
МЕХАНИКА • СЛЕПКОВ АЛЕКСАНДР ИВАНОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ  
ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ.  
СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

КРИСТАЛЛОХИМИЯ
ЧАСТЬ 2

СЛОВОХОТОВ 
ЮРИЙ ЛЕОНИДОВИЧ

ХИМФАК МГУ

ХИМИЧЕСКИЙ 
ФАКУЛЬТЕТ  
МГУ ИМЕНИ 

М.В. ЛОМОНОСОВА



1 

Материалы по курсу кристаллохимии. 

Часть 2 

Кристаллические решетки и 

пространственные группы 

Ю.Л.Словохотов 

химический факультет МГУ

Баку 2012 г. 



2 

Глава 2. Cимметрия кристаллических решеток 

2.1. Трансляции и решетки 

В 1-й части учебных материалов (глава 1) были рассмотрены точечные группы, т.е. 

наборы операций симметрии молекул и других конечных геометрических фигур. В 

отличие от «конечных» (не полимерных) молекул, атомные структуры кристаллов – 

бесконечные периодические фигуры. Совокупность всех операций симметрии кристалла 

называется его пространственной группой. В этой главе обсуждаются основные 

компоненты и принципы строения пространственных групп. 

Простейшая фигура, периодическая в одном измерении – это бесконечная лента с 

повторяющимся узором, или бордюр (Рис. 2.1 а). «Химическим» примером бордюра 

может служить идеализированная макромолекула полиэтилена (СН2СН2)∞ с бесконечной 

плоской цепочкой из углеродных атомов (Рис. 2.1 б). К самосовмещению таких фигур 

приводят операции особого вида, которых нет в точечных группах: сдвиги всей ленты 

(цепочки) вдоль ее направления на расстояния mа, где а – период повторяемости, а m – 

произвольное целое число. (Мы считаем, что при положительных m фигура смещается на 

ma вправо, а при отрицательных m – влево). Заметим, что разных сдвигов mа столько же, 

сколько целых чисел m, т.е. бесконечно много. Совокупность всех сдвигов бордюра 

образует группу бесконечного порядка. Единичным элементом в этой группе является 

сдвиг на 0а, или тождественное преобразование. 

(а) 

(б) 

Рис. 2.1. (а) Фрагмент бордюра, не имеющего иных операций симметрии, кроме 

трансляций. (б) Фрагмент трансоидной углеродной цепи полиэтилена (СН2-СН2) ; 

показаны элементы симметрии одного элементарного звена.

Сдвиг фигуры, приводящий к ее самосовмещению, называется трансляцией. Эта 

операция симметрии есть только у бесконечных периодических фигур, т.к. сдвиг 

«оборванной» конечной цепочки не приведет к самосовмещению на ее концах. Участок 

цепочки (либо ленты) с длиной, равной периоду повторяемости, называется 

элементарным звеном. Действуя на элементарное звено всеми возможными трансляциями 

mа, можно построить из него всю бесконечную фигуру.  

Если у повторяющихся частей фигуры нет других элементов симметрии (как у 

бордюра на рис. 2.1 а), ее пространственная группа целиком состоит из трансляций. Но у 

макромолекулы полиэтилена (рис. 2.1  б) имеются и зеркальные плоскости – так, 

отражения в плоскости углеродной цепочки либо в перпендикулярной к ней плоскости 

любого СН2-фрагмента приводит к самосовмещению всей цепи. Взаимодействие каждой 

пары взаимно перпендикулярных плоскостей m порождает ось 2 (правило (2а) в ч. 1), а в 

a’ 

a 
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направлении трансляций возникают новые, открытые элементы симметрии. В общем 

случае в пространственную группу кристалла входят как трансляции, так и другие 

операции симметрии. 

 Примером плоской (2D) периодической структуры может служить пленка мыла на 

поверхности воды. В идеализированной бесконечной структуре такой пленки анионы 

длинноцепочечных карбоновых кислот RCOO
–
, где R = н-СnH2n+1 и n ~ 20–30, включены в 

водную среду гидрофильными COO
–
-фрагментами, а вытянутые цилиндры их 

углеводородных заместителей, имеющих трансоидную конформацию, за счет 

невалентных взаимодействий образуют плотную гексагональную упаковку над 

поверхностью воды. Элементарной ячейкой пленки является ромб с углом 120
о
 и 

стороной а, равной расстоянию между осями ближайших фрагментов R. Всю структуру 

пленки можно получить сдвигами элементарной ячейки на векторы m1a + m2b, где m1 и m2 

– произвольные целые числа (включая 0), a и b – кратчайшие трансляции вдоль ребер 

элементарной ячейки, связанных поворотом на 120
0
 (a=b) (Рис. 2.2 а,б). В трехмерной (3D) 

структуре кристаллического иода молекулы I2 объединены невалентными 

взаимодействиями в слои, каждый из которых расположен со сдвигом относительно 

соседнего слоя. В этом кристалле можно выделить три взаимно перпендикулярные 

кратчайшие трансляции a, b и c, которые задают элементарную ячейку в форме 

прямоугольного параллелепипеда (Рис. 2.2 в). 

 

 

 

 

 

 

 

       (а)       (б)           (в) 

Рис. 2.2. (а) Ориентация и (б) идеализированная упаковка гидрофобных углеводородных 

фрагментов в пленке мыла на поверхности воды. (в) Слои из молекул I2 в 

кристаллическом иоде в проекции вдоль направления а; молекулы на разной высоте 

выделены цветом. 

 

 Основным симметрийным свойством, отличающим кристалл от аморфного стекла 

или жидкости, является наличие трансляций в его атомной структуре. Бесконечную 

периодическую структуру любого двумерного или трехмерного кристалла можно разбить 

на одинаковые элементарные ячейки. Всевозможными сдвигами ячейки на целое число 

координатных трансляций воссоздается вся структура кристалла. Таким образом, в 

пространственной группе всякого кристалла содержится подгруппа его трансляций T. 

Ясно, что группа T имеет бесконечный порядок при любой размерности кристалла. В этой 

главе мы рассмотрим все геометрически различные группы трансляций плоских (2D) и 

трехмерных (3D) кристаллических структур.  

 

 

 

 

 

 

 

 

 

Рис. 2.3. Параметры элементарной ячейки и разные варианты ее выбора в 2D–решетке. 

 

a 

b 

b 

c 

b 

a 0 



4 

Выбирая внутри кристалла произвольную точку и действуя на нее всеми 

трансляциями, мы получим правильную систему из бесконечного числа точек (орбиту 

группы T). Такая система трансляционно эквивалентных точек называется 

кристаллической решеткой, а ее точки – узлами решетки (Рис. 2.3). Решетка в наглядной 

графической форме показывает трансляционную симметрию кристалла. Поместив один из 

узлов решетки в начало координат и соединив его со всеми остальными узлами, можно 

построить бесконечный набор всех векторов трансляций, образующих группу T. 

Элементарная ячейка кристаллической решетки (а значит и самого кристалла) 

«натягивается» на базисные векторы трансляций. В двумерных кристаллических 

структурах векторы a и b, направленные под углом  друг к другу, порождают 

параллелограмм (см. Рис. 2.3). В трехмерных кристаллах элементарной ячейкой служит 

параллелепипед, образованный векторами a, b и c. Параметрами элементарной ячейки 

кристалла являются длины элементарных трансляций и углы между ними: в 2D-

кристаллах у ячейки три параметра (a, b, ), в трехмерных кристаллах – шесть параметров 

(a, b, c, ). Угол между векторами b и c, противолежащий вектору a, обозначается , 

вектору b противолежит угол , вектору c – угол  (Рис. 2.4а). 

(б) (в) 

(а) (г) (д) 

Рисунок 2.4. (а) Параметры элементарной ячейки трехмерного кристалла и типы 3D-

решеток: (б) примитивная, (в) объемноцентрированная, (г) бокоцентрированная В и (д) 

гранецентрированная 

Векторы элементарных трансляций задают кристаллографическую систему 

координат. В кристаллах разного строения эта система может быть ортогональной или 

косоугольной. Численные значения параметров решетки называются ее метрическими 

характеристиками, или, кратко, метрикой решетки. Длины ребер элементарной ячейки 

кристалла, получаемые по дифракционным данным, обычно выражают в нанометрах (1 нм 

= 10
–9

 м), пикометрах (1 пм = 10
–12

 м) или ангстремах (1Å = 0.1 нм = 100 пм = 10
–10

 м),

углы между ребрами – в градусах. Для кристаллических структур обычно также 

рассчитывают объем элементарной ячейки в Å
3
 (см. ниже).

Поскольку в одной и той же решетке можно выбрать различные базисные 

трансляции (см. Рис. 2.3), систему координат трехмерного кристалла устанавливают по 

следующим правилам: 

(1) Векторы a, b и c образую правую связку: их можно обойти в направлении против

часовой стрелки вокруг начала координат.

c 

a 

b 

b 

c 

a 
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(2) ребра a, b и c (где a≤b≤c) в примитивной ячейке соответствуют кратчайшим

некомпланарным трансляциям, а в центрированных ячейках (см. след. раздел)

являются линейными комбинациями таких трансляций,

(3) центрированная элементарная ячейка имеет минимальный объем,

(4) если это позволяет симметрия решетки, углы выбирают равными 90
о
;

непрямые углы должны быть как можно ближе к прямому и при этом больше 90
о
,

(5) координатные направления должны совпадать с осями симметрии максимального

порядка, имеющимися в данном кристалле (репер Браве).

2.2. Закрытые элементы симметрии кристаллов 

Кроме трансляций, кристаллы могут обладать закрытыми элементами симметрии 

(Рис. 2.1 и 2.2 б). Точечная группа, образованная этими элементами (см. ч. 1), называется 

кристаллическим классом; она отражает симметрию внешней формы кристалла. Хотя всех 

точечных групп бесконечно много, с трансляционной симметрией сочетаются лишь 

некоторые закрытые элементы, поэтому набор возможных кристаллических классов 

ограничен.  

Симметрия узла кристаллической решетки определяется только расположением 

трансляций в кристалле. Точечная группа «звезды» трансляций, выходящих из узла 

решетки, называется голоэдрической группой. При размещении в заданной решетке 

структурных фрагментов их собственная симметрия может оказаться ниже, чем 

симметрия узла. Поэтому все возможные точечные группы 2D- и 3D-кристаллов состоят 

из набора соответствующих голоэдрических групп со всеми их подгруппами.  

Одномерная решетка, или узловой ряд – это бесконечный ряд узлов, 

расположенных на прямой линии через одинаковые интервалы длиной a (Рис. 2.5). 

Выбрав произвольный узел в качестве начала координат, мы увидим, что по обе стороны 

от него на равных расстояниях находятся узлы с координатами ±ma (m = 0, 1, 2, ...), т.е. в 

каждом узле одномерной решетки расположен центр инверсии (точечная группа 1). Этим 

свойством обладает любой узловой ряд, который можно выделить в произвольной 

решетке более высокой размерности. Таким образом, центр инверсии 1 совместим с 

трансляционной симметрией, и все кристаллические решетки центросимметричны. 

Рисунок 2.5. Узловые ряды в плоской сетке (выделены серым цветом) 

В двумерных решетках, или плоских сетках, инверсию координат (x, y)  ( x, y) в 

плоскости сетки принято обозначать как действие оси 2, проходящей перпендикулярно 

этой плоскости в трехмерном пространстве. В этих обозначениях любая поворотная ось N, 

проходящая через узел двумерной решетки перпендикулярно ее плоскости, должна иметь 
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четный порядок (N 2). Кроме поворотов, некоторые сетки могут переводиться в себя 

отражением в перпендикулярных им плоскостях m.  

Максимальный порядок поворота N в 2D-решетке легко установить, выбрав в ней 

узловой ряд, в котором узлы расположены через кратчайшую трансляцию а (Рис. 2.6 а). 

При повороте такого ряда вокруг выбранного узла 0 на угол 360
о
/N соседний узел А

переместится в положение В. Длина стороны АВ в треугольнике 0АВ равна 2a·sin( /2)≥a 

(т.к. стороны ОА и ОВ по выбору узлового ряда равны кратчайшей трансляции а). 

Поэтому sin( /2)≥1/2, и /2≥30
о
. Следовательно, угол поворота вокруг оси симметрии

=360
о
/N не может быть меньше 60

о
. Это значит, что максимальный порядок поворотной

оси в двумерном кристалле равен 6, и все возможные для него поворотные оси – это оси 2, 

4 и 6, а также ось 3 6 (которая может проходить через центр правильного треугольника с 

узлами в вершинах, но не через сами узлы). В то же время ось 5-го порядка несовместима 

с трансляционной симметрией, т.к. правильными пятиугольниками с углом при вершине 

108
о
 нельзя плотно (без щелей) заполнить плоскость (рис. 2.6 б). Таким образом,

двумерные кристаллы могут иметь следующие закрытые элементы симметрии: 

(2.1а) 1, 2, m, 3, 4 и 6, 

(включая тождественное преобразование 1). 

(а)       (б) 

Рисунок 2.6. (а) Изменение положения узлового ряда с кратчайшей трансляцией а 

(выделен серым цветом) при повороте плоской сетки на угол =360
o
/N вокруг узла 0.

(б) Плотное заполнение плоскости правильными треугольниками, квадратами, 

правильными шестиугольниками и невозможность ее заполнения правильными 

пятиугольниками. 

Ограничения на порядок поворотных осей в двумерных решетках переносятся и на 

трехмерные, поскольку каждое сечение 3D-решетки плоскостью, проходящей через узлы, 

является плоской сеткой. Но из-за наличия центров симметрии 1 в узлах трехмерной 

решетки поворотная ось 3, проходящая через узел, превратится в инверсионную ось 3, а 

любая четная поворотная ось породит перпендикулярную к ней плоскость m. Таким 

образом, в трехмерных кристаллах могут также существовать инверсионные оси 3-го, 4-го 

и 6-го порядков (Табл. 2.1). 

36
о
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Таблица 2.1 

Инверсионные оси в 3D-кристаллах (выделены жирным шрифтом) 

 

элементы 

в 2D-сетке + 1         результат    подгруппы 

m    2/m   2, m, 1  

2    2/m   2, m, 1  

3    3   3, 1 

4    4/m   4, 4, m, 1 

6    6/m   6, 3/m = 6, 3, 3, 2/m, 2, m, 1 

Весь перечень кристаллографических закрытых элементов симметрии (включая 

тождественное преобразование) для трехмерных кристаллов выглядит так: 

 

(2.1б)    1, 2, 3, 4, 6, 1, 2=m, 3, 4, 6 
 

 

2.3. Сингонии, решетки Браве и кристаллические классы 

 

Полный набор кристаллических классов для двумерных и трехмерных кристаллов 

можно построить, перебрав все возможные комбинации элементов симметрии из (2.1а) и 

(2.1б). Мы придем к тому же результату немного иначе: перечислим все точечные группы 

узла в решетке (голоэдрические группы) в порядке повышения симметрии и выпишем все 

подгруппы таких групп. На этом пути мы познакомимся с новыми для нас 

центрированными решетками, которые присутствуют во многих кристаллических 

структурах.  

Схему вывода голоэдрических групп вначале рассмотрим на примере плоских 

сеток. Симметрия узла в таких сетках соответствует симметрии координатного креста из 

кратчайших трансляций a, –a, b и –b (Рис. 2.7). Низшей возможной точечной группе 2 

отвечает косой координатный крест с произвольными a, b и ≠90
о
. Элементарная ячейка 

такой решетки – параллелограмм (Рис. 2.7 а). Деформируя эту решетку – например, 

изменяя параметр b и (или) угол  при неизменном а – постараемся добиться появления 

новых элементов симметрии: плоскостей m, перпендикулярных к плоскости сетки. Это 

можно сделать двумя способами: (1) направить трансляцию b перпендикулярно к a ( =90
o
) 

либо (2) установить b=a с произвольным углом . В обоих случаях из-за взаимодействия 

плоскости m с лежащей в ней поворотной осью 2 (см. ч. 1) точечной группой узла 

становится mm2, однако в первом случае плоскости m проходят по направлениям 

координатных трансляций a, b прямоугольной элементарной ячейки (Рис. 2.7 б), а во 

втором – по диагоналям a+b, a–b ромбической ячейки (Рис. 2.7 в).  
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Рисунок 2.7.Операции симметрии координатного креста в плоских сетках; их сингонии и 

решетки Браве. 

 

Изменяя параметр b в прямоугольной сетке до достижения b=a либо установив 

угол между трансляциями в ромбической ячейке =90
о
, получим тетрагональную 2D-

решетку с симметрией узла 4mm (Рис. 2.7 г). Если же в ромбической ячейке с b=a сделать 

угол между координатными трансляциями равным 120
о
, благодаря соотношению 

|b+a|=a=b возникнет гексагональная плоская сетка с симметрией узла 6mm (Рис. 2.7 д). 

Несколько более детальный анализ показывает, что все варианты возможной 

симметрии узла в плоской сетке исчерпываются четырьмя полученными нами группами 

(2, mm2, 4mm и 6mm). Выбрав в ромбической ячейке на Рис. 2.7 в новые координатные 

направления a'=a–b и b'=a+b по диагоналями ромба, мы построим прямоугольную 

элементарную ячейку вдвое большей площади, в которой плоскости m проходят по 

трансляциям a' и b'. В отличие от прямоугольной ячейки на Рис. 2.7 б и всех остальных 

ячеек на Рис. 2.7, узлы которых расположены только в вершинах, в центре «удвоенной» 

прямоугольной ячейки с координатами a’/2, b’/2 на Рис. 2.7 в также находится узел. 

Отвлекаясь от метрики плоской сетки, т.е. от численных величин ее параметров 

ячейки, обозначим координаты центра ячейки в долях координатных трансляций: 1/2, 1/2. 

Сетки без узлов внутри элементарных ячеек называются примитивными и обозначаются 

p. Сетка с узлом в центре 1/2, 1/2 называется центрированной и обозначается с.  

Таким образом, все возможные 2D-решетки имеют точечную симметрию узла 2, 

mm2, 4mm или 6mm, причем решетки симметрии mm2 могут быть примитивными либо 

центрированными, а остальные решетки – только примитивными (Табл. 2.2). Комбинируя 

символы сеток и их точечных групп, запишем все эти варианты как p2, pmm2, cmm2, 

p4mm и p6mm. Переход от одного «вида» решетки в другой в ходе деформации 

сопровождается мгновенным изменением симметрии, тогда как при деформациях внутри 

каждого «вида» решетки симметрия узла не изменяется. Заметим, что решетки pmm2 и 

cmm2 также не переводятся одна в другую непрерывными деформациями без изменения 

точечной группы узла: на таком пути лежит точка a=b, =90
o
, где возникает поворотная 

ось 4-го порядка. 
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Определение 1. Бесконечный набор всех решеток, относящихся к одной и той же 

голоэдрической группе, называется сингонией. 

 

Определение 2. Все решетки одной сингонии, переводимые одна в другую непрерывными 

деформациями, относятся к одному типу Браве. 

 

Определение 3. «Безразмерная» (т.е. обладающая произвольной метрикой) решетка, 

относящаяся к определенному типу Браве, называется решеткой Браве. 

 

 Мы видели, что плоские сетки разбиваются на четыре сингонии и пять решеток 

Браве. Названия сингоний и обозначения решеток вместе с условиями, накладываемыми 

симметрией на параметры элементарной ячейки, приведены в Табл. 2.2. Там же для 

каждой сингонии перечислены все подгруппы соответствующих голоэдрических групп. 

Десять полученных групп (голоэдрические группы плюс их подгруппы) – это все 

двумерные кристаллические классы, то есть все возможные точечные группы 2D-

кристаллов.  

 

Таблица 2.2 

Сингонии, кристаллографические группы и решетки Браве в двумерных кристаллах 

 

сингония голоэдрическая 

группа 

подгруппы типы решетки 

косоугольная 2 1 p 

прямоугольная (ортогональная) mm2 m p, c 

тетрагональная 4mm 4 p 

гексагональная 6mm 6, 3, 3m p 

 

 Сингонии, решетки Браве и точечные группы трехмерных кристаллов 

представлены в Табл. 2.3. Поскольку любое сечение 3D-решетки плоскостью, проходящей 

через узлы, является плоской сеткой, а всякая проведенная через узлы прямая линия – 

узловым рядом, ее голоэдрические группы «наследуют» симметрию низших 

размерностей. Низшей голоэдрической группе 1 (центры инверсии находятся в узлах 

любой трехмерной решетки) соответствует триклинная сингония. Добавление к центру 1 

оси 2 или плоскости m из-за взаимодействия элементов симметрии 2-го порядка 

порождает голоэдрическую группу 2/m (моноклинная сингония). По той же причине (см. 

формулы (2 а–в) в ч. 1) добавление к элементам группы 2/m еще одной оси 2 или еще 

одной плоскости m, перпендикулярных к уже имеющимся, порождает следующую 

голоэдрическую группу 2/m 2/m 2/m, т.е. mmm (орторомбическая сингония). 

Элементарной ячейкой триклинных кристаллов является косоугольный параллелепипед, 

моноклинных – прямой параллелепипед (см. ч.1, пример 1 в § 1.4), кристаллов 

орторомбической сингонии (в литературе также называемой ромбической или, реже, 

ортогональной) – прямоугольный параллелепипед.  

Дальнейшее повышение симметрии узла – аналогичное двумерным сеткам, но с 

добавлением центра инверсии в узле – дает тетрагональную (голоэдрическая группа 

4/mmm, элементарная ячейка – тетрагональная призма) и гексагональную сингонии 

(6/mmm, элементарная ячейка – 1/3 гексагональной призмы). Деформация тетрагональной 

решетки до c=a(=b) при сохранении 90
о
 создает кубическую сингонию с 

голоэдрической группой m 3 m (элементарная ячейка – куб).  

Кроме этих полиэдров, элементарной ячейкой трехмерного кристалла может быть 

«деформированный куб», или ромбоэдр – трехмерный аналог плоского ромба, т.е. 

деформированного квадрата. Решетки с такой ячейкой относятся к тригональной 

ромбоэдрической сингонии. Ей отвечает голоэдрическая группа 3m, которая возникает 
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при добавлении к элементам группы 2/m поворотной оси 3, проходящей через центр 

инверсии перпендикулярно оси второго порядка. Можно показать, что других точечных 

групп у 3D-решеток нет.  

 

Таблица 2.3 

Сингонии, кристаллические классы и решетки Браве для трехмерных кристаллов 

 

Сингония Кристаллические классы Параметры 

элементарной 

ячейки 

Решетки 

Браве голоэдрич. 

группа 

подгруппы 

триклинная 1 1 a≠b, a≠c, b≠c 

, ,  – любые 

Р 

моноклинная 2/m 2, m a≠b, a≠c, b≠c 

= ≠90
o
 

P, C (A) 

орторомбическая  mmm mm2, 222 a≠b, a≠c, b≠c 

=  

P, A (B, C), I, 

F 

тетрагональная 4/mmm 4, 4, 4/m, 4mm, 

422, 42m 

a=b≠c, 

=  

P, I 

тригональная  3m 3, 3, 3m, 32 a=b=c, 

= ≠  

P («гекса-

гональная R») 

гексагональная 6/mmm 6, 6, 6/m, 6mm, 

622, 6m2 

a=b≠c, 

 

P 

кубическая m 3 m 23, m 3, 43m, 432  P, I, F 

 

Таким образом, у трехмерных решеток имеется семь голоэдрических групп, каждая 

из которых описывает симметрию узла в определенной сингонии: 

 

1 , 2/m, mmm, 4/mmm, 3m, 6/mmm, m 3 m  
 

Каждый трехмерный кристалл принадлежит к одной из этих семи сингоний. 

Голоэдрические группы вместе с их подгруппами составляют 32 трехмерных 

кристаллических класса, среди которых присутствуют все двумерные классы (см. Табл. 

2.2). Среди этих кристаллографических точечных групп имеется 11 центросимметричных 

(все голоэдрические группы, а также группы 3, 4/m, 6/m и m 3), которые называются 

классами Лауэ. В рентгеновской кристаллографии симметрия дифракционной картины 

любого кристалла без учета аномального рассеяния соответствует одному из классов 

Лауэ. 

 Различные варианты центрирования трехмерных решеток (см. рис. 2.4) можно 

вывести, выделяя в их сечении плоские сетки и помня, что центрированной может быть 

только прямоугольная сетка. Поскольку в сечении триклинной решетки прямоугольных 

сеток нет, единственной решеткой Браве в этой сингонии является примитивная 

триклинная (Р). Так как боковые ребра прямого параллелепипеда – прямоугольники, в 

моноклинной сингонии, помимо примитивной Р, возможна бокоцентрированная решетка, 

обозначаемая А (если центрированная грань ячейки противолежит ребру а) или С (если 

центрирована грань, противолежащая с). По соглашению, ось 2 моноклинной решетки 

совмещают с координатным направлением b, поэтому В-решеток с центрированной парой 

граней, противолежащих b, в моноклинной сингонии не существует*. В орторомбической  

 
* До середины ХХ века особое направление моноклинных кристаллов (т. наз. «ось 

моноклинности») было принято совмещать с направлением с. В этой установке ≠90
o
 и возможны 

А- и В-бокоцентрированные моноклинные кристаллы, а С-центрированные невозможны. 
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решетке прямоугольным является любое сечение, проходящее через два параллельных 

ребра ячейки, поэтому здесь возможны примитивная (Р), бокоцентрированные (А, В, С), 

объемноцентрированная (I) и гранецентрированная (F) решетки.  

Отметим, что все узлы одной решетки симметрически эквивалентны, а значит 

каждый узел должен обладать одинаковым набором трансляций. Поэтому «дважды 

бокоцентрированная» решетка с узлами в центрах четырех граней в действительности 

является гранецентрированной F-решеткой (Рис. 2.8 а). Выделяя прямоугольные сечения, 

связанные поворотными осями, в решетках средней категории симметрии, с учетом этого 

обстоятельства можно убедиться, что в тетрагональной сингонии имеются P- и I-решетки 

(Рис. 2.8 б, в), а ромбоэдрической и гексагональной – только примитивные решетки. 

Наконец, в кубической сингонии возможны P-, I- и F-, но не бокоцентрированные 

решетки, поскольку грани кубической элементарной ячейки связаны диагональными 

осями 3, которые превращают бокоцентрированную ячейку в гранецентрированную. 

Таким образом, для трехмерных кристаллов имеется 14 решеток Браве, распределенных 

по семи сингониям (см. Табл. 2.3).  

 

 

 

 

 

 

 

 

 

 

  (а)        (б)       (в) 

 

Рисунок 2.8. (а) Переход от «дважды бокоцентрированной» А+В-ячейки к F-ячейке 

действием диагональных трансляций, связывающих узлы в центрах боковых граней, на 

узлы в вершинах (серые стрелки). (б) Переход от тетрагональной С-ячейки к 

тетрагональной Р-ячейке вдвое меньшего объема (a’=a/√2, угол ’=90
o
). (в) аналогичный 

переход от тетрагональной F- к тетрагональной I-ячейке. 

 

Все решетки Браве трехмерных кристаллов показаны на Рис. 2.9. Выбор 

направлений a, b и c в примитивной ромбоэдрической решетке не согласуется с правилом 

репера Браве (правило (5) на стр. 5), поскольку инверсионная ось 3 наивысшей 

симметрии проходит в ней не по координатной трансляции, а по диагонали ромбоэдра. К 

новому базису a', b', c', в котором направление с' совпадает с осью 3, a' и b' ей 

перпендикулярны и a'=b'≠c', можно перейти преобразованием 

 

   a' = a – b, 

   b' = b – c, 

   c' = a + b + c, 

 

которое приводит тригональную P-решетку к тем же координатным осям ( = =90
o
, 

120
o
), что и у гексагонального кристалла. Объем полученной элементарной ячейки 

втрое больше объема примитивного ромбоэдра, а внутри нее расположены два узла с 

«безразмерными» координатами (1/3, 2/3, 1/3) и (2/3, 1/3, 2/3) (рис. 2.10 в, г).  

 

a 

c 

b 
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Рисунок 2.9. Решетки Браве трехмерных кристаллов и их пространственные группы 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        (в)    (г)  

 

Рисунок 2.10. Примитивные ромбоэдрические ячейки (а) в объемноцентрированной 

кубической (  = 109.44
o
), (б) в гранецентрированной кубической (  = 60

o
) решетках. 

Примитивная (XR, YR, ZR) и дважды центрированная (XH, YH, ZH) установки тригональной 

ромбоэдрическая решетки: (в) общий вид, (г) проекция вдоль направления с’. 
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Подчеркнем, что симметрия узла в ромюоэдрической решетке ( 3m) ниже, чем в 

примитивной гексагональной (6/mmm). В литературе эта решетка не совсем строго 

называется «гексагональной дважды центрированной» или «гексагональной R». Поэтому в 

некоторых учебниках трехмерные кристаллы подразделяют не на семь, а на шесть 

сингоний, относя тригональную ромбоэдрическую решетку к гексагональной R-

подсингонии. Так как по телесным диагоналям куба проходят оси 3, в кубическую 

сингонию переходят ромбоэдрические решетки с углами 90
о
 (примитивная 

кубическая), 60
о
 (гранецентрированная кубическая) и 109

о
 44' (угол между осями 3 в 

тетраэдре: объемноцентрированная кубическая решетка) (Рис. 2.10). 

 

 

2.4. Точки, прямые линии и плоскости в кристаллографической системе координат 

 

 Мы видели, что кристаллографическая система координат, «натянутая» на 

базисные трансляции a, b (в 2D-кристалле) или a, b и c (в 3D-кристалле), в общем случае 

не является ортогональной (и тем более декартовой). Для того чтобы в компактной форме 

описать структуру кристалла на атомном уровне, необходимо уметь задавать в этой 

системе положения точек, линий и плоскостей, а также вычислять по этим данным 

метрические параметры структуры (расстояния, а также плоские и двугранные углы).  

Координаты произвольной точки – например, позицию атома – внутри 

элементарной ячейки 3D-кристалла (в самом общем случае триклинного) задают в 

безразмерном виде x′, y′, z′, где x′=x/a, y′=y/b, z′=z/c – отношения длин косоугольных 

проекций вектора r={x, y, z}, проведенного из начала координат в эту точку, к длинам 

базисных векторов a, b и c (Рис. 2.11). Такая тройка положительных чисел, находящихся 

между 0 и 1, называется дробными, или фракционными, координатами точки в ячейке. 

Точке, лежащей в произвольной ячейке кристалла, соответствует вектор r+ua+vb+wc, где 

u, v и w – целые числа трансляций, на которые эта ячейка отстоит от начала координат (в 

зависимости от направления трансляций, числа могут быть как положительными, так и 

отрицательными). Фракционные координаты точки в этом случае равны x′+u, y′+v, z′+w. 

Параметры элементарной ячейки и фракционные координаты содержащихся в ней атомов 

полностью определяют структуру кристалла. Далее мы всегда будем считать координаты 

точек x, y, z в ячейке фракционными, т.е. безразмерными, опуская штрихи. 

 

 
 

Рисунок 2.10. Координаты атома (x, y, z) в косоугольной системе (схема) 

 

Чтобы рассчитывать геометрические характеристики структуры произвольного 

кристалла (например, длины межатомных связей и валентные углы, образованные связями 
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при одном атоме) по набору фракционных координат атомов {xi/a, yi/b, zi/c} в 

неортогональном базисе a, b, c, необходимо знать параметры ячейки a, b, c, ,  и . 

Важной характеристикой такого базиса является матрица Грама Gabc: симметричная 

квадратная матрица 3 3, составленная из всех скалярных произведения базисных 

векторов:  

 

  (a,a) (a,b) (a,c) 

Gabc =   (b,a) (b,b) (b,c) 

  (c,a) (c,b) (c,c) 

 

(Напомним, что скалярные произведения базисных векторов решетки равны 

 

(a,a) = a
2
, (b,b) = b

2
, (c,c)=c

2
 

(a,b) = (b,a) = ab·cos  

(a,c) = (c,a) = ac·cos  

(b,c) = (c,b) = bc·cos  

 

и скалярное произведение любой пары взаимно перпендикулярных векторов равно нулю). 

Величина определителя матрицы Грама равна квадрату объема косоугольного 

параллелепипеда, «натянутого» на векторы a, b и c: 

 

(2.2)    Vabc = (det Gabc)
1/2 

 

Формула (2.2) позволяет рассчитать объем элементарной ячейки кристалла любой 

сингонии. Так, в орторомбической, тетрагональной и кубической сингониях с 

ортогональными кристаллографическими координатами все недиагональные элементы 

матрицы Грама равны 0, det Gabc = (a
2
b

2
c

2
), и V = abc. Для моноклинной сингонии при 

≠90
o
 (a,c)=(c,a)= ac·cos ≠ 0. Разлагая определитель по верхней строке и раскрывая 

миноры 2 2, получим 

 

    a
2
 0 (a,c) 

      det    0 b
2
    0 = a

2
b

2
c

2
 – a

2
b

2
c

2
cos

2
 = a

2
b

2
c

2
sin

2
  

  (c,a) 0    c
2
 

 

т.е. Vмонокл = abc·sin . В гексагональной сингонии (a = b, =120
o
) Vгекс = a

2
c sin  =·a

2
c√3/2.  

По той же схеме можно вывести более сложные формулы для объема ячейки в 

ромбоэдрических и триклинных кристаллах.  

С помощью матрицы Грама можно найти скалярное произведение двух векторов с 

безразмерными координатами r1={x1, y1, z1} и r2={x2, y2, z2} в произвольном кристалле 

 

      (a,a) (a,b) (a,c)   x2 

(2.3)  (r1, r2) = r1r2·cos  =  (x1 y1 z1) (b,a) (b,b) (b,c)   y2 =   ˜X1GabcX2, 

      (c,a) (c,b) (c,c)   z2 

 

где ˜X1 и X2 – соответственно вектор-строка r1 и вектор-столбец r2, – угол между этими 

векторами, Gabc – матрица Грама. По формуле (2.3) для любой пары точек x1, y1, z1 и 

x2, y2, z2 можно вычислить расстояние r как длину вектора r2–r1={x2-x1, y2-y1, z2-z1}= 

{ x, y, z}, а также угол  между векторами r1 и r2 : 

 

(2.4)   r = (˜XGabcX)
1/2

,  X = { x, y, z}; 

 = arccos [(˜X1GabcX2)/(r1r2)] 
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Соотношения (2.4) позволяют рассчитать геометрические параметры структуры любого 

кристалла. 

 

 Безразмерными координатами любого узла решетки, очевидно, служит тройка 

целых чисел u v w (их записывают без скобок и без запятых). «Ориентированную» прямую 

линию, проходящую через узлы, обозначают [u v w]: один из узлов, лежащий на линии, 

принимают за начало координат, и в квадратных скобках без запятых записывают 

координаты ближайшего узла на той же прямой. Целочисленные компоненты вектора 

[u v w] называются индексами кристаллографического направления. Индексам [u v w] и 

[ u v w] соответствуют противоположные направления по одной и той же линии (Рис. 

2.11 а). «Звезда» направлений, переводимых одно в другое операциями симметрии 

кристаллического класса, обозначается индексами u v w : тройкой целых положительных 

чисел без запятых в треугольных скобках. Так, для орторомбического кристалла 

направлениям 1 1 1  в кристаллическом классе mmm отвечают восемь векторов вида 

[ 1 1 1], а в классе mm2 – четыре вектора [ 1 1 1] (Рис. 2.11 б, в). 

 

 

 

 

 

 

 

 

 

 

   (а)     (б)   (в) 

 

Рисунок 2.11. (а) Индексы кристаллографических направлений [u v] в двумерной сетке, (б) 

направления 1 1 1 , связанные операциями симметрии в кристаллическом классе mmm, 

(в) направления 1 1 1  в классе mm2. 

 

 В кубическом кристалле три взаимно перпендикулярные трансляции одинаковой 

длины (a=b=c) задают ортогональную систему декартовых координат, в которой 

расстояния между любой парой точек умножаются на параметр а (масштабный 

множитель). Из аналитической геометрии известно, что в декартовых координатах 

уравнением  

 

   Ax +By +Cz +D = 0 

 

задается плоскость, перпендикулярная вектору (А В С) и отсекающая от начала координат 

отрезки, пропорциональные отношениям x0=A/D, y0=B/D и z0=C/D. Поэтому в кубической 

сингонии через узел решетки 0 0 0 (D=0) перпендикулярно каждому вектору [u v w] 

проходит плоскость  

 

(2.5)   ux + vy +wz = 0, 

 

в которой лежат узлы с целочисленными координатами x y z, отвечающими условию (2.5). 

Действием трансляций на эту плоскость получим бесконечную систему параллельных 

кристаллографических плоскостей, каждая из которых проходит через узлы решетки.  

Таким образом, в кубической решетке тройка целых чисел u,v,w может служить 

индексами как для направления [u v w], так и для бесконечной системы 

перпендикулярных ему кристаллографических плоскостей. Две соседние плоскости в 

0 
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такой системе отсекают от трех координатных осей отрезки длиной aX=a/u, bY=b/v и 

cZ=c/w (учитывая, что для кубического кристалла a=b=c, рис. 2.12 а). 

 В произвольной сингонии, где условие a=b=c не выполняется или (и) векторы 

a, b, c не ортогональны, кристаллографические плоскости уже не перпендикулярны 

кристаллографическим направлениям. Тем не менее, бесконечную систему параллельных 

плоскостей, проходящих через узлы решетки, в этом случае также задают тройкой целых 

чисел: индексов Миллера (h k l), которые записывают в круглых скобках без запятых. По 

определению, 

 

h = a/aX 

(2.6)    k = b/bY  

l = c/cZ, 

 

где a, b, c – длины ребер элементарной ячейки, aX, bY, cZ – соответственно длины 

отрезков, отсекаемых от этих ребер парой соседних плоскостей (Рис. 2.12 б). Индексам 

(h k l) и ( h k l ) отвечает одна и та же система плоскостей с инвертированными 

направлениями всех координатных трансляций. В рентгеновской дифрактометрии 

индексы h k l также приписывают рефлексам, рассматриваемым как отражения 

рентгеновского луча от бесконечной системы параллельных кристаллографических 

плоскостей, усиленные конструктивной интерференцией. 

 

 

 

 

 

 

 

 

 

         (а)   (б) 

 

Рисунок 2.12. (а) Кристаллографическое направление [2 1] и перпендикулярные к нему 

линии (серого цвета) в квадратной плоской сетке (a=b, =90
o
): aX = a/2, bY=b.  

(б) Кристаллографические плоскости системы (1 2 0) (показаны серым цветом, aX=a, 

bY=b/2) и перпендикулярное к ним некристаллографическое направление (серая стрелка) в 

трехмерной триклинной решетке. Выделены узлы в начале координат. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (1 0 0)    (2 1 0)       (2 1 2) 

Рисунок 2.13. Индексы Миллера для систем кристаллографических плоскостей в 

трехмерных решетках. 

0 

[21] 

aX 

bY 

a 

b 
0 

0 aX 

(1 2 0)  
bY 

d120 

с 
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Заметим, что в примитивных решетках индексы Миллера по определению (2.6) не 

могут иметь общих целочисленных множителей, отличных от 1. Так, в системе (2 2 2) 

половина всех плоскостей должны проходить не через узлы, а через середины ребер 

элементарных ячеек – но такие плоскости не являются кристаллографическими. Если же 

кристаллографические плоскости параллельны одной либо двум координатным 

трансляциям, соответствующие индексы Миллера для них равны нулю (Рис. 2.13). 

 Индексами Миллера (h k l) в кристаллографии также задают одиночные плоскости 

из соответствующего семейства. В этом случае запись (h k l) и ( h k l ) отвечает двум 

параллельным плоскостям, находящимся на одинаковых расстояниях по разные стороны 

от начала координат. Этим способом удобно обозначать грани кристалла. Набор 

симметрически эквивалентных плоскостей, переводимых одна в другую операциями 

симметрии точечной группы кристалла, называется формой {h k l} (либо простой 

формой); форму обозначают тройкой неотрицательных индексов Миллера в фигурных 

скобках (Рис. 2.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 2.14. Октаэдр как простая форма {1 1 1} точечной группы m 3 m; показаны 

индексы Миллера для двух граней. 

 

Кратчайшее расстояние между парой соседних кристаллографических плоскостей в 

системе (hkl) (межплоскостное расстояние dhkl) в ортогональных кристаллографических 

координатах удовлетворяет простым соотношениям 

 

1/dhkl
2
 = h

2
/a

2
 + k

2
/b

2
 + l

2
/c

2  
для орторомбической сингонии 

(2.7)  1/dhkl
2
 = (h

2
+ k

2
)/a

2
 + l

2
/c

2
   для тетрагональной сингонии 

1/dhkl
2
 = (h

2
+ k

2
+ l

2
)/a

2
   для кубической сингонии 

 

Формулы (2.7) легко проверить на примере системы кристаллографических параллельных 

линий в плоской ортогональной сетке (рис. 2.15). Выразив площадь прямоугольного 

треугольника ОАВ через произведение длин катетов ОА=aX=a/h, ОВ=bY=b/k и через 

произведение длины гипотенузы АВ = (aX
2
+bY

2
)
1/2

 на высоту dhk, затем возведя обе части 

равенства в квадрат и выполнив сокращение, получим 

 

  (a/h)·(b/k) = (a
2
/h

2
+b

2
/k

2
)
1/2

 dhk, 

(a
2
b

2
)/h

2
k

2
 = dhk

2
(k

2
a

2
 + h

2
b

2
)/h

2
k

2
, 

 

откуда, после сокращения знаменателей и деления левой и правой частей на a
2
b

2
d

2
hk , 

 

  1/dhkl
2
 =(k

2
a

2
 + h

2
b

2
)/ (a

2
b

2
) = h

2
/a

2
 + k

2
/b

2
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Рисунок 2.15. Вывод аналога соотношений (2.7) для плоской ортогональной сетки 

 

Аналоги соотношений (2.7) для косоугольных сингоний имеют более сложный вид 

и включают элементы матрицы Грама. На основе всех таких соотношений индексы 

Миллера (h k l) можно рассматривать как координаты узлов в абстрактной обратной 

решетке с базисными векторами a*, b*, c*, модули которых обратно пропорциональны 

длинам координатных трансляций (т.е. имеют размерность обратной длины [Å
–1

]). 

Представления об обратной решетке широко используются в теории рентгеновской 

дифракции и во многих разделах физики твердого тела. 

 

 

2.5. Открытые элементы симметрии 

 

 Кроме трансляций, в пространственную группу кристалла могут входить закрытые 

кристаллографические элементы симметрии. (Для бесконечной цепочки полиэтилена на 

рис. 2.1 б такими элементами являются плоскости m, оси 2 и центры инверсии 1, для 

гексагональной пленки мыла на рис. 2.2 б – оси 6, проходящие по осям идеализированных 

«цилиндров» н-CnH2n+1, и т.д.) Каждому закрытому элементу отвечает набор операций 

симметрии, оставляющих на месте хотя бы одну точку кристалла: эти элементы образуют 

точечную группу, порядок которой называется порядком элемента симметрии. Для 

произвольного закрытого элемента симметрии R порядка n справедливо соотношение 

 

     R
n
 = 1 

 

(n-кратное повторение операции R
1
 дает тождественное преобразование 1).  

 В отличие от закрытых операций симметрии, трансляции приводят к 

самосовмещению бесконечной периодической фигуры, не оставляя в ней неподвижных 

точек. Все такие операции называются открытыми. Поскольку возможен перенос на 

любое целое число трансляций, это – открытые операции симметрии бесконечного 

порядка. С трансляциями совместимы лишь некоторые закрытые элементы симметрии, 

называемые кристаллографическими; в двумерных и трехмерных кристаллах эти 

элементы (разд. 2.2) могут иметь порядки n = 2, 3, 4 или 6. 

 Добавление трансляций к набору закрытых операций порождает новые, ранее не 

встречавшиеся нам открытые элементы симметрии: плоскости скольжения (glide planes) и 

винтовые оси (screw axies). Для таких элементов справедливо общее соотношение: 

 

(2.8)     R
n
 = pt, 

 

О 

В 

А 

aX 

bY 

dhk 
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где R – открытая кристаллографическая операция симметрии, t – кратчайшая трансляция 

кристалла, p < n – целое число (n-кратное повторение операции R
1
 равнозначно 

трансляции). «Чистые» трансляции (R=t) задаются формулой (2.8) при p=n=1, закрытым 

элементам симметрии отвечает р=0 (отсутствие трансляций эквивалентно тождественному 

преобразованию).  

Строго говоря, все нетрансляционные открытые элементы R имеют бесконечный 

порядок, так как m-кратное повторение операции R
1
 приводит к самосовмещению 

кристалла при любых целых числах m. Однако они выводятся из закрытых 

кристаллографических элементов конечного порядка n, так что при любом m=An+k 

результат открытой операции R
m

 является суммой операции R
k
 (k<n) и трансляции Аt. 

Говорят, что открытые операции симметрии приводят к самосовмещению «с точностью 

до трансляции». На этом основании плоскостям скользящего отражения приписывают 

порядок 2, а кристаллографическим винтовым осям – порядки 2, 3, 4 или 6. 

 Особенно просто открытые элементы выводятся с помощью соотношения (2.8) из 

закрытых элементов 2-го порядка. В этом случае открытая операция R является 

сочетанием закрытой операции R’ со сдвигом на половину трансляции, так что 

 

R
2
 = (R’)

2
 + t/2 + t/2 = t 

 

(т.е. p=1). Можно показать, что добавление половины трансляции к инверсии 1 не 

порождает открытых элементов симметрии. Но отражение в плоскости со сдвигом на 

половину кратчайшей трансляции в этой плоскости – это открытая операция скользящего 

отражения (или «скольжения»). Сдвигам на ½ разных координатных трансляций 

соответствуют разные координатные плоскости: 

 

плоскость a: отражение + сдвиг на t/2 = a/2, 

плоскость b: отражение + сдвиг на b/2,  

плоскость c: отражение + сдвиг на c/2, 

 

Подставив в (2.8) векторную сумму двух координатных трансляций (t=a+b, a+c или 

b+c), мы получим диагональные плоскости скользящего отражения со сдвигами на 

a/2+b/2, a/2+c/2 или b/2+c/2. Все эти плоскости обозначаются символом n. Наконец, 

сочетание поворота на 180
о
 со сдвигом на половину трансляции вдоль оси поворота дает 

еще один открытый элемент второго порядка: винтовую ось 21. Графические символы 

плоскостей скользящего отражения показаны на рис. 2.16. 

 В кристаллах с центрированными решетками кратчайшие трансляции равны 

половине векторной суммы сдвигов по двум координатным направлениям (для решеток A, 

B, C или F) либо по трем координатным направлениям (для I-решеток). В этих кристаллах 

могут существовать плоскости скользящего отражения со сдвигом на половину 

центрирующей трансляции tцентр. (R
2
=tцентр.). Такие плоскости, впервые обнаруженные в 

кристаллической структуре алмаза, называют «алмазными» и обозначают символом d 

(diamond). Хотя действие «алмазных» плоскостей включает сдвиг на векторные суммы 

четвертей координатных трансляций – это открытые элементы второго порядка, 

поскольку tцентр. представляют собой суммы половин координатных трансляций (a/2, b/2, 

c/2), так что d
 2

=tцентр (см. Рис. 2.16). Кроме того, в некоторых кристаллах с 

центрированными решетками (например, в молекулярном кристалле иода на Рис. 2.2 в) 

разные плоскости скольжения могут накладываться. По решению Международного союза 

кристаллографов, начиная с 1992 г. «двойные» плоскости скользящего отражения 

обозначают символом e (в более ранней литературе специальные обозначения для них не 

использовались). 

 Открытые элементы симметрии второго порядка присутствуют, например, в 

молекуле полиэтилена (СН2–СН2)∞, содержащей бесконечную плоскую трансоидную 
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цепочку из атомов углерода с периодом повторяемости t в два метиленовых звена (см. 

рис. 2.1 б). (В действительности любая полимерная молекула, как и любой кристалл, 

состоит из конечного числа звеньев (элементарных ячеек) – но если это число очень 

велико, бесконечная цепь с трансляционной симметрией служит хорошей моделью). 

Поворот бесконечной цепи полиэтилена вокруг ее осевой линии со сдвигом на t/2 

приводит к самосовмещению и, таким образом, по этой линии проходит винтовая ось 21. 

Отражение углеродной цепочки в перпендикулярной к ней плоскости, рассекающей цепь 

вдоль оси 21, со сдвигом на t/2 также приводит к самосовмещению – а значит, эта 

плоскость является плоскостью скользящего отражения. Для бесконечных фигур, 

периодических в двух или в одном измерении, такие плоскости обозначают обобщенным 

символом g от английского слова glide, т.е. «скольжение». По аналогии с взаимодействием 

закрытых элементов симметрии второго порядка (см. ч. 1) обычно говорят, что ось 21, 

проходящая по линии пересечения взаимно перпендикулярных плоскостей g и m вдоль 

направления сдвига, является результатом взаимодействия закрытого и открытого 

элементов симметрии. В следующем разделе мы рассмотрим такие взаимодействия более 

детально. 
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Рисунок 2.16. Графические символы плоскостей скользящего отражения, параллельных (||) 

и перпендикулярных ( ) плоскости  рисунка. Обозначения координатных плоскостей a, b 

и c определяются системой координат XYZ. Плоскости d с противоположным 

направлением сдвига чередуются через 1/4 координатной трансляции. 

 

На примерах других полимерных цепочек можно увидеть винтовые оси более 

высоких порядков. При этом важно помнить, что открытые элементы могут существовать 

только в бесконечных периодических фигурах, где всегда присутствуют операции 

трансляционной симметрии T=Аt, А – любое целое число. Если вдоль трансляции t 

проходит поворотная ось порядка n, бесконечный набор операций симметрии R
k
+Аt 

(0 k n) образует группу, в которой можно выделить подгруппу всех винтовых поворотов 

фигуры. Можно доказать, что инверсионные оси R порядка n>2 при сочетании с 

трансляциями не порождают новых открытых элементов симметрии. Таким образом, нам 

остается рассмотреть кристаллографические винтовые оси порядка 3, 4 и 6. 

Построим модельную бесконечную цепь из тетрахлорплатинат-анионов PtCl4
2–

 в 

заслоненной взаимной ориентации (Рис. 2.17 а). Вдоль этой цепи проходит поворотная ось 

X 

 Y 

Z 

1/8 

3/8 
1/4 

1/4 
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4, совпадающая с направлением трансляций Аt0, где t0 – расстояние между соседними 

анионами, А – любое целое число. Если в каждом звене заменить один атом хлора на Br, 

слабые вторичные взаимодействия Pt...Pt и Br...Br приведут полученную цепь (PtCl3Br
2–

)∞ 

в энергетически выгодную заслоненную конфигурацию с поворотом соседних звеньев на 

90
о
 (Рис. 2.17 б). В этой цепи уже нет поворотной оси 4, но она обладает трансляционной 

симметрией с периодом повторяемости t = 4t0 и винтовой симметрией: поворот цепи 

вокруг оси на 90
о
 против часовой стрелки со сдвигом на t/4=t0 также приводит к ее 

самосовмещению. Такую винтовую ось обозначают 41; четырехкратный винтовой поворот 

41
4
 эквивалентен трансляции цепи t=4t0. Нетрудно построить и другие модельные 

бесконечные цепи с периодом повторяемости t=nt0, самосовмещающиеся при повороте на 

360
о
/n против часовой стрелки со сдвигом на t/n=t0 (где t0 – по-прежнему расстояние 

между соседними звеньями). Каждая такая цепь обладает винтовой осью, по системе 

Германа-Могена обозначаемой N1 (N=n – целое число, см. гл. 1), где N1
n
=t в соответствии 

с формулой (2.8). Переходя от одиночной бесконечной цепи к бесконечному кристаллу, 

мы должны ограничиться кристаллографическими винтовыми осями порядка 3, 4 и 6. 

Модельную бесконечную цепь (PtCl3Br
2–

)∞ можно, однако, построить и по-другому, 

поворачивая соседние фрагменты PtCl3Br
2–

 на 90
о
 не против, а по часовой стрелке (Рис. 

2.17 в). Две полученные цепочки (PtCl3Br
2–

)∞ энантиоморфны, поскольку они не 

переводятся друг в друга движениями в трехмерном пространстве (см. ч. 1). Винтовую ось 

цепи на Рис. 2.17 в обозначают 43. Ниже мы поясним смысл этого символа. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (а)   (б)   (в)   (г) 

 

Рисунок 2.17. Винтовые оси 4р в модельных цепочках комплексных ионов с плоско-

квадратной координацией атома Pt: (а) 4 + трансляции t0, (б) 41, (в) 43, (г) 42. 

 

Построим еще одну модельную цепь из дианионов транс-PtCl2Br2
2-

, соседние 

фрагменты которой развернуты на 90
о
 (Рис. 2.17 г). Вдоль этой цепи, очевидно, проходит 

поворотная ось 2, а ее период повторяемости равен 2t0. Но у цепочки (транс-PtCl2Br2
2-

)∞ 
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есть и винтовая симметрия: ее поворот на 90
о
 со сдвигом на t0 (теперь это половина 

трансляции) также приведет к самосовмещению. Такую винтовую ось обозначают 42; 

подстрочный индекс «2» показывает, на сколько 1/4 долей трансляции сдвигается 

построенная нами фигура при винтовом повороте с самосовмещением. 

Рассмотренные модели позволяют дать общее определение винтовой оси 

произвольного порядка n. Еще раз подчеркнем, что такие оси присутствуют только в 

бесконечных периодических фигурах и направлены в них вдоль трансляций Аt (где t – 

кратчайшая трансляция, А – целые числа).  

 

Определение 4. Винтовая ось Np приводит к самосовмещению бесконечной 

периодической фигуры при повороте вокруг оси на угол 360
o
/N против часовой стрелки со 

сдвигом вдоль оси на (p/N)t, где p<N – целое число, t – кратчайшая трансляция в 

направлении оси. Таким образом, N-кратное повторение винтового поворота Np
1
 

эквивалентно сдвигу фигуры на pt в соответствии с формулой (2.8). 

 

 Определению 4 соответствует симметрия всех модельных цепочек на Рис. 2.17. 

При отсутствии сдвига (p=0) винтовая ось превращается в поворотную (ось 4 на Рис. 

2.17 а). Случаю p=1 отвечает винтовая ось 41, т.е. поворот против часовой стрелки на 90
о
 

со сдвигом на 1/4 трансляции «вверх» от плоскости рисунка (рис. 2.17 б). Действию оси 43 

на рис. 2.17 в (p=3) отвечает такой же поворот против часовой стрелки на 90
о
 со сдвигом 

на 3/4 трансляции. Но поскольку любое целое число трансляций t=4t0 также приводит к 

самосовмещению цепочки, комбинация винтового поворота 43 и трансляции –4t0 

эквивалентна повороту на –90
о
 (т.е. по часовой стрелке) со сдвигом «вверх» на четверть 

трансляции. Таким образом, действие оси 43 отвечает винтовому движению «анти-41» по 

часовой стрелке. На Рис. 2.17 б атомы Br, связанные осью 41, располагаются на левой 

спирали, а на Рис. 2.17 в такие же атомы, связанные осью 43, расположены на 

энантиоморфной правой спирали. Наконец, ось 42 на рис. 2.17 г отвечает повороту на 90
0
 

со сдвигом на половину трансляции (t=2t0). В модельной цепи (транс-PtCl2Br2
2-

)∞ атомы Br 

занимают положения на ахиральной двойной спирали, поэтому ось 42 не имеет 

энантиоморфов.  

 На основе определения 4 легко перечислить все одиннадцать винтовых 

кристаллографических осей Np, которые получаются из кристаллографических 

поворотных осей N=2, 3, 4 и 6 добавлением нижнего индекса p, принимающего значения 

от 1 до n–1. Все оси Np и Nn-p с p  n–p образуют энантиоморфные пары (31 и 32, 41 и 43, 61 

и 65, 62 и 64; тогда как оси 21, 42 и 63 (p=N/2) не имеют энантиоморфов,. Графические 

символы всех винтовых осей показаны на Рис. 2.18. В отличие от учебной литературы, в 

справочниках по кристаллографии на графиках пространственных групп поворотную ось 

2, параллельную плоскости рисунка, обозначают двойной стрелкой, а такую же винтовую 

ось 21 – «половинной» стрелкой. 

 Поскольку винтовые оси Np можно вывести из поворотных осей N того же порядка, 

все точки, связанные осью Np (симметрически эквивалентные позиции), в проекции вдоль 

направления оси располагаются в вершинах правильного N-угольника. В нижней части 

Рис. 2.17 показаны такие системы точек для осей 41, 43 и 42. Из рисунка можно видеть, что 

два последовательных винтовых поворота 41 эквивалентны вращению на 180
о
 со сдвигом 

на половину трансляции, т.е. действию винтовой оси 21:  

 

41
2
=21, или 41 21 

 

(«винтовая ось 21 содержится в винтовой оси 41»). Два винтовых поворота 43 

эквивалентны вращению на 180
о
 со сдвигом на полторы трансляции, т.е. 

 

   43
2
 = 21 + t, или снова 43 21  
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(«с точностью до трансляции»), а два последовательных винтовых поворота 42 приводят к 

повороту на 180
о
 со сдвигом на одну трансляцию, т.е 

 

   42
2

2 

 

Построив системы эквивалентных позиций для винтовых осей 3-го и 6-го порядков, 

нетрудно убедиться, что 

 

 61  31, 21; 65  32, 21; 62  32, 2; 64  31, 2, и 63  3, 21 

 

Эти математические соотношения родственны соотношениям между закрытыми 

элементами симметрии 4 2 и 6 3, 2 (если не забывать, что вдоль винтовых осей всегда 

имеются трансляции).  

 

    21   21 ||     (2 ||:     ) 

 

 

 

   31    32  32 ||      и т. д. 
 

 

 

   41    43    42 

 

 

 

 

61     65         62   64      63 

 

Рисунок 2.18. Кристаллографические винтовые оси (|| – параллельные плоскости рисунка).  

 

 

2.6. Взаимодействия открытых элементов симметрии. Графики некоторых 

пространственных групп 

 

 Обсуждая плоские сетки, т.е. двумерные решетки, мы уже использовали для их 

обозначения комбинацию типа решетки и точечной симметрии узла (р2, p2mm, c2mm и 

др.). Подобное сочетание символов решетки Браве и набора порождающих элементов 

(среди которых могут быть как закрытые, так и открытые) лежит в основе международной 

системы обозначения симметрии любых двумерных и трехмерных кристаллов. В 

настоящем разделе мы рассмотрим общие правила построения символов 

пространственных групп и простейшие примеры их графиков. 

 

Определение 5. Совокупность всех преобразований симметрии, приводящих к 

самосовмещению атомной структуры трехмерного кристалла, называется 

пространственной группой. Пространственная группа любого кристалла содержит 

бесконечную подгруппу всех его трансляций: решетку. Симметрию кристалла как 

конечного трехмерного тела задает одна из 32 точечных кристаллографических групп 

(кристаллических классов); всякая пространственная группа принадлежит к 

определенному классу. 
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Полный символ пространственной группы трехмерного кристалла в системе 

Германа-Могена состоит из четырех позиций (для точечной группы – из трех позиций, 

см. ч.1). В первой позиции находится символ решетки (P, A, B, C, I, F или R). Остальные 

три позиции занимают порождающие элементы симметрии кристалла (закрытые и 

открытые) по правилам, аналогичным построению символа точечной группы (см. ч. 1). 

Если в координатных или диагональных направлениях, указываемых в символе, нет 

элементов симметрии, в соответствующей позиции ставят 1. Так, например, 

пространственная группа примитивной решетки Браве в моноклинной сингонии 

(симметрия узла 1 2/m 1) имеет полный символ P 1 2/m 1 и краткий символ P2/m, а 

полный символ орторомбической пространственной группы P 21/b 21/c 21/a с открытыми 

порождающими элементами преобразуется в краткий символ Pbca. Все пространственные 

группы имеют бесконечный порядок, поскольку любая из них содержит бесконечную 

подгруппу трансляций. Однако на элементарную ячейку любого кристалла приходится 

конечное число элементов симметрии.  

Общее число всех возможных пространственных групп конечно, хотя и довольно 

велико. Для их вывода можно применить тот же прием, которым мы пользовались в 1-й 

части, обсуждая точечные группы: вместо сотен тысяч известных на сегодня 

кристаллических структур надо рассмотреть лишь все комбинации их элементов 

симметрии. Именно так пространственные группы и были выведены Е.С.Федоровым и 

А.Шенфлисом в 1890-92 г.г. – т.е. раньше открытия рентгеновских лучей, которое сделало 

возможным экспериментальные исследования атомного строения кристалов. 

Заметим, что открытые элементы симметрии приводят к самосовмещению 

«внутренней» атомной структуры кристалла (которая по сравнению с размерами атомов 

выглядит бесконечной), т.е. действуют на микроскопическом уровне. Макроскопической 

же форме кристалла как полиэдра с определенным (конечным) числом вершин, граней и 

ребер соответствует точечная симметрия, по которой кристалл относится к одному из 32 

кристаллических классов. В макроскопическом масштабе сдвиги идеализированной 

микроструктуры кристалла на расстояния порядка долей нанометра, приводящие к ее 

самосовмещению, неотличимы от нуля. Поэтому для описания внешней симметрии 

кристалла все рассмотренные выше открытые элементы симметрии надо заменить на 

соответствующие им закрытые кристаллографические элементы.  

Из этого не вполне строгого рассуждения следует совершенно точный 

математический рецепт построения пространственных групп: надо «всего лишь» 

перебрать все геометрически возможные и притом различные комбинации 14 решеток 

Браве сначала с 32 кристаллографическими точечными группами, а затем с наборами 

элементов симметрии, получаемыми из этих 32 групп заменой некоторых или всех 

закрытых элементов открытыми. В нашем пособии мы рассмотрим лишь некоторые 

комбинации элементов симметрии вместе правилами их взаимодействия и построим 

графики нескольких пространственных групп. 

Взаимодействия элементов симметрии с перпендикулярными трансляциями 

 

 Правила взаимодействия кристаллографических элементов с трансляциями очень 

просты, их легко доказать построением. Для этого достаточно выбрать в кристалле точку, 

не лежащую на рассматриваемом нами элементе, и отметить все точки, в которые она 

переходит под действием этого элемента симметрии и трансляции t (Рис. 2.19). Если 

направление трансляции совпадает с элементом симметрии R (плоскостью или осью), 

новые элементы не возникнут (Рис. 2.19 а). Если же трансляция t направлена 

перпендикулярно к элементу второго порядка, т.е. к плоскости (Рис. 2.19 б) или к оси 2  

(Рис. 2.19 в) либо 21, полученные наборы симметрически эквивалентных точек порождают 

такие же элементы R: один расположенный через трансляцию, другой – на ее середине.  
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Правило №1. Элемент симметрии порядка 2 переносится перпендикулярной трансляцией 

t, при этом такой же элемент возникает на середине трансляции. 

Это правило применимо для любых элементов симметрии 2-го порядка: как закрытых 

(показанных на рис. 2.19), так и родственных им открытых. 

  (а)    (б) 

  (в)    (г) 

Рисунок 2.19. Взаимодействие трансляций t (показаны красными стрелками) с элементами 

симметрии 2-го порядка: (а) параллельными трансляции (новых элементов не возникает), 

(б, в) перпендикулярными к трансляции, (г) с центром инверсии. 

Центр инверсии 1 взаимодействует с произвольно направленной трансляцией 

аналогично перпендикулярным элементам 2-го порядка: он переносится на t, а в точке t/2 

возникает новый центр инверсии (Рис. 2.19 г). В триклинных кристаллах из всех закрытых 

операций симметрии может присутствовать только инверсия. Это позволяет нам 

построить графики пространственных групп триклинной сингонии Р 1 и Р1. 

Элементарная ячейка триклинного кристалла (косоугольноый параллелепипед) 

изображена на Рис. 2.20 а. Начало координат в группе Р 1 совмещают с одним из центров 

инверсии, которые находятся в вершинах ячейки, а также на серединах ее ребер (½, 0, 0), 

(½, 1, 0), … , в центрах всех граней (½, ½, 0), (½, 0, ½), …, (1, ½, ½), и в центре ячейки (½, 

½, ½). Поскольку вершина параллелепипеда принадлежит восьми, ребро – четырем, а 

грань – двум соседним ячейкам, на одну элементарную ячейку триклинного кристалла в 

группе Р 1 приходится восемь центров инверсии. Эти центры располагаются в четырех 

системах позиций, не связанных преобразованиями симметрии (так, все вершины ячейки 

связаны трансляциями, но центры в вершинах и на серединах ребер симметрически 

независимы, также независимы центры на серединах непараллельных ребер, и т.д.).  

(а) (б)      (в) 

Рисунок 2.20. (а) Расположение центров инверсий 1 пространственной группы Р 1 в 

триклинной элементарной ячейке (центр в положении ½ ½ ½ выделен цветом). (б) 

Косоугольная проекция ячейки: график пространственной группы Р 1. (в) График 

пространственной группы Р 1. 
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В косоугольной проекции вдоль любого координатного направления 

«безразмерная» ячейка группы Р 1 выглядит одинаково: это параллелограмм с центрами 

инверсий, проектирующимися в вершины, на середины сторон и в центр фигуры (Рис. 

2.20 б). Поскольку элементы симметрии второго порядка всегда расположены через 

половины трансляций, на проекции это специально не отмечается. Группа Р 1 содержит 

только трансляции; ее график к любой координатной проекции – параллелограмм без 

каких-либо дополнительных символов (Рис. 2.20 в). Начало координат в Р 1 выбирается 

произвольно: например, одному атому в структуре кристалла, относящегося к этой 

группе, приписывают координаты (0, 0, 0) и задают по отношению к нему координаты 

всех остальных атомов в ячейке. Взаимодействием элементов второго порядка с 

перпендикулярными трансляциями также определяются графики простейших групп Р2, 

Р21, Pm и Pc моноклинной сингонии (Рис. 2.21). 

(а) (б) 

(в) (г) 

Рисунок 2.21. Графики пространственных групп Р2 (а, б) и Рс (в, г) (две проекции). В 

группе Рс показаны точки общего положения (орбита 1) 

В группах средних сингоний главная поворотная, инверсионная или винтовая ось 

порядка 3, 4 либо 6, направленная вдоль с, учитывая центросимметричность решетки, 

превратит перпендикулярную ей трансляцию в «звезду» таких трансляций, состоящую из 

четырех векторов для оси 4 и шести векторов для осей 3 и 6. Эти трансляции перенесут 

исходную ось во все вершины на проекции ячейки. Размножив осью и трансляциями 

точку, выбранную внутри ячейки в группах Р 4 или Р 4 (Рис. 2.22 а), мы увидим, что в 

центре квадратного основания ячейки возникнет та же ось, что и оси 4-го порядка в ее 

вершинах. Кроме того, эквивалентные точки в этих группах связаны поворотными осями 

2, проходящими параллельно с через середины трансляций a и b. Поскольку в осях 4 и 4 

содержится ось 2, можно убедиться, что элементы 2-го порядка, входящие в состав 

главной оси, в соответствии с правилом №1 возникают на серединах трансляций. Таким 

же построением для группы Р 3 легко показать, что в центрах двух правильных 

треугольников в основании ячейки, построенных на трансляциях a, b и a+b (равных по 

длине), возникнут новые оси 3. Взаимодействие осей 3-го и 4-го порядка с 

перпендикулярными трансляциями подчиняется следующему правилу: 

y 

0 0 

a 

b 

1–y 

z z+1/2 
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Правило №2. Оси симметрии порядка 3 или 4 при взаимодействии с перпендикулярными 

трансляциями переносятся во все вершины правильного n-угольника (соответственно, 

треугольника или квадрата), построенного на этих трансляциях. При этом в центре n-

угольника возникает ось такого же порядка, перпендикулярная его плоскости. 

 

 

 

 

 

 

 

 

 

  (а)    (б)    (в) 

 

Рисунок 2.22. (а) График пространственной группы Р 4: показаны точки, связанные 

поворотами вокруг оси 4-го порядка и трансляциями a, b; серым цветом выделены 

возникшие оси. Графики пространственных групп (б) Р6 (в ось 6 входят оси 3 и 2) и (в) 

Р62 (ось 62 включает оси 32 и 2). 

 

 Правило №2 выполняется как для поворотных и инверсионных, так и для винтовых 

осей. Если же ось 3-го порядка входит в состав главной оси (это справедливо для 

осей 3( 3, 1), 6( 3, 2), 6(=3/m) и всех винтовых осей 6p), в соответствии с правилом №2 

именно эта «включенная» ось возникает в центре треугольника из трансляций, а в 

серединах трансляций по правилу №1 появляются элементы второго порядка (Рис. 2.22 б, 

в). Таким образом, с помощью правил №1 и №2 можно построить графики простейших 

групп средних сингоний. 

Взаимодействие элементов симметрии с наклонными трансляциями 

 

В центрированных решетках (A, B, C, I, F или R) есть нецелочисленные 

трансляции, расположенные наклонно к координатным направлениям. Если вдоль 

координатного направления проходит элемент симметрии (ось или плоскость), наклонные 

трансляции будут взаимодействовать с ним, порождая новые элементы. Отметим, что все 

элементы симметрии, имеющиеся в исходной пространственной группе с примитивной 

решеткой Браве, при таком взаимодействии сохраняются. Не прибегая к построению 

системы эквивалентных точек, приведем результат. 

 

Правило №3. Центрирующую трансляцию, направленную наклонно к элементу 

симметрии R, можно представить в виде суммы t||+t┴ двух векторов: параллельного (t||) и 

перпендикулярного (t┴) к этому элементу. В результате взаимодействия R с наклонной 

трансляцией t||+t┴ ее параллельная часть t|| вливается в элемент R, образуя новый элемент 

симметрии R1, а перпендикулярная часть t┴ переносит полученный элемент R1 на t┴/2 в 

соответствии с правилами №№ 1 и 2. 

 

 Используем это правило для построения графика группы С2, принадлежащей к 

кристаллическому классу 2 моноклинной сингонии. Поворотная ось 2 совпадает с 

координатным направлением b, а трансляция tC= a/2 + b/2, направленная наклонно к этой 

оси, центрирует грань (ab). В исходной группе Р2 (см. Рис. 2.21 а) вектор t||=b/2, вливаясь 

в ось 2, превратит ее в 21 (поворот на 180
о
 + сдвиг на b/2). Полученная ось является 

элементом второго порядка, поэтому перпендикулярный вектор t┴=a/2 по правилу №1 

перенесет ее вдоль a на t┴/2=a/4.  
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Преобразуя все оси 2, входящие в элементарную ячейку, получим график группы 

С2 (Рис. 2.23 а): оси 2 и 21 в ней чередуются вдоль направления а через четверть 

трансляции. Заметим, что к такому же расположению осей приведет и добавление 

трансляции tC= a/2 + b/2 к группе Р21: «параллельный» сдвиг на b/2 переведет винтовую 

ось 21 в поворотную 2 («с точностью до трансляции»), а «перпендикулярный» вектор 

t┴=a/2 перенесет полученную ось 2 на расстояние a/4. По соглашению, начало координат в 

группе С2 выбирают на поворотной оси 2. Координату y=0 в этой группе (как и в группах 

Р2 и Р21) произвольно задают для одного из атомов, входящих в ячейку. По такой же 

схеме можно построить графики групп Cm и Cc. В группе Cm компонент tC, 

параллельный к плоскостям симметрии (t||=a/2) превратит плоскость m в плоскость a 

(соответственно в Cc плоскости c превратятся в плоскости n), а компонент t┴=b/2 сдвинет 

новые элементы трансляции на b/4 (Рис. 2.23 б, в). Чтобы задать начало координат в 

кристаллических структурах, относящихся к этим группам, для одного из атомов 

устанавливают x=0 и z=0.   

 

 

 

 

 

 

 

 

       (а)           (б)     (в) 

 

Рисунок 2.23. Пространственные группы С2 (а) и Сm (б, в). На проекции (в) показаны 

точки общего положения в группе Cm. 

 

Взаимодействие двух произвольных элементов симметрии 2-го порядка 

 

 В 1-й части пособия рассматривалось взаимодействие закрытых элементов 

симметрии 2-го порядка ( 1, 2 или m), порождающих третий элемент. Эта схема 

обобщается на взаимодействие произвольных элементов 2-го порядка: закрытого элемента 

с открытым или двух открытых элементов.  

Правила взаимодействий произвольных элементов симметрии 2-го порядка R1 и R2 

очень похожи на правила №№ 1 и 3. Если действие элемента R1 включает закрытую 

операцию R1’ и сдвиг s1, а элемента R2 – закрытую операцию R2’ и сдвиг s2 (один или оба 

эти сдвига могут быть равными нулю), возникающий элемент представляет собой 

результат взаимодействия R1’ и R2’, модифицированный суммарным сдвигом s1+s2. 

 

Правило №4. Суммарный сдвиг s1+s2= s||+s┴, входящий в состав элементов R1 = R1’+s1 и  

R2= R2’+s2, представляют в виде суммы двух векторов: параллельного (s||) и 

перпендикулярного (s┴) к закрытому элементу симметрии R3’, который возникает при 

взаимодействии соответствующих закрытых элементов R1’ и R2’. «Параллельный» вектор 

s|| вливается в R3’, превращая его в новый элемент R3 = R3’+ s||, а «перпендикулярный» 

вектор s┴ переносит полученный элемент R3 на s┴/2. 

 

 В случае взаимодействия оси 2-го порядка и перпендикулярной ей плоскости по 

правилу №4 возникает центр инверсии, сдвинутый на половину суммы s1+s2 от точки их 

пересечения (Рис. 2.24 а). Две взаимно перпендикулярные оси 2-го порядка (безразлично, 

поворотные или винтовые), пересекающиеся в точке, порождают ось 2 (Рис. 2.24 б), а две 

скрещивающиеся перпендикулярные оси – ось 21 (Рис. 2.24 в); положения полученных 

осей определяются суммой s1+s2= s┴.. Две взаимно перпендикулярные плоскости дают ось 

z 

c 

z z 

z 
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2-го порядка; ее тип и положение определяются, соответственно, компонентами 

суммарного сдвига s|| и s┴ (Рис. 2.24 г, д).  

Правило №4 справедливо для всех комбинаций элементов 2-го порядка. Так, ось 21, 

лежащая в плоскости m, порождает перпендикулярную к m плоскость скользящего 

отражения со сдвигом в направлении оси и служит линией пересечения этих плоскостей. 

Рассмотренные в ч.1 взаимодействия элементов 2-го порядка с поворотной осью порядка 

N>2 также можно распространить на взаимодействие винтовой оси Np c 

перпендикулярной к ней осью 2: при этом возникает N перпендикулярных осей 2, 

пересекающих Np и расположенных вдоль нее через интервалы tp/(2N) (Рис. 2.24 е).  

 

 

 

 

 

 

 

 

 

 

  (а)           (б)     (в) 

 

 

 

 

 

 

 

 

 

 

  (г)            (д)      (е) 

 

Рисунок 2.24. (а–д) Взаимодействие двух элементов симметрии 2-го порядка: (а) винтовой 

оси и плоскости скольжения, (б) взаимно перпендикулярных осей, пересекающихся в 

точке, (в) скрещивающихся осей, (г) плоскостей m и n, (д) двух координатных 

пльоскостей. (е) взаимодействие винтовой оси 31 и перпендикулярной ей оси 2 (оси 

пересекаются). 

 

Правила №№ 1–4 позволяют построить графики пространственных групп 

моноклинной и орторомбической сингоний. Начало координат в таких группах выбирают 

в положении на закрытых элементах симметрии с минимальным числом степеней 

свободы: на оси 2 в группе С2, на плоскости m в группах Pm и Cm, в центре инверсии в 

группах P1, P21/c, Pmmm и т.д. (рисунки 2.20 – 2.25). Точка, выбранная внутри 

элементарной ячейки, под действием операций пространственной группы преобразуется в 

орбиту: совокупность симметрически связанных точек. Хотя число таких точек в 

кристалле бесконечно, кратностью орбиты называется (конечное) число точек в одной 

элементарной ячейке. Точка, не лежащая на элементах симметрии, называется общим 

положением (или общей позицией). Положения на закрытых элементах симметрии 

называются частными. Среди рассмотренных нами групп кратность общей позиции в 

группах Р 1, Р2, Pm, Pc равна двум, в C2, Cm, Cc, P21/c и Pca21 четырем, в группе Pmmm 

восьми, а в Р 1 – единице.  
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  (а)          (б)       (в) 

 

Рисунок 2.25. Графики пространственных групп (а) P21/c, (б) Pca21, (в) Pmmm. 

 

 

2.7. Общая классификация пространственных групп 

 

 Каждая из 230 пространственных групп принадлежит к одному из 32 

кристаллических классов и одной из 14 решеток Браве. По набору порождающих, или 

«главных» элементов, содержащихся в символе, пространственных группы 

подразделяются на симморфные и несимморфные. Символы симморфных групп – это 

сочетания решеток Браве с кристаллическими классами (которые обозначаются 

закрытыми элементами симметрии). Прямой перебор всех классов с возможными для них 

решетками (см. Табл. 2.3) дает 66 различных комбинаций, среди которых для семи 

сочетаний возможны по два различных расположения элементов симметрии в решетке, 

отвечающих разным пространственным группам (Рис. 2.26): 

 

Cmm2 ≠ Amm2, P321 ≠ P312, P3m1 ≠ P31m, P 3m1 ≠ P 31m, 

 P 4m2 ≠ P 42m, I 4m2 ≠ I 42m, P 6m2 ≠ P 62m 

 

Таким образом, имеется 73 симморфных пространственных групп, международные 

символы которых состоят только из закрытых элементов симметрии. (Многие из этих 

групп включают открытые элементы – например, группа С2 и Cm, рис. 2.23). 

 

 

 

 

 

 

 

 

 

Рисунок 2.26. Различное расположение элементов симметрии в пространственных группах 

P3m1 (плоскости m перпендикулярны координатным трансляциям) и P31m (плоскости m 

проходят по координатным трансляциям). Плоскости скольжения возникают в результате 

взаимодействия плоскостей m с наклонными координатными трансляциями. 

 

 Замена в симморфных группах некоторых или всех порождающих закрытых 

элементов на открытые без учета энантиоморфных осей дает 146 несимморфных групп 

(вдвое больше числа симморфных групп), вместе составляющие 219 геометрически 

различных пространственных групп. Среди них у 11 несимморфных групп имеются 

энантиоморфные пары: 

1/4 
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P31 || P32, P3121 || P3221, P3112 || P3212, P41 || P43, P4122 || P4322, P41212 || P43212,   

P61 || P65, P62 || P64, P6122 || P6522, P6222 || P6422, P4132 || P4332 

 

С учетом этих пар общее число пространственных групп достигает 230. 

 Обозначение кристаллического класса, к которому относится пространственная 

группа, можно получить, отбрасывая в символе пространственной группы букву (которая 

обозначает решетку) и заменяя в оставшейся части всех открытые элементы закрытыми. 

Так, группа P21/c принадлежит к классу 2/m, группа P212121 к классу 222, группа Ibam – к 

классу mmm. Кратность общего положения в пространственной группе равна 

произведению порядка ее кристаллического класса на множитель, учитывающий 

умножение числа операций симметрии в центрированных решетках: 

P – решетка: 1 

A, B, C, I –решетки: 2 

R – решетка: 3 

F – решетка: 4 

 

Кратность положения на закрытом элементе (элементах) симметрии равна частному от 

деления кратности общей позиции на порядок локальной группы, задающей симметрию 

положения точки. Так, общая позиция 1 в группе Pmmm имеет кратность 1 8 = 8, в группе 

Ibam 2 8 = 16, а частное положение mm2 (порядок этой группы равен 4) в группе Pmmm 

имеет кратность 8/4=2 (см. рис. 2.25 в) 

 

Таблица 2.4. 

Пространственные группы триклинной и моноклинной сингоний 

 

 Сингония и 

 решетки  

 Браве 

 Классы  Пространственные группы (в скобках обозначения  

 по Шенфлису) 

 Симморфные  несимморфные 

 Триклинная  

 (P) 
  1 (C1) 

1 (Ci) 

 P 1 (C1
1
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 P 1  (Ci
1
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Связь пространственных групп с кристаллическими классами и решетками Браве 

на примере моноклинной сингонии показывает табл. 2.4. Добавление двух решеток Браве 

(примитивной Р и бокоцентрированной С), имеющихся в моноклинной сингонии, к трем 

классам этой сингонии (2, m и 2/m) дает шесть симморфных групп: P2, Pm, P2/m, C2, Cm 

и C2/m. Последовательно заменяя в символах этих групп закрытые элементы на открытые, 

получим пять несимморфных групп с примитивной решеткой (P21, Pc, P21/m, P2/c, P21/c) и 

лишь две несимморфные С-группы (Сс и С2/c), поскольку в парах групп Р2 и Р21, P2/m и 

P21/m, а также P2/c и P21/c добавление центрирующей трансляции tC дает одни и те же 

конфигурации элементов симметрии – соответственно, группы C2, C2/m и C2/c. Таким 
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образом в дополнение к двум группам триклинной, получаем 13 пространственных групп 

моноклинной сингонии. Обратите внимание, что кристаллические классы и 

пространственные группы в Табл. 2.4. обозначены в двух системах: как по Герману-

Могену, так и по Шёнфлису. По сравнению с международной системой, символ 

пространственной группы по Шенфлису содержит меньше информации об элементах 

симметрии: он состоит из символа кристаллического класса и (однажды произвольно 

установленного) номера группы в этом классе. Так, шёнфлисовский символ группы P21/c 

(C2h
5
) означает: «класс C2h, пространственная группа №5» 

 

 

Интернациональные таблицы 

 

Наиболее обширным и универсальным руководством по рентгеновской 

кристаллографии является многотомное издание International Tables for X-ray 

Crystallography, в практической работе часто называемое «Интернациональными 

таблицами». Первый том этого руководства, которое регулярно дополняет и выпускает 

Международный союз кристаллографов (в последнем издании том А) содержит 

подробную информацию о симметрийных соотношениях, кристаллографических 

элементах симметрии и кристаллических решетках, а также развернутую характеристику 

каждой из 230 пространственных групп (обозначения, графики, перечень элементов 

симметрии, общие и частные позиции и другие параметры, см. Приложение). Среди 

прочей информации для каждой пространственной группы приводится полный символ по 

Герману-Могену и символ по Шёнфлису, или символ кристаллического класса с 

произвольно установленным номером группы внутри данного класса в качестве верхнего 

индекса. Шёнфлисовский символ пространственной группы и ее порядковый номер в 1-м 

томе Интернациональных таблиц приводятся для перекрестной проверки при 

депонировании кристаллических структур в банках структурных данных. 
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Приложение 

Данные о пространственной группе в 1-м томе International Tables for X-ray Crystallography 
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