
МЕХАНИКА • СЛЕПКОВ АЛЕКСАНДР ИВАНОВИЧ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ  
ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ.  
СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

КЛАССИЧЕСКАЯ 
ДИФФЕРЕНЦИАЛЬНАЯ 

ГЕОМЕТРИЯ 

ДЫННИКОВ 
ИВАН АЛЕКСЕЕВИЧ

МЕХМАТ МГУ

МЕХАНИКО-
МАТЕМАТИЧЕСКИЙ 

ФАКУЛЬТЕТ  
МГУ ИМЕНИ 

М.В. ЛОМОНОСОВА



Классическая дифференциальная
геометрия

Курс лекций

Механико-математический ф-т МГУ, весенний семестр 2019 г.

c© 2019 И.А.Дынников

Последняя компиляция: 25 апреля 2019 г. в 15:43 моск. вр.



1

Содержание

Обозначения 2
Гл а в а 1. Предварительные сведения и напоминания 2
Гл а в а 2. Кривые в евклидовом пространстве 5
§2.1. Понятие кривой. Параметризация 5
§2.2. Задание кривых системами уравнений 8
§2.3. Касательная прямая к кривой 10
§2.4. Соприкосновение кривых. Точки спрямления 11
§2.5. Соприкасающаяся окружность. Кривизна 13
§2.6. Натуральный параметр. Длина дуги. Формула для кривизны в натуральной

параметризации 16
§2.7. Кривизна со знаком и формулы Френе плоской кривой 18
§2.8. Формулы Френе пространственной кривой. Кручение 20
§2.9. Восстановление кривой в R3 по кривизне и кручению 22
§2.10. k-Регулярность. Многомерные формулы Френе 23
§2.11. Проекции кривой в R3 на трехгранник Френе 26
§2.12. Эволюта и эвольвента плоской кривой 28
§2.13. Интеграл кривизны по замкнутому плоскому контуру 30
Гл а в а 3. Поверхности в трехмерном пространстве 32
§3.1. Определение поверхности. Локальные координаты. Способы задания 32
§3.2. Касательная плоскость к поверхности 34
§3.3. Первая фундаментальная форма. Длина кривой на поверхности. Площадь поверхности 36
§3.4. Вторая фундаментальная форма. Кривизна нормального сечения 39
§3.5. Главные кривизны. Формула Эйлера 40
§3.6. Деривационные формулы Вайнгартена. Сферическое отображение. Гауссова кривизна 42
§3.7. Развертывающиеся поверхности как поверхности нулевой кривизны 44
§3.8. Линии кривизны. Омбилические точки 47
§3.9. Средняя кривизна. Минимальные поверхности 49
§3.10. Теорема Менье. Поверхности вращения 51
§3.11. Деривационные формулы Гаусса. Тождества Кристоффеля 51
§3.12. Совместность пары обыкновенных дифференциальных уравнений 53
§3.13. Коммутатор векторных полей 55
§3.14. Теорема Бонне 57
§3.15. Уравнения Гаусса–Кодацци. Теорема Гаусса 59
§3.16. Асимптотические линии. Поверхности постоянной отрицательной кривизны 60
Гл а в а 4. Внутренняя геометрия поверхности 64
§4.1. Геодезическая кривизна. Геодезические линии. Примеры геодезических: прямая на любой

поверхности, геодезические на поверхности вращения. Интеграл Клеро 64
§4.2. Уравнение геодезических. Продолжаемость геодезических 65
§4.3. Уравнения Эйлера–Лагранжа. Геодезические как экстремали функционала действия 67
§4.4. Экспоненциальное отображение. Локальные свойства геодезических: возможность

провести геодезическую через близкие точки, реализация кратчайшего расстояния 69
§4.5. Полугеодезические координаты. Метрики постоянной кривизны 71
§4.6. Метрики сферы и плоскости Лобачевского 73
§4.7. Параллельный перенос. Ковариантное дифференцирование 77
§4.8. Интеграл геодезической кривизны по замкнутому контуру. Угловой дефект. Эйлерова

характеристика 80
§4.9. Теорема Гаусса–Бонне 84



2

Обозначения

Поле вещественных чисел обозначено через R, множество натуральных чисел через N.
Полужирным шрифтом обозначены векторные величины, то есть принимающие значения

в Rn при некотором n ∈ N. При этом отдельные координаты обозначаются как правило той же
буквой (иногда — прописной вместо строчной) с индексом (как правило верхним) и записыва-
ются в столбец. Например, x = (x1, . . . , xn)>.

Мы используем систему обозначений Эйнштейна: по дважды повторяющимся индексам, один
из которых верхний, а другой нижний, подразумевается суммирование в пределах, устанавли-
ваемых из контекста. Верхний индекс переменной, появляющейся в знаменателе, считается для
выражения нижним, и наоборот. δij обозначает символ Кронекера:

δij =

{
1, если i = j;

0, в противном случае.

Глава 1. Предварительные сведения и напоминания

Напомним, что отображение f : Rn → Rk называется дифференцируемым в точке x0 ∈ Rn,
если существует матрица A размера k × n, для которой выполнено

f(x) = f(x0) + A · (x− x0) + o(‖x− x0‖) при x→ x0.

В этом случае матрица A определена однозначно и составлена из частных производных отоб-
ражения f в точке x0: Aij = (∂f i/∂xj)|x=x0 .

В этом определении отображение f не обязательно определено всюду, достаточно, чтобы в
область его определения входила некоторая открытая окрестность точки x0. Более общо, нам
будет достаточно, чтобы в область определения отображения f входило замыкание некоторой
выпуклой открытой области, содержащее точку x0.

Отображение, дифференцируемое во всех точках своей области определения, называется про-
сто дифференцируемым. Такое отображение определяет новое отображение (∂f/∂x) : Rn → Rnk.
Если последнее также дифференцируемо, то f называется дважды дифференцируемым, и далее
индуктивно: если (∂f/∂x) дифференцируемо m раз, то f дифференцируемо m + 1 раз. Если
отображение f дифференцируемо m раз и при m-кратном дифференцировании получается
непрерывное отображение, говорят, что f m раз непрерывно дифференцируемо или является
отображением класса Cm.

В данном курсе мы будем иметь дело в основном с отображениями, которые дифференциру-
емы бесконечное число раз (или бесконечно гладкие, класса C∞), то есть дифференцируемы m
раз для любогоm ∈ N. Это будет предполагаться по умолчанию, если сказано, что отображение
гладкое.

Для дифференцируемого в точке x0 отображения f определен дифференциал в точке x0,
обозначаемый через df |x0 , который в зависимости от контекста можно интерпретировать по-
разному. Ключевым является следующее обстоятельство. Для двух дифференцируемых в точ-
ке x0 отображений f , g : Rn → Rk равенство df |x0 = dg|x0 равносильно следующему:

(1.1) f(x)− f(x0) = g(x)− g(x0) + o(‖x− x0‖) при x→ x0.

Можно понимать дифференциал просто как класс эквивалентности дифференцируемых функ-
ций, где отношение эквивалентности задано равенством (1.1).

В каждой фиксированной точке x0 ∈ Rn дифференциалы всевозможных отображений из Rn

в Rk образуют векторное пространство над R, в котором операции определены естественным
образом: λ df = d(λf), df + dg = d(f + g). Кординатами в этом пространстве являются част-
ные производные. Матрицу частных производных (∂f/∂x) = (∂f i/∂xj)i=1,...,k;j=1,...,n называют
матрицей дифференциала df (а также матрицей Якоби отображения f). Под рангом диф-
ференциала подразумевают ранг этой матрицы. В случае, когда эта матрица квадратная (то
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есть k = n), говорят о вырожденности или невырожденности дифференциала, имея в виду
вырожденность или, соответственно, невырожденность его матрицы.

Теорема о производной сложной функции нескольких переменных упрощенно может быть
сформулирована так: если отображения f : Rn → Rm и g : Rm → Rk дифференцируемы, то
дифференцируема и композиция g ◦ f , причем d(g ◦ f)|x0 = dg|f(x0) · df |x0 . В правой части
умножение дифференциалов понимается как умножение соответствующих матриц.

Касательным вектором к пространству Rn (или просто вектором) в точке x0 ∈ Rn на-
зывается дифференциал некоторого отображения f : R → Rn, для которого f(0) = x0, в
точке 0 (0 можно заменить на любое другое число). Пространство всех таких векторов обозна-
чается через Tx0Rn. Координатами вектора, заданного отображением f , являются производ-
ные df i(t)/dt|t=0 ). Традиционно координаты вектора записываются в столбец (который и есть
матрица дифференциала в данном случае).

Применяя теорему о производной сложной функции, дифференциал отображения f : Rn →
Rk в точке x0 ∈ Rn можно интерпретировать как линейное отображение из Tx0Rn в Tf(x0)Rk.
А именно, если вектор v ∈ Tx0Rn представлен дифференциалом отображения g : R → Rn,
то df |x0(v) представлен дифференциалом отображения f ◦g. Набор координат вектора df |x0(v)
называется также производной отображения f в точке x0 по направлению вектора v и обо-
значается через ∇vf |x0 .

Базис в каждом пространстве Tx0Rn образуют векторы, обозначаемые ∂/∂x1, . . . , ∂/∂xn,
где x1, . . . , xn — координаты в Rn. Они определяются следующим образом: ∂/∂xi в точке x0

есть дифференциал отображения t 7→ x0 + (0, . . . , 0︸ ︷︷ ︸
i−1

, t, 0, . . . , 0︸ ︷︷ ︸
n−i

) в точке t = 0.

Задача 1.1. Доказать совпадение данного выше определения производной по направлению
с обычным: если f : Rn → R — числовая функция, а v ∈ Tx0Rn — вектор с координата-
ми (V 1, . . . , V n), то ∇vf |x0 = V i∂f/∂xi.

Задача 1.2. Пусть x1, . . . , xn — координаты в Rn, а y1, . . . , yk — в Rk, и пусть f : Rn → Rk —
гладкое отображение. Проверить, что тогда df |x0(∂/∂x

i) = (∂f j/∂xi)|x0 · ∂/∂yj.

Теорема об обратном отображении утверждает, что гладкое отображение f : Rn → Rn,
дифференциал которого невырожден в точке x0, локально обратимо в некоторой окрестности
точки x0, причем обратное отображение также гладкое. Это значит, что в некоторой окрестно-
сти U точки f(x0) определено гладкое отображение f−1 : U → Rn со свойством f ◦ f−1 = id|U .
Отображения с невырожденным — всюду в области определения — дифференциалом назы-
вают локальными диффеоморфизмами (а в случае взаимно однозначных отображений просто
диффеоморфизмами).

Для вычисления производных обратного отображения можно пользоваться следующим чисто
алгебраическим трюком. Обозначим обратную функцию f−1 через g, а точку f(x0) через y0.
Пусть

f̂(x) = f (0)
x0

+ f (1)
x0

(x− x0) + f (2)
x0

(x− x0) + f (3)
x0

(x− x0) + . . .

и
ĝ(y) = g(0)

y0
+ g(1)

y0
(y − y0) + g(2)

y0
(y − y0) + g(3)

y0
(y − y0) + . . .

— ряды Тейлора отображений f и g в точках x0 и y0 соответственно. Имеется в виду, что f (0)
x0

=

f(x0), и для каждого m ∈ N функция f (m)
x0

есть однородный Rn-значный многочлен степени m,
коэффициенты которого выражаются через m-е частные производные отображения f следую-
щим образом:

f (m)
x0

(t) =
1

m!

∂mf

∂xi1 . . . ∂xim

∣∣∣
x0

ti1 . . . tim

(в правой части i1, . . . , im — это индексы, а не степени, и по всем ним подразумевается сумми-
рование). Аналогичные обозначения использованы для g.
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Зная f̂ , коэффициенты ряда ĝ можно найти следующим образом. Сначала положим g
(0)
y0

=

g(y0) = x0. Далее заметим, что отображения f (1)
x0

и g
(1)
y0

линейны и взаимно обратны (это и есть
по сути дифференциалы df |x0 и dg|y0

). Обозначим через A матрицу dfx0
.

Теперь нужно формально подставить ряд ĝ вместо x в ряд Тейлора для f и решить методом
неопределенных коэффициентов уравнение f̂

(
ĝ(y)

)
≡ y. Для каждого k > 1 члены k-й степени

в полученном выражении f̂(ĝ) содержат A · g(k)
y0

(y − y0), а остальные слагаемые выражаются
через известные коэффициенты ряда f̂ и коэффициенты многочленов g

(j)
y0

с j < k. Умножая
сумму всех этих слагаемых на A−1 и приравнивая к нулю, получаем явное выражение мно-
гочлена g

(k)
y0

через g
(0)
y0
, g(1)

y0
, . . . , g(k−1)

y0
и коэффициенты ряда f̂ . Таким образом, индуктивно

можно все коэффициенты ряда ĝ выразить через коэффициенты ряда f̂ .
Теорема о неявном отображении утверждает, что если f : Rn → Rk — гладкое отображе-

ние, дифференциал которого в точке x0 имеет ранг k, то множество решений уравнения f(x) =
f(x0) на координаты точки x в окрестности точки x0 выглядит как график гладкого отображе-
ния, выражающего некоторые k координат через оставшиеся n− k, причем за эти k координат
можно выбрать те, которым соответствуют линейно независимые столбцы в матрице df |x0 .

Задача 1.3. Вывести теорему о неявном отображении из теоремы об обратном отображении.

Задача 1.4. Вывести теорему об обратном отображении из теоремы о неявном отображении.

В геометрии часто возникает необходимость работать с пространствами (множествами), на
которых можно естественным образом ввести систему координат, но сделать это можно раз-
личными способами, среди которых нет ни одного предпочтительного. При этом для любых
двух «хороших» систем координаты каждой из систем выражаются через координаты другой
с помощью гладкого отображения.

Понимать это нужно следующим образом. Ввести систему координат на множестве X озна-
чает установить взаимно однозначное соответствие между точками X и точками некоторой от-
крытой области U ⊂ Rn. (Соответствующее отображение U → X при этом называется парамет-
ризацией множества X. Если система координат вводится не на всем X, а лишь на некоторой
части, говорят о локальной системе координат и локальной параметризации.)

Координаты в Rn, ограниченные на U , становятся координатами на X. Обозначим их че-
рез x1, . . . , xn. Пусть аналогичным образом определена другая система координат y1, . . . , yn,
отождествляющаяX с некоторым открытым подмножеством V ⊂ Rn, причем координаты y1, . . . , yn,
можно выразить гладкими функциями через x1, . . . , xn и наоборот.

Специальные обозначения для отображений, выражающих координаты друг через друга, не
вводятся. Можно представлять себе, что множества U и V лежат в разных экземплярах про-
странства Rn, и когда мы пишем ∂yi/∂xj, мы имеем в виду отождествление X с подмножеством
того Rn, где лежит U , а yi являются функциями на этом подмножестве, а выражение ∂xi/∂yj
означает, что наша точка зрения поменялась, и мы теперь считаем X отождествленным с V .
При этом оба выражения могут входить в формулу одновременно. Например, для любой точ-
ки p ∈ X будет выполнено

∂yi

∂xj

∣∣∣
p
· ∂x

j

∂yk

∣∣∣
p

= δik

(по теореме об обратном отображении).
В качестве примера рассмотрим полусферу X = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, x > 0}. В

качестве одной системы координат возьмем пару функций (y, z), а в качестве второй —- сфе-
рические координаты (ϕ, θ). Соответствующие параметриации выглядят следующим образом:

(y, z) 7→
(√

1− y2 − z2, y, z
)
, (ϕ, θ) 7→ (cosϕ · cos θ, sinϕ · cos θ, sin θ),
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а формулы замен координат таковы:
y = sinϕ · cos θ,

z = sin θ,

ϕ = arcsin
(
y/
√

1− z2
)
,

θ = arcsin z.

Система (x, y) отождествляет X с внутренностью единичного круга с центром в начале коор-
динат, а система (ϕ, θ) — с квадратом (−π/2, π/2)× (−π/2, π/2).

Задача 1.5. Пусть две системы координат x1, . . . , xn и y1, . . . , yn связаны гладкими формулами
замены. Написать матрицу перехода от базиса ∂/∂x1, . . . , ∂/∂xn к ∂/∂y1, . . . , ∂/∂yn. Рассмотреть
частные случаи (n = 2):

1)
y1 = x1,

y2 = x1 + x2;
2)

y1 = x1,

y2 = 2x2.

Задача 1.6. Для декартовых координат x, y и полярных координат ρ, ϕ на плоскости выразить
в каждой точке, отличной от начала координат, базисы ∂/∂x, ∂/∂y и ∂/∂ρ, ∂/∂ϕ друг через
друга.

Если f : Rk → X или f : X → Rk — отображение, гладкое по отношению к какой-то системе
координат на X, то оно будет гладким по отношению к любой другой, связанной с первой
гладкими формулами замены (по теореме о производной сложной функции), однако матрица
дифференциала в каждой точке может измениться.

Задача 1.7. Вывести закон преобразования матрицы дифференциала гладкого отображения
при гладкой замене системы координат:

(1) в области определения отображения;
(2) в области значений отображения.

Рассмотреть частный случай преобразования координат касательного вектора.

Глава 2. Кривые в евклидовом пространстве

§2.1. Понятие кривой. Параметризация. Термин «кривая» имеет различные толкования
в математике. Его значение варьируется от учебника к учебнику и зачастую даже в пределах
одной книги. Ниже даны два определения, которые адаптированы к целям настоящего курса и
могут в деталях отличаться от определений, данных в других источниках. Одно определение —
простой дуги — приспособлено для изучения локальных свойств кривых и поверхностей, кото-
рым посвящена значительная часть курса. Другое определение — кривой — отражает наиболее
общий класс объектов, к которым применимы основные утверждения этого курса.

Определение 2.1. Простой дугой в пространстве Rn называется любое подмножество, гомео-
морфное отрезку [0, 1] вещественной оси.

Очевидно, что определение простой дуги не изменится, если вместо отрезка [0, 1] разрешить
брать любой нетривиальный отрезок [a, b] («нетривиальный» означает a < b).

Разумеется, для каждой простой дуги γ имеется много гомеоморфизмов из γ в некоторый
отрезок [a, b] числовой оси. Любой такой гомеоморфизм называется параметризацией дуги γ.

Традиционно параметризацию дуг и кривых представляют отображением из отрезка в про-
стую дугу, а не наоборот.

Определение 2.2. Параметризованной простой дугой в Rn называется отображение r из
некоторого отрезка [a, b] ⊂ R в Rn, являющееся гомеоморфизмом на свой образ.

Иначе говоря, параметризованная простая дуга это простая дуга с выбранной параметриза-
цией.

Говоря о какой-либо параметризации r : [a, b] → γ простой дуги мы всегда будем фиксиро-
вать обозначение для координаты на соответствующем отрезке [a, b] и называть ее параметром.
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Чаще всего это будет буква «t». Так как параметризация является биекцией, параметр есте-
ственным образом становится координатой на самой дуге.

Замечание 2.1. Условие «гомеоморфизм на образ» в определении 2.2 можно было бы заменить
на непрерывность и инъективность, в данном случае получилось бы равносильное определение.
Если же вместо отрезка взять интервал или полуинтервал, то эти условия перестают быть рав-
носильными. Например, отображение t 7→ (cos t, sin t) из [0, 2π) в R2 непрерывно и инъективно,
но не является гомеоморфизмом на образ (окружность), так как обратное к нему разрывно в
точке (1, 0).

Задача 2.1. Построить непрерывное инъективное отображение интервала (0, 1) в R2, не явля-
ющееся гомеоморфизмом на свой образ.

Задача 2.2. Докажите, что для всех параметризаций r : [0, 1] → γ одной и той же простой
дуги пара точек {r(0), r(1)} одна и та же. Эти точки называются концами дуги γ.

Определение 2.3. Говорят, что параметризация r : [a, b]→ Rn простой дуги γ ⊂ Rn регуляр-
ная класса Ck, где k ∈ {1, 2, . . . ,∞}, если отображение r принадлежит классу Ck([a, b]) и на
всем отрезке [a, b] выполнено неравенство

dr(t)

dt
6= 0

(для концов a и b в качестве производной берется производная справа и слева соответственно).

Вектор dr(t)/dt называется вектором скорости параметризованной дуги r в точке r(t) и
для краткости обозначается через ṙ(t). Таким образом, регулярность параметризации означает,
что ее вектор скорости нигде не обращается в нуль. Можно также говорить о регулярности
параметризации в какой-либо одной точке. Это будет означать, что в указанной точке вектор
скорости отличен от нуля.

Определение 2.4. Простая дуга называется гладкой (класса Ck), если она допускает регуляр-
ную параметризацию (класса Ck, по умолчанию — класса C∞).

Если не оговорено противное, под гладким отображением всюду понимается отображение
класса C∞. Все теоремы данного курса верны для некоторого конечного класса гладкости Ck,
который в каждом случае можно определить по количеству производных, задействованных в
формулировке (явно или косвенно).

Следует отметить, что слова «гладкая параметризованная простая дуга» означают простую
дугу γ вместе с параметризацией r : [a, b]→ γ, являющейся гладкой функцией, но не обязатель-
но регулярной параметризацией. Сама дуга γ может при этом оказаться совсем не гладкой в жи-
тейском смысле этого слова. Например, образ отрезка [−1, 1] при отображении t 7→ (t2, t3) ∈ R2

является полукубической параболой, имеющий «клюв» в точке (0, 0) (рис. 1, слева). Эта точка
соответствует значению параметра t = 0, при котором обе производные dt2/dt и dt3/dt обраща-
ются в нуль.

Задача 2.3. Построить гладкую параметризацию простой дуги, состоящей из двух сторон
треугольника (рис. 1, справа). Показать, что такая параметризация не может быть регулярной.

Для рассмотрения локальных свойств кривых вполне достаточно понимать кривую как глад-
кую простую дугу. Слово «простой» применительно к кривым или дугам обычно означает «без
самопересечений». Однако, иногда нам понадобится рассматривать «длинные» кривые и иметь
такое ограничение будет неудобно.

Определение 2.5. Параметризованной кривой в пространстве Rn называется непрерывное
отображение r : I → Rn из некоторого промежутка I ⊂ R в Rn, удовлетворяющее следую-
щему ограничению: промежуток I должен покрываться конечным либо счетным семейством
отрезков [ai, bi], i = 1, 2, . . ., так что ограничение отображения r на каждый из них является
параметризованной простой дугой.
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x

y

x(t) = t2

y(t) = t3

Рис. 1. Кривые, допускающие гладкую, но не допускающие регулярную параметризацию

Дадим некоторые пояснения. Под промежутком мы понимаем одно из следующего:
• нетривиальный замкнутый отрезок [a, b];
• интервал (a, b);
• полуинтервал [a, b) или (a, b];
• луч (−∞, b), (−∞, b], (a,+∞) или [a,+∞);
• всю прямую R = (−∞,+∞).

Условие, наложенное в определении 2.5 на отображение r, нужно нам для того, чтобы запре-
тить параметризованной кривой «топтаться на месте», т.е. запретить ситуацию, когда целый
нетривиальный подотрезок в I отображается в точку. Такой запрет накладывают не всегда,
но стоящие на месте параметризованные кривые не представляют интереса с точки зрения
дифференциальной геометрии, поэтому они исключены здесь из рассмотрения полностью.

Определение 2.6. Точкой параметризованной кривой r : I → Rn называется пара вида
(t, r(t)), где t ∈ I.

Часто приходится рассматривать кривые, имеющие самопересечения, т.е. такие, что для неко-
торых t1, t2 ∈ I выполнено r(t1) = r(t2), но t1 6= t2. В этом случае одной точке пространства
Rn соответствуют две различные точки нашей параметризованной кривой, поскольку соответ-
ствующие значения параметра различны. Это объясняет, почему мы не определяем кривую как
подмножество в Rn — образ отображения r, вообще говоря, не определяет кривую.

Определение 2.7. Две параметризованные кривые r1 : I1 → Rn и r2 : I2 → Rn называются
эквивалентными, если найдется гомеоморфизм ϕ : I1 → I2 такой, что r1(t) = r2(ϕ(t)) для всех
t ∈ I1.

Менее формально это определение звучит так: две параметризованные кривые с параметрами
t и s эквивалентны, если r2 переходит в r1 при некоторой замене параметра s = ϕ(t).

Задача 2.4. Докажите, что эквивалентность параметризованных кривых оправдывает свое
название, т.е. является отношением эквивалентности.

Задача 2.5. Докажите, что для двух параметризованных кривых r1 : I1 → Rn и r2 : I2 → Rn

и двух точек t0 ∈ I1 и s0 ∈ I2 существует не более одной замены параметра s = ϕ(t), где ϕ —
возрастающая (убывающая) функция, переводящей r2 в r1, и ϕ(t0) = s0.

Определение 2.8. Кривая в Rn — это класс эквивалентности параметризованных кривых,
где эквивалентность понимается в смысле определения 2.7. Кривая называется простой, если
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какая-либо (а значит и любая) ее параметризация r : I → Rn является гомеоморфизмом на
свой образ.

Разумеется, каждой кривой соответствует некоторое подмножество γ ⊂ Rn, которое есть
образ отображения для любой из параметризаций. Как отмечалось выше, это подмножество,
вообще говоря, не определяет кривую однозначно. Говоря о точке данной кривой мы имеем
в виду точку этого подмножества γ вместе с правилом, которое для каждой параметризации
указывает некоторое значение параметра, соответствующее этой точке, причем делает это со-
гласованным образом по отношению к замене параметризации. Мы не даем здесь формального
определения, полагаясь на здравый смысл читателя.

Задача 2.6. Является ли кривая Пеано кривой в смысле определения 2.8?

Итак, основным объектом изучения в этой главе являются гладкие кривые в смысле следу-
ющего определения.

Определение 2.9. Гладкая кривая в Rn — это кривая в Rn, допускающая регулярную пара-
метризацию, т.е. гладкую параметризацию r : I → Rn, для которой

ṙ(t) 6= 0 ∀t ∈ I.
Теорема 2.1. Пусть r1 : I1 → Rn и r2 : I2 → Rn — две эквивалентные регулярные парамет-
ризации (т.е. задающие одну и ту же кривую) с параметрами t и s соответственно. Тогда t
и s выражаются друг через друга гладкими функциями.

Доказательство. Пусть t0 ∈ I1 — произвольное значение первого параметра. Обозначим через
x1(t), . . . , xn(t) координаты вектора r1(t). По условию ṙ1(t0) 6= 0. Без ограничения общности
можно считать, что в точке t0 не обращается в нуль ẋ1. Тогда по теореме об обратной функции
в некоторой окрестности U ⊂ R точки x1(t0) определена гладкая функция ϕ : U → R, такая
что ϕ(x1(t)) = t для всех t из достаточно малой окрестности точки t0.

Пусть t выражается через s с помощью функции ψ. Это означает, что r1(ψ(s)) = r2(s). По
условию r2(s) — гладкая функция. Значит, функция x1(ψ(s)) также гладкая, откуда в доста-
точно малой окрестности точки s0 = ψ−1(t0) гладкой является и ϕ(x1(ψ(s)) = ψ(s).

Доказательство гладкости для выражения s через t аналогично. �

Нам придется также иметь дело с кривыми, гладкими всюду, кроме конечного либо счетного
множества изолированных точек.

Определение 2.10. Кривая называется кусочно-гладкой, если допускает параметризацию r :
I → Rn и покрытие множества I конечным или счетным числом отрезков [ai, bi], ограничение
на каждый из которых отображения r является регулярной параметризованной дугой.

§2.2. Задание кривых системами уравнений. На практике часто приходится иметь дело
с кривыми, заданными с помощью уравнений. На плоскости — с помощью одного уравнения,
в пространстве Rn при n > 2 — с помощью систем из (n − 1) уравнений. С глобальной точки
зрения данный подход не эквивалентен тому, что описан в предыдущем параграфе. Например,
окружность, заданная уравнением x2 + y2 = 1, допускает бесконечно много попарно неэквива-
лентных параметризаций (даже если потребовать от них регулярности), а гипербола xy = 1 и
вовсе не является кривой в смысле определения 2.8, поскольку имеет две компоненты связности.

Однако, если наложить на систему уравнений некоторые ограничения, то мы получим объ-
екты, локально устроенные так же, как кривые. Сформулируем сначала это ограничение.

Определение 2.11. Пусть f1, . . . , fn−1 — набор гладких функций из некоторого подмножества
U ⊂ Rn в R. Мы говорим, что точка x0 ∈ U является для этого набора функций регулярной,
если x0 — внутренняя точка подмножества U и матрица частных производных( ∂fi

∂xj

)
i=1,...,n−1; j=1,...,n
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имеет в точке x0 ранг n− 1.

Говоря о локальной эквивалентности задания кривых с помощью параметризации и с помо-
щью систем уравнений, мы имеем в виду следующее утверждение.

Теорема 2.2. (i) Пусть гладкие функции f1, . . . , fn−1 определены в некоторой окрестности
точки x0 ∈ Rn, обращаются в нуль в x0 и точка x0 является регулярной для (f1, . . . , fn−1).
Тогда для достаточно малого ε > 0 система уравнений

(2.1) f1(x) = 0, . . . , fn−1(x) = 0

и неравенство |x− x0| 6 ε задает простую дугу в Rn.
(ii) Пусть, наоборот, r : I → Rn — гладкая параметризация некоторой кривой, регулярная

в точке (t0,x0), где x0 = r(t0) (для простоты пусть t0 — внутренняя точка промежутка I).
Тогда при достаточно малом δ > 0 пересечение образа δ-окрестности точки t0 с замкнутым
шаром Bε(x0) = {x ∈ Rn ; |x − x0| < ε} достаточно малого радиуса ε > 0 является гладкой
простой дугой, заданной системой уравнений f1(x) = 0, . . . , fn−1(x) = 0, где f1, . . . , fn−1 —
некоторый набор гладких функций в Bε(x0), для которого все точки этой дуги регулярны.

Доказательство. (i) Поскольку точка x0 регулярна, хотя бы один из миноров порядка (n −
− 1) матрицы (∂fi/∂x

j)i=1,...,n−1; j=1,...n отличен от нуля в x0. Без ограничения общности можем
считать, что таков минор, составленный из первых n− 1 столбцов. Тогда по теореме о неявной
функции для достаточно малого ε > 0 в замкнутой ε-окрестности точки x0 множество решений
системы (2.1) можно задать другой системой: x1 = ϕ1(xn), . . . , xn−1 = ϕn−1(xn), где ϕ1, . . .,
ϕn−1 — некоторые гладкие функции, определенные в окрестности xn0 (n-я координата точки
x0). Таким образом, пересечение множества решений системы (2.1) с некоторой окрестностью
точки x0 является параметризованной простой дугой, заданной отображением

t 7→ (ϕ1(t), . . . , ϕn−1(t), t),

причем эта параметризация, очевидно, регулярна.
(ii) Так как параметризация регулярна, для одной из координат ri вектора r имеем ṙi(t0) 6= 0.

Без ограничения общности можем считать, что эта координата rn. По теореме об обратной
функции существует функция ϕ, определенная в некоторой окрестности точки rn(t0), обрат-
ная к rn: ϕ(rn(t)) = t. Отсюда для достаточно малого δ дугу α = r([t0 − δ, t0 + δ]) можно
параметризовать с помощью rn:

r(t) = r(ϕ(xn)).

Получаем, что дуга α задается в области

U = min(rn(t0 − δ), rn(t0 + δ)) 6 xn 6 max(rn(t0 − δ), rn(t0 + δ))

системой уравнений (2.1), в которой

f1(x1, . . . , xn) = x1 − r1(ϕ(xn)), . . . , fn−1(x1, . . . , xn) = xn−1 − rn−1(ϕ(xn)).

Во всех точках дуги α матрица (∂fi/∂x
j)i=1,...,n−1; j=1,...n−1 единичная, откуда следует их регу-

лярность по отношению к данной системе. �

Для краткости мы будем называть систему (2.1) регулярной, если все ее решения являются
регулярными точками набора функций f1, . . . , fn−1.

В дальнейшем мы не будем пользоваться языком ε, δ-формализма, используя слово «локаль-
но» как указание на то, что указанные свойства имеют место после сужения на достаточно
малую окрестность обсуждаемой точки. Например, теорема 2.2 может звучать так:

Теорема 2.2, краткая форма. Каждая гладкая кривая в Rn локально задается некоторой
регулярной системой n− 1 уравнений: f1(x) = 0, . . . , fn−1(x) = 0. Наоборот, любая регулярная
система локально задает гладкую кривую.
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Отметим, что в доказательствах теорем 2.1 и 2.2 мы пользовались теоремами об обратной и
о неявной функции, которые для гладких кривых означают по сути следующее.

Предложение 2.1. Локально регулярную параметризацию гладкой кривой в Rn всегда можно
получить, взяв за параметр одну (но не любую!) из координат. (Если кривая имеет класс
гладкости Ck, то эта параметризация будет класса Ck.)

Решения системы f1(x) = 0, . . . , fn−1(x) = 0, x ∈ Rn, для которых условие регулярности не
выполнено, называются особыми для этой системы. О поведении множества решений в окрест-
ности особой точки в общем случае ничего нельзя сказать. Не исключено, что это по-прежнему
будет гладкая кривая. Например, на плоскости с координатами x, y уравнение x2 = 0 задает
прямую, но все точки для этого задания особы. Возможно, что множество решений будет кри-
вой, но ее гладкость будет нарушаться в особой точке. Пример: x3 − y2 = 0 — полукубическая
парабола, негладкая в начале координат. Особая точка может оказаться изолированным реше-
нием: x2 + y2 = 0, или точкой пересечения двух дуг, из которых состоит множество решений:
xy = 0. Возможно бесконечное множество других вариантов.

§2.3. Касательная прямая к кривой.

Определение 2.12. Касательной прямой к гладкой кривой в ее точке x0 называется предель-
ное положение секущей x1x2, где x1 6= x2, при x1,x2 → x0 (если оно существует).

Предложение 2.2. К гладкой кривой в каждой точке существует касательная. Для любой
регулярной параметризации вектор скорости кривой является направляющим для касатель-
ной прямой в соответствующей точке.

Доказательство. Это следует из того, что для гладкой (достаточно C1) функции r(t) выпол-
нено

ṙ(t) = lim
t1,t2→t; t1 6=t2

r(t1)− r(t2)

t1 − t2
. �

Теорема 2.3. (i) Пусть γ — гладкая простая дуга, x0 ∈ γ — некоторая ее точка, ` — каса-
тельная прямая в точке x. Тогда для x1 ∈ γ, x1 6= x0 выполнено

ρ(x1, `) = o(|x1 − x0|) x1 → x0,

где ρ(x1, `) — расстояние от точки x1 до `.
(ii) Для каждой точки x0 ∈ γ касательная прямая является единственной прямой с ука-

занным свойством.

Доказательство. (i) Пусть на γ выбрана регулярная параметризация r(t), в которой x0 = r(0).
В качестве точки x1 будем брать r(t), где t пробегает окрестность нуля. Условие r(t) → x0

можно заменить на t→ 0 (по определению простой дуги). Обозначим через v0 вектор ṙ(0). По
условию v0 6= 0. По формуле Тейлора имеем

r(t) = x0 + v0t+ o(t) = x0 + (v0 + o(1)) t (t→ 0).

Расстояние от r(t) то прямой ` равно

ρ(r(t), `) = |r(t)− x0| sinα(t),

где α(t) — угол между векторами v0 и (r(t)−x0). Поскольку r(t)−x0 = (v0 + o(1)) t, этот угол
равен o(1) при t→ 0. Получаем

ρ(r(t), `) = |r(t)− x0| o(1) = o(|r(t)− x0|).
(ii) Пусть теперь `′ — другая прямая, проходящая через точку x0, и пусть u — ее направля-

ющий вектор. Тогда
ρ(r(t), `′) = |r(t)− x0| sin β(t),
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где β(t) — угол между векторами u и r(t) − x0 = (v0 + o(1)) t. При t → 0 угол β(t) стремится
к углу ∠uv0, который по предположению отличен от 0 и π. Отсюда

ρ(r(t), `′) = |r(t)− x0| (const + o(1)),

где const 6= 0. �

Предложение 2.3. Если кривая в Rn задана регулярной системой уравнений

f1(x) = 0, . . . , fn−1(x) = 0,

то касательная к ней в точке x0 задается системой уравнений

(2.2)
(∂f
∂x

)∣∣∣
x0

· (x− x0) = 0,

где
(∂f
∂x

)∣∣∣
x0

— матрица частных производных
∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

. . . . . . . . . . . .

∂fn−1

∂x1
∂fn−1

∂x2
. . . ∂fn−1

∂xn

 ,

взятая в точке x0.

Доказательство. Коранг матрицы системы (2.2) равен единице, поэтому она задает некоторую
прямую. Эта прямая проходит через x0. Остается проверить, что она параллельна вектору
скорости касательной прямой в точке x0 для какой-либо регулярной параметризации.

Пусть r(t) — регулярная параметризация данной кривой, r(t0) = x0. Это означает, что
f(r(t)) ≡ 0 для всех t, где f = (f1, . . . , fn−1). По теореме о производной сложной функции
имеет место равенство

d

dt
f(r(t)) =

(∂f
∂x

)
r(t)

ṙ(t).

Подставляя t = t0, получаем (∂f
∂x

)
x0

v0 = 0,

где v0 — вектор скорости при t = t0. �

§2.4. Соприкосновение кривых. Точки спрямления.

Определение 2.13. Говорят, что две данные гладкие кривые имеют в точке x0 соприкосно-
вение порядка m, где m > 1, если для некоторых их регулярных параметризаций r1(t), r2(t) и
некоторого t0 выполнено

(2.3) r1(t0) = r2(t0) = x0, |r1(t)− r2(t)| = o((t− t0)m) (t→ t0).

Задача 2.7. Докажите, что это определение равносильно следующему.

Определение 2.14. Говорят, что две данные гладкие кривые имеют в точке x0 соприкосно-
вение порядка m, где m > 1, если для любой регулярной параметризации r1(t) первой кривой
найдутся параметризация r2(t) второй кривой и t0, удовлетворяющие (2.3).

Из формулы Тейлора следует, что условие (2.3) равносильно следующему:

(2.4) r1(t0) = r2(t0), ṙ1(t0) = ṙ2(t0), . . . ,
( dm
dtm

r1

)
(t0) =

( dm
dtm

r2

)
(t0).
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Теорема 2.4. Пусть γ1, γ2 — две гладкие простые дуги в Rn, имеющие общую точку x0. Они
имеют в этой точке соприкосновение порядка m тогда и только тогда, когда для x ∈ γ1

выполнено

(2.5) ρ(x, γ2) = o(|x− x0|m), (x→ x0),

где ρ(x, γ2) — расстояние от точки x до дуги γ2.

Доказательство. Пусть r1(t), r2(t) — регулярные параметризации данных кривых, r1(0) =
r2(0) = x0. Без ограничения общности можем считать, что вектор скорости ṙ1(0) параллелен
первому базисному вектору в Rn. (Если это не так, мы можем повернуть систему координат.)
Тогда за параметр на γ1 можно выбрать первую координату, т.е. мы можем считать, что пара-
метризация первой дуги имеет вид

r1(t) = x0 + (t, o(t), . . . , o(t)) (t→ 0).

Для такой параметризации мы имеем

|r1(t)− x0| = (1 + o(1)) |t| (t→ 0),

т.е. величины |r1(t)−x0| и t одного порядка малости, и можно заменять o(|r1(t)−x0|m) на o(tm)
и наоборот. Отсюда условие (2.3) влечет (2.5), что доказывает часть «только тогда». Докажем
теперь часть «тогда».

Пусть выполнено (2.5). Возьмем сначала какую-нибудь параметризацию r2(t) второй дуги с
условием r2(0) = x0. Обозначим через ϕ(t) функцию, определенную в окрестности t0 условием:

(2.6) |r1(t)− r2(ϕ(t))| = o(|r1(t)− x0|m).

Мы не предполагаем от ϕ гладкости и даже непрерывности. Из (2.6) и определения простой
дуги следует, что ϕ(t) → 0 при t → 0. Кроме того, направление вектора r2(ϕ(t)) − x0 (рас-
сматриваемое с точностью до знака) стремится к направлению вектора ṙ1(t0) = (1, 0, . . . , 0), а
значит, первую координату можно взять за параметр и на второй дуге.

С этого места мы предполагаем, что параметризация второй дуги также имеет вид

r2(t) = x0 + (t, o(t), . . . , o(t)) (t→ 0).

Рассмотрим треугольник с вершинами x = r1(t), x1 = r2(t), x2 = r2(ϕ(t)) при t → 0. Направ-
ление вектора x2−x1, если он ненулевой, сближается с направлением вектора скорости второй
кривой в точке x0, т.е. v0 = (1, 0, . . . , 0). Вектор x1−x ортогонален вектору v0. Таким образом,
угол ∠xx1x2 стремится к прямому. Мы знаем, что противолежащая ему сторона xx2 имеет
порядок малости o(|x − x0|m) = o(tm). Отсюда все его стороны имеют по крайней мере такой
же порядок малости, в частности, |x− x1| = |r1(t)− r2(t)|, откуда следует (2.3). �

Каждая касательная прямая по определению имеет с соответствующей кривой соприкосно-
вение первого порядка, но может иметь соприкосновение и более высокого порядка.

Определение 2.15. Точка x кривой γ называется точкой спрямления, если в ней кривая γ
имеет со своей касательной прямой соприкосновение порядка два.

Предложение 2.4. Пусть дана кривая с регулярной параметризацией r(t). Точка, соответ-
ствующая значению параметра t = t0 является точкой спрямления тогда и только тогда,
когда векторы скорости ṙ(t0) и ускорения r̈(t0) в ней коллинеарны.

Доказательство. Пусть r̃(t) — параметризация касательной в точке спрямления, причем

(2.7) |r̃(t)− r(t)| = o(|t− t0|2) (t→ t0).

Тогда из формулы Тейлора следует, что ṙ(t0) = ˙̃r(t0), r̈(t0) = ˙̃r(t0), а векторы ˙̃r(t0), ¨̃r(t0)
коллинеарны, так как параллельны одной прямой.
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Пусть, наоборот, известно, что векторы ṙ(t0) и r̈(t0) коллинеарны. Параметризуем отрезок
касательной прямой возле точки r(t0) следующим образом:

r̃(t) = r(t0) + ṙ(t0)t+
r̈(t0)

2
t2, t ∈ [t0 − ε, t0 + ε].

При достаточно малом ε эта параметризация регулярна, так как по условию ṙ(t0) 6= 0. �

Теорема 2.5. Гладкая кривая, целиком состоящая из точек спрямления, является прямой
или частью прямой.

Доказательство. Пусть r(t) — регулярная параметризация данной кривой. По условию для
всех t найдется число λ(t) такое что
(2.8) r̈(t) = λ(t)ṙ(t).

Задача 2.8. Докажите, что λ(t) — гладкая функция от t.

Выберем произвольный момент времени t0 и положим r0 = r(t0), v0 = ṙ(t0). Равенство (2.8)
представляет собой обыкновенное дифференциальное уравнение относительно r(t) с гладкой
правой частью. Из теории таких уравнений известно, что оно имеет единственное решение,
если фиксированы начальные условия, которыми в данном случае являются r0 и v0 (началь-
ным моментом считается t0). Мы хотим показать, что это решение соответствует движению по
прямой. Для этого мы покажем, что существует решение уравнения (2.8), соответствующее
движению по прямой.

А именно, будем искать решение в виде
(2.9) r(t) = r0 + ϕ(t)v0,

где ϕ — неизвестная функция. Уравнение (2.8) вместе с начальными условиями r(t0) = r0,
ṙ(t0) = v0 равносильно следующему уравнению на функцию ϕ:

ϕ̈(t) = λ(t)ϕ̇(t)

с начальными условиями
ϕ(t0) = 0, ϕ̇(t0) = 1.

Это уравнение легко решается:

ϕ(t) =

∫ t

t0

exp
(∫ τ

t0

λ(s)ds
)
dτ,

причем решение определено всюду, где определено λ(t). Тем самым мы доказали, что исходная
параметризация имела вид (2.9). �

§2.5. Соприкасающаяся окружность. Кривизна. Для трех точек x1, x2, x3, не лежащих
на одной прямой, обозначим через C(x1,x2,x3) проходящую через них окружность.

Теорема 2.6. (i) Если точка x0 некоторой гладкой кривой γ не является точкой спрямления,
то существует ровно одна окружность C, имеющая в x0 соприкосновение второго порядка с
γ.

(ii) Окружность C, указанная в п. (i), является предельной для C(x1,x2,x3), где x1, x2,
x3 — попарно различные точки кривой γ, при одновременном стремлении x1, x2, x3 к x0.

Доказательство. (i) Пусть r(t) — некоторая регулярная параметризация кривой γ с условием
r(0) = x0. Соприкосновение второго порядка в точке x0 с какой-либо другой кривой опреде-
ляется векторами скорости ṙ(0) и ускорения r̈(0). Поэтому для доказательства первой части
теоремы достаточно взять любую другую кривую с теми же векторами скорости и ускорения
в точке x0. Таким образом, без ограничения общности мы можем считать, что наша кривая
имеет следующую параметризацию:

(2.10) r(t) = x0 + vt+
a

2
t2.

https://www.dropbox.com/s/06izx43ssgr1olr/osculating.gif
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Так как x0 — не точка спрямления, векторы v и a линейно независимы. Как нетрудно видеть,
параметризация (2.10) задает параболу.

Пусть C — окружность, проходящая через x0. При любой ее параметризации векторы ско-
рости и ускорения лежат в той же плоскости, что и она сама. Поэтому необходимым условием
ее соприкосновения с γ в точке x0 является то, что она лежит в плоскости Π, натянутой на
векторы v и a, что мы дальше и предполагаем.

Пусть O — центр окружности C. Тогда вектор u =
−−→
Ox0 является линейной комбинацией

векторов v и a:
u = λv + µa.

Расстояние от точки x, лежащей в плоскости Π, до окружности C равно

ρ(x, C) =
∣∣|Ox| −R∣∣,

где R — радиус окружности C. Отсюда условие соприкосновения окружности C и γ можно
записать так: ∣∣|−−−→Or(t)| −R

∣∣ = o(t2),

что равносильно (поскольку R 6= 0)

|
−−−→
Or(t)|2 = R2 + o(t2).

Подставляя
−−−→
Or(t) = u + vt+

a

2
t2,

получаем (
u + vt+

a

2
t2,u + vt+

a

2
t2
)

= R2 + o(t2).

Раскрывая скобки в левой части и отбрасывая члены порядка o(t2), получаем

(u,u) + 2(u,v)t+ ((u,a) + (v,v))t2 = R2.

Учитывая равенство R = |u|, мы приходим к следующему условию соприкосновения второго
порядка окружности C и кривой γ:

(2.11) (u,v) = 0, (u,a) + (v,v) = 0.

Подставляя u = λv + µa, получаем систему линейных уравнений на λ и µ со следующей
матрицей:

(2.12)
(

(v,v) (v,a)
(a,v) (a,a)

∣∣∣∣ 0
−(v,v)

)
.

В левой части стоит матрица Грама пары векторов (v,a), которая невырождена по предполо-
жению о линейной независимости этих векторов. Поэтому система (2.12) имеет единственное
решение. Тем самым мы доказали п. (i). В дальнейшем нам понадобится явный вид этого ре-
шения:

(2.13)
−−→
Ox0 = u = (v,v)

(v,a)v − (v,v)a

(v,v)(a,a)− (v,a)2

(ii) Пусть по-прежнему кривая имеет параметризацию (2.10). Найдем центр окружности
C(x1,x2,x3), где xi = r(ti). Обозначим его через P , а вектор

−−→
Px1 — через w. Векторы

−−→x1x2 = (t2 − t1)
(
v +

t1 + t2
2

a
)

и −−→x1x3 = (t3 − t1)
(
v +

t1 + t3
2

a
)

обозначим через w1 и w2 соответственно. Условие, задающее центр окружности C(x1,x2,x3)
состоит в равенстве расстояний от точки P до точек xi:

(w,w) = (w + w1,w + w1) = (w + w2,w + w2).
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Получаем систему уравнений

(2.14) 2(w,w1) = −(w1,w1), 2(w,w2) = −(w2,w2).

Заметим, что
t1 + t3

(t2 − t1)(t3 − t2)
w1 +

t1 + t2
(t3 − t1)(t2 − t3)

w2 = v,

1

(t2 − t1)(t2 − t3)
w1 +

1

(t3 − t1)(t3 − t2)
w2 =

1

2
a.

Отсюда систему (2.14) можно переписать так:

(2.15) (w,v) = A, (w,a) = B,

где

A =
(t23 − t21)(w1,w1) + (t21 − t22)(w2,w2)

2(t1 − t2)(t1 − t3)(t2 − t3)
,

B =
(t1 − t3)(w1,w1) + (t2 − t1)(w2,w2)

(t1 − t2)(t1 − t3)(t2 − t3)
.

Простой подсчет показывает, что A и B выражаются многочленами от t1, t2, t3 коэффициенты
которых — линейные функции от (v,v), (v,a), (a,a), причем

(2.16) A = o(1), B = −(v,v) + o(1), (max(|t1|, |t2|, |t3|)→ 0).

Таким образом, в пределе система (2.15) переходит в (2.11), ее единственное решение w стре-
мится к определенному ранее вектору u, а значит, окружность C(x1,x2,x3) стремится к C.

Теперь пусть гладкая кривая γ произвольна, r(t) — некоторая ее регулярная параметризация,
r(0) = x0, не обязательно вида (2.10). Нам понадобится следующее утверждение.

Лемма 2.1 (Интерполяционный многочлен Лагранжа). Пусть f — гладкая функция, опреде-
ленная в окрестности нуля. Тогда для любых попарно различных t1, t2, . . . , tk+1 из ее области
определения существует ровно один многочлен L(t) степени k, удовлетворяющий условию
L(ti) = f(ti), i = 1, 2, . . . , k + 1. При t1, . . . , tk+1 → 0 значения самого многочлена L и первых k
его производных в точке 0 стремятся к соответствующим значениям для функции f :

L(0)→ f(0), L′(0)→ f ′(0), . . . , L(k)(0)→ f (k)(0).

Доказательство. Существование многочлена L вытекает из следующей явной формулы для
него:

L(t) =
k+1∑
i=1

f(ti)

∏
j=1,...,k+1, j 6=i

(t− tj)∏
j=1,...,k+1, j 6=i

(ti − tj)
.

Единственность следует из того, что коэффициенты многочлена L находятся как решение си-
стемы из k + 1 линейных уравнений с таким же числом неизвестных, причем определитель
матрицы коэффициентов в левой части есть определитель Вандермонда. Наконец, утвержде-
ние о пределе производных в нуле доказывается индукцией по k с помощью теоремы Ролля.

База индукции — k = 0. Многочлен L есть константа f(t1), которая стремится к f(0) при
t1 → 0. Для индукционного перехода будем считать, что t1 < t2 < . . . < tk+1. Из теоремы Ролля
следует, что найдутся точки q1, . . . , qk в промежутках (t1, t2), . . . , (tk, tk+1), в которых первые
производные многочлена L и функции f совпадают. Подробности оставляем читателю. �

Из только что доказанной леммы следует, что для любых попарно различных точек x1 =
r1(t1), x2 = r2(t2), x3 = r3(t3) на кривой γ имеется ровно одна парабола γ̃ с параметризацией

r̃(t) = x0 + v t+
a

2
t2,
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удовлетворяющей условию r̃(ti) = xi, i = 1, 2, 3. Кроме того, при t1, t2, t3 → 0 мы имеем v →
ṙ(0), a → r̈(0). Мы уже знаем, что окружность C(x1,x2,x3) близка к окружности, имеющей
с γ̃ соприкосновение второго порядка в точке x0, центр которой в свою очередь непрерывно
зависит от v, a, а значит, стремится к окружности, имеющей соприкосновение второго порядка
с γ. Для завершения доказательства теоремы 2.6 остается заметить, что остаточные члены
o(1) в формулах 2.16 стремятся к нулю равномерно по v, a, если последние пробегают малую
окрестность векторов ṙ(0), r̈(0). �

Определение 2.16. Окружность, имеющая с гладкой кривой γ соприкосновение второго по-
рядка в точке x0 называется соприкасающейся окружностью кривой γ в точке x0. Ее радиус R
и центр O называется радиусом кривизны и центром кривизны кривой γ в точке x0. Плоскость,
в которой она лежит, называется соприкасающейся плоскостью кривой γ в точке x0. Вектор

k =

−−→
x0O

R2
называется вектором кривизны, вектор n =

−−→
x0O

R
— вектором главной нормали, а

величина k = 1/R — кривизной кривой в точке x0.

Легко видеть, что имеют место следующие соотношения между этими объектами:

(n, ṙ) = 0, |n| = 1, k = k · n.

Предложение 2.5. Вектор кривизны и кривизна кривой для произвольной регулярной пара-
метризации r(t) вычисляются по формуле

(2.17) k =
(ṙ, ṙ)r̈ − (ṙ, r̈)ṙ

(ṙ, ṙ)2
, k =

S(ṙ, r̈)

|ṙ|3
,

где S( · , · ) обозначает площадь параллелограмма, натянутого на пару векторов.

Доказательство. Воспользуемся формулой (2.13), выведенной выше. Получим

k =
(ṙ, ṙ)(r̈, r̈)− (ṙ, r̈)2

(ṙ, ṙ)
√(

(ṙ, r̈)ṙ − (ṙ, ṙ)r̈, (ṙ, r̈)ṙ − (ṙ, ṙ)r̈
) =

(
(ṙ, ṙ)(r̈, r̈)− (ṙ, r̈)2

)1/2

(ṙ, ṙ)3/2
,

k = k2 (ṙ, ṙ)
(ṙ, ṙ)r̈ − (ṙ, r̈)ṙ

S(ṙ, r̈)2
. �

§2.6. Натуральный параметр. Длина дуги. Формула для кривизны в натуральной
параметризации.

Определение 2.17. Параметризация гладкой кривой называется натуральной, если длина
вектора скорости в ней постоянна и равна единице.

Для натурального параметра как правило используют обозначение s, а для производных по
натуральному параметру — штрихи, а не точки: r′ = dr/ds, r′′ = d2r/ds2.

Замечание 2.2. Иногда натуральной называют также параметризацию, для которой длина век-
тора скорости постоянна, но не обязательно равна единице.

Теорема 2.7. (i) На гладкой кривой всегда существует натуральная параметризация.
(ii) Любые две натуральные параметризации s и ŝ отличаются сдвигом и/или обращением

ориентации:
s = ŝ+ const или s = −ŝ+ const.

Доказательство. Мы докажем оба пункта одновременно. Пусть r(t) — регулярная параметри-
зация некоторой кривой. Будем искать натуральный параметр как функцию от t:

s = ϕ(t).
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По теореме 2.1 функция ϕ должна быть гладкой, если натуральная параметризация существует.
По определению параметр s будет натуральным тогда и только тогда, когда для всех s мы будем
иметь ∣∣∣dr(ϕ−1(s))

ds

∣∣∣ = 1.

По теореме о производной сложной функции это равенство равносильно следующему:∣∣∣ṙ(ϕ−1(s))
dϕ−1(s)

ds

∣∣∣ = 1.

Применяя теорему о производной обратной функции, переписываем это равенство в виде
(2.18) |ϕ̇(t)| = |ṙ(t)|.
Функция |ṙ(t)| по условию нигде не обращается в нуль, поэтому последнее равенство означает,
что либо для всех t выполнено ϕ̇(t) = |ṙ(t)|, либо для всех t выполнено ϕ̇(t) = −|ṙ(t)|. Таким
образом, общее решение уравнения (2.18) имеет вид

ϕ(t) = ε

∫ t

t0

|ṙ(τ)| dτ + const,

где ε = ±1. �

Задача 2.9. Докажите, что натуральная параметризация гладкой кривой конечного класса
гладкости Cq имеет не меньший класс гладкости, чем любая другая регулярная параметриза-
ция.

Задача 2.10. Покажите, что утверждение предыдущей задачи неверно без слова «регулярная».

Определение 2.18. Для кривой γ и двух ее точек x1, x2 дугой кривой γ с концами x1, x2 мы
называем кривую, параметризации которой являются ограничением параметризаций кривой γ
на отрезок, концы которого соответствуют точкам x1 и x2.

Длиной гладкой дуги кривой γ с концами x1, x2 называется разность |s1 − s2| между значе-
ниями натурального параметра, соответствующих этим точкам. Длиной кусочно-гладкой дуги
называется сумма длин составляющих ее гладких дуг.

Из теоремы 2.7 следует, что определение длины дуги корректно, т.е. не зависит от выбора
натурального параметра. Из ее доказательства мы видим также следующее.

Предложение 2.6. В произвольной параметризации длина дуги α вычисляется по формуле

L(α) =

∣∣∣∣∫ t2

t1

|ṙ| dt
∣∣∣∣ ,

где t1, t2 — значения параметра, соответствующие концам дуги.

Задача 2.11. Докажите, что длина дуги с концами x1 = r(t1), x2 = r(t2) равна пределу длины
вписанных ломаных x1y1y2 . . .yqx2, где yi = r(τi), t1 = τ0 < τ1 < τ2 < . . . < τq < τq+1 = t2 при
стремлении к нулю величины maxi=0,...,q(τi+1 − τi).

Для натуральной параметризации многие формулы упрощаются. Примером служит следу-
ющее утверждение.

Предложение 2.7. В натуральной параметризации r(s) кривизна гладкой кривой вычисля-
ется по формуле

(2.19) k(s) = |r′′(s)|.
Доказательство. Сначала докажем лемму, которой будем пользоваться и в дальнейшем.

Лемма 2.2. Пусть u(t) — переменный вектор постоянной длины, |u(t)| ≡ const. Тогда при
всех t имеет место равенство

(u̇,u) = 0.
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Доказательство. По условию скалярный квадрат (u(t),u(t)) есть постоянная величина. Отсю-
да

0 =
d

dt
(u,u) = (u̇,u) + (u, u̇) = 2(u̇,u).

Мы воспользовались здесь правилом Ньютона–Лейбница, которое применимо к любой били-
нейной функции. �

Итак, для натуральной параметризации мы имеем
|r′| = 1, (r′, r′′) = 0.

Отсюда
S(r′, r′′) = |r′′|,

И формула (2.17) превращается в (2.19). �

Формула (2.19) имеет наглядную геометрическую интерпретацию: при перемещении по кри-
вой на малое расстояние ∆s > 0 вектор скорости поворачивается на угол ∆ϕ = k ·∆s+ o(∆s).
Действительно, так как вектор r′′ ортогонален r′, то угол между вектором r′(s+ ∆s) = r′(s) +
∆s · r′′(s) + o(∆s) и r′(s) равен ∆s · |r′′(s)|/|r′|+ o(∆s) = k ·∆s+ o(∆s), см. рис. 2.

r′(s)

r′(s+ ∆s)

r′(s+ ∆s)

∆ϕ ∆s
∆ϕ ≈ k ·∆s

Рис. 2. Кривизна — скорость вращения касательного вектора

Задача 2.12. Покажите, что вектор кривизны кривой в натуральной параметризации равен
вектору ускорения: k = r′′, а вектор главной нормали (там, где кривизна не равна нулю) —
единичному вектору того же направления: n = r′′/|r′′|.

§2.7. Кривизна со знаком и формулы Френе плоской кривой. В этом параграфе мы
будем иметь дело лишь с кривыми на плоскости R2.

Выше кривизна кривой в произвольной точке была определена как некоторое неотрицатель-
ное число. В случае гладкой плоской кривой это число почти полностью определяет вектор
кривизны в соответствующей точке. А именно, с точностью до знака. Действительно, вектор
кривизны равен
(2.20) k = k · n,
где n — вектор главной нормали, а последний — это некоторый единичный вектор, ортогональ-
ный вектору скорости. В каждой точке кривой имеется ровно два «претендента» на вектор
главной нормали, т.е. два вектора единичной длины, ортогональных вектору скорости.

Если кривая имеет точки спрямления, то в них вектор главной нормали не определен и
обычно не может быть определен так, чтобы быть непрерывной функцией от точки, см. рис. 3,
слева.

Во многих случаях бывает удобно заранее «назначить» один из этих двух векторов вектором
главной нормали, а кривизне приписать знак «+» или «−» так, чтобы формула (2.20) осталась
верной, причем сделать это согласованным образом вдоль всей кривой. Такое «назначение»
называется коориентацией кривой.



19

k > 0 k < 0

Рис. 3. Вектор нормали n по умолчанию (слева) и при заданной коориентации

Определение 2.19. Говорят, что на гладкой плоской кривой выбрана коориентация (или что
кривая коориентирована), если в каждой точке этой кривой выбран единичный вектор n, орто-
гональный соответствующему вектору скорости v (для некоторой фиксированной регулярной
параметризации), причем так, что ориентация пары (v,n) одна и та же для всех точек кривой.

Говорят, что на кусочно-гладкой плоской кривой выбрана коориентация, если коориентиро-
вана каждая ее гладкая дуга, причем коориентации разных дуг согласованы между собой. А
именно, пары (v,n) вектор скорости—вектор нормали имеют одинаковую ориентацию для всех
дуг.

Если кривая коориентирована, то ее кривизной называется коэффициент пропорционально-
сти k в равенстве (2.20), где вектор кривизны k определен как раньше, а n— нормаль, задающая
коориентацию кривой, см. рис. 3, справа.

Задача 2.13. Докажите, что в случае гладкой кривой условие сохранения ориентации пары
(v,n) равносильно тому, что вектор n гладко зависит от точки кривой. Покажите, что коори-
ентацию на (кусочно-) гладкой кривой можно выбрать ровно двумя способами.

Теорема 2.8 (Формулы Френе плоской кривой). Для натуральной параметризации r(s) глад-
кой коориентированной кривой во всех точках выполнены равенства

(2.21)
v′ = k · n,
n′ = −k · v,

где v = r′ — вектор скорости.

Доказательство. Мы уже знаем, что r′′ = v′ = k = k ·n. Так что доказать нужно лишь второе
равенство. Из леммы 2.2 векторы n′ и n ортогональны. Отсюда вектор n′ коллинеарен вектору
скорости v: n′ = λv. Далее,

(n,v) ≡ 0, следовательно, 0 = (n,v)′ = (n′,v) + (n,v′) = λ+ k.

Отсюда λ = −k. �

Определение 2.20. Ортонормированный базис, составленный при натуральной параметриза-
ции из вектора скорости v = r′ и вектора нормали n = ±r′′/|r′′| (знак зависит от коориентации,
по умолчанию — «+») в точке x0 данной кривой называется базисом Френе этой кривой в точке
x0.

Заметим, что базис Френе определен неоднозначно. Если изменить знак натурального пара-
метра: s 7→ −s, то вектор v также меняет знак.

Формулы Френе имеют важное следствие:

Теорема 2.9. (i) Гладкая коориентированная кривая на плоскости восстанавливается по
функции k(s), выражающей кривизну через натуральный параметр, однозначно с точностью
до движения.

(ii) Для любой гладкой функции k(s) найдется гладкая плоская кривая с зависимостью кри-
визны от натурального параметра, выраженной этой функцией.
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Доказательство. (i) Очевидно, что множество решений системы уравнений (2.21) инвариантно
относительно движений плоскости. Эти уравнения вместе с уравнением
(2.22) r′ = v

образуют систему обыкновенных дифференциальных уравнений первого порядка, поэтому ре-
шение при фиксированных начальных данных единственно. Начальными данными является
точка r(s0) и ортонормированный базис v(s0), n(s0), т.е. некоторый ортонормированный репер.
Движением плоскости любой такой репер переводится в любой другой, а значит любое решение
можно движением перевести в другое решение.

(ii) Зафиксируем начальный момент s0 и положим

(2.23)

ϕ(s) =

∫ s

s0

k(τ) dτ,

v(s) =
(
cos(ϕ(s)), sin(ϕ(s))

)
,

n(s) =
(
− sin(ϕ(s)), cos(ϕ(s))

)
,

r(s) =

∫ s

s0

v(τ) dτ.

Проверку того, что эти формулы дают решение уравнений (2.21) и (2.22), а также того, что
кривизна выражается функцией k(s) от натурального параметра, оставляем читателю. �

Формула k = k(s), выражающая кривизну гладкой плоской кривой через натуральный пара-
метр, называется нормальным уравнением этой кривой. В силу теоремы 2.9 переход от любого
другого способа задания кривой к нормальному уравнению решает задачу классификации глад-
ких плоских кривых с точностью до движения, так как произвол в нормальном уравнении со-
стоит лишь в сдвиге натурального параметра и возможном изменении его знака: s 7→ ±s+const.

Заметим, что формулы Френе имеют следующую компактную запись:(
v n

)′
=
(
v n

)(0 −k
k 0

)
.

Задача 2.14. Докажите, что для расстояния от точки x гладкой кривой до касательной ` в
точке x0 выполнено

ρ(x, `) = k(x0)
|xx0|2

2
+ o(|xx0|2).

Задача 2.15. Докажите, что плоская кривая с постоянной кривизной есть прямая или окруж-
ность (часть прямой или окружности).

Задача 2.16. Докажите, что длина гладкой дуги γε, полученной из данной дуги γ сдвигом
каждой точки на малое расстояние ε по направлению соответствующего вектора нормали равна

L(γε) = L(γ)− ε
∫
γ

k(s) ds.

§2.8. Формулы Френе пространственной кривой. Кручение. В этом параграфе мы рас-
сматриваем гладкую кривую в R3 без точек спрямления, заданную натуральной параметриза-
цией r(s). Пространство R3 считается ориентированным.

Обозначим, как и раньше, через v и n векторы скорости и главной нормали:

v = r′, n =
r′′

|r′′|
,

и дополним их до ортонормированного базиса вектором
b = [v,n],

где [ · , · ] обозначает векторное произведение. Вектор b называется вектором бинормали данной
кривой в соответствующей точке.



21

Определение 2.21. Построенный таким образом ортонормированный базис v(s),n(s), b(s) на-
зывается базисом Френе данной пространственной кривой в точке r(s).

Как и в случае плоскости, базис Френе пространственной кривой определен неоднозначно. А
именно, если изменить знак натурального параметра, то векторы v, b поменяют направление
на противоположное. Этим неоднозначность исчерпывается.

Теорема 2.10 (Формулы Френе пространственной кривой). Базис Френе v,n, b простран-
ственной кривой удовлетворяет уравнениям

(2.24)

v′ = kn,

n′ = −kv + κb,
b′ = −κn,

где κ = κ(s) — некоторая гладкая функция.

Доказательство. Первое уравнение в (2.24) является следствием определений и выполнено в
любой размерности n > 2.

Поскольку базис Френе ортонормирован, для любого вектора u выполнено

(2.25) u = (u,v)v + (u,n)n + (u, b)b.

Далее мы воспользуемся леммой 2.2, а также следующим аналогичным наблюдением: если два
вектора u1(s), u2(s), зависящих от параметра, ортогональны, то

(2.26) (u′1,u2) = −(u1,u
′
2).

Действительно, это следует из формулы Ньютона–Лейбница: 0 = (u1,u2)′ = (u′1,u2) + (u1,u
′
2).

Обозначим (n′, b) через κ. Из (2.25), (2.26) и леммы 2.2 получаем:

n′ = (n′,v)v + (n′,n)n + (n′, b)b = −(n,v′)v + κb = −kv + κb,
b′ = (b′,v)v + (b′,n)n + (b′, b)b = −(b,v′)v − (b,n′)n = −κn. �

Уравнения (2.24) можно записать в матричном виде:

(2.27)
(
v n b

)′
=
(
v n b

)0 −k 0
k 0 −κ
0 κ 0

 .

Определение 2.22. Величина κ(s) в формулировке теоремы 2.10 называется кручением дан-
ной кривой в точке (s, r(s)).

Геометрический смысл кручения виден из третьего уравнения в (2.24): это скорость вращения
вектора b, а значит, скорость вращения соприкасающейся плоскости кривой в данной точке.

Задача 2.17. Докажите, что значение кручения в данной точке кривой не изменится, если
сменить направление ее обхода, т.е. сделать замену натурального параметра s 7→ −s.

Теорема 2.11. Кривая в R3 без точек спрямления содержится в некоторой плоскости тогда
и только тогда, когда ее кручение всюду равно нулю.

Доказательство. Если кривая лежит в плоскости, то для всех s векторы v(s) и n(s) образуют
базис в этой плоскости, а значит вектор b(s), который является нормалью к ней, постоянен,
b′ = 0. Отсюда κ(s) = 0 для всех s.

Пусть, наоборот, кручение равно нулю. Тогда из третьей формулы в (2.24) следует, что век-
тор b(s) постоянен. Таким образом, вектор скорости v(s) при всех s ортогонален постоянному
вектору, а значит, этому вектору ортогонален и любой вектор, соединяющий две точки нашей
кривой. Следовательно, кривая плоская. �
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Предложение 2.8. В произвольной регулярной параметризации кручение вычисляется по
формуле

(2.28) κ =
Vor(ṙ, r̈,

...
r )

S(ṙ, r̈)2
,

где Vor( · , · , · ) обозначает ориентированный объем.

Доказательство. Используя (2.17), выразим базис Френе через векторы ṙ, r̈:

v = ṙ
dt

ds
, n =

((ṙ, ṙ)r̈ − (ṙ, r̈)ṙ)

|ṙ|S(ṙ, r̈)
, b = [v,n] = a [ṙ, r̈],

где

a =
dt

ds

|ṙ|
S(ṙ, r̈)

.

Из третьего уравнения в (2.24) получаем

κ = −(b′,n) = −(a′ [ṙ, r̈],n)−
(
a
[ dt
ds

r̈, r̈
]
,n
)
−
(
a
[
ṙ,
dt

ds

...
r
]
,n
)
.

Первые два слагаемых равны нулю как смешанные произведения линейно зависимых векторов.
Последнее слагаемое равно

−
(
a
[
ṙ,

...
r
dt

ds

]
,n
)

= −
(
a
[
ṙ,

...
r
dt

ds

]
,
|ṙ| r̈
S(ṙ, r̈)

)
= −

( dt
ds

)2 |ṙ|2

S(ṙ, r̈)2
Vor(ṙ,

...
r , r̈) =

Vor(ṙ, r̈,
...
r )

S(ṙ, r̈)2
. �

§2.9. Восстановление кривой в R3 по кривизне и кручению. Аналогично плоскому слу-
чаю пространственную кривую можно восстановить по кривизне и кручению.

Теорема 2.12. Для любой пары гладких функций k,κ : I → R, первая из которых всюду
положительна, с точностью до движения существует ровно одна кривая в R3, кривизна и
кручение которой выражаются для некоторой натуральной параметризации функциями k и
κ соответственно.

Доказательство. Доказательство единственности не отличается от плоского случая. Уравне-
ния (2.24) вместе с r′ = v образуют систему обыкновенных дифференциальных уравнений,
решение которого единственно при фиксированных начальных условиях, которыми является
начальная точка и базис Френе в начальный момент. Любой ортонормированный положительно
ориентированный репер переводится движением в любой другой. Поэтому начальные данные
одного решения можно перевести в начальные данные другого решения. При этом одно ре-
шение перейдет в другое в силу инвариантности уравнений относительно группы собственных
движений.

Для доказательства существования нужно взять произвольный начальный момент s0 ∈ I и
произвольный ортонормированный положительно ориентированный репер x0,v0,n0, b0, решить
уравнения (2.24), а затем уравнение r′ = v с начальными условиями v(s0) = v0, n(s0) =
n0, b(s0) = b0, r(s0) = x0. Решение существует на всем промежутке I, поскольку уравнения
линейны. Нужно лишь проверить, что кривизна и кручение полученной кривой выражаются
исходными функциями k(s), κ(s). Для этого достаточно показать, что базис v,n, b остается
ортонормированным в силу уравнений (2.24).

Лемма 2.3. Пусть X(t) — матрица размера n × n, зависящая от параметра, причем в на-
чальный момент t = 0 она ортогональна. Тогда следующие утверждения равносильны:

(i) матрица X(t) ортогональна при всех t;
(ii) при всех t матрица X(t)−1Ẋ(t) кососимметрична.
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Доказательство. Положим A(t) = X>(t)X(t), B(t) = X(t)−1Ẋ(t). Имеем

(2.29) Ȧ = Ẋ>X +X>Ẋ = B>A+ AB.

Матрица X(t) ортогональна тогда и только тогда, когда A(t) = E — единичная матрица.
Если A(t) = E для всех t, то из (2.29) следует, что B>(t) +B(t) = 0 для всех t.
Пусть, наоборот, матрица B(t) кососимметрична при всех t и A(0) = E. Тогда постоянная

функция A(t) = E является решением уравнения (2.29) с этим начальным условием. Остается
воспользоваться единственностью решения. �

Вернемся к доказательству теоремы 2.12. Обозначим через A(s) матрицу, по столбцам ко-
торой стоят векторы v(s), n(s), b(s), найденные из уравнений (2.24). Ортонормированность
базиса v(s),n(s), b(s) означает ортогональность матрицы A(s). В начальный момент s = s0

условие ортогональности выполнено. Уравнения (2.24) переписываются в виде

A′ = A

0 −k 0
k 0 −κ
0 κ 0

 .

Отсюда по лемме 2.3 матрица A(s) ортогональна при всех s. �

§2.10. k-Регулярность. Многомерные формулы Френе.

Определение 2.23. Кривая в евклидовом пространстве Rn называется k-регулярной, где k ∈
N, если она допускает параметризацию r(t), для которой векторы dr/dt, d2r/dt2, . . . , dkr/dtk
линейно независимы при всех t.

Лемма 2.4. Пусть t = t(τ) — гладкая функция со всюду ненулевой первой производной,
а r(t) — гладкая параметризованная кривая. Тогда для любого k ∈ N в каждой точке кри-
вой выполнено равенство

(2.30)
(
dr

dτ

d2r

dτ 2
. . .

dkr

dτ k

)
=

(
dr

dt

d2r

dt2
. . .

dkr

dtk

)
·R,

где R — верхнетреугольная матрица, на диагонали которой стоят числа dt/dτ , (dt/dτ)2, . . . ,
(dt/dτ)k.

Доказательство. Это утверждение равносильно следующему: в каждой точке данной кривой
для всех j ∈ N вектор djr/dτ j имеет вид

(2.31)
djr

dτ j
=
( dt
dτ

)j
· d

jr

dtj
+Rj−1,j ·

dj−1r

dtj−1
+ . . .+R1,j ·

dr

dt
,

где Rj−1,j, . . . , R1,j — некоторые коэффициенты. Это утверждение доказывается по индукции.
Для j = 1 равенство (2.31) (в этом случае в правой части остается только первое слагаемое)
следует из теоремы о дифференцировании сложной функции. Для индукционного перехода
продифференцируем обе части (2.31) по τ :

dj+1r

dτ j+1
=
( dt
dτ

)j+1

· d
j+1r

dtj+1
+

(
d

dτ

( dt
dτ

)j
+Rj−1,j

dt

dτ

)
· d

jr

dtj
+

+

(
dRj−1,j

dτ
+Rj−2,j

dt

dτ

)
· d

j−1r

dtj−1
+ . . .+

(
dR2,j

dτ
+R1,j

dt

dτ

)
· d

2r

dt2
+
dR1,j

dτ

dr

dt
. �

Из леммы 2.4 вытекает следующее утверждение.

Предложение 2.9. Если кривая k-регулярна, то для любой регулярной параметризации r(t)
векторы dr/dt, d2r/dt2, . . . , dkr/dtk линейно независимы.

Теперь напомним некоторые сведения из курса линейной алгебры.
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Теорема 2.13. Для любого набора v1,v2, . . . ,vk линейно независимых векторов евклидова про-
странства существует, и притом единственный, ортонормированный базис e1, e2, . . . , ek под-
пространства 〈v1,v2, . . . ,vk〉, порожденного этими векторами, такой, что матрица перехо-
да R от e1, e2, . . . , ek к v1,v2, . . . ,vk верхнетреугольная с положительными числами на диа-
гонали: (

v1 v2 . . .vk
)

=
(
e1 e2 . . . ek

)
·R.

Кроме того, на диагонали матрицы R стоят числа

V (v1),
V (v1,v2)

V (v1)
,
V (v1,v2,v3)

V (v1,v2)
, . . . ,

V (v1,v2, . . . ,vk−1,vk)

V (v1,v2, . . . ,vk−1)
,

где V (v1, . . . ,vj) обозначает объем параллелепипеда, натянутого на векторы v1, . . . ,vj.

Напомним также идеи доказательства этой теоремы. Единственность базиса e1, . . . , ek с ука-
занными свойствами следует из того, что верхнетреугольная матрица с положительными чис-
лами на диагонали является ортогональной тогда и только тогда, когда она единичная.

Существование же базиса e1, . . . , ek доказывается путем его явного построения, которое на-
зывается процессом ортогонализации Грама–Шмидта:

u1 = v1, e1 = u1/ |u1| ,
u2 = v2 − (e1,v2)e1, e2 = u2/ |u2| ,
u3 = v3 − (e1,v3)e1 − (e2,v3)e3, e2 = u3/ |u3| ,
. . .

uk = vk −
k−1∑
j=1

(ej,vk)ej, ek = uk/ |uk|

Определение 2.24 (предварительное). Пусть γ — n-регулярная кривая в евклидовом про-
странстве Rn и r(t) — ее регулярная параметризация. Для каждой точки этой кривой базис
пространства Rn, полученный ортогонализацией Грама–Шмидта из базиса ṙ, r̈, . . . , dnr/dtn, на-
зывается базисом Френе кривой γ в этой точке.

Предложение 2.10. Базис Френе гладкой n-регулярной кривой в Rn в каждой точке не зави-
сит от выбора параметризации при условии, что фиксирована ориентация кривой, то есть
направление возрастания параметра на ней.

Доказательство. Пусть t и τ — два параметра на данной кривой, возрастающие в одном на-
правлении, то есть dt/dτ > 0, и пусть по отношению к обоим параметризация r данной кривой
является регулярной (а значит, и n-регулярной). Обозначим dkr/dtk через uk, а dkr/dτ k через vk,
k = 1, . . . , n.

По лемме 2.4 матрицы перехода между базисами u1, . . . ,un и v1, . . . ,vn верхнетреугольные
с положительными элементами на диагонали. По теореме 2.13 это означает, что результат про-
цесса ортогонализации Грама–Шмидта для них будет одинаковым. �

Задача 2.18. Как изменится базис Френе, если изменить направление кривой на противопо-
ложное, то есть сделать замену параметра t 7→ −t?
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Теорема 2.14. Для базиса Френе e1, . . . , en n-регулярной ориентированной кривой в Rn, пара-
метризованной натуральным параметром, имеют место равенства

(2.32)

e′1 = k1e2,

e′2 = k2e3 − k1e1,

e′3 = k3e4 − k2e2,

. . .

e′n−1 = kn−1en − kn−2en−2,

e′n = −kn−1en−1,

где k1, . . . , kn−1 — некоторые гладкие функции натурального параметра (они называются обоб-
щенными кривизнами данной кривой).

Для произвольной регулярной параметризации r(t), согласованной с ориентацией, обобщен-
ные кривизны вычисляются по формуле

(2.33) kj =
Vj+1Vj−1

V 2
j |ṙ|

,

где Vj — объем параллелепипеда, натянутого на векторы ṙ, . . . , djr/dtj при j > 1, V1 = |ṙ|,
V0 = 1.

Доказательство. Для краткости будем обозначать djr/dtj через r(j). Производные по t будем
обозначать также точками, а по натуральному параметру s — штрихами.

В точке кривой r(t) матрицу перехода от базиса Френе e1, e2, . . . , en к ṙ, r̈, . . . , r(n) обозначим
через R(t):

(2.34)
(
ṙ r̈ . . . r(n)

)
=
(
e1 e2 . . . en

)
·R.

(Для краткости зависимость от параметра t в формулах будем, как и раньше, опускать.) По
определению базиса Френе матрица R верхнетреугольная. Кроме того, на ее диагонали стоят
следующие положительные числа:

(2.35)
V1

V0

,
V2

V1

, . . . ,
Vn
Vn−1

.

Продифференцируем обе части равенства (2.34) по t:(
r̈

...
r . . . r(n+1)

)
=
(
ė1 ė2 . . . ėn

)
·R +

(
e1 e2 . . . en

)
· Ṙ,

откуда получаем(
ė1 ė2 . . . ėn

)
=
((

r̈
...
r . . . r(n+1)

)
−
(
e1 e2 . . . en

)
· Ṙ
)
·R−1.

Тривиальным образом имеет место следующее соотношение:(
r̈

...
r . . . r(n+1)

)
=
(
ṙ r̈ . . . r(n)

)
· A,

где матрица A имеет вид:

A =


0 · · · · · · 0 ∗
1

. . . ... ∗
0

. . . . . . ... ∗
... . . . . . . 0 ∗
0 · · · 0 1 ∗

 .

(В последнем столбце этой матрицы стоят коэффициенты разложения вектора r(n+1) по бази-
су ṙ, r̈, . . . , r(n), которые нам не понадобятся.) Отсюда, используя (2.34), получаем(

ė1 ė2 . . . ėn
)

=
(
e1 e2 . . . en

)
·B,
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где матрица B есть
B = (RA− Ṙ)R−1.

Из вида матрицы A и того, что матрица R верхнетреугольная с чилами (2.35) на диагонали, сле-
дует, что единственные ненулевые элементы матрицы B под диагональю стоят непосредственно
под диагональю, и эти элементы равны:

B2,1 =
V2V0

V 2
1

, B3,2 =
V3V1

V 2
2

, . . . , Bn,n−1 =
VnVn−2

V 2
n−1

.

Из леммы 2.3 следует, что матрица B кососимметрична. Поэтому она имеет ненулевые элементы
только непосредственно над и непосредственно под диагональю, причем Bi+1,i = −Bi,i+1 =
Vi+1Vi−1/V

2
i . Для доказательства теоремы остается заметить, что(

e1 e2 . . . en
)′

=
1

|ṙ|
(
ė1 ė2 . . . ėn

)
. �

Проведенные выше построения имеют существенный недостаток в том, что для них требуется
n-регулярность кривой. Это важно, поскольку “типичная” кривая в Rn (n− 1)-регулярна, но не
обязательно n-регулярна. Более точно, любую регулярную кривую в Rn можно сделать (n− 1)-
регулярной сколь угодно малым возмущением, а для n-регулярности это неверно.

Поэтому мы модифицируем определение 2.24 следующим образом.

Определение 2.25. Пусть γ — (n − 1)-регулярная кривая в евклидовом пространстве Rn

и r(t) — ее регулярная параметризация. Для каждой точки кривой γ ее базисом Френе e1, e2, . . . , en
в этой точке называется ортонормированный базис, в котором первые n− 1 векторов получены
ортогонализацией Грама–Шмидта из набора векторов ṙ, r̈, . . . , dn−1r/dtn−1, а последний вектор
выбран таким образом, чтобы ориентация базиса была положительной.

Если кривая n-регулярна, то данное определение отличается от определения 2.24 только спо-
собом выбора знака вектора en, поэтому формулы Френе (2.32) остаются верны с той лишь
разницей, что в выражении (2.33) для последней обобщенной кривизны kn−1 вместо Vn нужно
подставить ориентированный объем V or

n параллелепипеда, натянутого на векторы ṙ, r̈, . . . , r(n).
Поскольку нигде в выражениях для обобщенных кривизн не выполняется деление на V or

n , они
остаются верными и для (n − 1)-регулярных кривых, не являющихся n-регулярными. Дока-
зательство этого факта является частью следующей задачи, которая оставляется читателю в
качестве упражнения.

Задача 2.19. Сформулировать и доказать аналог теоремы 2.12 для n-мерного случая, n > 3.

§2.11. Проекции кривой в R3 на трехгранник Френе. Пусть γ — гладкая кривая в R3,
а p — ее точка, в которой кривая γ 3-регулярна. Введем на γ натуральный параметр, принима-
ющий в точке p значение 0. Пусть r = r(s) — соответствующая параметризация.

Введем в R3 ортогональную систему координат x, y, z с началом в точке p, связанную с бази-
сом Френе e1, e2, e3 кривой γ в точке p. Тогда по определению этого базиса и из формул Френе
будем иметь (при s = 0):

r′ = e1,

r′′ = e′1 = ke2,

r′′′ = (ke2)′ = k′e2 + ke′2 = k′e2 − k2e1 + kκe3.

Отсюда по формуле Тейлора после перехода в систему координат x, y, z параметризация кри-
вой γ в окрестности точки p имеет вид

(2.36) r(s) =
(
s− k2 s

3

6
, k

s2

2
+ k′

s3

6
, kκ

s3

6

)
+O(s4).
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Каждая из трех координатных плоскостей введенной выше системы координат имеет неко-
торые уникальные геометрические свойства по отношению к кривой γ и ее точке p. Рассмотрим
эти плоскости по отдельности.

Определение 2.26. Плоскость x = 0 введенной выше системы координат называется нормаль-
ной плоскостью кривой γ в точке p.

Это название связано с тем, что оба вектора, порождающих нормальную плоскость, ортого-
нальны касательному вектору кривой γ в точке p.

Предложение 2.11. Нормальная плоскость кривой γ в точке p является единственной плос-
костью, проходящей через точку p, ортогональная проекция кривой γ на которую имеет в
точке p особенность, то есть не является гладкой в этой точке.

Доказательство. Согласно (2.36) проекция на плоскость x = 0 задается уравнением

z = ±
√

2κ

3
√
k
· y3/2 +O(y2).

Приближенно это — полукубическая парабола, имеющая “клюв” (точку возврата) в начале
координат и поэтому не допускающая регулярную параметризацию в его окрестности.

Ортогональная проекция вектора r′(0) = e1(0) на любую другую плоскость, проходящую
через начало координат, будет отлична от нуля, поэтому параметризация проекции кривой γ с
помощью s останется в начале координат регулярной. �

Определение 2.27. Плоскость y = 0 введенной выше системы координат называется спрям-
ляющей плоскостью кривой γ в точке p.

Следующее утверждение объясняет происхождение этого названия.

Предложение 2.12. Спрямляющая плоскость кривой γ в точке p является единственной
плоскостью, содержащей касательную к γ в точке p, ортогональная проекция кривой γ на
которую имеет в p точку спрямления.

Доказательство. Рассмотрим ортогональную проекцию γ на произвольную плоскость Π, со-
держащую касательную к γ в точке p. Проекция на нее вектора r′(0) совпадает с самим век-
тором r′(0), поэтому параметризация проекции с помощью s в окрестности точки p остается
регулярной. Вектор r′′(0) = e2(0) проецируется на Π в вектор, ортогональный r′(0). Поэтому
проекция кривой γ на Π будет иметь в p точку спрямления, только если проекция вектора r′′(0)
на Π нулевая, то есть вектор e2(0) нормален к Π. Это равносильно тому, что Π — спрямляющая
плоскость. �

Из (2.36) видно, что проекция кривой γ на спрямляющую плоскость приближенно имеет вид
кубической параболы с точкой перегиба в начале координат:

z =
kκ

6
x3 + o(x3).

Наконец, плоскость z = 0 введенной выше системы координат, это в точности соприкасаю-
щаяся плоскость кривой γ в точке p (см. определение 2.16). Она содержит соприкасающуюся
окружность к γ в точке p и однозначно характеризуется следующим образом.

Задача 2.20. Докажите, что соприкасающаяся плоскость к кривой γ в точке p — единственная
плоскость Π, проходящая через точку p, такая что для точек q кривой γ в окрестности точки p
выполнено

ρ(q,Π) = o(|q − p|2), (|q − p| → 0).

Задача 2.21. Докажите, что соприкасающаяся плоскость к кривой γ в точке p — единственная
плоскость, ортогональная проекция на которую кривой γ с самой кривой γ соприкосновение
второго порядка.



28

Как нетрудно видеть из (2.36), приближенно проекция кривой γ на плоскость z = 0 имеет
вид параболы:

y =
k

2
x2 + o(x2).

§2.12. Эволюта и эвольвента плоской кривой.

Определение 2.28. Пусть γ — некоторая гладкая кривая на плоскости без точек спрямления.
Тогда эволютой кривой γ называется кривая, которую описывает центр кривизны кривой γ.

Определение 2.29. Говорят, что кривая является огибающей данного семейства прямых, если
она касается всех прямых этого семейства.

Теорема 2.15. Эволюта кривой γ без точек спрямления и без точек, где обращается в нуль
производная кривизны по натуральному параметру, является огибающей семейства нормалей
к γ.

Доказательство. Пусть r(s) — натуральная параметризация кривой γ. Ее центр кривизны в
точке r(s) имеет координаты

r̃(s) = r(s) +
1

k(s)
n(s),

где n — вектор нормали к кривой. Эта формула задает некоторую параметризацию эволюты γ̃
кривой γ. Для каждого s вычислим ее вектор скорости:

r̃′ = r′ +
1

k
n′ − k′

k2
n = − k

′

k2
n.

Во втором равенстве мы воспользовались формулой Френе для кривой γ. Таким образом, при
каждом s точка r̃(s) находится на нормали `(s) = r(s) + 〈n(s)〉 к кривой γ и вектор скорости
r̃′(s) является направляющим этой нормали. Иначе говоря, кривая γ̃ касается нормали `(s) в
точке r̃(s). �

Если производная k′ кривой γ обращается в некоторой точке в нуль, то в соответствующей
точке эволюта может иметь, и, как правило, имеет, особенность, так как ее параметризация,
соответствующая регулярной (например, натуральной) параметризации кривой γ, не является
в таких точках регулярной для нее самой.

Определение 2.30. Кривая, которую описывает неподвижная точка прямой, катящейся без
проскальзывания по кривой γ, называется эвольвентой кривой γ.

Замечание 2.3. Эвольвента кривой не определена однозначно, у каждой гладкой кривой имеется
однопараметрическое семейство эвольвент.

Теорема 2.16. Пусть γ и γ′ — гладкие кривые. Следующие условия равносильны:
(i) кривая γ′ пересекает все касательные к γ под прямым углом;
(ii) кривая γ′ является эвольвентой кривой γ;
(iii) кривая γ является эволютой кривой γ′.

Доказательство. Пусть r(s) — натуральная параметризация кривой γ. Тогда неподвижная
точка прямой, катящейся без проскальзывания по γ, описывает кривую с параметризацией
вида

r̃(s) = r(s)− (s− s0)r′(s),

где s0 — некоторая константа. По определению эта кривая является эвольвентой для γ. Вычис-
лим ее вектор скорости:

r̃′ = r′ − r′ − (s− s0)r′′ = −(s− s0)r′′.

Отсюда видно, что вектор r̃′(s) ортогонален касательной r(s) + 〈r′(s)〉 к кривой γ, причем как
раз той касательной, на которой лежит точка r̃(s). Таким образом, мы показали, что из (ii)
следует (i). Докажем обратное утверждение.
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Пусть кривая с параметризацией вида
r̃(s) = r(s) + f(s)r′(s),

где r(s) — натуральная параметризация кривой γ, а f(s) — некоторая гладкая функция, пере-
секает касательные к γ под прямым углом, т.е. для всех s мы имеем (r̃′(s), r′(s)) = 0. Тогда

0 = (r′ + f ′r′ + fr′′, r′) = (1 + f ′)(r′, r′) + f(r′′, r′) = 1 + f ′.

Следовательно, функция f имеет вид f(s) = −s + s0, что соответствует условию качения без
проскальзывания. Тем самым мы доказали, что из (i) следует (ii).

Пусть выполнено (iii). Тогда по теореме 2.15 кривая γ является огибающией семейства нор-
малей к γ′, что равносильно (i). Доказательство перехода (i)⇒(iii) оставляется читателю. �

Рис. 4. Пара эволюта–эвольвента (первая отмечена красным, вторая — зеленым)

На рис. 4 демонстрируется, как выглядит пара кривых, являющихся друг для друга эволютой
и эвольвентой.

Приведем наиболее известные примеры пар эволюта–эвольвента.

Эволютой параболы y = x2 является полукубическая парабола y =
3
√

3

4
x3/2 +

1

2
.

Эволюта эллипса
x2

a2
+
y2

b2
= 1 получается из астроиды |x|2/3 + |y|2/3 = 1 растяжением вдоль

осей абсцисс и ординат в c2/a и c2/b раз соответственно, где c =
√
a2 − b2 — половина фокусного

расстояния эллипса.
Если γ является эпи- или гипоциклоидой, то эволюта и эвольвента кривой γ подобны ей

самой. Если γ — циклоида, то ее эволюта и эвольвента получаются из γ сдвигом.
Эвольвента окружности замечательна тем, что она всего одна с точностью до движения.

Действительно, различные эвольвенты одной и той же окружности отличаются друг от друга
поворотом вокруг центра окружности. Напомним, что у кажой кривой имеется однопарамет-
рическое семейство эвольвент, которые как правило неизометричны.
Замечание 2.4. Эвольвента окружности находит широкое применение в зубчатых передачах в
качестве профиля зубьев, поскольку такой профиль позволяет сохранить контакт колес при их
равномерном вращении, причем это свойство сохраняется при изменении, в разумных пределах,
расстояния между центрами колес.
Пример 2.1. Кривая на плоскости, задаваемая уравнением

y ch(x+
√

1− y2) = 1,

называется трактрисой. Она однозначно с точностью до сдвига вдоль оси абсцисс и симметрии
относительно осей характеризуется тем свойством, что отрезок любой ее касательной от точки
касания до точки пересечения с осью абсцисс имеет единичную длину. Ее эволюта — цепная
линия, задаваемая уравнением y = ch(x), x > 0.
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§2.13. Интеграл кривизны по замкнутому плоскому контуру.

Определение 2.31. Кривая с параметризацией r : [a, b] → Rn называется замкнутой, если
r(a) = r(b). Если сказано, что она гладкая, то подразумевается, что рассматриваются только
параметризации с условием ṙ(a) = ṙ(b), r̈(a) = r̈(b), и т.д. Замкнутая кривая называется
простой, если r(t1) 6= r(t2) для любых различных t1, t2 ∈ [a, b).

Предложение 2.13. Пусть γ — гладкая замкнутая плоская кривая с выбранной коориента-
цией. Тогда интеграл кривизны по ней кратен 2π:∫

γ

k(s) ds = 2πm, где m ∈ Z,

s — натуральный параметр.

Доказательство. Воспользуемся формулами (2.23), которые восстанавливают кривую по функ-
ции кривизны от натурального параметра. Так как векторы скорости в начальный и конечный
моменты совпадают по предположению о замкнутости кривой, для величины

ϕ =

∫
γ

k(s) ds

мы получаем
(cosϕ, sinϕ) = (cos(0), sin(0)).

Отсюда ϕ = 2πm для некоторого m ∈ Z. �

Определение 2.32. Число m в предложении 2.13 называется числом вращения кривой γ.

Задача 2.22. Построить гладкую замкнутую плоскую кривую с числом вращения 0.

Число вращения интересно тем, что оно не меняется при деформациях кривой в классе глад-
ких замкнутых кривых. Такие деформации называются регулярными гомотопиями. Рассмот-
рение подобных вопросов составляет начало раздела математики, называемого гомотопической
топологией, и выходит за рамки данного курса. Число вращения нам будет интересно лишь в
одном частном случае, а именно, для простых замкнутых кривых. Однако, нам потребуются
не только гладкие, но и кусочно гладкие кривые, поэтому мы дадим следующее определение.

Определение 2.33. Пусть γ — кусочно гладкая кривая с заданной коориентацией и парамет-
ризацией r(s), которая на всех гладких дугах γ является натуральной. Ориентацию плоскости,
заданную парой v,n, состоящей из вектора скорости и вектора нормали в точках гладкости, бу-
дем считать положительной. Пусть x0 = r(s0) — некоторая точка γ, в которой вектор скорости
v = r′ имеет разрыв. Обозначим через v− и v+ пределы вектора скорости v(s) при s→ s0 − 0
и s → s0 + 0 соответственно. Внешним углом кривой γ в точке x0 назовем угол между векто-
рами v− и v+, взятый со знаком «+», если они образуют пару положительной ориентации, и
со знаком «−» в противном случае, см. рис. 5.

Данное определение требует доработки для случая, когда v− = −v+, т.е. когда кривая в точке
x0 разворачивается назад. Для простых кривых это можно сделать, но для целей настоящего
курса нам будет удобнее просто исключить этот случай из рассмотрения.

Определение 2.34. Простой замкнутой областью на плоскости R2 мы называем любое под-
множество в R2, гомеоморфное единичному кругу

{(x, y) ∈ R2 ; x2 + y2 6 1}.

Теорема 2.17. Пусть Ω — простая замкнутая область в R2, граница которой ∂Ω есть
кусочно-гладкая простая замкнутая кривая γ. Зададим на γ коориентацию, направив век-
тор нормали n внутрь Ω. Пусть γ1, . . . , γq — простые гладкие дуги, из которых составлена
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n

v−

v+

θ

n

v−

v+

−θ

Рис. 5. Внешний угол θ всегда равен π минус внутренний угол для области,
внутрь которой направлен вектор n

γ и пусть θ1, . . . , θq — все внешние углы кривой γ. Наконец, пусть на γ задан параметр s,
натуральный для каждой ее гладкой дуги. Тогда имеет место равенство

(2.37)
∑
i

∫
γi

k(s) ds+
∑
i

θi = 2π.

Доказательство. Мы не будем давать строгого доказательства, а дадим лишь наглядное объ-
яснение. Как мы видели раньше, интеграл кривизны по гладкой дуге равен углу поворота
вектора скорости. Для достаточно короткой дуги это означает, что интеграл кривизны по ней
равен внешнему углу между отрезками касательных, проведенных в ее концах, см. рис. 6.
Разбив ∂Ω на короткие гладкие дуги и заменив каждую на соответствующую пару отрезков ка-

α θ =
∫
α
k(s) ds

Ω

Рис. 6.

сательных, мы получим многоугольник, сумма внешних углов которого в точности равна левой
части равенства (2.37). С другой стороны, известно, что сумма внешних углов многоугольника
равна 2π. �

Определение 2.35. Величина, стоящая в левой части формулы (2.37) называется интегралом
кривизны по границе области Ω и обозначается просто через∫

∂Ω

k ds.
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Глава 3. Поверхности в трехмерном пространстве

§3.1. Определение поверхности. Локальные координаты. Способы задания.

Определение 3.1. Простым куском поверхности в R3 называется подмножество в R3, гомео-
морфное единичному кругу {(x, y) ∈ R2 ; x2 + y2 6 1}.
Определение 3.2. ЕслиM — простой кусок поверхности, то любой гомеоморфизм r : Ω→M ,
где Ω — некоторая простая плоская область, называется параметризацией куска M . Парамет-
ризация называется гладкой, если таково отображение r. Она называется регулярной, если об-
ласть Ω имеет кусочно-гладкую границу и ранг матрицы дифференциала отображения r равен
двум во всех точках области Ω.

Определение 3.3. Простой кусок поверхности называется гладким, если он допускает регу-
лярную параметризацию.

Гладкой поверхностью в R3 будем называть любое подмножество M ⊂ R3, такое что для
любой точки x ∈ R3 пересечение M ∩ Bε(x) множества M с некоторым замкнутым шаром с
центром в точке x либо пусто, либо является гладким простым куском поверхности.

Любой гладкий простой кусок поверхности, содержащийся в M будет называться куском
поверхности M .

Замечание 3.1. Данное определение содержит ряд ограничений на поверхность, которые не яв-
ляются общепринятыми или обязательными для доказательства нижеследующих теорем. По-
верхность в смысле данного определения обязана быть замкнутым подмножеством в R3 (дока-
жите!) и не может иметь самопересечений. Эти ограничения наложены из соображений крат-
кости изложения.

Определение 3.4. Точка x простого куска поверхности M называется для него внутренней,
если она соответствует внутренней точке области Ω при некоторой параметризации Ω → M .
В противном случае она называется граничной.

Задача 3.1. Докажите, что внутренние точки простого куска поверхности M соответствуют
внутренним точкам области Ω при любой параметризации Ω→M .

Определение 3.5. Точка x гладкой поверхностиM называется для этой поверхности внутрен-
ней, если для некоторого шара Bε(x) она является внутренней точкой простого куска Bε(x)∩M .
В противном случае она называется граничной. Множество всех граничных точек поверхности
называется ее краем и обозначается через ∂M .

Задача 3.2. Покажите, что край поверхности либо пуст, либо состоит из конечного или счет-
ного числа простых (замкнутых или незамкнутых) кривых.

В дальнейшем мы будем использовать единую систему обозначений, не оговаривая ее каж-
дый раз. Рассматриваемая поверхность будет как правило обозначаться черезM , радиус-вектор
ее переменой точки — через r. Мы будем в основном рассматривать локальные свойства по-
верхности, и тогда будем предполагать, что дана регулярная параметризация некоторого ее
куска, т.е. отображение из некоторой простой области Ω ⊂ R2 в M . Параметры в соответству-
ющей области Ω будут как правило обозначаться через u1, u2 и использоваться в формулах
как координаты на соответствующем простом куске поверхности. Поскольку эти координаты
параметризуют не всю поверхность, а только часть, они будут называться локальными коор-
динатами. Если на некотором куске заданы две локальные системы координат, то функции,
выражающие одни через другие будут называться функциями перехода.

Для частных производных по u1, u2 будут использоваться обозначения
ru1 , ru2 , ru1u1 , ru1u2 , и т.д.

вместо
∂r

∂u1
,
∂r

∂u2
,

∂2r

∂u1∂u1
,

∂2r

∂u1∂u2
, и т.д.
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Если все слагаемые в формуле относятся к одной и той же точке поверхности, то обозначе-
ние для этой точки будет опускаться. Координаты в R3 будут как правило обозначены через
x1, x2, x3.

Мы будем также придерживаться обозначений Эйнштейна, подразумевающих суммирование
по всякому индексу, встречающемуся один раз сверху и один раз снизу, в пределах, опреде-
ленных контекстом. При этом верхний индекс у переменной, стоящей в знаменателе, считается
нижним.

Предложение 3.1. В окрестности регулярной внутренней точки x0 гладкая поверхность в
R3 может быть задана уравнением вида

(3.1) z = f(x, y),

где x, y, z — это каким-то образом переставленные координаты x1, x2, x3, а f — некоторая
гладкая функция. В этой окрестности любые другие локальные координаты u1, u2 выража-
ются через x, y гладкими функциями.

Доказательство. Пусть u1, u2 — локальные координаты в окрестности точки x0, соответству-
ющие некоторой регулярной параметризации. Тогда матрица( ∂ri

∂uj

)
i=1,2,3; j=1,2

имеет ранг 2. Без ограничения общности можем считать, что невырожден минор (∂ri/∂uj)i,j=1,2.
По теореме об обратной функции координаты u1, u2 в окрестности точки x0 можно выразить на
данной поверхности через x1, x2 гладкими функциями: u1 = ψ1(x1, x2), u2 = ψ2(x1, x2). Получим,
что в этой окрестности поверхность задается уравнением

x3 = r3(ψ1(x1, x2), ψ2(x1, x2)). �

Предложение 3.1 имеет два очевидных, но важных следствия.

Следствие 3.1. Функции перехода от одних локальных координат к другим всегда гладкие.

Доказательство. Пусть u1, u2 и ũ1, ũ2 — две локальные системы координат в окрестности точки
x0. Тогда в, возможно, меньшей, окрестности координаты ũ1, ũ2 выражаются гладкими функ-
циями через некоторую пару координат xi, xj пространства R3, которые, в свою очередь, выра-
жаются гладкими функциями через u1, u2. �

Это позволяет придать смысл понятию гладкой функции на поверхности.

Определение 3.6. Гладкой функцией на поверхности M называется любая функция, ограни-
чение которой на любой ее параметризованный кусок N ⊂ M является гладкой функцией от
локальных координат на N .

Из следствия 3.1 и теоремы о дифференцируемости сложной функции вытекает, что глад-
кость функции на поверхности в точке x0 достаточно проверить в какой-либо одной локальной
системе координат в окрестности x0.

Следствие 3.2. Пусть ϕ : Rm → R3 — гладкое отображение, образ которого содержится в
гладкой поверхности M ⊂ R3. Тогда для любой точки y0 ∈ Rm и любой локальной регулярной
параметризации r(u1, u2) поверхности M , заданной в окрестности точки ϕ(y0), найдутся
гладкие функции ψ1, ψ2 : Rm → R, такие что в некоторой окрестности точки y0 выполнено

ϕ(y) = r(ψ1(y), ψ2(y)).

Доказательство. Поскольку любая пара локальных координат выражается через любую дру-
гую гладкими функциями, справедливость утверждения достаточно установить для какой-
либо одной параметризации. Но для параметризации, заданной парой координат xi, xj, где
(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, утверждение очевидно. �
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Определение 3.7. Функция F : R3 → R называется регулярной в точке x ∈ R3, если ее
градиент ∇F = (∂F/∂x1, ∂F/∂x2, ∂F/∂x3) в этой точке отличен от нуля. В этом случае говорят
также, что x — регулярная точка для функции F .

Замечание 3.2. Есть общее правило употребления слова «регулярный» по отношению к глад-
ким отображениям. Регулярным называется отображение, дифференциал которого имеет ранг,
равный размерности того объекта, в который действует отображение. Не бывает регулярных
отображений из R2 в R3 и вообще из Rk в Rn при k < n. Но может быть регулярное отображение
(параметризация) из R2 в поверхность, которая лежит в R3, поскольку поверхность считается
двумерным объектом.

Поверхности в R3 локально могут задаваться не только параметрически, но и уравнениями
вида

F (x1, x2, x3) = 0,

где F — некоторая гладкая функция. Заметим, что (3.1) является частным случаем такого
уравнения.

Предложение 3.2. Пусть F : R3 → R — гладкая функция, x0 — ее регулярная точка, такая
что F (x0) = 0. Тогда в достаточно малой окрестности точки x0 уравнение F (x) = 0 задает
гладкую поверхность.

Доказательство. Без ограничения общности можем считать, что в точке x0 производная ∂F/∂x3

отлична от нуля. Тогда по теореме о неявной функции в некоторой окрестности точки x0 урав-
нение F (x) = 0 равносильно уравнению x3 = f(x1, x2), где f — некоторая гладкая функция.
Таким образом, в этой окрестности множество решений уравнения F (x) = 0 параметризуется
следующим образом:

r(u1, u2) = (u1, u2, f(u1, u2)).

Проверка того, что эта параметризация регулярна, оставляем читателю. �

§3.2. Касательная плоскость к поверхности.

Определение 3.8. Касательным вектором к поверхности M ⊂ R3 в точке x0 ∈ M назы-
вается любой вектор в R3, который является вектором скорости в точке x0 некоторой гладко
параметризованной кривой, целиком содержащейся в M и проходящей через x0.

Предложение 3.3. Множество касательных векторов к поверхности M в точке x0 ∈ M
совпадает с множеством векторов, полученных как линейная комбинация векторов ru1, ru2,
взятых в точке x0, для произвольной регулярной локальной параметризации.

Доказательство. Согласно следствию 3.2 любая кривая, лежащая в данной поверхности, мо-
жет быть гладко параметризована в локальных координатах в виде u1 = u1(t), u2 = u2(t). В
пространстве ее параметризация будет иметь вид r = r(u1(t), u2(t)). По теореме о производной
сложной функции ее вектор скорости имеет вид

d

dt
r(u1, u2) = u̇1ru1 + u̇2ru2 ,

т.е. является линейной комбинацией векторов ru1 , ru2 , взятых в соответствующей точке кривой,
с коэффициентами u̇1 и u̇2, которые выбором подходящей кривой и ее параметризации можно
сделать любыми наперед заданными. �

Таким образом, мы видим, что касательные векторы к гладкой поверхности в фиксированной
точке образуют двумерное векторное пространство.

Определение 3.9. Множество касательных векторов к поверхности M в точке x0 называется
касательной плоскостью к M в точке x0 и обозначается через Tx0M . Соответствующая ей аф-
финная плоскость, проходящая через точку x0, называется аффинной касательной плоскостью
к поверхности M в точке x0.
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На практике касательную плоскость и аффинную касательную плоскость обычно не раз-
личают, поскольку между ними имеется естественное взаимно однозначное соответствие, а из
контекста всегда ясно, о какой плоскости идет речь: одна плоскость является векторным про-
странством и состоит из векторов, а вторая — аффинным пространством и состоит из точек.
Заметим, что именно аффинная касательная плоскость является обобщением того, что выше
называлось касательной прямой.

Теорема 3.1. Пусть M — гладкая поверхность, x0 — ее точка. Тогда аффинная касательная
плоскость к M в точке x0 есть единственная плоскость Π, удовлетворяющая условию

ρ(x,Π) = o(|xx0|), где x ∈M, x→ x0.

Доказательство. Пусть Π — некоторая плоскость, проходящая через точку x0. Выберем в R3

прямоугольную систему координат x1, x2, x3 с началом в точке x0 так, чтобы плоскость Π была
координатной плоскостью x3 = 0. Пусть q(s) = (q1(s), q2(s), q3(s)) — натуральная параметриза-
ция некоторой кривой, содержащейся в M и проходящей через точку x0 при s = 0. Тогда

ρ(q(s),Π) = |q3(s)|, |q(s)x0| = s+ o(s).

Отсюда видно, что условие ρ(q(s),Π) = o(|q(s)x0|) равносильно тому, что третья координата
(q3)′ вектора скорости равна нулю при s = 0. Это условие выполняется для всех кривых, со-
держащихся в M и проходящих через x0, тогда и только тогда, когда третья координата всех
касательных векторов в точке x0 равна нулю, а это равносильно тому, что Π — касательная
плоскость. �

Задача 3.3. Докажите, что аффинная касательная плоскость к M в точке x0 является объ-
единением касательных прямых в точке x0 к всевозможным гладким кривым, содержащимся
в M и проходящих через x0.

Задача 3.4. Докажите, что аффинная касательная плоскость в точке x0 ∈ M не является,
вообще говоря, пределом плоскостей, проходящих через три различные точки x1,x2,x3, стре-
мящиеся к x0.

Предложение 3.4. Если поверхностьM задается в окрестности точки x0 уравнением F (x) =
0, регулярным в этой точке, аффинная касательная плоскость кM в точке x0 задается урав-
нением

(3.2) Fx1(x
1 − x1

0) + Fx2(x
2 − x2

0) + Fx3(x
3 − x3

0) = 0,

где производные Fxi берутся в точке x0.

Доказательство. Пусть q(t) — гладкая параметризация некоторой кривой, проходящей при
t = 0 через точку x0 и целиком лежащей в поверхности. Тогда F (q(t)) = 0 для всех t. Отсюда
по теореме о производной сложной функции

0 =
d

dt
F (q(t)) = Fx1 q̇

1(t) + Fx2 q̇
2(t) + Fx3 q̇

3(t).

Таким образом, вектор скорости при t = 0 параллелен плоскости Π, заданной уравнением (3.2),
откуда аффинная касательная плоскость к M в точке x0 совпадает с Π. �

Если на поверхности заданы локальные координаты u1, u2, то согласно предложению 3.3 в
каждой точке x, где они определены, векторы ru1 , ru2 образуют базис касательной плоско-
сти TxM . Каждому касательному вектору v ∈ TxM мы будем сопоставлять его координаты в
этом базисе и обозначать их как правило соответствующими заглавными буквами с верхними
индексами:

v = V 1ru1 + V 2ru2 .

V i — это «внутренние» координаты вектора v по отношению к поверхности и выбранной на
ней локальной системе координат. Вектор v имеет и координаты как вектор в R3, но мы этими
координатами пользоваться не будем.
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Из теоремы о производной сложной функции следует, что при замене координат u1, u2 7→
ũ1, ũ2 базисные векторы и координаты касательных векторов в каждой точке преобразуются
следующим образом:

rũi =
∂uj

∂ũi
ruj ,

Ṽ i =
∂ũi

∂uj
V j,

или, в матричном виде: (
rũ1 rũ2

)
=
(
ru1 ru2

)
Ju,ũ,(

Ṽ 1

Ṽ 2

)
= Jũ,u

(
V 1

V 2

)
,

где J обозначает матрицу Якоби функций перехода:

(Jũ,u)ij =
∂ũi

∂uj
, Ju,ũ = J−1

ũ,u,

а Ṽ i — координаты вектора v в локальной системе ũ1, ũ2. Таким образом, при замене локальных
координат в каждой касательной плоскости также происходит замена координат и базиса, для
которой роль матрицы перехода выполняет матрица Якоби.

Если f : M → R — гладкая функция на поверхностиM , то ее дифференциал в точке x ∈M —
это линейная функция dfx на касательной плоскости TxM , определяемая в обозначениях выше
следующим образом:

dfx(v) = V ifui .

Точно так же дифференциал определяется для гладких отображений из поверхности в Rn.

Задача 3.5. Пусть f — гладкое отображение из поверхностиM в R3, образ которого содержится
в поверхности N ⊂ R3. Докажите, что образ dfx(v) касательного вектора v ∈ TxM лежит в
касательной плоскости TyN , где y = f(x).

§3.3. Первая фундаментальная форма. Длина кривой на поверхности. Площадь по-
верхности.

Определение 3.10. Первой фундаментальной формой или первой квадратичной формой по-
верхности M ⊂ R3 называется функция Ix, определенная для каждой точки x ∈ M на каса-
тельном пространстве TxM , значение которой на произвольном векторе v ∈ TxM равно

Ix(v) = (v,v),

где ( · , · ) обозначает скалярное произведение в R3.

Поскольку функция v 7→ (v,v) является квадратичной формой во всем пространстве R3, ее
ограничение на TxM также является квадратичной формой. Нам будет важно выражение зна-
чения этой формы через координаты вектора v в локальной системе. В дальнейшем для формы
I, как и для прочих функций на поверхности мы будем опускать в обозначениях зависимость
от точки.

Предложение 3.5. Значение первой фундаментальной формы на векторе v ∈ TxM равно

(3.3) I(v) = gijV
iV j, где gij = (rui , ruj).

Доказательство. Данное утверждение является непосредственным следствием билинейности
скалярного произведения. �

Формула (3.3) может быть также переписана в следующем виде:

I = gij du
i duj.
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Действительно, dui — это по определению дифференциала функция от касательного вектора,
равная его i-й координате.

Функции gij от точки поверхности в формуле (3.3) называются коэффициентами первой квад-
ратичной формы и зависят от выбора локальной системы координат. Симметричную матрицу
(gij)i,j=1,2 мы будем обозначать через G, а ее определитель — через g. При переходе к дру-
гим локальным координатам ũ1, ũ2 они преобразуются так, как и положено преобразовываться
матрице квадратичной (или билинейной) формы при замене базиса ru1 , ru2 на rũ1 , rũ2 :

g̃ij =
∂uk

∂ũi
∂ul

∂ũj
gkl,

или, в матричном виде:
G̃ = J>u,ũGJu,ũ,

где g̃ij и G̃ обозначают коэффициенты и матрицу первой квадратичной формы в системе ũ1, ũ2.

Замечание 3.3. Во многих учебниках сохранена старая традиция обозначения коэффициентов
первой квадратичной формы g11, g12 = g21, g22 через E, F , G соответственно. Мы будем при-
держиваться более современных обозначений, которые годятся для любой размерности.

Предложение 3.6. Пусть на поверхности M задана гладко параметризованная кривая γ в
локальных координатах в виде u1 = u1(t), u2 = u2(t), t ∈ [t1, t2]. Тогда ее длина равна

L(γ) =

∫ t2

t1

√
gij(u1(t), u2(t)) u̇i(t)u̇j(t) dt.

Доказательство. Следует из предложения 2.6. �

Таким образом, для вычисления длин кривых на поверхности необязательно знать, как по-
верхность располагается в пространстве. Достаточно знать коэффициенты первой квадратич-
ной формы для нескольких параметризованных кусков, покрывающих всю поверхность, и то,
как эти куски «склеиваются» между собой.

С помощью первой квадратичной формы можно вычислить площадь гладкой поверхности.
Разъясним сначала само понятие площади. Каждую гладкую поверхность можно сколь угодно
хорошо приблизить кусочно-линейной поверхностью, т.е. поверхностью, составленную из плос-
ких многоугольников. Для кусочно-линейной поверхности площадь определяется как сумма
площадей всех граней. Если кусочно-линейная поверхность стремится в некотором специаль-
ном смысле к данной гладкой поверхности M , то ее площадь стремится к пределу, зависящему
только от M , который и называется площадью поверхности M . Принципиально важным здесь
является правильно определить, что значит «хорошо приблизить» и «стремится» по отношению
к поверхностям. Дадим строгие определения.

Итак, кусочно-линейная поверхность — это некоторая поверхность N , представимая в ви-
де объединения треугольников (называемых ее гранями) N = ∪Ti, причем так, что любые два
различные треугольника Ti, Tj либо не пересекаются, либо пересекаются по вершине, либо пере-
секаются по общей стороне (в последнем случае грани Ti и Tj называются соседними). Площадь
S(N) такой поверхности по определению принимается равной сумме площадей треугольников
Ti:

S(N) =
∑
i

S(Ti).

Для компактной гладкой поверхности M ⊂ R3 будем обозначать через Mε любую кусочно-
линейную поверхность в R3, которая приближает поверхность M в следующем смысле:

• имеется гомеоморфизм ψ : M →Mε, такой что |ψ(x)− x| < ε для всех x ∈M ;
• угол между касательной плоскостью TxM и плоскостью треугольника, в котором лежит
ψ(x), меньше ε (если таких треугольников несколько, то все они должны удовлетворять
этому условию);
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• двугранный угол между любыми двумя соседними гранями в Mε тупой.
Мы опускаем доказательство следующего технического утверждения.

Предложение 3.7. Для компактной гладкой поверхности M существует предел

(3.4) lim
ε→0

S(Mε),

причем он не зависит от конкретного выбора поверхностей Mε.

Определение 3.11. Предел (3.4) называется площадью поверхности M .

Теорема 3.2. Площадь параметризованного куска M гладкой поверхности равна

(3.5) S(M) =

∫
M

√
g du1du2.

Доказательство. Мы проведем доказательство только для случая, когда поверхность M па-
раметризована квадратом Ω = [0, 1]× [0, 1]. Возьмем натуральное n (которое мы впоследствии
устремим к бесконечности) и разобьем квадрат Ω на 2n2 треугольников следующим образом.
Вершинами будут точки

Pi,j = (i/n, j/n), i, j = 0, . . . , n,

а треугольниками разбиения —

∆i,j = ∆Pi−1,j−1Pi−1,jPi,j−1, ∆′i,j = ∆Pi,jPi−1,jPi,j−1, i, j = 1, . . . n,

см. рис. 7. Пусть ϕ : [0, 1]× [0, 1] → M — отображение параметризации. Обозначим через Qi,j
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Рис. 7. Разбиение квадрата [0, 1]× [0, 1] на треугольники

образы точек Pi,j при отображении ϕ. Составим поверхность M(n) из треугольников

Ti,j = ∆Qi−1,j−1Qi−1,jQi,j−1, T
′
i,j = ∆Qi,jQi−1,jQi,j−1, i, j = 1, . . . n,

и параметризуем ее с помощью отображения ϕn : Ω→M(n), которое совпадает с ϕ в точках Pi,j
и аффинно отображает каждый треугольник ∆i,j на Ti,j и ∆′i,j на T ′i,j. На рис. 8 показано,

Рис. 8. Поверхность и ее кусочно линейное приближение
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как выглядят образы треугольников ∆i,j на самой поверхности M (слева) и соответствующая
поверхность M(n) (справа).

Введем обозначение δ = 1/n. Две стороны каждого из треугольников Ti,j и T ′i,j образованы
векторами вида δru1(Pi,j) + o(δ) и δru2(Pi,j) + o(δ) (δ → 0) причем члены вида o(δ) оцениваются
равномерно по всему квадрату Ω.

C одной стороны, отсюда следует, что поверхность M(n) для достаточно большого n можно
взять за Mε для любого заранее фиксированного ε > 0. Следовательно, мы имеем S(M(n)) →
→ S(M) при n→∞.

С другой стороны, сумма площадей треугольников Ti,j и T ′i,j имеет вид δ2S(ru1(Pi,j), ru2(Pi,j))+

+ o(δ2), где S(ru1 , ru2) —площадь параллелограмма, натянутого на векторы ru1 , ru2 , которая, в
свою очередь, равна √g. Таким образом, площадь поверхности M(n), равная сумме площадей
всех треугольников Ti,j, T ′i,j, отличается от соответствующей интегральной суммы для интегра-
ла (3.5) на величину n2o(δ2) = o(1), а значит,

S(M(n))→
∫
M

√
g du1du2 (n→∞). �

§3.4. Вторая фундаментальная форма. Кривизна нормального сечения. Для каждой
локальной параметризации поверхностиM мы будем дополнять базис ru1 , ru2 касательной плос-
кости до положительно ориентированного базиса всего пространства R3 единичным вектором
нормали

n =
[ru1 , ru2 ]

|[ru1 , ru2 ]|
.

Если параметризация не задана, то для этого вектора в каждой точке x ∈ M имеется ровно
две возможности, отличающиеся знаком. Замена параметризации на другую, такую что соот-
ветствующая матрица Якоби имеет отрицательный определитель (якобиан), приводит к смене
знака вектора n во всех точках.

Рассмотрим гладко параметризованную кривую на поверхности M , проходящую через точку
x ∈ M и имеющую в этой точке вектор скорости v = V irui . Пусть u1 = u1(t), u2 = u2(t) — ее
параметризация в локальных координатах на поверхности. Посмотрим, каким может быть ее
ускорение в точке x:

d2

dt2
r(u1, u2) =

d

dt
(ru1u̇

1 + ru2u̇
2) = ru1u1u̇

1u̇1 + 2ru1u2u̇
1u̇2 + ru2u2u̇

2u̇2 + ru1ü
1 + ru2ü

2 =

= ru1u1V
1V 1 + 2ru1u2V

1V 2 + ru2u2V
2V 2 + ru1ü

1 + ru2ü
2.

Мы видим, что вторые производные üi входят лишь в коэффициенты при касательных векто-
рах. Если разложить вектор ускорения по базису ru1 , ru2 ,n, то коэффициент при n не будет от
них зависеть. Отсюда вытекает следующее утверждение.

Предложение 3.8. Нормальная составляющая вектора ускорения кривой, лежащей на по-
верхности, в точке x (по отношению к касательной плоскости в этой точке) является функ-
цией от вектора скорости этой кривой в точке x. Она равна

bijV
iV j n,

где
bij = (n, ruiuj).

Определение 3.12. Второй фундаментальной формой поверхности M называется функция
II, определенная на каждой касательной плоскости TxM формулой

IIx(v) = bijV
iV j, где bij = (n, ruiuj), v ∈ TxM.
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Выше была дана геометрическая интерпретация этой функции, из которой следует, что она
не меняется при смене параметризации, если матрица Якоби замены имеет положительный
определитель и меняет знак в противном случае. Из явного выражения для II видно, что эта
функция является квадратичной формой на каждой касательной плоскости, поэтому она часто
называется второй квадратичной формой данной поверхности. Матрица

B = (bij)i,j=1,2

является матрицей этой формы в базисе ru1 , ru2 .

Задача 3.6. Зафиксируем на поверхности M точку x и возьмем некоторый вектор m. Дока-
жите, что коэффициенты cij = (m, ruiuj), где вторые производные берутся в точке x, преоб-
разуются как коэффициенты квадратичной формы при замене локальных координат тогда и
только тогда, когда вектор m ортогонален TxM .

Для ненулевого вектора v ∈ TxM обозначим через Πv аффинную плоскость, проходящую
через точку x и параллельную векторам n(x), v.

Задача 3.7. Используя теорему 2.2, докажите, что пересечение Πv∩M∩Bε(x) является гладкой
дугой при достаточно малом ε > 0.

Определение 3.13. Кривизной нормального сечения или просто нормальной кривизной по-
верхности M в точке x в направлении вектора v ∈ TxM называется кривизна кривой Πv ∩M в
точке x, взятая со знаком «+», если вектор главной нормали этой кривой совпадает с нормалью
n к поверхности в точке x, и знаком «−» в противном случае.

Подчеркнем, что все нормальные кривизны в данной точке поверхности одновременно меня-
ют знак, если изменяет знак выбранный вектор нормали к поверхности. Таким образом, если
поверхность дана без этого выбора (коориентации), то о знаке конкретного нормального сече-
ния говорить бессмысленно, но для двух нормальных кривизн имеет смысл говорить, одного
они знака или противоположного.

Теорема 3.3. Кривизна kv нормального сечения в направлении вектора v ∈ TxM равна

(3.6) kv =
II(v)

I(v)
.

Доказательство. Правая часть равенства (3.6) не изменяется при умножении вектора v на
ненулевое число, поэтому достаточно доказать его для вектора единичной длины, |v| =

√
I(v) =

= 1. В этом случае мы можем считать параметризацию сечения Πv ∩M натуральной. Тогда
в точке x его ускорение будет равно kv n, а по определению второй фундаментальной формы
его нормальная составляющая по отношению к TxM должна быть равна II(v)n, откуда kv =
= II(v). �

§3.5. Главные кривизны. Формула Эйлера. Из линейной алгебры известно, что для двух
квадратичных форм в конечномерном векторном пространстве над R, первая из которых поло-
жительно определена, существует базис, в котором первая форма имеет единичную, а вторая —
диагональную матрицы. Применительно к I и II это означает, что в каждой касательной плос-
кости TxM можно выбрать пару векторов e1, e2 так, что для произвольного вектора вида
v = v1e1 + v2e2 будут иметь место равенства

(3.7) I(v) = v1v1 + v2v2, II(v) = k1 v
1v1 + k2 v

2v2.

Определение 3.14. В обозначениях выше величины k1, k2 в формуле (3.7) называются глав-
ными кривизнами, а направления соответствующих векторов e1, e2, для которых формы I и II
приобретают такой вид — главными направлениями поверхности M в точке x.
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Заметим, что первое равенство в (3.7) в точности означает, что векторы e1, e2 образуют
ортонормированный базис в TxM . Напомним также, что величины k1, k2 находятся как корни
квадратного уравнения

det(B − λG) = 0,

где B и G — матрицы второй и первой квадратичных форм соответственно. Если эти корни
различны, то главные направления определены однозначно с точностью до перестановки.

Предложение 3.9. Пусть x0 — некоторая точка гладкой поверхности M ⊂ R3. Пусть в R3

выбрана ортогональная система координат x1, x2, x3, начало которой находится в точке x0,
а первые два базисных вектора совпадают с векторами главных направлений поверхности M
в x0. Тогда в окрестности x0 поверхность M задается уравнением

x3 = f(x1, x2), где f(x1, x2) =
k1 (x1)2 + k2 (x2)2

2
+ o
(
(x1)2 + (x2)2

)
,

k1, k2 — главные кривизны поверхности M в точке x0.

Доказательство. Поскольку плоскость x3 = 0 является касательной кM в точке x0, при любой
регулярной параметризации r(u1, u2), заданной в окрестности этой точки, третья координата
векторов ru1 , ru2 в этой точке равна нулю, а значит, не равен нулю минор (∂ri/∂uj)i,j=1,2. А это
означает, что за локальные координаты в окрестности точки x0 можно взять x1, x2 и локально
представить поверхность как график гладкой функции x3 = f(x1, x2).

Так как x3 = 0 является касательной плоскостью к M в начале координат x0, мы имеем
fx1(0, 0) = fx2(0, 0) = 0. Так как первые две оси координат направлены вдоль главных на-
правлений, причем базис ортонормирован, вторая фундаментальная форма имеет в точке x0

вид
II = k1 dx

1 dx1 + k2 dx
2 dx2.

С другой стороны, простое вычисление дает bij(0, 0) = fxixj(0, 0). Таким образом, fx1x1 = k1,
fx2x2 = k2, fx1x2 = 0 в точке x0. Для завершение доказательства остается применить формулу
Тейлора. �

Из этого утверждения мы видим, что в окрестности каждой точки, в которой обе главные
кривизны отличны от нуля, поверхность приближается с точностью до o(∆x2) эллиптическим
или гиперболическим параболоидом. Какой из случаев имеет место, зависит от того, одного
или разного знака главные кривизны. Если они одного знака в точке x, то в окрестности этой
точки поверхность приближается эллиптическим параболоидом, и в этом случае она локально
располагается по одну сторону от своей касательной плоскости в точке x. Если же главные
кривизны в точке x разных знаков, то поверхность неизбежно пересекает свою касательную
плоскость в точке x, поскольку в ее окрестности имеет вид гиперболического параболоида,
подвергнутого малой деформации. Если поверхность просто совпадает с этим параболоидом,
то ее пересечение с касательной плоскостью состоит из двух прямых. В общем случае, используя
так называемую лемму Морса, можно показать, что при различных знаках главных кривизн
пересечение поверхности с касательной плоскостью локально является парой пересекающихся
гладких дуг.

Теорема 3.4 (Формула Эйлера). Пусть e1, e2 — векторы главных направлений, k1, k2 —
соответствующие главные кривизны поверхности M в точке x, а v — некоторый ненулевой
вектор из TxM . Тогда

kv = k1 cos2(ϕ) + k2 sin2(ϕ), где ϕ = ∠ve1.

Доказательство. Разложим вектор v по базису e1, e2 главных направлений:

v = v1e1 + v2e2.
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Из формул (3.6) и (3.7) будем иметь

kv =
II(v)

I(v)
= k1

(v1)2

(v1)2 + (v2)2
+ k2

(v2)2

(v1)2 + (v2)2
= k1 cos2(ϕ) + k2 sin2(ϕ). �

§3.6. Деривационные формулы Вайнгартена. Сферическое отображение. Гауссова
кривизна. Формулы Френе плоской кривой имеют аналог для двумерных поверхностей в R3.
А именно, на плоскости мы имели равенство

n′ = −kv,
где n— вектор главной нормали, а v — вектор скорости в натуральной параметризации. Нетруд-
но перейти к произвольной регулярной параметризации и получить

ṅ = −k ds
dt

dr

ds
= −k ṙ.

Таким образом, коэффициент в этом равенстве на самом деле не зависит от параметризации.
Аналогом вектора ṅ для кривой в случае параметризованной поверхности будет пара векто-

ров nu1 и nu2 . Поскольку вектор n имеет постоянную длину, оба этих вектора ортогональны n
(см. лемму 2.2), а значит, выражаются через базисные векторы ru1 , ru2 касательной плоскости
в соответствующей точке. Обозначим матрицу коэффициентов через (cij):

nu1 = c1
1ru1 + c2

1ru2 , nu2 = c1
2ru1 + c2

2ru2 ,

или сокращенно

(3.8) nui = cjiruj .

Теперь мы воспользуемся формулой (2.26) для ортогональных (по построению) векторов n и
ruk :

(nui , ruk) = −(n, ruiuk) = −bik.
Подставляя выражение для nui из (3.8), получаем

(3.9) cji (ruj , ruk) = cjigjk = −bik.
Равенство (3.9) есть матричное равенство (учитывая, что bik = bki)

GC = −B, где C =

(
c1

1 c1
2

c2
1 c2

2

)
.

Из него можно выразить матрицу C:

C = −G−1B,

или, в обозначениях Эйнштейна,

(3.10) cji = −gjkbki,
где gij обозначают элементы матрицы G−1.

Итак, мы доказали следующее утверждение.

Теорема 3.5 (Деривационные формулы Вайнгартена). Вектор нормали к поверхности удо-
влетворяет следующим уравнениям:

(3.11) nui = −gjkbkiruj .

Из этого утверждения немедленно вытекает

Следствие 3.3. Если вторая квадратичная форма поверхности M тождественно нулевая,
то M — плоскость или часть плоскости.

Доказательство. Из формул (3.11) и равенства нулю второй квадратичной формы следует, что
вектор n нормали к поверхности постоянен. Окончание доказательство оставляется читателю.

�
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Продолжая аналогию с формулой Френе ṅ = −k ṙ, нужно задать вопрос, каков смысл ко-
эффициентов (3.10). Разумеется, эти коэффициенты зависят от параметризации. Но матрица
C преобразуется как матрица линейного оператора в касательном пространстве к поверхности.
Собственные числа соответствующего оператора — это в точности главные кривизны, взятые с
обратным знаком, а собственные векторы — главные направления. Кроме того, по построению
оператор C самосопряжен по отношению к скалярному произведению, заданному первой фун-
даментальной формой. Коэффициенты его характеристического многочлена, равные (− trC) и
detC, играют фундаментальную роль в теории поверхностей. О них пойдет речь ниже.

Будем обозначать единичную сферу

{(x1, x2, x3) ∈ R3 ; (x1)2 + (x2)2 + (x3)2 = 1}
в пространстве R3 через S2.

Определение 3.15. Сферическим отображением или отображением Гаусса гладкой поверх-
ности M называется отображение ν : M → S2, которое каждой точке x поверхности M ставит
в соответствие единичный вектор нормали n к соответствующей касательной плоскости TxM .

Это определение, строго говоря, задает отображение ν лишь с точностью до знака. Как
указывалось выше, работая с параметризованными кусками поверхности, мы выбираем знак
вектора n так, чтобы тройка векторов ru1 , ru2 ,n была положительно ориентирована.

Следующее утверждение очевидно.

Предложение 3.10. Для любой точки x ∈ M касательные плоскости TxM и Tν(x)S2 совпа-
дают.

Таким образом, дифференциал dνx можно рассматривать как линейное отображением плос-
кости TxM в себя, т.е. как линейный оператор.

Замечание 3.4. В англоязычной литературе оператор dνx обычно называется shape operator,
что можно было бы перевести как «оператор профиля» или «оператор формы». В русско-
язычной литературе для него нет общепринятого названия. Иногда его называют оператором
Вайнгартена.

Сопоставляя определение дифференциала и формулы (3.11), мы немедленно получаем сле-
дующее утверждение.

Предложение 3.11. Оператор dν имеет в базисе ru1 , ru2 матрицу C = (cji ), элементы ко-
торой определены формулой (3.10).

Кроме того, из формул (3.10) и определения главных кривизн и направлений вытекает сле-
дующее.

Предложение 3.12. Оператор dνx самосопряжен относительно скалярного произведения,
заданного в TxM первой квадратичной формой. Векторы главных направлений e1, e2 явля-
ются для него собственными, а соответствующие им собственные значения равны главным
кривизнам, взятым с обратным знаком: −k1, −k2. Кроме того, имеют место равенства

(3.12) det(dνx) =
detB(x)

detG(x)
= k1(x)k2(x),

где B и G — матрицы второй и первой квадратичных форм соответственно.

Определение 3.16. Величина (3.12) называется гауссовой кривизной или полной кривизной
поверхности точке x и обозначается через K(x).

Напомним, что пара главных кривизн определена лишь с точностью до общего знака и пе-
рестановки. Гауссова кривизна же определена однозначно, поскольку при перестановке k1, k2 и
одновременной смене их знака произведение k1k2 не изменяется.
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Обсудим геометрический смысл гауссовой кривизны. Смысл ее знака нам уже известен: она
положительна или отрицательна в зависимости от того, одного или разного знака главные кри-
визны, а это определяет вид пересечения поверхности со своей касательной плоскостью. Если
гауссова кривизна положительна, то поверхность локально располагается по одну сторону от
касательной плоскости, а если отрицательна, то пересечение поверхности с касательной плос-
костью в малой окрестности точки касания состоит из пары гладких дуг. Если же гауссова
кривизна равна нулю, то о пересечении поверхности с касательной плоскостью в соответству-
ющей точке ничего сказать нельзя.

Геометрический смысл абсолютной величины гауссовой кривизны виден из ее интерпрета-
ции как определителя дифференциала сферического отображения. Определитель оператора на
плоскости равен, как известно, отношению ориентированной площади образа любого паралле-
лограмма к площади самого параллелограмма. Поскольку дифференциал является линейным
приближением отображения, мы получаем следующее.

Предложение 3.13. Гауссова кривизнаK(x) равна пределу отношения площадей S(ν(N))/S(N),
где N — кусок данной поверхности, содержащий точку x, при стремящемся к нулю диаметре
куска N .

§3.7. Развертывающиеся поверхности как поверхности нулевой кривизны.

Определение 3.17. Поверхность называется линейчатой, если в достаточно малой окрестно-
сти любой ее точки она представляется объединением однопараметрического семейства прямых,
т.е. имеет регулярную параметризацию вида

(3.13) r(u1, u2) = q(u1) + u2 w(u1),

где q(u1) — гладкая параметризованная кривая, w(u1) — ненулевой вектор, гладко зависящий
от u1. Прямые q(u1) + 〈w(u1)〉 называются образующими линейчатой поверхности.

Некоторые примеры линейчатых поверхностей уже известны из курса аналитической геомет-
рии: однополостный гиперболоид и гиперболический параболоид. Эти поверхности обладают
не одним, а двумя семействами образующих, такими что через каждую точку проходит по од-
ной образующей из каждого семейства. Можно показать, что других неплоских поверхностей
с таким свойством не бывает.

Еще одним интересным примером является геликоид — поверхность, задаваемая параметри-
чески следующим образом:

r(u1, u2) = a(u2 cosu1, u2 sinu1, u1).

Задача 3.8. Докажите, что на линейчатой поверхности в окрестности любой точки всегда
можно выбрать параметризацию вида (3.13) так, чтобы при всех u1 вектор скорости dq(u1)/du1

был ортогонален w(u1).

Определение 3.18. Говорят, что поверхностиM иM ′ изометричны, если существует гладкий
гомеоморфизм ϕ : M → M ′, сохраняющий длины кривых. Сам гомеоморфизм ϕ называется
при этом изометрией.

Поскольку длина кривой на поверхности выражается в локальных координатах через первую
квадратичную форму, верно следующее утверждение.

Предложение 3.14. Гладкий гомеоморфизм ϕ : M → M ′ является изометрией тогда и
только тогда, когда для любой точки x ∈ M и любой регулярной параметризации r(u1, u2) в
ее окрестности первая квадратичная форма поверхностиM , записанная в координатах u1, u2,
совпадает с первой квадратичной формой поверхности M ′ для параметризации r̃(u1, u2) =
= ϕ(r(u1, u2)).
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Определение 3.19. Поверхность называется развертывающейся, если она линейчатая и ло-
кально изометрична плоскости (т.е. достаточно малая окрестность любой точки изометрична
куску плоскости).

Теорема 3.6. Если гауссова кривизна поверхности M всюду равна нулю, то поверхность M
является развертывающейся.

Доказательство. Равенство нулю гауссовой кривизны означает, что хотя бы одна из главных
кривизн нулевая. Если обе главные кривизны равны нулю в окрестности точки x0 данной по-
верхности, то в этой окрестности форма II тождественно нулевая, и пересечение поверхности
с этой окрестностью является частью плоскости согласно следствию 3.3.

Далее мы разберем случай, когда одна из главных кривизн равна нулю, а вторая — нет. Мы
оставим без доказательства случай, когда обе главные кривизны обращаются в нуль в данной
точке, но одна из них не равна тождественно нулю в окрестности этой точки.

Итак, пусть в точке x0 данной поверхности M нулевой гауссовой кривизны ровно одна из
главных кривизн обратилась в нуль. Будем считать, что k1(x0) 6= 0, k2(x0) = 0. Для точек x из
малой окрестности точки x0 также занумеруем главные кривизны таким образом, чтобы иметь
k2(x) = 0.

Задача 3.9. Докажите, что в этом случае главная кривизна k1(x) является гладкой функцией
от x в достаточно малой окрестности точки x0. Докажите также, что единичные векторы e1(x),
e2(x) соответствующих главных направлений можно выбрать гладко зависящими от точки x.

Сначала мы хотим показать, что данная поверхность линейчатая. Для этого мы воспользу-
емся специальной ее параметризацией.

Лемма 3.1. На поверхности M в окрестности точки x0 существует локальная система
координат, такая что x0 = r(0, 0), ru1 = e1 при u2 = 0 и ru2 = e2 всюду в некоторой
окрестности точки x0.

Доказательство. Пусть u1, u2 — произвольная система локальных координат в окрестности
точки x0, причем x0 = r(u1

0, u
2
0). Обозначим координаты векторов e1, e2 по отношению к этой

системе через (E1
1 , E

2
1), (E1

2 , E
2
2) соответственно:

ei = Ej
i ruj .

Решим уравнения
d

ds
ϕi(s) = Ei

1(ϕ1(s), ϕ2(s)), i = 1, 2,

с начальными условиями
ϕi(0) = ui0

для s из малой окрестности нуля. Геометрически это означает, что мы провели кривую γ на
поверхности M через точку x0 так, чтобы ее вектором скорости в каждой точке x был вектор
e1(x). Параметр s является натуральным на этой кривой.

Теперь для каждого фиксированного s, для которого определены ϕ1(s), ϕ2(s), решим урав-
нения

d

dt
ψi = Ei

2(ψ1, ψ2), i = 1, 2,

с начальными условиями
ψi|t=0 = ϕi(s).

Таким образом, ψ1, ψ2 — это функции двух аргументов, s и t: ψi = ψi(s, t). По теореме о глад-
кой зависимости решения обыкновенного дифференциального уравнения от начальных условий
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ψi(s, t) — гладкие функции. По построению имеем
∂ψ1

∂s

∂ψ1

∂t
∂ψ2

∂s

∂ψ2

∂t


s,t=0

=

(
E1

1 E1
2

E2
1 E2

2

)
(u1,u2)=(u10,u

2
0)

.

Эта матрица невырождена, поэтому локально можно сделать замену координат u1 = ψ1(s, t),
u2 = ψ2(s, t). По построению будем иметь

∂

∂s
r(ψ1(s, t), ψ2(s, t)) = (ruiE

i
1)(ψ1(s, t), ψ2(s, t)) = e1(ψ1(s, t), ψ2(s, t)) при t = 0,

∂

∂t
r(ψ1(s, t), ψ2(s, t)) = (ruiE

i
2)(ψ1(s, t), ψ2(s, t)) = e2(ψ1(s, t), ψ2(s, t)) при всех s, t. �

Далее будем считать, что параметризация поверхности такая, как указано в лемме 3.1.
Оператор Вайнгартена dν действует в каждой точке x следующим образом: вектор e2(x)

отображается в нуль, а вектор e1(x) умножается на k1(x). Таким образом, образ Im(dνx) одно-
мерен и порожден вектором e1(x), а вектор e2(x) лежит в ядре ker(dνx). Отсюда

nu2 = dν(e2) = 0, nu1 = λe1,

где λ — некоторая функция от точки поверхности.

Задача 3.10. Докажите, что λ — гладкая функция.

Далее, имеем
0 = (nu2)u1 = (nu1)u2 = (λe1)u2 = λu2e1 + λ(e1)u2 .

Но длина вектора e1 постоянна, откуда e1 ⊥ (e1)u2 . Таким образом, последнее равенство влечет

(e1)u2 = 0.

Мы видим, что векторы n и e1 постоянны вдоль координатных линий u1 = const. Поскольку
векторы e1, e2, n в каждой точке образуют ортонормированный положительно ориентирован-
ный базис, вектор e2 = [n, e1] также постоянен вдоль линий u1 = const. Напомним, что в нашей
параметризации во всех точках выполнено ru2 = e2, откуда координатные линии u1 = const
есть просто прямые, а параметризация поверхности имеет вид

(3.14) r(u1, u2) = q(u1) + u2 e2(u1),

где q(u1) = r(u1, 0). Кроме того, q(u1) — натуральная параметризация, и q′(u1) = e1(u1) ⊥
⊥ e2(u1) для всех u1.

Вычислим некоторые коэффициенты второй фундаментальной формы:

ru2u2 = 0 ⇒ b22 = 0, ru1u2 = e′2 ⇒ b12 = (e′2,n).

Из равенства нулю гауссовой кривизны следует

0 = detB = −(b12)2 = −(e′2,n)2.

Таким образом, вектор e′2 ортогонален n. Но он также ортогонален и e2, поскольку длина
вектора e2 постоянна. Следовательно, e′2 = µe1, где µ — некоторая функция от u1.

Теперь вычислим первую фундаментальную форму:

ru1 = (1 + u2µ)e1, ru2 = e2,

(3.15) I = (1 + u2µ)2(du1)2 + (du2)2.

При вычислении мы пользовались только тем, что поверхность имеет параметризацию (3.14),
в которой q(u1) — натуральная параметризация некоторой кривой, e2 — единичный вектор,
ортогональный q′, причем e′2 = µq′.
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Возьмем теперь на плоскости кривую с натуральной параметризацией q̃(u1) и функцией
кривизны k(u1) = −µ(u1). Такая кривая существует по теореме 2.9. Тогда для параметризации
куска плоскости

r̃(u1, u2) = q̃(u1) + u2 m(u1),

где m — вектор главной нормали кривой q̃(u1), первая фундаментальная форма также будет
иметь вид (3.15). Действительно, векторm удовлетворяет уравнениюm′ = −kq̃′ = µq̃′ согласно
формуле Френе. Теорема 3.6 доказана. �

В процессе доказательства теоремы 3.6 мы получили, что поверхности нулевой кривизны
допускают параметризацию вида (3.14), в которой q(u1) — натуральная параметризация неко-
торой кривой, а вектор e2(u1) ортогонален q′(u1) и удовлетворяет уравнению e′2 = µq′. Обсудим
геометрический смысл этого условия, рассмотрев следующие три случая.

• µ = 0. В этом случае вектор e2 постоянен, поверхность состоит из семейства параллель-
ных прямых. Такие поверхности называются цилиндрическими;

• µ 6= 0, µ′ = 0. В этом случае точка q(u1)− 1

µ
e2(u1) не зависит от u1:(

q − 1

µ
e2

)′
= q′ − 1

µ
e′2 = 0.

Это означает, что все образующие проходят через одну точку. Поверхность в этом случае
называется конической;

• µ 6= 0, µ′ 6= 0. Рассмотрим параметризованную кривую q̂(t) = q(t) − 1

µ
e2(t). В каждой

точке ее вектор скорости

q̂′ = q′ − 1

µ
e′2 +

µ′

µ2
e2 =

µ′

µ2
e2

является направляющим для образующей, проходящей через эту точку. Таким образом,
поверхность состоит из отрезков касательных прямых к одной и той же кривой. Это
наиболее типичный случай развертывающейся поверхности. На самой кривой q̂ при этом
поверхность перестает быть гладкой. Эта кривая называется для развертывающейся
поверхности ребром возврата.

Задача 3.11. Докажите, что если при выполнении указанных выше условий вектор e2 повер-
нуть в каждой точке вокруг вектора q′ на один и тот же угол, то снова получится развертыва-
ющаяся поверхность.

§3.8. Линии кривизны. Омбилические точки. Если главные кривизны k1, k2 поверхности
в точке x не совпадают, то в касательной плоскости в этой точке определены два взаимно
перпендикулярных направления — главные направления первой и второй фундаментальных
форм. Эти направления не определены однозначно в точках, где главные кривизны совпадают.

Определение 3.20. Линией кривизны на поверхности называется гладкая кривая на этой
поверхности, вектор скорости которой имеет в каждой точке главное направление.

Теорема 3.7. Гладкая кривая γ на поверхностиM является линией кривизны тогда и только
тогда, когда нормальные прямые к M , проведенные в точках кривой γ, образуют поверхность
нулевой гауссовой кривизны.

Доказательство. Пусть q(s) — натуральная параметризация кривой γ. Поверхность, состав-
ленная из нормалей к поверхности M в точках кривой γ имеет параметризацию
(3.16) r(u1, u2) = q(u1) + u2 e(u1),

где e(s) = n(q(s)). Мы видели в предыдущем параграфе, что необходимым и достаточным
условием равенства нулю гауссовой кривизны этой поверхности является коллинеарность век-
торов q′ и e′. Но вектор e′(s) есть не что иное как dνq(s)(q

′(s)). Таким образом, равенство нулю
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гауссовой кривизны поверхности (3.16) равносильно тому, что q′(s) — собственный вектор для
оператора Вайнгартена. А это в точности условие того, что вектор q′(s) имеет главное направ-
ление в точке q(s) поверхности M . �

Определение 3.21. Точка поверхности называется омбилической, если в ней совпадают глав-
ные кривизны.

Линии кривизны образуют на поверхности ортогональную сетку, которую локально можно
взять за координатную. Соответствующие локальные координаты хороши тем, что обе фунда-
ментальные формы поверхности в них диагонализуются, и некоторые вычисления становятся
проще. Точки, в окрестности которых такие координаты не определяются — это в точности
омбилические точки.

Пример 3.1. На рис. 9 показано, как выглядит сетка из линий кривизны эллипсоида.

Кликнуть здесь,
чтобы посмотреть в
движении. (Скачать
файл, просматривать
в одностраничном
режиме.)

Рис. 9. Линии кривизны и омбилические точки эллипсоида

Теорема 3.8. Поверхность, вся состоящая из омбилических точек, есть часть сферы или
плоскости.

Доказательство. Так как главные кривизны в каждой точке совпадают, мы имеем II = λI,
где λ = k1 = k2 — значение главных кривизн. Воспользуемся деривационными формулами
Вайнгартена. Будем иметь

(3.17) nui = −λrui .
Далее используем перестановочность частных производных:

0 = nu1u2 −nu2u1 = −(λru1)u2 + (λru2)u1 = λ(ru2u1 − ru1u2)− λu2ru1 + λu1ru2 = −λu2ru1 + λu1ru2 .

Векторы ru1 и ru2 линейно независимы, откуда

λu1 = λu2 = 0.

Значит, величина λ постоянна на поверхности.
Возможны два случая: λ = 0 и λ 6= 0. В первом случае из (3.17) следует, что вектор n

постоянен, откуда данная поверхность является частью плоскости. В втором случае равенство
(3.17) означает, что

r = r0 −
1

λ
n,

где r0 — некоторый фиксированный вектор. Мы получили, что r принадлежит сфере с центром
r0 и радиусом 1/|λ|. �

https://www.dropbox.com/s/lbzx96fb0l917qh/curvlinesdemo.pdf
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§3.9. Средняя кривизна. Минимальные поверхности.

Определение 3.22. Средней кривизной поверхности M в точке x ∈ M , обозначаемой через
H(x), называется полусумма ее главных кривизн в точке x:

H(x) =
k1(x) + k2(x)

2
.

Замечание 3.5. В литературе часто встречается другое определение средней кривизны, отли-
чающееся от нашего отсутствием множителя 1/2: H = k1 + k2. На практике это ведет к неболь-
шому упрощению формул за счет исчезновения множителя, но тогда эта величина не вполне
соответствует своему названию.

Замечание 3.6. Средняя кривизна оправдывает свое название не только и даже не столько тем,
что является средним арифметическим главных кривизн. Она является усредненным по всем
направлениям значением нормальной кривизны:

H =
1

2π

∫ 2π

0

kcos(ϕ)e1+sin(ϕ)e2 dϕ,

где e1, e2 — произвольный ортонормированный базис в касательной плоскости.

Так же, как и главные кривизны, средняя кривизна поверхности в каждой точке определена
лишь с точностью до знака. Однозначно определен вектор H ·n, который имеет следующий фи-
зический смысл. При подходящем выборе единиц измерения этот вектор является отношением
равнодействующей сил поверхностного натяжения, действующих на бесконечно малый кусок
однородной пленки, имеющей форму данной поверхности, к площади этого куска. В частности,
равенство H = 0 является условием равновесия такой пленки при отсутствии внешних сил, что
мы сейчас и покажем.

Определение 3.23. Гладкая поверхность M называется минимальной, если для любой ее
внутренней точки x найдется такая окрестность U , что любая другая гладкая поверхность M ′,
совпадающая с M вне U и имеющая тот же край, ∂M ′ = ∂M , имеет площадь не меньшую, чем
M .

Теорема 3.9. Поверхность минимальна тогда и только тогда, когда ее средняя кривизна
всюду равна нулю.

Доказательство. Мы докажем только необходимость условия H = 0 для того, чтобы поверх-
ность была минимальна.

Пусть M минимальная поверхность, x — ее внутренняя точка, N ⊂ M — пересечение M с
замыканием малой окрестности точки x, такой, что замена N на другой кусок с тем же краем
ведет к увеличению или сохранению площади поверхности. Без ограничения общности можно
считать, что N — простой кусок.

Выберем регулярную параметризацию r(u1, u2) для N и возьмем произвольную гладкую
функцию ϕ : N → R, обращающуюся в нуль вместе со всеми своими производными на крае ∂N ,
но такую, что ϕ(x) 6= 0. Рассмотрим следующее семейство параметризованных поверхностей:

r(u1, u2, τ) = r(u1, u2) + τϕ(u1, u2)n(u1, u2),

где n, как обычно, обозначает вектор нормали. При каждом фиксированном τ из достаточно
малой окрестности нуля эта формула задает регулярную параметризацию некоторой поверхно-
сти Nτ с тем же краем, что и N . Поэтому S(Nτ ) > S(N). Напомним формулу для площади:

S(N) =

∫
N

√
g du1du2,

где g — определитель матрицы Грама векторов ru1 , ru2 . Для регулярной параметризации подын-
тегральное выражение гладко зависит от первых производных радиус-вектора r по u1, u2, по-
этому S(Nτ ) — гладкая функция от τ . В дальнейшем мы опускаем в обозначениях зависимость
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от u1, u2 и оставляем только зависимость от τ . Если опущена и зависимость от τ , имеется в
виду значение при τ = 0.

Лемма 3.2. Имеет место равенство

∂

∂τ

√
g =
√
g ϕH.

Доказательство. Это равенство можно установить прямым вычислением. Мы сделаем несколь-
ко иначе.

Сначала заметим, что производные функции ϕ не войдут в ответ:

gij(τ) =
(
rui +τ(ϕuin+ϕnui)+o(τ), ruj +τ(ϕujn+ϕnuj)+o(τ)

)
=
(
rui +τϕnui , ruj +τϕnuj

)
+o(τ),

τ → 0, поскольку вектор n ортогонален ruk . Таким образом, (gij(τ)) — это с точностью до
o(τ) матрица Грама векторов ru1 + τϕnu1 , ru2 + τϕnu2 . Эти два вектора лежат в касательной
плоскости, порожденной векторами ru1 , ru2 , и выражаются через них матрицей

E + τϕC,

где E — единичная матрица, а C = −G−1B — матрица оператора Вайнгартена.
Далее, вместо того, чтобы непосредственно вычислять

√
g(τ), вспомним, что эта величина

равна площади параллелограмма, натянутого на соответствующую пару векторов, а отноше-
ние площадей равно абсолютной величине определителя соответствующей матрицы перехода,
откуда √

g(τ)
√
g

= | det(E + τϕC)|+ o(τ) = 1 + τϕ trC + o(τ) = 1 + 2ϕHτ + o(τ). �

Таким образом, мы получаем

S(Nτ ) = S(N) + τ

∫
N

ϕH
√
g du1du2 + o(τ).

Поскольку площадь поверхности Nτ достигает минимума при τ = 0 мы должны иметь

0 =
dS(Nτ )

dτ

∣∣∣
τ=0

=

∫
N

ϕH
√
g du1du2

при любом выборе функции ϕ.
Покажем, что неравенство H(x) 6= 0 ведет к противоречию с этим условием. Возьмем новую

функцию ϕ̃ = ϕ2H. Будем иметь∫
N

ϕ̃H
√
g du1du2 =

∫
N

ϕ2H2√g, du1du2 > 0,

так как под знаком интеграла стоит неотрицательная функция, причем в точке x она положи-
тельна. �

Задача 3.12. Докажите, что при деформации поверхности вида

r(u1, u2, τ) = r(u1, u2) + τϕ(u1, u2)v(u1, u2),

где для всех (u1, u2) вектор v(u1, u2) лежит в касательной плоскости к данной поверхности в
точке r(u1, u2), площадь поверхности в первом приближении не меняется: S(Nτ ) = S(N)+o(τ).

Пример 3.2. Наиболее простыми примерами минимальных поверхностей являются плоскость,
геликоид и катеноид — поверхность, задаваемая уравнением√

(x1)2 + (x2)2 = ch(x3).
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§3.10. Теорема Менье. Поверхности вращения.

Теорема 3.10 (Менье). Пусть γ — гладкая кривая на поверхности M . Тогда ее кривизна k в
произвольной точке x ∈ γ связана с нормальной кривизной kv поверхности M по направлению
вектора скорости v кривой γ в той же точке следующей формулой:

k cos θ = kv,

где θ — угол между нормалью к поверхности и главной нормалью к кривой в точке x.

Доказательство. Пусть q(s) — натуральная параметризация кривой γ. Вектор главной нор-
мали к кривой обозначим через m. В точке x имеем v = q′, q′′ = km. С другой сторо-
ны, как мы видели в §3.4, нормальная составляющая (q′′,n)n вектора q′′ по отношению к
TxM выражается формулой II(v)n. Поскольку вектор v имеет единичную длину, мы имеем
kv = II(v)/I(v) = II(v). Таким образом,

kvn = II(v)n = (q′′,n)n = (km,n)n = k cos θ · n,
откуда следует утверждение теоремы. �

Продемонстрируем применение этой теоремы на примере поверхностей вращения.

Определение 3.24. Поверхностью вращения называется любая поверхность, инвариантная
относительно вращений вокруг некоторой фиксированной прямой, которая называется ее осью.

Принимая ось вращения за третью координатную ось, поверхность вращения можно всегда
локально задать уравнением вида

f(
√

(x1)2 + (x2)2, x3) = 0

или параметрическими уравнениями вида
(3.18) r(u1, u2) = (ρ(u2) cosu1, ρ(u2) sinu1, h(u2)).

Наоборот, такие уравнения (при выполнении необходимых условий регулярности) всегда за-
дают поверхность вращения с осью Ox3. Координатные линии u2 = const при задании (3.18)
называются параллелями поверхности вращения, а линии u1 = const — ее меридианами.

Теорема 3.11. Центр кривизны нормального сечения вдоль вектора скорости параллели по-
верхности вращения всегда лежит на ее оси.

Доказательство. Пусть γ — одна из параллелей, x — некоторая точка на ней, v — касательный
вектор к γ в точке x. Воспользуемся теоремой Менье, причем мы даже не будем использовать
формулу для кривизны сечения, а заметим, что отношение кривизны параллели γ и кривизны
нормального сечения вдоль v определяется углом между плоскостью, содержащей параллель,
и касательной плоскостью TxM . Это значит, что любая другая гладкая поверхность, содержа-
щая γ и имеющая в точке x ту же касательную плоскость, будет иметь ту же нормальную
кривизну вдоль v. В качестве такой поверхности всегда можно взять сферу с центром на оси
вращения поверхности M , см. рис. 10, а центры кривизны всех нормальных сечений сферы
совпадают с ее центром. �

§3.11. Деривационные формулы Гаусса. Тождества Кристоффеля. В §3.6 мы вывели
для поверхности аналог второй формулы Френе плоской кривой. В этом параграфе мы рас-
смотрим аналог первой формулы, т.е. равенства

v′ = kn.

Однако, поскольку для поверхности не существует полноценного аналога натуральной парамет-
ризации, мы будем строить аналог более общей формулы, а именно, формулы (2.17), которую
можно переписать так:

r̈ =
ġ

2g
ṙ + gkn,
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x vγ

Рис. 10. Нормальные кривизны kv двух поверхностей, соприкасающихся вдоль γ,
в точке x ∈ γ совпадают, если вектор v — касательный к γ в точке x

где g = (ṙ, ṙ) — единственный имеющийся коэффициент первой квадратичной формы кривой.
Аналогом этой формулы для поверхности являются формулы, выражающие вторые произ-

водные ruiuj через векторы базиса ru1 , ru2 ,n, определенный в каждой точке параметризован-
ной поверхности. Поскольку вектор n по построению является единичным вектором нормали
к плоскости, порожденной векторами ru1 , ru2 , коэффициент этого разложения при n равен
(ruiuj ,n), а это — соответствующий элемент матрицы второй квадратичной формы. Остальные
коэффициенты нам пока неизвестны, и мы введем для них обозначение Γkij:

(3.19) ruiuj = Γ1
ijru1 + Γ2

ijru2 + bijn, i, j = 1, 2.

Эти формулы называются деривационными формулами Гаусса. Восемь пока неизвестных нам
коэффициентов Γkij, из которых две пары одинаковых (поскольку ru1u2 = ru2u1):

Γ1
12 = Γ1

21, Γ2
12 = Γ2

21,

называются символами Кристоффеля данной параметризованной поверхности.

Теорема 3.12 (Тождества Кристоффеля). Символы Кристоффеля выражаются через коэф-
фициенты первой квадратичной формы и их первые производные следующим образом:

(3.20) Γkij =
1

2
gkl
(∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
.

Доказательство состоит из следующих трех лемм.

Лемма 3.3. Имеют место равенства

(3.21)
∂gij
∂uk

= gsjΓ
s
ik + gisΓ

s
jk.

Доказательство. По определению gij = (rui , ruj). Отсюда по формуле Ньютона–Лейбница

∂gij
∂uk

=
∂(rui , ruj)

∂uk
= (ruiuk , ruj) + (rui , rujuk) = (Γsikrus + bikn, ruj) + (rui ,Γ

s
jkrus + bjkn) =

= gsjΓ
s
ik + gisΓ

s
jk. �

Лемма 3.4. Система линейных уравнений на величины Γkij, составленная из равенств (3.21)
и условий симметрии gksΓsij = gksΓ

s
ji равносильна следующей

2gisΓ
s
jk =

∂gij
∂uk

+
∂gik
∂uj
− ∂gjk

∂ui
.
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Доказательство. Введем обозначение: Γijk = gisΓ
s
jk. Из уравнений (3.21) и симметрий Γijk =

Γikj, gij = gji следует
∂gij
∂uk

= gjsΓ
s
ki + gisΓ

s
jk = Γjki + Γijk.

Переставляя по циклу индексы i, j, k, получаем следующие три равенства:

∂gij
∂uk

= Γijk + Γjki,

∂gjk
∂ui

= Γjki + Γkij,

∂gki
∂uj

= Γijk + Γkij.

Относительно величин Γijk эта система имеет единственное решение:

Γijk =
1

2

(∂gij
∂uk

+
∂gki
∂uj
− ∂gjk

∂ui

)
,

которое удовлетворяет и условиям симметрии Γijk = Γikj. �

Лемма 3.5. Система соотношений
Γijk = gisΓ

s
jk

равносильна системе
gisΓsjk = Γijk.

Доказательство. Это утверждение является просто констатацией того, что (gij) и (gij) — вза-
имно обратные матрицы. �

Задача 3.13. Докажите, что система соотношений (3.21) равносильна следующей:

(3.22)
∂gij

∂uk
= −gsjΓisk − gisΓ

j
sk.

Следует отметить, что символы Кристоффеля не образуют никакого тензора в касательном
пространстве к поверхности.

Задача 3.14. Докажите, что при переходе к другим локальным координатам, ũ1, ũ2, символы
Кристоффеля преобразуются по следующему закону:

Γ̃kij = Γrpq
∂ũk

∂ur
∂up

∂ũi
∂uq

∂ũj
+
∂ũk

∂up
∂2up

∂ũi∂ũj
.

§3.12. Совместность пары обыкновенных дифференциальных уравнений. Рассмот-
рим следующую систему из двух обыкновенных дифференциальных уравнений:

(3.23)


∂x

∂u1
= f 1(x, u1, u2),

∂x

∂u2
= f 2(x, u1, u2),

в которой x = (x1, . . . , xn) — неизвестная функция от u1, u2 со значениями в Rn, а f 1 =
(f 1

1 , . . . , f
n
1 ), f 2 = (f 1

2 , . . . , f
n
2 ) — известные гладкие функции, определенные в некоторой от-

крытой области Ω пространства Rn × R× R = Rn+2.

Определение 3.25. Говорят, что система (3.23) совместна, если для любой тройки (x0, u
1
0, u

2
0) ∈

∈ Ω она имеет гладкое решение x(u1, u2) с начальным условием x(u1
0, u

2
0) = x0, определенное в

некоторой окрестности точки (u1
0, u

2
0).
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Теорема 3.13. Система (3.23) совместна тогда и только тогда, когда функции f 1, f 2 удо-
влетворяют следующему условию всюду в Ω:

(3.24)
∂f 1

∂x
f 2 +

∂f 1

∂u2
=
∂f 2

∂x
f 1 +

∂f 2

∂u1
.

Здесь (∂f 1/∂x)f 2 — сокращенное обозначение для (∂f 1/∂x
i)f i2.

Доказательство. Сначала докажем необходимость. Пусть x(u1, u2) — некоторое локальное ре-
шение системы (3.23). Тогда по теореме о производной сложной функции всюду, где оно опре-
делено, выполнено

∂2x(u1, u2)

∂u1∂u2
=
∂f 1(x(u1, u2), u1, u2)

∂u2
=
∂f 1

∂x
(x(u1, u2), u1, u2)

∂x(u1, u2)

∂u2
+
∂f 1

∂u2
(x(u1, u2), u1, u2) =

=
(∂f 1

∂x
f 2 +

∂f 1

∂u2

)
(x(u1, u2), u1, u2).

Поменяв ролями u1 и u2, получаем

∂2x(u1, u2)

∂u1∂u2
=
(∂f 2

∂x
f 1 +

∂f 2

∂u1

)
(x(u1, u2), u1, u2).

Таким образом, равенство (3.24) имеет место вдоль всего решения, т.е. во всех точках вида
(x(u1, u2), u1, u2). Поскольку совместность по определению означает возможность найти реше-
ние с произвольными начальными условиями, равенство (3.24) должно быть выполнено всюду.

Теперь перейдем к достаточности. Пусть условие (3.24) выполнено. Покажем, что уравне-
ния (3.23) можно решить (локально) для произвольных начальных условий x(u1

0, u
2
0) = x0.

Первое уравнение в (3.23) можно рассматривать как обыкновенное дифференциальное урав-
нение с параметром u2. Следовательно, его можно решить при фиксированном u2 = u2

0 в неко-
торой окрестности точки u1

0, т.е. найти функцию y(u1), удовлетворяющую условиям

dy(u1)

du1
= f 1(y(u1), u1, u2

0), y(u1
0) = x0.

Теперь для каждого u1, для которого определено y(u1), мы можем решить второе уравнение
в (3.23) с начальным условием x(u1, u2

0) = y(u1). По теореме о существовании решений обыкно-
венного дифференциального уравнения с параметрами и их гладкой зависимости от параметров
и начальных условий полученное решение x(u1, u2) будет определено для всех u2 из достаточно
малой, не зависящей от u1, окрестности точки u2

0, и будет гладкой функцией от u1, u2.
Итак, в малой окрестности точки (u1

0, u
2
0) мы построили гладкую функцию x(u1, u2), удовле-

творяющую второму уравнению из (3.23) всюду, а первому — во всех точках вида (u1, u2
0), а

также удовлетворяющую начальному условию x(u1
0, u

2
0) = x0. Осталось показать, что x(u1, u2)

и первому уравнению удовлетворяет всюду, а не только вдоль прямой u2 = u2
0.

Как и выше, получаем

∂2x(u1, u2)

∂u1∂u2
=
∂f 2

∂x
(x(u1, u2), u1, u2)

∂x(u1, u2)

∂u1
+
∂f 2

∂u1
(x(u1, u2), u1, u2).

Теперь используем (3.24):

∂2x(u1, u2)

∂u1∂u2
=
∂f 2

∂x
(x(u1, u2), u1, u2)

∂x(u1, u2)

∂u1
+
(∂f 1

∂x
f 2 +

∂f 1

∂u2
− ∂f 2

∂x
f 1

)
(x(u1, u2), u1, u2).
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Учитывая, что x(u1, u2) удовлетворяет второму уравнению системы (3.23), получаем

∂f 2

∂x
(x(u1, u2), u1, u2)

(∂x(u1, u2)

∂u1
− f 1(x(u1, u2), u1, u2)

)
=

=
∂2x(u1, u2)

∂u1∂u2
−
(∂f 1

∂x
f 2 +

∂f 1

∂u2

)
(x(u1, u2), u1, u2) =

=
∂2x(u1, u2)

∂u1∂u2
−
(∂f 1

∂x

∂x(u1, u2)

∂u2
+
∂f 1

∂u2

)
(x(u1, u2), u1, u2) =

=
∂

∂u2

(∂x(u1, u2)

∂u1
− f 1(x(u1, u2), u1, u2)

)
.

Таким образом, функция

g(u1, u2) =
∂x(u1, u2)

∂u1
− f 1(x(u1, u2), u1, u2)

удовлетворяет линейному дифференциальному уравнению

∂g(u1, u2)

∂u2
=
∂f 2

∂x
(x(u1, u2), u1, u2) g(u1, u2),

которое можно рассматривать как обыкновенное дифференциальное уравнение по u2 с пара-
метром u1. При этом для всех u1 выполнено начальное условие

g(u1, u2
0) = 0,

откуда
g(u1, u2) ≡ 0.

Это означает, что x(u1, u2) всюду удовлетворяет первому уравнению системы (3.23). �

Приведем простейший пример условия совместности. Пусть даны два уравнения, в которых
правые части не зависят от x:

∂x

∂u1
= f 1(u1, u2),

∂x

∂u2
= f 2(u1, u2).

Тогда условие их совместности выглядит следующим образом:
∂f 2

∂u1
=
∂f 1

∂u2
.

В следующем параграфе мы рассмотрим противоположный случай, когда функции f 1 и f 2

зависят от x, но не зависят от u1, u2.

§3.13. Коммутатор векторных полей.

Определение 3.26. Векторным полем на поверхности M называется отображение, которое
каждой точке x ∈ M ставит в соответствие вектор v(x) из касательной плоскости TxM . Век-
торное поле v называется гладким, если в локальной параметризации коэффициенты V 1, V 2

разложения вектора v по базису ru1 , ru2 являются гладкими функциями от точки поверхности.

Далее все рассматриваемые векторные поля предполагаются гладкими, поэтому мы не ого-
вариваем это особо.

С каждой локальной системой координат связаны два базисных векторных поля, определен-
ных на соответствующем куске поверхности: ru1 и ru2 . Их координаты по отношению к этой
локальной системе постоянны: (1, 0) и (0, 1) соответственно. Зададим следующий вопрос: когда
данная пара векторных полей v,w может быть парой базисных векторных полей для некоторой
локальной системы координат?

Разумеется, для начала нужно потребовать, чтобы v и w были линейно независимы в каж-
дой точке. Пусть это так в некоторой точке x0. Тогда они линейно независимы и в некоторой
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окрестности U точки x0. Пусть u1, u2 — некоторая локальная система координат в этой окрест-
ности. Мы хотим выяснить, существует ли другая система координат ũ1, ũ2, для которой всюду
в U будет выполнено
(3.25) rũ1 = v, rũ2 = w.

Для этого введем, как обычно, обозначения для координат векторных полей v,w:
v = V 1ru1 + V 2ru2 , w = W 1ru1 +W 2ru2 .

Найти систему координат ũ1, ũ2 означает найти функции перехода от нее к u1, u2 (или наоборот,
что эквивалентно). Равенства (3.25) тогда равносильны следующему:

∂ui

∂ũ1
rui = V irui ,

∂ui

∂ũ2
rui = W irui ,

т.е. следующей системе из двух уравнений:
∂ui

∂ũ1
= V i(u1, u2),

∂ui

∂ũ2
= W i(u1, u2).

Условие совместности для нее состоит в следующем:
∂V i

∂uj
W j =

∂W i

∂uj
V j.

Определение 3.27. Коммутатором векторных полей v, w, обозначаемым через [v,w], назы-
вается векторное поле

[v,w] =
(
V j ∂W

i

∂uj
−W j ∂V

i

∂uj

)
rui .

Данное определение нуждается в проверке корректности, т.е. независимости от выбора си-
стемы координат.

Предложение 3.15. Определенное выше векторное поле [v,w] не зависит от выбора локаль-
ной системы координат.

Доказательство. Данное утверждение можно проверить непосредственно, сделав замену ко-
ординат. Мы же воспользуемся «внешней» точкой зрения на поверхность, т.е. вспомним, что v
и w — это зависящие от точки векторы трехмерного пространства. Иначе говоря, v и w можно
рассматривать как отображения из поверхности в R3. По определению дифференциала имеем
для этих отображений:

dv(w) =
∂(V irui)

∂uj
W j =

(∂V i

∂uj
rui + V iruiuj

)
W j.

Аналогично,

dw(v) =
(∂W i

∂uj
rui +W iruiuj

)
V j.

Поскольку ruiuj = rujui , второе слагаемое в обоих случаях одно и то же. Отсюда

dw(v)− dv(w) =
(
V j ∂W

i

∂uj
−W j ∂V

i

∂uj

)
rui = [v,w].

Таким образом, мы выразили коммутатор через инвариантные величины dw(v) и dv(w). От-
метим, что каждая из этих двух величин не задает, вообще говоря, касательного векторного
поля к поверхности. �

Используя введенное понятие коммутатора векторных полей, приведенное выше рассуждение
резюмируется следующим образом.

Теорема 3.14. Два векторных поля v и w являются базисными векторными полями для
некоторой локальной системы координат тогда и только тогда, когда они линейно независи-
мы и их коммутатор равен нулю.



57

Задача 3.15. Докажите, что коммутатор векторных полей удовлетворяет тождеству Якоби:[
[v1,v2],v3

]
+
[
[v2,v3],v1

]
+
[
[v3,v1],v2

]
= 0

для любых трех векторных полей v1, v2, v3.

§3.14. Теорема Бонне. Деривационные уравнения Вайнгартена и Гаусса принципиально от-
личаются от формул Френе наличием двух параметров вместо одного. Так же как и форму-
лы Френе, они позволяют восстанавливать поверхность по первой и второй фундаментальным
формам, но теперь для них имеется нетривиальное условие совместности. Деривационные урав-
нения можно записать в следующей матричной форме:

(3.26) (ru1 , ru2 ,n)u1 = (ru1 , ru2 ,n)A1, (ru1 , ru2 ,n)u2 = (ru1 , ru2 ,n)A2,

где

(3.27) A1 =

Γ1
11 Γ1

21 −g1ibi1

Γ2
11 Γ2

21 −g2ibi1

b11 b21 0

 , A2 =

Γ1
12 Γ1

22 −g1ibi2

Γ2
12 Γ2

22 −g2ibi2

b12 b22 0

 .

Если рассматривать уравнения (3.26) как пару уравнений на матрицу X = (ru1 , ru2 ,n), то
условие совместности (3.24) для нее превращается в следующее:

(3.28)
∂

∂u1
A2 −

∂

∂u2
A1 + A1A2 − A2A1 = 0.

В формулировке следующей теоремы поверхность понимается в более широком смысле, чем
было сказано в определениях 3.1 и 3.2. А именно, поверхности разрешается иметь самопересе-
чения.

Теорема 3.15 (Бонне). Пусть gij(u1, u2), bij(u1, u2), где i, j = 1, 2, — набор гладких функций
в простой замкнутой области Ω ⊂ R2, удовлетворяющие условиям: матрицы G = (gij) и
B = (bij) симметричны для всех точек (u1, u2) ∈ Ω, причем матрица G положительно опре-
делена. Тогда:
(i) в R3 существует поверхность M с регулярной параметризацией Ω → M , для которой
первая и вторая фундаментальные формы равны

I = gij du
i duj, II = bij du

i duj

тогда и только тогда, когда функции gij, bij (i, j = 1, 2) удовлетворяют уравнениям (3.28), в
которых коэффициенты (Γkij) выражены через (gij) по формулам (3.20);
(ii) если поверхность с такими фундаментальными формами существует, то она единствен-
на с точностью до движения всего пространства R3.

Доказательство. Для простоты изложения мы приведем доказательство только для случая,
когда область Ω является квадратом [0, 1]× [0, 1].

Начнем с части (ii) — однозначности восстановления. Будем использовать обозначения v1 =
= ru1 , v2 = ru2 . Векторы v1, v2 и вектор нормали n удовлетворяют системе обыкновенных
дифференциальных уравнений

(3.29)
(
v1 v2 n

)
u1

=
(
v1 v2 n

)
A1,

которое полностью определяет их в точках вида (u1, 0) для всех u1, если известны начальные
значения v1(0, 0), v2(0, 0), n(0, 0). Далее, из уравнения

(3.30)
(
v1 v2 n

)
u2

=
(
v1 v2 n

)
A2,

значения v1, v2, n находятся во всех точках (u1, u2) ∈ Ω.
Аналогичным образом, параметризация r(u1, u2) находится однозначно из уравнений

ru1 = v1, ru2 = v2,
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если известно начальное значение r(0, 0).
Таким образом, вся неоднозначность восстановления поверхности сводится к выбору началь-

ных значений r(0, 0), v1(0, 0), v2(0, 0), n(0, 0). При этом матрица Грама тройки векторов v1,v2,n
в точке (0, 0) должна быть следующей:(

vi(0, 0),vj(0, 0)
)

= gij(0, 0),
(
vi(0, 0),n(0, 0)

)
= 0,

(
n(0, 0),n(0, 0)

)
= 1.

Это определяет репер с точностью до движения всего пространства. Очевидно, что при таких
движениях решения указанных выше уравнений снова переходят в решения.

Теперь покажем, почему условие (3.28) является необходимым. Пусть данные коэффициен-
ты (gij) и (bij) соответствуют некоторой поверхности в R3. Тогда матрица X =

(
ru1 ru2 n

)
удовлетворяет паре уравнений

(3.31) Xu1 = XA1, Xu2 = XA2,

т.е., казалось бы, мы знаем только, что эта система имеет решение при одном начальном усло-
вии. Напомним, что в условии теоремы 3.13 требовалось, чтобы система имела решения при
всех начальных условиях. В данном случае возможность решить систему при одном начальном
условии X(0, 0) = X0 при невырожденной матрице X0 — а матрица, составленная из коор-
динат векторов ru1 , ru2 , n, невырождена — равносильна возможности ее решить при любом
начальном условии. Действительно, отображение X 7→ CX, где C — произвольная постоянная
матрица, переводит решения системы (3.31) в решения, а выбором матрицы C можно сделать
начальное условие произвольным.

Перейдем к доказательству достаточности условия (3.28). Согласно теореме 3.13 эти усло-
вия гарантируют возможность найти векторы v1, v2, n, удовлетворяющие уравнениям (3.29)
и (3.30) в некоторой окрестности точки (u1, u2) = (0, 0) при данном начальном условии. Так
что вопрос здесь только в том, чтобы решить эти уравнения на всем квадрате Ω, а не только в
окрестности нуля. Это возможно сделать благодаря тому, что уравнения (3.29) и (3.30) линей-
ные. Здесь также важно, что процедура восстановления векторов v1, v2, n, описанная в начале
доказательства, в точности повторяет процедуру построения решения в доказательстве теоре-
мы (3.13). Как там было показано, при выполнении условий совместности, такая процедура
приводит к решению обоих уравнений системы.

Далее, собственно для восстановления поверхности нужно при уже известных векторах v1,
v2 решить уравнения

ru1 = v1, ru2 = v2.

Условие совместности этой системы, которое имеет вид

(v1)u2 = (v2)u1 ,

выполнено по построению, так как (vi)uj = Γkijvk + bijn, а коэффициенты Γkij и bij симметричны
по индексам i, j. Таким образом, локальных препятствий к решению системы нет, а существо-
вание решения на всем квадрате Ω снова следует из вида уравнений, в которых, на этот раз, r
вообще не входит в правую часть.

Итак, при выполнении условий совместности (3.28) на всем квадрате Ω существует решение
системы (3.26) при заданных r(0, 0), ru1(0, 0), ru2(0, 0), n(0, 0). Осталось только удостовериться,
что первая и вторая квадратичная форма поверхности получаются такими, как мы хотели. Для
векторов v1, v2, n, найденных на первом этапе процедуры восстановления, введем обозначения:
g̃ij = (vi,vj), ci = (vi,n), d = (n,n). Нам нужно показать, что во всех точках квадрата Ω имеют
место равенства

(3.32) g̃ij = gij, ci = 0, d = 1.
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Найдем производные этих величин в силу уравнений (3.29), (3.30):

∂g̃ij
∂uk

=
∂(vi,vj)

∂uk
=
(
Γlikvl + bikn,vj

)
+
(
vi,Γ

l
jkvl + bjkn

)
= Γlikg̃lj + Γljkg̃il + bikcj + bjkci,

∂ci
∂uj

=
∂(vi,n)

∂uj
=
(
Γkijvk + bijn,n

)
+ (vi,−gklbljvk) = Γkijck + bij(d− 1),

∂d

∂ui
=
∂(n,n)

∂ui
= 2(−gjkbkivj,n) = −2gjkbkicj.

Мы получили систему уравнений первого порядка, которая определяет g̃ij, ci, d на всем квадрате
Ω, если даны начальные значения в точке (0, 0). Значения (3.32) дают решения этой системы,
поскольку при такой подстановке нетривиальными остаются только уравнения

∂g̃ij
∂uk

= Γlikg̃lj + Γljkg̃il,

которые выполнены для g̃ij = gij в силу тождеств Кристоффеля. Таким образом, если на-
чальные условия были выбраны так, что g̃ij(0, 0) = gij(0, 0), то равенства (3.32) будут иметь
место на всем квадрате. Это показывает, что при восстановлении поверхности мы получили
желаемую первую квадратичную форму и, кроме того, вектор n является для восстановленной
поверхности единичным вектором нормали.

Совпадение второй квадратичной формы с исходной формой bij dui duj устанавливается те-
перь тривиально. А именно, по построению мы имеем ruiuj = Γkijruk + bijn. Отсюда и из уже
доказанных равенств (3.32) следует

(ruiuj ,n) = Γkijck + bijd = bij. �

§3.15. Уравнения Гаусса–Кодацци. Теорема Гаусса. Уравнения (3.28), в которых сдела-
ны подстановки (3.27) и (3.20), называются уравнениями Гаусса–Кодацци. На первый взгляд
система (3.28) содержит девять уравнений. Распишем их более подробно, чтобы выяснить их
истинное число и конкретный вид.

Введем обозначения для элементов матрицы, стоящей в левой части равенства (3.28):

∂

∂u1
A2 −

∂

∂u2
A1 + A1A2 − A2A1 =

α1
1 α1

2 β1

α2
1 α2

2 β2

γ1 γ2 δ

 .

Прежде всего заметим, что δ = −bj1gjibi2 + bj2g
jibi1 = 0, так что последнее из девяти уравнений

в системе (3.28) тривиально.
Теперь рассмотрим четыре уравнения αij = 0. Имеем

αij =
∂Γij2
∂u1

−
∂Γij1
∂u2

+ Γis1Γsj2 − Γis2Γsj1 − gisbs1bj2 + gisbs2bj1.

Поскольку (gij) — невырожденная матрица, система из четырех уравнений αij = 0 равносильна
системе αij = 0, где

αij = gipα
p
j = gip

(∂Γpj2
∂u1

−
∂Γpj1
∂u2

+ Γps1Γsj2 − Γps2Γsj1

)
− bi1bj2 + bi2bj1.

Задача 3.16. Убедиться прямым вычислением, что выражения для α11 и α22, в которых Γkij
выражены через gij с помощью формул (3.20), тождественно равны нулю, и что α12 = −α21.

Вместо прямой проверки имеется также следующий метод. Введем обозначения:

T ij =
∂Γij2
∂u1

−
∂Γij1
∂u2

+ Γis1Γsj2 − Γis2Γsj1, Tij = gipT
p
j .
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Задача 3.17. Убедиться, что если равенства (3.21):
∂gij
∂u1

= gjsΓ
s
i1 + gisΓ

s
j1,

∂gij
∂u2

= gjsΓ
s
i2 + gisΓ

s
j2,

рассматривать как уравнения на коэффициенты gij при известных Γkij, то условие их совмест-
ности будет иметь вид Tij + Tji = 0.

Поскольку уравнения (3.21) равносильны тождествам Кристоффеля, они автоматически сов-
местны вдоль их решения (gij(x)), если тождества Кристоффеля взяты за определение коэф-
фициентов Γkij. Поэтому из утверждения последней задачи следует, что в выражении αij + αji
сокращаются все слагаемые, содержащие коэффициенты первой квадратичной формы. Оста-
ются слагаемые с b, сокращение которых очевидно.

Таким образом, из четырех уравнений αij = 0 независимое только одно, а именно, α12 = 0:

T12 = b11b22 − (b12)2.

Обратим внимание, что в правой части этого равенства стоит определитель матрицы второй
квадратичной формы. Тем самым мы получили следующий результат.

Теорема 3.16 (Гаусс). Гауссова кривизна выражается через коэффициенты первой квадра-
тичной формы и их первые и вторые производные. Явный вид этого выражения таков:

(3.33) K =
1

g
g1p

(∂Γp22

∂u1
− ∂Γp21

∂u2
+ Γps1Γs22 − Γps2Γs21

)
.

Теперь выпишем уравнения γi = 0:
∂b12

∂u1
− ∂b11

∂u2
+ bi1Γi12 − bi2Γi11 = 0,

∂b22

∂u1
− ∂b21

∂u2
+ bi1Γi22 − bi2Γi21 = 0.

Эти уравнения называются уравнениями Кодацци, их также называют уравнениями Петерсона–
Майнарди–Кодацци. Их можно записать в следующей компактной форме (сравните с (3.21)):

bijk = bikj, где bijk =
∂bij
∂uk
− bsjΓsik − bisΓsjk.

Задача 3.18. Используя (3.22), докажите, что пара уравнений β1 = 0, β2 = 0 равносильна
уравнениям Кодацци.

Итак, из девяти уравнений (3.28) независимых только три: одно соотношение Гаусса, выра-
жающее определитель второй формы через коэффициенты первой и их производные, и пара
уравнений Кодацци.

Приведенная выше теорема Гаусса имеет важное

Следствие 3.4. Если ϕ : M → M ′ — изометрия поверхностей, то для всех x ∈ M гауссова
кривизна поверхности M ′ в точке ϕ(x) совпадает с гауссовой кривизной поверхности M в
точке x. В частности, гауссова кривизна поверхности, локально изометричной плоскости,
всюду равна нулю.

Таким образом, верно утверждение, обратное к теореме 3.6.

§3.16. Асимптотические линии. Поверхности постоянной отрицательной кривизны.
В этом параграфе мы рассмотрим классический пример использования уравнений Гаусса–
Кодацци. Фактически мы ими уже воспользовались, когда рассматривали поверхности, состо-
ящие из омбилических точек, а также поверхности нулевой гауссовой кривизны. Уравнения
совместности позволяют свести задачу классификации некоторых классов поверхностей с ре-
шению определенных уравнений. Здесь мы рассмотрим поверхности постоянной отрицательной
гауссовой кривизны. Поскольку при гомотетии гауссова кривизна поверхности умножается во
всех точках на одно и то же число, для решения общей задачи достаточно рассмотреть случай
K = −1.
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Оказывается, в случае постоянной отрицательной кривизны на поверхности имеется заме-
чательная система координат, определенная почти однозначно — подобно натуральной пара-
метризации кривой — в которой фундаментальные формы поверхности имеют специальный
вид.

Определение 3.28. Касательный вектор v ∈ TxM называется асимптотическим, если

IIx(v) = 0.

Кривая на поверхности называется асимптотической линией, если ее вектор скорости в каждой
точке асимптотический.

Если гауссова кривизна поверхности отрицательна, то отрицателен и определитель матри-
цы B второй фундаментальной формы (записанной в произвольной локальной системе коорди-
нат), а для квадратичной формы с отрицательным определителем на плоскости имеется ровно
два асимптотических направления. Таким образом, в каждой точке x ∈ M можно выбрать
два асимптотических вектора e1, e2 единичной длины, образующие базис в TxM . В окрест-
ности каждой точки для этих векторов нетрудно указать явные формулы для координат по
отношению к произвольной фиксированной локальной системе координат, из которых следует,
что их можно выбрать гладко зависящими от точки x. Неоднозначность их выбора сводится к
перестановке e1 ↔ e2 и смене знака любого из них.

Итак, на поверхности отрицательной кривизны мы указали (локально) два векторных поля
e1, e2, определенных с точностью до знака каждого из них и перестановки. Оказывается, что
на поверхности постоянной отрицательной кривизны эти поля коммутируют, что мы сейчас и
покажем. Мы воспользуемся леммой 3.1, которая выводилась для случая, когда в каждой точке
e1, e2 были главными направлениями, а не асимптотическими, но это обстоятельство никак не
использовалось в доказательстве.

Итак, мы считаем, что поверхностьM имеет постоянную гауссову кривизну K = −1 и на ней
выбраны локальные координаты u1, u2 со следующими свойствами:

ru1 = e1 при u2 = 0,

ru2 = e2 всюду.

Поскольку векторы e1, e2 в каждой точке асимптотические и имеют единичную длину, мы
имеем следующее для коэффициентов первой и второй квадратичных форм:

(3.34) g11 = 1, b11 = 0 при u2 = 0,

g22 = 1, b22 = 0 всюду.
Из равенств b22 = 0 и K = −1 следует

g = − detB = (b12)2.

Вычислим элементы обратной матрицы Грама:

g11 =
g22

g
=

1

g
, g12 = g21 = −g12

g
, g22 =

g11

g
,

а теперь символы Кристоффеля:

Γ1
11 =

1

2

(
g11∂g11

∂u1
+ g12

(
2
∂g12

∂u1
− ∂g11

∂u2

))
=

1

2g

(∂g11

∂u1
− 2 g12

∂g12

∂u1
+ g12

∂g11

∂u2

)
=

=
1

2g

( ∂g
∂u1

+ g12
∂g11

∂u2

)
,

Γ1
12 = Γ1

21 =
1

2

(
g11∂g11

∂u2
+ g12∂g22

∂u1

)
=

1

2g

∂g11

∂u2
,

Γ1
22 =

1

2

(
g11
(

2
∂g12

∂u2
− ∂g22

∂u1

)
+ g12∂g22

∂u2

)
=

1

g

∂g12

∂u2
,



62

Γ2
11 =

1

2

(
g12∂g11

∂u1
+ g22

(
2
∂g12

∂u1
− ∂g11

∂u2

))
=

1

2g

(
−g12

∂g11

∂u1
+ 2

∂g12

∂u1
− ∂g11

∂u2

)
,

Γ2
12 = Γ2

21 =
1

2

(
g12∂g11

∂u2
+ g22∂g22

∂u1

)
= −g12

2g

∂g11

∂u2
,

Γ2
22 =

1

2

(
g12
(

2
∂g12

∂u2
− ∂g22

∂u1

)
+ g22∂g22

∂u2

)
= −1

g
g12

∂g12

∂u2
=

1

2g

( ∂g
∂u2
− ∂g11

∂u2

)
.

Подставим эти выражения в уравнения Кодацци, сначала во второе:

0 =
∂b22

∂u1
− ∂b21

∂u2
+ bi1Γi22 − bi2Γi21 = −∂b12

∂u2
+ b11Γ1

22 + b12Γ2
22 − b12Γ1

21 =

= −∂b12

∂u2
+
b11

g

∂g12

∂u2
+
b12

2g

( ∂g
∂u2
− ∂g11

∂u2

)
− b12

2g

∂g11

∂u2
=

= −∂b12

∂u2
+
b11

g

∂g12

∂u2
+

1

2b12

∂(b12)2

∂u2
− b12

g

∂g11

∂u2
=

=
b11

g

∂g12

∂u2
− b12

g

∂g11

∂u2
.

Таким образом, после упрощения мы получили следующее уравнение:

(3.35)
∂g11

∂u2
=
b11

b12

∂g12

∂u2
.

Теперь упростим первое уравнение Кодацци:

0 =
∂b12

∂u1
− ∂b11

∂u2
+ bi1Γi12 − bi2Γi11 =

∂b12

∂u1
− ∂b11

∂u2
+ b11Γ1

12 + b12Γ2
12 − b12Γ1

11 =

=
∂b12

∂u1
− ∂b11

∂u2
+
b11

2g

∂g11

∂u2
− b12

(
g12

2g

∂g11

∂u2
+

1

2g

( ∂g
∂u1

+ g12
∂g11

∂u2

))
=

=
∂b12

∂u1
− ∂b11

∂u2
+
b11

2g

∂g11

∂u2
− b12

(g12

g

∂g11

∂u2
+

1

2(b12)2

∂(b12)2

∂u1

)
=

= −∂b11

∂u2
+
b11 − 2b12g12

2g

∂g11

∂u2

Используя (3.35), получаем:
∂b11

∂u2
=
b11 − 2b12g12

2gb12

∂g12

∂u2
b11.

Таким образом, b11 удовлетворяет обыкновенному дифференциальному уравнению с нулевым
начальным условием (3.34), для которого b11 = 0 является решением. В силу единственности ре-
шения этого уравнения с данным начальным условием мы имеем b11 = 0 при всех значениях u2.
Теперь из уравнения (3.35) получаем ∂g11/∂u

2 = 0, что вместе с начальным условием (3.34) дает
g11 = 1 для всех u1, u2. Это означает, что вектор ru1 во всех точках является асимптотическим
и имеет единичную длину, а значит, совпадает с e1. Кроме того, во всех точках выполнены
следующие соотношения

g = 1− (g12)2 = (b12)2,

поэтому можно положить

(3.36) g12 = cosϕ, b12 = sinϕ,

где ϕ — угол между координатными линиями. Итак, мы приходим к следующему выводу.

Теорема 3.17. На поверхности постоянной гауссовой кривизны K = −1 в окрестности каж-
дой точки существует система координат u1, u2, в которой первая и вторая фундаменталь-
ные формы имеют вид

(3.37) I = du1 du1 + du2 du2 + 2 cosϕ(u1, u2) · du1 du2, II = 2 sinϕ(u1, u2) · du1 du2,
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причем эта система координат определена однозначно с точностью до перестановки коорди-
нат u1 ↔ u2, сдвига u1 7→ u1 + const1, u2 7→ u2 + const2 и смены знака любой из них.

Заметим, что мы вывели это утверждение, используя только уравнения Кодацци. Нетрудно
убедиться, что, наоборот, любая пара форм вида (3.37) удовлетворяет уравнениям Кодацци.
Чтобы они могли быть фундаментальными формами поверхности, нужно наложить еще соот-
ношение Гаусса. Для этого сначала заметим, что в выбранной системе координат выражения
для символов Кристоффеля еще упрощаются:

Γ1
11 = −g12

g

∂g12

∂u1
, Γ1

22 =
1

g

∂g12

∂u2
, Γ2

11 =
1

g

∂g12

∂u1
, Γ2

22 = −g12

g

∂g12

∂u2
, Γ1

12 = Γ1
21 = Γ2

12 = Γ2
21 = 0.

Подставляем их в соотношение Гаусса:

−g = g1p

(∂Γp22

∂u1
− ∂Γp21

∂u2
+ Γps1Γs22 − Γps2Γs21

)
=

=
∂Γ1

22

∂u1
+ Γ1

11Γ1
22 + g12

(∂Γ2
22

∂u1
+ Γ2

11Γ1
22

)
=
∂Γ1

22

∂u1
+ g12

∂Γ2
22

∂u1
.

Теперь воспользуемся подстановкой (3.36):

g = 1− (g12)2 = 1− cos2 ϕ = sin2 ϕ,

Γ1
22 =

1

g

∂g12

∂u2
=

1

sin2 ϕ

∂ cosϕ

∂u2
= − 1

sinϕ
ϕu2 ,

Γ2
22 = −g12

g

∂g12

∂u2
= − cosϕ

sin2 ϕ

∂ cosϕ

∂u2
= ctgϕ · ϕu2 .

В итоге получаем

0 =
∂Γ1

22

∂u1
+ g12

∂Γ2
22

∂u1
+ g = − ∂

∂u1

1

sinϕ
ϕu2 + cosϕ

∂

∂u1
(ctgϕ · ϕu2) + sin2 ϕ =

= − sinϕ · ϕu1u2 + sin2 ϕ,

что равносильно следующему (поскольку sinϕ 6= 0):

ϕu1u2 = sinϕ.

Нами доказано следующее утверждение.

Теорема 3.18. (i) В системе координат, указанной в теореме 3.17, функция ϕ удовлетворяет
уравнению

(3.38) ϕu1u2 = sinϕ.

(ii) Для любого решения этого уравнения с sinϕ 6= 0 существует поверхность постоянной
кривизны K = −1 с первой и второй квадратичными формами вида (3.37).

Таким образом, описание всех поверхностей постоянной отрицательной кривизны сводится
к решению уравнения (3.38). Оно носит довольно экзотическое название — уравнение синус–
Гордон — и играет важную роль в теории солитонов.

Заметим, что координатная сетка, для которой мы получили это уравнение, состоит асимпто-
тических линий поверхности, причем отображение параметризации сохраняет расстояния вдоль
каждой из этих линий.

Пример 3.3. Простейшим нетривиальным решением уравнения (3.38) является

ϕ(u1, u2) = 4 arctg eu
1+u2 .

Оно соответствует сфере Бельтрами — поверхности, заметаемой трактрисой (см. пример 2.1)
при вращении вокруг своей асимптоты.
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Задача 3.19. Докажите, что на любой поверхности отрицательной кривизны (не обязательно
постоянной) кручение асимптотической линии в точке, где ее кривизна не обращается в нуль,
связано с гауссовой кривизной поверхности в той же точке следующим образом:

κ =
√
−K.

Глава 4. Внутренняя геометрия поверхности

§4.1. Геодезическая кривизна. Геодезические линии. Примеры геодезических: пря-
мая на любой поверхности, геодезические на поверхности вращения. Интеграл Кле-
ро.

Определение 4.1. Пусть γ — гладкая кривая на поверхности M , проходящая через точку x.
Вектором геодезической кривизны, обозначаемым через kg(x), кривой γ в точке x по отно-
шению к поверхности M называется ортогональная проекция ее вектора кривизны k(x) на
касательную плоскость TxM . Его абсолютная величина, возможно, взятая со знаком минус
(см. ниже §4.8), называется геодезической кривизной кривой γ в точке x и обозначается через
kg.

Отметим сразу одно очевидное обстоятельство.

Предложение 4.1. Если кривая γ лежит в пересечении двух поверхностей M и M ′, кото-
рые в некоторой точке x ∈ γ имеют совпадающие касательные плоскости, то геодезическая
кривизна кривой γ в точке x по отношению к M и M ′ одинакова.

Задача 4.1. Докажите следующее соотношение между геодезической, обычной и нормальной
кривизнами кривой на поверхности:

k2 = k2
g + k2

v,

где v — касательный вектор к данной кривой в рассматриваемой точке.

Определение 4.2. Гладкая кривая на поверхности называется геодезической, если ее геодези-
ческая кривизна в каждой точке равна нулю.

Следующее утверждение непосредственно следует из определений 4.1 и 4.2.

Предложение 4.2. Кривая γ на поверхности M является геодезической тогда и только
тогда, когда в каждой точке x ∈ γ ее вектор кривизны коллинеарен вектору n(x) нормали к
поверхности M .

Геодезические имеют простой физический смысл. Это траектории движения частицы по по-
верхности при отсутствии сил, кроме силы реакции опоры (которая всегда ортогональна по-
верхности).

Приведем примеры геодезических линий.
Прямая на любой поверхности является геодезической, так как ее вектор кривизны всюду

равен нулю.
Меридиан на поверхности вращения всегда является геодезической, так как он является нор-

мальным сечением для любой своей точки.
Параллель на поверхности вращения с параметризацией

r(u1, u2) = (ρ(u2) cosu1, ρ(u2) sinu1, h(u2))

является геодезической тогда и только тогда, когда на ней выполнено dρ/du2 = 0. В частно-
сти, параллели, проходящие через точки локального экстремума функции ρ расстояния до оси,
являются геодезическими. Следующее утверждение дает возможность описать все остальные
геодезические на поверхности вращения.

Теорема 4.1 (Клеро). Вдоль геодезической на поверхности вращения сохраняется величина
ρ cosα, где ρ — расстояние до оси, а α — угол пересечения геодезической с параллелью.
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Доказательство. Пусть q(s) — натуральная параметризация геодезической на поверхности
вращения. Разложим радиус-вектор q в сумму q = q1 + q2 векторов, первый из которых па-
раллелен оси поверхности, а второй — перпендикулярен. Тогда расстояние ρ(q(s)) от точки
q(s) до оси равно |q2|, а касательная к параллели, проходящей через эту точку, имеет своим
направляющим вектором векторное произведение [q1, q2]. Так как параметризация рассмат-
риваемой геодезической натуральна, мы имеем (q′′, q′) = 0. Кроме того, так как кривая q(s)
является геодезической, вектор ускорения q′′ (который в натуральной параметризации совпа-
дает с вектором кривизны) ортогонален всей касательной плоскости в соответствующей точке,
в частности, направляющему вектору параллели, т.е. (q′′, [q1, q2]) = 0. Отсюда

(ρ cosα)′ =
(
ρ

(q′, [q1, q2])

|[q1, q2]|

)′
=
((q′, q1, q2)

|q1|

)′
=
(
q′,

q1

|q1|
, q2

)′
=

=
(
q′′,

q1

|q1|
, q2

)
+
(
q′,
( q1

|q1|

)′
, q2

)
+
(
q′1,

q1

|q1|
, q′2

)
+
(
q′2,

q1

|q1|
, q′2

)
.

Мы уже выяснили, что первое слагаемое в этой сумме равно нулю. Второе слагаемое равно
нулю, поскольку вектор q1/|q1| является единичным направляющим вектором оси поверхно-
сти, а значит, он постоянен. Третье слагаемое равно нулю, так как вектор q′1 коллинеарен q1,
а последнее — поскольку дважды содержит q′2 в смешанном произведении. Таким образом,
(ρ cosα)′ = 0, т.е. ρ cosα — постоянная величина. �

Величины, сохраняющиеся вдоль решений уравнений движения в механике называются пер-
выми интегралами. В данном случае мы имеем дело с первым интегралом ρ cosα движения по
геодезическим на поверхности вращения. Он называется интегралом Клеро.

Задача 4.2. Докажите, что геодезическая без точек спрямления является линей кривизны
тогда и только тогда, когда она плоская.

Задача 4.3. Докажите, что асимптотическая линия является геодезической тогда и только
тогда, когда она является прямой.

§4.2. Уравнение геодезических. Продолжаемость геодезических. Выведем теперь фор-
мулу для геодезической кривизны для кривой, заданной параметрически в локальных коорди-
натах поверхности, а вместе с тем уравнения, задающие геодезические.

Предложение 4.3. Пусть u1, u2 — локальные координаты на поверхности M и кривая γ
задана параметрически в виде u1 = u1(t), u2 = u2(t), причем параметр t натуральный. Тогда
ее вектор геодезической кривизны вычисляется по формуле

(4.1) kg =
(
ül + Γliju̇

iu̇j
)
rul .

Доказательство. В натуральной параметризации вектор кривизны k совпадает с вектором
ускорения a, а для вектора ускорения кривой, лежащей на поверхности, мы вывели формулу
в §3.4:

a = u̇iu̇j ruiuj + üi rui ,

что вместе с деривационными формулами Гаусса дает:
(4.2) a =

(
Γliju̇

iu̇j + ül
)
rul + biju̇

iu̇j n.

Отбрасывая нормальную составляющую, получаем (4.1). �

Теорема 4.2. При изометрии поверхностей геодезические кривизны всех кривых сохраняют-
ся. В частности, геодезические линии переходят в геодезические.

Доказательство. Из предложения 4.3 следует, что геодезическая кривизна кривой на поверх-
ности, заданной в локальных координатах u1, u2 параметрически в виде u1 = u1(t), u2 = u2(t),
где t — натуральный параметр, дается формулой

kg = ±
√

(ül + Γliju̇
iu̇j)(üs + Γspqu̇

pu̇q)gls(u1, u2).
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Эта величина определяется параметрическими уравнениями данной кривой и первой квадра-
тичной формой (напомним, что символы Кристоффеля выражаются через коэффициенты пер-
вой квадратичной формы). Поэтому при изометрии эта величина не изменяется. �

Предложение 4.4. Пусть кривая γ на поверхностиM ⊂ R3 задана в локальных координатах
u1, u2 параметрически в виде u1 = u1(t), u2 = u2(t). Следующие два утверждения равносильны:

(A) кривая γ является геодезической, а параметр t пропорционален натуральному;
(B) данная параметризация кривой удовлетворяет уравнению

(4.3) üi = −Γipqu̇
pu̇q.

Доказательство. Будем обозначать вектор скорости данной кривой через v, а вектор ускоре-
ния — через a. Сопоставляя (4.2) с (4.3), мы видим, что условие (4.3) равносильно коллинеар-
ности вектора a и вектора n нормали к поверхности в соответствующей точке.

Пусть выполнено условие (A). Тогда, так как данная параметризация пропорциональна нату-
ральной, вектор кривизны кривой равен k = a/|v|2. Поскольку кривая γ геодезическая, вектор
k коллинеарен n, а значит, коллинеарны a и n, т.е. выполнено условие (B).

Пусть выполнено (B), т.е. векторы a и n коллинеарны. Это, в частности, означает, что a ⊥
⊥ v, откуда скорость |v| постоянна, а значит, параметризация пропорциональна натуральной.
Следовательно, вектор кривизны k коллинеарен вектору ускорения a, а значит, и вектору n. �

Уравнения (4.3) являются системой обыкновенных дифференциальных уравнений второго
порядка с гладкой правой частью, откуда немедленно вытекает следующее.

Теорема 4.3. Для каждой внутренней точки x поверхности M , произвольного ненулевого
вектора v ∈ TxM и достаточно малого ε существует ровно одна геодезическая дуга длины ε,
начинающаяся в точке x и выходящая из нее в направлении вектора v.

Рассмотрим вопрос о продолжении решений уравнения (4.3).

Теорема 4.4. Пусть x — внутренняя точка поверхности M ⊂ R3, v ∈ TxM — ненулевой
касательный вектор. Тогда на M существует геодезическая с натуральной параметризацией
q(t), выходящая при t = 0 из точки x в направлении вектора v и такая, что выполнено одно
из двух:

• параметризация q(t) определена при сколь угодно больших t, т.е. длина геодезической
бесконечна;
• параметризация q(t) определена вплоть до t = tmax, где tmax > 0 — некоторая конечная
величина, и q(tmax) — точка края ∂M данной поверхности.

Доказательство. Рассмотрим сначала параметризованный простой кусок N данной поверхно-
сти, для которого данная точка x внутренняя. Координаты в N будем, как обычно, обозначать
через u1, u2. Координаты точки x обозначим через (u1

0, u
2
0). Построение начального куска иско-

мой геодезической сводится к решению уравнения (4.3) с начальными условиями

ui(0) = ui0, u̇i(0)rui =
v

|v|
.

Как известно из теории обыкновенных дифференциальных уравнений, продолжая решение,
можно достичь границы любого наперед заданного компакта в расширенном фазовом про-
странстве. В данном случае, поскольку уравнение (4.3) имеет порядок 2, координатами в рас-
ширенном фазовом пространстве являются t, u1, u2, V 1 = u̇1, V 2 = u̇2.

Ключевую роль здесь играет тот факт, что в силу уравнений (4.3) длина вектора скорости
сохраняется:

gij(u
1, u2)u̇iu̇j = 1.
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Лемма 4.1. Существует константа α > 0, такая что во всех точках (u1, u2) поверхности
N для любого ненулевого касательного вектора v = V irui(u

1, u2) выполнено неравенство

(4.4) gij(u
1, u2)V iV j > α((V 1)2 + (V 2)2).

Доказательство. Пусть λ(u1, u2) — меньшее из собственных значений матрицы (gij(u
1, u2)).

Если α < λ, то матрица (
g11 − α g12

g12 g22 − α

)
положительно определена. На компактном куске N непрерывная функция λ достигает мини-
мума λmin, причем λmin > 0. Любая константа α ∈ (0, λmin) удовлетворяет условию (4.4) во всех
точках куска N . �

Из только что доказанной леммы следует, что вдоль решения (u1(t), u2(t)) выполнено нера-
венство (u̇1)2 + (u̇2)2 < 1/α для некоторой константы α. Вооружившись такой константой α,
рассмотрим компакт K(t1) в расширенном фазовом пространстве, заданный неравенствами

(V 1)2 + (V 2)2 6
1

α
, 0 6 t 6 t1,

где t1 — произвольное положительное число. На точку (u1, u2) мы не пишем неравенств, потому
что она пробегает компактный кусок N по предположению. Решение (u1(t), u2(t)) должно выйти
на границу компакта K(t1). Равенство (u̇1)2 + (u̇2)2 = 1/α для нашего решения недостижимо,
поэтому верно одно из следующего:

• решение продолжается вплоть до t = t1;
• при некотором t точка с координатами (u1(t), u2(t)) оказывается на крае ∂N .

Устремляя теперь t1 к бесконечности, видим, что наша геодезическая либо достигнет края ∂N
за конечное время, либо будет продолжаться бесконечно долго в пределах куска N .

Забудем теперь о фиксированном куске N . Пусть tmax — это супремум тех t, для которых
возможно продолжить геодезическую q(t). Если tmax = ∞, то теорема доказана. Если tmax

конечно, то существует предел
x1 = lim

t→tmax−0
q(t),

поскольку вектор скорости q̇(t) единичный для всех t < tmax. Значит, кривая q(t) определена
и при t = tmax. Если точка x1 внутренняя для M , то, взяв в ее окрестности локальные коорди-
наты, можно применить рассуждение выше и показать, что решение продолжается за tmax, что
противоречит выбору tmax. Следовательно, x1 — граничная точка поверхности M . �

§4.3. Уравнения Эйлера–Лагранжа. Геодезические как экстремали функционала
действия. Уравнения геодезических представляют собой один из простейших и в то же время
важнейших примеров так называемых лагранжевых систем. Этим термином называют системы
уравнений, получаемые из принципа наименьшего действия, который состоит в следующем.

Пусть L = L(x,y, t) — гладкая функция трех аргументов x ∈ Rn, y ∈ Rn и t ∈ R, где
n — натуральное число. Эту функцию будем называть Лагранжианом. Для гладкого пути
q : [a, b]→ Rn определим действие S(q) этого пути по формуле

(4.5) S(q) =

∫ b

a

L(q(t), q̇(t), t)

и зададим следующий вопрос: когда действие данного пути q принимает наименьшее значе-
ние среди всех путей с теми же началом q(a) и концом q(b)? Оказывается, эволюция многих
физических систем подчинена простому принципу: ограничение траектории движения на до-
статочно малый промежуток времени минимизирует некоторый функционал действия. Чтобы
описать такую систему достаточно указать ее лагранжиан. Например, все системы классиче-
ской механики лагранжевы, лагранжианом является разность кинетической и потенциальной
энергий.
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Необходимым условием достижения минимума является, как известно, равенство нулю пер-
вых производных. Сейчас мы введем аналог именно этого более слабого условия для бесконеч-
номерного пространства всех путей.

Определение 4.3. Пусть q : [a, b] → Rn — некоторый путь. Под его однопараметрической
деформацией понимается любая гладкая функция qτ (t) от двух переменных τ и t, такая что

(1) при τ = 0 путь qτ совпадает с q;
(2) при всех τ путь qτ имеет те же начало и конец: qτ (a) = q(a), qτ (b) = q(b).

Говорят, что путь q является экстремалью для функционала действия (4.5), если для любой
его однопараметрической деформации qτ выполнено

d

dτ
S(qτ )

∣∣∣
τ=0

= 0.

Поскольку в Лагранжиан L(x,y, t) вместо x и y всегда подставляются q(t) и q̇(t) для некото-
рого пути, частные производные ∂L/∂xi и ∂L/∂yi, в которых также сделаны эти подстановки,
будут обозначаться через ∂L/∂qi и ∂L/∂q̇i соответственно. Хотя последнее выражение может
выглядеть непривычно, на практике пользоваться такой записью удобно — она просто означает,
что при взятии частной производной мы рассматриваем q̇i как обычную переменную.

Теорема 4.5. Гладкий путь q является экстремалью для функционала действия (4.5) тогда
и только тогда, когда он удовлетворяет следующей системе обыкновенных дифференциальных
уравнений второго порядка:

(4.6)
d

dt

∂L
∂q̇i

=
∂L
∂qi

.

Доказательство. Пусть qτ — некоторая однопараметрическая деформация пути q : [a, b]→ Rn.
Обозначим через v(t) = (v1(t), . . . , vn(t)) вектор ∂qτ (t)/∂τ . Поскольку при деформации концы
пути предполагаются фиксированными, мы имеем
(4.7) v(a) = 0, v(b) = 0.

Вычислим производную dS(qτ )/dτ , занеся производную под знак интеграла и применив инте-
грирование по частям:
dS(qτ )

dτ
=

∫ b

a

∂L(qτ (t), q̇τ (t), t)

∂τ
dt =

∫ b

a

(∂L
∂qi

vi(t) +
∂L
∂q̇i

v̇i(t)
)
dt =

∫ b

a

(
∂L
∂qi
−
(∂L
∂q̇i

)·)
vi(t) dt.

В последнем равенстве важно, что в силу (4.7) обращается в нуль внеинтегральный член
∂L
∂q̇i

vi(t)
∣∣∣t=b
t=a
.

Мы видим, что уравнения (4.6) влекут dS(qτ )/dτ = 0 для любой однопараметрической дефор-
мации. Наоборот, пусть q — экстремаль. Возьмем произвольную гладкую функцию ϕ : [a, b]→ R
со свойствами ϕ(a) = ϕ(b) = 0, ϕ(t) > 0 для всех t ∈ (a, b), и положим

v(t) = ϕ(t)

(
∂L
∂qi
−
(∂L
∂q̇i

)·)
, qτ (t) = q(t) + τv(t).

Получим

0 =
dS(qτ )

dτ
=

∫ b

a

ϕ(t)|v(t)|2 dt,

откуда v(t) = 0 при всех t ∈ [a, b], что влечет выполнение уравнений (4.6). �

Уравнения (4.6) называются уравнениями Эйлера–Лагранжа. Набор величин ∂L/∂q̇i, i =
1, . . . , n, называется импульсом данной системы, а набор ∂L/∂qi, i = 1, . . . , n, — действующей
на нее силой. В этих терминах уравнения Эйлера–Лагранжа представляют собой обобщение
второго закона Ньютона: производная импульса по времени равна действующей силе.
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Теорема 4.6. Для параметризованной кривой q : [a, b] → M на поверхности M следующие
условия равносильны:
(i) кривая q является геодезической, а ее параметризация пропорциональна натуральной;
(ii) кривая q является экстремалью следующего функционала действия в классе путей на
поверхности M :

(4.8) S(q) =

∫ b

a

|q̇(t)|2 dt.

Доказательство. Лагранжиан действия (4.8) в локальных координатах поверхности записы-
вается следующим образом:

L(q, q̇) = gij(q)q̇iq̇j.

Вычислим i-е компоненты импульса p и силы f :

pi =
∂L
∂q̇i

= 2gij q̇
j, fi =

∂L
∂qi

=
∂gkl
∂qi

q̇kq̇l.

Используя (3.21), получаем

ṗi =
d

dt
(2gij q̇

j) = 2
(
gij q̈

j +
∂gij
∂qk

q̇kq̇j
)

= 2
(
gij q̈

j + Γpikgpj q̇
kq̇j + Γpjkgipq̇

kq̇j
)
,

fi =
(
Γpkigpl + Γligkp

)
q̇kq̇l.

Подстановка найденных выражений в уравнения Эйлера–Лагранжа ṗi = fi дает:

2gij
(
q̈j + Γjklq̇

kq̇l
)

= 0,

что равносильно уравнению геодезических, так как (gij) — невырожденная матрица. Утвержде-
ние теоремы следует теперь из предложения 4.4. �

§4.4. Экспоненциальное отображение. Локальные свойства геодезических: возмож-
ность провести геодезическую через близкие точки, реализация кратчайшего рас-
стояния. Пусть x0 — некоторая внутренняя точка поверхностиM и пусть в некоторой окрест-
ности точки x0 выбрана локальная система координат u1, u2, в которой x0 имеет координаты
(u1

0, u
2
0). Для всевозможных векторов v0 ∈ Tx0M рассмотрим решение F (v0, t) уравнения геоде-

зических (4.3) с начальными условиями

u1(0) = u1
0, u2(0) = u2

0, u̇1(0) = V 1
0 , u̇2(0) = V 2

0 ,

где V 1
0 , V

2
0 — координаты вектора v0 в базисе ru1(x0), ru2(x0).

Заметим, что если u1(t), u2(t) — решение уравнения (4.3), а λ — некоторая константа, то
u1(λt), u2(λt) также является решением этого уравнения (обе части уравнения при таком пре-
образовании умножатся на λ2), причем его вектор скорости в начальный момент получается
из вектора скорости исходного решения умножением на λ. Отсюда вытекает следующее утвер-
ждение.

Предложение 4.5. Имеет место тождество (там, где определены обе его части):

F (λv0, t) = F (v0, λt).

Определение 4.4. Отображение из Tx0M вM , которое вектору v0 сопоставляет точку F (v0, 1)
называется экспоненциальным отображением и обозначается через expx0

.

Геометрический смысл экспоненциального отображения следующий: вектору v0 ∈ Tx0M сопо-
ставляется конец геодезической длины |v0|, выпущенной из точки x0 в направлении вектора v0.

Если поверхность M имеет непустой край, то экспоненциальное отображение определено,
вообще говоря, не на всей касательной плоскости Tx0M , поскольку может оказаться, что не при
всяком v0 решение уравнения (4.3) можно продолжить до t = 1. Однако имеет место следующий
факт.
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Теорема 4.7. Для каждой внутренней точки x0 ∈ M найдется ε > 0, такое что expx0
(v0)

определено для всех векторов v0 ∈ Tx0M длины |v0| < ε, причем ограничение отображения
expx0

на множество таких векторов регулярно и является гомеоморфизмом на образ.

Доказательство. Найдется такое ε > 0, что ε-шар Bε(x0) не пересекается с краем ∂M , а зна-
чит, все геодезические с начальной точкой x0 продолжаются до длины ε. Отсюда следует, что
экспоненциальное отображение определено в некоторой окрестности нулевого вектора.

Гладкость экспоненциального отображения следует из общей теоремы о гладкости зависимо-
сти решения обыкновенного дифференциального уравнения от начальных условий.

С каждой локальной системой координат u1, u2 на поверхности M в окрестности точки x0 ∈
M связана линейная система координат V 1, V 2 в касательной плоскости Tx0M , ассоциированная
с базисом ru1 , ru2 .

Лемма 4.2. Матрица Якоби экспоненциального отображения для указанных систем коорди-
нат V 1, V 2 и u1, u2 в Tx0M и M соответственно в точке 0 ∈ Tx0M единичная.

Доказательство. Из предложения 4.5 и определения отображения F выше следует что

expx0
(tv0) = F (tv0, 1) = F (v0, t) = x0 + tv0 + o(t),

где подразумевается, что вычисления проведены в системе координат u1, u2, а вектор v0 отнесен
к системе координат V 1, V 2. �

Таким образом, матрица Якоби экспоненциального отображения невырождена в точке v0 =
= 0, откуда в достаточно малой окрестности нуля экспоненциальное отображение регулярно и
обратимо. �

Теорема 4.8. Для любой внутренней точки x0 поверхности M найдется такая ее окрест-
ность U , что для любой точки x из U найдется геодезическая, соединяющая x0 с x и целиком
содержащаяся в U , причем эта геодезическая короче любой другой кривой с теми же концами.

Доказательство. Зафиксируем в касательной плоскости Tx0M полярную систему координат
ρ, ϕ и перенесем ее с помощью экспоненциального отображения с малой окрестности нуля в Tx0

на окрестность точки x0 в M . Из теоремы 4.7 следует, что мы получим регулярную параметри-
зацию некоторой проколотой окрестности точки x0 с оговоркой, что координата ϕ определена
с точностью до 2πm, m ∈ Z. По построению лучи ϕ = const являются геодезическими, причем
ρ является на них натуральным параметром.

Лемма 4.3. Пусть локальные координаты u1, u2 на поверхности таковы, что координат-
ные линии u2 = const являются геодезическими, причем u1 является для них натуральным
параметром. Тогда коэффициент g12 первой квадратичной формы не зависит от u1.

Доказательство. По предположению леммы параметрические уравнения u1(t) = t, u2(t) =
const задают натурально параметризованную геодезическую. Подставляя в уравнения геодези-
ческой (4.3), получаем

0 = −ü1 = Γ1
11u̇

1u̇1 + 2Γ1
12u̇

1u̇2 + Γ1
22u̇

2u̇2 = Γ1
11 =

1

2

(
g11∂g11

∂u1
+ g12

(
2
∂g12

∂u1
− ∂g11

∂u2

))
.

Так как u1 — натуральный параметр на координатных линиях u2 = const, мы имеем g11 = 1 во
всех точках. Отсюда последнее выражение равно

g12∂g12

∂u1
= − 1

2g

∂(g12)2

∂u1
.

Отсюда ∂g12/∂u
1 = 0. �

Применим только что доказанную лемму к системе координат ρ, ϕ, считая ρ первой коорди-
натой, а ϕ — второй. Согласно лемме коэффициент g12 не зависит от ρ. Но при ρ→ 0 вектор rϕ
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стремится к нулю, а вектор rρ остается ограниченным, откуда g12 → 0, а следовательно, g12 = 0
при всех ρ > 0.

Таким образом, первая квадратичная форма в введенной нами системе координат (она на-
зывается обобщенной полярной) в окрестности точки x0 имеет вид

I = dρ dρ+ g22(ρ, ϕ) dϕ dϕ.

Возьмем ε > 0 настолько малым, чтобы эта система координат была регулярна при 0 < ρ < ε.
Пусть x1 — произвольная точка с координатами (ρ1, ϕ1), где ρ1 < ε. Точки x0 и x1 соединяются
геодезической дугой ϕ = ϕ1, ρ ∈ [0, ρ1], длина которой равна ρ1. Любая другая кусочно-гладкая
кривая, соединяющая эти две точки будет длиннее. Действительно, пусть кривая γ соединяет
точки x0 и x1 и не покидает окрестности ρ < ε. Тогда она допускает параметризацию вида
ρ = ρ(t), ϕ = ϕ(t), t ∈ [0, 1], ρ(0) = 0, ρ(1) = ρ1. Ее длина равна

L(γ) =

∫ 1

0

√
(ρ̇)2 + g22(ϕ̇)2 dt >

∫ 1

0

|ρ̇| dt >
∣∣∣∫ 1

0

ρ̇ dt
∣∣∣ = |ρ1|,

причем равенство достигается только если ϕ(t) ≡ ϕ0, а ρ(t) — монотонная функция, и тогда
кривая γ совпадает с указанной геодезической дугой.

Если же кривая γ покидает пределы окрестности ρ < ε, то длина ее дуги от x0 до первой
точки выхода на границу этой окрестности уже будет иметь длину не меньше ε > ρ1. �

§4.5. Полугеодезические координаты. Метрики постоянной кривизны.

Определение 4.5. Локальная система координат u1, u2 на поверхности называется полугеоде-
зической, если первая квадратичная форма поверхности в ней имеет вид

I = du1 du1 + g22 du
2 du2,

где g22 — некоторая гладкая функция от u1, u2.

Теорема 4.9. Для каждой внутренней точки x0 произвольной гладкой поверхности M в
некоторой окрестности U ⊂M точки x0 существует полугеодезическая система координат.

Доказательство. Пусть q(t), t ∈ (−ε, ε), — произвольная регулярная параметризация некото-
рой гладкой дуги, проходящей через x0 при t = 0. В каждой точке (t, q(t)) этой дуги выберем
вектор нормали ng(t) к кривой, лежащий в соответствующей касательной плоскости к поверхно-
сти, так, чтобы он гладко зависел от t (иначе говоря, выберем коориентацию дуги в поверхности
M). Рассмотрим следующее отображение r из окрестности начала координат в R2 в M :

(4.9) r(u1, u2) = expq(u2)(u
1n(u2)).

По теореме о гладкой зависимости решения обыкновенного дифференциального уравнения от
начальных условий это отображение гладко. При u1 = 0 векторы ru1 и ru2 равны соответствен-
но n(0) и q̇(0). По построению эти векторы ортогональны и не обращаются в нуль. Поэтому
они линейно независимы, откуда в достаточно малой окрестности точки (0, 0) ∈ R2 отображе-
ние (4.9) задает регулярную параметризацию поверхности M . Кроме того, отсюда следует, что
g12(0, u2) = 0 при всех u2.

По построению формулы q(t) = r(t, u2
0), где u2

0 = const при каждом u2
0 задают натурально

параметризованную геодезическую на M . Отсюда следует, что вектор ru1 всегда имеет единич-
ную длину, т.е. g11 = 1 при всех u1, u2. По лемме 4.3 коэффициент g12 не зависит от u1. Но, как
мы видели выше, он обращается в нуль при u1 = 0, откуда он тождественно нулевой. �

Лемма 4.4. В полугеодезической системе координат гауссова кривизна вычисляется по фор-
муле

(4.10) K = − 1
√
g22

∂2√g22

(∂u1)2
.
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Доказательство. Из тождеств Кристоффеля находим:

Γ1
11 = Γ1

21 = 0, Γ1
22 = −1

2

∂g22

∂u1
, Γ2

21 =
1

2g22

∂g22

∂u1
.

Теперь подставляем эти выражения в формулу (3.33), учитывая что в данном случае g11 = 1,
g12 = 0, g = g22:

K =
1

g
g1p

(∂Γp22

∂u1
− ∂Γp21

∂u2
+ Γps1Γs22 − Γps2Γs21

)
=

=
1

g22

(∂Γ1
22

∂u1
− Γ1

22Γ2
21

)
= − 1

2g22

∂2g22

∂u1∂u1
+

1

4(g22)2

(∂g22

∂u1

)2

=

= − 1
√
g22

∂2√g22

(∂u1)2
. �

Теорема 4.10. Пусть M — поверхность постоянной гауссовой кривизны K. Тогда в доста-
точно малой окрестности любой ее внутренней точки первая квадратичная форма заменой
координат приводится к виду:

• I = du1 du1 + du2 du2, если K = 0;

• I =
1

K
· (du1 du1 + cos2(u1) du2 du2), если K > 0;

• I = − 1

K
· (du1 du1 + ch2(u1) du2 du2), если K < 0.

Доказательство. При построении полугеодезической системы координат в доказательстве тео-
ремы 4.9 мы начинали с выбора произвольной гладкой кривой на данной поверхности, которая
затем принималась за координатную линию u1 = 0. Выполним это построение, взяв в качестве
такой кривой некоторую натурально параметризованную геодезическую, проходящую через
данную точку.

По аналогии с доказательством леммы 4.3 будем иметь Γ1
22 = 0 при u1 = 0. Кроме того, так

как u2 по построению является натуральным параметром на координатной линии u1 = 0, мы
имеем g22(0, u2) = 1.

В полугеодезической системе координат символ Кристоффеля Γ1
22 равен

Γ1
22 = −1

2

∂g22

∂u1
.

Таким образом, при каждом фиксированном значении u2 функция g22(u1, u2) есть решение
обыкновенного дифференциального уравнения (4.10) (которое линейно относительно √g22) с
начальными условиями

g22(0, u2) = 1,
∂g22

∂u1
(0, u2) = 0.

Это решение единственно и в случае, когда K постоянно, задается формулой

g22 =
(

Re
(
e
√
−Ku1))2

.

Чтобы получить утверждение теоремы, остается в случае K 6= 0 сделать замену u1, u2 7→
u1/
√
|K|, u2/

√
|K|. �

Следствие 4.1. Если две поверхности имеют одинаковую постоянную гауссову кривизну, то
они локально изометричны.
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§4.6. Метрики сферы и плоскости Лобачевского. В этом параграфе будет ряд формул,
содержащих многочлены, поэтому верхние индексы не используются, чтобы не путать их со
степенями. Для обозначения координат в R3 используются буквы x, y, z вместо x1, x2, x3, а для
локальных координат на поверхности u и v или другие две разные буквы вместо u1 и u2.

Все утверждения данного параграфа получаются элементарными вычислениями, которые
оставляются читателю.

Мы уже видели ранее, что поверхности со всюду нулевой гауссовой кривизной локально
изометричны плоскости. В предыдущем параграфе мы показали, что поверхности одинаковой
постоянной гауссовой кривизны локально изометричны между собой. Здесь мы рассмотрим
«наиболее канонические» поверхности постоянной гауссовой кривизны — сферу и плоскость
Лобачевского — и их стандартные параметризации, а также линии постоянной геодезической
кривизны на них.

Пусть K > 0. Тогда сфера радиуса 1/
√
K, заданная уравнением

(4.11) x2 + y2 + z2 =
1

K
,

имеет все нормальные кривизны равными
√
K, а значит гауссову кривизну K.

Предложение 4.6. Линии постоянной геодезической кривизны на сфере (4.11) — это ее плос-
кие сечения, то есть окружности. Если m — единичный вектор, и a ∈ R, то сечение сфе-
ры (4.11) плоскостью (m,x) = a является гладкой кривой при a2 < 1/K и имеет постоянную
геодезическую кривизну, равную |a|K/

√
1− a2K.

В частности, геодезические на сфере — это окружности, центр которых совпадает с цен-
тром самой сферы.

Рассмотрим наиболее часто используемые параметризации сферы (4.11). Для всех этих си-
стем координатная сетка состоит из линий постоянной геодезической кривизны. Проверку фор-
мул и утверждений оставляем читателю.
Сферические координаты. Также известны как географические. Параметризуется вся сфера,
кроме «полюсов», то есть точек z = ±1/

√
K, с помощью «широты» θ ∈ (−π/2, π/2) и «долго-

ты» ϕ, которая рассматривается с точностью до добавления 2πn, n ∈ Z:

x(θ, ϕ) =
1√
K

cosϕ cos θ, y(θ, ϕ) =
1√
K

sinϕ cos θ, z(θ, ϕ) =
1√
K

sinϕ.

В этой системе координат первая фундаментальная форма поверхности есть

I =
(dθ)2 + cos2 θ · (dϕ)2

K
.

Таким образом (θ, ϕ) — это полугеодезическая система координат, причем в точности такая,
как метрика, существование которой утверждается в теореме 4.10.
Обобщенные полярные координаты. Если применить конструкцию обобщенной полярной си-
стемы координат (см. доказательство теоремы 4.7) к «северному полюсу» сферы, то есть точ-
ке x0 = (0, 0, 1/

√
K), то получатся координаты ρ, ϕ, в которых координата ϕ такая же (при

естественном выборе полярной системы в Tx0), как в сферической системе координат, а коор-
дината ρ выражается через θ следующим образом:

ρ = (π/2− θ)/
√
K.

Первая фундаментальная форма записывается следующим образом:

I = (dρ)2 +
sin2

(√
Kρ
)

K
(dϕ)2.

Координаты стереографической проекции. Стереографическая проекция — это взаимно одно-
значное отображение плоскости z = 0 на сферу (4.11) с выколотым «северным полюсом», при
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котором каждая точка плоскости, соответствующая ей точка сферы и северный полюс лежат
на одной прямой. Соответствующая параметризация выглядит следующим образом:

x(u, v) =
1√
K

2u

1 + u2 + v2
, y(u, v) =

1√
K

2v

1 + u2 + v2
, z(u, v) =

1√
K

u2 + v2 − 1

1 + u2 + v2
,

где (u, v) — это координаты
√
Kx,
√
Ky в плосости z = 0.

Первая квадратичная форма в этих координатах такова:

I =
4

K

(du)2 + (dv)2

(1 + u2 + v2)2
.

Эта метрика обладает важным свойством — она конформно евклидова, то есть отличается от
метрики евклидовой плоскости (du)2 + (dv)2 умножением на функцию. Это означает, что углы
пересечения кривых в этой метрике такие же, как в евклидовой. Кроме того, в координатах
стерегорафической проекции просто описываются линии постоянной геодезической кривизны.

Предложение 4.7. Линия постоянной кривизны на сфере в координатах стереографической
проекции задается уравнением вида

a(u2 + v2) + bu+ cv + d = 0,

то есть является окружностью или прямой.

Теперь пусть K < 0. Для простоты ограничимся рассмотрением случая K = −1.
Гильберт доказал, что гладкие поверхности постоянной отрицательной кривизны в евкли-

довом пространстве R3 не могут быть полными, что в контексте настоящего курса означает,
что любая такая поверхность обязательно имеет край. Однако существует способ построить не
имеющий края аналог сферы S2 с постоянной отрицательной кривизной, если отказаться от
евклидовости пространства R3.

А именно, введем в R3 псевдоевклидово скалярное произведение, соответствующее квадратич-
ной форме

(dx)2 + (dy)2 − (dz)2.

Будем обозначать это скалярное произведение угловыми скобками 〈 , 〉:

〈(x, y, z), (x′, y′, z′)〉 = xx′ + yy′ − zz′.

В этом пространстве рассмотрим «сферу мнимого радиуса», которую будем обозначать через L:

L = {(x, y, z) ∈ R3 : x2 + y2 − z2 = −1, z > 0}.

С точки зрения евклидовой геометрии L — это связная компонента двуполостного гиперболо-
ида. Однако мы снабдим его метрикой (первой квадратичной формой), используя 〈 , 〉 вместо
стандартного евклидова скалярного произведения. Будет иметь место следующее утверждение.

Предложение 4.8. Определенная выше метрика поверхности L положительно определена.

Поверхность L, снабженную указанной метрикой, будем называть плоскостью Лобачевского
(более правильно говорить, что это модель плоскости Лобачевского). Множество ее асимпто-
тических направлений, которые имеют вид (cosϕ : sinϕ : 1) называется ее абсолютом.

Таким образом, с точки зрения внутренней геометрии плоскости Лобачевского индефинит-
ность скалярного произведения 〈 , 〉 не играет никакой роли. Кроме того, все формулы для
кривизн, которые можно вывести, не используя положительную определенность скалярного
произведения в R3, остаются верными. В частности, для кривых, вектор скорости которых
всюду имеет положительный скалярный квадрат (а таковы все гладкие кривые на L), можно
в каждой точке определить вектор кривизны (см. формулу (2.17)).
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Предложение 4.9. Для любой точки x ∈ L и любого касательного вектора v ∈ TxL век-
тор кривизны kv соответствующего нормального сечения не зависит от v и равен радиус-
вектору

−→
Ox точки x. Его скалярный квадрат равен 〈kv,kv〉 = −1. Геодезическая кривизна kg

кривой γ ⊂ L, проходящей через x в направлении v равна, следовательно,

kg =
√
〈k,k〉+ 1,

где k — вектор кривизны γ в точке x.

Предложение 4.6 имеет следующий аналог для L.

Предложение 4.10. Линии постоянной геодезической кривизны на плоскости Лобачевско-
го L — это ее плоские сечения. Каждое таке сечение задается уравнением 〈m,x〉 = a, при-
чем m и a можно выбрать так, чтобы имел место один из следующих случаев:

(1) m =
−−→
Ox0, где x0 ∈ L, и a < −1. В этом случае 〈m,m〉 = −1. Геодезическая кривизна

такого сечения равна −a/
√
a2 − 1 > 1, сами сечения представляют собой замкнутые

линии (с точки зрения евклидовой геометрии это эллипсы).
(2) 〈m,m〉 = 1, a > 0. Геодезическая кривизна такого сечения равна a/

√
a2 + 1 < 1, а сами

сечения гомеоморфны R (с точки зрения евклидовой геометрии это ветви гипербол).
В частности, при a = 0 получаются геодезические.

(3) 〈m,m〉 = 0, 〈m,
−→
Ox〉 < 0 ∀x ∈ L, a = −1. Геодезическая кривизна такого сечения

равна 1, а сами сечения гомеоморфны R (с точки зрения евклидовой геометрии это
параболы).

Отметим отдельно случай (3). Вектор кривизны такого сечения ненулевой и постоянный (это
вектор асимптотического направления параболы), но имеет нулевой скалярный квадрат. Эти
сечения называются орициклами.

Определение второй фундаментальной формы для L требует небольшой модификации по
сравнению с евклидовым случаем. А именно, нужно ослабить требование на выбор вектора
нормали n к поверхности, так как в этом случае во в любой точке x ∈ L любой ненулевой
вектор, ортогональный TxL имеет отрицательный скалярный квадрат. Выберем в каждой точ-
ке x ∈ L вектор n, ортогональный TxL, так, чтобы он непрерывно (и тогда гладко) зависел от
точки x, а скалярный квадрат 〈n,n〉 был постоянен (удобно потребовать 〈n,n〉 = −1, но это
необязательно).

Вторую квадратичную форму II для L определим так, чтобы для регулярной параметриза-
ции r(u1, u2) ее коэффициенты были равны

bij = (ru1u2 ,n).

Тогда деривационные формулы Вайнгартена (3.11) сохранятся в неизменном виде, а дериваци-
онные формулы Гаусса (3.19) модифицируются следующим образом:

ruiuj = Γ1
ijru1 + Γ2

ijru2 + bij
n

〈n,n〉
, i, j = 1, 2.

Гауссову кривизну естественно определить как

K =
1

〈n,n〉
detB

detG
,

где B и G — матрицы II и I, соответственно, и тогда формула (3.33) для выражения гауссовой
кривизны через I будет по-прежнему верна. В случае L, как и в случае сферы единичного
радиуса в евклидовом пространстве, оператор Вайнгартена получается скалярным, а именно,
он является оператором умножения на ±

√
−〈n,n〉, откуда K = −1.

Теперь мы перечислим наиболее часто используемые системы координат на L, в которых
метрика диагонализуется. Для всех этих систем координатные линии имеют постоянную гео-
дезическую кривизну.
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Система координат Лобачевского. Это прямое обобщение сферических координат на S2, кото-
рое является примером полугеодезической системы координат из утверждения теоремы 4.10.
Параметризация L задается следующим образом:

x(η, ζ) = sh η, y(η, ζ) = ch η · sh ζ, z(η, ζ) = ch η · ch ζ, (η, ζ) ∈ R2.

Первая квадратичная форма в этих координатах такова:

I = (dη)2 + ch2 η (dζ)2.

Обобщенная полярная система координат. Параметризует плоскость Лобачевского без «север-
ного полюса» (0, 0, 1). Координата ρ принимает положительные значения, координата ϕ рас-
сматривается с точностью до добавления 2πn, n ∈ N. Параметризация такова:

x(ρ, ϕ) = sh ρ · cosϕ, y(ρ, ϕ) = sh ρ · sinϕ, z(ρ, ϕ) = ch ρ.

Первая квадратичная форма выражается через ρ, ϕ следующим образом:

I = (dρ)2 + sh2 ρ (dϕ)2.

Система координат Пуанкаре. Получается с помощью стереографической проекции, центр
которой располагается в точке (0, 0,−1). При этом вся плоскость Лобачевского параметризуется
внутренностью единичного круга:

x(u, v) =
2u

1− u2 − v2
, y(u, v) =

2v

1− u2 − v2
, z(u, v) =

1 + u2 + v2

1− u2 − v2
, u2 + v2 < 1.

Точки окружности u2 + v2 = 1 отождествляются с точками абсолюта: (u, v) 7→ (u : v : 1).
В координатах Пуанкаре, как и в случае стереографической проекции сферы, метрика запи-

сывается конформно евклидовым образом:

(4.12) I = 4
(du)2 + (dv)2

(1− u2 − v2)2
,

а кривые постоянной геодезической кривизны представляют собой окружности и дуги окруж-
ностей и прямых. В частности, если kg > 1, то такая линия — целая окружность. Орицик-
лы kg = 1 представляются окружностями, касающимися абсолюта, из которых выколота одна
точка — точка касания с абсолютом. Геодезические представляются дугами окружностей, ор-
тогональных абсолюту, и диаметрами единичного круга.

Орициклическая система координат. В этой системе координатные линии представляют собой
два семейства, одно из которых состоит из орициклов, а другое — из геодезических. Парамет-
ризация такова:

x(s, t) =
s2 + t2 − 1

2t
, y(s, t) =

s

t
, z(s, t) =

s2 + t2 + 1

2t
, (s, t) ∈ R2, t > 0.

Абсолют представлен прямой t = 0 (к которой нужно добавить бесконечно удаленную точку):
(s, 0) 7→ (s2 − 1 : 2s : s2 + 1).

Метрика снова конформно евклидова:

(4.13) I =
ds2 + dt2

t2
,

а кривые постоянной геодезической кривизны снова являются окружностями и прямыми либо
их частями. В частности, геодезические — это открытые полуокружности с центром на абсолюте
и вертикальные лучи s = const, а орициклы — окружности, касающиеся абсолюта с выколотой
точкой касания, а также горизонтальные прямые t = const.

Модели плоскости Лобачевского в единичном круге с метрикой (4.12) и в полуплоскости с
метрикой (4.13) называются моделями Пуанкаре.



77

§4.7. Параллельный перенос. Ковариантное дифференцирование. Пусть q : I →M —
гладко параметризованная кривая на поверхности M ⊂ R3 (или более общо, гладкий путь,
т.е. произвольное гладкое отображение некоторого промежутка I ⊂ R вM). Мы будем считать,
что он задан в локальных координатах на поверхностиM в виде u1 = u1(t), u2 = u2(t). Пусть для
каждого t ∈ I в касательной плоскости Tq(t)M выбран вектор w(t) так, что он гладко зависит
от t. В этом случае мы будем говорить, что дано векторное поле вдоль пути q. Поскольку
касательные плоскости в разных точках поверхности могут быть различными, производная
ẇ(t) этого вектора, вообще говоря, не является вектором в Tq(t)M . Используя деривационные
формулы Гаусса, разложим его на параллельную и нормальную составляющую по отношению
к этой плоскости:

(4.14) ẇ =
d

dt
(W irui) = Ẇ irui +W iu̇jruiuj = (Ẇ i + ΓijkW

ju̇k)rui + bjkW
ju̇kn.

(В этой формуле мы, как обычно, опустили указание аргументов для входящих в нее функций:
W i и ui — это функции от t, а rui , ruiuj и n — функции от точки кривой q(t).)

Из формулы (4.14) мы видим следующее.

Предложение 4.11. (i) Нормальная составляющая вектора ẇ по отношению к поверхности
зависит только от значения w, вектора скорости пути q и второй квадратичной формы в
соответствующей точке.

(ii) Касательная составляющая вектора ẇ вычисляется через координаты векторов w, ẇ
и q̇ в базисе ru1 , ru2 и первую квадратичную форму.

Для каждой точки x поверхности M и вектора v ∈ R3 обозначим через px(v) ортогональную
проекцию вектора v на касательную плоскость TxM .

Определение 4.6. В обозначениях выше ковариантной производной векторного поля w вдоль
пути q = q(t) называется векторное поле вдоль этого пути, обозначаемое через Dw/dt и зада-
ваемое формулой

Dw

dt
= px(ẇ).

Из (4.14) вытекает следующая формула для ковариантной производной вдоль пути:

Dw

dt
= (Ẇ i + ΓijkW

ju̇k)rui .

Из этой формулы (а также из определения) сразу видны следующие свойства ковариантной
производной вдоль пути.

Предложение 4.12. Ковариантное дифференцирование вдоль фиксированного пути линейно:

D(w1 + w2)

dt
=
Dw1

dt
+
Dw2

dt
,

D(λw)

dt
= λ

Dw

dt
,

где λ ∈ R — константа, и подчиняется правилу Ньютона–Лейбница при умножении на функ-
цию f(t):

(4.15)
D(fw)

dt
= f

Dw

dt
+ ḟw.

Для кривых на поверхности имеет место аналог формул Френе. Пусть на поверхности M
дана кривая с натуральной параметризацией q(s). Обозначим через v ее вектор скорости, v =
q̇, через n — вектор нормали к поверхности, а через ng — «геодезический» вектор нормали
к кривой, определяемый следующими условиями: |ng| = 1, ng(s) ∈ Tq(s)M , ng ⊥ v. Этими
условиями вектор ng определяется с точностью до знака: ng = ±[v,n], который мы должны
взять согласованным образом вдоль всей кривой.
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Предложение 4.13. В указанных предположениях и при подходящем выборе знака геодези-
ческой кривизны имеют место равенства

(4.16)
Dv

ds
= kgng,

Dng

ds
= −kgv.

Доказательство. Поскольку параметризация кривой натуральна, вектор ускорения dv/ds ра-
вен вектору кривизны, а его проекция Dv/ds на касательную плоскость — вектору геодезиче-
ской кривизны. Отсюда следует первое равенство в (4.16). Для доказательства второго доста-
точно заметить, что матрица A в уравнении

d

ds

(
v ng n

)
=
(
v ng n

)
A

должна быть кососимметричной, поскольку указанные три вектора при всех s образуют орто-
нормированный базис. �

Задача 4.4. В предыдущем доказательстве мы ввели кососимметричную матрицу A, в которой
нам известен один верхнетреугольный элемент, равный ±kg. Выразите два остальных через
значения второй квадратичной формы поверхности на векторах v и ng.

Задача 4.5. Докажите следующую теорему:

Теорема 4.11. Кривая на поверхности однозначно восстанавливается по начальной точке,
начальному направлению и функции, выражающей ее геодезическую кривизну через натураль-
ный параметр.

Определение 4.7. Говорят, что векторное полеw вдоль пути q = q(t) ковариантно постоянно
вдоль пути q, если его ковариантная производная равна нулю: Dw/dt = 0.

Отметим следующие два очевидных обстоятельства.

Предложение 4.14. Натурально параметризованная кривая на поверхности является гео-
дезической тогда и только тогда, когда ее вектор скорости ковариантно постоянен вдоль нее
самой.

Предложение 4.15. Пусть кривая γ лежит в пересечении поверхностей M1 и M2, причем
касательный плоскости этих поверхностей в каждой точке кривой γ совпадают. Тогда век-
торное поле, ковариантно постоянное вдоль γ по отношению к M1 является таковым и по
отношению к M2.

Теорема 4.12. Для любого гладкого пути q : I →M на поверхностиM , любого t0 ∈ I и любого
касательного вектора w0 ∈ Tq(t0) существует ровно одно поле w(t), ковариантно постоянное
вдоль этого пути и такое, что w(t0) = w0.

Доказательство. Утверждение теоремы следует из того, что условие ковариантной постоянно-
сти поля вдоль пути равносильно следующему линейному обыкновенному дифференциальному
уравнению на координаты W 1,W 2 вектора w в базисе ru1 , ru2 :

(4.17) Ẇ i(t) = −Γijk
(
u1(t), u2(t)

)
W j(t)u̇k(t).

Подчеркнем, что линейность этого уравнения влечет возможность продолжить решение при
всех t. �

Замечание 4.1. Рассуждение выше приведено, формально говоря, только для случая, когда
путь q не покидает пределов одного параметризованного куска поверхности. Но утверждение
теоремы 4.12 верно, конечно же, без этого предположения. Для доказательства можно восполь-
зоваться тем, что любой конечный отрезок пути покрывается конечным числом параметризо-
ванных кусков поверхности, а можно обойтись вообще без локальных координат и заметить,
что уравнение (4.17) можно переписать так (см. (4.14)):

ẇ = B(w, q̇),
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где B — билинейная симметрическая форма, соответствующая второй квадратичной форме
поверхности: B(v1,v1) = II(v1). Однако это своего рода обман, так как для установления зави-
симости коэффициентов линейной функции B( · , q̇) от t все равно придется привлекать локаль-
ные координаты. К тому же придется как-то продолжить эту функцию на все векторы, а не
только на касательные. А потом еще доказать, что вектор w в силу этого уравнения остается
касательным.

Построение векторного поля w, ковариантно постоянного вдоль данного пути q, по началь-
ному значению w(t0) = w0 посредством решения уравнения(4.17) называется параллельным
перенесением вектора w0 вдоль пути q. Про значения этого поля в других точках пути q го-
ворят, что они получены из w0 параллельным переносом вдоль q. Уравнение (4.17) называется
уравнением параллельного переноса.

Из определения параллельного переноса и его уравнения следует, что это линейная операция,
а именно, имеет место следующее утверждение.

Предложение 4.16. Если поля w1, w2 ковариантно постоянны вдоль пути q, то это верно
для произвольной их линейной комбинации λ1w1 + λ2w2.

Таким образом, для любых двух точек (t0, q(t0)), (t1, q(t1)) фиксированного пути на поверх-
ности определен линейный оператор параллельного переноса, действующий из Tq(t0)M в Tq(t1)M
по правилу, сопоставляющему каждому вектору w0 ∈ Tq(t0)M вектор w1 ∈ Tq(t1)M таким обра-
зом, что эти два вектора включаются в векторное поле, ковариантно постоянное вдоль пути q.
Кроме линейности, оператор параллельного переноса обладает следующим важным свойством.

Теорема 4.13. Параллельный перенос сохраняет скалярное произведение. В частности, при
параллельном переносе сохраняются длины векторов и углы между ними.

Доказательство. Достаточно проверить, что при параллельном перенесении сохраняется дли-
на вектора. А это следует из того, что для векторного поля w, ковариантно постоянного вдоль
некоторого пути на поверхности, выполнено ẇ ⊥ w, так как по определению поля, ковариант-
но постоянного вдоль пути, вектор ẇ ортогонален всей касательной плоскости к поверхности
в соответствующей точке. �

До сих пор мы говорили о параллельном перенесении вдоль пути, то есть параметризован-
ной кривой. Однако, как показывает следующее утверждение, выбор параметризации кривой
не играет роли, и можно говорить о параллельном переносе вдоль кривой, не оговаривая пара-
меризацию.

Предложение 4.17. Пусть γ — простая дуга с концами x0 и x1, а q(t) и q̃(t̃) — две ее гладкие
параметризации. Тогда операторы параллельного переноса из Tx0 в Tx1 вдоль q и q̃ совпадают.

Доказательство. Предположим, что обе параметризации являются регулярными. В обе части
уравнения (4.17) линейно входит ровно одна производная по t. Поэтому при замене парамет-
ра t = t(t̃) обе части умножатся на одну и ту же функцию dt/dt̃, а значит решение старого
уравнения при подстановке t = t(t̃) перейдут в решения нового.

Разобраться со случаем, когда одна или обе данные параметризации не являются регуляр-
ными, оставляем читателю (заметим, что утверждение верно для любых кусочно гладких кри-
вых). �

Пусть w — векторное поле, определенное на всей поверхности M (не только вдоль некоторой
кривой), x ∈ M — некоторая точка, v ∈ TxM — произвольный касательный вектор. Возьмем
произвольную гладко параметризованную кривую q(t) = r(u1(t), u2(t)) на M , выходящую из
точки x с вектором скорости v: q(0) = x, q̇(0) = v и рассмотрим ограничение поля w на эту
кривую. Для его ковариантной производной при будем иметь

Dw(q(t))

dt
= px

( d
dt
w(q(t))

)
= px

(∂w
∂ui

u̇i
)
.
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При t = 0 мы получим
Dw(q(t))

dt

∣∣∣
t=0

= px(dwx(v)),

т.е. вектор, не зависящий от конкретного выбора параметризованной кривой.

Определение 4.8. Вектор
∇vw(x) = px(dwx(v))

называется ковариантной производной векторного поля w по направлению вектора v в точ-
ке x.

Выведем формулу для ковариантной производной в локальных координатах. Как обычно,
введем обозначения для координат векторов: v = V irui , w = W irui . Будем иметь:

∇vw = px

(
V j ∂

∂uj
(W irui)

)
=
(∂W i

∂uj
V j + ΓijkW

jV k
)
rui .

Предложение 4.18. Для любых векторных полей w,w1,w2 и векторов v,v1,v2 в фиксиро-
ванной точке x поверхности, функции f на M а также чисел λ1, λ2 выполнено следующее

∇v(w1 + w2) = ∇vw1 +∇vw2,

∇v(fw) = (∇vf)w + f∇vw,

∇λ1v1+λ2v2w = λ1∇v1w + λ2∇v2w,

∇v(w1,w2) = (∇vw1,w2) + (w1,∇vw2),

где через ∇vf обозначена производная функции f по направлению вектора v: (∇vf)(x) =
dfx(v).

Доказательство. Первые три равенства проверяются непосредственно. Для доказательства по-
следнего нужно применить тождество (3.21):

∇v(w1,w2) = V i ∂

∂ui
(W j

1W
k
2 gjk) = V i

(∂W j
1

∂ui
W k

2 gjk +W j
1

∂W k
2

∂ui
gjk +W j

1W
k
2

∂gjk
∂ui

)
=

= V i
(∂W j

1

∂ui
W k

2 gjk +W j
1

∂W k
2

∂ui
gjk +W j

1W
k
2

(
Γpjigpk + Γpkigjp

))
=

= V i
(∂W j

1

∂ui
+W p

1 Γjpi

)
W k

2 gjk + V iW j
1

(∂W k
2

∂ui
+W p

2 Γkpi

)
gjk =

= (∇vw1,w2) + (w1,∇vw2). �

§4.8. Интеграл геодезической кривизны по замкнутому контуру. Угловой дефект.
Эйлерова характеристика. Так же, как и для кривых на плоскости, геодезической кривизне
линии на поверхности имеет смысл приписывать знак, если кривая коориентирована в смысле
следующего определения.

Определение 4.9. Коориентацией кусочно гладкой кривой γ на поверхности M ⊂ R3 называ-
ется согласованный выбор в каждой ее точке гладкости x единичного вектора ng, касательного
к поверхности ортогонального кривой γ в этой точке. Согласованность означает, что при вве-
дении на γ параметризации, которая регулярна на каждой гладкой дуге, вектор нормали к
поверхности, определенный из равенства

(4.18) n =
[ng,v]

|[ng,v]|
,

где v — вектор скорости кривой, непрерывно зависит от точки кривой там, где кривая гладкая,
и непрерывно продолжается на те точки, где вектор скорости v меняется скачком. Если кривая
замкнута, то векторы нормали n в начальный и конечный момент должны быть одинаковы.
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Заметим, что кривая может иметь коориентацию и на поверхности, на которой нельзя всюду
определить единичный вектор нормали n так, чтобы он непрерывно зависел от точки поверх-
ности (такие поверхности в R3 называются не(ко)ориентируемыми). Отметим также, что на
неориентируемой поверхности некоторые замкнутые кривые нельзя коориентировать. Если же
это можно сделать, то ровно двумя способами.

Для коориентированной кривой мы определяем знак геодезической кривизны kg так, чтобы
выполнялось равенство

kg = kgng,

где kg — вектор геодезической кривизны.
Мы видели в параграфе 2.6, что кривизна плоской кривой равна скорости вращения век-

тора скорости при условии, что длина последнего равна единице. Аналогичное утверждение
верно для геодезической кривизны кривой на произвольной поверхности, только теперь вектор
скорости вращается не в неподвижной плоскости, а в касательной плоскости к поверхности,
которая движется вместе с точкой. В качестве “неподвижного” репера в этой плоскости выби-
рается репер, векторы которого получены параллельным перенесением вдоль данной кривой.
Чтобы придать этому точный смысл, дадим несколько пояснений.

Напомним, что на ориентированной плоскости для двух ненулевых векторов v1,v2 имеется
понятие угла от вектора v1 до вектора v2, косинус и синус которого равны соответственно
(v1,v2)/(|v1| · |v2|) и Sor(v1,v2)/(|v1| · |v2|), где Sor обозначает ориентированную площадь. Угол
от вектора до вектора определен с точностью до добавления 2πm, где m ∈ Z.

Если на поверхности M дана гладкая коориентированная кривая с регулярной параметри-
зацией q(t) и векторные поля v1,v2 вдоль нее, то при определении угла от v1(t) до v2(t) мы
используем ориентацию в Tq(t), для которой базис q̇(t),ng положительно ориентирован. Этот
угол не изменится, если заменить регулярную параметризацию на любую другую с тем же
нправлением, то есть с условием dτ/dt > 0, где τ — новый параметр.
Предложение 4.19. Пусть q = q(s) — натуральная параметризация некоторой коориен-
тированной гладкой кривой γ на поверхности M , w(s) — ковариантно постоянное векторное
поле вдоль этой кривой, а α(s) — угол от w(s) до вектора скорости v(s) = q′(s) (выбранный
непрерывно зависящим от s). Тогда во всех точках данной кривой выполнено kg = α′.
Доказательство. Положим w1 = w и обозначим через w2(s) ∈ Tq(s)M вектор, полученный
из w1(s) поворотом на угол π/2 в положительном направлении. Так как параллельный пере-
нос сохраняет углы между векторами и их длины, векторное поле w2(s) также ковариантно
постоянно вдоль γ.

По условию мы имеем во всех точках кривой выполнено
v = cosα ·w1 + sinα ·w2, ng = − sinα ·w1 + cosα ·w2.

Применяя (4.15) и учитывая, что Dw1/ds = Dw2/ds = 0, получаем
Dv

ds
= (cosα)′w1 + (sinα)′w2 = α′ng.

Вектор Dv/ds — это и есть вектор геодезической кривизны, то есть Dv/ds = kgng. �

Далее мы будем рассматривать компактные поверхности с кусочно гладким краем. Край
всегда будем коориентировать так, что в точках его гладкости вектор нормали ng направлен
внутрь поверхности.

Пусть γ — компонента связности края ∂M . В каждой точке p ∈ γ, где кривая γ не глад-
кая, определим внешний угол по аналогии с плоским случаем (см. §2.13). А именно, выберем
параметризацию q(t) кривой γ в окрестности точки p так, чтобы при t > 0 и t < 0 она была
регулярной, а точка p соответствовала t = 0. Тогда внешний угол кривой γ в точке p — это
угол от вектора v− до v+, взятый в интервале (−π, π), где

v− = lim
t→0−0

q̇(t), v+ = lim
t→0+0

q̇(t).



82

Пусть γ состоит из гладких дуг γ1, . . . , γk, которые не пересекаются друг с другом, кроме
как по концевым точкам, а θ1, . . . , θk — набор внешних углов кривой γ в концах этих дуг. По
аналогии с плоским случаем введем следующее определение.

Определение 4.10. В описанной выше ситуации интегралом геодезической кривизны по γ,
обозначаемым через

∫
γ
kg ds, называется величина∑

i

∫
γi

kg ds+
∑
i

θi.

ЕслиM — простой кусок поверхности, локально изометричной плоскости, то
∫
∂M

kg ds всегда
равен 2π (это несложное обобщение теоремы 2.17). В случае произвольного куска поверхности
это может быть уже неверно.

Определение 4.11. Угловым дефектом простого куска поверхности M , обозначаемым нами
через Λ(M), будем называть разность

Λ(M) = 2π −
∫
∂M

kg ds.

Предложение 4.20. Пусть q : [t0, t1] → γ — параметризация края простого куска поверх-
ности M , и p = q(t0) = q(t1) — начальная и конечная точка для этой параметризации.
Пусть w = w(t) — векторное поле вдоль q, ковариантно постоянное вдоль этого пути. Тогда
угол от w(t0) до w(t1) равен угловому дефекту Λ(M).

Доказательство. Без ограничения общности можно считать, что p — точка гладкости ∂M , а
параметризация q натуральна. Из предложения 4.19 и определений внешнего угла и углового
дефекта следует, что при обходе вдоль пути q вектор скорости q̇(t) поворачивается относи-
тельно w(t) суммарно на угол

∫
∂M

kg ds. Но после всего обхода он возвращается в исходное
положение, откуда и следует требуемое утверждение. �

Пусть M — произвольная компактная поверхность. Под разрезанием M на простые куски
будем понимать представление M в виде M =

⋃k
i=1 Mi, где Mi — простые куски поверхности,

причем для всех 1 6 i < j 6 k выполнено Mi ∩Mj ⊂ ∂Mi ∩ ∂Mj. Примем без доказательства
следующее интуитивно очевидное утверждение.

Предложение 4.21. Любые два разрезания компактной поверхности на простые куски мож-
но получить с помощью последовательности операций следующих двух взаимно обратных
видов:

(1) замена одного из кусков Mi на два, полученных из Mi разрезанием на два куска;
(2) замена двух кусков на их объединение, если оно является простым куском.

Пусть M =
⋃n2

i=1Mi — разрезание компактной поверхности на n2 простых кусков. Обозна-
чим через V множество всех точек, где граница хотя бы одного из этих кусков негладкая, к
которому произвольным образом добавлено конечное число точек из

⋃n2

i=1 ∂Mi так, чтобы мно-
жество

⋃n2

i=1 ∂Mi \V состояло из открытых (гладких) дуг. Замыкание каждой из этих дуг будем
называть ребром нашего разрезания, а каждую точку из V — его вершиной. Сами куски Mi

называются гранями данного разрезания. Обозначим число вершин через n0, а число ребер
через n1.

Определение 4.12. В обозначениях выше число n0 − n1 + n2 называется Эйлеровой характе-
ристикой поверхности M и обозначается через χ(M).

Задача 4.6. Выведите из предложения 4.21, что это определение корректно, то есть не зависит
от выбора разрезания поверхности.
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Теорема 4.14. Пусть M — компактная поверхность и M =
⋃n2

i=1Mi — ее разрезание на
простые куски. Тогда имеет место равенство

(4.19)
∑
i

Λ(Mi) +

∫
∂M

kg ds = 2πχ(M).

Доказательство. Обозначим, как и выше, число вершин и ребер данного разрезания через n0

и n1 соответственно. Левая часть (4.19) содержит, после раскрытия определений, слагаемые
трех типов:

(1) слагаемые 2π в количестве n2 штук, по одному на каждую грань («вклад граней»);
(2) интегралы геодезической кривизны по ребрам («вклад ребер»);
(3) внешние углы кусков Mi со знаком минус и всей поверхности со знаком плюс («вклад

вершин»).
Вычислим вклад ребер. Пусть e — некоторое ребро нашего разбиения. Возможны два случая:

(1) к e с двух сторон примыкают куски нашего разрезания; (2) e ⊂ ∂M . В обоих случаях инте-
грал геодезической кривизны дуги e входит в левую часть (4.19) дважды с противоположными
знаками, и следовательно, сокращается, то есть суммарный вклад ребер нулевой.

Рассмотрим вклад вершин в левую часть (4.19). Валентностью вершины будем называть
число исходящих из нее ребер (если концы некоторого ребра совпадают, то оно считается с
кратностью два). Обозначим через n0j число вершин кратности j. Будем иметь

(4.20)
∑
j

n0j = n0,
∑
j

jn0j = 2n1.

Пусть p — некоторая вершина валентности j. Пусть сначала она внутренняя, и θ1, . . . , θj —
внешние углы кусков, к ней примыкающие. Мы имеем

∑j
i=1(π − θi) = 2π. Поэтому вклад этой

вершины равен

−
j∑
i=1

θi = (2− j)π.

Пусть теперь p ∈ ∂M , а внешние углы примыкающих кусков равны θ1, . . . , θj−1 (в этом случае
их на один меньше). Внешний угол края ∂M в точке p тогда равен π −

∑j−1
i=1 (π − θi), и вклад

вершины в левую часть получается равным

−
j−1∑
i=1

θi + π −
j−1∑
i=1

(π − θi) = (2− j)π,

то есть такой же, как и для внутренней вершины. Используя (4.20) получаем, что суммарный
вклад всех вершин равен ∑

j

n0j(2− j)π = 2π(n0 − n1).

Добавляя сюда вклад граней 2πn2, получаем утверждение теоремы. �

Из теоремы 4.14 вытекает свойство аддитивности углового дефекта, состоящее в следующем.

Следствие 4.2. Пусть простой кусок поверхности M разрезан на простые куски M1, . . . ,Mk,
Тогда

Λ(M) =
k∑
i=1

Λ(Mi).

Определение 4.13. Пусть M — произвольная компактная поверхность. Угловым дефектом
Λ(M) поверхности M называется

Λ(M) =
k∑
i=1

Λ(Mi),
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где M =
⋃k
i=1Mi — произвольное разрезание M на простые куски.

Из теоремы 4.14 следует корректность этого определения, то есть независимость Λ(M) от
выбора разрезания. А именно, угловой дефект компактной поверхности M равен

Λ(M) = 2πχ(M)−
∫
∂M

kg ds.

§4.9. Теорема Гаусса–Бонне.

Теорема 4.15 (Гаусс–Бонне). ПустьM — компактная поверхность. Имеет место равенство∫
M

K dS +

∫
∂M

kg ds = 2πχ(M),

где dS обозначает элемент площади, а K — гауссову кривизну.

Доказательство. Согласно теореме 4.14 все, что нам нужно доказать, это — равенство

Λ(M) =

∫
M

K dS.

Поскольку в обеих частях стоят аддитивные величины, достаточно доказать его в случае, ко-
гда M — простой кусок поверхности. Каждый простой кусок поверхности можно разрезать на
четырехугольные куски, то есть такие, которые можно регулярно параметризовать точками
квадрата [0, 1] × [0, 1], так что можно ограничиться рассмотрением только таких кусков. Это
сделано в лемме 4.6 ниже. �

Лемма 4.5 (Формула Бибербаха). Имеет место тождество

(4.21)
∂

∂u1

(√g
g22

Γ1
22

)
− ∂

∂u2

(√g
g22

Γ1
21

)
= K
√
g.

Доказательство. Сначала вычислим частные производные функции g:
∂g

∂u1
=
∂(g11g22 − g12g12)

∂u1
= g22

∂g11

∂u1
+ g11

∂g22

∂u1
− 2g12

∂g12

∂u1
=

= 2g22Γ111 + 2g11Γ221 − 2g12(Γ121 + Γ211)

= 2g22(g11Γ1
11 + g12Γ2

11) + 2g11(g12Γ1
21 + g22Γ2

21)− 2g12(g11Γ1
21 + g12Γ2

21 + g12Γ1
11 + g22Γ2

11) =

= 2g(Γ1
11 + Γ2

21),

аналогично,
∂g

∂u2
= 2g(Γ1

12 + Γ2
22).

Напомним также соотношения из §3.15:

T12 = −T21 = gK,

где

Tij = gipT
p
j , T ij =

∂Γij2
∂u1

−
∂Γij1
∂u2

+ Γip1Γpj2 − Γip2Γpj1.

Используя эти равенства, преобразуем левую часть (4.21):

∂

∂u1

(√g
g22

Γ1
22

)
− ∂

∂u2

(√g
g22

Γ1
21

)
=

Γ1
22 ∂
√
g/∂u1 − Γ1

21 ∂
√
g/∂u2

g22

−

−
√
g(Γ1

22 ∂g22/∂u
1 − Γ1

21 ∂g22/∂u
2)

(g22)2
+
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+

√
g(∂Γ1

22/∂u
1 − ∂Γ1

21/∂u
2)

g22

=

=

√
g

g22

(
Γ1

22(Γ1
11 + Γ2

21)− Γ1
21(Γ1

12 + Γ2
22)−

− 2Γ1
22Γ221 − 2Γ1

21Γ222

g22

+
∂Γ1

22

∂u1
− ∂Γ1

21

∂u2

)
=

=

√
g

g22

(
Γ1

22Γ1
11 + Γ1

22Γ2
21 − Γ1

21Γ1
12 − Γ1

21Γ2
22 +

∂Γ1
22

∂u1
− ∂Γ1

21

∂u2
−

− 2Γ1
22(g12Γ1

21 + g22Γ2
21)− 2Γ1

21(g12Γ1
22 + g22Γ2

22)

g22

)
=

=

√
g

g22

(
Γ1

22Γ1
11 − Γ1

22Γ2
21 − Γ1

21Γ1
12 + Γ1

21Γ2
22 +

∂Γ1
22

∂u1
− ∂Γ1

21

∂u2

)
=

=

√
g

g22

(∂Γ1
22

∂u1
− ∂Γ1

21

∂u2
+ Γ1

s1Γs22 − Γ1
s2Γs21

)
=

√
g

g22

T 1
2 =

=

√
g

g22

g1iTi2 =

√
g

g22

g11T12 =

√
g

g22

g22

g
gK =

√
gK. �

Лемма 4.6. Пусть M — простой кусок поверхности с регулярной параметризацией [0, 1] ×
[0, 1]→M . Тогда угловой дефект Λ(M) равен интегралу гауссовой кривизны по M :

(4.22) Λ(M) =

∫
M

K dS.

Доказательство. В формулах ниже интегралы по ∂M берутся в направлении «против часовой
стрелки», то есть по возрастанию u1 при u2 = 0, возрастанию u2 при u1 = 1, убыванию u1

при u2 = 1 и убыванию u2 при u1 = 0.
Сначала вычислим правую часть (4.22) с помощью формулы Бибербаха:

(4.23)
∫
M

K dS =

1∫
0

du1

1∫
0

du2K
√
g =

1∫
0

du1

1∫
0

du2

(
∂

∂u1

(√g
g22

Γ1
22

)
− ∂

∂u2

(√g
g22

Γ1
21

))
=

=

1∫
0

√
g

g22

Γ1
22 du

2

∣∣∣∣u1=1

u1=0

−
1∫

0

√
g

g22

Γ1
21 du

1

∣∣∣∣u2=1

u2=0

=

∫
∂M

√
g

g22

Γ1
2i du

i.

Для каждой точки поверхности M обозначим через e1, e2 базисные векторы ∂/∂u1, ∂/∂u2,
соответственно, через w2,w1 — базис, полученный из e2, e1 (именно в таком порядке) ортого-
нализацией Грама–Шмидта:

(4.24) w2 =
e2√
g22

, w1 =

√
g22√
g

(
e1 −

g12

g22

e2

)
=

√
g

√
g22

g1iei,

и через θ ориентированный угол от w1 до e1:

e1 =
√
g11

(
cos θ ·w1 + sin θ ·w2

)
.

Через n будем обозначать вектор внутренней нормали к ∂M , а через v — положительно
ориентированный единичный направляющий вектор (всюду, кроме углов). Тогда всюду, кроме
углов, геодезическую кривизну края ∂M можно считать по формуле kg = (∇vv,n).

Наконец, через α00, α10, α11, α01 будем обозначать внешние углы ∂M в точках (u1, u2) =
(0, 0), (1, 0), (1, 1), и (0, 1), соответственно.
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Будем иметь:

(4.25) α00 =
π

2
+ θ(0, 0), α10 =

π

2
− θ(1, 0), α11 =

π

2
+ θ(1, 1), α01 =

π

2
− θ(0, 1).

На стороне I1 (u2 = 0) имеем:

v = e1/
√
g11, n = − sin θ ·w1 + cos θ ·w2,

откуда∫
I1

kg ds =

∫
I1

(∇vv,n) ds =

1∫
0

(∇e1v,n) du1 =

=

1∫
0

(
∇e1(cos θ ·w1 + sin θ ·w2), (− sin θ ·w1 + cos θ ·w2)

)
du1 =

=

1∫
0

(
−θu1 sin θ ·w1 + cos θ∇e1w1 + θu1 cos θw2 + sin θ∇e1w2,

(− sin θ ·w1 + cos θ ·w2)
)
du1 =

=

1∫
0

(
θu1 + cos2 θ (∇e1w1,w2)− sin2 θ (∇e1w2,w1)

)
du1 =

= θ(1, 0)− θ(0, 0)−
1∫

0

(∇e1w2,w1) du1 = π − α00 − α10 −
1∫

0

(∇e1w2,w1) du1.

Аналогичным образом, на стороне I3 (u2 = 1) имеем:

v = −e1/
√
g11, n = sin θ ·w1 − cos θ ·w2,

∫
I3

kg ds = π − α11 − α01 −
0∫

1

(∇e1w2,w1) du1.

На стороне I2 (u1 = 1) выполнено v = w2, n = −w1,∫
I2

kg ds =

∫
I2

(∇vv,n) ds =

1∫
0

(∇e2v,n) du2 = −
1∫

0

(∇e2w2,w1) du2.

Подобным образом, для стороны I4 (u1 = 0) получаем∫
I4

kg ds = −
0∫

1

(∇e2w2,w1) du2.

Таким образом, угловой дефект поверхности M равен

Λ(M) = 2π −
∫
∂M

kg ds = 2π −
4∑
i=1

∫
Ii

kg ds− α00 − α01 − α10 − α11 =

∫
∂M

(∇eiw2,w1) dui.
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Вычислим коэффициенты подынтегрального выражения, воспользовавшись (4.24):

(∇eiw2,w1) =
(
∇ei

e2√
g22

,w1

)
=
( 1
√
g22

)
ui

(e2,w1) +
1
√
g22

(∇eie2,w1) =

=
1
√
g22

(∇eie2,w1) =

√
g

g22

(Γj2iej, g
1kek) =

√
g

g22

Γj2ig
1kgjk =

√
g

g22

Γ1
2i.

Применяя (4.23), получаем, что угловой дефект равен

Λ(M) =

∫
∂M

√
g

g22

Γ1
2i du

i =

∫
M

K dS,

что и требовалось доказать. �

Задача 4.7. Пусть w1, w2 — произвольные векторные поля на произвольном простом куске
поверхностиM , образующие в каждой точке ортонормированный положительно ориентирован-
ный базис касательной плоскости. Докажите, что угловой дефект кускаM по-прежнему можно
вычислять по формуле

Λ(M) =

∫
∂M

(∇eiw2,w1) dui.

Задача 4.8. Вычислить интеграл гауссовой кривизны по гиперболическому параболоиду.
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