = j
0 при i 6= j

. Поскольку f(xiei) = xif(ei), то значение функционала на

произвольном векторе полностью определяется значениями функционала на базисных векторах
и координатами этого вектора, т.е. функционалы εi полностью заданы нашими условиями. Нам
нужно доказать два пункта:

1) линейная независимость векторов ε1, . . . , εn. Если f = λ1ε
1 + . . . + λnεn = 0 (равенство нулю

в V ′ означает, что f(v) = 0 для любого вектора v ∈ V ), то f(ei) = λi = 0, т.е. все λi = 0.
Следовательно эти функционалы линейно независимы.

2) максимальность, т.е. что ∀f ∈ V ′, ∃λ1, . . . , λn ∈ K такие что f = λiε
i. Возьмем произвольный

функционал f ∈ V ′, тогда, если x = xiei, то f(x) = xif(ei). Возьмем λi = f(ei), тогда получим,
что

f(x) = xif(ei) = xiλi = λix
jεi(ej) = λiε

i(xjej) = λiε
i(x),

что и требовалось доказать. ¤
Пусть нам даны базисы e1, . . . , en и ẽ1, . . . , ẽn в пространстве V и двойственные к ним базисы

ε1, . . . , εn и ε̃1, . . . , ε̃n в пространстве V ′. Пусть C — матрица перехода от базиса e1, . . . , en к
ẽ1, . . . , ẽn, найдем матрицу перехода от базиса ε1, . . . , εn к ε̃1, . . . , ε̃n. Возьмем произвольный
функционал f ∈ V ′, тогда f = fiε

i = f̃j ε̃
j , где fi и f̃j — это координаты функционала f в базисах

ε1, . . . , εn и ε̃1, . . . , ε̃n соответственно. Вычислим значение функционала f на векторе ẽk двумя
способами. С одной стороны, f(ẽk) = f̃j ε̃

j(ẽk) = f̃k, а с другой стороны, f(ẽk) = fiε
i(cj

kej) = fic
i
k,

так как (ẽ1 . . . ẽn) = (e1 . . . en)C. Отсюда получаем, что f̃k = fic
i
k. Следовательно (f̃1 . . . f̃n) =

(f1 . . . fn)C, или (после транспонирования, обозначенного индексом t)




f1
...

fn


 = (C−1)t




f̃1
...

f̃n


,

и, наконец, отсюда получаем связь между базисами: (ε̃1 . . . ε̃n) = (ε1 . . . εn)(C−1)t, т.е. матрица
перехода от базиса ε к ε̃ равна (C−1)t.

Мы доказали, что V ∼= V ′, однако выбор изоморфизма f : V → V ′ зависит от выбора базиса
в пространстве V . Действительно, пусть V = R, тогда базисом является любое ненулевое число
e ∈ R. Выберем также еще один базис ẽ = λe, λ 6= 0, 1. Пусть ε — базис в V ′, двойственный к e,
т.е. ε(e) = 1, а ε̃ — двойственный базис к ẽ, т.к. ε̃(ẽ) = 1, то ε̃ = λ−1e. Изоморфизм f : V → V ′,
отвечающий базису e, задан следующим образом: ∀x = αe, f(x) = αε. Перейдем к базису ẽ, тогда
изоморфизм f̃ : V → V ′ будет задаваться следующим образом: f̃(x) = f̃(αλ−1ẽ) = αλ−2ε. Т.е.
разные выборы базиса в пространстве V дают разные изоморфизмы!

Пример: двойственное пространство пространства многочленов

Рассмотрим пространство Kn[x] многочленов степени не выше n с коэффициентами из поля K от
переменной x ∈ K. Зафиксируем произвольное x = x0, и каждому многочлену p(x) поставим в
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соответствие число p(x) 7→ p(x0) ∈ K. Каждое x0 задает свое отображение evx0 : Kn[x] → K. Т.к.

evx0(p(x) + q(x)) = p(x0) + q(x0) = evx0(p(x)) + evx0(q(x))

и evx0(λp(x)) = λevx0(p)x, то отображение evx0 линейно для каждого x0. Таким образом, каждое
значение x0 задает элемент evx0 двойственного пространства Kn[x]′.

Лемма 1.10.2 Если x0, x1, . . . , xn — попарно различные значения, то evx0 , evx1 , . . . , evxn

будет базисом в двойственном пространстве Kn[x]′.

Доказательство. Если нам удастся построить базис в пространстве Kn[x], который будет
двойственным к evx0 , evx1 , . . . , evxn , то отсюда будет следовать, что evx0 , evx1 , . . . , evxn будет
двойственным к базису в Kn[x], т.е. будет базисом в Kn[x]′. Построим такой базис:

Нам нужно найти такие многочлены p0(x), p1(x), . . . , pn(x), что evxi(p
j(x)) = δj

i , т.е. значение
i-й функции evxi на всех базисных многочленах, кроме pi(x), равно 0, а на pi(x) равно 1. Эти
многочлены можно построить, используя, например, интерполяционную формулу Лагранжа:

pi(x) =
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
.

Докажем, что эти многочлены образуют базис.
1) линейная независимость: p(x) = λip

i(x) = 0 только, если все λi = 0, т.к. p(xi) = λi ∀i.
2) максимальность: возьмем произвольный многочлен p(x), тогда p(x) = p(xi)pi(x), т.е.

является линейной комбинацией многочленов pi(x).
(здесь, согласно тензорным обозначениям, подразумевается суммирование по индексу i).
Таким образом, мы доказали, что p0(x), p1(x), . . . , pn(x) — базис в Kn[x], а значит двойственный

к нему базис evx0 , evx1 , . . . , evxn будет базисом в Kn[x]′. ¤
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2 Евклидовы и унитарные пространства

2.1 Евклидовы и унитарные пространства

Определение 2.1.1 Линейное пространство V над полем R называется евклидовым, если на
нем определена функция f : V × V → R (обозначается f(a, b) = (a, b) и называется скалярным
произведением), удовлетворяющая следующим свойствам:

1) линейность по второму аргументу: (a, b + λc) = (a, b) + λ(a, c) для любых a, b, c ∈ V , λ ∈ R;
2) симметричность: (b, a) = (a, b) для любых a, b ∈ V ;
3) положительная определенность: (a, a) > 0 для любого a ∈ V , причем, если (a, a) = 0, то

a = 0.

Видно, что благодаря второму свойству эта функция также будет линейной и по первому
аргументу, т.е. она билинейна.

Определение 2.1.2 Линейное пространство V над полем C называется унитарным (или
эрмитовым), если на нем определена функция f : V × V → C (обозначается f(a, b) = (a, b),
называется скалярным произведением), удовлетворяющая следующим свойствам:

1) линейность по второму аргументу: (a, b + λc) = (a, b) + λ(a, c) для любых a, b, c ∈ V , λ ∈ C;
2) эрмитовость: (b, a) = (a, b) для любых a, b ∈ V ;
3) положительная определенность: (a, a) > 0, причем, если (a, a) = 0, то a = 0. Т.к. (a, a) = (a, a)

(свойство 2), то число (a, a) вещественно, и неравенство (a, a) > 0 имеет смысл.

Используя второе свойство можно получить, что (a + λb, c) = (a, c) + λ(b, c), т.е. она
полу(анти)линейна по первому аргументу, такая функция называется полуторалинейной.
Пример:
Пусть V = K[t] — пространство многочленов над полем K (это один из немногих случаев, когда

конечномерность пространства не играет существенной роли и не обязательно ограничиваться
многочленами фиксированной степени), возьмем два произвольных вещественных числа a, b,
a < b. Определим скалярное произведение двух многочленов p(t), q(t) по следующей формуле:
(p(t), q(t)) =

∫ b
a p(t)q(t) dt. То, что выполнены первые два условия скалярного произведения,

сразу вытекает из свойств интеграла, проверим положительную определенность. Действительно,
(p(t), p(t)) =

∫ b
a p2(t) dt > 0, интеграл от неотрицательной функции неотрицателен, причем, если∫ b

a p2(t) dt = 0, то p(t) ≡ 0. Аналогично, для пространства многочленов над полем C скалярное
произведение можно задать формулой (p(t), q(t)) =

∫ b
a p(t)q(t) dt.

Определение 2.1.3 Длиной вектора a в евклидовом или эрмитовом пространстве
называется число |a| =

√
(a, a).

Это определение корректно, т.к. (a, a) > 0.

Лемма 2.1.4 (Неравенство Коши–Буняковского) Для любых двух векторов a, b
евклидова или эрмитова пространства имеет место неравенство |(a, b)| 6 |a| · |b|.

Доказательство. Начнем с более простого — вещественного — случая. Рассмотрим
скалярный квадрат (a − λb, a − λb) > 0, следовательно, для всех λ ∈ R имеем квадратичное
неравенство (a, a) − 2λ(a, b) + λ2(b, b) > 0, следовательно дискриминант этого квадратного
трехчлена неположительный, т.е. (a, b)2 − (a, a)(b, b) 6 0. Перенося (a, a)(b, b) в правую часть
и извлекая корень, получаем искомое неравенство.

Перейдем теперь к комплексному случаю. Возьмем произвольное λ ∈ C. Тогда (a−λb, a−λb) =
(a, a)− λ(b, a)− λ(a, b) + |λ|2(b, b) > 0. Т.к. (a, b) — комплексное число, то для некоторого угла ϕ
выполнено равенство (a, b) = |(a, b)|eiϕ. Ограничимся только теми λ, для которых λeiϕ = µ ∈ R,
тогда наш скалярный квадрат можно переписать в виде (a−λb, a−λb) = (a, a)−2µ|(a, b)|+µ2(b, b).
Далее, действуя, как в вещественном случае, получаем нужный результат. ¤
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Лемма 2.1.5 (Неравенство треугольника) Для любых двух векторов a, b евклидова или
эрмитова пространства имеет место неравенство |a + b| 6 |a|+ |b|.

Доказательство. Из неравенства Коши–Буняковского следует, что (a, b) + (b, a) 6 2|a| · |b|.
Добавив к обеим частям неравенства (a, a) + (b, b), получим

(a + b, a + b) = (a, a) + (b, b) + (a, b) + (b, a) 6 (a, a) + (b, b) + 2|a| · |b| = (|a|+ |b|)2,
откуда следует неравенство треугольника. ¤

2.2 Процесс ортогонализации

Определение 2.2.1 Два вектора a, b называются ортогональными (a ⊥ b), если (a, b) = 0.
Система векторов (или базис) e1, . . . , en называется ортонормированной, если (ei, ej) = δij , т.е.
если векторы попарно ортогональны и длина каждого из них равна 1.

Лемма 2.2.2 Ортонормированная система векторов является линейно независимой.

Доказательство. Пусть λ1e1 + . . .+λnen = 0. Умножим скалярно обе части этого равенства
(слева) на вектор ei: ((ei, λ1e1 + . . . + λnen)) = λ1(ei, e1) + . . . + λn(ei, en) = λi = 0. ¤

Пусть e1, . . . , en — некоторая линейно независимая система векторов. Обозначим через Vi

линейную оболочку первых i векторов, Vi = 〈e1, . . . , ei〉, и получим расширяющуюся цепочку
подпространств V1 ⊂ V2 ⊂ . . . ⊂ Vn.

Утверждение 2.2.3 Существует такой набор попарно ортогональных векторов a1, . . . , an,
что для каждого ноиера i линейная оболочка 〈a1, . . . , ai〉 совпадает с Vi.

Доказательство. (индукция по количеству векторов)
1) При n = 1 утверждение очевидно.
2) Пусть это утверждение выполнено для количества векторов, равного n, докажем его для

n + 1. Т.к. утверждение верно для n векторов, то мы можем считать, что векторы a1, . . . , an с
указанными свойствами уже построены. Построим вектор an+1 в виде an+1 = en+1 + λ1a1 + . . . +
λnan. Линейная оболочка векторов a1, . . . , an+1 совпадает с 〈e1, . . . , en+1〉 при любых λi, поэтому
мы будем подбирать коэффициенты λi так, чтобы выполнялось условие (an+1, ai) = 0 для всех i =
1, . . . , n. Рассмотрим скалярное произведение 0 = (an+1, ai) = (en+1, ai)+λ1(a1, ai)+. . .+λn(an, ai).
Поскольку (aj , ai) = 0 при j 6= i по предположению индукции, то 0 = (en+1, ai) + λi(ai, ai),
следовательно λi = − (en+1,ai)

(ai,ai)
(знаменатель отличен от нуля). ¤

Таким образом, чтобы получить вектор an+1, надо из вектора en+1 вычесть его ортогональные
проекции на векторы a1, . . . , an. Этот метод ортогонализации называется методом Грама–
Шмидта.

2.3 Ортогональное дополнение

Определение 2.3.1 Пусть V ⊂ W — подпространство евклидова или эрмитова
пространства. Ортогональным дополнением V ⊥ к V в W называется множество, состоящее из
векторов, ортогональных всем векторам из V , т.е. V ⊥ = {v ∈ V : (v, w) = 0 ∀w ∈ W}.

Очевидным образом проверяется, что V ⊥ является подпространством, а не просто
подмножеством.

Лемма 2.3.2 W = V ⊕ V ⊥.
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Доказательство. Пусть e1, . . . , ek — базис в V , дополним его до базиса всего пространства
W векторами ek+1, . . . , en. Применив процесс ортогонализации Грама–Шмидта, получим
ортогональный базис a1, . . . , ak, ak+1, . . . , an в W , причем его первая часть будет базисом в V ,
т.к. 〈a1, . . . , ak〉 = 〈e1, . . . , ek〉 = V . Покажем, что векторы ak+1, . . . , an образуют базис в V ⊥.
Пусть v ∈ V ⊥, v = ν1a1 + . . . + νkak + νk+1ak+1 + . . . + νnan — разложение вектора v по базису
пространства W . Коэффициенты ν1, . . . , νk должны быть нулевыми, так как иначе вектор v не
был бы ортогонален всем векторам a1, . . . , ak. Верно и обратное: если первые k координат какого-
то вектора в базисе a1, . . . , an равны нулю, то этот вектор принадлежит V ⊥. Следовательно,
произвольный вектор w ∈ W может быть представлен в виде суммы двух слагаемых — из V и
из V ⊥: w = λ1a1 + . . . + λkak︸ ︷︷ ︸

∈V

+λk+1ak+1 + . . . + λnan︸ ︷︷ ︸
∈V ⊥

, т.е. W = V + V ⊥.

Докажем, что эта сумма прямая. Возьмем произвольный вектор v ∈ V ∩ V ⊥. Т.к. v ∈ V ⊥, то
(v, w) = 0 для любого вектора w ∈ V . Поскольку v ∈ V , мы можем в качестве w взять сам вектор
v, тогда (v, v) = 0, значит, v = 0. Следовательно, пересечение состоит только из нулевого вектора,
и сумма — прямая. ¤

Из разложения в прямую сумму W = V ⊕ V ⊥ следует, что любой вектор a ∈ W можно
единственным способом представить в виде a = a0 + a⊥, где a0 ∈ V , a⊥ ∈ V ⊥. Вектор a0

называется (ортогональной) проекцией вектора a на подпространство V , а вектор a⊥ называется
ортогональной составляющей вектора a.

Пусть имеется другое разложение вектора a: a = a1 + a2, где a1 ∈ V , (а на a2 дополнительных
условий нет), тогда имеет место

Утверждение 2.3.3 |a2| > |a⊥|.
Доказательство. Обозначим a0−a1 = b ∈ V , тогда a = a1+a2 = a0−(a0−a1)+a2 = a0+(a2−

b), следовательно, a2−b = a⊥, т.е. a2 = a⊥+b. Тогда (a2, a2) = (a⊥, a⊥)+2 (a⊥, b)︸ ︷︷ ︸
=0

+(b, b) > (a⊥, a⊥),

откуда получаем |a2| > |a⊥|. ¤

Определение 2.3.4 Углом между двумя ненулевыми векторами в евклидовом пространстве
называется величина (â, b) := arc cos (a,b)

|a|·|b| .

Видно, что это определение корректно, т.к. −1 6 (a,b)
|a|·|b| 6 1, и не противоречит здравому смыслу,

т.е. угол равен нулю тогда и только тогда, когда вектора коллинеарны, и угол — прямой тогда и
только тогда, когда вектора ортогональны.

В многомерном случае геометрия аналогична обычной геометрии. Так, например, в
прямоугольных треугольниках с одинаковой гипотенузой, чем больше угол, тем больше
противолежащий катет.

Утверждение 2.3.5 Пусть c = a1 + b1 = a2 + b2, a1 ⊥ b1, a2 ⊥ b2 и |b1| < |b2|. Тогда
(â1, c) < (â2, c).

Доказательство. Поскольку (ai, c) = (ai, ai + bi) = |ai|2, i = 1, 2, то cos(âi, c) = |ai|
|c| , а из

теоремы Пифагора sin(âi, c) = |bi|
|c| , что и доказывает утверждение.

Утверждение 2.3.6 (обозначения те же, что и ранее) (â, a0) 6 (â, a1).

Доказательство. Найдем такое число λ, чтобы вектор λa1 был бы ортогонален вектору
b = a− λa1:

(λa1, a− λa1) = 0 ⇔ (a1, a− λa1) = 0 ⇔ (a1, a)− λ (a1, a1)︸ ︷︷ ︸
6=0

= 0 ⇔ λ =
(a1, a)
(a1, a1)

.

Если (a1, a) 6 0, то угол (â, a1) > π/2 и утверждение очевидно. Если (a1, a) > 0, то λ > 0 и
угол между a и a1 равен углу между a и λa1. Применив предыдущую лемму, получаем требуемое
утверждение. ¤
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Определение 2.3.7 Расстоянием d(a, V ) от вектора a до подпространства V называется
наименьшее из всех возможных длин векторов, соединяющих векторы (точки) подпространства
V с данным вектором, т.е. d(a, V ) := mina1∈V |a − a1|. Углом (â, V ) между вектором a и
подпространством V называется наименьший из всех углов между вектором a и произвольным
вектором a1 ∈ V , т.е. (â, V ) := mina1∈V (â, a1).

Очевидно, что d(a, V ) = |a⊥| — расстояние от вектора до подпространства равно длине
ортогональной составляющей при проекции вектора на подпространство, а (â, V ) = (â, a0) —
угол между вектором и подпространством равен углу между вектором и его проекцией на данное
подпространство.

2.4 Метод наименьших квадратов

Допустим, что мы исследуем какое-нибудь природное явление и хотим описать его линейной
формулой, т.е. мы предполагаем, что какая-то величина b линейно зависит от других — a1, . . . , an,
и хотим получить эту зависимость b = a1x

1 + . . . + anxn, т.е. узнать неизвестные коэффициенты
x1, . . . , xn. Мы делаем m измерений (для точности берем m > n) и решаем систему уравнений



a1
1x

1 + . . . + a1
nxn = b1

. . . . . . . . .
am

1 x1 + . . . + am
n xn = bm

. Вообще говоря, эта переопределенная система не имеет решения.

Поэтому нам надо найти наиболее приближенное решение x1, . . . , xn в том смысле, что отклонение
значений bj от cj = aj

1x
1+. . .+aj

nxn будет наименьшим. В качестве отклонения удобно рассмотреть
корень из суммы квадратов отклонений координат

√
(b1 − c1)2 + . . . + (bm − cm)2 = |b − c|, что

равно длине вектора b− c. Будем искать такое псевдо-решение.
Рассмотрим векторы

a1 =




a1
1
...

am
1


 , . . . , an =




a1
n
...

am
n


 , b =




b1

...
bm


 .

Пусть V = 〈a1, . . . , an〉. Обычно m намного больше n, и векторы a1, . . . , an линейно независимы.
Если они все-таки линейно зависимы, следует отбросить какое-то их количество, чтобы
оставшиеся образовали базис подпространства V . Будем считать, что это уже сделано, и векторы
a1, . . . , an линейно независимы.

Спроектируем вектор b на подпространство V . Получим разложение b = b0 + b⊥, и, как мы
доказали ранее, |b⊥| = |b − b0| будет наименьшей длиной векторов, соединяющих b с V , т.е.
b0 определяет искомое максимально приближенное псевдо-решение. Чтобы найти его, разложим
вектор b0 по базису подпространства V , b0 = x1a1+. . .+xnan. Тогда, взяв скалярные произведения
с векторами базиса, получаем следующие равенства:

(a1, x
1a1 + . . . + xnan) = (a1, b)

. . . . . . . . . . . .

(an, x1a1 + . . . + xnan) = (an, b),

т.е. надо решить систему уравнений (уже квадратную):




(a1, a1)x1 + . . . + (a1, an)xn = (a1, b)
. . . . . . . . .

(an, a1)x1 + . . . + (an, an)xn = (an, b).

Решив ее, найдем координааты x1, . . . , xn вектора b0, которые и есть наше псевдо-решение.
Матрица этой системы уравнений

G = G(a1, . . . , an) =




(a1, a1) . . . (a1, an)
...

. . .
...

(an, a1) . . . (an, an)



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называется матрицей Грама. Далее мы убедимся, что ее определитель отличен от нуля, когда
векторы a1, . . . , an линейно независимы.
Параллелепипеды. Матрица Грама

Определение 2.4.1 Пусть a1, . . . , an — система векторов в векторном пространстве V .
Параллелепипедом, натянутым на векторы a1, . . . , an называется множество векторов (точек)
Π(a1, . . . , an) = {c ∈ V : c = x1a1 + . . . + xnan, 0 6 x1, . . . , xn 6 1}.

Определение 2.4.2 Определим n-мерный объем Voln параллелепипеда Π(a1, . . . , an)
индуктивно:

1) одномерный объем Vol1 Π(a1) := |a1| — это длина вектора;
2)

Voln Π(a1, . . . , an) := Voln−1 Π(a1, . . . , an−1) · d(an, 〈a1, . . . , an−1〉).

Очевидно, что объем есть неотрицательная величина. Корректность этого определения, т.е.
независимость объема от порядка векторов при индуктивном переходе, вытекает из следующей
теоремы.

Теорема 2.4.3 (Voln Π(a1, . . . , an))2 = detG(a1, . . . , an).

Доказательство. (по индукции)
1) При n = 1, очевидно, |a1|2 = (a1, a1).
2) Пусть утверждение верно для размерности n − 1, докажем его для размерности n.

Спроектируем вектор an на линейную оболочку векторов a1, . . . , an−1: an = (an)0 + (an)⊥ =
λ1a1 + . . . + λn−1an−1 + b, где b = (an)⊥ (т.е. b ортогонален векторам a1, . . . , an−1) и |b| =
d(an, 〈a1, . . . , an−1〉). Имеем:
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det G(a1, . . . , an) = det




(a1, a1) . . . (a1, an)
...

. . .
...

(an, a1) . . . (an, an)


 =

= det




(a1, a1) . . . (a1, an−1) (a1, λ1a1 + . . . + λn−1an−1 + b)
...

. . .
...

...
(an, a1) . . . (an, an−1) (an, λ1a1 + . . . + λn−1an−1 + b)


 =

= det




(a1, a1) . . . (a1, an−1) λ1(a1, a1) + . . . + λn−1(a1, an−1) + (a1, b)
...

. . .
...

...
(an, a1) . . . (an, an−1) λ1(an, a1) + . . . + λn−1(an, an−1) + (an, b)


 =

= λ1 det




(a1, a1) . . . (a1, an−1) (a1, a1)
...

. . .
...

...
(an, a1) . . . (an, an−1) (an, a1)




︸ ︷︷ ︸
=0

+ . . .

. . . + λn−1 det




(a1, a1) . . . (a1, an−1) (a1, an−1)
...

. . .
...

...
(an, a1) . . . (an, an−1) (an, an−1)




︸ ︷︷ ︸
=0

+

+ det




(a1, a1) . . . (a1, an−1) (a1, b)
...

. . .
...

...
(an, a1) . . . (an, an−1) (an, b)


 =

= det




(a1, a1) . . . (a1, an−1) (a1, b)︸ ︷︷ ︸
=0

...
. . .

...
...

(an−1, a1) . . . (an−1, an−1) (an−1, b)︸ ︷︷ ︸
=0

(an, a1) . . . (an, an−1) (an, b)︸ ︷︷ ︸
=(b,b)




=

= det




(a1, a1) . . . (a1, an−1)
...

. . .
...

(an−1, a1) . . . (an−1, an−1)


 · (b, b) = detG(a1, . . . , an−1) · |b|2 =

= (Voln−1 Π(a1, . . . , an−1))2 · |b|2 = (Voln Π(a1, . . . , an))2.

Лемма 2.4.4 Векторы a1, . . . , an линейно зависимы тогда и только тогда, когда
detG(a1, . . . , an) = 0.

Доказательство. Если векторы a1, . . . , an линейно зависимы, то, без ограничения общности,
можно считать, что an = λ1a1 + . . . + λn−1an−1. Тогда Voln Π(a1, . . . , an) = Voln−1 Π(a1, . . . , an−1) ·
d(an, 〈a1, . . . , an−1〉)︸ ︷︷ ︸

=0

= 0, следовательно, по предыдущей теореме, detG(a1, . . . , an) = 0.

Пусть теперь det G(a1, . . . , an) = 0. Покажем линейную зависимость векторов a1, . . . , an.
Если a1 = 0, то линейная зависимость очевидна. Предположим, что a1 6= 0, и рассмотрим
последовательность чисел

0 6= Vol1 Π(a1), Vol2(a1, a2, ), . . . , Voln Π(a1, . . . , an) = 0.

Существует такой номер k, что Volk−1 Π(a1, . . . , ak−1) 6= 0, а Volk Π(a1, . . . , ak)=0. Т.к.
Volk Π(a1, . . . , ak) = Volk−1 Π(a1, . . . , ak−1) · d(ak, 〈a1, . . . , ak−1〉), то d(ak, 〈a1, . . . , ak−1〉) = 0, т.е.
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ak ∈ 〈a1, . . . , ak−1〉. Следовательно векторы a1, . . . , ak, а ,значит, и a1, . . . , an, линейно зависимы.
¤

Пусть V — евклидово или эрмитово пространство, a1, . . . , an и b1, . . . , bn — два базиса в

пространстве V , и C =




c1
1 . . . c1

n
...

. . .
...

cn
1 . . . cn

n


 — матрица перехода от первого базиса к второму.

Посмотрим, как связаны матрицы Грама G = G(a1, . . . , an) и G′ = G(b1, . . . , bn). Поскольку
bk = ci

kai и элементы матрицы G′ равны g′ij = (bi, bj) = (ck
i ak, c

l
jal) = ck

i (ak, al)cl
j = ck

i gklc
l
j ,

то G′ = C
t
GC. Если базис a1, . . . , an был ортонормированным, то G = E =




1 0
. . .

0 1


 и

G′ = C
t
C.

Утверждение 2.4.5 Произвольная квадратная матрица G является матрицей Грама для
некоторого набора линейно независимых векторов тогда и только тогда, когда существует
такая невырожденная матрица C, что G = C

t
C.

Доказательство.
⇒: пусть G = G(a1, . . . , an), выберем в пространстве ортонормированный базис, пусть C —

матрица перехода от этого ортонормированного базиса в базис a1, . . . , an, тогда G = C
t
C.

⇐: пусть G = C
t
C, тогда C можно считать матрицей перехода от некоторого

ортонормированного базиса a1, . . . , an к базису b1, . . . , bn, и тогда G — это матрица Грама для
векторов b1, . . . , bn. ¤
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3 Линейные операторы

3.1 Линейные отображения

Определение 3.1.1 Пусть V, W — два векторных пространства над одним полем K.
Отображение f : V → W называется линейным, если ∀x, y ∈ V , λ ∈ K выполняются равенства
f(x + y) = f(x) + f(y) и f(λx) = λf(x).

Пример: множество V ′ — это множество линейных отображений при W = K.
Пусть e1, . . . , en — базис в V , а ẽ1, . . . , ẽm — базис в W . Если x = xiei ∈ V , то f(x) = f(xiei) =

xif(ei), т.е., для вычисления значения функции в любой точке, достаточно знать ее значения на
базисных векторах, т.е. f(ei) = ak

i ẽk (ak
i — коэффициенты разложения вектора f(ei) по базису ẽ),

тогда f(x) = xiak
i ẽk = ykẽk — разложение значения по базисным векторам ẽ1, . . . , ẽk. Координаты

xi вектора x в базисе пространства V и координаты yk значения отображения f(x) в базисе
пространства W связаны следующим соотношением:




y1

...
ym


 =




a1
1 . . . a1

n
...

. . .
...

am
1 . . . am

n







x1

...
xn


 ,

или, в матричной форме, Y = AX, где Y и X — столбцы координат векторов f(x) и
x соответственно, а матрица Af = A = (ak

i ) является матрицей, определяемой линейным
отображением f (и определяющей его).

Мы видим, что задание базисов в V и W позволяет сопоставить каждому линейному
отображению f его матрицу Af , причем это сопоставление взаимо однозначно. Поэтому
существует биективное отображение между множеством линейных отображений L(V, W ) из V
в W и множеством матриц Mm,n(K) с коэффициентами из поля K размера m× n.

Лемма 3.1.2 L(V, W ) ∼= Mm,n(K).

Доказательство. Достаточно проверить, что построенное выше биективное отображение
L(V, W ) → Mm,n(K) будет линейным. Но это следует из того, что все отображения из L(V, W )
линейны. ¤

Примеры:
1) Рассмотрим отображение f(x) ≡ 0, ему будет соответствовать нулевая матрица Af = 0;
2) Если W = V , а отображение тождественно, f = id : V → V , т.е. f(x) = x ∀x ∈ V , то ему

соответствует единичная матрица Af = En;
3) Отображению f(x) = λx соответствует матрица Af = λEn.
Еще раз отметим, что соответствие f 7→ Af зависит от выбора базисов в пространствах V и

W .
Изменим базисы в V (матрица перехода C1) и в W (матрица перехода C2), тогда,

естественно, изменится и матрица данного линейного отображения. Если в первоначальных
базисах координаты были связаны матричным соотношением Y = AfX, то в новых базисах
(X = C1X

′, Y = C2Y
′) имеем C2Y

′ = AfC1X
′, т.е. Y ′ = C−1

2 AfC1X
′ = A′fX ′. Окончательно

получаем формулу для матрицы оператора в новых базисах A′f = C−1
2 AfC1.

Определение 3.1.3 Ядром Ker f линейного отображения f : V → W называется множество
всех векторов, переходящих в ноль, Ker f = {x ∈ V : f(x) = 0}.
Образом Im f линейного оператора f : V → W называется множество векторов y ∈ W , для

которых существует прообраз, Im f = {y ∈ W : ∃x ∈ V, f(x) = y}.

Лемма 3.1.4 Ядро любого линейного оператора является линейным подпространством в
V ; образ любого линейного оператора является линейным подпространством в W .
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Доказательство. Доказательство очевидно, надо просто проверить, что эти множества
замкнуты относительно операций сложения и умножения на скаляры. Например, в случае ядра,
если x, y ∈ Ker f , λ ∈ K, то f(x) = f(y) = 0, поэтому f(x + y) = 0, f(λx) = 0 и x + y, λx ∈ Ker f .
Проверка для образа оператора аналогична. ¤

Лемма 3.1.5 dimKer f + dim Im f = dimV .

Доказательство. Пусть e1, . . . , er — базис в Ker f , дополним его до базиса
e1, . . . , er, er+1, . . . , en всего пространства V . Докажем, что dim Im f = n − r. Для этого
рассмотрим набор векторов f(er+1), . . . , f(en) и докажем, что он является базисом в Im f .

1) линейная независимость. Пусть λr+1f(er+1) + . . . + λnf(en) = f(λr+1er+1 + . . . + λnen) = 0,
следовательно λr+1er+1 + . . . + λnen ∈ Ker f , но тогда λr+1er+1 + . . . + λnen = µ1e1 + . . . + µrer

для некоторых µ1, . . . , µr. Т.к. векторы e1, . . . , en линейно независимы, то все λi = 0 (и µj тоже),
следовательно векторы f(er+1), . . . , f(en) линейно независимы.

2) полнота. Возьмем произвольный y ∈ Im f , следовательно существует такой x ∈ V , что
f(x) = y. Если x = xiei (суммирование по индексу i, пробегающему от 1 до n), то y = f(x) =
f(xiei) = xif(ei), что является линейной комбинацией векторов f(er+1), . . . , f(en), т.к. при i =
1, . . . , r ei ∈ Ker f и f(ei) = 0.

Следовательно f(er+1), . . . , f(en) — базис в Im f , отсюда уже вытекает утверждение леммы. ¤
Если W = V , то мы получим отображение пространства в себя. Такие отображения называются

линейными операторами. Матрица линейного оператора всегда квадратная, при этом в обоих
экземплярах пространства V берется один и тот же базис. Тогда при переходе к другому базису
матрица линейного оператора изменяется следующим образом: A′f = C−1AfC, где C — матрица
перехода, а Af — матрица оператора в старом базисе.

Определение 3.1.6 Определим det f равенством det f = detAf .

Чтобы определение было корректным, надо, чтобы эта величина не зависела от выбора базиса
в пространстве, т.е. возьмем два разным базиса с матрицей перехода C, тогда

det A′f = det(C−1AfC) = detC−1 det Af detC = det Af .

Определение 3.1.7 Определим след tr f линейного оператора равенством tr f = trAf

(сумма диагональных элементов матрицы Af ).

Аналогично проверяем, что определение корректно:

trA′f = tr(C−1AfC) = tr(AfCC−1) = tr Af .

Определение 3.1.8 Определим ранг rk f линейного оператора равенством rk f = rk Af .

Он тоже, очевидно, не будет зависеть от выбора базиса.

Определение 3.1.9 Композицией двух линейных операторов f, g : V → V называются
линейные операторы f ◦ g, g ◦ f : V → V , где (f ◦ g)(x) = f(g(x)) и (g ◦ f)(x) = g(f(x)).

Можно легко показать, что в фиксированном базисе Af◦g = Af · Ag, также легко проверить,
что для множества операторов выполнены все аксиомы кольца (если умножение — композиция),
т.е. множество линейных операторов имеет структуру кольца с единицей, роль которой играет
тождественный оператор.
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3.2 Инвариантное подпространство

Определение 3.2.1 Пусть дан линейный оператор f : W → W и V ⊂ W — подпространство
в W . Оно называется инвариантным подпространством относительно f , если его образ лежит в
нем самом, т.е. f(V ) ⊂ V .

Примеры:
1) V = Ker f будет инвариантным подпространством, т.к. ∀x ∈ V f(x) = 0 ∈ V ,
2) V = Im f будет инвариантным подпространством, т.к. по определению Im f образ любого

элемента ему принадлежит.
Рассмотрим подробнее матрицы операторов. Пусть V — инвариантное относительно f

подпространство в W . Пусть e1, . . . , er — базис в V , дополним его до базиса e1, . . . , en в W . Пусть

Af — матрица оператора в этом базисе, тогда она имеет следующий вид: Af =

(
? ?
0 ?

)
, т.е. ее

можно разбить по ширине и высоте на две части, отвечающие векторам e1, . . . , er и er+1, . . . , en,
причем в нижнем левом углу будут стоять одни нули. Действительно, т.к. V инвариантно, то
f(ei) ∈ V при 1 6 i 6 r, следовательно, f(ei) = α1

i e1 + . . . + αr
i er. Коэффициенты в этом

разложении по базису — это i-й столбец матрицы Af , а здесь на r + 1, . . . , n-ых местах стоят
нули.

Если W = V1 ⊕ V2, где V1, V2 — инвариантные подпространства, то и правый верхний угол

матрицы Af будет нулевой, и эта матрица будет иметь следующий вид: Af =

(
? 0
0 ?

)
.

Доказательство этого аналогично предыдущему.

Определение 3.2.2 Пусть V — инвариантное относительно f подпространство, тогда
оператор f1 : V → V , определенный равенством f1(v) = f(v), v ∈ V , называется ограничением
оператора f на подпространство V и часто обозначается f |V .

Матрицей оператора f |V будет левый верхний угол матрицы оператора f , т.е. Af =
(

Af1 ?
0 ?

)
.

3.3 Невырожденные операторы. Собственные значения и собственные
векторы

Определение 3.3.1 Линейный оператор f : V → V называется невырожденным, если
выполнено одно из следующих условий:

1) det f 6= 0;
2) Ker f = {0};
3) Im f = V ;
4) rk f = dimV ;
5) ∃g : V → V , такой что g ◦ f = f ◦ g = id, т.е. существует обратный оператор.

Лемма 3.3.2 Все эти пять свойств эквивалентны.

Доказательство. 2) ⇐⇒ 3), т.к. dimV = dim Ker f + dim Im f .
1) ⇐⇒ 2): Пусть существует ненулевой вектор x ∈ Ker f . Выберем такой базис в V , чтобы

x был первым вектором базиса, тогда в матрице оператора Af первый столбец будет нулевым,
тогда det f = 0. Обратно, если det f = 0, то у системы уравнений AfX = 0 существует ненулевое
решение, т.е. под действием оператора f некоторый ненулевой вектор переходит в 0. Но тогда
Ker f 6= {0}.

1) ⇐⇒ 4) — это мы знаем из курса высшей алгебры.
1) ⇐⇒ 5). Если det f 6= 0 и Af — матрица оператора f , то detAf 6= 0, следовательно существует

обратная матрица A−1
f , ей соответствует некоторый оператор g. Т.к. AfA−1

f = A−1
f Af = E, то

f ◦ g = g ◦ f = id. Обратно, если существует обратный оператор, то его матрица будет обратной
к матрице оператора f , следовательно det f = det Af 6= 0.

Замечание. Обратный оператор (если он существует) единственен.
Оператор, для которого ни одно из этих свойств не выполняется называется вырожденным.
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Собственные значения и собственные векторы

Определение 3.3.3 Пусть f — линейный оператор в линейном пространстве V . Если для
некоторого числа λ ∈ K и для некоторого ненулевого вектора v ∈ V выполняется равенство
f(v) = λv, то λ называется собственным значением оператора f , а v — собственным вектором
оператора f , отвечающим собственному значению λ.

Лемма 3.3.4 λ является собственным значением оператора f тогда и только тогда, когда
оператор f − λ · id вырожден.

Доказательство.
=⇒: Если f(v) = λv, то (f−λ ·id)(v) = 0, значит, ядро оператора (f−λ ·id) содержит ненулевой

вектор v, откуда следует вырожденность этого оператора.
⇐=: Вырожденность (f − λ · id) означает наличие нетривиального ядра у этого оператора.

Возьмем в качестве v любой ненулевой вектор из ядра Ker(f − λ · id), тогда f(v) = λv. ¤
Рассмотрим пространство V (λ) = Ker(f − λ · id) — подпространство, состоящее из всех

собственных векторов, отвечающих одному и тому же собственному значению λ, и из нулевого
вектора.

Лемма 3.3.5 Пространство V (λ) инвариантно относительно оператора f .

Доказательство. Если x ∈ V (λ), т.е. (f − λ · id)(x) = 0, тогда f(x) = λx ∈ V (λ). ¤

Лемма 3.3.6 Пусть K — алгебраически замкнутое поле (т.е. любой многочлен f ∈ Kn[x],
deg f > 0, имеет корень), например, поле комплексных чисел. Тогда у любого оператора f : W →
W , где dimW > 1, существует нетривиальное инвариантное подпространство (отличное от
нуля и от всего пространства).

Доказательство. Рассмотрим уравнение det(f − λ · id) = 0. В силу алгебраической
замкнутости поля, это уравнение имеет корень λ0, тогда λ0 будет собственным значением f и
тогда dimV (λ0) > 0 и V (λ0) инвариантно. Если V (λ0) 6= W , то оно нетривиально. Если же
случайно получилось, что V (λ0) = W , то f имеет вид f = λ0 · id, т.е. является просто оператором
умножения на число, и тогда любое подпространство будет инвариантным. ¤

3.4 Проекторы

Если W = V1⊕V2, то для любого вектора w имеет место единственное разложение вида w = v1+v2,
где v1 ∈ V1, v2 ∈ V2. Рассмотрим линейный оператор f : W → W , определенный формулой
f(w) = v1. Т.к. v1 = v1 + 0, то f(V1) ⊂ V1, т.е. V1 инвариантно относительно f , более того на
подпространстве имеем f |V1 = idV1 . Т.к. все вектора из V2 переходят в 0, то V2 ∈ Ker f . На самом
деле V2 = Ker f , т.к. если f(w) = 0, то в разложении w = v1 + v2 имеем v2 = 0, т.е. w ∈ V2.

Определение 3.4.1 Операторы указанного вида называются операторами проектирования
или просто проекторами вдоль V2 на V1.

Проекторы обладают замечательным свойством: если f — проектор, то f2 = f . Докажем
обратное утверждение.

Теорема 3.4.2 Если f2 = f , то оператор f : W → W является оператором проектирования
для некоторых V1 и V2.

Доказательство. Возьмем V1 = Im f и V2 = Ker f и докажем, что f — проектор вдоль V2 на
V1.

Сначала докажем, что W = V1 ⊕ V2, т.е., что W = V1 + V2 и V1 ∩ V2 = {0}. Допустим, что
существует ненулевой вектор a ∈ V1 ∩V2, тогда a ∈ Ker f , т.е. f(a) = 0 и a ∈ Im f , т.е. существует
такой вектор b ∈ W , что f(b) = a. Тогда

a = f(b) = f2(b) = f(a) = 0,
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следовательно, a = 0. Мы получили, что V1 и V2 действительно образуют прямую сумму и V1 ⊕
V2 ⊂ W . Но, т.к.

dim(V1 ⊕ V2) = dimV1 + dim V2 = dim Ker f + dim Im f = dimW,

то V1 ⊕ V2 = W .
Возьмем теперь произвольный вектор w ∈ W , тогда w = v1 + v2, где v1 ∈ V1, v2 ∈ V2,

следовательно, f(w) = f(v1 + v2) = f(v1) + f(v2) = f(v1) + 0 = f(v1), т.к. v2 ∈ Ker f . Нам
осталось доказать, что, если v1 ∈ Im f , то f(v1) = v1. Пусть b ∈ W — прообраз v1, т.е. f(b) = v1,
тогда v1 = f(b) = f2(b) = f(v1), следовательно оператор f действительно является оператором
проектирования вдоль V2 на V1. ¤

Матрица оператора проектирования в базисе, составленном из базисов подпространств V1 и

V2 имеет следующий вид:




1
. . . 0

1
0

0
. . .

0



, где количество единиц равно размерности

подпространства V1.

3.5 Многочлены от операторов

Пусть f : V → V — линейный оператор. Тогда каждому многочлену p(t) ∈ Kn[t] можно поставить
в соответствие оператор по следующему правилу:

a0 + a1t + a2t
2 + . . . + antn 7→ a0id + a1f + a2f

2 + . . . + anfn.

Этот многочлен от оператора, также являющийся оператором, мы будем обозначать через p(f).
Аналогично, можно определить многочлен от матрицы. Для матрицы A определим p(A)

формулой p(A) = a0E + a1A + a2A
2 + . . . + anAn, где E — единичная матрица. Поскольку

при фиксированном базисе имеется взаимно однозначное соотвествие между операторами и
матрицами, все утверждения о многочленах от операторов допускают переформулировку для
многочленов от матриц.

Может так получиться, что p(f) — нулевой оператор, тогда многочлен p(t) называется
аннулирующим многочленом для оператора f .

Пример: Если f = id, то p(t) = t− 1 будет аннулирующим многочленом, т.к. p(f) = f − id = 0.

Лемма 3.5.1 У любого оператора f существует аннулирующий многочлен.

Доказательство. Пусть dimV = n, рассмотрим операторы f0 = id, f1 = f, f2, . . . , fn2

︸ ︷︷ ︸
n2+1

.

Размерность векторного пространства линейных операторов равна n2, следовательно эти
операторы (поскольку их количество больше размерности) линейно зависимы, тогда существуют
такие числа a0, a1, . . . , an2 , не все равные нулю, что a0id+a1f+. . .+an2fn2

= 0, но тогда получаем,
что многочлен p(t) = a0 + a1t + . . . + an2tn

2 аннулирует оператор f . ¤

Минимальный многочлен

Определение 3.5.2 Многочлен p(t) называется минимальным многочленом для оператора
f , если он аннулирует этот оператор, имеет наименьшую степень среди всех аннулирующих
многочленов и его старший коэффициент равен 1.

Аналогично можно определить минимальный многочлен для матриц вместо операторов.

Лемма 3.5.3 Для любого оператора f существует, и притом единственный, минимальный
многочлен.
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Доказательство. 1) Существование. Мы уже показали, что для любого оператора
существует аннулирующий многочлен. Поэтому мы можем выбрать из всех аннулирующих
многочленов многочлены с наименьшей степенью и поделить их на старший коэффициент. То,
что получится, по определению будет минимальным многочленом.

2) Единственность. Допустим, что p1(t) и p2(t) — два минимальных многочлена для одногои
того же оператора f , тогда deg p1 = deg p2 и их старшие коэффициенты равны 1, поэтому
многочлен p1(t) − p2(t) будет аннулирующим многочленом меньшей степени, что противоречит
предположению. ¤

Лемма 3.5.4 Число λ будет собственным значением оператора f тогда и только тогда,
когда λ — корень минимального многочлена для f .

Доказательство. Пусть λ — собственное значение оператора f , тогда существует такой
ненулевой вектор x, что fx = λx. Пусть p(t) — минимальный многочлен, т.е. p(f) ≡ 0, тогда
p(f)x = 0, следовательно

p(λ)x = a0x + a1λx + . . . + anλnx = a0x + a1fx + . . . + anfnx = p(f)x = 0,

поэтому p(λ) = 0 (так как x 6= 0).
Обратно, пусть λ — корень минимального многочлена, тогда p(t) = (t − λ)q(t), deg q < deg p,

поэтому q(t) не аннулирует f , следовательно, существует такой ненулевой вектор x, что q(f)x =
y 6= 0. Тогда

(f − λ · id)y = (f − λ · id)q(f)x = p(f)x = 0,

следовательно, y — это собственный вектор оператора f , а λ — его собственное значение. ¤

3.6 Характеристический многочлен

Определение 3.6.1 Многочлен Pf (t) = det(f − λ · id) называется характеристическим
многочленом оператора f .

Отметим, что характеристический многочлен можно определить и для в матриц (вместо
операторов): PA(t) = det(A− λE), где A — матрица.

Отметим роль некоторых коэффициентов характеристического многочлена. Если его записать
в виде Pf (t) = a0 + a1t + . . . + antn, то тогда an = (−1)n, an−1 = (−1)n−1 tr f , a0 = det f .

Лемма 3.6.2 λ является собственным значением оператора f тогда и только тогда, когда
λ — корень характеристического многочлена Pf (t).

Доказательство. Если λ — собственное значение, то оператор g = f − λ · id вырожденный,
следовательно det(f − λ · id) = 0, т.е. λ — корень Pf (t). Обратно, если λ — корень Pf (t), то
det(f−λ·id) = 0, следовательно оператор f−λ·id вырожденный, значит, λ является собственным
значением оператора f . ¤

Если V ⊂ W — инвариантное подпространство, тогда, как мы знаем, матрица оператора f :

W → W имеет вид: Af =
(

Af1 ?
0 Af ′

)
, где f1 — ограничение f на V , а f ′ — фактор-оператор.

Тогда, т.к. det f = det f1 det f ′, то Pf (t) = Pf1(t)Pf ′(t).

Лемма 3.6.3 Пусть V (λ) — инвариантное подпространство, образованное
собственными векторами, отвечающими собственному значению λ. Тогда кратность корня
характеристического многочлена не меньше размерности подпространства V (λ).

Доказательство. Если f1 — ограничение оператора f на V (λ), то для любого x ∈ V (λ)

будем иметь, что f1x = λx, поэтому матрица этого оператора имеет вид Af1 =




λ 0
. . .

0 λ


,

25



а матрица оператора f — вид: Af =




λ 0
. . . ?

0 λ
0 Af ′


. Следовательно Pf (t) = Pf1(t)Pf ′(t) =

(λ− t)dim V (λ) · Pf ′(t), поэтому кратность корня λ не меньше размерности подпространства V (λ)
(но может быть и больше, если λ является корнем многочлена Pf ′(t)). ¤

Теорема 3.6.4 (Гамильтона-Кэли) Характеристический многочлен Pf (t) оператора f :
W → W аннулирует этот оператор, т.е. Pf (f) = 0.

Доказательство. В силу взаимно однозначного соответствия между матрицами и
операторами, мы докажем "матричный вариант" этой теоремы: PA(A) = 0 для произвольной
матрицы A.

Запишем обратную матрицу (для тех значений λ, для которых она определена) в виде (A −
λE)−1 = 1

PA(λ)C(λ), где C(λ) — матрица, составленная из миноров матрицы A− λE. Отсюда

(A− λE)C(λ) = PA(λ)E. (3)

Это равенство очевидно выполняется для всех λ, кроме корней характеристического многочлена.
А поскольку обе части этого матричного равенства состоят из многочленов, из их непрерывности
следует выполнение этого равенства для всех значений λ. Разложим матрицу C(λ), состоящую
из многочленов, по степеням λ: C(λ) = C0 + C1λ + C2λ

2 + . . . + Cn−1λ
n−1, где C0, C1, . . . , Cn−1 —

числовые матрицы. В таком же виде запишем характеристический многочлен PA(λ) = a0 +a1λ+
a2λ

2 + . . . + anλn и распишем матричное равенство (3) по степеням λ, т.е. для каждой степени
напишем равенство коэффициентов левой и правой части матричного равенства:

AC0 = a0E

AC1 − C0 = a1E

AC2 − C1 = a2E

. . . . . .

ACn−1 − Cn−2 = an−1E

−Cn−1 = anE.

Умножим первое равенство на E, второе — на A, третье — на A2, и т.д., и сложим. Тогда в
правой части получится a0E + a1A + a2A

2 + . . . + anAn = PA(A), а в левой — все слагаемые
взаимно уничтожатся. Т.е. получится, что PA(A) = 0. ¤

3.7 Диагонализируемые операторы

Определение 3.7.1 Оператор f называется диагонализируемым, если существует такой
базис, что матрица этого оператора в этом базисе диагональна.

Примеры:
1) операторы проектирования диагонализируемы,
2) нильпотентные операторы не диагонализируемы (если они не нулевые), так как любая

диагональная нильпотентная матрица равна нулю.

Лемма 3.7.2 Пусть характеристический многочлен Pf (t) имеет n = dimW различных
корней, тогда оператор f диагонализируемый.

Доказательство. Пусть λ1, . . . , λn — корни Pf (t), т.е. собственные значения оператора f , а
a1, . . . , an — отвечающие им собственные векторы, т.е. fai = λiai, i = 1, . . . , n. Если бы мы знали,

что a1, . . . , an — базис, то матрица оператора в этом базисе имела бы вид: Af =




λ1 0
. . .

0 λn


.
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Докажем, что a1, . . . , an является базисом. Для этого нам достаточно доказать линейную
независимость этих векторов (так как их количество совпадает с размерностью пространства).
Применим индукцию по количеству линейно независимых векторов.

1) База индукции. Вектор a1 отличен от нуля, поэтому система, состоящая из него одного
линейно независима.

2) Индуктивный переход. Пусть первые k−1 векторов линейно независимы. Докажем, что тогда
и первые k векторов тоже линейно независимы. Предположим обратное, т.е. что т.е. существуют
скаляры α1, . . . , αk, не все равные нулю, т.ч. α1a1 + . . . + αkak = 0. Поскольку первые k − 1
векторов по предположению линейно независимы, последний вектор есть линейная комбинация
остальных, ak = −α1

αk
a1 − . . . − αk−1

αk
ak−1. Применив оператор f к обеим частям этого равенства,

получим, что fak = f(−α1
αk

a1 − . . . − αk−1

αk
ak−1), т.е. λkak = −α1

αk
λ1a1 − . . . − αk−1

αk
λk−1ak−1, но,

с другой стороны, λkak = λk(−α1
αk

a1 − . . . − αk−1

αk
ak−1). Приравняв выражения в правых частях

равенств, получим, что (λk − λ1)α1
αk

a1 + . . . + (λk − λk−1)
αk−1

αk
ak−1 = 0. Т.к. все λi различны, то из

линейной независимости векторов a1, . . . , ak−1 следует, что все коэффициенты α1, . . . , αk−1 равны
нулю. Но тогда αk = 0, откуда следует линейная независимость системы из k векторов. ¤

Лемма 3.7.3 Над алгебраически замкнутым полем матрицу любого оператора можно

привести к верхнетреугольному виду




λ1 ?
. . .

0 λn


 заменой базиса.

Доказательство. Индукция по размерности пространства.
1) Если dimW = 1, то утверждение очевидно, т.к. любая матрица размера 1 является

верхнетреугольной.
2) Пусть утверждение верно для dimW < n, докажем его для dimW = n. Т.к. поле

алгебраически замкнуто, характеристический многочлен имеет корень λ, он будет собственным
значением. Ему соответствует собственный вектор, который порождает одномерное инвариантное

подпространство V , тогда матрица оператора f имеет вид Af =
(

λ ?
0 Af ′

)
. По предположению

индукции матрицу Af ′ можно привести к верхнетреугольному виду Af ′ =




λ1 ?
. . .

0 λn−1


,

тогда матрица Af =




λ ?
λ1 ?

0
. . .

0 λn−1


 также будет верхнетреугольной. ¤

Лемма 3.7.4 Если матрица оператора верхнетреугольная, то на главной диагонали стоят
собственные значения этого оператора.

Доказательство. Пусть Af =




λ1 ?
. . .

0 λn


, тогда Af−t·id =




λ1 − t ?
. . .

0 λn − t


, и

det(f − t · id) = (λ1− t) · . . . · (λn− t), т.е. λ1, . . . , λn — это корни характеристического многочлена,
а значит собственные значения. ¤

Лемма 3.7.5 Пусть оператор f такой, что в алгебраически замкнутом поле
характеристический многочлен Pf (t) имеет единственный корень λ, тогда некоторая
степень оператора g = f − λ · id равна нулю.

Доказательство. Т.к. у оператора f только одно собственное значение λ, то в некотором

базисе его матрица будет иметь вид Af =




λ ?
. . .

0 λ


. Матрица оператора g в этом базисе
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имеет вид Ag =




0 ?
. . .

0 0


. Характеристический многочлен оператора g имеет вид Pg(t) =

(−1)ntn, и, поскольку он является аннулирующим, то Pg(g) = (−1)ngn = 0, значит, gn = 0. ¤

3.8 Жордановы клетки

Рассмотрим оператор f , заданный в базисе e1, . . . , en матрицей

Jn(λ) =




λ 1
λ 1

. . . . . .
λ 1

λ




.

Такая матрица называетсяжордановой клеткой порядка n, с собственным значением λ. Действие
такого оператора на базисных векторах устроено так: f(e1) = λe1, f(e2) = λe2 + e1, f(e3) =
λe3 + e2,. . . , f(en) = λen + en−1.

Нормальной или жордановой формой называется блочно-диагональная матрица, все блоки
которой являются жордановыми клетками.

3.9 Присоединенные векторы и корневое подпространство

Обозначим через V
(1)
λ подпространство собственных векторов оператора f , отвечающих

собственному значению λ (вместе с нулевым вектором). Иначе это можно записать как V
(1)
λ =

Ker(f − λ · id).
Аналогично определим V

(2)
λ = Ker(f − λ · id)2, V

(3)
λ = Ker(f − λ · id)3 и т.д.

Получается цепочка вложенных друг в друга подпространств {0} ⊂ V
(1)
λ ⊂ V

(2)
λ ⊂ . . . ⊂ V .

Вектор v называется присоединенным вектором 1-го порядка оператора f , отвечающих
собственному значению λ, если v ∈ V

(2)
λ , v /∈ V

(1)
λ . Аналогично, присоединенным вектором

порядка k, если v ∈ V
(k+1)
λ , v /∈ V

(k)
λ .

Покажем, что рост подпространств V
(k)
λ стабилизируется с ростом k.

Поскольку пространство, в котором действует наш оператор, конечномерно, то неубывающая
числовая последовательность размерностей dimV

(1)
λ 6 dimV

(2)
λ 6 dimV

(3)
λ 6 . . . не может

неограничченно возрастать, значит, найдется какой-то номер k, для которого соседние члены
этой последовательности совпадут.

Утверждение 3.9.1 Если на каком-то шаге этой цепочки V
(k−1)
λ и V

(k)
λ совпали, то они

будут совпадать и дальше, т.е. V
(i)
λ = V

(i+1)
λ при i > k.

Доказательство. Обозначим f − λ · id через g. По условию мы имеем gkx = 0 ⇐⇒ x ∈
Ker gk ⇐⇒ x ∈ Ker gk−1 ⇐⇒ gk−1x = 0. Докажем, что gk+1x = 0 ⇐⇒ gkx = 0, т.е. что Ker gk+1 =
Ker gk.

Если gkx = 0, то, очевидно, gk+1x = g(gkx) = 0. Обратно, если gk+1x = 0, то gk(gx) = 0 ⇐⇒
gk−1(gx) = 0 (по условию), следовательно, gkx = 0. Мы доказали, что Ker gk+1 = Ker gk. Проделав
эту операцию нужное число раз, получим что Ker gk+2 = Ker gk+1 и т.д. ¤

Обозначим через p тот номер, с которого происходит стабилизация цепочки подпространств
V

(k)
λ . Тогда ∪∞k=1V

(k)
λ = V

(p)
λ . Обозначим это пространство через Vλ и назовем его корневым

подпространством оператора f , отвечающим собственному значению λ.

Утверждение 3.9.2 Подпространство Vλ ⊂ W инвариантно относительно оператора f .

Доказательство. Возьмем произвольный вектор x ∈ Vλ, т.е. (f − λ · id)p(x) = 0, тогда
(f − λ · id)pf(x) = f(f − λ · id)p(x) = f(0) = 0, значит, f(x) ∈ Vλ. ¤
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3.10 Теорема о разложении пространства в прямую сумму корневых
подпространств

Лемма 3.10.1 Пусть f : V → V , λ — его собственное значение. Тогда имеет место
разложение V в прямую сумму, V = Vλ⊕W , где W — инвариантное подпространство, причем
ограничение оператора f на W обратимо.

Доказательство. Без ограничения общности можно считать, что λ = 0. Для этого
достаточно перейти от оператора f к оператору f − λ · id.

Положим W = Im fp и докажем, что V = Vλ ⊕ W = Ker fn ⊕ Im fp. Инвариантность Im fp

очевидна: если y ∈ Im fp, то существует такой x, что y = fp(x); тогда f(y) = fp+1(x) ∈
Im fp+1. Но Im fp+1 ⊂ Im fp, а размерности этих образов совпадают, т.к. совпадают размерности
соотвтествующих ядер, поэтому Im fp+1 = Im fp.

Покажем, что сумма V0 и W — прямая. Для этого достаточно доказать, что их пересечение
равно нулю. Так как сумма размерностей ядра и образа равна размерности всего пространства,
из того, что пересечение — нулевое, будет следовать, что dimV = dimV0+dimW , т.е. V = V0⊕W .

Пусть v ∈ V0 ∩W , v 6= 0. Т.к. v ∈ V0, то fp(v) = 0, а т.к. v ∈ W , то v = fp(w) для некоторого
вектора w ∈ V . Тогда fp(w) = v 6= 0, f2p(w) = fp(v) = 0. Из того, что fp(w) 6= 0, следует,
что w /∈ V0, а из того, что f2p(w) = 0, следует, что w ∈ V

(2p)
0 = V0. Полученное противоречие

доказывает, что V0 ∩W = {0}.
Докажем теперь, что ограничение f на W невырождено. Если бы это было не так, что 0 был

бы собственным значением оператора f |W , т.е. существовал бы собственный вектор v ∈ W , v 6= 0,
f(v) = 0. Но это бы означало, что v ∈ V0. Но V0 ∩W = {0}. Т.о., 0 не может быть собственным
значением для f |W . ¤

Теорема 3.10.2 Пусть дан оператор f : V → V (над алгебраически замкнутым полем).
Тогда пространство V является прямой суммой всех корневых подпространств, т.е. V = Vλ1⊕
. . .⊕ Vλk

, где λ1, . . . , λk — все собственные значения оператора f .

Доказательство. Применим нужное число раз предыдущую лемму. После первого
применения получим V = Vλ1 ⊕ W . Далее, из блочно-диагонального вида матрицы оператора
f — она состоит из блоков, отвечающих ограничениям f |Vλ1

и f |W — следует, что собственные
значения f |W — λ2, λ3, . . . , λk. Продолжая этот процесс, мы исчерпаем все пространство.
Действительно, если после k-кратного применения леммы мы получим V = Vλ1 ⊕ Vλ2 ⊕ . . . ⊕
Vλk

⊕ W ′, то W ′ = {0} — иначе оператор ограничения f |W ′ будет иметь еще одно собственное
значение (поле алгебраически замкнуто), которого не было у f — противоречие. ¤

Отметим, что ограничение оператора на корневое подпространство имеет единственное
собственное значение.

3.11 Жорданова нормальная форма оператора

Теорема 3.11.1 (Жордана о приведении матрицы оператора к нормальной форме)
Для любого оператора f существует базис, в котором его матрица Af будет жордановой.
Такая матрица единственна с точностью до перестановки блоков (клеток).

Доказательство.
1) Существование. По теореме о корневом разложении, в подходящем базисе матрица оператора

f имеет блочно-диагональный вид

Af =




Af |Vλ1

Af |Vλ2

. . .
Af |Vλk




,

поэтому достаточно доказать теорему для операторов с единственным собственным значением,
каковыми являются ограничения оператора f на корневые подпространства.
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Поэтому мы можем предположить без ограничения общности, что f имеет единственное
собственное значение. Также без ограничения общности можно считать, что это собственное
значение равно нулю.

Наша задача — построить базис в пространстве, в котором действует такой оператор, т.е. в
корневом пространстве V = V0 = V

(p)
0 , которое является объединением подпространств V

(1)
0 ⊂

V
(2)
0 ⊂ . . . ⊂ V

(p)
0 .

Для подпространства L ⊂ V система векторов er+1, . . . , en называется относительным базисом
(относительно подпространства L), если, будучи дополненной базисом подпространства L, она
становится базисом всего пространства V . В любом (конечномерном) пространстве можно
выбрать относительный базис относительно любого подпространства.

На первом шаге рассмотрим подпространство V
(p−1)
0 ⊂ V

(p)
0 = V и выберем относительный

базис e1, . . . , eq относительно этого подпространства. Очевидно, он будет состоять из
присоединенных векторов порядка p − 1. Поскольку f(V (p)

0 ) = V
(p)
0 , f(e1), . . . , f(eq) ∈ V

(p−1)
0 .

Покажем, что система векторов f(e1), . . . , f(eq) линейно независима относительно предыдущего
подпространства V

(p−2)
0 : если α1f(e1) + . . . + αqf(eq) = f(α1e1 + . . . + αqeq) ∈ V

(p−2)
0 , то

α1e1 + . . . + αqeq ∈ V
(p−1)
0 , и из определения векторов e1, . . . , eq следует, что все α1 =

. . . = αq = 0. Дополним систему векторов f(e1), . . . , f(eq) до относительного базиса в V
(p−1)
0

относительно подпространства V
(p−2)
0 векторами g1, . . . , gs. Т.о. относительный базис V

(p−1)
0

относительно подпространства V
(p−2)
0 состоит из векторов f(e1), . . . , f(eq), g1, . . . , gs. К этому

относительному базису применим оператор f и вновь полученную систему векторов опять
дополним до относительного базиса V

(p−2)
0 относительно подпространства V

(p−3)
0 . Этот процесс

можно продолжить до конца, т.е. до подпространства V
(1)
0 и его нулевого подпространства.

Запишем полученные векторы в виде таблицы:

e1 . . . eq

f(e1) . . . f(eq) g1 . . . gs

f2(e1) . . . f2(eq) f(g1) . . . f(gs) h1 . . . hr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fp−1(e1) . . . fp−1(eq) fp−2(g1) . . . fp−2(gs) fp−3(h1) . . . fp−3(hr) . . . l1 . . . lt

Векторы нижней строчки образуют базис подпространства V
(1)
0 , векторы предпоследней

строчки образуют относительный базис в V
(2)
0 относительно V

(1)
0 , поэтому векторы двух

последних строчек составляют базис подпространства V
(2)
0 . Добавляя к ним векторы третьей

с конца строчки, получаем базис подпространства V
(3)
0 , и т.д. В итоге, все векторы таблицы

составляют базис пространства V . Осталось проверить, что это — такой базис, в котором матрица
оператора состоит из жордановых клеток.

Для этого рассмотрим вертикальные цепочки векторов таблицы. Обозначим fp−1(e1) = ẽ1,
fp−2(e1) = ẽ2,... e1 = ẽp. Т.к. ẽ1 — собственный вектор, отвечающий нулевому собственному
значению, то f(ẽ1) = 0. Далее, по определению, f(ẽ2) = fp−1(e1) = ẽ1, f(ẽ3) = ẽ2,.... Пусть
L1 = 〈ẽ1, . . . , ẽp〉 — линейная оболочка векторов первого стольбца. Тогда L1 переходит в себя,
т.е. является инвариантным подпространством, при этом матрица оператора f , ограниченного
на L1, имеет вид жордановой клетки с нулевым собственным значением. Аналогично, векторы
второго столбца образуют инвариантное подпространство L2, и матрица ограничения f на L2

также является жордановой клеткой, и т.д. Таким образом, матрица оператора f состоит из
стольких жордановых клеток, сколько столбцов в таблице.

2) Единственность. Надо показать, что каким бы способом мы не привели бы матрицу
оператора f к жордановой нормальной форме, количество жордановых клеток фиксированной
размерности с собственным значением λ одно и то же. Для этого зафиксируем собственное
значение λ и посчитаем количество клеток, ему отвечающих.

Введем числа rk(λ) = rk(f − λ · id)k и Nk(λ) — количество жордановых клеток размерности k,
отвечающих собственному значению λ. Для блочно-диагональных матриц ранги можно считать
по каждому блоку отдельно, и суммировать. Легко заметить, что при вычислении разности
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rk+1(λ)−rk(λ) нужно учитывать только клетки, отвечающие собственному значению λ, поскольку
ранги остальных клеток Jm(λi − λ) не меняются при возведении таких клеток в любую степень
(эти клетки невырождены).

Рассмотрим разность r0(λ) − r1(λ). Для каждой отдельно взятой клетки с собственным
значением λ такая разность равна 1, т.к. ранг клетки размера k×k равен k − 1, т.е. на единицу
меньше, чем размерность. Поэтому каждая клетка вносит в разность r0(λ)− r1(λ) вклад, равный
единице, т.е. эта разность равна общему количеству клеток, следовательно r0(λ) − r1(λ) =
N1(λ) + N2(λ) + N3(λ) + . . ..

Рассмотрим разность r1(λ)− r2(λ). Для клеток размера 1×1 такая разность равна нулю, а для
клеток размера n×n при n > 2 ранг клетки равен n − 1, а ранг ее квадрата равен n − 2, и их
разность равна единице. Поэтому разность r1(λ) − r2(λ) равна количеству клеток размера n×n
при n > 2, т.е. r1(λ) − r2(λ) = N2(λ) + N3(λ) + . . .. Аналогично получаем, что r2(λ) − r3(λ) =
N3(λ)+N4(λ)+. . . и т.д., ri−1(λ)−ri(λ) = Ni(λ)+Ni+1(λ)+. . .. Вычитая из предыдущего равенства
последующее, получаем Ni(λ) = (ri−1(λ) − ri(λ)) − (ri(λ) − rr+1(λ)) = ri−1(λ) − 2ri(λ) + rr+1(λ).
Т.к. ранги от выбора базиса не зависят, то и числа Ni(λ) от базиса не зависят, следовательно
количество клеток каждого размера будет одно и то же, поэтому нормальная форма оператора
единственна с точностью до перестановки клеток, из которых она состоит. ¤

3.12 Функции от операторов и от матриц

Если функция f(x) достаточно гладкая, т.е. имеет достаточно много производных, то для
нее можно написать формулу Тейлора, которая будет иметь достаточно много членов, f(t) =
f(λ) + f ′(λ)

1! (t − λ) + f ′′(λ)
2! (t − λ)2 + . . . + f (m)(λ)

m! (t − λ)m + rm (в качестве последнего слагаемого
можно взять, например, остаточный член в форме Лагранжа). Если матрица A — жорданова

клетка, A =




λ 1 0
. . . . . .

λ 1
0 λ


, то f(A) =




f(λ) f ′(λ)
1! . . . f (n−1)(λ)

(n−1)!

. . . . . .
...

f(λ) f ′(λ)
1!

0 f(λ)



, т.е. значение

функции f(A) определяется только значением функции f(t) и ее n − 1 производной в точке
t = λ, а все производные более высоких порядков (т.е. все последующие слагаемые формулы
Тейлора) дают нулевой вклад. То есть, мы можем взять формулу Тейлора для этой функции,
обрубить ее на n − 1-й производной, и мы получим многочлен p(t), причем p(A) = f(A), а
вычислять значение многочлена от матрицы мы умеем. Если матрица произвольна, то ее нужно

привести к жордановой форме, A′ =




A1 0
. . .

0 Am


, где A1, . . . , Am — жордановые клетки.

Т.к. f(A′) =




f(A1) 0
. . .

0 f(Am)


 и f(A) = Cf(A′)C−1, то формулу Тейлора нам достаточно

обрубить на k−1-й производной, где k — максимальный размер жордановой клетки в жордановой
форме матрицы A, тогда мы получим такой многочлен p(t), что p(A) = f(A). Этот многочлен
называется интерполяционным.
Вопрос: Почему определение f(A) не зависит от способа приведения к жордановой форме ?

Проверьте, что если матрица A приведена к жордановому виду J(A) с помощью двух различных
матриц перехода, C и D, т.е. если A = CJ(A)C−1 = DJ(A)D−1, то матрицы D−1C и f(J(A))
перестановочны для любой функции f , для которой определено f(J(A)).

3.13 Овеществление и комплексификация

Овеществление

Определение 3.13.1 Пусть V — векторное пространство над полем комплексных чисел C.
Рассмотрим пространство VR, состоящее из тех же векторов, что и V , только вместо операции
умножения на все комплексные числа мы ограничимся умножением только на вещественные
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числа. Тогда VR будет линейным пространством над полем вещественных чисел R, оно называется
овеществлением пространства V .

Пусть e1, . . . , en — базис в пространстве V , тогда он не будет базисом пространства VR,
так как не все вектора являются их линейными комбинациями с вещественными числами,
а на комплексные числа мы больше не можем умножать. Базисом в VR будут вектора
e1, . . . , en, ie1, . . . , ien (проверьте), следовательно dimR VR = 2 dimC V (индекс у dim непоминает,
над каким полем мы рассматриваем размерность пространства).

Определение 3.13.2 Пусть дан оператор f : V → V , тогда этот оператор, рассматриваемый
на пространстве VR, называется овеществлением оператора f и обозначается fR.

Посмотрим, как связаны матрицы операторов f и fR. Пусть в базисе e1, . . . , en пространства V

f(ek) = cj
kej . Матрицу Af = (cj

k) оператора f можно разложить на вещественную и чисто мнимую
часть, т.к. ее элементы — это комплексные числа, т.е. Af = A + iB, где A = (Re cj

k), B = (Im cj
k).

Тогда матрица оператора fR в базисе e1, . . . , en, ie1, . . . , ien будет иметь вид AfR =
(

A −B
B A

)
.

Посчитаем detAfR , для чего сделаем следующие элементарные преобразования над строками и
столбцами матрицы AfR :

(
A −B
B A

)
→

(
A− iB −B − iA

B A

)
→

→
(

A− iB −B − iA + i(A− iB)
B A + iB

)
=

(
A− iB 0

B A + iB

)
,

поэтому
det AfR = det(A− iB) det(A + iB) = det(Af ) · detAf = | detAf |2.

Комплексная структура

Определение 3.13.3 Пусть V — векторное пространство над R. Комплексной структурой
на V называется такой линейный оператор j : V → V , что j2 = −id.

Тогда пространство V можно рассматривать как векторное пространство над C, так как на
V можно ввести операцию умножения на комплексные числа: (a + ib)v := av + bj(v). То, что
это определение корректно (свойства v-viii определения векторного пространства), проверяется
тривиально.

Лемма 3.13.4 Пусть j — комплексная структура на вещественном векторном
пространстве V . Тогда
1) dimV четна;

2) в подходящем базисе матрица оператора j имеет вид Aj =
(

0 −E
E 0

)
.

Доказательство.
1. Обозначим через Ṽ пространство V , рассматриваемое как комплексное (с помошью

комплексной структуры j). Размерность пространства Ṽ конечна, т.к. по базису пространства
V можно разложить любой вектор (возможно неоднозначно). Пусть e1, . . . , en — базис в Ṽ , тогда
e1, . . . , en, en+1 = j(e1), . . . , e2n = j(en) будет базисом в V , следовательно, dimV = 2n.

2. Т.к. j(ei) = en+i и j(en+i) = −ei для i = 1, . . . , n, то в этом базисе матрица оператора имеет
указанный вид. ¤
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Комплексификация

Определение 3.13.5 Пусть V — векторное пространство над полем R. Рассмотрим
пространство VC = V ⊕ V = {(a, b) : a, b ∈ V } и определим комплексную структуру следующим
образом: j(a, b) := (−b, a) (нетрудно убедиться, что j2 = −id). Пространство с такой комплексной
структурой называется комплексификацией пространства V .

Покажем, что dimC VC = dimR V . Если e1, . . . , en — базис в пространстве V , то (e1, 0), . . . , (en, 0)
будет базисом в пространстве VC. Действительно, поскольку j(ei, 0) = (0, ei), то умножением на
мнимую единицу мы можем получить вектора (0, e1), . . . , (0, en) и, следовательно, любой вектор
(a, b), где a, b ∈ V .

Определение 3.13.6 Если дан оператор f : V → V , то оператор fC : VC → VC, заданный
формулой fC(a, b) := (fa, fb), называется комплексификацией оператора f .

Легко убедиться, что так определенный fC действительно будет линейным оператором. Если
Af — матрица оператора f в базисе e1, . . . , en, то эта же матрица будет матрицей оператора fC в
базисе (e1, 0), . . . , (en, 0).

В дальнейшем мы будем использовать обозначение a + ib для пары (a, b) по аналгоии с
комплексными числами.

3.14 Инвариантные подпространства в вещественном случае

В случае алгебраически замкнутого поля каждый оператор имеет собственные значения, и,
следовательно, одномерные инвариантные подпространства. В вещественном случае это, вообще
говоря, неверно, но имеется более слабое утверждение о существовании по крайней мере
двумерных инвариантных подпространств.

Лемма 3.14.1 Если f : V → V — оператор в вещественном векторном пространстве и
dimV > 1, то в пространстве V существует либо одномерное, либо двумерное инвариантное
подпространство.

Доказательство. Если dimV = 1, то утверждение леммы очевидно. Если dimV > 1, то
пусть λ = α+ iβ — собственное значение оператора fC. Тогда в VC есть собственный вектор a+ ib,
a, b ∈ V , отвечающий собственному значению λ. Тогда

fC(a + ib) = (α + iβ)(a + ib) = αa− βb + i(αb + βa),

но с другой стороны fC(a+ib) = f(a)+if(b), следовательно, f(a) = αa−βb и f(b) = αb+βa. Т.к. α и
β — это вещественные числа, то f(a), f(b) ∈ 〈a, b〉, значит, 〈a, b〉 — инвариантное подпространство.
Очевидно, что оно либо одномерное, либо двумерное (на самом деле оно всегда будет получаться
двумерным, если β 6= 0). ¤
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4 Операторы в евклидовых и унитарных пространствах

4.1 Сопряженный оператор

Изучим теперь линейные операторы, действующие в евклидовых и эрмитовых пространствах,
т.е. в пространствах со скалярным произведением.

Определение 4.1.1 Если для оператора f : V → V существует такой оператор g, что
для любых векторов a, b ∈ V выполняется равенство (f(a), b) = (a, g(b)), то g называется
сопряженным оператором для f .

Докажем единственность сопряженного оператора. Допустим, что g1 и g2 — два сопряженных
оператора для f . Тогда (f(a), b) = (a, g1(b)) = (a, g2(b)), т.е. (a, g1(b) − g2(b)) = 0 для любого
вектора a, следовательно при любом b имеем g1(b)− g2(b) = 0, следовательно, g1 = g2.

Сопряженный оператор обозначается g = f∗.

Лемма 4.1.2 Если операторы f1 и f2 имеют сопряженные f∗1 и f∗2 соответственно, то
операторы h = f1 + f2 и g = f1f2 также имеют сопряженные h∗ и g∗, причем h∗ = f∗1 + f∗2 b
g∗ = f∗2 f∗1 .

Доказательство. приведем доказательство для второго утверждения (для композиции
операторов), т.к. для первого оно очевидно. (f1f2(a), b) = (f2(a), f∗1 (b)) = (a, f∗2 f∗1 (b)). ¤

Лемма 4.1.3 Если в ортонормированном базисе матрица оператора f равна A и
существует сопряженный оператор f∗, то матрица этого оператора в том же базисе равна
At (если пространство евклидово) или A

t (если пространство эрмитово).

Доказательство. Пусть матрица оператора f в ортонормированном базисе e1, . . . , en есть

A =




a1
1 . . . a1

n
...

. . .
...

an
1 . . . an

n


, а матрица оператора f∗ (в том же базисе) есть B =




b1
1 . . . b1

n
...

. . .
...

bn
1 . . . bn

n


.

Тогда aj
i = (ej , a

k
i ek) = (ej , f(ei)) = (f∗(ej), ei) = (bl

jel, ei) = b
i
j , откуда получаем A = B

t, или
B = A

t. ¤
Отметим, что условие ортонормированности базиса в лемме является существенным.

Лемма 4.1.4 Для любого оператора f существует ему сопряженный f∗.

Доказательство. Выберем ортонормированный базис e1, . . . , en, и пусть Af — матрица
оператора f в этом базисе. Тогда матрица A

t
f будет (в этом же базисе) матрицей некоторого

оператора g. Пусть Af =




c1
1 . . . c1

n
...

. . .
...

cn
1 . . . cn

n


. Возьмем произвольные векторы a = aiei, b = biei.

Тогда

f(b) =




c1
1 . . . c1

n
...

. . .
...

cn
1 . . . cn

n







b1

...
bn


 ; g(a) = (a1 . . . an)




c1
1 . . . c1

n
...

. . .
...

cn
1 . . . cn

n


 ,

и легко видеть, что

(a, f(b)) = (a1 . . . an)




c1
1 . . . c1

n
...

. . .
...

cn
1 . . . cn

n







b1

...
bn


 = (b, g(a)) = (g(a), b),

т.е. g = f∗. ¤
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Следствие 4.1.5 Если f∗ — оператор, сопряженный к f , то (f∗)∗ = f .

Лемма 4.1.6 Если V — инвариантное подпространство относительно f , то V ⊥ —
инвариантное подпространство относительно f∗.

Доказательство. Возьмем произвольный вектор v ∈ V ⊥, тогда ∀u ∈ V имеем (f∗(v), u) =
(v, f(u)) = 0, т.к. v ∈ V ⊥, а f(u) ∈ V . Следовательно, f∗(v) ∈ V ⊥ для любого v ∈ V ⊥. ¤

В случае евклидовых пространств операция перехода к сопряженному оператору является
линейным оператором в пространстве L(V ) линейных операторов, квадрат которого равен
единице. Далее мы увидим, что его собственными значениями являются числа 1 и -1. Вопрос:
почему в случае эрмитовых пространств эта операция (перехода к сопряженному оператору) не
является линейным оператором?

Определение 4.1.7 Оператор f называется самосопряженным (или симметрическим),
если f∗ = f . Оператор f называется кососимметрическим, если f∗ = −f .

Заметим, что для матриц операторов будут выполнены эти же свойства, что и для операторов,
т.е. матрица симметрического оператора является симметрической (в вещественном случае),
матрица кососимметрического оператора является кососимметрической и т.д.

Лемма 4.1.8 Любой оператор единственным образом представляется в виде суммы
симметрического и кососимметрического операторов.

Доказательство. Разложение нужного вида дает формула f = 1
2(f + f∗) + 1

2(f − f∗), первое
слагаемое которой — симметрический оператор, а второе — кососимметрический. Единственность
следует из того, что если оператор одновременно симметрический и кососимметрический, то он
равен нулю. ¤

Лемма 4.1.9 Пусть λ — собственное значение самосопряженного оператора. Тогда λ ∈ R.
Доказательство. Ясно, что содержательной эта лемма является лишь в эрмитовом случае, в

котором мы ее и будем доказывать. Пусть v — соответствующий собственный вектор, f(v) = λv.
Тогда λ(v, v) = (λv, v) = (f(v), v) = (v, f∗(v)) = (v, f(v)) = (v, λv) = λ(v, v). Поскольку v 6= 0,
λ = λ. ¤

Лемма 4.1.10 Пусть λ — собственное значение кососимметрического оператора. Тогда в
евклидовом случае λ = 0, а в эрмитовом — λ чисто мнимое, λ ∈ iR.

Доказательство. Доказательство аналогично предыдущей лемме. В евклидовом случае
λ(v, v) = (λv, v) = (f(v), v) = (v, f∗(v)) = −(v, f(v)) = −(v, λv) = −λ(v, v), откуда λ = −λ. В
эрмитовом случае λ(v, v) = (λv, v) = (f(v), v) = (v, f∗(v)) = −(v, f(v)) = −(v, λv) = −λ(v, v),
откуда λ = −λ. ¤

Лемма 4.1.11 Пусть λ1, λ2 — различные собственные значения самосопряженного или
кососимметрического оператора, а v1, v2 — соответствующие собственные значения. Тогда
v1 ⊥ v2.

Доказательство. λ1(v1, v2) = (λ1v1, v2) = (f(v1), v2) = (v1, f
∗(v2)) = ±(v1, f(v2)) =

±(v1, λ2v2) = ±λ2(v1, v2), т.е. (v1, v2)(±λ2 − λ1) = 0.
Рассмотрим второй сомножитель: ±λ2 − λ1. Если f самосопряжен, то собственные значения

вещественны и знак — "плюс", т.е. λ1 − λ2; если f кососимметричен, то собственные значения
число мнимы и знак — "минус", т.е. −λ1 + λ2. В обоих случаях это выражение отлично от нуля,
следовательно, нулю равен первый сомножитель, (v1, v2) = 0. ¤

Лемма 4.1.12 Если L — инвариантное подпространство относительно самосопряженного
или кососимметрического оператора f , то L⊥ также будет инвариантно относительно f .

Доказательство. Очевидно, т.к. L⊥ инвариантно относительно f∗ = ±f . ¤
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4.2 Канонический вид матрицы самосопряженного оператора

Теорема 4.2.1 Для любого самосопряженного оператора f : V → V существует
ортонормированный базис, в котором его матрица имеет диагональный вид с вещественными
числами на диагонали. Указанный канонический вид матрицы самосопряженного оператора
единственен с точностью до перестановки диагональных элементов.

Доказательство. Проведем доказательство теоремы по индукции по размерности
пространства.

1) Пусть dimV = 1. Очевидно, Af = (a) — диагональная матрица. В случае поля комплексных
чисел, a будет вещественным числом, т.к. a = a.

2) Допустим, что теорема доказана для dimV 6 n, докажем ее для dimV = n + 1.
Сначала разберем случай эрмитова пространства. Пусть v — собственный вектор оператора

f , L = 〈v〉, тогда V = L ⊕ L⊥, причем L и L⊥ оба инвариантны относительно f , тогда

матрица оператора f имеет вид Af =
(

a 0
0 Af ′

)
, где ограничение f ′ оператора f на L⊥ тоже

самосопряжено, следовательно, по предположению индукции, его можно привести к искомому
виду. В итоге матрица Af будет диагональной, причем, т.к. a = a, на диагонали будут
вещественные числа.

Теперь перейдем к случаю евклидова пространства. Мы знаем, что у любого оператора
над полем вещественных чисел существует либо одномерное, либо двумерное инвариантное
подпространство. Если у этого оператора есть хотя бы одно одномерное инвариантное
подпространство, то можно действовать аналогично предыдущему случаю. Если же у этого
оператора имеются лишь двумерные инвариантные подпространства, то его матрица имеет

вид Af =




a11 a12

a21 a22
0

0 Af ′


. По предположению индукции матрица ограничения f ′ на

ортогональное дополнение к инвариантному подпространству имеет искомый вид. Осталось лишь

разобраться с двумерной клеткой A =
(

a11 a12

a21 a22

)
. Т.к. At = A, то a21 = a12. Для дальнейшего

доказательства нам потребуется

Лемма 4.2.2 У двумерной симметричной матрицы характеристический многочлен имеет
вещественные корни.

Доказательство.

det
(

a11 − t a12

a21 a22 − t

)
= t2 − (a11 + a22)t + a11a22 − a2

12.

Дискриминант этого многочлена равен D = (a11 +a22)2− 4(a11a22−a2
12) = (a11−a22)2 +4a2

12 > 0.
¤

Пусть λ1, λ2 — собственные числа матрицы A. Тогда в базисе, составленным из собственных

векторов, она имеет вид A =
(

λ1 0
0 λ2

)
. Если λ1 = λ2, то мы всегда можем выбрать два

ортонормированных собственных вектора в качестве базиса двумерного пространства. Если же
λ1 6= λ2, то отвечающие м собственные векторы уже автоматически ортогональны друг другу.

Доказательство существования канонического вида закончено. Единственность следует из того,
что на диагонали там стоят корни характеристического многочлена с учетом их кратности. ¤

4.3 Канонический вид матрицы кососимметрического оператора

Теорема 4.3.1 У любого кососимметрического оператора f : V → V в эрмитовом
пространстве V существует ортонормированный базис, в котором его матрица Af имеет
диагональный вид с чисто мнимыми числами на диагонали.
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Доказательство. Мы знаем, что если L ⊂ V инвариантно относительно f , то и L⊥
будет инвариантно относительно f . Следовательно матрицу оператора f можно привести
к диагональному виду (таким же способом, каким мы делали это ранее — по индукции,

соответствующий базис будет ортонормированным), Af =




λ1 0
. . .

0 λn


. ¤

Теорема 4.3.2 У любого кососимметрического оператора f : V → V в евклидовом
пространстве существует ортонормированный базис, в котором матрица Af имеет блочно-
диагональный вид, причем все блоки либо одномерные (равные нулю), либо двумерные, имеющие

вид
(

0 a
−a 0

)
, a ∈ R.

Доказательство. Если у оператора f имеется одномерное инвариантное подпространство,
то доказательство в точности совпадает с эрмитовым случаем, поэтому остается рассмотреть
случай, когда можно выделить двумерное инвариантное подпространство L ⊂ V . При
этом его ортогональное дополнение L⊥ также инвариантно, и по предположению индукции
можно считать, что матрица ограничения оператора f на L⊥ уже имеет требуемый вид.
Рассмотрим матрицу ограничения f на L в произвольном ортонормированном базисе двумерного
подпространства L: это двумерная матрица, причем, в силу косой симметрии, на ее диагонали
стоят нули, а вне диагонали — противоположные по знаку числа.

Единственность канонического вида матриц кососимметрических операторов с точностью до
перестановки блоков также следует из того, что эти блоки определяются характеристическим
многочленом оператора. ¤

4.4 Изометрии

Определение 4.4.1 Линейный оператор f : V → V называется изометрией, если |f(a)| = |a|
для любого вектора a ∈ V (т.е. если он сохраняет длины векторов).

Утверждение 4.4.2 Оператор f является изометрией тогда и только тогда, когда он
сохраняет скалярное произведение.

Доказательство. Если f сохраняет скалярное произведение, то он, в частности, сохраняет и
длины векторов. Остается проверить обратное утверждение. Пусть f сохраняет длины векторов
(т.е. изометрия).

1) В случае, когда пространство V евклидово, возьмем два произвольных вектора a, b ∈ V ,
тогда (a+b, a+b) = (a, a)+(b, b)+2(a, b), откуда (a, b) = 1

2((a+b, a+b)−(a, a)−(b, b)), следовательно,
оператор f сохраняет скалярное произведение.

2) Рассмотрим теперь случай, когда пространство V эрмитово. Тогда (a + b, a + b) = (a, a) +
(b, b) + (a, b) + (a, b) = (a, a) + (b, b) + 2 Re(a, b), откуда Re(a, b) = 1

2((a + b, a + b) − (a, a) − (b, b)),
следовательно, вещественная часть скалярного произведения сохраняется. Взяв вектор ib вместо
b, получаем

(a + ib, a + ib) = (a, a) + (ib, ib) + (a, ib) + (ib, a) = (a, a) + (b, b) + i(a, b)− i(b, a) =

= (a, a) + (b, b) + i(a, b)− i(a, b) = (a, a) + (b, b)− 2 Im(a, b),

следовательно мнимая часть скалярного произведения также выражается через длины векторов,
Im(a, b) = −1

2((a + ib, a + ib)− (a, a)− (b, b)) и, значит, тоже сохраняется. ¤

Лемма 4.4.3 Следующие три утверждения эквивалентны:
1) оператор f сохраняет скалярное произведение;
2) оператор f переводит некоторый ортонормированный базис в ортонормированный;
3) оператор f переводит произвольный ортонормированный базис в ортонормированный;
4) в любом ортонормированном базисе матрица Af оператора f обладает свойством A

t
fAf =

E.
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Доказательство.
1) ⇒ 3) очевидно, т.к. (f(ai), f(aj)) = (ai, aj) = δij .
2) ⇒ 1). Пусть a1, . . . , an — ортонормированный базис, bi = f(ai), и b1, . . . , bn — также

ортонормированный базис. Возьмем произвольные векторы x = xiai и y = yiai. Тогда f(x) = xibi,
f(y) = yibi, и (f(x), f(y)) = (xibi, y

jbj) = xi(bi, bj)yj = xi(ai, aj)yj = (x, y), значит, f сохраняет
скалярное произведение.

Таким образом, первые три условия эквивалентны (3) ⇒ 2) — очевидно). Покажем, что 3) и 4)
эквивалентны.

3) ⇒ 4). Возьмем ортонормированный базис a1, . . . , an, тогда G(f(a1), . . . , f(an))︸ ︷︷ ︸
=E

=

A
t
f G(a1, . . . , an)︸ ︷︷ ︸

=E

Af , т.е. A
t
fAf = E.

4) ⇒ 3). Для любого ортонормированного базиса a1, . . . , an имеем G(f(a1), . . . , f(an)) =
A

t
f G(a1, . . . , an)︸ ︷︷ ︸

=E

Af , значит, A
t
fAf = E, следовательно, векторы f(a1), . . . , f(an) также

ортонормированны. ¤

4.5 Ортогональные и унитарные операторы

Определение 4.5.1 Оператор, сохраняющий скалярное произведение в евклидовых
пространствах называется ортогональным, в эрмитовых пространствах — унитарным.

Лемма 4.5.2 Пусть оператор f действует в евклидовом или эрмитовом пространстве V ,
а L ⊂ V — инвариантное подпространство. Если f сохраняет скалярное произведение, то L⊥
тоже инвариантно.

Доказательство. Возьмем произвольный вектор a ∈ L⊥; надо доказать, что f(a) ∈ L⊥, т.е.,
что (f(a), v) = 0 для любого v ∈ V . Мы знаем, что f(L) ⊆ L, но, поскольку ортонормированный
базис переходит в ортонормированный базис, то dim f(L) = dimL, следовательно f(L) = L. Тогда
найдется такой вектор w ∈ L, что v = f(w), и тогда (f(a), v) = (f(a), f(w)) = (a,w) = 0, что и
требовалось доказать. ¤

Лемма 4.5.3 Если f — унитарный оператор, то все его собственные значения по модулю
равны 1, если же f — ортогональный, то все его собственные значения равны ±1.

Доказательство. Пусть λ — собственное значение, тогда для собственного вектора v
выполнено равенство f(v) = λv. Т.к. оператор сохраняет скалярное произведение, то (v, v) =
(f(v), f(v)) = (λv, λv) = λλ(v, v) = |λ|2(v, v), а т.к. v 6= 0, то (v, v) 6= 0, следовательно, |λ|2 = 1,
т.е. |λ| = 1. Если же оператор f ортогональный, то будем иметь (v, v) = λ2(v, v) с вещественным
λ, следовательно, λ = ±1. ¤

Лемма 4.5.4 Если f — унитарный оператор, то его собственные вектора, отвечающие
различным собственным значениям, взаимно ортогональны.

Доказательство. Пусть λ1 6= λ2, и f(v1) = λ1v1, f(v2) = λ2v2 (v1 и v2 — собственные вектора).
Тогда (v1, v2) = (f(v1), f(v2)) = (λ1v1, λ2v2) = λ1λ2(v1, v2), следовательно, либо (v1, v2) = 0, т.е.
v1 ⊥ v2, либо λ1λ2 = 1. Но во втором случае, поскольку |λ1| = |λ2| = 1, имеем λ−1

1 = λ1,
поэтому λ1λ2 = λ−1

1 λ2 = 1, откуда следует, что λ1 = λ2, что невозможно по предположению.
Следовательно, векторы v1 и v2 ортогональны. ¤

Аналогичное утверждение верно и для ортогональных операторов, но у ортогонального
оператора может быть не более двух различных собственных значений.
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Теорема 4.5.5 1) Если f : V → V — унитарный оператор, то существует
ортонормированный базис, в котором его матрица Af диагональна, причем на диагонали стоят
числа, по модулю равные 1.
2) Если f : V → V — ортогональный оператор, то существует ортонормированный базис, в

котором Af имеет блочно-диагональный вид с блоками размера 1 и 2, причем одномерные блоки

— это ±1, а двумерные блоки имеют вид
(

cosϕ − sinϕ
sinϕ cosϕ

)
для некоторого угла ϕ.

3) Указанные канонические виды матриц унитарного и ортогонального оператора
единственны с точностью до перестановки диагональных элементов и двумерных блоков.

Доказательство.
1) Пусть λ — собственное значение оператора f (оно существует, т.к. поле C алгебраически

замкнуто) и v — собственный вектор, отвечающий этому значению. Тогда L = 〈v〉 — одномерное
пространство, порожденное вектором v — будет инвариантным. Кроме того, его ортогональное
дополнение L⊥ также будет инвариантным по доказанной ранее лемме. Пользуясь этим
замечанием, проведем теперь доказательство по индукции.

Если dimV = 1, то утверждение теоремы очевидно.
Пусть теорема верна для случая dimV = n, докажем ее для dimV = n+1. Возьмем одномерное

инвариантное подпространство L, порожденное собственным вектором, тогда V = L ⊕ L⊥, и

матрица Af имеет вид Af =
(

λ
A′

)
, где A′ — матрица оператора f |L⊥ . Ограничение f |L⊥

оператора f на L⊥ также будет унитарным (так как f сохраняет скалярные произведения),
следовательно, по предположению индукции матрицу A′ можно представить в требуемом виде,
но тогда и вся матрица будет представлена в таком виде. Поскольку на диагонали будут стоять
собственные значения оператора f (и его ограничений), то они все по модулю равны 1.

2) Если у оператора f есть вещественные собственные значения, то с ним можно поступить
так же, как и в случае унитарного оператора. Если же их нет, то у оператора f найдется
двумерное инвариантное подпространство L. По предположению индукции, для ограничения f |L⊥
существует ортонормированный базис в L⊥, в котором матрица этого оператора имеет требуемый
вид. Тогда матрица исходного оператора f будет блочно-диагональной, и все блоки, кроме первого
(отвечающего подпространству L), имеют требуемый вид.

Ограничение оператора f на двумерное подпространство L также является ортогональным
оператором. Выберем в L произвольный ортонормированный базис e1, e2. Поскольку длина
вектора f(e1) должна быть равна 1, его координаты в базисе e1, e2 имеют вид (cosϕ, sinϕ) для
некоторого угла ϕ. Пусть (x, y) — координаты f(e2) в этом же базисе. Тогда x2 + y2 = 1 и
x cosϕ+y sinϕ = 0, откуда получаются два решения: x = − sinϕ, y = cosϕ и x = sinϕ, y = − cosϕ.
Первое решение нам подходит — в этом случае двумерный блок — матрица ограничения f

на L — имеет требуемый вид. Второе решение дает матрицу
(

cosϕ sinϕ
sinϕ − cosϕ

)
, котроая, как

легко видеть, имеет вещественные собственные значения (ее харакеристический многочлен равен
λ2 − 1). Эту матрицу можно привести к диагональному виду с числами ±1 на диагонали, что
противоречит нашему предположению о том, что оператор f не имеет одномерных инвариантных
подпространств.

3) В случае унитарного оператора единственность очевидна, т.к. на диагонали там стоят
корни характеристического многочлена с учетом их кратности. В случае ортогонального
оператора корни характеристического многочлена двумерной клетки являются комплексными
корнями характеристического многочлена оператора, следовательно, двумерные клетки тоже
определяются однозначно. ¤
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5 Билинейные и полуторалинейные функции

5.1 Билинейные функции (формы)

Определение 5.1.1 Пусть V — векторное пространство над полемK. Функция g : V ×V → K
называется билинейной функцией, если она линейна по каждому аргументу, т.е.

g(a1 + a2, b) = g(a1, b) + g(a2, b) ∀a1, a2, b ∈ V ;
g(λa, b) = λg(a, b) ∀a, b ∈ V, λ ∈ K;

g(a, b1 + b2) = g(a, b1) + g(a, b2) ∀a, b1, b2 ∈ V ;
g(a, λb) = λg(a, b) ∀a, b ∈ V, λ ∈ K.

Если выбрать базис e1, . . . , en в пространстве V , то билинейную функцию можно записать
матрицей G = (gij), где gij = g(ei, ej). Причем (если базис зафиксирован), то существует взаимно-
однозначное соответствие между квадратными матрицами и билинейными функциями, т.е. любая
матрица задает какую-то функцию и разные матрицы задают разные функции.

Если в этом базисе векторы a, b имеют координаты (a1, . . . , an) и (b1, . . . , bn) соответственно, то
g(a, b) = gija

ibj , или, в матричной форме,

g(a, b) =
(

a1 . . . an
)
(

g11 . . . g1n

. . . . . . . . .
gn1 . . . gnn

)


b1

. . .
bn


 .

Пример.
Если g(a, b) = (a, b) — обычное скалярное произведение в евклидовом пространстве, то g

будет билинейной функцией, а ее матрица G будет просто матрицей Грама. Поэтому на матрицу
билинейной функции можно смотреть как на обобщение матрицы Грама.

Если G — матрица билинейной функции g, то значение этой функции на двух любых векторах
восстанавливается по формуле g(x, y) = g(xiei, y

jej) = xig(ei, ej)yj = xigijy
j или, в матричной

форме

g(x, y) = (x1 . . . xn)G




y1

...
yn


 .

При замене базиса e′k = ci
kei, где C = (ci

k) — матрица перехода, матрица билинейной функции
изменится следующим образом:

g′kl = g(e′k, e
′
l) = g(ci

kei, c
j
l ej) = ci

kg(ei, ej)c
j
l = ci

kgijc
j
l ,

т.е. G′ = CtGC, где G′ — матрица той же билинейной функции в новом базисе.
На множестве билинейных функций можно естественным образом определить структуру

линейного пространства (над тем же полем K), причем размерность этого пространства будет
n2, где n = dimV . Обозначается оно B(V ). Очевидно, что B(V ) ∼= Mat(n× n).

Определение 5.1.2 Рангом билинейной функции называется ранг ее матрицы в
произвольном базисе, rk g = rkG.

Формулы перехода к другому базису показывают, что это определение корректно.
Действительно, поскольку матрица перехода C обратима, rkCtGC = rk G.

Определение 5.1.3 Левым ядром билинейной функции g ∈ B(V ) называется множество
GL = {a ∈ V : g(a, b) = 0 ∀b ∈ V }. Правым ядром билинейной функции называется множество
GR = {a ∈ V : g(b, a) = 0 ∀b ∈ V }.

Очевидно, что множества GL и GR являются подпространствами в V .
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Лемма 5.1.4 Размерности левого и правого ядер совпадают и равны dimGL = dimGR =
dimV − rk g.

Доказательство. Если a ∈ GL, то из равенства g(a, b) = 0 для любого вектора b следует, что

(
a1 . . . an

)
(

g11 . . . g1n

. . . . . . . . .
gn1 . . . gnn

)
= 0,

т.е. координаты вектора a удовлетворяют однородной системе линейных уравнений с матрицей
Gt. Поэтому размерность пространства решений этой системы совпадает с dimGL и равна n −
rkG. Аналогично, правое ядро можно отождествить с множеством решений системы уравнений
с матрицей G, и получить dimGR = n− rk G. ¤

Определение 5.1.5 Билинейная функция g называется невырожденной, если dimGL =
dimGR = 0 (это условие равносильно тому, что detG 6= 0 или rk g = dimV , а также
невырожденности матрицы G).

Примеры:

1) пусть G =
(

0 1
0 0

)
. Найдем левое и правое ядро: g(a, b) = (a1 a2)

(
0 1
0 0

)(
b1

b2

)
= a1b2.

Следовательно, GL = 〈e2〉 и GR = 〈e1〉, где e1, e2 — базис.
2) билинейная функция может быть невырождена на всем пространстве, но быть вырожденной

на подпространстве! Например, пусть G =
( −1 0

0 1

)
, рассмотрим вектор a =

(
1
1

)
и

подпространство V = 〈a〉. Т.к. g(a, a) = 0, то для любых двух векторов b, c ∈ V (т.е. коллинеарных
вектору a) g(a, b) = 0, т.е. ограничение билинейной функции g на подпространство V вырождено,
в то время как сама функция g невырождена, т.к. detG 6= 0. Отметим, что в этом примере левое
и правое ядро совпали, потому (как мы увидим далее) что функция симметрична.

5.2 Симметричные и кососимметричные функции

Если g : V × V → K — билинейная функция, то функция (a, b) 7→ g(b, a), полученная из
функции g заменой первого и второго аргументов, также является билинейной функцией. Мы
будем ее обозначать gt, gt(a, b) = g(b, a). Это же обозначение мы будем использовать и для
полуторалинейных функций над полем комплексных чисел.

Определение 5.2.1 Билинейная функция g называется симметричной, если gt = g, т.е. если
g(b, a) = g(a, b); кососимметричной, если gt = −g, т.е. если g(b, a) = −g(a, b).

Утверждение 5.2.2 Если билинейная функция симметрична (или кососимметрична), то
ее левое и правое ядра совпадают.

Доказательство. Очевидно (см. определение левого и правого ядер). ¤
В случае (косо)симметричной билинейной функции g корректно определено ее ядро Ker g =

GL = GR.

Определение 5.2.3 Функция f : V → K называется квадратичной функцией (формой), если
существует такая симметричная билинейная функция g, что f(a) = g(a, a) для любого a ∈ V .

Заметим, что если f — квадратичная функция, то

f(a + b) = g(a + b, a + b) = g(a, a) + g(a, b) + g(b, a) + g(b, b),

следовательно, g(a, b) = 1
2(f(a + b) − f(a) − f(b)). Таким образом, симметричные билинейные

функции и квадратичные функции находятся во взаимно однозначном соответствии.
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Утверждение 5.2.4 Любая билинейная функция допускает единственное разложение в
сумму симметричной и кососимметричной билинейных функций.

Доказательство.
Существование указанного разложения очевидно, т.к. g(a, b) = 1

2(g(a, b) + g(b, a)) + 1
2(g(a, b) −

g(b, a)).
Единственность. Сначала убедимся, что если билинейная функция одновременно симметрична

и кососимметрична, то она нулевая. Действительно, если g(a, b) = g(b, a) = −g(b, a), то 2g(b, a) =
0, поэтому g(b, a) = 0 для всех a, b.

Пусть теперь функция g обладает двумя разложениями указанного вида, g = g1 + g2 = h1 +h2,
где g1, h1 симметричны, а g2, h2 кососимметричны. Тогда 0 = (g1−h1)+ (g2−h2), откуда следует,
что как функция g2 − h2, так и функция g1 − h1, должна быть одновременно симметричной и
кососимметричной, поэтому обе эти функции равны нулю. ¤

5.3 Ортогональное дополнение

Определение 5.3.1 Пусть V ⊂ W , а на W задана (косо)симметричная билинейная функция
g, тогда V ⊥g = {a ∈ W : g(a, b) = 0 ∀b ∈ V }.

Пример.

Пусть G =
( −1 0

0 1

)
в базисе e1, e2 и пусть a = e1 + e2. Обозначим V1 = 〈e1〉, V2 = 〈e2〉,

V3 = 〈a〉. Тогда V
⊥g

1 = V2, V
⊥g

3 = V3. Видно, что ортогональное дополнение в случае произвольной
билинейной симметричной функции не очень похоже на обычное ортогональное дополнение.
Случай кососимметричной билинейной функции будет выглядеть еще более экзотичным.

Лемма 5.3.2 dimV ⊥g > dimW − dimV , причем равенство достигается тогда и только
тогда, когда Ker g ∩ V = {0}.

Доказательство. Выберем базис e1, . . . , er в V . Тогда любой вектор b ∈ V можно записать
в виде b = biei, 1 6 i 6 r. Тогда условие a ∈ V ⊥g эквивалентно равенствам g(a, ei) = 0 для всех
i = 1, . . . , r. Дополним выбранный базис до базиса всего пространства. Тогда на n координат
вектора a мы будем иметь систему из r линейных уравнений

{
g(a, e1) = 0
. . . . . . . . .
g(a, er) = 0.

Размерность пространства решений этой системы (т.е. пространства V ⊥g) удовлетворяет
неравенству dimV ⊥g > n − r = dimW − dimV (здесь стоит неравенство, потому что некоторые
уравнения системы могут быть линейно зависимыми).

Равенство будет достигаться тогда и только тогда, когда ранг этой системы равен в точности
r, т.е. все строки линейно независимы. Пусть для некоторых коэффициентов λi

r∑

i=1

λig(a, ei) = g(a,

r∑

i=1

λiei) = g(a, b) = 0

(здесь b =
∑r

i=1 λiei ∈ V ). Если ранг системы уравнений меньше r, т.е. если строки линейно
зависимы, то это равносильно тому, что для некоторого b ∈ V , b 6= 0, равенство g(a, b) = 0
выполнено для всех a ∈ W (т.е. отображение a 7→ g(a, b) тождественно равно нулю). Но это
значит, что b ∈ Ker g, или, другими словами, V ∩Ker g 6= {0}. Но тогда линейная независимость,
наоборот, означает, что V ∩Ker g = {0}. ¤

Лемма 5.3.3 V ∩ V ⊥g = Ker gV , где gV — ограничение g на V .
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Доказательство. Возьмем произвольный вектор a ∈ V ∩ V ⊥g , тогда a ∈ V и g(a, b) = 0 для
любого b ∈ V , поэтому, по определению, a ∈ Ker gV .

Возьмем произвольный вектор c ∈ Ker gV , тогда c ∈ V (т.к. gV определена только на V ) и
g(c, b) = 0 для любого b ∈ V , следовательно, c ∈ V ⊥g , поэтому c ∈ V ∩ V ⊥g . ¤

Следствие 5.3.4 Если Ker gV = {0} (т.е. ограничение g на V невырождено), то W = V ⊕
V ⊥g .

Доказательство. Т.к. V ∩ V ⊥g = {0}, то V + V ⊥g = V ⊕ V ⊥g ⊂ W (т.е. сумма — прямая),
причем dim(V ⊕ V ⊥g) = dimV + dimV ⊥g > dimV + (dimW − dimV ) = dimW , следовательно,
V ⊕ V ⊥g = W . ¤

Лемма 5.3.5 Если ограничения g на V и на V ⊥g невырождены, то (V ⊥g)⊥g = V .

Доказательство. Вложение V ⊂ (V ⊥g)⊥g имеет место независимо от условий на g.
Действительно, если a ∈ V , то g(a, b) = 0 для любого b ∈ V ⊥g .

Докажем совпадение V и (V ⊥g)⊥g . Поскольку ограничения g на V и V ⊥g навырождены, имеют
место разложения W = V ⊕V ⊥g = V ⊥g⊕(V ⊥g)⊥g . Поэтому dimV = dim(V ⊥g)⊥g , и из совпадения
размерностей пространства (V ⊥g)⊥g и его подпространства V следует их совпадение. ¤

Лемма 5.3.6 Пусть W = V ⊕ V ⊥g , e1, . . . , er — базис в V , er+1, . . . , en — базис в V ⊥g . Тогда

в базисе e1, . . . , en матрица билинейной функции имеет вид G =
(

? 0
0 ?

)
.

Доказательство. Поскольку при i 6 r, j > r (и наоборот, при i > r, j 6 r) g(ei, ej) = 0,
так как векторы ei, ej принадлежат различным прямым слагаемым, то в левом нижнем и правом
верхнем углах матрицы будут нули. ¤

5.4 Нормальный вид матрицы (косо)симметрической функции

Посмотрим подробнее, как устроены линейные пространства с заданными на них
(косо)симметричными билинейными функциями.

Начнем с одномерного случая.
I. Симметричная функция в одномерном вещественном пространстве. Пусть e ∈ V — базис в

V , a = αe и b = βb, тогда g(a, b) = αβg(e, e). Если g(e, e) = 0, то такая функция вырождена
на V . Если g(e, e) > 0, то, изменив длину базисного вектора, можно получить такой вектор e′,
что g(e′, e′) = 1. Если g(e, e) < 0, то таким же способом можно получить g(e′, e′) = −1. Таким
образом, существует базис, в котором матрица (одномерная) этой функции имеет один из трех
видов, а именно (0), (1) или (−1).

II. Симметричная функция в одномерном комплексном пространстве. Этот случай аналогичен
предыдущему. Если g(e, e) = λ ∈ C, то, умножением e на λ−1/2 можно получить такой вектор e′,
что g(e′, e′) = 1. Итак, в этом случае существует базис, в котором функция имеет один из двух
видов — (0) или (1).

III. Кососимметричная функция. Т.к. g(e, e) = −g(e, e), то любая кососимметричная функция
на одномерном пространстве тождественно равна нулю. В двумерном случае, если g не
тождественно равна нулю, то найдутся такие векторы a, b, что g(a, b) = α 6= 0. При этом эти
два вектора обязаны быть линейно независимыми, (если b = λa, то g(a, b) = λg(a, a) = 0)
следовательно они образуют базис в двумерном пространстве. В этом базисе матрица функции

g имеет вид G =
(

g(a, a) g(a, b)
g(b, a) g(b, b)

)
=

(
0 α
−α 0

)
. Взяв базис e1 = a, e2 = 1

αb, получим в нем

матрицу G =
(

0 1
−1 0

)
. Таким образом, у любой кососимметрической функции на двумерном

пространстве существует базис, в котором ее матрица имеет один из двух видов —
(

0 1
−1 0

)

или
(

0 0
0 0

)
.
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Теорема 5.4.1 1) у любой симметричной билинейной функции на вещественном векторном
пространстве существует базис, в котором ее матрица имеет диагональный вид с числами 0,
±1 на диагонали.
2) у любой симметричной билинейной функции на комплексном векторном пространстве

существует базис, в котором ее матрица имеет диагональный вид с числами 0, 1 на диагонали.
3) у любой кососимметричной билинейной функции на вещественном или комплексном

векторном пространстве существует базис, в котором его матрица имеет блочно-

диагональный вид с блоками
(

0 1
−1 0

)
и (0) на диагонали.

Доказательство. Пункты 1)-2).

Лемма 5.4.2 Если g 6= 0, где g — функция из пунктов 1)-3) теоремы, то существует такой
вектор a, что g(a, a) 6= 0.

Доказательство. Предположим противное. Пусть g(a, a) = 0 для любого вектора a. Тогда,
т.к. g(a + b, a + b) − g(a, a) − g(b, b) = g(a, b) + g(b, a), то g(a, b) + g(b, a) = 0 для любых векторов
a, b. Если g — симметричная, то сразу получаем g(a, b) = 0. Следовательно наша функция g
тождественно нулевая, что противоречит предположению. ¤

Далее будем действовать по индукции (база индукции dimW = 1 уже проверена). Пусть
утверждение теоремы верно для dimW < n, докажем его для dimW = n. Если g = 0, то ее
матрица нулевая и всё очевидно. Если же g 6= 0, то возьмем такой вектор a ∈ W , что g(a, a) 6= 0 (по
лемме он существует). Возьмем V = 〈a〉 ⊂ W . Т.к. ограничение gV функции g на V невырождено,
то W = V ⊕ V ⊥g и dimV ⊥g = n− 1. По индукции в V ⊥g уже существует нужный базис, добавив
к нему вектор (точнее, некоторое его кратное e = λa, такое что g(e, e) = ±1), получим искомый
базис.

3) Если g 6= 0, то найдутся такие линейно независимые векторы a, b ∈ W , что g(a, b) 6= 0. Без
ограничения общности можно считать, что g(a, b) = 1. Возьмем V = 〈a, b〉 ⊂ W . Ограничение

gV функции g на V невырождено, т.к. матрица функции gV равна
(

0 1
−1 0

)
, следовательно,

W = V ⊕ V ⊥g , и dimV ⊥g = n − 2. В V ⊥g по предположению индукции можно выбрать нужный
базис. Добавив к нему векторы a и b, получим искомый базис. ¤

Указанный вид матрицы называется нормальным. Для приведения матрицы симметричной
билинейной функции к нормальному виду удобно использовать метод Лагранжа выделения
полных квадратов. Дадим его краткое описание.

Любая билинейная функция имеет вид g(x, y) = gijx
iyj , где x =




x1

...
xn


, y =




y1

...
yn


. Заменив

y на x, получим квадратичную функцию g(x, x) = gijx
ixj .

Возможны два случая:
а) Если все коэффициенты при (xi)2 равны нулю, это можно исправить: найдем ненулевое

слагаемое вида gklx
kxl и сделаем замену координат

{
xk = x̃k + x̃l

xl = x̃k − x̃l , тогда xkxl = (x̃k)2−(x̃l)2.

б) Если имеется ненулевое слагаемое вида gii(xi)2 (без ограничения общности можно считать,
что i = 1), тогда выделим полный квадрат, содержащий (x1)2:

g(x, x) = g11

(
(x1)2 +

2g12

g11
x1x2 + . . . +

2g1n

g11
x1xn

)
+ , x1 =

= g11

(
x1 +

g12

g11
x2 + . . . +

g1n

g11
xn

)2
+ , x1.

Сделав замену координат x̃1 =
√
|g11|

(
x1 + g12

g11
x2 + . . .+ g1n

g11
xn

)
, получим g(x, x) = ±(x̃1)2 + . . .. С

оставшимися слагаемыми, не содержащими x1, можно проделать то же самое, в итоге получим,
что g(x, x) = ±(x̃1)2±(x̃2)2±. . .±(x̃k)2, т.е. в новом базисе матрица функции g будет диагональной.
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Итак, мы знаем, что для любой билинейной вещественной симметрической функции в
векторном пространстве W существует базис, в котором она имеет нормальный вид g(x, y) =
x1y1 + . . . + xpyp − xp+1yp+1 − . . .− xp+qyp+q.

Аналогично, комплексная билинейная симметрическая функция имеет нормальный вид
g(x, y) = x1y1 + . . . + xkyk.

А кососимметрическая функция имеет нормальный вид g(x, y) = x1y2 − x2y1 + x3y4 − x4y3 +
. . . + x2i−1y2i − x2iy2i−1.

5.5 Единственность нормального вида

Теперь обсудим вопрос о единственности нормального вида. Для комплексной билинейной
симметричной функции (соотв. для кососимметричной функции) нормальный вид определяется
единственным числом — k (соотв. 2i), которое равно рангу функции, поэтому не зависит
от способа приведения к нормальному виду. Рассмотрим оставшийся случай — вещественной
симметричной билинейной функции. Нормальный вид ее матрицы

G =




1
. . . 0

1
−1

. . .
−1

0

0
. . .

0




.

Введем в рассмотрение три числа: p — количество единиц q — количество минус единиц, s —
количество нулей. Видно, что p + q = rk g, s = dimW − rk g следовательно, p + q и s не зависят
от выбора базиса.

Определение 5.5.1 Пара чисел (p, q) называется сигнатурой вещественной симметричной
билинейной функции (или квадратичной функции).

Если функция g невырождена, то s = 0, и для определения p и q достаточно знать хотя бы одно
из них или их разность. Поэтому в случае невырожденной функции сигнатурой часто называют
число p− q.

Теорема 5.5.2 (инерции) Если вещественная симметричная билинейная функция в
пространстве W приведена к нормальному виду двумя разными способами, то числа p, q и
s одни и те же.

Доказательство. Пусть функция g имеет нормальный вид в двух базисах:
e1, . . . , ep, ep+1, . . . , ep+q, ep+q+1, . . . , ep+q+s и ẽ1, . . . , ẽp′ , ẽp′+1, . . . , ẽp′+q′ , ẽp′+q′+1, . . . , ẽp′+q′+s′ ,
причем, как мы уже знаем, s′ = s и p′ + q′ = p + q. Рассмотрим в W подпространства

V+ = 〈e1, . . . , ep〉, V− = 〈ep+1, . . . , ep+q〉, V0 = 〈ep+q+1, . . . , ep+q+s〉
и

Ṽ+ = 〈ẽ1, . . . , ẽp′〉, Ṽ− = 〈ẽp′+1, . . . , ẽp′+q′〉, Ṽ0 = 〈ẽp′+q′+1, . . . , ẽp′+q′+s〉.
Если x ∈ V+ и x 6= 0, то g(x, x) > 0 (неравенство строгое, так как ограничение функции g на

V+ невырождено). Действительно, если x = x1e1 + . . . + xpep, то g(x, x) = (x1)2 + . . . + (xp)2 > 0.
Аналогично, если x ∈ V−⊕V0, то g(x, x) 6 0. Такая же ситуация имеет место с подпространствами
Ṽ+, Ṽ− и Ṽ0.

Пусть p > p′, тогда dimV+ = p, dim(Ṽ− ⊕ Ṽ0) = dim Ṽ− + dim Ṽ0 = q′ + s = dimW − p′.
Следовательно,

dimV+ + dim(Ṽ− ⊕ Ṽ0) = p + dimW − p′ > dimW,
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значит, пересечение этих подпространств нетривиально, V+ ∩ (Ṽ− ⊕ Ṽ0) 6= {0}. Возьмем
произвольный ненулевой вектор их этого пересечения, x ∈ V+ ∩ (Ṽ− ⊕ Ṽ0). Т.к. x ∈ V+, x 6= 0,
то g(x, x) > 0, но, с другой стороны, т.к. x ∈ Ṽ− ⊕ Ṽ0, то g(x, x) 6 0. Получили противоречие.
Случай p < p′ рассматривается аналогично. ¤

5.6 Теорема Якоби. Критерий Сильвестра

Сигнатура и нормальный вид симметричной билинейной (или квадратичной) функции могут
быть определены и без нахождения в явном виде замены координат.

Напомним, что угловым минором порядка k квадратной матрицы называется минор,
составленный из первых k строк и k столбцов.

Теорема 5.6.1 (Якоби) Пусть G — матрица симметричной билинейной функции g в
некотором базисе. Пусть все угловые миноры до порядка r = rk G отличны от 0. Тогда
существует базис, в котором функция g имеет вид g(x, y) = |G1|x1y1+ |G2|

|G1|x
2y2+. . .+ |Gr|

|Gr−1|x
ryr,

где |Gi| — i-й угловой минор.

Доказательство. Будем искать новый базис в виде

e′1 = e1;
e′2 = e2 + c1

2e
′
1;

e′3 = e3 + c1
3e
′
1 + c2

3e
′
2;

. . . . . . . . . . . .

e′n = en + c1
ne′1 + . . . + cn−1

n e′n−1,

где e1, . . . , en — тот базис, в котором нам дана матрица функции g. Такое преобразование удобно
тем, что (также как в обычном процессе ортогонализации) для любого номера k линейные
оболочки векторов e1, . . . , ek и векторов e′1, . . . , e

′
k совпадают. Матрица перехода при таком

преобразовании верхнетреугольна, т.е. имеет вид C =




1 ?
. . .

0 1


, поэтому ее определитель

равен 1. Кроме того, поскольку изменение матрицы G при такой замене координат сводится к
элементарным преобразованиям строк и столбцов, определители угловых миноров не изменяются
(иначе это можно показать так: если мы ограничимся первыми k координатами и пространством
〈e1, . . . , ek〉, то матрица перехода Ck также будет иметь единичный определитель, и матрица
углового минора изменится по формуле G′

k = Ct
kGkCk, поэтому |G′

k| = |Ct
k||Gk||Ck| = |Gk|).

Коэффициенты cj
i будем искать следующим образом. Сначала мы их найдем для индексов j 6

r, где r = rkG. Коэффициент c1
2 определим из равенства g(e1, e

′
2) = g(e′1, e

′
2) = 0. Это равенство

дает уравнение g(e1, e2) + c1
2g(e1, e1) = 0, которое имеет решение, поскольку по предположению

g(e1, e1) = |G1| 6= 0. Аналогично можно найти c1
3 и c2

3 из условия g(e′3, e
′
1) = g(e′3, e

′
2) = 0, затем

— c1
4, c2

4 и c3
4 и т.п. пока нижний индекс не станет равным r. Действительно, если мы уже нашли

векторы e′2, . . . , e
′
k−1, то коэффициенты ci

k для вектора e′k ищутся из условия g(e′k, e
′
1) = . . . =

g(e′k, e
′
k−1) = 0, которое дает систему линейных уравнений





c1
kg(e′1, e

′
1) + . . . + ck−1

k g(e′k−1, e
′
1) = −g(ek, e

′
1)

. . . . . . . . . . . . . . . . . . . . .

c1
kg(e′1, e

′
k−1) + . . . + ck−1

k g(e′k−1, e
′
k−1) = −g(ek, e

′
k−1)

.

Эта система имеет решение, так как ее матрица невырождена — ее определитель равен |Gk−1|
(если бы мы не заменили векторы ei на e′i, то матрица системы просто совпадала бы с k − 1-м
угловым минором, а при заменах указанного вида определитель угловых миноров не изменяется).
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Таким образом, мы можем найти векторы e′1, . . . , e
′
r нового базиса. При этом матрица функции g

примет вид 


g(e′1, e
′
1)

. . . ?
g(e′r, e′r)

? ?


 ,

где левый верхний угол — диагональная матрица. Отметим, что ранг этой диагональной матрицы
равен r (ранг углового минора не меняется), поэтому все значения g(e′i, e

′
i) отличны от нуля при

1 6 i 6 r.
Оставшиеся векторы e′r+1, . . . , e

′
n найдем из условия g(e′i, e

′
j) = 0, если i 6 r а j > r. Для этого

надо взять e′j = ej − g(ej ,e′1)
g(e′1,e′1)

e′1 − . . .− g(ej ,e′r)
g(e′r,e′r)e

′
r. Теперь матрица функции g примет вид




g(e′1, e
′
1)

. . . 0
g(e′r, e′r)

0 ?


 ,

а, поскольку ранг этой матрицы равен r, т.е. рангу углового минора порядка r, то правый нижний
угол этой матрицы равен нулю. Окончательно, в построенном базисе матрица функции g примет
вид

G′ =




g(e′1, e
′
1)

. . . 0
g(e′r, e′r)

0

0
. . .

0




.

Поскольку |G′
k| = |Gk| для всех k = 1, . . . , n, имеем равенства

|G1| = |G′
1| = g(e′1, e

′
1);

|G′
2| = |G2| = g(e′1, e

′
1)g(e′2, e

′
2) = |G1|g(e′2, e

′
2) ⇐ g(e′2, e

′
2) =

|G2|
|G1| ;

|G′
3| = |G3| = |G′

2|g(e′3, e
′
3) = |G2|g(e′3, e

′
3) ⇐ g(e′3, e

′
3) =

|G3|
|G3| ;

. . . . . . . . . . . . . . . . . . . . . . . . . . .

|G′
r| = |Gr| = |G′

r−1|g(e′r, e
′
r) = |Gr−1|g(e′r, e

′
r) ⇐ g(e′r, e

′
r) =

|Gr|
|Gr−1| .

В построенном базисе e′1, . . . , e
′
n функция g имеет вид

g(x, y) = g(e′1, e
′
1)x

1y1 + . . . + g(e′r, e
′
r)x

ryr =

= |G1|x1y1 +
|G2|
|G1|x

2y2 + . . . +
|Gr|
|Gr−1|x

ryr,

что и требовалось доказать. ¤

Определение 5.6.2 Симметричная билинейная функция g в вещественном пространстве V
называется положительно определенной, если ее сигнатура равна (dimV, 0, 0) (эквивалентное
определение — если g(x, x) > 0 для любого ненулевого x ∈ V ).

Теорема 5.6.3 (Критерий Сильвестра) Функция g положительно определена тогда
и только тогда, когда в ее матрице G (в произвольном базисе) все угловые миноры
положительны.
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Доказательство. Если все угловые миноры положительны, то по предыдущей теореме
функция g имеет вид g(x, x) = λ1(x1)2 + . . . + λn(xn)2, где n — размерность пространства, а
λi > 0 при всех i = 1, . . . , n, следовательно, g положительно определена.

Обратно, предположим, что функция g положительно определена. Докажем сначала, что
все угловые миноры будут ненулевыми. Отметим сразу, что |G| = |Gn| 6= 0, т.к. функция
g невырождена и ее ранг равен n. Поскольку функция g положительно определена, то и
ее ограничения на любые подпространства также будут положительно определенными, а,
следовательно, и невырожденными. Т.к. Gk — это матрица ограничения g на 〈e1, . . . , ek〉, то
|Gk| 6= 0 для всех k. Следовательно, все угловые миноры ненулевые. Воспользуемся предыдущей
теоремой: чтобы функция g(x, y) = λ1x

1y1 + . . . + λnxnyn была невырожденной (т.е. чтобы все λi

были положительными) необходимо, чтобы все |Gi| были положительными. ¤

5.7 Пространства с обобщенным скалярным произведением. Группы
операторов, сохраняющих скалярное произведение

Определение 5.7.1 Вещественное пространство с заданной на нем невырожденной
симметричной билинейной функцией называется псевдоевклидовым пространством.

Вещественное пространство с заданной на нем невырожденной кососимметричной билинейной
функцией называется симплектическим пространством.

Первый случай является естественным обобщением евклидового пространств. Скалярное
(обобщенное) произведение задается симметричной билинейной функцией g, (x, y) = g(x, y) =
x1y1+. . .+xpyp−xp+1yp+1−. . .−xnyn. Если в нормальном виде функции g все знаки — плюсы (т.е.
если g положительно определена) то псевдоевклидово пространство является просто евклидовым.
Матрица G функции g является обобщением матрицы Грама.

В псевдоевклидовом случае будем говорить, что базис e1, . . . , en ортонормирован, если

g(ei, ej) =
{

0 при i 6= j
±1 при i = j

. Отметим, что в симплектическом случае такое невозможно, т.к.

g(x, x) = 0 для любого вектора x.
Рассмотрим теперь операторы, действующие в псевдоевклидовом, псевдоэрмитовом или

симплектическом пространстве V . Пусть оператор f : V → V сохраняет скалярное произведение,
т.е. g(f(x), f(y)) = g(x, y) для всех x, y ∈ V .

Лемма 5.7.2 Все операторы, сохраняющие скалярное произведение, образуют группу.

Доказательство. Очевидно, что если операторы f1, f2 сохраняют скалярное произведение,
то и их композиция также его сохраняет: g(f1f2(x), f1f2(x)) = g(f2(x), f2(y)) = g(x, y). Если
обратный оператор существует, то он также сохраняет скалярное произведение: g(x, y) =
g(ff−1(x), ff−1(y)) = g(f−1(x), f−1(y)).

Нам осталось показать, почему обратный оператор существует для любого оператора f ,
сохраняющего скалярное произведение. Возьмем какой-нибудь базис e1, . . . , en, пусть A = (ai

j)
— матрица оператора f , G = gij — матрица функции g в выбранном базисе. Тогда условие
сохранения скалярного произведения примет вид:

g(x, y) = gijx
iyj = g(fx, fy) = gkla

k
i x

ial
jy

j = (AtGA)ijx
iyj ,

т.е. G = AtGA. Т.к. матрица G невырождена, то и A обязана быть невырожденной, следовательно,
существует и A−1, которой соответствует (в том же базисе) оператор f−1. ¤

Если G — единичная матрица, то AtA = E, и это условие выделяет ортогональные (унитарные)
матрицы.

Введем в рассмотрение следующие группы операторов:

• псевдоортогональная группа O(p, q) — группа операторов, сохраняющих псевдоевклидовое
скалярное произведение с сигнатурой (p, q) (если q = 0, то группу O(p, 0) называют
ортогональной и обозначают O(p)).
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• симплектическая группа Sp(2m) — группа операторов, сохраняющих симплектическое
скалярное произведение в пространстве размерности 2m.

Дадим описание этих групп в малых размерностях.
Группа O(2) — группа операторов, сохраняющих скалярное произведение на плоскости. Такие

преобразования могут собственными или несобственными (сохранять ориентацию плоскости или
менять ее). Если оператор сохраняет ориентацию, то это просто поворот на некоторый угол ϕ

и его матрица имеет вид
(

cosϕ − sinϕ
sinϕ cosϕ

)
, а если оператор меняет ориентацию, то это еще и

композиция с симметрией, и матрица имеет вид
(

cosϕ sinϕ
sinϕ − cosϕ

)
.

Группа O(1, 1). В этом случае скалярное произведение задано формулой g(x, y) = x1y1 − x2y2

и вектор с координатами x, y будет иметь длину ±1, если x2− y2 = ±1, т.е. если его конец лежит
на одной из гипербол, x2− y2 = 1 или x2− y2 = −1. В этом случае стандартный базис e1 = (1, 0),
e2 = (0, 1) также будет ортонормированным, но при повороте вектора e1 против часовой стрелки,
вектор e2 будет поворачиваться по часовой стрелке и новый ортонормированный базис e′1, e

′
2 будет

симметричен относительно прямой y = x. В этом случае матрица A оператора, сохраняющего

скалярное произведение, должна удовлетворять условию At

(
1 0
0 −1

)
A =

(
1 0
0 −1

)
. Здесь

будет уже не два, как в случае O(2), а четыре различных класса операторов:
(

chϕ shϕ
shϕ chϕ

)
,

( −chϕ −shϕ
shϕ chϕ

)
,

(
chϕ shϕ
−shϕ −chϕ

)
,

( −chϕ −shϕ
−shϕ −chϕ

)
.

Поэтому иногда говорят, что псевдоортогональная группа состоит из четырех компонент.
Рассмотрим теперь симплектическую группу Sp(2). Матрица скалярного произведения

имеет вид
(

0 1
−1 0

)
. Матрица A оператора, сохраняющего скалярное произведение, должна

удовлетворять условию At

(
0 1
−1 0

)
A =

(
0 1
−1 0

)
, что равносильно условию detA = 1

(проверьте!). Таким образом, группа Sp(2) совпадает с группой матриц, имеющих единичный
определитель, SL2(R). Однако при больших размерностях пространства симплектические группы
не совпадают ни с какими, уже известными нам.

5.8 Квадрики в аффинных пространствах

Напомним, что аффинное пространство это тройка, состоящая из множества точек A, линейного
пространства V и операции сложения точки и вектора (которая соответствует приложению
начала вектора к данной точке и получению при этом новой точки — конца приложенного
вектора). Для описания положения точки в аффинном пространстве нужно задать репер,
который состоит из некоторой фиксированной точки O множества A и некоторого базиса
пространства V . Произвольной точке A ∈ A можно сопоставить координаты (единственного)
вектора v, удовлетворяющего равенству O + v = A, в данном базисе. При переходе от одного
репера к другому, координаты точки меняются по формуле




x1

...
xn


 =




c1
1 . . . c1

n
. . . . . . . . .
cn
1 . . . cn

n







x̃1

...
x̃n


 +




x1
0
...

xn
0


 , (4)

где x1, . . . , xn и x̃1, . . . , x̃n — координаты в старом и новом базисах, C — матрица перехода
от старого к новому базису, а (x1

0, . . . , x
n
0 ) — координаты (в старом базисе) вектора w,

удовлетворяющего равенству O + w = Õ, где Õ — начальная точка нового репера.
Рассмотрим выражение q(x) + l(x) + a, где q(x) — квадратичная функция, q(x) = qijx

ixj , l(x)
— линейная функция, l(x) = lix

i, а a — число. Такое выражение называется квадрикой.
Мы знаем, что заменой базиса (приведением к нормальной форме) можно привести

квадратичную функцию q(x) к виду q(x) = (x1)2 + . . . + (xp)2 − (xp+1)2 − . . . − (xp+q)2. Если
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p + q = n (размерности пространства V ), то с помощью умножения на скаляр можно привести
квадрику к одному из видов:

(x1)2 + . . . + (xp)2 − (xp+1)2 − . . .− (xp+q)2 + 1,

(x1)2 + . . . + (xp)2 − (xp+1)2 − . . .− (xp+q)2 − 1,

(x1)2 + . . . + (xp)2 − (xp+1)2 − . . .− (xp+q)2.

Если p + q < n, то линейную функцию можно привести к виду l(x) = lp+q+1x
p+q+1 + . . . + lnxn.

Если это выражение отлично от нуля, то преобразованием координат можно lp+q+1x
p+q+1 + . . . +

lnxn + a преобразовать к виду xp+q+1.
Подводя итог, получаем следующее утверждение:

Утверждение 5.8.1 Квадрика приводится к одному из следующих видов:

(x1)2 + . . . + (xp)2 − (xp+1)2 − . . .− (xp+q)2 + 1,
(x1)2 + . . . + (xp)2 − (xp+1)2 − . . .− (xp+q)2 − 1,

(x1)2 + . . . + (xp)2 − (xp+1)2 − . . .− (xp+q)2,
(x1)2 + . . . + (xp)2 − (xp+1)2 − . . .− (xp+q)2 + xp+q+1.

5.9 Симметрические билинейные функции на евклидовом пространстве

Приступим к рассмотрению симметрических билинейных функций в евклидовом пространстве.
Пусть нам задано евклидово пространство V со скалярным произведением (·, ·).

Теорема 5.9.1 Пусть g — симметричная билинейная функция на евклидовом пространстве
V , тогда существует ортонормированный базис, в котором ее матрица диагональна.

Доказательство. Пусть G — матрица билинейной функции g в каком-нибудь
ортонормированном базисе. При переходе к другому базису матрица этой функции преобразуется
по правилу G′ = CtGC, где C — матрица перехода. Если производится переход от одного
ортонормированного базиса к другому ортонормированому, то матрица C ортогональна,
следовательно, Ct = C−1. Следовательно, матрица билинейной функции преобразуется по
формуле G′ = C−1GC. Но по этой же формуле преобразуются матрицы линейных операторов, а
для них уже известна теорема о приведении к диагональному виду. Именно, было доказано, что
существует такая ортогональная матрица C, что матрица C−1GC диагональна. ¤

Лемма 5.9.2 Указанный в теореме диагональный вид единственен с точностью до
перестановки диагональных элементов.

Доказательство. Диагональные элементы λi, i = 1, . . . , n, удовлетворяют уравнению det(G−
λE) = 0, однако при переходе к другому ортонормированному базису это уравнение имеет тот же
вид: det(G′−λE) = det(CtGC−λCtC) = det(Ct(G−λE)C) = (detC)2︸ ︷︷ ︸

=1

det(G−λE) = det(G−λE),

и его корни, тем самым, не зависят от выбора ортонормированного базиса. ¤

Определение 5.9.3 Этот диагональный вид называется каноническим видом билинейной
функции. Собственные векторы оператора fg называются главными осями функции g, и иногда
приведение к каноническому виду называют приведением к главным осям.
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5.10 Пара симметричных билинейных функций

Теорема 5.10.1 Пусть на векторном пространстве V заданы две билинейные
симметричные функции g и h, и пусть g положительно определена, т.е. g(x, x) > 0
∀x 6= 0. Тогда существует базис в V , в котором одновременно матрица функции g имеет
нормальный вид, а матрица функции h — канонический (т.е. матрица функции g единична, а
матрица функции h — диагональна).

Доказательство. Идея доказательства состоит в том, что, поскольку функция g
положительно определена, то на V с ее помощью можно определить скалярное произведение
по формуле (a, b) := g(a, b) (все аксиомы скалярного произведения легко проверяются).
Следовательно, на V можно ввести структуру евклидового пространства. При этом в любом
ортонормированная базисе (относительно введенного только что скалярного произведения)
матрица Грама (она же — матрица функции g) будет единичной. По предыдущей теореме
существует ортонормированный базис, в котором матрица функции h имеет канонический вид.
¤

Покажем, как найти канонический вид функции h и канонический базис. Рассмотрим
определитель det(H − λG), где H — матрица функции h, а G — матрица функции g в некотором
базисе e1, . . . , en. Введем скалярное произведение с помощью функции g. Пусть e′1, . . . , e

′
n —

ортонормированный базис (по отношению к введенному скалярному произведению). Пусть H ′
и G′ — матрицы этих функций в базисе e′1, . . . , e

′
n. Пусть также C — матрица перехода от

базиса e′1, . . . , e
′
n к e1, . . . , en. Тогда G = CtG′C и H = CtH ′C, причем, т.к. базис e′1, . . . , e

′
n

ортонормирован, то G′ = E. Получим

det(H − λG) = det(CtH ′C − λCtEC) = detCt︸ ︷︷ ︸
6=0

det(H ′ − λE) det C︸ ︷︷ ︸
6=0

,

следовательно, многочлены det(H−λG) и det(H ′−λE) отличаются лишь числовым множителем,
значит их корни совпадают. Т.к. диагональные элемента канонического вида функции h — это
корни многочлена det(H ′− λE), то они будут также корнями уравнения det(H − λG). Последнее
уравнение называется обобщенным характеристическим уравнением. для пары симметричных
билинейных функций.

Нахождение канонического базиса. Пусть x — собственный вектор матрицы H ′, отвечающий
собственному значению λ. Пусть X — столбец координат этого вектора в первоначальном базисе
e1, . . . , en, а X ′ — столбец координат этого же вектора в ортонормированном базисе e′1, . . . , e

′
n.

Чтобы найти X ′, нужно решить уравнение (H ′ − λE)X ′ = 0. Т.к. X ′ = CX, то это уравнение
равносильно уравнению (H ′−λE)CX = 0, домножим его слева на Ct и получим Ct(H ′−λE)CX =
0, т.е. (H − λG)X = 0.

Мы только что получили доказательство следующей леммы:

Лемма 5.10.2 Корни многочлена det(H − λG) не зависят от выбора базиса и являются
диагональными элементами канонического вида матрицы функции h, а координаты векторов
канонического базиса ищутся как решение системы уравнений (H − λG)X = 0.

Покажем на примере, что требование положительной определенности хотя бы одной из двух
функций существенно. Пусть билинейные симметричные функциии g и h заданы матрицами

G =
(

0 1
1 0

)
и H =

(
1 0
0 −1

)
. Ни одна из них не является положительно определенной.

Допустим, что существует базис, удовлетворяющий условию теоремы, тогда уравнение det(H −
λG) = 0 должно иметь вещественные корни (т.к. эти корни суть диагональные элементы матрицы
канонического вида функции h). Но это уравнение не имеет вещественных корней, следовательно,
такого базиса не существует.
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6 Тензоры

6.1 Изоморфизм между пространством и его вторым двойственным

Рассмотрим пространство, двойственное к двойственному. Оно называется вторым
двойственным пространством: V ′′ = (V ′)′. Элементы пространства V ′′ — это линейные
функционалы на пространстве V ′, т.е. функции, аргументами которых являются элементы
множества V ′. Очевидно, что dimV ′′ = dim V ′ = dimV .

Определим отображение ϕ : V → V ′′. Для каждого вектора x ∈ V функционал ϕ(x) = ϕx

должен отображать функционалы (элементы множества V ′) в поле скаляров. Пусть l ∈ V ′
Определим значение ϕx(l) = l(x). Очевидно, что ϕx — это линейное отображение V ′ → K. Кроме
того, ϕ(x1 + x2) = ϕ(x1) + ϕ(x2) и ϕ(λx) = λϕ(x). Докажем, что ϕ есть изоморфизм. Для этого
нам нужно доказать, что из условия ϕx = 0 следует, что x = 0. Условие ϕx = 0 означает, что
для любого функцинала l ∈ V ′ ϕx(l) = 0, т.е. l(x) = 0. Но единственный вектор в V , на котором
любой функционал равен нулю, есть нулевой вектор, x = 0. Действительно, если это неверно,
выберем базис e1 = x, e2, . . . , en в V , тогда для функционала ε1 имеем ε1(x) = 1 6= 0.

Так как ϕx = 0 ⇐⇒ x = 0, то для произвольного базиса e1, . . . , en в V векторы ϕe1 , . . . , ϕen

линейно независимы. Но, поскольку dimV ′′ = n, эти векторы составляют базис пространства V ′′,
следовательно ϕ — изоморфизм.

При построении этого изоморфизма, мы не использовали базис (базис мы использовали только
при доказательстве), поэтому этот изоморфизм не зависит от выбора базиса в пространстве V , а
его конструкция универсальна и годится для любого пространства V .

Т.к. V и V ′′ изоморфны, и этот изоморфизм независим от выбора базиса, то мы можем эти
два пространства отождествить, и смотреть на пространства V и V ′ как на двойственные друг
к другу: элементы пространства V ′ есть линейные функции на V , а элементы пространства V
можно считать линейными функциями на V ′.

6.2 Тензоры. Пространство тензоров

Пусть нам задано векторное пространство V (над полем K), и пусть V ′ — двойственное
пространство. Возьмем произведение p экземпляров пространства V и q экземпляров
пространства V ′ и рассмотрим функцию

T : V × . . .× V︸ ︷︷ ︸
p

×V ′ × . . .× V ′
︸ ︷︷ ︸

q

→ K,

т.е. T — функция от p векторов и q линейных функций, принимающая значения в K. Такая
функция называется полилинейной, если она линейна по каждому аргументу при фиксированных
остальных аргументах, т.е. если выполняются равенства:

T (v1, . . . , v
′
i + v′′i , . . . , vp, l

1, . . . , lq) = T (v1, . . . , v
′
i, . . . , vp, l

1, . . . , lq) +

+ T (v1, . . . , v
′′
i , . . . , vp, l

1, . . . , lq),

T (v1, . . . , λvi, . . . , vp, l
1, . . . , lq) = λT (v1, . . . , vi, . . . , vp, l

1, . . . , lq),

T (v1, . . . , vp, l
1, . . . , l′j + l′′j , . . . , lq) = T (v1, . . . , vp, l

1, . . . , l′j , . . . , lq) +

+ T (v1, . . . , vp, l
1, . . . , l′′j , . . . , lq),

T (v1, . . . , vp, l
1, . . . , λlj , . . . , lq) = λT (v1, . . . , vp, l

1, . . . , lj , . . . , lq).

Определение 6.2.1 Тензором называется полилинейная функция. Тензор типа (p, q) — это
полилинейная функция от p векторов из V и от q линейных функций из V ′. Тензорами типа (0, 0)
называют скаляры.

Примеры:
1) скаляры — это тензоры типа (0, 0) по определению;
2) векторы — это тензоры типа (0, 1), т.к. любой вектор задает линейную функцию на V ′

переводящую элемент l ∈ V ′ в l(v) ∈ K (ранее мы отождествили V ′′ и V );
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3) линейные функции — это тензоры типа (1, 0), т.к. они задают отображение l : V → K,
переводя вектор v ∈ V в элемент l(v) ∈ K;

4) билинейные функции — это тензоры типа (2, 0), т.к. они задают отображение V × V → K.
5) линейные операторы — это тензоры типа (1, 1), этот пример мы обсудим позже.
Множество тензоров типа (p, q) мы будем обозначать Θq

p. На этом множестве можно ввести
структуру линейного пространства, для этого нужно определить операции сложения двух
тензоров и их умножения на скаляры. Пусть T, S ∈ Θq

p, тогда:

(T + S)(v1, . . . , vp, l
1, . . . , lq) := T (v1, . . . , vp, l

1, . . . , lq) +

+ S(v1, . . . , vp, l
1, . . . , lq);

(λT )(v1, . . . , vp, l
1, . . . , lq) := λT (v1, . . . , vp, l

1, . . . , lq).

Легко проверить выполнение всех аксиом линейного пространства и убедиться, что множество
Θq

p действительно будет линейным пространством.
Можно также определить операцию умножения тензоров (разных типов) друг на друга. Пусть

T ∈ Θq
p, S ∈ Θt

r, тогда новый тензор T ⊗ S ∈ Θq+t
p+r опреляется по формуле

(T ⊗ S)(v1, . . . , vp, vp+1, . . . , vp+r, l
1, . . . , lq, lq+1, . . . , lq+t) :=

:= T (v1, . . . , vp, l
1, . . . , lq) · S(vp+1, . . . , vp+r, l

q+1, . . . , lq+t).

Так определенное умножение тензоров дистрибутивно (т.е. (T + λS) ⊗ R = T ⊗ R + λS ⊗ R),
ассоциативно (т.е. (T ⊗ S)⊗R = T ⊗ (S ⊗R)), но не коммутативно.
Примеры:
1) произведение вектора v ∈ V и линейной функции l ∈ V ′ — тензор v ⊗ l ∈ Θ1

1. Посмотрим,
как этот тензор действует на своих аргументах. Возьмем произвольный вектор a ∈ V и функцию
h ∈ V ′, получим, что (v ⊗ l)(a, h) = h(v) · l(a).

2) возьмем две линейные функции g, h ∈ V ′, тогда g ⊗ h будет тензором типа (2, 0) (т.е.
билинейной функцией), (g ⊗ h)(v1, v2) = g(v1) · h(v2).

6.3 Координатное определение тензоров

Перейдем теперь к координатному описанию тензоров. Зафиксируем базис e1, . . . , en в
пространстве V , ему будет соответствовать двойственный базис ε1, . . . , εn в двойственном
пространстве V ′. Т.к. тензор — это полилинейная функция, то ее значение определяется
значениями на базисных векторах, т.е.

T (v1, . . . , vp, l
1, . . . , lq) = T (vi1

1 ei1 , . . . , v
ip
p eip , l

1
j1

εj1 , . . . , lqjq
εjq) =

= vi1
1 · . . . · vip

p · l1j1 · . . . · l
q
jq
· T (ei1 , . . . , eip , ε

j1 , . . . , εjq),

где vik
k — координаты вектора vk, а lmjj

— координаты линейной функции lm.

Обозначим T (ei1 , . . . , eip , ε
j1 , . . . , εjq) = T

j1,...,jq

i1,...,ip
∈ K. Зафиксировав базис, мы можем поставить

тензору T в соответствие набор чисел T
j1,...,jq

i1,...,ip
— его значения на базисных векторах. Естественно,

этот набор чисел будет зависеть от выбора базиса. Посмотрим, как изменяются эти числа при
переходе от одного базиса к другому. Пусть мы перешли от базиса ei к базису ẽi, и C = (ck

i )
— матрица перехода, т.е. ẽi = ck

i ek. Тогда двойственный базис εi тоже сменится на ε̃i, причем
матрица перехода D = (di

k) = C−1, dj
kc

k
i = δj

i , т.е. ε̃i = di
kε

k. Тогда

T̃
l1,...,lq
k1,...,kp

= T (ẽk1 , . . . , ẽkp , ε̃
l1 , . . . , ε̃lq) =

= T (ci1
k1

ei1 , . . . , c
ip
kp

eip , d
l1
j1

εj1 , . . . , d
lq
jq

εjq) =

= T (ei1 , . . . , eip , ε
j1 , . . . , εjq) · ci1

k1
· . . . · cip

kp
· dl1

j1
· . . . · dlq

jq
=

= T
j1,...,jq

i1,...,ip
· ci1

k1
· . . . · cip

kp
· dl1

j1
· . . . · dlq

jq
.
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Примеры:
1) если x — вектор, то x̃k = dk

i x
i. Такой закон изменения координат называется векторным

законом.
2) если l — линейная функция, то l̃k = ci

kli. Такой закон изменения координат называется
ковекторным законом. А величины, изменяющиеся по ковекторному закону называются
ковекторами. Таким образом, линейные функции (элементы пространства V ′) — это ковекторы.

Мы получили тензорный закон изменения координат:

T̃
l1,...,lq
k1,...,kp

= T
j1,...,jq

i1,...,ip
· ci1

k1
· . . . · cip

kp
· dl1

j1
· . . . · dlq

jq
.

Теперь мы можем дать другое (координатное) определение тензора: тензор — это сопоставление
каждому базису пространства V набора чисел T

j1,...,jq

i1,...,ip
, который при замене координат

преобразуется по тензорному закону.
Это и предыдущее определения тензора эквивалентны, так как по такому набору

чисел, пользуясь линейностью, можно восстановить полилинейную функцию T , для которой
T (ei1 , . . . , eip , ε

j1 , . . . , εjq) = T
j1,...,jq

i1,...,ip
.

Теперь мы можем отождествить линейные операторы и тензоры типа (1, 1). И те, и другие ведут
себя одинаково при заменах координат, именно, матрица линейного оператора при переходе от
одного базиса к другому ведет себя по тому же закону, что и набор чисел, задающий тензор типа
(1, 1).

Рассмотрим еще один пример — пример тензоров типа (0, 2). Пусть (aij) — матрица некоторой
билинейной функции, или, что то же самое, тензор типа (2, 0). Предположим, что матрица (aij)
обратима и обозначим элементы обратной матрицы через aij , т.е. aijajk = δi

k.

Лемма 6.3.1 aij является тензором типа (0, 2), т.е. этот набор чисел при переходе к
другому базису изменяется по формуле ãkl = aijdk

i d
l
j.

Доказательство. В новом базисе выполнено равенство ãklãlm = δk
m. Подставим сюда ãlm =

ajic
j
l c

i
m, где C = (ci

m) — матрица перехода, тогда ãklajic
j
l c

i
m = δk

m. Умножим (и просуммируем по
повторяющимся индексам) обе части этого равенства на элементы обратной матрицы к матрице
перехода (напомним, что ck

i d
j
k = δj

i ): ãklajic
j
l c

i
mdm

p = δk
mdm

p , т.е. ãklajic
j
l δ

i
p = dk

p, или ãklajpc
j
l = dk

p.
Воспользуемся теперь обратимостью матрицы (aij), т.е. тем, что ajpa

pr = δr
j . Умножив обе части

предпоследнего равенства на apr (и просуммировав), получим ãklajpa
prcj

l = aprdk
p, или ãklcr

l =
aprdk

p. Еще раз умножив обе части равенства на dn
r просуммировав по r и воспользовавшись тем,

что cr
l d

n
r = δn

l и ãklδn
l = ãkn, получим ãkn = aprdk

pd
n
r . ¤

6.4 Базис в пространстве тензоров

Построим базис в пространстве тензоров Θq
p. Напомним, что векторы и ковекторы

отождествляются с тензорами типа (0, 1) и (1, 0) соответственно. Рассмотрим произведение
εi1⊗. . .⊗εip⊗ej1⊗. . .⊗ejq , оно состоит из тензоров типа (0, 1) и тензоров типа (1, 0), следовательно
само является тензором типа (p, q). Всего таких различных произведений получится np+q, т.к.
из n ковекторов надо выбрать p и из n векторов надо выбрать q. Докажем, что эти элементы
(произведения такого вида) образуют базис в Θq

p. Прежде, чем доказывать это, вычислим
значение такого тензора (произведения) на наборах аргументов из базисных векторов:

εi1 ⊗ . . .⊗ εip ⊗ ej1 ⊗ . . .⊗ ejq(ek1 , . . . , ekp , ε
l1 , . . . , εlq) =

= εi1(ek1) · . . . · εip(ekp) · εl1(ej1) · . . . · εl1(ejq) =

= δi1
k1
· . . . · δip

kp
· δl1

j1
· . . . · δlq

jq
=

=
{

1, если i1 = k1, . . . , ip = kp, j1 = l1, . . . , jq = lq,
0, в остальных случаях.
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Лемма 6.4.1 Множество произведений вида εi1 ⊗ . . .⊗ εip ⊗ ej1 ⊗ . . .⊗ ejq является базисом
в Θq

p.

Доказательство. Сначала докажем линейную независимость этих произведений. Пусть
существуют такие числа λ

j1,...,jq

i1,...,ip
, что линейная комбинация λ

j1,...,jq

i1,...,ip
εi1 ⊗ . . .⊗ εip ⊗ ej1 ⊗ . . .⊗ ejq .

Применим этот тензор, как полилинейную функцию, к аргументам ek1 , . . . , ekp , ε
l1 , . . . , εlq и

получим
λ

j1,...,jq

i1,...,ip
εi1 ⊗ . . .⊗ εip ⊗ ej1 ⊗ . . .⊗ ejq(ek1 , . . . , ekp , ε

l1 , . . . , εlq)︸ ︷︷ ︸ = 0 (5)

Подчеркнутое выражение равно 1, если i1 = k1, . . . , ip = kp, j1 = l1, . . . , jq = lq и 0 в остальных
случаях, следовательно, равенство (5) может быть записано в виде

λ
j1,...,jq

i1,...,ip
εi1 ⊗ . . .⊗ εip ⊗ ej1 ⊗ . . .⊗ ejq(ek1 , . . . , ekp , ε

l1 , . . . , εlq) = λ
l1,...,lq
k1,...,kp

= 0.

Но, т.к. это равенство имеет место для любого набора индексов k1, . . . , kp, l1, . . . , lq, то все λ
l1,...,lq
k1,...,kp

равны нулю. Линейная независимость доказана.
Удостоверимся теперь, что любой тензор можно представить в виде линейной комбинации этих

базисных тензоров. Для этого достаточно доказать равенство

T = T
j1,...,jq

i1,...,ip
εi1 ⊗ . . .⊗ εip ⊗ ej1 ⊗ . . .⊗ ejq . (6)

А из-за полилинейности это равенство достаточно проверять на базисных аргументах вида
ek1 , . . . , ekp , ε

l1 , . . . , εlq . Левая часть равенства по определению равна T
j1,...,jq

i1,...,ip
, а правая часть, как

мы уже видели раньше, также равна T
j1,...,jq

i1,...,ip
εi1⊗ . . .⊗εip ⊗ej1⊗ . . .⊗ejq(ek1 , . . . , ekp , ε

l1 , . . . , εlq) =

T
j1,...,jq

i1,...,ip
. Итак, равенство проверено, т.е. для произвольного тензора T мы нашли его разложение

в линейную комбинацию (6), причем числа T
j1,...,jq

i1,...,ip
являются координатами этого тензора в

указанном базисе. ¤

6.5 Свертка тензоров

Пусть T ∈ Θq
p — тензор с хотя бы одним нижним и одним верхним индексами, т.е. p, q > 0.

Пусть e1, . . . , en — базис в V . Зафиксируем один векторный и один ковекторный аргумент (пусть
это будут первые по порядку аргументы), на их место поставим базисные элементы ei и εi и
определим полилинейную функцию sT от p − 1 векторых и q − 1 ковекторных аргументов по
формуле

(sT )(v2, . . . , vp, l
2, . . . , lq) := T (ei, v2, . . . , vp, ε

i, l2, . . . , lq),

в которой подразумевается суммирование по индексу i. Проверим, что определение тензора sT
не зависит от выбора базиса, т.е. что его координаты будут преобразовываться по тензорному
закону. Имеем (sT )i,j2,...,jq

i,i2,...,ip
(здесь опять производится суммирование по индексу i). При переходе

к другому базису имеем

T̃
l1,...,lq
k1,...,kp

= T
j1,...,jq

i1,...,ip
· ci1

k1
· . . . · cip

kp
· dl1

j1
· . . . · dlq

jq
;

(s̃T )l2,...,lq
k2,...,kp

= T̃
k,l2,...,lq
k,k2,...,kp

= T
j1,j2,...,jq

i1,i2,...,ip
· ci1

k︸︷︷︸ ·c
i2
k2
· . . . · cip

kp
· dk

j1︸︷︷︸ ·d
l2
j2
· . . . · dlq

jq
.

Произведение подчеркнутых элементов равно ci1
k dk

j1
= δi1

j1
, т.к. CD = E, поэтому ненулевыу

слагаемые отвечают значениям i1 = j1. Обозначим i1 = j1 = i, тогда

T̃
l1,...,lq
k1,...,kp

= T
i,j2,...,jq

i,i2,...,ip
· ci2

k2
· . . . · cip

kp
· dl2

j2
· . . . · dlq

jq
= (sT )j2,...,jq

i2,...,ip
· ci2

k2
· . . . · cip

kp
· dl2

j2
· . . . · dlq

jq
.

Т.е. координаты (sT )j2,...,jq

i2,...,ip
действительно преобразуются по тензорному закону, значит,

действительно, sT — тензор типа (p − 1, q − 1). Этот тензор называется сверткой тензора T .
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Такую операцию свертки можно проводить несколько раз до исчерпания верхних или нижних
индексов. Последняя возможная свертка (после которой не остается либо нижних, либо верхних
индексов) называется полной сверткой.
Примеры:
1) Возьмем линейный оператор — тензор типа (1, 1), результатом свертки будет скаляр. Пусть

нам дан оператор f : V → V , который задается матрицей (f j
i ), сверткой этого тензора будет

число f i
i (сумма диагональных элементов), т.е. в данном случае свертка — это след, sf = tr f .

2) (частный случай предыдущего примера). Возьмем линейную функцию l, т.е. тензор типа
(1, 0), и вектор a — тензор типа (0, 1). Тогда l⊗a будет тензором типа (1, 1) (контрольный вопрос: с
каким линейным оператором отождествляется этот тензор?). Координаты этого тензора (l⊗a)j

i =
lia

j , где li — набор координат линейной функции l. Тогда при полной свертке этого тензора
получим s(l ⊗ a) = lia

i = l(a).
3) Рассмотрим полную свертку тензора типа (2, 2). Возьмем билинейную функцию g, т.е. тензор

типа (2, 0), и два вектора a, b — тензоры типа (0, 1). Тогда g ⊗ a ⊗ b будет тензором типа (2, 2).
Координаты этого тензора (g⊗a⊗ b)kl

ij = gija
kbl, где gij — матрица билинейной функции g. Тогда

при полной свертке этого тензора получим s(g ⊗ a⊗ b) = gija
ibj = g(a, b).

6.6 Поднятие и опускание индексов

Пусть нам дано евклидово пространство V , т.е. векторное пространство над R со скалярным
произведением (·, ·). Тогда имеется выделенный тензор типа (2, 0), отвечающий биоинейной
функции, которая задает скалярное произведение. Это позволяет у любого тензора заменить
векторный аргумент на ковекторный и наоборот. В координатах это выглядит следующим
образом. Пусть G = (gij) — матрица Грама скалярного произведения (·, ·). Тензору T типа (0, 1)
с координатами T i поставим в соответствие Tj = gijT

i (это произведение двух тензоров, g и T и
свертка по индексу i). Таким образом мы у тензора T опустили индекс.

Обобщая эту операцию, дадим определение операции опускания индекса.
Опускание индекса — это отображение Θq

p → Θq−1
p+1, которое тензору T

j1,...,jq

i1,...,ip
ставит в

соответствие тензор gij · T
j,j2,...,jq

i1,...,ip
. Здесь мы опустили первый индекс j1. Аналогично можно

опустить любой другой верхний индекс.
Поднятие индекса.Аналогичным образом можно и поднимать индексы. Для этого используется

матрица G−1 = (gij) (вспомним, что матрица Грама обратима и что gij есть тензор типа (0, 2)).
Тензор T

j1,...,jq

i1,...,ip
операция поднятия индекса переводит в тензор gij · T j1,...,jq

i,i2,...,ip
∈ Θq+1

p−1.

6.7 Оператор альтернирования. Кососимметрические тензоры

Рассмотрим линейное пространство Θ0
p тензоров с одними нижними индексами, т.е. полилинейные

функции от p векторов. Также рассмотрим группу перестановок Sp. Если взять какую-нибудь
перестановку σ ∈ Sp, то можно определить линейный оператор fσ : Θ0

p → Θ0
p следующим

образом. Пусть T ∈ Θ0
p, т.е. T = T (v1, . . . , vp); определим fσ(T ) = σT , где (σT )(v1, . . . , vp) :=

T (vσ(1), . . . , vσ(p)). Эта операция перестановки аргументов сумму тензоров переводит в сумму, а
умножение тензора на скаляр — в умножение на скаляр, следовательно, fσ — линейный оператор.
кроме того, fσ1fσ2 = fσ1σ2 . Координаты тензоров T и σT связаны между собой равенством
(σT )i1,...,ip = (σT )(ei1 , . . . , eip) = T (eiσ(1)

, . . . , eiσ(p)
) = Tiσ(1)

, . . . , iσ(p).
Тензор T называется симметрическим, если σT = T для любой перестановки σ ∈ Sp.
Тензор T называется кососимметрическим, если σT = (−1)σT для любой перестановки σ ∈ Sp.
Построим оператор альтернирования (приводящий к кососимметричности)

Alt : Θ0
p → Θ0

p; AltT :=
1
p!

∑

σ∈Sp

(−1)σσT.

Этот оператор будет линейным, т.к. является суммой линейных операторов. В пространстве всех
тензоров с нижними индексами определим подпространство Λp ⊂ Θ0

p всех кососимметрических
тензоров (проверка того, что множество кососимметрических тензоров в действительности есть
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подпространство, очевидна). Если p = 2, то условие кососимметричности эквивалентно условию
Tij = −Tji.

Лемма 6.7.1 Оператор Alt является оператором проектирования на подпространство
внешних форм Λp.

Доказательство. Нам потребуются следующие равенства:

Утверждение 6.7.2 σ(AltT ) = Alt(σT ) = (−1)σ AltT .

Доказательство. Применим перестановку σ к тензору AltT :

σ(AltT ) = σ
( 1

p!

∑

ρ∈Sp

(−1)ρρT
)

=
1
p!

∑

ρ∈Sp

(−1)ρ((σρ)T ),

т.к. σ — это линейный оператор. Когда ρ пробегает всю группу Sp, перестановка τ = σρ
тоже пробегает всю группу Sp, поэтому полученное выражение можно записать так: σ(AltT ) =
1
p!

∑
τ∈Sp

(−1)ρτT . А, поскольку (−1)τ = (−1)ρ(−1)σ, то

σ(AltT ) =
1
p!

∑

τ∈Sp

(−1)σ(−1)ττT = (−1)σ
( 1

p!

∑

τ∈Sp

(−1)ττT
)

= (−1)σ AltT,

т.е. мы доказали, что σ(AltT ) = (−1)σ AltT . Теперь докажем, что Alt(σT ) = (−1)σ AltT .
По определению Alt(σT ) = 1

p!

∑
ρ∈Sp

(−1)ρ((ρσ)T ). Обозначим τ = ρσ и получим

Alt(σT ) =
1
p!

∑

ρ∈Sp

(−1)ρ((ρσ)T ) =
1
p!

∑

τ∈Sp

(−1)ρ(τT ) =
1
p!

∑

τ∈Sp

(−1)τ (−1)σ(τT ) =

= (−1)σ
( 1

p!

∑

τ∈Sp

(−1)τ (τT )
)

= (−1)σ AltT.

¤
Перейдем теперь собственно к доказательству леммы.
1. Проверим, что ImAlt ⊂ Λp. Действительно, поскольку σ(AltT ) = (−1)σ AltT , то по

определению AltT ∈ Λp для любого T ∈ Θ0
p, поэтому ImAlt ⊂ Λp.

2. Докажем, что если T ∈ Λp, то AltT = T . Действительно, поскольку T ∈ Λp, то σT = (−1)σT
и

AltT =
1
p!

∑

σ∈Sp

(−1)σσT =
1
p!

∑

σ∈Sp

(−1)σ(−1)σT =
1
p!

∑

σ∈Sp

T =
1
p!

p!T = T.

3. Проверим, что Alt2 = Alt, т.е. что Alt(AltT ) = AltT для любого T ∈ Θ0
p. Действительно, в

п.1 мы доказали, что S = AltT ∈ Λp, в п.2 — что AltS = S, подставив AltT вместо S, получим
Alt(AltT ) = AltT . ¤

6.8 Внешнее умножение, его свойства

Определим аналог тензорного умножения для кососимметрических тензоров — внешнее
тензорное умножение (обозначается ∧): для T ∈ Λp, S ∈ Λq положим T ∧ S := Alt(T ⊗ S).

Лемма 6.8.1 Введенное нами внешнее тензорное умножение обладает следующими
свойствами: для любых кососимметрических тензоров T ∈ Λp, S ∈ Λq, R ∈ Λr

1) (T + λS) ∧R = T ∧R + λS ∧R (дистрибутивность);
2) S ∧ T = (−1)pqT ∧ S (антикоммутативность) ;
3) (T ∧ S) ∧R = T ∧ (S ∧R) (ассоциативность).
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Доказательство. 1) Дистрибутивность следует из дистрибутивности операции ⊗ и
линейности оператора Alt.

2) По определению

S ∧ T = Alt(S ⊗ T ) =
1

(p + q)!

∑

σ∈Sp+q

σ(S ⊗ T );

T ∧ S = Alt(T ⊗ S) =
1

(p + q)!

∑

σ∈Sp+q

σ(T ⊗ S).

Рассмотрим координаты тензоров σ(S ⊗ T ) и σ(T ⊗ S). Имеем

σ(S ⊗ T )i1,...,ip+q = (S ⊗ T )iσ(1),...,iσ(p+q)
=

= Siσ(1),...,iσ(q)
· Tiσ(q+1),...,iσ(p+q)

; (7)
σ(T ⊗ S)i1,...,ip+q = (T ⊗ S)iσ(1),...,iσ(p+q)

=

= Tiσ(1),...,iσ(p)
· Siσ(p+1),...,iσ(p+q)

. (8)

Посмотрим, чем отличаются индексы у S и T в выражениях (7) и (8). Индексы в (7) — это
σ(1), . . . , σ(q), σ(q + 1), . . . , σ(p + q), а индексы в (8) — это σ(p + 1), . . . , σ(p + q), σ(1), σ(q). Пусть
τ — перестановка (

p + 1 . . . p + q 1 . . . p
1 . . . q q + 1 . . . p + q

)
.

Тогда, как легко видеть, σ(S ⊗ T ) = στ(T ⊗ S). Поэтому

S ∧ T =
1

(p + q)!

∑

σ∈Sp+q

(−1)σσ(S ⊗ T ) =

=
1

(p + q)!

∑

σ∈Sp+q

(−1)τ (−1)στ (στ)(S ⊗ T ) =

= (−1)τ 1
(p + q)!

∑

ρ∈Sp+q

(−1)ρρ(S ⊗ T ) = (−1)τT ∧ S,

и нам осталось определить (−1)τ . Для вычисления знака перестановки надо подсчитать
количество элементарных перестановок, ее составляющих. Лекго видеть, что это число равно
произведению pq, т.е. (−1)τ = (−1)pq, что и требовалось показать.

3) Введем дополнительно обозначение T1 ∧ T2 ∧ . . . ∧ Tk := Alt(T1 ⊗ T2 ⊗ . . . ⊗ Tk). Для
доказательство ассоциативности нам также понадобится следующее равенство.

Утверждение 6.8.2 Alt((AltQ) ⊗ R) = Alt(Q ⊗ R) = Alt(Q ⊗ (AltR)) для любых тензоров
Q ∈ Θ0

p, R ∈ Θ0
q.

Доказательство. Ограничимся доказательством первого из равенств (второе доказывается
аналогично). Поскольку операция ⊗ обладает свойством дистрибутивности, а оператор Alt
линеен, имеем

Alt((AltQ)⊗R) = Alt
(( 1

p!

∑

σ∈Sp

(−1)σσQ
)
⊗R

)
=

=
1
p!

∑

σ∈Sp

(−1)σ Alt(σQ⊗R).

Каждой перестановке σ ∈ Sp поставим в соответствие такую перестановку σ̃ ∈ Sp+q, которая на
первых p индексах действует как σ, а остальные оставляет на месте, т.е.

σ̃ =
(

1 . . . p p + 1 . . . p + q
σ(1) . . . σ(p) p + 1 . . . p + q

)
.
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При этом, очевидно, (−1)σ̃ = (−1)σ.
Тогда σQ⊗R = σ̃(Q⊗R), и

Alt((AltQ)⊗R) =
1
p!

∑

σ∈Sp

(−1)σ Alt(σ̃(Q⊗R)) =

=
1
p!

∑

σ∈Sp

(−1)σ(−1)σ̃ Alt(Q⊗R) =

=
1
p!

∑

σ∈Sp

Alt(Q⊗R) =
1
p!

p! Alt(Q⊗R) =

= Alt(Q⊗R).

¤
Докажем теперь ассоциативность внешнего умножения. Обозначим Q = T ⊗ S, тогда AltQ =

Alt(T ⊗ S) и

(T ∧ S) ∧R = Alt((T ∧ S)⊗R) = Alt(Alt(T ⊗ S)⊗R) =
= Alt((AltQ)⊗R) = Alt(Q⊗R) = Alt(T ⊗ S ⊗R) =
= T ∧ S ∧R.

Аналогично получим, что T ∧ (S ∧R) = T ∧ S ∧R, т.е. (T ∧ S) ∧R = T ∧ (S ∧R). ¤

59



Содержание

1 Линейные пространства 2
1.1 Линейное (векторное) пространство . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Линейные подмногообразия . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Аффинное пространство . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Линейная зависимость векторов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Размерность . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Пересечение и сумма подпространств . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Прямая сумма подпространств. Внешняя прямая сумма . . . . . . . . . . . . . . . . 8
1.8 Координаты . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Изоморфизмы векторных пространств . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 Двойственное векторное пространство . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Евклидовы и унитарные пространства 13
2.1 Евклидовы и унитарные пространства . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Процесс ортогонализации . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Ортогональное дополнение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Метод наименьших квадратов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Линейные операторы 20
3.1 Линейные отображения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Инвариантное подпространство . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Невырожденные операторы. Собственные значения и собственные векторы . . . . 22
3.4 Проекторы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Многочлены от операторов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Характеристический многочлен . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Диагонализируемые операторы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Жордановы клетки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Присоединенные векторы и корневое подпространство . . . . . . . . . . . . . . . . . 28
3.10 Теорема о разложении пространства в прямую сумму корневых подпространств . 29
3.11 Жорданова нормальная форма оператора . . . . . . . . . . . . . . . . . . . . . . . . 29
3.12 Функции от операторов и от матриц . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.13 Овеществление и комплексификация . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.14 Инвариантные подпространства в вещественном случае . . . . . . . . . . . . . . . . 33

4 Операторы в евклидовых и унитарных пространствах 34
4.1 Сопряженный оператор . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Канонический вид матрицы самосопряженного оператора . . . . . . . . . . . . . . 36
4.3 Канонический вид матрицы кососимметрического оператора . . . . . . . . . . . . . 36
4.4 Изометрии . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Ортогональные и унитарные операторы . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Билинейные и полуторалинейные функции 40
5.1 Билинейные функции (формы) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Симметричные и кососимметричные функции . . . . . . . . . . . . . . . . . . . . . 41
5.3 Ортогональное дополнение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Нормальный вид матрицы (косо)симметрической функции . . . . . . . . . . . . . . 43
5.5 Единственность нормального вида . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Теорема Якоби. Критерий Сильвестра . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Пространства с обобщенным скалярным произведением. Группы операторов,

сохраняющих скалярное произведение . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Квадрики в аффинных пространствах . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Симметрические билинейные функции на евклидовом пространстве . . . . . . . . . 50
5.10 Пара симметричных билинейных функций . . . . . . . . . . . . . . . . . . . . . . . 51

60



6 Тензоры 52
6.1 Изоморфизм между пространством и его вторым двойственным . . . . . . . . . . . 52
6.2 Тензоры. Пространство тензоров . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Координатное определение тензоров . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Базис в пространстве тензоров . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.5 Свертка тензоров . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6 Поднятие и опускание индексов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7 Оператор альтернирования. Кососимметрические тензоры . . . . . . . . . . . . . . 56
6.8 Внешнее умножение, его свойства . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

61



МЕХАНИКО-
МАТЕМАТИЧЕСКИЙ 

ФАКУЛЬТЕТ  
МГУ ИМЕНИ 

М.В. ЛОМОНОСОВА


	МАНУЙЛОВ мехмат
	linear-algebra-manuilov-M
	МАНУЙЛОВ мехмат



