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Лекция 1

1. ВВЕДЕНИЕ

Об учебном плане.

Лекции 36 ч.

Семинары 18 ч.

Самостоятельная работа 36 ч.

Всего 90 ч.

О содержании курса.

(1) Элементарные представления о координатном методе.

(2) Комплексные числа.

(3) Алгебра матриц. Теория систем линейных уравнений.

(4) Теория линейных пространств.

(5) Аффинное пространство и аффинная геометрия в размерностях 2 и 3.

(6) Евклидово пространство и евклидова геометрия в размерностях 2 и 3.

(7) Теория кривых и поверхностей 2 порядка.

(8) Теория определителей.

Обозначения. N — множество натуральных чисел.

Z — множество целых чисел.

Q — множество рациональных чисел.

R — множество вещественных чисел.

∀x — квантор всеобщности («для любых x»).

∃x — квантор существования («существует такой x, что. . . »).

∃!x — квантор единственности («существует единственный x, такой что. . . »).

=⇒ — импликация («следовательно»).

⇐⇒ — эквивалентность.

n! = 1 · 2 · 3 · . . . (n− 1) · n — факториал натурального числа n.

Двойной факториал:

(2n+ 1)!! = 1 · 3 · 5 · . . . (2n− 1) · (2n+ 1),

(2n)!! = 2 · 4 · 3 · . . . (2n− 2) · (2n).

Суммы и произведения:
n

∑

k=0

ak = a1 + a2 + · · · + an =
n

∑

i=0

ai,

n
∏

k=0

ak = a1 · a2 · . . . · an.
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2. О ПОСТРОЕНИИ ГЕОМЕТРИИ

Система аксиом Евклида—Гильберта.

Основные понятия: точка, прямая, [плоскость].

Отношения между понятиями:

(1) инцидентность («точка лежит на прямой», «прямая проходит через точку» и т. п.;

8 аксиом);

(2) порядок (понятие «лежать между»; 4 аксиомы);

(3) конгруэнтность (движение, равенство; 5 аксиом);

(4) параллельность (1 аксиома);

(5) непрерывность (2 аксиомы).

Недостатки системы аксиом Гильберта.

(1) содержит большое число аксиом;

(2) трудно обобщается на многомерный случай (при попытке обобщения происходит

добавление новых исходных понятий и аксиом);

(3) нигде в математике не используется, кроме элементарной геометрии.

План действий.

(1) На основе наглядных представлений сформулировать алгебраические принципы

решения геометрических задач, пытаясь ограничиться возможно меньшим числом

исходных (неопределяемых) понятий и отношений между ними.

(2) Полученные принципы объявить аксиомами.

(3) На основе полученной системы аксиом построить геометрическую теорию, легко

допускающую обобщения.

3. СИСТЕМЫ КООРДИНАТ

Система координат — объект, позволяющий описывать геометрический объект алгебра-

ическими средствами.

3.1. Декартова прямоугольная система координат.

O — начало координат, i, j,k — единичные направляющие векторы координатных осей

(орты); другое обозначение e1,e2,e3.

x — абсцисса, y — ордината, z — аппликата.−→
OA — радиус-вектор точки A. Другое обозначение координат x1, x2, x3.

x

x y

y
z

O

O

A

A

ii j

j
k
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Расстояние между точками M1(x1) и M2(x2) на прямой:

M1M2 = |x2 − x1| =
√

(x2 − x1)2.

Расстояние между точками M1(x1, y1) и M2(x2, y2) на плоскости:

M1M2 =
√

(x2 − x1)2 + (y2 − y1)2.

x

y

O

M1

M2

x1

y1

x2

y2

В пространственном случае аналогично: для точек M1(x1, y1, z1) и M2(x2, y2, z2)

M1M2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

3.2. Декартова косоугольная система координат.

x

x

y

y z

O
O

A

A

e1
e1

e2

e2

e3

Углы между векторами e1, e2, e3 могут быть не прямыми, длины векторов могут быть

6= 1.
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3.3. Полярная система координат на плоскости.

x

y

O

A

r

ϕ

(r, ϕ) — полярные координаты точки A. Формулы перехода:

{

x = r cosϕ,

y = r sinϕ,



























r =
√

x2 + y2,

cosϕ =
x

√

x2 + y2
,

sinϕ =
y

√

x2 + y2
.

Диапазоны изменения значений координат:

0 6 r < +∞, 0 6 ϕ < 2π.

Удобно считать, что ϕ определено с точностью до добавления 2πn, n ∈ Z; тогда пишем

0 6 ϕ < 2π (mod 2π).

3.4. Цилиндрическая система координат в пространстве.

x

y

z

O

r

ϕ

h

(r, ϕ, h) — цилиндрические координаты точки A. Формулы перехода:















x = r cosϕ,

y = r sinϕ,

z = h,







































r =
√

x2 + y2,

cosϕ =
x

√

x2 + y2
,

sinϕ =
y

√

x2 + y2
,

h = z.
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3.5. Сферическая система координат в пространстве.

x

y

z

O

A

r
ϕ

θ

x

y

z

O

A

r

ϕ

ϑ

(r, θ, ϕ) — сферические координаты точки A. Формулы перехода:














x = r cosϕ sin θ,

y = r sinϕ sin θ,

z = r cos θ.

Диапазоны изменения значений координат:

0 6 r < +∞,

0 6 θ 6 π,

0 6 ϕ < 2π (mod 2π).

Географические координаты — вариант сферических.

(r, ϑ, ϕ) — географические координаты точки A. Формулы перехода:














x = r cosϕ cosϑ,

y = r sinϕ cosϑ,

z = r sinϑ.

Диапазоны изменения значений координат:

0 6 r < +∞, −π
2

6 ϑ 6
π

2
, 0 6 ϕ < 2π (mod 2π).

4. УРАВНЕНИЯ ЛИНИЙ И ПОВЕРХНОСТЕЙ

Уравнение линии на плоскости — уравнение вида

F (x, y) = 0,

каждое решение (x, y) которого представляет собой координаты некоторой точки линии,

причем для каждой точки линии найдется некоторое решение данного уравнения.

Уравнение поверхности в пространстве содержит 3 переменные:

G(x, y, z) = 0.

Вместо прямоугольных декартовых координат можно использовать любые другие.

Вместо уравнений можно рассматривать неравенства.
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Цилиндрическая поверхность с образующей, параллельной оси Oz, описывается урав-

нением вида

G(x, y) = 0.

Это же уравнение является одновременно уравнением направляющей.

B

x

y

z

A

Уравнение может описывать геометрический объект, не соответствующий интуитивному

представлению о линии (поверхности):

x− |x| − y + |y| = 0.

x

y

O

4.1. Уравнения прямых на плоскости.

Уравнение прямой — линейное уравнение:

Ax+By = C.

Уравнение можно умножить на любое ненулевое число.

1. Уравнение с угловым коэффициентом:

y = kx+ b.

k — угловой коэффициент прямой:

k = tgα.
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x

y

O

α
β

x

y

O a

b

2. Уравнение прямой «в отрезках»:

x

a
+
y

b
= 1.

4.2. Окружность. Окружность радиуса R с центром в начале координат:

x2 + y2 = R2.

Окружность радиуса R с центром в точке C(a, b):

(x− a)2 + (y − b)2 = R2.

x

y

O

C(a, b)

R

R

4.3. Парабола и гипербола.

y = ax2, y =
a

x
.
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xx

yy

O
O

4.4. Эллипс. Эллипс — это множество точек, сумма расстояний от каждой из которых

до двух фиксированных точек плоскости (фокусов) постоянна.

Фокусы F1(−c, 0), F2(c, 0), где c > 0.

Произвольная точка эллипса M(x, y).

Расстояния от M до фокусов:

F1M =
√

(x+ c)2 + y2, F2M =
√

(x− c)2 + y2.

Тогда уравнение эллипса имеет вид
√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a.

После уничтожения радикалов получаем

x2

a2
+

y2

a2 − c2
= 1,

или, введя обозначение b2 = a2 − c2,

x2

a2
+
y2

b2
= 1. (1)

O x

y

F1 F2

M

a

b

a, b — полуоси эллипса.

F1M , F2M — фокальные радиусы.

ε =
c

a
— эксцентриситет.
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Мы получили, что координаты каждой точки эллипса удовлетворяют уравнению (1).

Проверим, что любое решение уравнения (1) представляет точку эллипса.

Пусть (x, y) — решение (1); ясно, что |x| 6 a, |y| 6 b. Тогда

F1M =
√

(x+ c)2 + y2 =

√

(x+ c)2 + b2
(

1 − x2

a2

)

=

=

√

x2 + 2xc+ c2 + b2 − b2

a2
x2 =

√
x2ε2 + 2xεa+ a2 =

=

√

(xε+ a)2 = |xε+ a| = a+ xε.

Аналогично получаем

F2M = a− xε.

Поэтому

F1M + F2M = 2a,

т.е. точка с координатами (x, y) лежит на эллипсе.

5. ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ

5.1. Параметрические уравнения линий. Линия на плоскости может быть задана как

множество точек, координаты которых вычисляются по формулам

x = ϕ(t), y = ψ(t), α 6 t 6 β.

Этот способ пригоден и для задания линий в пространстве:

x = ϕ(t), y = ψ(t), z = χ(t), α 6 t 6 β.

С точки зрения механики параметрические уравнения линии — это закон движения

материальной точки, параметр t — время.

Пример.

Параметрические уравнения окружности радиуса R с центром в начале координат:

x = R cos t, y = R sin t, 0 6 t < 2π (mod 2π).

Параметр t представляет собой угол между осью Ox и радиус-вектором точки окружно-

сти.

x

y
A

t

O

Пример.

Параметрические уравнения эллипса с полуосями a, b:

x = a cos t, y = b sin t, 0 6 t < 2π (mod 2π).

Здесь параметр t не является углом между осью Ox и радиус-вектором точки окружности!
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Пример.

Циклоида — это траектория точки обода катящегося по прямой колеса.

Радиус колеса R, параметр — угол θ поворота колеса.

Параметрические уравнения циклоиды

x = a(θ − sin θ), y = a(1 − cos θ).

O x

y

θ

θ

Пример.

Винтовая линия. Точка совершает два одновременных движения: равномерное враще-

ние с угловой скоростью ω в плоскости Oxy по окружности радиуса R и равномерное

поступательное движение вдоль оси Oz со скоростью c:

x = R cosωt, y = R sinωt, z = ct.

O

x

y

z

O
x y

z

Пример.

Коническая винтовая линия.

x = t cos t, y = t sin t, z = t.

5.2. Параметрическое задание поверхностей. Поверхности задаются:

(1) уравнениями вида F (x, y, z) = 0;

(2) параметрическими уравнениями вида

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), (u, v) ∈ D ⊂ R2;

параметры u, v — внутренние координаты поверхности;

(3) как графики функции двух переменных: z = f(x, y).

Пример.

Сфера радиуса R с центром в начале координат:

x2 + y2 + z2 = R2.
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Параметрическое представление:














x = R cosu sin v,

y = R sinu sin v,

z = R cos v,

{

0 6 u < 2π,

0 6 v 6 π.

x

y

z

Представить сферу как график функции невозможно, но это удается сделать отдельно

для нижней и верхней полусфер:

z = ±
√

R2 − x2 − y2.

6. ПЕРЕСЕЧЕНИЯ И ПРОЕКЦИИ

6.1. Пересечения поверхностей.

Линии (кривые) в пространстве можно задавать как пересечение двух поверхностей:
{

F (x, y, z) = 0,

G(x, y, z) = 0.

Пример.

Кривая Вивиани — пересечение цилиндра радиуса R и сферы радиуса 2R, центр которой

лежит на поверхности цилиндра.

O
x y

z
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Получим уравнения кривой Вивиани.

Уравнения сферы и цилиндра:

x2 + y2 + z2 = 4R2, (x−R)2 + y2 = R2 ⇐⇒ x2 + y2 = 2Rx.

Отсюда

z2 = 4R2 − 2Rx.

Положим

x = r cos t, y = r sin t.

Тогда

x2 + y2 = 2Rx ⇐⇒ r2 = 2Rr cos t ⇐⇒ r = 2R cos t.

Можно записать выражения для x и y:

x = r cos t = 2R cos2 t = R(1 + cos 2t),

y = r sin t = 2R sin t cos t = R sin 2t.

Параметр t изменяется в диапазоне

0 6 t 6 π.

Теперь можно найти выражение для z:

z2 = 4R2 − 2Rx = 4R2 sin2 t ⇐⇒ z = ±2R sin t.

Можно убрать ±, если разрешить параметру t изменяться в диапазоне

0 6 t < 2π.

Итак, окончательный результат:














x = R(1 + cos 2t),

y = R sin 2t,

z = 2R sin t,

0 6 t < 2π.

Пример.

Кривая получена как пересечение сферы и плоскости:

x2 + y2 + z2 = 1, x+ y + z = 1.

Найти параметрическое представление этой линии.

Подставим параметрическое представление сферы

x = cosu sin v, y = sin u sin v, z = cos v

в уравнение плоскости:

(cosu+ sin u) sin v = 1 − cos v ⇔ tg
v

2
= cosu+ sinu.

Теперь находим

cos v =
1 − tg2 v

2

1 + tg2 v
2

= − 2 sin 2u

2 + sin 2u
,

sin v =
2 tg v

2

1 + tg2 v
2

=
2 (cosu+ sinu)

2 + sin 2u
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и окончательно

x = cosu sin v =
2 (cosu+ sinu) cosu

2 + sin 2u
,

y = sinu sin v =
2 (cosu+ sinu) sin u

2 + sin 2u
,

z = cos v = − 2 sin 2u

2 + sin 2u
.

6.2. Проекции. Проекцией точки M(x, y, z) на плоскость Oxy является точка N(x, y).

Таким образом, проектирование — это игнорирование одной из координат.

Если линия задана как пересечение двух поверхностей F (x, y, z) = 0 и G(x, y, z) = 0, то

уравнение ее проекции на плоскость Oxy получается исключением z из этих уравнений.

Пример.

Проекция кривой Вивиани на плоскость Oxy — это кривая с параметрическими урав-

нениями
{

x = R(1 + cos 2t),

y = R sin 2t.

Исключая параметр t, получаем уравнение окружности

(x−R)2 + y2 = R2.

Пример.

Проекция линии пересечения сферы и плоскости,

x2 + y2 + z2 = 1, x+ y + z = 1,

имеет уравнение

x2 + y2 + (1 − (x+ y))2 = 1 ⇔ x2 + xy + y2 − x− y = 0.

7. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Составить уравнение геометрического места точек, произведение расстояний

которых до двух данных точек F1(−a; 0) и F2(a; 0) есть постоянная величина a2. Рас-

сматриваемая кривая называется лемнискатой Бернулли. Составить также уравнение

лемнискаты в полярных координатах, совмещая полярную ось с положительной полуосью

Ox, а полюс— с началом декартовых координат. Изобразить лемнискату на чертеже.

Ответ. (x2 + y2)2 = 2a2(x2 − y2); r2 = 2a2 cos 2ϕ.

Задача 2. Даны прямая x = 2r и окружность радиуса r, которая проходит через начало

координат O и касается данной прямой. Из точки O проведен луч, пересекающий данную

окружность в точке C и данную прямую в точке B; на луче отложен отрезок OM = CB.

При вращении луча точка M описывает кривую, называемую циссоидой Диоклеса. Со-

ставить уравнение кривой и изобразить ее на чертеже.

Ответ. (2r − x)y2 = x3.
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Задача 3. Даны прямая x = a (a > 0) и окружность диаметра a, проходящая через нача-

ло координат O и касающаяся данной прямой. Из точки O проведен луч, пересекающий

окружность в точке A и данную прямую в точке B. Из точек A и B проведены прямые,

параллельные соответственно осям Oy и Ox. Точка пересечения этих прямых при враще-

нии луча описывает кривую, называемую верзьерой Аньези. Составить уравнение кривой

и изобразить е на чертеже.

Ответ. x(a2 + y2) = a3.

Задача 4. Из точки A(−a; 0) (a > 0) проведен луч AB, пересекающий ось Oy в точке

B. На этом луче по обе стороны от точки B отложены отрезки BM и BN , равные

OB. При вращении луча точки M и N описывают кривую, называемую строфоидой.

Составить ее уравнение сначала в полярных координатах, помещая полюс в точке A и

направляя полярную ось в положительном направлении полуоси Ox, а затем перейти к

данной системе декартовых координат. Изобразить кривую на чертеже.

Ответ. r =
a

cosϕ
± a tgϕ; x2[(x+ a)2 + y2] = a2y2.

Задача 5. Отрезок длины 2a движется так, что его концы все время находятся на ко-

ординатных осях. Точка M является основанием перпендикуляра, опущенного из начала

координат на отрезок. При движении отрезка точка M описывает кривую, называемую

четырехлепестковой розой. Составить ее уравнение сначала в полярных координатах,

совмещая полюс с началом декартовых координат и полярную ось с положительной по-

луосью Ox, а затем перейти к данной системе декартовых координат. Изобразить кривую

на чертеже.

Ответ. r = a| sin 2ϕ|; (x2 + y2)3 = 4a2x2y2.

Задача 6. Отрезок длины a движется так, что его концы все время находятся на ко-

ординатных осях. Через концы отрезка проведены прямые, параллельные координатным

осям, до их взаимного пересечения в точке P . Точка M является основанием перпенди-

куляра, опущенного из точки P на отрезок. При движении отрезка точка M описывает

кривую, называемую астроидой. Составить сначала параметрические уравнения астро-

иды, выбирая в качестве параметра t угол между движущимся отрезком и осью Ox, а

затем, исключив параметр, уравнение в виде F (x, y) = 0. Изобразить кривую на чертеже.

Ответ. x = a cos3 t, y = a sin3 t; x2/3 + y2/3 = a2/3.

Задача 7. Окружность радиуса a катится без скольжения по окружности x2 + y2 = a2,

оставаясь вне ее. Траектория некоторой точки M катящейся окружности называется кар-

диоидой. Вывести параметрические уравнения кардиоиды, выбирая в качестве параметра

t угол наклона к оси Ox радиуса неподвижной окружности, проведенного в точку каса-

ния с подвижной. Считать при этом, что в начальный момент (t = 0) точка M находится

справа на оси Ox. Исключив параметр, получить полярное уравнение кривой. Изобразить

кривую на чертеже.

Ответ. x = a(2 cos t− cos 2t), y = a(2 sin t− sin 2t); r = 2a(1 − cosϕ).
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Задача 8. Траекторией точки M является эллипс
x2

a2
+
y2

b2
= 1. Вывести параметрические

уравнения траектории, принимая в качестве параметра t угол наклона отрезка OM к оси

Ox.

Ответ. x =
ab cos t√

a2 sin2 t+ b2 cos2 t
, y =

ab sin t√
a2 sin2 t+ b2 cos2 t

.



Лекция 2

1. МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Утверждение P (n), зависящее от натурального параметра n, считается доказанным,

если:

(1) доказано утверждение P (1);

(2) для любого n ∈ N из предположения, что верно P (n), выведено, что верно также

P (n + 1).

P (n) — предикат, n — параметр индукции.

Доказательство P (1) — базис индукции.

Предположение, что P (n) верно, — индуктивное предположение.

Доказательство P (n) =⇒ P (n + 1) — индукционный шаг.

Пример.

Докажем методом индукции формулу

n
∑

k=1

k2 =
1

6
n(2n + 1)(n + 1).

Базис индукции:

1
∑

k=1

k2 = 12 =
1

6
· 1 · (2 · 1 + 1)(1 + 1)

— верное соотношение.

Предположение индукции состоит в том, что подлежащая доказательству формула вер-

на при некотором значении n.

Индукционный шаг сводится к проверке того, что при n + 1 формула также верна, т.е.

n+1
∑

k=1

k2 =
1

6
(n + 1)

(

2(n + 1) + 1
)(

(n + 1) + 1
)

=
1

6
(n + 1)(2n + 3)(n + 2).

Имеем:

n+1
∑

k=1

k2 =
n
∑

k=1

k2 + (n + 1)2 =
1

6
n(2n + 1)(n + 1) + (n + 1)2 =

= (n + 1)

(

2n2 + n

6
+ n + 1

)

= (n + 1)

(

2n2 + 7n + 6

6

)

=

=
1

6
(n + 1)(2n + 3)(n + 2).

Таким образом, формула доказана.
1



2

2. КОМБИНАТОРИКА

Комбинаторика изучает конечные множества и связанные с ними операции.

Пусть N — конечное множество, состоящее из n элементов; число n называется мощ-

ностью множества N , card N = n.

x ∈ N — x является элементом множества N .

x /∈ N — x не является элементом множества N .

N ⊂ M — множество N является подмножеством множества M , т.е.

∀x ∈ N =⇒ x ∈ M.

∅ — пустое множество; card ∅ = 0.

Основные операции над множествами:

(1) объединение N ∪ M = {x : x ∈ N и x ∈ M},
(2) пересечение N ∩ M = {x : x ∈ N или x ∈ M},
(3) разность N \ M = {x : x ∈ N и x 6∈ M},
(4) декартово произведение N × M = {(x, y) : x ∈ N, x ∈ M}.

2.1. Принцип произведения.

card(N × M) = (card N) · (card M).

Пример.

Найдем количество различных трехзначных чисел, не содержащих одинаковых цифр:

A
︸ ︷︷ ︸

9 способов

B
︸ ︷︷ ︸

9 способов

C
︸ ︷︷ ︸

8 способов

9 · 9 · 8 = 648.

2.2. Принцип суммы. Если N и M — непересекающиеся конечные множества,

N ∩ M = ∅, то

card(N ∪ M) = card N + card M.

В случае непустого пересечения

card(N ∪ M) = card N + card M − card(N ∩ M).

Пример.
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Найдем количество различных трехзначных чисел, содержащих хотя бы две одинаковые

цифры.

Всего имеется 900 трехзначных чисел. Каждое из них либо имеет одинаковые цифры,

либо нет. Поэтому чисел, содержащих одинаковые цифры, имеется

900 − 648 = 252.

2.3. Упорядоченная выборка без повторений: размещения. Имеется множество N ,

card N = n. Требуется выбрать из него k элементов с учетом порядка; выбранный элемент

в множество не возвращается. Количество различных выборок равно

Ak
n = n(n − 1)(n − 2) . . . (n − k + 1)

︸ ︷︷ ︸

k сомножителей

=
n!

(n − k)!
.

В частности, количество различных перестановок множества N

Pn = n!.

Пример.

Сколькими способами можно из группы в 20 студентов выбрать старосту и профорга?

A2

20
=

20!

18!
= 20 · 19 = 380.

2.4. Неупорядоченная выборка без повторений: сочетания. Имеется множество N ,

card N = n. Требуется выбрать из него k элементов без учета порядка; выбранный элемент

в множество не возвращается. Обозначим количество всех таких выборок Ck
n.

Выборка объема k может быть упорядочена k! способами. Согласно принципу произве-

дения

Ck
n · k! = Ak

n,

откуда

Ck
n =

Ak
n

k!
=

n!

k!(n − k)!
.

Числа Ck
n называются также биномиальными коэффициентами; другое обозначение:

(

n

k

)

= Ck
n.

Пример.

Сколькими способами можно из группы в 20 студентов выбрать двух дежурных?

C2

20
=

20!

2! · 18!
=

20 · 19

1 · 2 = 190.
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2.5. Свойства биномиальных коэффициентов.

1. C0

n = Cn
n = 1, C1

n = Cn−1

n = n.

2. Ck
n =

k сомножителей
︷ ︸︸ ︷

n(n − 1) . . . (n − k + 1)

1 · 2 · . . . · k
︸ ︷︷ ︸

k сомножителей

.

3. Cn−k
n = Ck

n.

◭ Cn−k
n = n!

(n−k)!(n−(n−k))!
= n!

(n−k)!k!
= Ck

n. ◮

4. Ck
n + Ck+1

n = Ck+1

n+1
.

◭ Ck
n + Ck+1

n =
n!

k!(n − k)!
+

n!

(k + 1)!(n − k − 1)!
=

=
n!

k!(n − k − 1)!(n − k)
+

n!

k!(k + 1)(n − k − 1)!
=

=
n!(n − k) + n!(k + 1)

k!(n − k − 1)!(k + 1)(n − k)
=

n!(n + 1)

(k + 1)!(n − k)!
=

=
(n + 1)!

(k + 1)!((n + 1) − (k + 1))!
= Ck+1

n+1
. ◮

2.6. Треугольник Паскаля.

C0

0

ւ ց
C0

1
C1

1

ւ ց ւ ց
C0

2
C1

2
C2

2

ւ ց ւ ց ւ ց
C0

3
C1

3
C2

3
C3

3

ւ ց ւ ց ւ ց ւ ց
C0

4
C1

4
C2

4
C3

4
C4

4
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n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

n = 7 1 7 21 35 35 21 7 1

n = 8 1 8 28 56 70 56 28 8 1

2.7. Бином Ньютона.

Теорема.

(a + b)n =
n
∑

k=0

Ck
nan−kbk =

= an + C1

na
n−1b + C2

na
n−2b2 + · · · + Ck

nan−kbk+

+ · · · + Cn−1

n abn−1 + bn. (1)

◭ Доказательство проведем методом индукции.

База индукции:

(a + b)1 = a + b = C0

1
a + C1

1
b.

Предположение индукции состоит в том, что формула (1) справедлива при некотором

значении n. Наша задача — пользуясь формулой (1), вывести ее справедливость для

показателя степени n + 1.

(a + b)n+1 = (a + b) · (a + b)n = (a + b)

(

n
∑

k=0

Ck
n an−k bk

)

=

= a

(

n
∑

k=0

Ck
n an−k bk

)

+ b

(

n
∑

k=0

Ck
n an−k bk

)

=

=
n
∑

k=0

Ck
n an−k+1 bk +

n
∑

k=0

Ck
n an−k bk+1 =

= an+1 +
n
∑

k=1

Ck
n an−k+1 bk

︸ ︷︷ ︸

k=p+1,
k=1...n,

p=0...n−1

+
n−1
∑

k=0

Ck
n an−k bk+1

︸ ︷︷ ︸

k=p

+ bn+1 =
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= an+1 +
n−1
∑

p=0

Cp+1

n an−p bp+1 +
n−1
∑

p=0

Cp
n an−p bp+1 + bn+1 =

= an+1 +
n−1
∑

p=0

(

Cp+1

n + Cp
n

)

︸ ︷︷ ︸

=Cp+1

n+1

an−p bp+1 + bn+1 =

= C0

n+1
an+1 +

n−1
∑

p=0

C
p+1

n+1
a(n+1)−(p+1) bp+1

︸ ︷︷ ︸

k=p+1,
p=0...n−1,

k=1...n

+Cn+1

n+1
bn+1 =

= C0

n+1
an+1 +

n
∑

k=1

Ck
n+1

a(n+1)−k bk + Cn+1

n+1
bn+1 =

=
n+1
∑

k=0

Ck
n+1

a(n+1)−k bk. ◮

2.8. Дальнейшие свойства биномиальных коэффициентов. Взяв в формуле (1)

a = b = 1, получим

(1 + 1)n =
n
∑

k=0

Ck
n 1n−k 1k,

откуда
n
∑

k=0

Ck
n = 2n.

Аналогично, взяв a = 1, b = −1, находим

n
∑

k=0

(−1)kCk
n = 0.

3. КОМПЛЕКСНЫЕ ЧИСЛА

3.1. Числовое поле. Числовое поле — множество чисел, в котором корректны арифмети-

ческие операции: сложение, вычитание, умножение, деление на ненулевое число.

Примеры числовых полей: Q, R.

Не являются числовыми полями: N, Z, R \ Q.

Нетривиальный пример: числа вида a + b
√

2, где a, b ∈ Q, образуют числовое поле:

(

a + b
√

2
)(

c + d
√

2
)

= (ac + 2bd) + (bc + ad)
√

2,

a + b
√

2

c + d
√

2
=

(

a + b
√

2
) (

c − d
√

2
)

(

c + d
√

2
) (

c − d
√

2
) =

ac − 2bd

c2 − 2d2
+

ac − 2bd

c2 − 2d2

√
2,

причем знаменатель 6= 0, а все коэффициенты ∈ Q.
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3.2. Многочлены. Пусть K — некоторое числовое поле.

Одночлен (от одной переменной x) над полем K — выражение вида axk, где a ∈ K —

коэффициент одночлена, k ∈ N ∪ {0} — степень одночлена; deg(axk) = k.

Многочлен степени n (от одной переменной x) над полем K — сумма одночленов:

f(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · · + an−2x

2 + an−1x + an,

где a0 6= 0.

Множество всех многочленов от переменной x над полем K обозначается K[x].

Можно рассматривать одночлены и многочлены от нескольких переменных.

Значение многочлена f(x) можно вычислять как при x ∈ K, так и при x /∈ K.

Корень многочлена f(x) — значение x, при котором f(x) = 0.

Алгебраически замкнутое поле K — это такое поле, что любой многочлен из K[x] имеет

корень x ∈ K.

Поле Q не является алгебраически замкнутым:

(x2 − 2) ∈ Q[x], x2 − 2 = 0 ⇐⇒ x = ±
√

2 /∈ Q.

Решение проблемы — введение иррациональных чисел.

Поле R не является алгебраически замкнутым: многочлен x2 + 1 корней не имеет.

Формальное решение проблемы — ввести «новое число» i, обладающее свойством

i2 = −1 ; тогда

x2 + 1 = 0 ⇐⇒ x = ±i.

Пример.

Рассмотрим квадратное уравнение

x2 + 4x + 5 = 0.

Имеем:

D = 42 − 4 · 1 · 5 = −4 = (−1) · 4,
√

D = 2i, x1,2 =
−4 ± 2i

2
= −2 ± i.

Теорема Виета также справедлива:

x1 + x2 = (−2 − i) + (−2 + i) = −4,

x1x2 = (−2 − i)(−2 + i) = (−2)2 − i2 = 5.

Отметим, что мы рассматривали уравнение с вещественными коэффициентами.

Числа вида a + bi называются комплексными числами.
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3.3. Определение комплексных чисел.

Комплексное число z — упорядоченная пара вещественных чисел (x, y):

z = (x, y).

x = Re z — вещественная часть z.

y = Im z — мнимая часть z.

Равенство комплексных чисел:

z1 = z2 ⇐⇒







Re z1 = Re z2,

Im z1 = Im z2.







Комплексное число z = (x, y) можно изобразить точкой координатной плоскости Oxy

либо радиус-вектором этой точки. Координатная плоскость называется при такой интер-

претации плоскостью комплексных чисел, ось Ox — вещественной осью, ось Oy — мнимой

осью.

x

y

O

z = (x, y)

1

i

Арифметические операции над комплексными числами z1 = (x1, y1), z2 = (x2, y2):

(a) сложение:

z := z1 + z2 = (x1 + x2, y1 + y2);

(b) умножение:

z := z1z2 = (x1x2 − y1y2, x1y2 + x2y1).

Свойства арифметических операций:

1. z1 + z2 = z2 + z1 (коммутативность сложения);

2. (z1 + z2) + z3 = z1 + (z2 + z3) (ассоциативность сложения);

3. z1z2 = z2z1 (коммутативность умножения);

4. (z1z2)z3 = z1(z2z3) (ассоциативность умножения);

5. z1(z2 + z3) = z1z2 + z1z3 (дистрибутивность).
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Для чисел вида z = (x, 0) имеем:

(x1, 0) + (x2, 0) = (x1 + x2, 0),

(x1, 0) · (x2, 0) = (x1 · x2 − 0 · 0, x1 · 0 + 0 · x2) = (x1x2, 0).

Такие комплексные числа при арифметических операциях ведут себя как вещественные

числа. Поэтому можно отождествить комплексное число z = (x, 0) с вещественным чис-

лом x и считать множество вещественных чисел подмножеством множества комплексных

чисел.

Рассмотрим мнимые числа, z = (0, y). Имеем:

(0, y1) + (0, y2) = (0, y1 + y2).

Произведение вещественного и мнимого числа:

x · (0, y) = (x, 0) · (0, y) = (x · 0 − 0 · y, x · y + 0 · 0) = (0, xy);

поэтому можно считать, что мнимое число есть произведение вещественного числа и

мнимой единицы:

(0, y) = y · (0, 1).

Произведение двух мнимых чисел:

(0, y1) · (0, y2) = (0 · 0 − y1 · y2, 0 · y2 + y1 · 0) = (−y1y2, 0).

Отсюда вытекает, что квадрат мнимой единицы представляет собой вещественное число,

равное −1:

(0, 1) · (0, 1) = (−1, 0) = −1.

Мнимую единицу обозначим символом i:

i = (0, 1).

Тогда для любого z = (x, y) имеем

z = (x, y) = (x, 0) + (0, y) = x + y · (0, 1) = x + iy.

Это — алгебраическая форма записи комплексного числа.

Пусть z1 = (x1, y1) = x1 + iy1 и z2 = (x2, y2) = x2 + iy2.

Разность z = z1 − z2 определяется как решение уравнения z + z2 = z1.

(x1, y1) − (x2, y2) = (x1 − x2, y1 − y2),

(x1 + iy1) − (x2 + iy2) = (x1 − x2) + i(y1 − y2).

Частное z = z1/z2 определяется решение уравнения z · z2 = z1.
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Для вычисления частного заметим, что

(x + iy)(x − iy) = x2 + y2 ∈ R.

Теперь запишем

z =
z1

z2

=
x1 + iy1

x2 + iy2

=
(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
=

=
(x1x2 + y1y2) + i(y1x2 − x1y2)

x2

2
+ y2

2

=

=
x1x2 + y1y2

x2

2
+ y2

2

+ i
y1x2 − x1y2

x2

2
+ y2

2

.

Таким образом, деление возможно на любое ненулевое комплексное число.

В множестве комплексных чисел выполняются операции сложения, вычитания, умно-

жения и деления на ненулевое число. Таким образом, множество комплексных чисел

является полем, которое обозначается C.

Пример.

(3 + 4i)(7 − 2i) = 3 · 7 − 3 · 2i + 4i · 7 − 4i · 2i = 29 + 22i,

29 + 22i

7 − 2i
=

(29 + 22i)(7 + 2i)

(7 − 2i)(7 + 2i)
=

=
29 · 7 + 29 · 2i + 22i · 7 + 22i · 2i

72 − (2i)2
=

159 + 212i

53
= 3 + 4i.

3.4. Сопряжение. Пусть z = x + iy.

Сопряженное к z число: z̄ = x − iy.

Свойства операции сопряжения:

1. ¯̄z = z;

2. z1 + z2 = z̄1 + z̄2;

3. z1 · z2 = z̄1 · z̄2;

4.

(

z1

z2

)

=
z̄1

z̄2

.

Легко получить следующие соотношения:

Re z =
z + z̄

2
, Im z =

z − z̄

2i
.

Число z̄, сопряженное к z, геометрически изображается точкой, симметричной точке z

относительно вещественной оси.
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Re z

Im z

O

z = x + iy

z̄ = x − iy

1

i

3.5. Тригонометрическая форма записи комплексных чисел. Точка z = (x, y) на плос-

кости может быть задана не только декартовыми, но и полярными координатами (r, ϕ):

x = r cos ϕ, y = r sin ϕ, 0 6 r < +∞, 0 6 ϕ < 2π.

Число r называется модулем числа z, ϕ — аргументом:

r = |z|, ϕ = arg z.

Re z

Im z

O

z = x + iy

1

i

ϕ

|z|

Аргумент определен неоднозначно (с точностью до слагаемого 2πn), поэтому различают

(1) главное значение аргумента arg z ∈ [0, 2π) или arg z ∈ (−π, π];

(2) (многозначный) аргумент Arg z = arg z + 2πn, n ∈ Z; используются также записи

Arg z ≡ arg z (mod 2π), Arg z = ϕ (mod 2π).

Комплексное число можно записать в виде

z = x + iy = r cos ϕ + i sin ϕ = r(cos ϕ + i sin ϕ).

Это — тригонометрическая форма записи комплексных чисел.

Перемножим два числа:

r1(cos ϕ1 + i sin ϕ1) · r2(cos ϕ2 + i sin ϕ2) =
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= r1r2

(

cos ϕ1 cos ϕ2 − sin ϕ1 sin ϕ2 + i cos ϕ1 sin ϕ2 + i sin ϕ1 cos ϕ2

)

=

= r1r
(

cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)
)

.

Таким образом,

|z1 · z2| = |z1| · |z2|, Arg(z1 · z2) = Arg z1 + Arg z2.

4. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Доказать по индукции, что
n
∑

k=1

(−1)k−1k2 = (−1)n−1 · n(n + 1)

2
.

Задача 2. Доказать по индукции, что
n
∑

k=1

k(k + 1)(k + 2) =
1

4
n(n + 1)(n + 2)(n + 3).

Задача 3. Доказать по индукции, что
n
∑

k=1

sin kx =
sin n+1

2
x sin nx

2

sin x
2

.

Задача 4. Доказать по индукции, что

1

2
+

n
∑

k=1

cos kx =
sin 2n+1

2
x

2 sin x
2

.

Задача 5. Доказать по индукции, что
n
∑

k=1

k sin kx =
(n + 1) sin nx − n sin(n + 1)x

4 sin2 x
2

.

Задача 6. Доказать по индукции, что
n
∑

k=1

k cos kx =
(n + 1) cos nx − n cos(n + 1)x − 1

4 sin2 x
2

.

Задача 7. Доказать по индукции, что при любом натуральном n > 1

(1 + x)n > 1 + nx, x > −1, x 6= 0.

Задача 8. Доказать по индукции, что
n
∑

k=1

1√
k

>
√

n.

Задача 9. Доказать по индукции, что при любом натуральном n > 1

4n

n + 1
<

(2n)!

(n!)2
.



Лекция 3

1. ФОРМУЛА ЭЙЛЕРА И ИЗВЛЕЧЕНИЕ КОРНЕЙ

1.1. Формула Эйлера. Рассмотрим функцию

f(ϕ) = cos ϕ + i sin ϕ.

Она обладает свойством

f(ϕ1) · f(ϕ2) = f(ϕ1 + ϕ2).

Эта функция обозначается eiϕ:

eiϕ = cos ϕ + i sin ϕ;

это — формула Эйлера.

Средствами анализа можно доказать, что функция f(ϕ) действительно является пока-

зательной функцией.

Показательная форма записи комплексных чисел:

z = reiϕ,

где

r = |z|, ϕ = Arg z.

Из формулы Эйлера получаем:

eiϕ = cos ϕ + i sin ϕ, e−iϕ = cos ϕ − i sin ϕ;

складывая/вычитая эти равенства, находим

cos ϕ =
eiϕ + e−iϕ

2
, sin ϕ =

eiϕ − e−iϕ

2i
.

1.2. Возведение в степень. Тригонометрическая и показательная формы записи полезны

при возведении комплексных чисел в степень:
[

r(cos ϕ + i sin ϕ)
]n

= rn(cos nϕ + i sin nϕ).

Эта формула доказана при n ∈ N, но легко убедиться, что она справедлива и при n ∈ Z.

Действительно, поскольку

1

cos ϕ + i sin ϕ
=

cos ϕ − i sin ϕ

(cos ϕ + i sin ϕ)(cos ϕ − i sin ϕ)
= cos ϕ − i sin ϕ,

получаем
[

r(cos ϕ + i sin ϕ)
]

−n

=

(

1

r(cos ϕ + i sin ϕ)

)n

=

= r−n(cos ϕ − i sin ϕ)n = r−n(cos nϕ − sin nϕ) =
1



2

= r−n
(

cos(−nϕ) + sin(−nϕ)
)

.

Те же выкладки в показательной форме намного короче:

1

eiϕ
=

e−iϕ

eiϕ · e−iϕ
= e−iϕ,

(

reiϕ
)

−n
= r−n

(

e−iϕ
)n

= r−ne−inϕ.

Пример.

Вычислим (1 − i)35.

Представим число 1 − i в тригонометрической (показательной) форме:

Re(1 − i) = 1, Im(1 − i) = −1, |1 − i| =
√

12 + (−1)2 =
√

2,

cos ϕ =
1√
2
, sin ϕ = − 1√

2
, ϕ = arg(1 − i) = −π

4
;

здесь мы выбрали диапазон значений arg z в виде (−π, π].

Re z

Im z

O

1 − i

√
2

−π
4

Имеем:

(1 − i)35 =
(√

2e−iπ/4

)35

= 2
35

2 e−iπ 35

4 = 2
35

2 e−iπ(8+
3

4) =

= 2
35

2 e−iπ 3

4 = 2
35

2

(

− 1√
2
− i

1√
2

)

= −217(1 + i).



3

Re z

Im z

O

2
3
5
/2

−3π
4

−217(1 + i)

1.3. Формула Муавра. При r = 1 получаем формулу Муавра:

(cos ϕ + i sin ϕ)n = cos nϕ + i sin nϕ.

Формула Муавра полезна при тригонометрических преобразованиях.

Пример.

(cos ϕ + i sin ϕ)3 = cos 3ϕ + i sin 3ϕ,

cos3 ϕ + 3 cos2 ϕ · i sin ϕ + 3 cos ϕ · i2 sin2 ϕ + i3 sin3 ϕ = cos 3ϕ + i sin 3ϕ,

cos 3ϕ = cos3 ϕ − 3 cos ϕ sin2 ϕ, sin 3ϕ = 3 cos2 ϕ sin ϕ − sin3 ϕ.

Пример.

Преобразуем в произведения следующие суммы:

C =
n

∑

k=0

cos kt = 1 + cos t + cos 2t + · · · + cos nt,

S =
n

∑

k=0

sin kt = sin t + sin 2t + · · · + sin nt.

Запишем

C + iS =
n

∑

k=0

cos kt + i

n
∑

k=0

sin kt =
n

∑

k=0

(cos kt + i sin kt) =
n

∑

k=0

eikt.

Вычислим сумму получившейся геометрической прогрессии:

n
∑

k=0

eikt =
1 − ei(n+1)t

1 − eikt
=

ei n+1

2
t
(

e−i n+1

2
t − ei n+1

2
t
)

ei t

2

(

e−i t

2 − ei t

2

) =

= ei nt

2

(

ei n+1

2
t − e−i n+1

2
t
)

/2i
(

ei t

2 − e−i t

2

)

/2i
= ei nt

2

sin n+1

2
t

sin nt
2

.
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Здесь мы воспользовались тем, что

sin t =
eit − e−it

2i
.

В полученных выражениях отделим вещественную и мнимую части:

C = Re ei nt

2

sin n+1

2
t

sin nt
2

=
cos nt

2
sin n+1

2
t

sin nt
2

,

S = Im ei nt

2

sin n+1

2
t

sin nt
2

=
sin nt

2
sin n+1

2
t

sin nt
2

.

Пример.

Выразим cos5 t через кратные углы.

cos5 t =

(

eit + e−it

2

)5

=

=
1

25

(

e5it + 5e4ite−it + 10e3ite−2it + 10e2ite−3it + 5eite−4it + e−5it
)

=

=
1

24

(

e5it + e−5it

2
+ 5

e3it + e−3it

2
+ 10

eit + e−it

2

)

=

=
1

16
cos 5t +

5

16
cos 3t +

5

8
cos t.

1.4. Извлечение корней. Число w называется корнем n-й степени из числа z, если

wn = z:

w = n
√

z ⇐⇒ wn = z.

Представим числа w, z в показательной форме:

w = ReiΦ, z = reiϕ.

Наша задача — по данным r, ϕ найти R, Φ.

(

ReiΦ
)n

= reiϕ ⇐⇒ RneinΦ = reiϕ ⇐⇒







Rn = r,

nΦ = ϕ + 2πk, k ∈ Z,
⇐⇒











R = r1/n,

Φ =
ϕ

n
+

2πk

n
, k ∈ Z.

Таким образом, получается не один, а множество корней, однако различными будут

только те, которые отвечают значениям k = 0, 1, . . . , n − 1.
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Геометрически эти корни изображаются вершинами правильного n-угольника, вписан-

ного в окружность радиуса r1/n.

Пример.

3
√
−1 =

3
√

eiπ = ei π+2πk

3 =































eiπ/3 =
1

2
+ i

√
3

2
, k = 0,

eiπ = −1, k = 1,

e5iπ/3 =
1

2
− i

√
3

2
, k = 2.

Re z

Im z
1

2
+ i

√

3

2

1

2
− i

√

3

2

−1

π
3π

5π
3

Пример.

3
√
−i =

3
√

e3iπ/2 = ei
3π/2+2πk

3 = ei 3π+4πk

6 =































eiπ/2 = i, k = 0,

e7iπ/6 = −
√

3

2
− 1

2
i, k = 1,

e11iπ/6 =

√
3

2
− 1

2
i, k = 2.
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Re z

Im z

π
27π

2

11π
2

i

−
√

3

2
− 1

2
i

√

3

2
− 1

2
i

−i

Пример.

4

√

−1

2
+ i

√
3

2
=

4
√

e2iπ/3 = ei
2π/3+2πk

4 = ei(π

6
+

πk

2 ) =



































































eiπ/6 =

√
3

2
+

1

2
i, k = 0,

e2iπ/3 = −1

2
+ i

√
3

2
, k = 1,

e7iπ/6 = −1

2

√
3 − 1

2
i, k = 2,

e5iπ/3 =
1

2
− 1

2
i
√

3, k = 3.

Re z

Im z

√

3

2
+ 1

2
i

−1

2
+ i

√

3

2

−
√

3

2
− 1

2
i

1

2
− i

√

3

2

π
6

2π
3

7π
6

5π
3

1.5. Гиперболические функции. Ранее мы получили соотношения

cos x =
eix + e−ix

2
, sin x =

eix − e−ix

2i
.

Определим гиперболические функции

ch x =
ex + e−x

2
, sh x =

ex − e−x

2
.
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Связь между тригонометрическими и гиперболическими функциями:

cos ix = ch x, ch x = cos x,

sin ix = i sh x, sh ix = i sin x.

Все соотношения для гиперболических функций могут быть получены из соответству-

ющих соотношений для тригонометрических функций:

ch2 x − sh2 x = cos2 ix −
(

1

i
sin ix

)2

= cos2 ix + sin2 ix = 1,

ch 2x = cos 2ix = cos2 ix − sin2 ix =

= ch2 x − (i sin x)2 = ch2 x + sh2 x,

sh x + sh y =
1

i
(sin ix + sin iy) =

=
1

i
· 2 sin

i(x + y)

2
cos

i(x − y)

2
=

=
2

i
· i sh

x + y

2
ch

x − y

2
= 2 sh

x + y

2
ch

x − y

2
.

2. МНОГОЧЛЕНЫ

2.1. Деление многочленов.

Q(x) =
A(x)

B(x)
⇐⇒ A(x) = B(x)Q(x).

Будем обозначать степень многочлена нижним индексом: запись An(x) означает, что A(x)

— многочлен степени n. Тогда
An(x)

Bm(x)
= Qn−m(x).

Деление многочленов осуществляется алгоритмом «деления уголком».

2x5 + 4x4 − 4x3 + 11x2 − 13x + 3 | x2 + 3x − 1

2x5 + 6x4 − 2x3 2x3 − 2x2 + 4x − 3

−2x4 − 2x3 + 11x2

−2x4 − 6x3 + 2x2

4x3 + 9x2 − 13x

4x3 + 12x2 − 4x

−3x2 − 9x + 3
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−3x2 − 9x + 3

0

2.2. Деление с остатком. Деление многочленов нацело выполнимо не всегда, однако

всегда возможно «деление с остатком».

Пусть требуется разделить многочлен An(x) на многочлен Bm(x). Формула деления с

остатком имеет вид

An(x) = Bm(x)
︸ ︷︷ ︸

делитель

·Qn−m(x)
︸ ︷︷ ︸

частное

+ Rk(x)
︸ ︷︷ ︸

остаток

, 0 6 k < m.

Отметим, что степень остатка строго меньше степени делителя.

Если делить многочлен An(x) на многочлен первой степени B1(x) = x − c, то остаток

будет многочленом нулевой степени, т.е. числом:

An(x) = (x − c)Bn−1(x) + R.

Теорема.

Теорема Безу. Остаток от деления многочлена An(x) на x − c равен An(c).

◭ По формуле деления с остатком

An(x) = (x − c)Bn−1(x) + R.

Подставляя сюда x = c, получим

An(c) = (c − c)Bn−1(c)
︸ ︷︷ ︸

=0

+R ⇐⇒ R = An(c). ◮

Теорема.

Многочлен An(x) делится на x − c без остатка тогда и только тогда, когда c —

корень многочлена An(x), т.е. An(c) = 0.

◭ 1. Пусть An(x) делится без остатка на x − c, т.е.

An(x) = (x − c)Bn−1(x).

Подставляя сюда x = c, получаем An(c) = 0.

2. Пусть An(c) = 0. Разделим An(x) на x − c. По формуле деления с остатком

An(x) = (x − c)Bn−1(x) + R, где R = An(c) = 0. ◮
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2.3. Кратные корни многочлена. Если x = c — корень многочлена An(x), т.е. An(c) = 0,

то многочлен An(x) может быть записан в виде

An(x) = (x − c)Bn−1(x).

Если число c не является корнем многочлена Bn−1(x), то говорят, что x = c — простой

корень многочлена An(x).

В противном случае можно записать

An(x) = (x − c)pBn−p(x),

где многочлен Bn−p(x) не имеет число c своим корнем. В этом случае говорят, что число

x = c является корнем кратности p многочлена An(x).

2.4. Основная теорема алгебры.

Любой многочлен с комплексными коэффициентами имеет комплексный корень.

Эквивалентная формулировка: поле комплексных чисел алгебраически замкнуто.

Легко доказать, что каждый многочлен степени n в поле C имеет ровно n корней, если

каждый корень считать столько раз, какова его кратность.

Действительно, рассмотрим многочлен An(z). Согласно основной теореме алгебры он

имеет корень z = c1 и может быть представлен в виде

An(z) = (z − c1)Bn−1(z).

Многочлен Bn−1(x) также имеет корень x = c2, так что

An(z) = (z − c1)(z − c2)Dn−2(z).

Продолжая процедуру, получаем, что многочлен An(z) допускает разложение вида

An(z) = a(z − c1)(z − c2) · · · (z − cn),

причем среди корней c1, . . . , cn могут быть и совпадающие.

2.5. Многочлены с вещественными коэффициентами.

Многочлен степени n с вещественными коэффициентами имеет ровно n комплексных

корней, если считать каждый корень столько раз, какова его кратность.

Теорема.

Пусть A(z) — многочлен с вещественными коэффициентами. Тогда для любого z ∈ C

имеем

A(z̄) = A(z).

◭ Пусть

A(z) = a0z
n + a1z

n−1 + · · · + an−1z + an.



10

Так как коэффициенты вещественны, то

ā0 = a0, ā1 = a1, . . . , ān = an.

Поэтому

A(z) = a0zn + a1zn−1 + · · · + an−1z + an =

= ā0z̄
n + ā1z̄

n−1 + · · · + ān−1z̄ + ān =

= a0z̄
n + a1z̄

n−1 + · · · + an−1z̄ + an = A(z̄). ◮

Теорема.

Если A(z) — многочлен с вещественными коэффициентами, z = c — его корень, то

сопряженное число z̄ также является корнем многочлена A(z).

◭ A(c̄) = A(c) = 0̄ = 0 ◮

Таким образом, у многочлена с вещественными коэффициентами комплексные корни

могут появляться только сопряженными парами.

Пусть c, c̄ — пара сопряженных корней (с ненулевыми мнимыми частями). В разложение

многочлена на множители входит произведение

(z − c)(z − c̄) = z2 − (c + c̄)z + cc̄ = z2 − 2(Re c)z + |c|2,

являющееся квадратным трехчленом; отметим, что дискриминант этого трехчлена отри-

цателен:

D = 4(Re c)2 − 4|c|2 < 0, так как |c|2 = (Re c)2 + (Im c)2 > (Re c)2.

Такие квадратные трехчлены называются неприводимыми.

Таким образом, каждый многочлен с вещественными коэффициентами может быть раз-

ложен в произведение линейных множителей и неприводимых квадратных трехчленов:

A(x) = a(x − c1)
α1 · · · (x − cs)

αs(x + p1x + q1)
β1 · · · (x + prx + qr)

βr .

3. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Найти суммы:

(a) 1 − C2

n + C4

n − C6

n + . . . ;

(b) C1

n − C3

n + C5

n − C7

n + . . . .

[Указание: Рассмотреть (1 + i)n.]

Ответ. (a) 2n/2 cos πn
4
; (b) 2n/2 sin πn

4
.
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Задача 2. Найти суммы:

(a)
n
∑

k=1

Ck
n cos kx;

(b)
n
∑

k=1

Ck
n sin kx.

Ответ. (a) 2n cosn x
2
cos n+2

2
x; (b) 2n cosn x

2
sin n+2

2
x.

Задача 3. При каком условии многочлен x3 + px + q делится на многочлен x2 + mx − 1?

Ответ. q = m и p = −q2 − 1.

Задача 4. При каком условии многочлен x5 + ax3 + b имеет двойной корень, отличный от

нуля?

Ответ. 3125b2 + 108a3 = 0.

Задача 5. Разложить на множители многочлен P (x) = cos(n arccos x).

Ответ. 2n−1

n
∏

k=1

(

x − cos
2k − 1

2n
π

)

.

Задача 6. Разложить на множители многочлен x2n − 2xn + 2.

Ответ.

n−1
∏

k=0

(

x2 − 2
2n
√

2x cos
8k + 1

4n
π +

n
√

2

)

.

Задача 7. Разложить на множители многочлен x2n + xn + 1.

Ответ.

n−1
∏

k=0

(

x2 − 2x cos
3k + 1

3n
2π + 1

)

.



Лекция 4

1. ВЕКТОРЫ

Вектор — направленный отрезок.

Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны

и направлены в одну стороны)

Противоположные векторы: имеют одинаковые длины и противоположные направления

(параллельны и направлены в разные стороны).

Нулевой вектор: имеет нулевую длину, направление не определено, начало и конец

совпадают.

Операции над векторами: сложение и умножение на число.
−→
AB =

−→
AC +

−−→
CB.

A

B

C

Сложение векторов коммутативно и ассоциативно:

a + b = b + a, (a + b) + c = a + (b + c).

a

ab

b

c

a + b
a + b b

+
c

a + b + c

1.1. Свойства операций над векторами.

Теорема.

Сложение векторов и умножение векторов на числа обладают следующими свой-

ствами:

(1) коммутативность сложения: ∀ a, b

a + b = b + a;

(2) ассоциативность сложения: ∀ a, b, c

(a + b) + c = a + (b + c);
1



2

(3) свойство нулевого вектора: ∃ 0:

∀a : a + 0 = a;

(4) существование противоположного вектора:

∀a ∃a′ : a + a′ = 0;

(5) свойство единицы: ∀a:

1 · a = a;

(6) ассоциативность умножения на число: ∀a, ∀α, β

(αβ) a = α (βa) ;

(7) дистрибутивность-1: ∀a, b, ∀α

α (a + b) = αa + αb;

(8) дистрибутивность-3: ∀a, ∀α, β

(α + β) a = αa + βa.

1.2. Коллинеарные и компланарные векторы. Два вектора называются коллинеарны-

ми, если они лежат на параллельных прямых. Если коллинеарные векторы привести к

общему началу, то они окажутся лежащими на одной прямой.

Два вектора называются компланарными, если они лежат в параллельных плоскостях.

Если компланарные векторы привести к общему началу, то они окажутся лежащими в

одной плоскости.

Теорема.

(1) Для того, чтобы два вектора a, b были коллинеарны, необходимо и достаточ-

но, чтобы существовали такие числа α, β, не равные одновременно нулю, что

αa + βb = 0.

(2) Для того, чтобы три вектора a, b, c были компланарны, необходимо и доста-

точно, чтобы существовали такие числа α, β, γ не равные одновременно нулю,

что

αa + βb + γc = 0.

◭ 1. Пусть векторы a, b, c компланарны; тогда один из них можно выразить через два

остальных, например,

a = xb + yc.

Мы можем положить

α = 1, β = −x, γ = −y.

2. Пусть в равенстве

αa + βb + γc = 0.

один из коэффициентов отличен от нуля, например, α 6= 0. Тогда можно записать

a = −β

α
b − γ

α
c,

и векторы оказываются компланарными. ◮

Теорема.
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(1) Для того, чтобы два вектора a, b были неколлинеарны, необходимо и доста-

точно, чтобы равенство

αa + βb = 0

было возможно лишь при α = β = 0.

(2) Для того, чтобы три вектора a, b, c были некомпланарны, необходимо и до-

статочно, чтобы равенство

αa + βb + γc = 0

было возможно лишь при α = β = γ = 0.

1.3. Базис и координаты вектора.

Базис на плоскости — упорядоченный набор двух неколлинеарных векторов a1,a2.

Любой вектор на плоскости можно представить в виде комбинации

x = x1a1 + x2a2;

это соотношение называется разложением вектора x по базису a1,a2, а числа x1, x2 —

координатами вектора x в базисе a1,a2. Координаты вектора записываем в виде столбца
(

x1

x2

)

.

a1

a2

x

Базис в пространстве — упорядоченный набор трех некомпланарных векторов a1,a2,a3.

Любой вектор пространства можно представить в виде комбинации

x = x1a1 + x2a2 + x3a3;

это соотношение называется разложением вектора x по базису a1,a2,a3, а числа x1, x2, x3

— координатами вектора x в базисе a1,a2,a3. Координаты вектора записываем в виде

столбца







x1

x2

x3






.

a1
a2

a3

x
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В аналитической геометрии используются преимущественно ортонормированные бази-

сы, т.е. базисы, состоящие из единичных попарно ортогональных векторов.

e1

e1
e2

e2
e3

Теорема.

Разложение вектора по базису единственно, т.е. набор координат векторов в дан-

ном базисе определен однозначно.

◭ Предположим, что вектор x имеет в базисе a1,a2,a3 два различных набора координат:

x = x1a1 + x2a2 + x3a3 = y1a1 + y2a2 + y3a3.

Вычитая второе разложение из первого, получим

0 = (x1 − y1)a1 + (x2 − y2)a1 + (x3 − y3)a3.

Так как векторы базиса некомпланарны, то это равенство возможно лишь при нулевых

коэффициентах, т.е.

x1 = y1, x2 = y2, x3 = y3. ◮

Даже этих несложных средств достаточно для решения некоторых задач.

Пример.

Доказать, что медианы треугольника пересекаются в одной точке и делятся этой точкой

в отношении 2 : 1, считая от вершины.

A

B

C

A1
B1

C1

O

c

b

Рассмотрим базис на плоскости, образованный векторами b =
−→
AB и c =

−→
AC.

Сначала докажем, что медианы AA1 и BB1 делятся точкой их пересечения в отношении

2 : 1, считая от вершины.

−−→
BC = c − b;

−−→
BA1 =

1

2

−−→
BC =

1

2
c − 1

2
b;

−−→
AA1 =

−→
AB +

−−→
BA1 = b +

(1

2
c − 1

2
b
)

=
1

2
b +

1

2
c;
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−→
AO = α

−−→
AA1 =

α

2
b +

α

2
c;

−−→
BB1 =

−→
BA +

−−→
AB1 =

1

2
c − b;

−−→
BO = β

−−→
BB1 =

β

2
c − βb.

Векторы
−→
AB,

−−→
BO,

−→
AO удовлетворяют соотношению

−→
AB +

−−→
BO =

−→
AO,

откуда

b +
β

2
c − βb =

α

2
b +

α

2
c.

Это эквивалентно равенству
(

α

2
− β

2

)

c =
(

1 − β − α

2

)

b.

Поскольку векторы b и c линейно независимы, то равенство возможно лишь при нуле-

вых значениях коэффициентов, т.е.

α = β,
α

2
+ β = 1.

Решением этой системы уравнений является

α = β =
2

3
,

что и требовалось:

−→
AO =

2

3

−−→
AA1,

−−→
OA1 =

1

3

−−→
AA1,

−−→
BO =

2

3

−−→
BB1,

−−→
OB1 =

1

3

−−→
AA1.

Теперь докажем, что медиана CC1 также проходит через точку O и делится этой точкой

в отношении 2 : 1, считая от вершины.

−−→
CC1 =

−→
CA +

−−→
AC1 =

1

2
b − c =

1

2
(b − 2c);

−→
CO =

−−→
CB1 +

−−→
B1O = −1

2
c − 1

3

(1

2
c − b

)

=
1

3

(

b − 2c
)

=
2

3

−−→
CC1.

2. СТОЛБЦЫ И ОПЕРАЦИИ НАД НИМИ

2.1. Арифметическое пространство столбцов. Рассмотрим множество Rn, состоящее из

упорядоченных наборов n вещественных чисел, которые будем записывать в виде столб-

цов:

Rn =























X =













x1

x2

...

xn













, x1, x2, . . . , xn ∈ R























.

Нулевой столбец — столбец, все элементы которого нули; обозначается O.
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Два столбца называются равными, если они состоят из одинакового числа элементов и

попарно равны их элементы, стоящие на одинаковых местах:

для X =













x1

x2

...

xn













, Y =













y1

y2

...

yn













X = Y ⇐⇒ x1 = y1, . . . , xn = yn.

Определим операции сложения столбцов и умножения столбцов на вещественные числа:












x1

x2

...

xn













+













y1

y2

...

yn













=













x1 + y1

x2 + y2

...

xn + yn













, α ·













x1

x2

...

xn













=













αx1

αx2

...

αxn













.

Теорема.

Операции сложения столбцов и умножения столбцов на числа обладают следую-

щими свойствами:

(1) коммутативность сложения: ∀X,Y ∈ Rn

X + Y = Y + X;

(2) ассоциативность сложения: ∀X,Y, Z ∈ Rn

(X + Y ) + Z = X + (Y + Z);

(3) свойство нулевого столбца:

∀X ∈ Rn : X + O = X;

(4) существование противоположного столбца:

∀X ∈ Rn ∃X ′ ∈ Rn : X + X ′ = O;

(5) свойство единицы: ∀X ∈ Rn:

1 · X = X;

(6) ассоциативность умножения на число: ∀X ∈ Rn, ∀α, β ∈ R

(αβ) X = α (βX) ;

(7) дистрибутивность-1: ∀X,Y ∈ Rn, ∀α ∈ R

α (X + Y ) = αX + αY ;

(8) дистрибутивность-2: ∀X ∈ Rn, ∀α, β ∈ R

(α + β) X = αX + βX.
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2.2. Линейная комбинация, линейная оболочка. Пусть даны столбцы X1, X2, . . . , Xk ∈ Rn

и числа α1, α2, . . . , αk ∈ R. Линейная комбинация — это выражение вида

α1X1 + α2X2 + · · · + αkXk.

Будем пользоваться сокращением ЛК.

ЛК называется тривиальной, если все ее коэффициенты равны нулю:

α1 = α2 = · · · = αk = 0.

Очевидно, тривиальная ЛК любых столбцов равна нулевому столбцу.

Линейная оболочка столбцов X1, X2, . . . , Xk ∈ Rn — это множество

L(X1, X2, . . . , Xk) =
{

α1X1 + α2X2 + · · · + αkXk

∣

∣

∣
α1, α2, . . . , αn ∈ R

}

.

Сокращение — ЛО.

2.3. Линейная зависимость и независимость. Тривиальная ЛК любых столбцов равна

нулевому столбцу. Может ли быть равна нулевому столбцу нетривиальная ЛК, т.е. такая,

в которой хотя бы один коэффициент ненулевой?

Пример.

X1 =

(

1

2

)

, X2 =

(

2

4

)

, 2X1 − X2 = O.

Столбцы X1, . . . , Xn называются линейно зависимыми (ЛЗ), если существует их нетри-

виальная ЛК, равная нулевому столбцу.

Столбцы X1, . . . , Xn называются линейно независимыми (ЛН), если равенство нулевому

столбцу их ЛК возможно лишь в случае, если эта ЛК тривиальна.

Теорема.

(1) Если в системе столбцов X1, . . . , Xk имеется нулевой столбец, то эта система

ЛЗ.

(2) Если система столбцов X1, . . . , Xk ЛЗ, то один из этих столбцов можно пред-

ставить в виде ЛК остальных.

(3) Если в системе столбцов X1, . . . , Xk, Xk+1, . . . , Xr столбцы X1, . . . , Xk ЛЗ, то и

вся система также ЛЗ.

◭ 1. Пусть в системе столбцов X1, . . . , Xk один столбец нулевой, например, Xk = O.

Нетривиальная ЛК

0 · X1 + 0 · X2 + · · · + 1 · Xk

равна, очевидно, нулевому столбцу.

2. Пусть столбцы X1, . . . , Xk ЛЗ; тогда существует их нетривиальная ЛК, равная нуле-

вому столбцу:

α1X1 + α2X2 + · · · + αkXk = O.

Для определенности будем считать, что αk 6= 0; тогда

Xk = −α1

αk

X1 −
α2

αk

X2 − · · · − αk−1

αk

Xk−1,

что и требовалось.
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3. Если подсистема X1, . . . , Xk ЛЗ, то существует ЛК

α1X1 + · · · + αkXk = O,

в которой имеется хотя бы один ненулевой коэффициент. Если теперь к этой ЛК добавить

тривиальную ЛК столбцов Xk+1, . . . , Xr, то получится нетривиальная ЛК

нетривиальная ЛК
︷ ︸︸ ︷

α1X1 + α2X2 + · · · + αkXk

︸ ︷︷ ︸

нетривиальная ЛК

+ 0 · Xk+1 + . . . 0 · Xr

︸ ︷︷ ︸

тривиальная ЛК

= O,

что и требовалось. ◮

2.4. Векторы и столбцы.

Пусть на плоскости (в пространстве) зафиксирован некоторый базис.

Тогда каждому вектору ставится единственным образом в соответствие столбец его

координат.

Наоборот, если задан некоторый столбец, то существует единственный вектор, коорди-

наты которого совпадают с элементами этого столбца.

Таким образом, в случае, если базис зафиксирован, между векторами и столбцами

существует взаимно однозначное соответствие

x ↔ X.

Теорема.

Указанное соответствие обладает следующими свойствами: если x ↔ X, y ↔ Y ,

то

x + y ↔ X + Y, αx ↔ αX.

Такое соответствие называется изоморфизмом.

3. ОПРЕДЕЛИТЕЛЬ ВТОРОГО ПОРЯДКА

3.1. Система двух уравнений с двумя неизвестными. Рассмотрим систему уравнений
{

ax + by = p,

cx + dy = q,
(1)

где a, b, c, d, p, q — заданные числа, x, y —неизвестные. Решим систему методом исклю-

чения неизвестных.

Умножая первое уравнение на d, второе на −b и складывая полученные уравнения,

найдем

−
{

ax + by = p ×d

cx + dy = q ×b
=⇒ (ad − bc)x = pd − qb.

Аналогично, умножая первое уравнение на −c, второе на a и складывая полученные

уравнения, найдем

−
{

ax + by = p, ×c

cx + dy = q, ×a
=⇒ (ad − bc)y = qa − pc.
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Если ad − bc 6= 0, то система имеет единственное решение

x =
pd − qb

ad − bc
, y =

qa − pc

ad − bc
.

3.2. Определитель второго порядка. Запишем коэффициенты системы в виде таблицы

A =

(

a b

c d

)

;

она называется основной матрицей системы.

Поставим в соответствие этой матрице число ad − bc; оно называется определителем

(детерминантом) матрицы A и обозначается
∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

= det A = det

(

a b

c d

)

= ad − bc.

Такой определитель называется определителем второго порядка (по количеству его строк

и столбцов); сокращенно det-2.

С помощью определителей формулы для решения системы могут быть записаны в виде

x =

∣

∣

∣

∣

∣

p b

q d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

=
det Ax

det A
, y =

∣

∣

∣

∣

∣

a p

c q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

=
det Ay

det A
, (2)

где матрица Ax (соответственно, Ay) получается из матрицы A заменой первого (соот-

ветственно, второго) столбца на столбец, состоящий из свободных членов уравнений.

Полученные формулы называются формулами Крамера.

Теорема.

Определитель det A обладает следующими свойствами:

(1) линейность:
∣

∣

∣

∣

∣

a1 + a2 b

c1 + c2 d

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a1 b

c1 d

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

a2 b

c2 d

∣

∣

∣

∣

∣

;

∣

∣

∣

∣

∣

αa b

αc d

∣

∣

∣

∣

∣

= α

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

;

(2) кососимметричность: det-2 с одинаковыми столбцами равен нулю,
∣

∣

∣

∣

∣

a a

c c

∣

∣

∣

∣

∣

= 0;

(3) нормировка:
∣

∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

∣

= 1.

Из этих основных свойств определителя можно вывести ряд новых свойств, полезных

при вычислениях.

1. Кососимметричность-2: при перестановке столбцов det-2 меняет знак:
∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

= −
∣

∣

∣

∣

∣

b a

d c

∣

∣

∣

∣

∣

.
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◭

∣

∣

∣

∣

∣

a + b a + b

c + d c + d

∣

∣

∣

∣

∣

︸ ︷︷ ︸

=0

=

∣

∣

∣

∣

∣

a a + b

c c + d

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

b a + b

d c + d

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

a a

c c

∣

∣

∣

∣

∣

︸ ︷︷ ︸

=0

+

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

b a

d c

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

b b

d d

∣

∣

∣

∣

∣

︸ ︷︷ ︸

=0

откуда
∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

= −
∣

∣

∣

∣

∣

b a

d c

∣

∣

∣

∣

∣

. ◮

2. Det-2 не изменится, если к любому из его столбцов прибавить другой столбец,

умноженный на произвольное число.

◭

∣

∣

∣

∣

∣

a + αb b

c + αd d

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

+ α

∣

∣

∣

∣

∣

b b

d d

∣

∣

∣

∣

∣

︸ ︷︷ ︸

=0

=

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

. ◮

3. Определитель не изменится, если его строки и столбцы поменять ролями:
∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a c

b d

∣

∣

∣

∣

∣

.

Это означает, что строки и столбцы det-2 равноправны: любое утверждение, справедливое

для столбцов, будет справедливым и для строк.

3.3. Примеры.

Пример.

∣

∣

∣

∣

∣

cos α − sin α

sin α cos α

∣

∣

∣

∣

∣

= cos2 α + sin2 α = 1.

Пример.

∣

∣

∣

∣

∣

12345 12347

24691 24695

∣

∣

∣

∣

∣

.

Вычтем из второй строки удвоенную первую строку:
∣

∣

∣

∣

∣

12345 12347

24691 − 2 · 12345 24695 − 2 · 12347

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

12345 12347

1 1

∣

∣

∣

∣

∣

= 12345 · 1 − 12347 · 1 = −2.

Пример.

Вычислить det-2
∣

∣

∣

∣

∣

1 − i 2 + 3i

3 − 2i 2 + i

∣

∣

∣

∣

∣

= (1 − i)(2 + i) − (2 + 3i)(3 − 2i) =
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= (3 − i) − (12 + 5i) = −9 − 6i.

Пример.

Решить систему уравнений
{

(1 − i) x + (2 + 3i) y = 12 + 8i,

(3 − 2i) x + (2 + i) y = 14 + 5i.

Воспользуемся формулами Крамера; для этого вычислим необходимые определители:

det A =

∣

∣

∣

∣

∣

1 − i 2 + 3i

3 − 2i 2 + i

∣

∣

∣

∣

∣

= −9 − 6i

(см. предыдущий пример),
∣

∣

∣

∣

∣

12 + 8i 2 + 3i

14 + 5i 2 + i

∣

∣

∣

∣

∣

= 3 − 24i,

∣

∣

∣

∣

∣

1 − i 12 + 8i

3 − 2i 14 + 5i

∣

∣

∣

∣

∣

= −33 − 9i.

Теперь находим

x =
3 − 24i

−9 − 6i
= 1 + 2i, y =

−33 − 9i

−9 − 6i
= 3 − i.

3.4. Критерий равенства нулю det-2.

Теорема.

Det-2 равен нулю тогда и только тогда, когда его столбцы линейно зависимы.

◭ 1. Пусть det-2 равен нулю. Имеем:
∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

= 0 =⇒ ad = bc =⇒

=⇒ a

c
=

b

d
= α =⇒

(

a

b

)

= α

(

c

d

)

.

2. Пусть столбцы det-2 ЛЗ; тогда
(

a

c

)

= α

(

b

d

)

=⇒
∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

αb b

αd d

∣

∣

∣

∣

∣

= 0. ◮

4. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Используя методы векторной алгебры, доказать, что медианы треугольника

пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.

Задача 2. Используя методы векторной алгебры, найти координаты центра масс однород-

ной пластинки, имеющей форму четырехугольника ABCD с вершинами в точках A(3, 1),

B(7, 3), C(0, 4), D(−1, 2).

Задача 3. На сторонах AB и AC треугольника ABC взяты соответственно точки M и N

так, что |AM | : |BM | = m1 : n1, |AN | : |CN | = m2 : n2, O — точка пересечения отрезков

BN и CM . Найти отношения |BO| : |ON | и |CO| : |OM |. Решить задачу, используя

методы векторной алгебры.
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Задача 4. Используя методы векторной алгебры, доказать, что четыре отрезка, соединяю-

щие вершины произвольного тетраэдра с точками пересечения медиан противоположных

граней, пересекаются в одной точке и делятся этой точкой в отношении 3 : 1, считая от

вершины.

Задача 5. Используя методы векторной алгебры, доказать, что три отрезка, соединяющие

середины скрещивающихся ребер произвольного тетраэдра, пересекаются в одной точке

и делятся этой точкой пополам.



Лекция 5

1. ОПРЕДЕЛИТЕЛЬ ТРЕТЬЕГО ПОРЯДКА

1.1. Определение. Определитель третьего порядка (сокращенно det-3) должен состоять

из трех строк и трех столбцов чисел; будем считать его функцией его столбцов:

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= |A,B,C| , A =







a1

a2

a3






, B =







b1

b2

b3






, C =







c1

c2

c3






.

Det-3 должен обладать свойствами, аналогичными свойствам det-2:

(1) линейность по столбцам:

|A1 + A2, B, C| = |A1, B, C| + |A2, B, C|

|αA,B,C| = α |A,B,C| ,

и аналогично для всех остальных столбцов;

(2) кососимметричность: определитель с двумя одинаковыми столбцами равен нулю,

|A,A,C| = 0

и аналогично для других столбцов;

(3) нормировка:
∣

∣

∣

∣

∣

∣

∣

1 0 0

0 1 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

= 1.

Отметим свойство кососимметричность-2: при перестановке любых двух столбцов det-3

меняет знак.

|A + B, A + B, C|
︸ ︷︷ ︸

=0

= |A, A + B, C| + |B, A + B, C| =

= |A,A,C|
︸ ︷︷ ︸

=0

+ |A,B,C| + |B,A,C| + |B,B,C|
︸ ︷︷ ︸

=0

,

откуда

|A,B,C| = −|B,A,C|.

Из кососимметричности и линейности получается также следующее свойство: det-3 не

изменится, если к любому его столбцу прибавить произвольную ЛК остальных столбцов.

|A + βB + γC, B, C| = |A, B, C| + β |B, B, C|
︸ ︷︷ ︸

=0

+γ |C, B, C|
︸ ︷︷ ︸

=0

.

1
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1.2. Формулы Крамера. Рассмотрим систему трех линейных уравнений с тремя неиз-

вестными:










a1x + b1y + c1z = p1,

a2x + b2y + c2z = p2,

a3x + b3y + c3z = p3.

Таблицы коэффициентов






a1 b1 c1

a2 b2 c2

a3 b3 c3






,







a1 b1 c1 p1

a2 b2 c2 p2

a3 b3 c3 p3







называются основной и расширенной матрицами системы соответственно.

Введя столбцы

A =







a1

a2

a3






, B =







b1

b2

b3






, C =







c1

c2

c3






, P =







p1

p2

p3






,

систему можно записать в виде

Ax + By + Cz = P.

Пусть (x, y, z) — решение системы. Это означает, что столбец P является ЛК столбцов

A,B,C с коэффициентами x, y, z:

P = Ax + By + Cz.

Рассмотрим det-3 |P,B,C|:

|P,B,C| =

∣

∣

∣

∣

∣

∣

Ax + By + Cz
︸ ︷︷ ︸

=P

, B, C

∣

∣

∣

∣

∣

∣

=

= |Ax,B,C| + |By,B,C| + |Cz,B,C| =

= x |A,B,C| + y |B,B,C|
︸ ︷︷ ︸

=0

+z |C,B,C|
︸ ︷︷ ︸

=0

,

откуда, при условии |A,B,C| 6= 0, получаем

x =
|P,B,C|
|A,B,C| =

det Ax

det A
.

Аналогично получаются формулы для y, z:

y =
|A,P,C|
|A,B,C| =

det Ay

det A
, z =

|A,B, P |
|A,B,C| =

det Az

det A
,

где определители det Ax, det Ay, det Az получены из определителя det A заменой соответ-

ствующего столбца на столбец правых частей системы.

Формулы Крамера дают решение в случае, когда определитель |A,B,C| основной мат-

рицы системы отличен от нуля, и при этом доказывают единственность этого решения.

Если же |A,B,C| = 0, то формулы Крамера неприменимы; в этом случае система может

либо не иметь решений, либо иметь более одного решения.
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1.3. Разложение det-3 по первому столбцу. Рассмотрим столбцы

I1 =







1

0

0






, I2 =







0

1

0






, I3 =







0

0

1






.

Очевидно, любой столбец из трех элементов можно представить в виде ЛК этих трех

столбцов:

A =







a1

a2

a3






= a1I1 + a2I2 + a3I3.

Преобразуем det-3:

|A, B, C| = |a1I1 + a2I2 + a3I3, B, C| =

= a1|I1, B, C| + a2|I2, B, C| + a3|I3, B, C|.

Подчеркнутые det-3 называются алгебраическими дополнениями (АД) элементов a1, a2, a3;

обозначим их A1, A2, A3. Очевидно, эти АД не зависят от элементов a1, a2, a3.

Вычислим АД элемента a1:

A1 = |I1, B, C| = |I1, b1I1 + b2I2 + b3I3, C| =

= b1 |I1, I1, C|
︸ ︷︷ ︸

=0

+b2 |I1, I2, C| + b3 |I1, I3, C| =

= b2

∣

∣I1, I2, c1I1 + c2I2 + c3I3

∣

∣+ b3

∣

∣I1, I3, c1I1 + c2I2 + c3I3

∣

∣ =

= b2c3 |I1, I2, I3| + b3c2 |I1, I3, I2| =

= b2c3

∣

∣

∣

∣

∣

∣

∣

1 0 0

0 1 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸

=1

+b3c2

∣

∣

∣

∣

∣

∣

∣

1 0 0

0 0 1

0 1 0

∣

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸

=−1

= b2c3 − b3c2 =

∣

∣

∣

∣

∣

b2 c2

b3 c3

∣

∣

∣

∣

∣

.

Отметим, что АД элемента a1 равно det-2, который получается, если из исходного det-3

вычеркнуть строку и столбец, на пересечении которых стоит элемент a1.

Аналогичное вычисление АД элементов a2 и a3 дает:

A2 = b3c1 − b1c3 =

∣

∣

∣

∣

∣

b3 c3

b1 c1

∣

∣

∣

∣

∣

= −
∣

∣

∣

∣

∣

b1 c1

b3 c3

∣

∣

∣

∣

∣

,

A3 = b1c2 − b2c1 =

∣

∣

∣

∣

∣

b1 c1

b2 c2

∣

∣

∣

∣

∣

.

Обратите внимание на знак A2.

Итак, получена формула разложения det-3 по элементам первого столбца:
∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= a1

∣

∣

∣

∣

∣

b2 c2

b3 c3

∣

∣

∣

∣

∣

− a2

∣

∣

∣

∣

∣

b1 c1

b3 c3

∣

∣

∣

∣

∣

+ a3

∣

∣

∣

∣

∣

b1 c1

b2 c2

∣

∣

∣

∣

∣

.
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Det-2, фигурирующие в этой формуле, называются минорами этих элементов. Они пред-

ставляют собой det-2, получающиеся из исходного det-3 вычеркиванием строки и столбца,

на пересечении которых стоят элементы a1, a2, a3 соответственно.

Аналогичные формулы могут быть получены и для разложения det-3 по элементам

второго и третьего столбцов:
∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= −b1

∣

∣

∣

∣

∣

a2 c2

a3 c3

∣

∣

∣

∣

∣

+ b2

∣

∣

∣

∣

∣

a1 c1

a3 c3

∣

∣

∣

∣

∣

− b3

∣

∣

∣

∣

∣

a1 c1

a2 c2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= c1

∣

∣

∣

∣

∣

a2 b2

a3 b3

∣

∣

∣

∣

∣

− c2

∣

∣

∣

∣

∣

a1 b1

a3 b3

∣

∣

∣

∣

∣

+ c3

∣

∣

∣

∣

∣

a1 b1

a2 b2

∣

∣

∣

∣

∣

.

Анализ этих формул позволяет сделать следующий вывод: АД элемента равно минору

этого элемента, взятому со знаком «+» или «−» согласно следующей схеме:






+ − +

− + −
+ − +






.

Итак, det-3 равен сумме произведений элементов столбца на их алгебраические допол-

нения:
∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= a1A1 + a2A2 + a3A3.

Рассмотрим сумму произведений элементов второго столбца на алгебраические допол-

нения элементов первого столбца:

b1A1 + b2A2 + b3A3 =

∣

∣

∣

∣

∣

∣

∣

b1 b1 c1

b2 b2 c2

b3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= 0.

Аналогично и для других столбцов. Итак, сумма произведений элементов некоторого

столбца на алгебраические дополнения другого столбца равна нулю.

1.4. Полное разложение det-3. Вычисляя АД, входящие в разложение det-3 по элемен-

там какой-либо строки, получаем следующую формулу:
∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1.

Мнемонические правила для запоминания:
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Сгруппируем иначе слагаемые в полном разложении det-3:
∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1 =

= a1 (b2c3 − b3c2) − b1 (a2c3 − a3c2) + c1 (a2b3 − a3b3) =

= a1

∣

∣

∣

∣

∣

b2 b3

c2 c3

∣

∣

∣

∣

∣

− b1

∣

∣

∣

∣

∣

a2 a3

c2 c3

∣

∣

∣

∣

∣

+ c1

∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

.

Это означает, что строки и столбцы det-3 равноправны: любое утверждение, сформу-

лированное для столбцов, имеет аналог, справедливый для строк. В частности, можно

производить разложение det-3 не только по элементам столбцов, но и по элементам строк.

1.5. Примеры.

Пример.

∣

∣

∣

∣

∣

∣

∣

1 2 3

2 4 −1

−4 5 1

∣

∣

∣

∣

∣

∣

∣

.

Из второй строки вычтем первую, умноженную на 2, а к четвертой строке прибавим

первую, умноженную на 4, после чего разложим получившийся det-3 по элементам первого

столбца:

∣

∣

∣

∣

∣

∣

∣

1 2 3

0 0 −7

0 13 13

∣

∣

∣

∣

∣

∣

∣

= 1 ·
∣

∣

∣

∣

∣

0 −7

13 13

∣

∣

∣

∣

∣

= 0 · 13 − (−13) · 7 = 91.

Пример.

Решить систему уравнений














x + 2y + 3z = 14,

2x + 4y − z = 7,

−4x + 5y + z = 9.

Воспользуемся формулами Крамера, для чего вычислим нужные det-3:

det A =

∣

∣

∣

∣

∣

∣

∣

1 2 3

0 0 −7

0 13 13

∣

∣

∣

∣

∣

∣

∣

= 91

(см. пример выше).
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det Ax =

∣

∣

∣

∣

∣

∣

∣

14 2 3

7 4 −1

9 5 1

∣

∣

∣

∣

∣

∣

∣

;

для вычисления этого det-3 прибавим к первой строке утроенную вторую строку, а к тре-

тьей строке прибавим вторую строку, после чего разложим полученный det-3 по третьему

столбцу:

det Ax =

∣

∣

∣

∣

∣

∣

∣

35 14 0

7 4 −1

16 9 0

∣

∣

∣

∣

∣

∣

∣

= −(−1) ·
∣

∣

∣

∣

∣

35 14

16 9

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

35 − 2 · 16 14 − 2 · 9
16 9

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3 −4

16 9

∣

∣

∣

∣

∣

= 3 · 9 + 4 · 16 = 91.

При вычислении det Ay и det Az будем из второй строки вычитать удвоенную первую

строку, а к третьей строке прибавлять первую строку, умноженную на 4, как это делалось

при вычислении det A; после этого каждый из полученных det-3 разложим по элементам

первого столбца:

det Ay =

∣

∣

∣

∣

∣

∣

∣

1 14 3

2 7 −1

−4 9 1

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 14 3

0 −21 −7

0 65 13

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−21 −7

65 13

∣

∣

∣

∣

∣

= 182,

det Az =

∣

∣

∣

∣

∣

∣

∣

1 2 14

2 4 7

−4 5 9

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 2 14

0 0 −21

0 13 65

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

0 −21

13 65

∣

∣

∣

∣

∣

= 273.

Решение системы:

x =
det Ax

det A
=

91

91
= 1, y =

det Ay

det A
=

182

91
= 2, z =

det Az

det A
=

273

91
= 3.

1.6. Критерий равенства нулю det-3.

Теорема.

Det-3 равен нулю тогда и только тогда, когда его столбцы линейно зависимы.

◭ 1. Пусть det-3 равен нулю. Рассмотрим систему линейных уравнений










a1x1 + b1x2 + c1x3 = 0,

a2x1 + b2x2 + c2x3 = 0,

a3x1 + b3x2 + c3x3 = 0.

Формулы Крамера к ней неприменимы, но она имеет очевидное решение x1 = x2 = x3 = 0.

Поэтому решение системы не единственно, и она имеет какое-либо другое решение, в

котором хотя бы одна из неизвестных отлична от нуля. Компоненты этого решения и яв-

ляются коэффициентами нетривиальной линейной комбинации столбцов, равной нулевому

столбцу.

2. Пусть столбцы ЛЗ; тогда один из них можно представить в виде ЛК остальных,

например, C = αA + βB. Тогда

|A,B,C| = |A,B,C − αA − βB| = |A,B,O| = 0. ◮
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2. МАТРИЦЫ

2.1. Основные определения.

Матрица размера m × n — прямоугольная таблица из чисел (элементов матрицы), со-

стоящая из m строк и n столбцов.

Нумерация элементов матрицы:

(1) верхний индекс — номер строки, нижний индекс — номер столбца:

A =













a1

1
a1

2
· · · a1

n

a2

1
a2

2
· · · a2

n
...

...
. . .

...

am
1

am
2

· · · am
n













;

(2) первый индекс — номер строки, а второй — номер столбца:

A =













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn













.

Сокращенные обозначения:













a1

1
a1

2
· · · a1

n

a2

1
a2

2
· · · a2

n
...

...
. . .

...

am
1

am
2

· · · am
n













= (ai
j)

m
n ,













a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn













= (aij)mn.

Множество всех матриц размера m× n, элементы которых принадлежат множеству X,

обозначается Xm×n. Для нас наиболее интересен случай, когда X —некоторое числовое

поле K (K = Q, R или C).

Специальные виды матриц:

• нулевая матрица: все элементы равны нулю; обозначение O;

• квадратная матрица: количество строк равно количеству столбцов); порядок квад-

ратной матрицы — это количество ее строк (столбцов);

• диагональная матрица: квадратная матрица, у которой ai
j = 0 для всех i 6= j,





















a1

1
0 0 · · · 0 0

0 a2

2
0 · · · 0 0

0 0 a3

3
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1

n−1
0

0 0 0 · · · 0 an
n





















= diag(a1

1
, . . . , an

n);
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• верхнетреугольная (правая треугольная) матрица: квадратная матрица, у которой

ai
j = 0 для всех i > j,





















∗ ∗ ∗ · · · ∗ ∗
0 ∗ ∗ · · · ∗ ∗
0 0 ∗ · · · ∗ ∗
...

...
...

. . .
...

...

0 0 0 · · · ∗ ∗
0 0 0 · · · 0 ∗





















;

• нижнетреугольная (левая треугольная) матрица: квадратная матрица, у которой

ai
j = 0 для всех i < j,





















∗ 0 0 · · · 0 0

∗ ∗ 0 · · · 0 0

∗ ∗ ∗ · · · 0 0
...

...
...

. . .
...

...

∗ ∗ ∗ · · · ∗ 0

∗ ∗ ∗ · · · ∗ ∗





















.

Матрицы A и B называются равными, A = B, если

(1) их размеры равны:

A = (ai
j)

m
n , B = (bi

j)
m
n ;

(2) элементы, стоящие на соответственных местах, равны между собой:

ai
j = bi

j ∀ i = 1, . . . ,m, j = 1, . . . , n.

2.2. Линейные операции и их свойства.

Сумма матриц A = (ai
j)

m
n и B = (bi

j)
m
n одинакового размера m × n:

C = A + B ⇐⇒ ci
j = ai

j + bi
j ∀ i = 1, . . . ,m, j = 1, . . . , n.

Произведение матрицы A = (ai
j)

m
n на число α:

D = αA ⇐⇒ di
j = αai

j ∀ i = 1, . . . ,m, j = 1, . . . , n.

Теорема.

Операции над матрицами обладают следующими свойствами.

(1) коммутативность сложения: ∀A,B ∈ Km×n

A + B = B + A;

(2) ассоциативность сложения: ∀A,B,C ∈ Km×n

(A + B) + C = A + (B + C);

(3) свойство нулевой матрицы: ∀A ∈ Km×n

A + O = A,

где O ∈ Km×n;

(4) существование противоположной матрицы:

∀A ∈ Km×n ∃A′ ∈ Km×n : A + A′ = O;
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(5) свойство единицы: ∀A ∈ Km×n

1 · A = A;

(6) ассоциативность умножения на число: ∀α, β ∈ K, ∀A ∈ Km×n:

α(βA) = (αβ)A;

(7) дистрибутивность-1: ∀α ∈ K, ∀A,B ∈ Km×n

α(A + B) = αA + αB;

(8) дистрибутивность-2: ∀α, β ∈ K, ∀A ∈ Km×n

(α + β)A = αA + βA.

2.3. Умножение матриц.

Произведение матриц A ∈ Km×s и B ∈ Ks× — матрица C = AB ∈ Km×n, элементы

которой вычисляются по формуле

ci
j =

s
∑

k=1

ai
kb

k
j .

Перемножить матрицы можно лишь в том случае, когда количество столбцов первой

матрицы равно количеству строк второй.

Пример.

(

1 2

3 4

)

·
(

5

6

)

=

(

1 · 5 + 2 · 6
3 · 5 + 4 · 6

)

=

(

17

39

)

;

произведение
(

5

6

)

·
(

1 2

3 4

)

не существует;

(

1 2 3

4 5 6

)

·







1 2

3 4

5 6






=

=

(

1 · 1 + 2 · 3 + 3 · 5 1 · 2 + 2 · 4 + 3 · 6
4 · 1 + 5 · 3 + 6 · 5 4 · 2 + 5 · 4 + 6 · 6

)

=

(

22 28

49 64

)

;







1 2

3 4

5 6






·
(

1 2 3

4 5 6

)

=

=







1 · 1 + 2 · 4 1 · 2 + 2 · 5 1 · 3 + 2 · 6
3 · 1 + 4 · 4 3 · 2 + 4 · 5 3 · 3 + 4 · 6
5 · 1 + 6 · 4 5 · 2 + 6 · 5 5 · 3 + 6 · 6






=







9 12 15

19 26 33

29 40 51






;
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(

1 2

3 4

)

·
(

5 6

7 8

)

=

(

19 22

43 50

)

,

(

5 6

7 8

)

·
(

1 2

3 4

)

=

(

23 34

31 46

)

;

здесь

AB 6= BA.

(

1 2

0 1

)

·
(

2 3

0 2

)

=

(

2 7

0 2

)

;

(

2 3

0 2

)

·
(

1 2

0 1

)

=

(

2 7

0 2

)

.

Здесь AB = BA.

Единичная матрица — диагональная матрица, все диагональные элементы которой рав-

ны 1. Элементы единичной матрицы обозначаются

δi
j =







1, если i = j,

0, если i 6= j;

δi
j называется символом Кронекера.

Обозначения: I, E; если нужно указать размер — In, En.

Теорема.

Операция умножения матриц обладает следующими свойствами:

(1) ассоциативность умножения: ∀A ∈ Km×s, ∀B ∈ Ks×p, ∀C ∈ Kp×n

A(BC) = (AB)C;

(2) дистрибутивность-1: ∀A ∈ Km×s, ∀B,C ∈ Ks×n

A(B + C) = AB + AC;

(3) дистрибутивность-2: ∀A,B ∈ Km×s, ∀C ∈ Ks×n

(A + B)C = AC + BC;

(4) свойство единичной матрицы: ∀A ∈ Km×n

ImA = AIn = A.

◭ Докажем соотношение

A(

D
︷ ︸︸ ︷

B C )
︸ ︷︷ ︸

X

= (

F
︷ ︸︸ ︷

A B )C
︸ ︷︷ ︸

Y

.

Пусть

A = (ai
j)

m
s , B = (bj

k)
s
p, C = (ck

l )
p
n.

Рассмотрим произведение

D = BC = (dj
l )

s
n, d

j
l =

p
∑

k=1

b
j
k ck

l .

Далее,

X = AD = (xi
l)

m
n ,

xi
l =

s
∑

j=1

ai
j d

j
l =

s
∑

j=1

ai
j

(

p
∑

k=1

b
j
k ck

l

)

=
s
∑

j=1

p
∑

k=1

ai
j b

j
k ck

l .
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Произведения в правой части равенства:

F = AB = (f i
k)

m
p , f i

k =
s
∑

j=1

ai
j b

j
k,

Y = FC = (yi
l)

m
n ,

yi
l =

p
∑

k=1

f i
k ck

l =

p
∑

k=1

(

s
∑

j=1

ai
j b

j
k

)

ck
l =

p
∑

k=1

s
∑

j=1

ai
j b

j
k ck

l .

Ясно, что xi
l = yi

l , так как выражения этих величин отличаются лишь порядком сумми-

рования. ◮

2.4. Структура произведения матриц. Рассмотрим матрицы

A = (aj
l )

m
p ∈ Km×p, B = (bl

k)
p
n ∈ Kp×n,

Наша задача — описать структуру столбцов матрицы C = AB.

Представим матрицу A в виде совокупности столбцов

A = [A1 A2 . . . Ap],

где

A1 =













a1

1

a2

1

...

am
1













, A2 =













a1

2

a2

2

...

am
2













, . . . , Ap =













a1

p

a2

p
...

am
p













.

Произведением матриц A ∈ Km×p и B ∈ Kp×n является матрица C ∈ Km×n, элементы

которой вычисляются по формуле

c
j
k =

p
∑

l=1

a
j
l bl

k,
j = 1, . . . ,m,

k = 1, . . . , n.

Представим матрицу C в виде совокупности столбцов:

C = [C1 C2 . . . Cn].

Обсудим строение k-го столбца:

Ck =







c1

k
...

cm
k






=













p
∑

l=1

a1

l bl
k

...
p
∑

l=1

am
l bl

k













=

p
∑

l=1







a1

l
...

am
l






bl
k =

p
∑

l=1

Al bl
k = A · Bk.

Таким образом, доказаны следующие утверждения.

(1) k-й столбец матрицы AB равен линейной комбинации столбцов матрицы A с ко-

эффициентами, равными элементам k-го столбца матрицы B.

(2) k-й столбец матрицы AB равен произведению матрицы A на k-й столбец матрицы

B.
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2.5. Транспонирование. Дана матрица A = (ai
j)

m
n ∈ Km×n. Матрица

B = (bj
i )

n
m ∈ Kn×m, b

j
i = ai

j,

называется транспонированной для A. Обозначения:

B = AT = Atr = trA.

Пример.

(

1 2 3

4 5 6

)T

=







1 4

2 5

3 6






.

Теорема.

Операция транспонирования обладает следующими свойствами:

1. (A + B)T = AT + BT ;

2. (αA)T = α · AT ;

3. (AT )T = A;

4. (AB)T = BT AT .

◭ Докажите самостоятельно. ◮

Матрица A называется симметричной, если A = AT .

Матрица A называется кососимметричной, если A = −AT .

Пример.







1 2 3

2 5 7

3 7 4






,







0 1 −2

−1 0 3

2 −3 0






.

Множества всех симметричных и кососимметричных матриц порядка n обозначаются

SKn×n, AKn×n.

Теорема.

Любую квадратную матрицу A можно представить в виде суммы симметричной и

кососимметричной матриц:

A =
1

2
(A + AT )
︸ ︷︷ ︸

симм.

+
1

2
(A − AT )
︸ ︷︷ ︸

кососимм.

.

Отметим, что такое представление единственно.

2.6. Определитель произведения матриц. В этом разделе матрицы A, B имеют следу-

ющую структуру:

A =

(

a1

1
a1

2

a2

1
a2

2

)

или







a1

1
a1

2
a1

3

a2

1
a2

2
a2

3

a3

1
a3

2
a3

3






.

Теорема.
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Если A, B — матрицы второго или третьего порядка, то

det(A · B) = det A · det B.

1. Доказательство для det-2.

det(AB) = det[AB1, AB2] =

= det
[

A
(

b1

1
I1 + b2

1
I2

)

, A
(

b1

2
I1 + b2

2
I2

)]

=

= b1

1
det
[

AI1, A
(

b1

2
I1 + b2

2
I2

)]

+ b2

1
det
[

AI2, A
(

b1

2
I1 + b2

2
I2

)]

=

= b1

1
b1

2
det [AI1, AI1]
︸ ︷︷ ︸

=0

+b1

1
b2

2
det [AI1, AI2]
︸ ︷︷ ︸

=det A

+

+b2

1
b1

2
det [AI2, AI1]
︸ ︷︷ ︸

=−det A

+b2

1
b2

2
det [AI2, AI2]
︸ ︷︷ ︸

=0

=

= det A
(

b1

1
b2

2
− b2

1
b1

2

)

= det A · det B.

2. Доказательство для det-3. Прежде всего запишем формулу полного разложения det-3:
∣

∣

∣

∣

∣

∣

∣

b1

1
b1

2
b1

3

b2

1
b2

2
b2

3

b3

1
b3

2
b3

3

∣

∣

∣

∣

∣

∣

∣

= b1

1
b2

2
b3

3
+ b2

1
b3

2
b1

3
+ b3

1
b1

2
b2

3
− b1

1
b3

2
b2

3
− b2

1
b1

2
b3

3
− b3

1
b2

2
b1

3
.

Структура этой формулы такова: в каждом слагаемом нижние индексы следуют в есте-

ственном порядке 1, 2, 3, а верхние образуют некоторую перестановку чисел 1, 2, 3; всего

слагаемых 6, по числу возможных перестановок из 3 элементов, 3! = 6.

Слагаемое входит в формулу со знаком «+», если последовательность верхних индек-

сов в нем получена из последовательности 1, 2, 3 четным числом перестановок соседних

элементов, и со знаком «−» в противном случае:

123

ւ ց
213 132

↓ ↓
231 312

ց ւ
321

Для определителя произведения матриц имеем:

det(AB) = det [AB1, AB2, AB3] =

= det













A

(

3
∑

i=1

bi
1
Ii

)

︸ ︷︷ ︸

B1

, A

(

3
∑

j=1

b
j
2
Ij

)

︸ ︷︷ ︸

B2

, A

(

3
∑

k=1

bk
3
Ik

)

︸ ︷︷ ︸

B3













=
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=
3
∑

i=1

bi
1
det

[

AIi, A

(

3
∑

j=1

b
j
2
Ij

)

, A

(

3
∑

k=1

bk
3
Ik

)]

= · · · =

=
3
∑

i=1

3
∑

j=1

3
∑

k=1

bi
1

b
j
2

bk
3
det [AIi, AIj, AIk] =

=
3
∑

i=1

3
∑

j=1

3
∑

k=1

bi
1

b
j
2

bk
3

det [Ai, Aj, Ak] .

В этой сумме 33 = 27 слагаемых, но большинство из них равно нулю, так как содержат

в качестве множителя det-3 вида det[Ai, Aj, Ak] с одинаковыми столбцами. Далее, если

все столбцы Ai, Aj, Ak различны, то

det[Ai, Aj, Ak] = ± det A,

где знак «+» или «−» зависит от того, четным или нечетным числом перестановок столб-

цов получен det[Ai, Aj, Ak] из det[A1, A2, A3] = det A.

Поэтому, продолжая выкладку, получаем

det(AB) = det A ·
(

b1

1
b2

2
b3

3
+ b2

1
b3

2
b1

3
+ b3

1
b1

2
b2

3
− b1

1
b3

2
b2

3
− b2

1
b1

2
b3

3
− b3

1
b2

2
b1

3

)

= det A · det B.

2.7. Обратная матрица. Понятие обратной матрицы определено только для квадратных

матриц.

Дана матрица A ∈ Kn×n. Матрица A−1 ∈ Kn×n называется обратной к матрице A, если

A−1A = AA−1 = I.

Матрица A в этом случае называется обратимой.

Уже на примере матрицы 1 × 1 ясно, что обратная матрица существует не для любой

матрицы: матрица (0) необратима.

Теорема.

Если для матрицы A существует обратная A−1, то она единственна.

◭ Предположим, что матрица A имеет две различные обратные матрицы B и C, т.е.

AB = BA = I, AC = CA = I.

Имеем:

B = BI = B(AC) = (BA)C = IC = C,

т.е. B = C. ◮

Теорема.

Матрица A обратима тогда и только тогда, когда det A 6= 0, что эквивалентно

условию линейной независимости столбцов (строк) матрицы A.

Замечание. Сейчас нас интересует вопрос о существовании обратных матриц для мат-

риц порядка 2 и 3. Всюду далее в доказательстве считаем, что n = 3. На самом деле

теорема вместе с доказательством справедлива для матрицы A любого порядка.

◭ 1. Предположим, что существует A−1. Имеем

A−1A = I =⇒ det(A−1A) = det I =⇒

=⇒ det A−1 · det A = 1 =⇒ det A 6= 0.
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2. Пусть det A 6= 0. Рассмотрим матрицу, составленную из алгебраических дополнений

элементов матрицы A:

B =













A1

1
A1

2
. . . A1

n

A2

1
A2

2
. . . A2

n
...

...
. . .

...

An
1

An
2

. . . An
n













= (Ak
j )

n
n;

она называется присоединенной к матрице A. Вычислим произведение C = A · BT :

ci
j =

n
∑

k=1

ai
kA

j
k =







det A 6= 0, i = j,

0, i 6= j.

Таким образом, матрица
1

det A
BT

является обратной для A. Эта формула позволяет вычислить обратную матрицу A−1.

◮

Пример.

Пусть

A =

(

a b

c d

)

.

Алгебраические дополнения элементов

АД(a) = d, АД(b) = −c, АД(c) = −b, АД(d) = a,

присоединенная матрица
B =

(

d −c

−b a

)

,

так что обратная матрица равна

A−1 =
1

det A
BT =

1

ad − bc

(

d −b

−c a

)

.

3. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Доказать, что k-й столбец матрицы AB равен линейной комбинации столбцов

матрицы A с коэффициентами, равными элементам k-го столбца матрицы B.

Задача 2. Доказать, что k-я строка матрицы AB равна линейной комбинации строк мат-

рицы B с коэффициентами, равными элементам k-й строки матрицы A.

Задача 3. Доказать, что k-й столбец матрицы AB равен произведению матрицы A на k-й

столбец матрицы B.

Задача 4. Доказать, что k-я строка матрицы AB равна произведению k-й строки матри-

цы A на матрицу B.

Задача 5. Доказать соотношение (AB)T = BT AT .

Задача 6. Матрица A такова, что A2 + A + E = 0. Доказать, что матрица A обратима и

выразить A−1 через A.
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Задача 7. Пусть Am = 0. Доказать, что (E − A)−1 = E + A + · · · + Am−1.

Задача 8. Пусть f(t) — многочлен. Доказать, что f(S−1AS) = S−1f(A)S.

Задача 9. Доказать, что если A — невырожденная симметрическая матрица, то A−1 —

также симметрическая матрица.

Задача 10. Доказать, что если A — невырожденная кососимметрическая матрица, то A−1

— также кососимметрическая матрица.

Задача 11. Пусть A, B — симметрические матрицы. Доказать, что AB является симмет-

рической матрицей тогда и только тогда, когда AB = BA.

Задача 12. Пусть A, B — кососимметрические матрицы. Доказать, что AB является

симметрической матрицей тогда и только тогда, когда AB = BA.

Задача 13. Пусть A, B — кососимметрические матрицы. Доказать, что AB является

кососимметрической матрицей тогда и только тогда, когда AB = −BA.



Лекция 6

1. ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ

Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и

новым)

e1, e2, f
1
, f

2
.

Векторы нового базиса можно выразить через векторы старого базиса:

f
1

= c1

1
e1 + c2

1
e2,

f
2

= c1

2
e1 + c2

2
e2.

Введем матрицы

E = (e1,e2), F = (f
1
,f

2
), C =

(

c1

1
c2

1

c1

2
c2

2

)

.

Тогда можно записать

F = EC.

Матрица C называется матрицей перехода от базиса e1,e2 к базису f
1
,f

2
. Определитель

матрицы перехода отличен от нуля в силу линейной независимости векторов базиса.

Базис F = (f
1
,f

2
) называется одноименным (разноименным) с базисом E = (e1,e2),

если матрица перехода C от E к F имеет положительный (отрицательный) определитель.

Если базис F является одноименным с базисом E, мы пишем F ≃ E.

Теорема.

Отношение одноименности базисов обладает следующими свойствами:

(1) E ≃ E;

(2) если F ≃ E, то E ≃ F ;

(3) если E ≃ F и F ≃ H, то E ≃ H.

Множество всех базисов на плоскости разбивается на два класса следующим образом.

Пусть E — некоторый базис. К одному классу относятся все базисы, одноименные с E

(и при этом одноименные между собой), к другому — разноименные с E (и при этом

одноименные между собой).

Каждый из двух классов одноименных базисов называется ориентацией плоскости. На

плоскости существует ровно две ориентации, одна из которых называется положительной,

а вторая — отрицательной.

Соглашение об ориентации.

Базис на плоскости e1,e2 называется правым, если кратчайший поворот, переводящий

вектор e1 в вектор e2, осуществляется против часовой стрелки.

e1

e1

e2

e2

1



2

Аналогичные рассуждения можно провести и для базисов в пространстве. В простран-

стве также существует ровно две ориентации.

Базис в пространстве e1,e2,e3 называется правым, если выполнено одно из следующих

условий:

(1) если смотреть из конца вектора e3, то кратчайший поворот, переводящий вектор

e1 в вектор e2, осуществляется против часовой стрелки;

(2) векторы e1,e2,e3 удовлетворяют правилу винта: если вращать винт в направлении

поворота, переводящего (кратчайшим образом) вектор e1 в вектор e2, то поступа-

тельное движение винта происходит в направлении вектора e3;

e1

e1 e2

e2

e3e3

(3) векторы e1,e2,e3 удовлетворяют правилу правой руки: их расположение совпадает

с естественным положением большого, указательного и среднего пальцев правой

руки.
e1e1

e2

e2

e3

e3

2. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

2.1. Определение.

Проекция вектора a на вектор b — это вектор c, коллинеарный b, начало (конец) кото-

рого представляет собой ортогональную проекцию начала (конца) вектора a на прямую,

параллельную b. Обозначение: c = pr
b
a.

a
a

bb

cc

Величиной Prb a проекции pr
b
a называется ее длина, взятая со знаком «+», если век-

торы c = pr
b
a и b сонаправлены, и со знаком «−» в противном случае. Ясно, что

Prb a = |a| cos ϕ,

где ϕ — угол между векторами a и b.

Скалярное произведение (СП) двух векторов — это число, равное произведению длин

векторов на косинус угла между ними:

(a, b) = |a| · |b| · cos ϕ.
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Ясно, что СП равно

(a, b) = Prb a · |b|.

Для СП используется также обозначение a · b.
Скалярный квадрат вектора:

(a,a) = |a|2.

Длина вектора может быть выражена через его скалярный квадрат:

|a| =
√

(a,a).

Вычислим проекцию c вектора a на вектор b.

Вектор c коллинеарен b, поэтому

c = αb.

Кроме того,

(a, b) = Prb a · |b| = (c, b) = (αb, b),

откуда

α =
(a, b)

(b, b)
.

Окончательный результат:

c = pr
b
a =

(a, b)

(b, b)
b.

Величина этой проекции

Prb a =
(a, b)

|b| .

2.2. Свойства скалярного произведения.

Теорема.

Скалярное произведение векторов обладает следующими свойствами:

(1) симметричность:

(a, b) = (b,a);

(2) линейность:

(a1 + a2, b) = (a1, b) + (a2, b), (αa, b) = α(a, b);

(3) положительная определенность:

(a,a) > 0, (a,a) = 0 ⇐⇒ a = 0.

Отметим, что из линейности по первому аргументу и симметричности следует линей-

ность по второму аргументу.

◭ Докажем, что (a1 + a2, b) = (a1, b) + (a2, b). Это следует из того факта, что

pr
b
(a1 + a2) = pr

b
a1 + pr

b
a2,

а следовательно,

Prb(a1 + a2) = Prb a1 + Prb a2. ◮
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a1

b

a2

pr
b a

1

pr
b a

2

2.3. Вычисление СП в ортонормированном базисе. Пусть в пространстве задан ОНБ

e1,e2,e3. Попарные СП векторов этого базиса равны

(e1,e1) = (e2,e2) = (e3,e3) = 1,

(e1,e2) = (e1,e3) = (e2,e3) = 0.

Символ Кронекера:

δjk =

{

1, j = k,

0, j 6= k.

Тогда можно записать

(ej,ek) = δjk.

Разложим векторы a, b по базису e1,e2,e3:

a = a1e1 + a2e2 + a3e3, b = b1e1 + b2e2 + b3e3.

Вычислим СП:

(a, b) = (a1e1 + a2e2 + a3e3, b1e1 + b2e2 + b3e3) =

= (a1e1, b1e1 + b2e2 + b3e3) +

+ (a2e2, b1e1 + b2e2 + b3e3) +

+ (a3e3, b1e1 + b2e2 + b3e3) =

= a1b1 (e1,e1)
︸ ︷︷ ︸

=1

+a1b2 (e1,e2)
︸ ︷︷ ︸

=0

+a1b3 (e1,e3)
︸ ︷︷ ︸

=0

+

+a2b1 (e2,e1)
︸ ︷︷ ︸

=0

+a2b2 (e2,e2)
︸ ︷︷ ︸

=1

+a2b3 (e2,e3)
︸ ︷︷ ︸

=0

+

+a3b1 (e3,e1)
︸ ︷︷ ︸

=0

+a3b2 (e3,e2)
︸ ︷︷ ︸

=0

+a3b3 (e3,e3)
︸ ︷︷ ︸

=1

=

= a1b1 + a2b2 + a3b3.

Итак, скалярное произведение векторов выражается через их координаты в ортонорми-

рованном базисе формулой

(a, b) = a1b1 + a2b2 + a3b3.

Длина вектора равна

|a| =
√

a2

1
+ a2

2
+ a2

3
.
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Угол между векторами может быть найден по формуле

cos ϕ =
(a, b)

|a| · |b| =
a1b1 + a2b2 + a3b3

√

a2

1
+ a2

2
+ a2

3

√

b2

1
+ b2

2
+ b2

3

.

Пример.

Найти проекцию вектора a = (1, 3,−2)T на b = (3,−6, 2)T , величину этой проекции и

угол между векторами.

Имеем:

|a| =
√

12 + 32 + (−2)2 =
√

14, |b| =
√

32 + (−6)2 + 22 = 7,

(a, b) = 1 · 3 + 3 · (−6) + (−2) · 2 = −19,

pr
b
a =

(a, b)

(b, b)
b =

−19

49







3

−6

2






,

Prb a =
(a, b)

|b| = −19

7
,

cos ϕ =
(a, b)

|a| · |b| = − 19

7
√

14
.

3. ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

3.1. Определение.

Векторным произведением (ВП) векторов a и b называется вектор c, удовлетворяющий

следующим требованиям:

(1) |c| = |a| · |b| · sin ϕ;

(2) вектор c перпендикулярен векторам a, b;

(3) векторы a, b, c образуют правую тройку.

3.2. Формула для вычисления векторного произведения. Пусть векторы a, b заданы

координатами относительно некоторого ортонормированного базиса:

a =







a1

a2

a3






, b =







b1

b2

b3






.

Будем предполагать, что эти векторы ненулевые и неколлинеарные; в противном случае

ВП равно нулевому вектору.

Найдем какой-либо ненулевой вектор p, перпендикулярный a и b. Условие перпендику-

лярности:

p ⊥ a ⇐⇒ (p,a) = 0.

Таким образом, координаты p1, p2, p3 вектора p должны удовлетворять системе уравнений
{

a1p1 + a2p2 + a3p3 = 0,

b1p1 + b2p2 + b3p3 = 0.
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Так как p 6= 0, хотя бы одна из его координат отлична от нуля; предположим, что это

p3. Тогда, разделив оба уравнения системы на p3 и обозначив

x1 =
p1

p3

, x2 =
p1

p3

,

получим систему
{

a1x1 + a2x2 = −a3,

b1x1 + b2x2 = −b3,

Ее решение имеет вид

x1 =

∣

∣

∣

∣

∣

−a3 a2

−b3 b2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

, x2 = −

∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

.

Таким образом, в качестве вектора p можно взять вектор

p1 =

∣

∣

∣

∣

∣

−a3 a2

−b3 b2

∣

∣

∣

∣

∣

, p2 =

∣

∣

∣

∣

∣

a1 −a3

b1 −b3

∣

∣

∣

∣

∣

, p3 =

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

.

Вектор c пропорционален вектору p, c = αp. Подберем α так чтобы |αp| = |a||b| sin ϕ.

|c|2 = |a|2|b|2 sin2 ϕ = |a|2|b|2(1 − cos2 ϕ) = |a|2|b|2 − (a, b)2 =

= (a2

1
+ a2

2
+ a2

3
)(b2

1
+ b2

2
+ b2

3
) − (a1b1 + a2b2 + a3b3)

2 =

= (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2;

получили, что |c| = |p|. Таким образом, c = ±p.

Для выяснения знака вычислим определитель матрицы перехода от исходного ОНБ к

базису, состоящему из векторов a, b, c; этот det-3 состоит из координат векторов a, b, c:

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

2

> 0.

Таким образом, тройка векторов a, b, c имеет ту же ориентацию, что и исходный ОНБ.

Поэтому в случае правого ОНБ c = p, а в случае левого ОНБ c = −p.

Итак, в случае правого ОНБ имеем

c =























∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣























.
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Ясно, что координаты вектора c равны алгебраическим дополнениям элементов первой

строки det-3
∣

∣

∣

∣

∣

∣

∣

∗ ∗ ∗
a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

.

Поэтому можно формулу для вычисления ВП представить в виде

[a, b] =

∣

∣

∣

∣

∣

∣

∣

e1 e2 e3

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

в правом ОНБ,

[a, b] = −

∣

∣

∣

∣

∣

∣

∣

e1 e2 e3

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

в левом ОНБ.

Очевидно, эти формулы справедливы и для случаев, когда один (или оба) вектора

нулевой и когда векторы коллинеарны (эти случаи в начале рассуждения были исключены

из рассмотрения).

3.3. Свойства векторного произведения.

Теорема.

Векторное произведение обладает следующими свойствами:

(1) кососимметричность:

[a, b] = −[b,a];

(2) линейность:

[a1 + a2, b] = [a1, b] + [a2, b],

[αa, b] = α[a, b].

Из линейности по первому аргументу и кососимметричности вытекает линейность

и по второму аргументу.

◭ Докажите самостоятельно, используя свойства определителей. ◮

3.4. Двойное векторное произведение. Двойное векторное произведение — это [a, [b, c]]

или [[a, b], c].

Теорема.

[a, [b, c]] = b(a, c) − c(a, b).

◭ В фиксированном ОНБ векторы a, b, c имеют координаты

a =







a1

a2

a3






, b =







b1

b2

b3






, c =







c1

c2

c3






.

Вычислим [b, c]:

[b, c] =

∣

∣

∣

∣

∣

∣

∣

i j k

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

=







b2c3 − b3c2

b3c1 − b1c3

b1c2 − b2c1






.
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Далее вычисляем [a, [b, c]]:

[a, [b, c]] =

∣

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b2c3 − b3c2 b3c1 − b1c3 b1c2 − b2c1

∣

∣

∣

∣

∣

∣

∣

=

=







a2(b1c2 − b2c1) − a3(b3c1 − b1c3)

a3(b2c3 − b3c2) − a1(b1c2 − b2c1)

a1(b3c1 − b1c3) − a2(b2c3 − b3c2)






=

=







b1(a2c2 + a3c3) − c1(a2b2 + a3b3)

b2(a1c1 + a3c3) − c2(a1b1 + a3b3)

b3(a1c1 + a2c2) − c3(a1b1 + a2b2)






=

=







b1(a1c1 + a2c2 + a3c3) − c1(a1b1 + a2b2 + a3b3)

b2(a1c1 + a2c2 + a3c3) − c2(a1b1 + a2b2 + a3b3)

b3(a1c1 + a2c2 + a3c3) − c3(a1b1 + a2b2 + a3b3)






=

= (a1c1 + a2c2 + a3c3)







b1

b2

b3






− (a1b1 + a2b2 + a3b3)







c1

c2

c3






=

= (a, c)b − (a, b)c. ◮

Теорема.

Имеет место тождество Якоби:

[a, [b, c]] + [b, [c,a]] + [c, [a, b]] = 0.

◭ Складывая разложение

[a, [b, c]] = b(a, c) − c(a, b)

с аналогичными разложениями для [b, [c,a]], [c, [a, b]], получаем требуемое. ◮

4. СМЕШАННОЕ ПРОИЗВЕДЕНИЕ

Смешанное произведение трех векторов a, b, c — это число

(a, b, c) = (a, [b, c]).

Другие обозначения:

(a, b, c) = a · b · c = 〈a, b, c〉.
Теорема.

Если в ортонормированном базисе

a =







a1

a2

a3






, b =







b1

b2

b3






, c =







c1

c2

c3






,

то

(a, b, c) = ±

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

,

где знак «+» выбирается в случае правого базиса, а знак «−» в случае левого.
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◭ Введем обозначение

d = [b, c] = ±

∣

∣

∣

∣

∣

∣

∣

i j k

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

=







d1

d2

d3






.

Имеем

(a, b, c) = (a, [b, c]) = a1d1 + a2d2 + a3d3 =

= ±
(

a1

∣

∣

∣

∣

∣

b2 b3

c2 c3

∣

∣

∣

∣

∣

− a2

∣

∣

∣

∣

∣

b1 b3

c1 c3

∣

∣

∣

∣

∣

+ a3

∣

∣

∣

∣

∣

b2 b3

c2 c3

∣

∣

∣

∣

∣

)

= ±

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

. ◮

Теорема.

Смешанное произведение обладает следующими свойствами:

(1) линейность:

(a1 + a2, b, c) = (a1, b, c) + (a2, b, c);

(2) циклическая симметрия:

(a, b, c) = (b, c,a) = (c,a, b) =

= −(a, c, b) = −(b,a, c) = −(c, b,a);

(3)

(a, b, c) = (a, [b, c]) = ([a, b], c).

◭ Докажите самостоятельно, используя свойства скалярного и векторного произведений

и свойства det-3. ◮

Теорема.

(1) (a, b, c) = 0 тогда и только тогда, когда векторы a, b, c линейно зависимы.

(2) Векторы a, b, c образуют правую тройку при (a, b, c) > 0 и левую тройку при

(a, b, c) < 0.

◭ Докажите самостоятельно, используя выражение смешанного произведения через ко-

ординаты векторов и то обстоятельство, что матрицу, составленную из координат векторов

a, b, c, можно рассматривать как матрицу перехода от исходного ОНБ к базису a, b, c (в

случае, когда эти векторы линейно независимы). ◮

Теорема.

Величина (a, b, c) равна объему параллелепипеда, построенного на векторах a, b, c,

со знаком «+», если эти векторы образуют правую тройку, и со знаком «−» в про-

тивном случае.

◭ Докажите самостоятельно. ◮

a

b

c

h = |a| cos ϕ

S = |[b, c]|
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5. ЗАДАЧИ

Пример.

Доказать тождество

([a, b], [c,d]) =

∣

∣

∣

∣

∣

(a, c) (a,d)

(b, c) (b,d)

∣

∣

∣

∣

∣

.

Решение.

([a, b], [c,d]
︸ ︷︷ ︸

x

) = ([a, b],x) = (a, [b,x]) = (a, [b, [c,d]]) =

= (a, c(b,d) − d(b, c)) = (b,d)(a, c) − (b, c)(a,d).

Пример.

Доказать тождество

[[a, b], [c,d]] = c(a, b,d) − d(a, b, c).

Решение.

[[a, b]
︸ ︷︷ ︸

x

, [c,d]] = [x, [c,d]] = c(x,d) − d(x, c) =

= c([a, b],d) − d([a, b], c) = c(a, b,d) − d(a, b, c).

Пример.

Даны плоские углы α, β, γ трехгранного угла. Найти его двугранные углы.

α β

γ

e2 e1

e3

n1 n2

Решение.

Направим единичные векторы e1,e2,e3 вдоль ребер двугранного угла. Векторы n1 и n2,

перпендикулярные граням, могут быть выражены как

n1 = [e2,e3], n2 = [e3,e1].

Очевидно,

|n1| = sin α, |n2| = sin β.

Угол между рассматриваемыми гранями равен углу между векторами n1 и n2.

(n1,n2) = ([e2,e3], [e3,e1]) =

∣

∣

∣

∣

∣

(e2,e3) (e2,e1)

(e3,e3) (e3,e1)

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

cos α cos γ

1 cos β

∣

∣

∣

∣

∣

= cos α cos β − cos γ.

Поэтому косинус искомого угла равен

cos ϕ =
(n1,n2)

|n1| · |n2|
=

cos α cos β − cos γ

sin α sin β
.
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Пример.

Доказать, что если векторы [a, b], [b, c], [c,a] компланарны, то векторы a, b, c компла-

нарны.

Решение. Вычислим смешанное произведение
(

[a, b], [b, c], [c,a]
)

=
(

[a, b],
[

[b, c], [c,a]
]

)

=

=
(

[a, b], c(b, c,a) − a (b, c, c)
︸ ︷︷ ︸

=0

)

=
(

[a, b], c
)

(b, c,a) = (a, b, c)2.

Итак, если
(

[a, b], [b, c], [c,a]
)

= 0, то (a, b, c) = 0, т.е. векторы a, b, c компланарны.

6. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Доказать тождество (a, b, c)2 +
∣

∣[[a, b], c]
∣

∣

2

=
∣

∣[a, b]
∣

∣

2 · |c|2.

Задача 2. Доказать тождество ([a, b], [b, c], [c,a]) = (a, b, c)2.

Задача 3. Доказать тождество (a, b, c)[x,y] =

∣

∣

∣

∣

∣

∣

∣

a b c

(a,x) (b,x) (c,x)

(a,y) (b,y) (c,y)

∣

∣

∣

∣

∣

∣

∣

.

Задача 4. Доказать тождество (a, b, c)(x,y,z) =

∣

∣

∣

∣

∣

∣

∣

(a,x) (b,x) (c,x)

(a,y) (b,y) (c,y)

(a,z) (b,z) (c,z)

∣

∣

∣

∣

∣

∣

∣

.

Задача 5. Доказать, что если векторы [a, b], [b, c], [c,a] компланарны, то векторы a, b, c

компланарны.

Задача 6. Доказать, что если векторы [a, b], [b, c], [c,a] компланарны, то они коллинеар-

ны.

Задача 7. Известно, что a = [b, c], b = [c,a], c = [a, b]. Найти длины векторов a, b, c и

углы между ними.

Задача 8. Три некомпланарных вектора a, b, c отложены из одной точки. Найти объем

треугольной призмы, основание которой построено на векторах a и b, а боковое ребро

совпадает с вектором c.

Задача 9. Три некомпланарных вектора a, b, c отложены из одной точки. Найти объем

тетраэдра, построенного на векторах a, b, c.



Лекция 7

1. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными:


















a1

1
x1 + a1

2
x2 + · · · + a1

nx
n = b1,

a2

1
x1 + a2

2
x2 + · · · + a2

nx
n = b2,

................................................

am
1

x1 + am
2

x2 + · · · + am
n xn = bm.

Сокращенно — СЛУ.

Введем основную и расширенную матрицы системы:

A =













a1

1
a1

2
. . . a1

n

a2

1
a2

2
. . . a2

n
...

...
. . .

...

am
1

am
2

. . . am
n













= [A1, A2, . . . , An] ,

˜A =













a1

1
a1

2
. . . a1

n b1

a2

1
a2

2
. . . a2

n b2

...
...

. . .
...

...

am
1

am
2

. . . am
n bm













= [A,B] , X =













x1

x2

...

xn













.

Систему можно записать в матричном виде

AX = B,

а также в виде

A1x
1 + A2x

2 + · · · + Anxn = B.

Набор чисел x1, x2, . . . , xn (столбец X = (x1, x2, . . . , xn)T ) называется решением СЛУ, ес-

ли при подстановке этих чисел в каждое из уравнений системы получаем верное числовое

равенство (при подстановке столбца в матричное уравнение получаем верное матричное

равенство).

СЛУ называется совместной, если она имеет хотя бы одно решение, и несовместной,

если она не имеет решений.

Две совместные СЛУ называются эквивалентными, если множества их решений совпа-

дают. Ясно, что эквивалентные СЛУ содержат одинаковое число неизвестных; число же

уравнений в них может быть различным.

Следующие преобразования СЛУ переводят ее в эквивалентную СЛУ:

(1) перестановка двух уравнений местами;

(2) умножение любого уравнения СЛУ на число α 6= 0;

(3) прибавление к любому уравнению СЛУ другого уравнения, умноженного на про-

извольное число.

Эти преобразования СЛУ называются элементарными (ЭП).

Иногда к элементарным преобразованиям причисляют

(4) удаление из СЛУ уравнения вида

0 · x1 + 0 · x2 + · · · + 0 · xn = 0.
1
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1.1. Однородные системы. СЛУ называется однородной (ОСЛУ), если столбец правых

частей нулевой:


















a1

1
x1 + a1

2
x2 + · · · + a1

nx
n = 0,

a2

1
x1 + a2

2
x2 + · · · + a1

nx
n = 0,

...................................................

am
1

x1 + am
2

x2 + · · · + am
n xn = 0.

ОСЛУ всегда совместна: числа x1 = x2 = · · · = xn = 0 образуют ее решение, называемое

тривиальным. Может ли ОСЛУ иметь нетривиальное решение?

Теорема.

ОСЛУ имеет нетривиальное решение тогда и только тогда, когда столбцы ее

основной матрицы ЛЗ.

◭ 1. Пусть ОСЛУ имеет нетривиальное решение x1, . . . , xn; это означает, что

A1x
1 + A2x

2 + · · · + Anx
n = O,

где хотя бы один коэффициент xk 6= 0; это и означает ЛЗ столбцов A1, A2, . . . , An.

2. Пусть столбцы основной матрицы ОСЛУ ЛЗ, т.е.

A1x
1 + A2x

2 + · · · + Anx
n = O,

где хотя бы один из коэффициентов xk 6= 0. Этот набор коэффициентов и образует нетри-

виальное решение ОСЛУ. ◮

Теорема.

Если X1, X2 — два решения ОСЛУ AX = 0, то любая их ЛК также является

решением этой ОСЛУ.

◭ Пусть c1, c2 — произвольные числа. Имеем:

AX1 = O, AX2 = O =⇒ c1AX1 + c2AX2 = A(c1X1 + c2X2) = 0,

т.е. ЛК c1X1 + c2X2 является решением ОСЛУ. ◮

Фундаментальная совокупность решений (ФСР) ОСЛУ — это такой упорядоченный

набор линейно независимых решений X1, X2, . . . , Xs, что любое решение ОСЛУ можно

представить в виде их линейной комбинации:

X = c1X1 + c2X2 + · · · + csXs,

где c1, c2, . . . , cs — произвольные числа.

Матрица Φ, столбцами которой являются столбцы ФСР, называется фундаментальной

матрицей (ФМ) ОСЛУ:

Φ = [X1, X2, . . . , Xs].

Общее решение ОСЛУ выражается через ФМ по формуле

X = Φ













c1

c2

...

cs













.
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1.2. Неоднородные системы. Система AX = B называется неоднородной (НСЛУ), если

B 6= O. Часто НСЛУ AX = B рассматривают вместе с ОСЛУ AX = O.

Теорема.

Если X1, X2 — решения НСЛУ AX = B, то X1 − X2 — решение ОСЛУ AX = O.

◭ Пусть AX1 = B, AX2 = B. Тогда

A(X1 − X2) = AX1 − AX2 = B − B = O. ◮

Таким образом, любое решение НСЛУ можно представить в виде суммы некоторого

частного решения НСЛУ и какого-либо решения ОСЛУ:

ОРНС = ЧРНС + ОРОС.

1.3. Системы упрощенного вида. Неизвестная xk называется базисной, если она входит

только в одно уравнение системы.

Система называется системой упрощенного вида, если в каждом уравнении имеется

базисная неизвестная. В этом случае в каждом уравнении имеется неизвестная, входящая

только в это уравнение, а число базисных неизвестных равно числу уравнений в системе.

Пример.

Рассмотрим ОСЛУ упрощенного вида:










x1 + 3x3 + x5 = 0,

x2 + 4x3 + 2x5 = 0,

x4 + 2x5 = 0.

Базисные неизвестные выделены.

Запишем эту систему в виде














x1 = −3x3 − x5,

x2 = −4x3 − 2x5,

x4 = −x5.

Если вместо x3 и x5 подставлять произвольные числа и вычислять x1, x2, x4 по ука-

занным формулам, то полученный набор чисел x1, x2, x3, x4, x5 будет представлять собой

некоторое решение ОСЛУ. Таким образом, полученные формулы доставляют нам описание

всех решений исходной ОСЛУ.

Неизвестные, не являющиеся базисными, называются свободными; в общем решении

системы они могут принимать произвольные значения.

Положив x3 = c1, x5 = c2, решение можно записать в виде















x1

x2

x3

x4

x5















=















−3c1 − c2

−4c1 − 2c2

c1

−c2

c2















= c1

X1
︷ ︸︸ ︷















−3

−4

1

0

0















+c2

X2
︷ ︸︸ ︷















−1

−2

0

−1

1















︸ ︷︷ ︸

ОРОС

.

Каждый из столбцов X1, X2, образующих ФСР ОСЛУ, можно получить, придавая одной

из свободных неизвестных значение 1, а остальным — значение 0. ФСР, полученная таким
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образом, называется нормальной ФСР (НФСР). Фундаментальная матрица, составленная

из столбцов НФСР, называется нормальной фундаментальной матрицей (НФМ).

Пример.

Рассмотрим НСЛУ упрощенного вида:










x1 + 3x3 + x5 = 1,

x2 + 4x3 + 2x5 = 2,

x4 + 2x5 = 3.

Базисные неизвестные выделены.

Запишем эту систему в виде














x1 = 1 − 3x3 − x5,

x2 = 2 − 4x3 − 2x5,

x4 = 3 − x5.

Если вместо x3 и x5 подставлять произвольные числа и вычислять x1, x2, x4 по ука-

занным формулам, то полученный набор чисел x1, x2, x3, x4, x5 будет представлять собой

некоторое решение системы. Таким образом, полученные формулы доставляют нам опи-

сание всех решений исходной системы.

Положив x3 = c1, x5 = c2, решение можно записать в виде















x1

x2

x3

x4

x5















=















1 − 3c1 − c2

2 − 4c1 − 2c2

c1

3 − c2

c2















=















1

2

0

3

0















︸ ︷︷ ︸

ЧРНС

+ c1

X1
︷ ︸︸ ︷















−3

−4

1

0

0















+c2

X2
︷ ︸︸ ︷















−1

−2

0

−1

1















︸ ︷︷ ︸

ОРОС

.

Здесь ЧРНС отвечает нулевым значениям свободных переменных (такое ЧРНС назы-

вается базисным), а столбцы X1, X2 представляют собой НФСР ОСЛУ.

Итак, если СЛУ имеет упрощенный вид, то ее общее решение немедленно выписывает-

ся. Чтобы решить СЛУ произвольного вида, нужно с помощью элементарных преобразо-

ваний привести ее к упрощенному виду.

Теорема.

Если в ОСЛУ число неизвестных больше числа уравнений, то она имеет нетриви-

альное решение.

◭ Если число неизвестных больше числа уравнений, то найдется свободная неизвестная,

которая может принимать любые значения. ◮

2. АЛГОРИТМ ГАУССА

Вместо преобразований СЛУ удобно выполнять преобразования расширенной матрицы

этой СЛУ; при этом ЭП СЛУ соответствуют ЭП строк расширенной матрицы:

(1) перестановка двух строк местами;

(2) умножение любой строки на число α 6= 0;

(3) прибавление к любой строке другой строки, умноженной на произвольное число;

(4) [удаление из матрицы нулевых строк.]
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Говорят, что матрица имеет упрощенный вид, если она является расширенной матрицей

СЛУ упрощенного вида. Матрица упрощенного вида имеет следующую структуру:

(1) некоторые ее столбцы являются последовательными столбцами единичной мат-

рицы; эти столбцы отвечают базисным неизвестным СЛУ и также называются

базисными;

(2) каждый из остальных столбцов является ЛК предыдущих базисных столбцов.

































1

0

0

0
...

0

0

0

∗
0

0

0
...

0

0

0

0

1

0

0
...

0

0

0

∗
∗
0

0
...

0

0

0

0

0

1

0
...

0

0

0

∗
∗
∗
0
...

0

0

0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

0

0

0
...

1

0

0

∗
∗
∗
∗
...

∗
0

0

































Опишем один шаг алгоритма Гаусса, который позволяет произвольную матрицу

A ∈ Km×n привести к упрощенному виду.

ШАГ № k.

(1) Среди строк с номерами k, . . . ,m выбираем одну из строк с наименьшим количе-

ством нулей, считая от начала строки; эту строку назовем разрешающей строкой

(РС), а ее первый ненулевой элемент — разрешающим элементом (РЭ).

(2) Переставляем РС на k-е место.

(3) Разделим РС на РЭ; в полученной строке на месте РЭ будет стоять 1.

(4) Вычитаем из каждой строки матрицы РС, умноженную на элемент обрабатываемой

строки, который стоит в одном столбце с РЭ. После этого столбец, содержащий

РЭ, будет представлять собой k-й столбец единичной матрицы.

Процесс завершается, когда каждая строка матрицы уже побывала в роли РС или когда

РС выбрать не удается.

Пример.

Привести к упрощенному виду матрицу










0 −2 6 2 8 −2

2 1 1 0 0 1

0 −1 3 1 4 −1

3 1 3 0 1 0











.

Шаг 1. В качестве РС можно взять 2 или 4 строку; возьмем 2. РЭ = 2, делим РС на 2

и переставляем на первое место:










0 −2 6 2 8 −2

2 1 1 0 0 1

0 −1 3 1 4 −1

3 1 3 0 1 0











=⇒











1 1

2

1

2
0 0 1

2

0 −2 6 2 8 −2

0 −1 3 1 4 −1

3 1 3 0 1 0











.
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Уничтожению подлежат все элементы первого столбца, кроме РЭ; такой элемент один

— это 3. Выполняем ЭП: к 4-й строке добавляем 1-ю, умноженную на (−3):











1 1

2

1

2
0 0 1

2

0 −2 6 2 8 −2

0 −1 3 1 4 −1

3 1 3 0 1 0





















∗
0

0

−3











=⇒











1 1

2

1

2
0 0 1

2

0 −2 6 2 8 −2

0 −1 3 1 4 −1

0 −1

2

3

2
0 1 −3

2











.

Шаг 2. В качестве РС можно взять 2-ю, 3-ю или 4-ю. Возьмем 3-ю, переставим ее на

второе место и разделим на (−1):











1 1

2

1

2
0 0 1

2

0 −2 6 2 8 −2

0 −1 3 1 4 −1

0 −1

2

3

2
0 1 −3

2











=⇒











1 1

2

1

2
0 0 1

2

0 1 −3 −1 −4 1

0 −2 6 2 8 −2

0 −1

2

3

2
0 1 −3

2











.

Теперь нужно уничтожить все элементы 2-го столбца, кроме РЭ. Выполняем ЭП:










1 1

2

1

2
0 0 1

2

0 1 −3 −1 −4 1

0 −2 6 2 8 −2

0 −1

2

3

2
0 1 −3

2





















−1

2

∗
2
1

2











=⇒











1 0 2 1

2
2 0

0 1 −3 −1 −4 1

0 0 0 0 0 0

0 0 0 −1

2
−1 −1











.

Шаг 3. В качестве РС можно взять только 4-ю строку. Умножаем ее на (−2) и пере-

ставляем на 3-е место:












1 0 2 1

2
2 0

0 1 −3 −1 −4 1

0 0 0 0 0 0

0 0 0 −1

2
−1 −1













=⇒











1 0 2 1

2
2 0

0 1 −3 −1 −4 1

0 0 0 1 2 2

0 0 0 0 0 0











.

Уничтожаем все элементы 4-го столбца, кроме РЭ:










1 0 2 1

2
2 0

0 1 −3 −1 −4 1

0 0 0 1 2 2

0 0 0 0 0 0





















−1

2

1

∗
0











=











1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 0 0 0











.

Еще один шаг выполнить невозможно, так как четвертую строку нельзя выбрать в

качестве РС: в ней нет ненулевых элементов. Процедура закончена.

Можно избежать появления дробей при выполнении ЭП, если сделать дополнительные

ЭП.

Шаг 1. Вычтем из 4-й строки 2-ю (цель — получить 1 в одной из строк и выбрать эту

строку в качестве РС):










0 −2 6 2 8 −2

2 1 1 0 0 1

0 −1 3 1 4 −1

3 1 3 0 1 0











=











0 −2 6 2 8 −2

2 1 1 0 0 1

0 −1 3 1 4 −1

1 0 2 0 1 −1











.
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Первый элемент 4-й строки равен 1; эту строку берем в качестве РС, тогда РЭ = 1.

Поменяем местами 1-ю и 4-ю строки:










1 0 2 0 1 −1

2 1 1 0 0 1

0 −1 3 1 4 −1

0 −2 6 2 8 −2











.

Уничтожаем все элементы 1-го столбца, кроме РЭ; такой элемент один, это 2 во второй

строке.










1 0 2 0 1 −1

2 1 1 0 0 1

0 −1 3 1 4 −1

0 −2 6 2 8 −2





















∗
−2

0

0











=⇒











1 0 2 0 1 −1

0 1 −3 0 −2 3

0 −1 3 1 4 −1

0 −2 6 2 8 −2











.

Шаг 2. В качестве РС берем 2-ю строку; РЭ = 1. Уничтожаем все элементы 2-го

столбца, кроме РЭ; это −1 и −2










1 0 2 0 1 −1

0 1 −3 0 −2 3

0 −1 3 1 4 −1

0 −2 6 2 8 −2





















0

∗
1

2











=⇒











1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 2 4 4











.

Шаг 3. В качестве РС берем 3-ю строку, РЭ = 1, который стоит в 4-м столбце. Уничто-

жаем все элементы 4-го столбца, кромее РЭ:










1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 2 4 4





















0

0

∗
−2











=⇒











1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 0 0 0











.

Пример.

Решить ОСЛУ


















− 2x2 + 6x3 + 2x4 + 8x5 − 2x6 = 0

2x1 + x2 + x3 + x6 = 0

− x2 + 3x3 + x4 + 4x5 − x6 = 0

3x1 + x2 + 3x3 + x5 = 0

Основная матрица этой ОСЛУ










0 −2 6 2 8 −2

2 1 1 0 0 1

0 −1 3 1 4 −1

3 1 3 0 1 0











.

Эта матрица была приведена к упрощенному виду в предыдущем примере:










1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 0 0 0











.
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Базисные переменные этой ОСЛУ — x1, x2, x4, свободные переменные — x3, x5, x6.

Получим НФСР ОСЛУ. Взяв x3 = 1, x5 = x6 = 0, находим:











1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 0 0 0











=⇒



















































x1 = −2,

x2 = 3,

x3 = 1,

x4 = 0,

x5 = 0,

x6 = 0.

Взяв x3 = x6 = 0, x5 = 1, находим:











1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 0 0 0











=⇒



















































x1 = −1,

x2 = 2,

x3 = 0,

x4 = −2,

x5 = 1,

x6 = 0.

Взяв x3 = x5 = 0, x6 = 1, находим:











1 0 2 0 1 −1

0 1 −3 0 −2 3

0 0 0 1 2 2

0 0 0 0 0 0











=⇒



















































x1 = 1,

x2 = −3,

x3 = 0,

x4 = −2,

x5 = 0,

x6 = 1.

Итак, НФСР ОСЛУ имеет вид

X1 =





















−2

3

1

0

0

0





















, X2 =





















−1

2

0

−2

1

0





















, X3 =





















1

−3

0

−2

0

1





















.

Общее решение системы имеет вид

X = c1X1 + c2X2 + c3X3,

где c1, c2, c3 — произвольные числа.
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НФМ ОСЛУ имеет вид

Φ =





















−2 −1 1

3 2 −3

1 0 0

0 −2 −2

0 1 0

0 0 1





















.

Общее решение ОСЛУ можно записать в виде

X = Φ







c1

c2

c3






.

2.1. Элементарные преобразования и умножение матриц. ЭП строк матрицы тесно

связаны с операцией умножения матриц.

Теорема.

Пусть R — ЭП типа (1), (2) или (3) строк матрицы B. Тогда

R(B) = R(I) · B.

Здесь R(B) — матрица, полученная из B с помощью ЭП R, I — единичная матрица.

◭ Пусть B ∈ Km×n. Рассмотрим ЭП типа (1), т.е. перестановку строк матрицы B.

Обозначим через C матрицу, полученную из B перестановкой строк с номерами k и l.

Тогда

Ci =















Bi, i 6= k, i 6= l,

Bl, i = k,

Bk, i = l.

При i 6= k, i 6= l можем записать

Ci = Bi =
m
∑

p=1

δi
pB

p.

Строка из чисел δi
p имеет вид

(δi
1
, δi

2
, . . . , δi

i, . . . , δ
i
m) = (0, 0, . . . , 1

i
, . . . , 0)

и представляет собой i-ю строку единичной матрицы.

При i = k можно записать

Ck = Bl =
m
∑

p=1

ak
pB

p,

где набор чисел ak
p следующий:

(ak
1
, ak

2
, . . . , ak

l , . . . , a
k
m) = (0, 0, . . . , 1

l
, . . . , 0).

Он, очевидно, совпадает с l-й строкой единичной матрицы.

Аналогично, при i = l можно записать

C l = Bk =
m
∑

p=1

al
pB

p,
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где набор чисел al
p следующий:

(al
1
, al

2
, . . . , al

k, . . . , a
l
m) = (0, 0, . . . , 1

k
, . . . , 0).

Он совпадает с k-й строкой единичной матрицы.

При умножении матриц, C = AB, строки матрицы C являются линейными комбина-

циями строк матрицы B с коэффициентами, являющимися элементами строк матрицы

A,

Ci =
m
∑

p=1

ai
pB

p.

Структура матрицы A = (ai
p)

m
m такова:

(1) все ее строки, кроме k-й и l-й, равны соответствующим строкам единичной матри-

цы;

(2) k-я строка матрицы A совпадает с l-й строкой единичной матрицы;

(3) l-я строка матрицы A совпадает с k-й строкой единичной матрицы.

Таким образом, матрица A получена из единичной матрицы I перестановкой k-й и l-й

строк, а матрица C равна произведению AB.

Самостоятельно докажите утверждение теоремы для ЭП типов (2) и (3). ◮

Матрица A, о которой шла речь выше, называется матрицей элементарного преобразо-

вания.

Элементарные преобразования типов (1)–(3) обратимы, т.е. если матрица C может быть

получена из матрицы B каким-либо ЭП, то и матрица B может быть получена из матрицы

C некоторым ЭП преобразованием.

3. ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИЦЫ

Превратим матрицу B с помощью последовательности ЭП строк в единичную матри-

цу. Поскольку выполнение каждого ЭП эквивалентно умножению B слева на некоторую

матрицу, видим, что

AsAs−1 . . . A2A1 · B = I.

Но это означает, что

AsAs−1 . . . A2A1 = B−1.

Если те же самые ЭП провести над единичной матрицей, то результатом окажется

матрица B−1. На практике это выполняется следующим образом:

(B | I)
ЭП строк−−−−−→ (I | B−1).

Если вместо единичной матрицы взять некоторую матрицу D (причем не обязательно

квадратную), то результатом будет

(B | D)
ЭП строк−−−−−→ (I | B−1D).

Можно сформулировать аналогичную процедуру для ЭП столбцов:
(

B

I

)

ЭП столбцов−−−−−−−→
(

I

B−1

)

.
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Если вместо I взять матрицу D (не обязательно квадратную), то
(

B

D

)

ЭП столбцов−−−−−−−→
(

I

DB−1

)

.

На практике выполнять ЭП столбцов неудобно, поэтому для вычисления матрицы DB−1

предпочтительнее пользоваться следующим алгоритмом:
(

B

D

)

транспонирование−−−−−−−−−→

(BT | DT )
ЭП строк−−−−−→ (I | (BT )−1DT ) = (I | (B−1)T DT )

транспонирование−−−−−−−−−→
(

I

DB−1

)

.

Здесь мы воспользовались тем, что

(BT )−1 = (B−1)T .

Докажите это соотношение самостоятельно.

4. ЛИНЕЙНОЕ ПРОСТРАНСТВО

4.1. Определение.

Линейное пространство (ЛП) V (K) над числовым полем K — это множество V элемен-

тов x,y, . . . произвольной природы (векторов), в котором введены две операции:

(A) сложение векторов

+ : V × V → V, (x,y) 7→ x + y,

(B) умножение вектора на число

• : K × V → V, (α,x) 7→ αx,

причем выполнены следующие аксиомы:

(1) ∀x,y ∈ V :

x + y = y + x

(коммутативность сложения);

(2) ∀x,y,z ∈ V :

x + (y + z) = x + (y + z)

(ассоциативность сложения);

(3) ∃0 ∈ V ∀x ∈ V :

x + 0 = x

(существование нулевого вектора);

(4) ∀x ∈ V ∃x′ ∈ V :

x + x′ = 0

(существование противоположного вектора);

(5) ∀x ∈ V : 1 · x = x;

(6) ∀α, β ∈ K, ∀x ∈ V :

(α · β)x = α · (βx);
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(7) ∀α ∈ K, ∀x,y ∈ V :

α(x + y) = αx + αy

(дистрибутивность-1)

(8) ∀α, β ∈ K, ∀x ∈ V :

(α + β)x = αx + βx

(дистрибутивность-2).

Запись V (K) означает, что рассматривается ЛП V над ЧП K.

4.2. Примеры линейных пространств.

1. Q(Q), R(Q), C(Q); R(R), C(R); C(C).

2. Q(R) — не ЛП. Объясните причину и приведите еще несколько аналогичных приме-

ров.

3. Множества «геометрических векторов» на прямой V1, на плоскости V2, в пространстве

V3 — ЛП над R.

4. Qn, Rn, Cn можно рассматривать как ЛП над различными ЧП (ср. пример 1). При-

ведите несколько примеров.

5. Km×n можно рассматривать как ЛП над различными ЧП (ср. пример 1). Приведите

несколько примеров.

6. Множества C(X), Cp(X), состоящие из всех непрерывных (p раз непрерывно диф-

ференцируемых) на открытом множестве X ⊂ R функций, можно рассматривать как ЛП

над ЧП Q или R. Операции:

∀f, g ∈ C(X), ∀x ∈ X : (f + g)(x) = f(x) + g(x);

∀f ∈ C(X), ∀α ∈ K, ∀x ∈ X : (α · f)(x) = α · f(x).

7. Множество Pol(n, K) всех полиномов степени не выше n с коэффициентами из K,

т.е. функций вида

x(t) = a0 + a1t
1 + · · · + ant

n,

где ak ∈ K, k = 0, . . . , n.

Вопрос. Является ли ЛП множество всех полиномов степени n? Ответ обоснуйте.

8. Множество Trig(n, K) всех тригонометрических полиномов порядка не выше n с

коэффициентами из K, т.е. функций вида

x(t) = a0 +
n
∑

k=1

(ak cos kt + bk sin kt),

где a0, ak, bk ∈ K, k = 1, . . . , n.

Вопрос. Является ли ЛП множество всех тригонометрических полиномов порядка n?

Ответ обоснуйте.

9. V = R, K = R, операции заданы формулами:

x ⊕ y
def
= x · y, x,y ∈ V = R;

α ⊙ x
def
= xα, x ∈ V = R, α ∈ K = R.

Проверьте выполнение всех аксиом ЛП.

Этот пример показывает, что операции сложения элементов ЛП и умножения элемента

ЛП на число могуь быть совершенно «не похожими» на «обычные» сложение и умножение.
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4.3. Простейшие свойства ЛП.

Теорема.

Пусть V (K) — произвольное ЛП.

(1) Нулевой элемент 0 ∈ V единствен.

(2) ∀x ∈ V противоположный элемент x′ единствен.

(3) ∀x,y,z ∈ V :

x + z = y + z ⇒ x = y.

(4) ∀x ∈ V : 0 · x = 0.

(5) ∀x ∈ V противоположный элемент x′ равен −1 · x = −x.

◭ (1) Допустим, что ∃0′ 6= 0 такой, что ∀x ∈ V : 0
′ + x = x. Положим x = 0; тогда

0
′ + 0 = 0. С другой стороны, по определению 0, 0

′ + 0 = 0
′. Итак, 0

′ = 0.

(2) Пусть x′, x′′ — два различных противоположных элемента для x. Тогда

x′′ = x′′ + 0 = x′′ + (x + x′) = (x′′ + x) + x′ = 0 + x′ = x′.

(3) Прибавим к обеим частям равенства x + z = y + z единственный противоположный

элемент z′ для элемента z:

x + z = y + z ⇒ x + z + z′ = y + z + z′ ⇒ x + 0 = y + 0 ⇒ x = y.

(4)

0 · x + x = 0 · x + 1 · x = (0 + 1)x = 1 · x = x = 0 + x ⇒ 0 · x = 0.

(5) Положим y = (−1) · x. Тогда

x + y = 1 · x + (−1) · x = (1 + (−1))x = 0 · x = 0

⇒ y —противоположный для x. ◮

4.4. Линейная комбинация. Пусть V (K)—ЛП, x1, . . . ,xp ∈ V .

Линейная комбинация (ЛК) векторов x1, . . . ,xp ∈ V с коэффициентами α1, . . . , αp ∈ K—

это выражение

α1x1 + · · · + αpxp ≡
p
∑

k=1

αkxk.

ЛК векторов x1, . . . ,xp ∈ V называется тривиальной, если все коэффициенты этой ЛК

равны нулю, и нетривиальной, если хотя бы один из коэффициентов отличен от нуля.

Очевидно, тривиальная ЛК всегда равна нулевому вектору.

4.5. Линейная зависимость и независимость.

Векторы x1, . . . ,xp ∈ V называются линейно зависимыми (ЛЗ), если существует их

нетривиальная ЛК, равная нулевому вектору.

Пример.

Рассмотрим ЛП R2(R).

Элементы x1 =

(

1

1

)

и x2 =

(

2

2

)

ЛЗ, так как существует нетривиальная ЛК этих

векторов, равная 0:

−2 · x1 + 1 · x2 = −2 ·
(

1

1

)

+

(

2

2

)

=

(

0

0

)

= 0.
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Векторы x1, . . . ,xp ∈ V называются линейно независимыми (ЛН), если из равенства их

ЛК нулевому вектору следует, что эта ЛК тривиальна.

Пример.

Рассмотрим ЛП R2(R).

Векторы y
1

=

(

1

0

)

и y
1

=

(

0

1

)

ЛН. Действительно,

α1y
1
+ α2y

2
= α1

(

1

0

)

+ α2

(

0

1

)

=

(

α1

α2

)

.

Последний столбец может быть нулевым тогда и только тогда, когда α1 = α2 = 0.

4.6. Линейная оболочка. Пусть V (K)—ЛП, x1, . . . ,xp ∈ V .

Линейная оболочка (ЛО) векторов x1, . . . ,xp ∈ V —это множество всех ЛК этих век-

торов, т.е. множество

L(x1, . . . ,xp) =
{

αkxk

∣

∣

∣
αk ∈ K, k = 1, . . . , p

}

.

Теорема.

(1) Если среди векторов x1, . . . ,xp имеется нулевой вектор, то эти векторы ЛЗ.

(2) Если система векторов x1, . . . , xq, xq+1, . . . , xp содержит ЛЗ подсистему x1,

. . . , xq, то вся система ЛЗ.

(3) Если векторы x1, . . . , xp ЛЗ, то среди них имеется вектор, являющийся ЛК

остальных векторов.

(4) Если x ∈ L(x1, . . . ,xp), то

L(x,x1, . . . ,xp) = L(x1, . . . ,xp).

◭ Пункты (1)–(3) докажите самостоятельно (см. аналогичную теорему для столбцов).

(4) Обозначим

L1 = L(x1, . . . ,xp), L2 = L(x,x1, . . . ,xp).

Требуется доказать, что L1 = L2, т.е. что

L1 ⊆ L2 и L2 ⊆ L1.

Первое вложение очевидно:

y ∈ L1 ⇒ y = α1x1 + · · · + αpxp =

= 0 · x +

p
∑

k=1

αkxk ⇒ y ∈ L2.

Докажем второе вложение. Имеем:

x ∈ L1 ⇒ x = β1x1 + · · · + βpxp,

y ∈ L2 ⇒ y = αx + α1x1 + · · · + αpxp =

= α(β1x1 + · · · + βpxp) + α1x1 + · · · + αpxp =
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= (αβ1 + α1)x1 + · · · + (αβp + αp)xp

⇒ y ∈ L1. ◮

4.7. Размерность и базис ЛП.

Размерность ЛП V (K)—это целое неотрицательное число n, обладающее следующими

свойствами:

(1) в V ∃n ЛН векторов;

(2) любые n + 1 векторов ЛЗ.

Обозначение: n = dim V ; пространство V называется n-мерным.

Если в ЛП V имеется как угодно много ЛН векторов, то V называется бесконечномер-

ным, dim V = ∞.

Базис ЛП V (K)—это упорядоченный набор векторов e1, . . . ,en, обладающий следую-

щими свойствами:

(1) векторы e1, . . . ,en ЛН;

(2) ∀x ∈ V ∃x1, . . . , xn ∈ K такие, что

x = x1e1 + · · · + xnen =
n
∑

k=1

xkek. (1)

Числа x1, . . . , xn называются координатами (компонентами) вектора x относительно ба-

зиса e1, . . . ,en, а формула (1) — разложением вектора x по базису e1, . . . ,en.

Правило суммирования Эйнштейна: Если в некотором одночлене индекс появляется

ровно два раза, один раз вверху и один раз внизу, то считается, что по этому индексу

производится суммирование; пределы изменения индекса либо указываются, либо ясны

из контекста. Пример: запись xkek (k = 1, . . . , n) эквивалентна сумме (1).

Поскольку
p
∑

k=1

xkek =

p
∑

l=1

xlel,

имеем

xkek ≡ xlel, k = 1, . . . , p; l = 1, . . . , p.

Суммирование с символом Кронекера.

Символ Кронекера— это обозначение элементов единичной матрицы:

δ
j
k =







1, если j = k,

0, если j 6= k.

Часто встречаются суммы вида ajδ
j
k, bkδ

j
k и т. п. В развернутом виде первая из этих

сумм имеет вид

a1δ
1

k + a2δ
2

k + · · · + akδ
k
k + · · · + anδ

n
k .

Из n слагаемых в этой сумме отлично от нуля лишь одно, а именно k-е, поэтому вся

сумма равна ak. Таким образом,

ajδ
j
k = ak.
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Теорема.

Разложение по базису единственно, т.е. ∀x ∈ V его координаты x1, . . . , xn опреде-

лены однозначно.

Условимся записывать координаты x1, . . . , xn вектора x относительно базиса e1, . . . ,en

в виде столбца:

Xe =







x1

...

xn






↔ x в базисе e1, . . . ,en.

Теорема.

Пусть в базисе e1, . . . ,en линейного пространства V (K) имеем

x ↔







x1

...

xn






, y ↔







y1

...

yn






.

Тогда

x + y ↔







x1 + y1

...

xn + yn






, αx ↔







αx1

...

αxn






∀α ∈ K.

Теорема.

ЛП V (K) является n-мерным тогда и только тогда, когда оно имеет базис, состо-

ящий из n векторов.

◭ 1. Пусть dim V = n. Тогда ∃x1, . . . ,xn —ЛН, но ∀x ∈ V векторы x,x1, . . . ,xn —ЛЗ,

т.е. ∃α, α1, . . . , αn, не все равные нулю, такие, что

αx + α1x1 + · · · + αnxn = 0.

Ясно, что α 6= 0; в противном случае получили бы

α1x1 + · · · + αnxn = 0,

что возможно лишь при α1 = · · · = αn = 0 (при этом α = 0), противоречие. Таким образом,

x = −α1

α
x1 − · · · − αn

α
xn,

т.е. упорядоченный набор x1, . . . ,xn является базисом в V .

2. Пусть e1, . . . ,en —базис в V . Докажем, что любые n + 1 векторов x1, . . . ,xn+1 в V

ЛЗ. Разложим каждый из этих векторов по базису:

x1 = x1

1
e1 + x2

1
e2 + · · · + xn

1
en,

. . .

xn+1 = x1

n+1
e1 + x2

n+1
e2 + · · · + xn

n+1
en.

Составим матрицу, столбцами которой являются столбцы координат этих векторов:

X =













x1

1
x1

2
. . . x1

n+1

x2

1
x2

2
. . . x2

n+1

...
...

. . .
...

xn
1

xn
2

. . . xn
n+1













,
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и рассмотрим ОСЛУ с этой матрицей в качестве основной матрицы. Поскольку число

неизвестных в рассматриваемой ОСЛУ больше числа неизвестных, то она имеет нетриви-

альное решение, т.е. столбцы матрицы X линейно зависимы. ◮

4.8. Примеры.

1. dim K(K) = 1; базис состоит из одного элемента, в качестве которого можно взять

любое ненулевое число из K. Число 1 образует так называемый стандартный базис.

2. dim R(Q) = ∞.

Задача: Объясните почему.

3. dim C(R) = 2; базис состоит из двух элементов, в качестве которых можно взять два

любых ненулевых комплексных числа, сумма которых не равна нулю. Стандартный базис

образуют числа 1, i.

Задача: Докажите.

4. dim Kn(K) = n. Стандартный базис образуют столбцы

e1 =













1

0
...

0













, e2 =













0

1
...

0













, . . . , en =













0

0
...

1













.

5. dim Cn(R) = 2n. Стандартный базис состоит из столбцов

e1 =













1

0
...

0













, e2 =













0

1
...

0













, . . . , en =













0

0
...

1













,

en+1 =













i

0
...

0













, en+2 =













0

i
...

0













, . . . , e2n =













0

0
...

i













.

6. dim Km×n(K) = mn. Стандартный базис состоит из mn матриц

eij =

















0 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . 1 . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0

















,
i = 1, . . . ,m,

j = 1, . . . , n,

где единица стоит на пересечении i-й строки и j-го столбца.

7. dim Pol(n, K) = n + 1. Стандартный базис состоит из многочленов

e0 = 1, e1 = t, e2 = t2, . . . , en = tn.

8. dim Trig(n, K) = 2n + 1. Стандартный базис состоит из тригонометрических много-

членов

e0 = 1,
e1 = cos t, . . . , en = cos nt,

e−1 = sin t, . . . , e−n = sin nt.
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5. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Известно, что столбец свободных членов линейной системы уравнений равен

сумме столбцов ее основной матрицы. Указать какое-либо частное решение системы.

Задача 2. Известно, что столбец свободных членов линейной системы уравнений совпа-

дает с последним столбцом ее основной матрицы. Указать какое-либо частное решение

системы.

Задача 3. Пусть X, Y — столбцы решений систем уравнений AX = P , AY = Q со-

ответственно, α, β —некоторые числа. Какой системе уравнений удовлетворяет столбец

Z = αX + βY ?

Задача 4. Доказать, что если уравнения системы (Б) являются линейными комбинаци-

ями уравнений совместной линейной системы (А), то множество решений системы (Б)

содержит множество решений системы (А).

Задача 5. Доказать, что присоединение к совместной системе линейных уравнений ли-

нейных комбинаций из ее уравнений заменяет систему на эквивалентную.

Задача 6. Как изменяются решения системы линейных уравнений при элементарных пре-

образованиях столбцов основной матрицы?

Задача 7. Зная одну фундаментальную матрицу Φ, найти общий вид произвольной фун-

даментальной матрицы той же системы.

Задача 8. Описать все линейные комбинации решений данной неоднородной системы

линейных уравнений, которые являются решениями той же системы.

Задача 9. Описать все линейные комбинации решений данной неоднородной системы ли-

нейных уравнений, которые являются решениями соответствующей однородной системы.

Задача 10. Пусть матрица получена из матрицы B элементарными преобразованиями

строк. Доказать, что если столбцы матрицы B линейно независимы, то столбцы матрицы

C также линейно независимы.

Задача 11. Пусть матрица получена из матрицы B элементарными преобразованиями

строк. Доказать, что если между какими-либо столбцами матрицы B имеется линейная

зависимость

α1B
1 + α2B

2 + · · · + αkB
k = 0,

то соответствующие столбцы матрицы C связаны такой же линейной зависимостью:

α1C
1 + α2C

2 + · · · + αkC
k = 0.



Лекция 8

1. ГОМОМОРФИЗМ И ИЗОМОРФИЗМ ЛП

Пусть (V, K) (операции +, ·) и (W, K) (операции ⊕,⊙) — два ЛП над одним и тем же

ЧП K.

Отображение f : V → W называется гомоморфизмом, если

f(x + y) = f(x) ⊕ f(y) ∀x, y ∈ V,

f(α · x) = α ⊙ f(x) ∀x ∈ V, α ∈ K.

Множество всех гомоморфизмов ЛП V,W обозначается Hom(V,W ).

Теорема.

Пусть f : V → W — гомоморфизм.

(1) f(0V ) = 0W ;

(2) ∀x ∈ V : f(−x) = −f(x).

Задача. Докажите теорему самостоятельно.

Изоморфизм ЛП V и W —это взаимно однозначный гомоморфизм. ЛП V и W назы-

ваются изоморфными, если существует изоморфизм f : V → W ; в этом случае пишут

V ≃ W .

Теорема.

Пусть V ≃ W , f : V → W —изоморфизм.

(1) ∀x ∈ V , x 6= 0V : f(x) 6= 0W .

(2) Если x1, . . . ,xp ∈ V —ЛН векторы, то векторы

f(x1), . . . , f(xp) ∈ W также ЛН.

(3) Если x1, . . . ,xp ∈ V —ЛЗ векторы, причем нетривиальная ЛК этих векторов,

равная 0V , имеет коэффициенты α1, . . . , αp, то векторы f(x1), . . . , f(xp) ∈ W

также ЛЗ, причем нетривиальная ЛК этих векторов, равная 0W , имеет те же

коэффициенты α1, . . . , αp.

◭ (1) Пусть x ∈ V , x 6= 0V . Предположим, что f(x) = 0W . Имеем:

f(x) = 0W = 0 · y = 0 · f(z) = f(0 · z) = f(0V ).

Таким образом, в силу взаимной однозначности отображения f , получаем x = 0V ; проти-

воречие.

(2) Пусть x1, . . . ,xp ∈ V —ЛН векторы. Предположим, что векторы f(x1), . . . , f(xp) ∈ W

ЛЗ, т.е. ∃β1, . . . , βp ∈ K, не все равные 0, такие, что

β1f(x1) + · · · + βpf(xp) = 0W .

Имеем

β1f(x1) + · · · + βpf(xp) = 0W = f(β1x1 + · · · + βpxp),

откуда

β1x1 + · · · + βpxp = 0V ,

т.е. векторы x1, . . . ,xp ЛЗ; противоречие.

(3) Докажите самостоятельно. ◮

Отметим, что отношение изоморфности ЛП обладает следующими свойствами:
1



2

(1) V ≃ V ;

(2) V ≃ W ⇒ W ≃ V ;

(3) если V ≃ W и W ≃ U , то V ≃ U .

Задача. Докажите самостоятельно.

Теорема.

Пусть V (K)—ЛП над ЧП K, e1, . . . ,en —базис в V . Отображение f : V → Kn,

ставящее в соответствие каждому вектору x ∈ V столбец его координат, является

изоморфизмом ЛП V и Kn, V ≃ Kn.

Теорема.

Все ЛП одной размерности над одним и тем же ЧП изоморфны.

Задача: Докажите эти теоремы самостоятельно.

Задача: Докажите, что если e1, . . . ,en —базис в ЛП V , то V = L(e1, . . . ,en). Обрат-

ное утверждение неверно: если V = L(x1, . . . ,xp), то нельзя утверждать, что векторы

x1, . . . ,xp образуют базис в V . Объясните почему.

2. ЛИНЕЙНОЕ ПОДПРОСТРАНСТВО

2.1. Определение. Пусть V (K)—ЛП. Подмножество P ⊂ V называется линейным под-

пространством (ЛПП) пространства V , если выполнены следующие условия:

(1) ∀x,y ∈ P : x + y ∈ P ;

(2) ∀x ∈ P , ∀α ∈ K: αx ∈ P .

В любом ЛП V имеются тривиальные ЛПП: {0} и V .

Обозначения:

• P ⊂ V ⇐⇒ P является подмножеством V ;

• P ⋐ V ⇐⇒ P является нетривиальным ЛПП V .

Теорема.

Пусть V —ЛП над ЧП K и P ⋐ V . Тогда P тоже является ЛП над ЧП K.

Задача: Докажите теорему самостоятельно.

2.2. Примеры ЛПП.

1. V1 ⋐ V2 ⋐ V3.

2. R(R) ⋐ C(R); Rn(R) ⋐ Cn(R).

Задача. Найдите размерность и базис этих ЛПП.

3. Подмножество в Kn(K), состоящее из столбцов, сумма элементов которых равна

нулю, является ЛПП в Kn(K).

Задача. Найдите размерность и базис этого ЛПП.

4. В ЛП Kn×n(K) квадратных матриц порядка n линейными подпространствами явля-

ются следующие подмножества.

(1) Подмножество симметричных матриц

SKn×n =
{

A ∈ Kn×n
∣

∣

∣
AT = A

}

(символ T означает транспонирование).

(2) Подмножество кососимметричных матриц

AKn×n =
{

A ∈ Kn×n
∣

∣

∣
AT = −A

}

.
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(3) Подмножество, состоящее из матриц с нулевым следом:

P =
{

A ∈ Kn×n
∣

∣

∣
tr A = 0

}

.

Замечание: след tr A квадратной матрицы A — это сумма ее диагональных элементов.

tr A =
n

∑

k=1

ak
k.

Задача. Найдите размерность и базис каждого из указанных ЛПП.

5. В ЛП Pol(n, K) подпространствами являются множества

S Pol(n, K) =
{

x(t) ∈ Pol(n, K)
∣

∣

∣
x(−t) = x(t)},

A Pol(n, K) =
{

x(t) ∈ Pol(n, K)
∣

∣

∣
x(−t) = −x(t)},

состоящие из четных и нечетных многочленов.

Задача. Найдите размерность и базис каждого из указанных ЛПП.

6. Рассмотрим ОСЛУ

AX = O,

где A ∈ Km×n, A ∈ Kn, O ∈ Km. Известно, что для любых решений X1, X2 столбец

c1X1 + c2X2 также является решением. Это означает, что множество всех решений ОСЛУ

представляет собой ЛПП в Kn. ФСР ОСЛУ представляет собой базис этого ЛПП.

7. Любая ЛО является ЛПП.

Теорема.

Пусть x1, . . . ,xp ∈ V . Тогда L(x1, . . . ,xp) ⋐ V .

◭ Пусть x,y ∈ L(x1, . . . ,xp) ⋐ V , т.е.

x = α1x1 + · · · + αpxp,

y = β1x1 + · · · + βpxp.

Тогда

x + y = (α1 + β1)x1 + · · · + (αp + βp)xp,

т.е. x + y ∈ L(x1, . . . ,xp) ⋐ V . Завершите доказательство самостоятельно. ◮

2.3. Пополнение базиса.

Теорема.

Пусть

P ⋐ V, dim P = p < dim V = n,

e1, . . . ,ep —базис в P . Тогда ∃ep+1, . . . ,en ∈ V \ P такие, что

e1, . . . , ep, ep+1, . . . , en

—базис в V .

◭ Так как p < n, то ∃ep+1 ∈ V такой, что векторы e1, . . . ,ep,ep+1 ЛН; при этом ep+1 /∈ P ,

так как в противном случае получили бы dim P > p.

Если p + 1 = n, пополнение базиса завершено. Если p + 1 < n, продолжаем процесс. ◮
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2.4. Пересечение и сумма ЛПП.

Теорема.

Если P ⋐ V , Q ⋐ V , то P ∩ Q ⋐ V .

◭ Проверим выполнение требований определения:

x,y ∈ P ∩ Q ⇐⇒
{

x,y ∈ P

x,y ∈ Q

⇐⇒
{

x + y ∈ P

x + y ∈ Q
⇐⇒ x + y ∈ P ∩ Q.

Второе условие проверяется аналогично. ◮

Замечание. Если P ⋐ V , Q ⋐ V , то P ∪ Q не является, вообще говоря, ЛПП.

Задача. Приведите соответствующий пример.

Суммой P + Q ЛПП P,Q ⋐ V называется ЛО всевозможных векторов вида x + y, где

x ∈ P , y ∈ Q, т.е.

P + Q =
{

αx + βy

∣

∣

∣
α, β ∈ K, x ∈ P, y ∈ Q

}

.

Таким образом, ∀z ∈ P + Q: ∃x ∈ P , ∃y ∈ Q такие, что z = x + y.

Теорема.

Если P ⋐ V , Q ⋐ V , то P + Q ⋐ V .

Задача. Докажите теорему.

x′

y′

x′′

y′′

z

P
Q

z = x′ + y′ = x′′ + y′′.

Теорема.

Пусть V —ЛП, P ⋐ V , Q ⋐ V . Тогда

dim(P + Q) = dim P + dim Q − dim(P ∩ Q). (1)

◭ Пусть e1, . . . ,er —базис в P ∩ Q, dim(P ∩ Q) = r;

f
1
, . . . ,f p — его дополнение до базиса в P , dim P = r + p;

g
1
, . . . , gq — его дополнение до базиса в Q, dim Q = r + q.

Тогда все эти векторы образуют базис в P + Q (объясните почему), и

dim(P + Q) = r + p + q = (p + r) + (q + r) − r =

= dim P + dim Q − dim(P ∩ Q). ◮
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2.5. Прямая сумма ЛПП.

Пусть V (K)—ЛП, P ⋐ V , Q ⋐ V . Тогда для любого вектора z ∈ P + Q существуют

такие x ∈ P , y ∈ Q, что z = x + y. Такое разложение, вообще говоря, не единственно.

Если же оно единственно, то сумма ЛПП называется прямой суммой; P ⊕ Q.

Теорема.

Сумма ЛПП P и Q является прямой суммой тогда и только тогда, когда P∩Q = {0}.
◭ 1. Пусть P ∩ Q = {0}. Тогда базиса в P ∩ Q не существует, а базисы в P и Q суть

f
1
, . . . ,f p, g

1
, . . . , gq,

где p = dim P , q = dim Q. Базис в P +Q состоит из всех этих векторов, поэтому ∀z ∈ P +Q

имеем

x = x1f
1
+ · · · + xpf p

︸ ︷︷ ︸

=x

+ y1g
1
+ · · · + yqgq

︸ ︷︷ ︸

=y

.

Это разложение единственно (единственность разложения по базису) ⇒ P + Q = P ⊕ Q.

2. Пусть P + Q = P ⊕ Q. Докажем, что P ∩ Q = {0}.
Предположим противное, т.е. допустим, что ∃v ∈ P ∩ Q, v 6= 0. Тогда v ∈ P , v ∈ Q и

∀z ∈ P ⊕ Q имеем

z = x + y = x + v
︸ ︷︷ ︸

∈P

+ y − v
︸ ︷︷ ︸

∈Q

,

т.е. разложение вида z = x + y не единственно; противоречие. ◮

Задача. Докажите, что

Kn×n = SKn×n ⊕ AKn×n.

Задача. Докажите, что

Pol(n) = S Pol(n) ⊕ A Pol(n).

2.6. Ядро и образ гомоморфизма.

Пусть V (K) и W (K)—два ЛП над ЧП K, f : V → W — гомоморфизм.

Ядро ker f гомоморфизма f —это множество векторов из V

ker f =
{

x ∈ V
∣

∣

∣
f(x) = 0W

}

.

Образ im f гомоморфизма f —это множество векторов из W

im f =
{

y ∈ W
∣

∣

∣
∃x ∈ V : y = f(x)

}

.

0V 0W

V W
f

ker f im f

Теорема.

Пусть f : V → W — гомоморфизм ЛП. Тогда

ker f ⋐ V, im f ⋐ W.
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◭ 1. Проверим, что ker f ⋐ V . Имеем:

x ∈ ker f ⇐⇒ f(x) = 0W ,

y ∈ ker f ⇐⇒ f(y) = 0W ;

поэтому

f(x + y) = f(x) + f(y) = 0W ⇐⇒ x + y ∈ ker f.

Завершите доказательство самостоятельно. ◮

Теорема.

Пусть f : V → W — гомоморфизм ЛП.

dim ker f + dim im f = dim V. (2)

◭ Пусть dim V = n, dim ker f = p, e1, . . . ,ep —базис в ker f , ep+1, . . . ,en — его дополне-

ние до базиса в V .

Имеем f(e1) = · · · = f(ep) = 0W .

Докажем, что векторы f p+1
= f(ep+1), . . . , fn = f(en) образуют базис в im f .

Предположим, что эти векторы ЛЗ, т.е. ∃αp+1, . . . , αn ∈ K, не все равные нулю, такие,

что

αp+1f p+1
+ · · · + αnfn = 0W .

В таком случае

0W = αp+1f p+1
+ · · · + αnfn =

= αp+1f(ep+1) + · · · + αnf(en) =

= f(αp+1ep+1 + · · · + αnen),

откуда следует, что

αp+1ep+1 + · · · + αnen = 0V ,

что противоречит линейной независимости векторов ep+1, . . . ,en. Таким образом, векторы

f p+1
= f(ep+1), . . . , fn = f(en) ЛН.

Далее, ∀y ∈ im f ∃x ∈ V такой, что y = f(x). Имеем:

x = x1e1 + · · · + xpep + xp+1ep+1 + · · · + xnen,

y = f(x) = x1f(e1) + · · · + xpf(ep)
︸ ︷︷ ︸

=0W

+xp+1f(ep+1) + · · · + xnf(en) =

= xp+1f p+1
+ · · · + xnfn,

т.е. любой вектор y ∈ W может быть разложен в ЛК векторов f p+1
, . . . ,fn. Таким образом,

векторы f p+1
, . . . ,fn образуют базис в im f и, следовательно, dim im f = n − p.

Итак,

dim V = n = p + (n − p) = dim ker f + dim im f. ◮
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2.7. Ядро и образ матрицы.

Соотношение

AX = Y, A ∈ Km×n, X ∈ Kn, Y ∈ Km,

можно рассматривать как отображение

A : Kn → Km, X 7→ Y,

задаваемое матрицей A. Очевидно, это отображение является гомоморфизмом ЛП Kn и

Km.

Тогда задача решения ОСЛУ

AX = O

эквивалентна нахождению ядра ker A этого гомоморфизма, которое называют также ядром

матрицы A.

Образ указанного гомоморфизма называют образом матрицы A. Так как столбец

Y = AX представляет собой ЛК столбцов матрицы A с коэффициентами, равными эле-

ментам столбца X, ясно, что образ матрицы есть не что иное, как линейная оболочка ее

столбцов.

3. РАНГ МАТРИЦЫ

3.1. Линейная оболочка строк матрицы.

Теорема.

При ЭП строк размерность ЛО ее строк не меняется.

◭ Пусть матрица B получена из матрицы A ∈ Km×n с помощью ЭП строк. Это означает,

что каждая строка матрицы B является некоторой ЛК строк матрицы A, так что

L(B1, . . . , Bm) ⋐ L(A1, . . . , Am).

Поскольку ЭП строк обратимы, то

L(A1, . . . , Am) ⋐ L(B1, . . . , Bm).

Таким образом,

L(A1, . . . , Am) = L(B1, . . . , Bm) ⇐⇒

⇐⇒ dim L(A1, . . . , Am) = dim L(B1, . . . , Bm). ◮

3.2. Линейная оболочка столбцов матрицы.

Линейная оболочка столбцов матрицы A ∈ Km×n — это образ гомоморфизма

A : Kn → Km, X 7→ AX.

Теорема.

При ЭП строк размерность ЛО ее столбцов не меняется.

◭ Рассмотрим ОСЛУ с матрицей A ∈ Km×n:

AX = O
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Множество ее решений — это ядро ker A матрицы A. Поскольку при ЭП строк СЛУ

переходит в эквивалентную СЛУ, для любой матрицы B, полученной из A такими ЭП,

имеем

ker B = ker A.

Поэтому

dim im B = dim Kn − dim ker B = dim Kn − dim ker A = dim im A.

◮

3.3. Ранг матрицы.

Теорема.

Для любой матрицы A размерность ЛО ее строк равна размерности ЛО ее столб-

цов.

◭ Приведем матрицу A ∈ Km×n к упрощенному виду с помощью ЭП строк; размерности

ЛО строк и столбцов полученной матрицы B равны размерностям соответствующих ЛО

для матрицы A. В матрице B сделаем ЭП типа (4), т.е. удалим из нее нулевые строки;

получим матрицу C ∈ Kr×n, где r 6 m.

Рассматривая ОСЛУ с матрицей C, видим, что в каждом уравнении имеется базисная

неизвестная. Поэтому строки матрицы C ЛН. Таким образом, размерность ЛО строк

матрицы C равна количеству базисных неизвестных и равно количеству уравнений r.

Количество свободных неизвестных в системе равно n−r, поэтому ФСР ОСЛУ состоит

из n−r столбцов, т.е. размерность пространства решений ОСЛУ, равная размерности ядра

матрицы, также равна n − r. Размерность же ЛО столбцов, равная размерности образа

матрицы, равна n − (n − r) = r. ◮

Ранг матрицы — это размерность ЛО ее строк (столбцов). Обозначение: rk A.

3.4. Ранг произведения матриц.

Теорема.

rk(AB) 6 rk A, rk(AB) 6 rk B.

◭ Поскольку столбцы матрицы AB суть линейные комбинации столбцов матрицы A,

получаем

L(C1, . . . , Cp) ⋐ L(A1, . . . , Am) ⇒

dim L(C1, . . . , Cp) 6 dim L(A1, . . . , Am). ◮

3.5. Теорема Кронекера—Капелли.

Теорема.

Система линейных уравнений

AX = B

совместна тогда и только тогда, когда ранг ее основной матрицы равен рангу рас-

ширенной матрицы:

rk A = rk[A|B].

◭ Совместность системы

AX = B ⇐⇒ A1x
1 + A2x

2 + · · · + Anx
n = B



9

означает, что

B ∈ L(A1, A2, . . . , An)

т.е.

L(A1, A2, . . . , An) = L(B,A1, A2, . . . , An),

так что размерности этих линейных оболочек совпадают. ◮

4. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Доказать, что подмножество в Kn(K), состоящее из столбцов, сумма элементов

которых равна нулю, является линейным подпространством в Kn(K). Найти размерность

и указать какой-либо базис этого подпространства.

Задача 2. Доказать, что в линейном пространстве Kn×n(K) квадратных матриц порядка n

подмножество SKn×n симметричных матриц является линейным подпространством. Найти

размерность и указать какой-либо базис этого подпространства.

Задача 3. Доказать, что в линейном пространстве Kn×n(K) квадратных матриц порядка

n подмножество AKn×n кососимметричных матриц является линейным подпространством.

Найти размерность и указать какой-либо базис этого подпространства.

Задача 4. Доказать, что Kn×n = SKn×n ⊕ AKn×n.

Задача 5. Доказать, что в линейном пространстве Kn×n(K) квадратных матриц порядка

n подмножество матриц с нулевым следом является линейным подпространством. (След

матрицы — это сумма ее диагональных элементов.) Найти размерность и указать какой-

либо базис этого подпространства.

Задача 6. Доказать, что сумма L двух линейных подпространств P и Q тогда и только

тогда будет прямой суммой, когда хотя бы один вектор x ∈ L однозначно представляется

в виде x = y + z, где y ∈ P , z ∈ Q.

Задача 7. Пусть P и Q—два линейных подпространства конечномерного линейного про-

странства V . Доказать, что если dim P + dim Q > dim V , то пересечение P ∩ Q содержит

ненулевой вектор.

Задача 8. Пусть P и Q—два линейных подпространства конечномерного линейного про-

странства V . Доказать, что если dim(P + Q) = dim(P ∩ Q) + 1, то одно из этих подпро-

странств содержится в другом.

Задача 9. Доказать, что для любого линейного подпространства P конечномерного ли-

нейного пространства V существует другое подпространство Q такое, что V = P ⊕ Q.

Задача 10. Пусть A, B, C — три линейных подпространства конечномерного линейного

пространства V , P = (A∩C) + (B ∩C), Q = (A + B)∩C. Доказать, что P ⊆ Q. Привести

пример, когда P 6= Q.

Задача 11. Доказать, что если в n-мерном комплексном линейном пространстве V рас-

сматривать умножение векторов лишь на вещественные числа, то получим 2n-мерное

вещественное линейное пространство V R. (Описанная процедура называется овеществле-

нием комплексного линейного пространства.) Исходя из базиса e1, . . . ,en пространства V ,

построить базис пространства V R.



Лекция 9

1. АФФИННОЕ ПРОСТРАНСТВО

Для построения полноценной геометрии одних векторов недостаточно, необходимы еще

точки. Пространство, состоящее из точек, и называется аффинным (или точечным) про-

странством; сокращение — АП. Определение АП получается при помощи аксиоматизации

построения вектора по двум точкам.

1.1. Определение аффинного пространства.

Аффинное пространство — это множество A элементов произвольной природы (точек),

для которого заданы:

(A) некоторое линейное пространство V , над числовым полем K, называемое ассоции-

рованным с АП A;

(B) отображение

f : A×A → V,

которое ставит в соответствие каждой упорядоченной паре точек A,B ∈ A некоторый

вектор из V , обозначаемый
−→
AB (точка A называется началом, точка B — концом вектора−→

AB).

При этом должны быть выполнены следующие аксиомы:

(1) для любой точки A ∈ A и любого вектора a ∈ V существует единственная точка

B ∈ A такая, что
−→
AB = a;

(2) для любых трех точек A,B,C ∈ A выполняется соотношение

−→
AB +

−−→
BC =

−→
AC.

Символом A(V,K) обозначаем АП A с ассоциированным ЛП V над ЧП K.

Размерность dimV ассоциированного ЛП V называется размерностью АП A и обозна-

чается dimA.

Полагая A = B = C, получаем

−→
AA+

−→
AA =

−→
AA ⇒ −→

AA = 0.

Полагая A = C, получаем

−→
AB +

−→
BA =

−→
AA = 0 ⇒ −→

AB = −−→
BA.

1.2. Аффинная геометрия.

Основные неопределяемые понятия: точка, вектор.

Основные неопределяемые отношения между понятиями:

(1) отношение между тремя векторами c = a + b;

(2) отношение между двумя векторами и числом: b = α · a;
(3) отношение между двумя точками и вектором: a =

−→
AB.

Эти отношения удовлетворяют восьми «векторным» и двум «аффинным» аксиомам.

Отметим, что в аффинном пространстве отсутствуют понятия длины вектора, угла меж-

ду векторами, скалярного, векторного и смешанного произведения векторов.
1
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1.3. Примеры аффинных пространств.

1. Пусть V — ЛП. Определим АП, полагая A = V и
−→
ab = b − a. Проверим выполнение

аксиом АП:

(1) для любой «точки» a ∈ A и любого вектора c ∈ V «точка» b = a + c является

единственной точкой, для которой
−→
ab = c;

(2) для любых трех «точек» a, b, c имеем

−→
ab +

−→
bc = −→ac ⇐⇒ (b − a) + (c − b) = c − a.

Таким образом, любое ЛП можно рассматривать как АП.

2. Множество Kn можно рассматривать как АП с ассоциированным ЛП Kn. Если

A = (a1, . . . , an)T и B = (b1, . . . , bn)T — две точки из АП Kn, то вектор
−→
AB из ЛП Kn

определяется как

−→
AB =







b1 − a1

...

bn − an






.

1.4. Изоморфизм аффинных пространств.

Изоморфизм аффинных пространств A(V,K) и B(W,K) — это взаимно однозначное

отображение

ψ : A → B,

рассматриваемое вместе с некоторым изоморфизмом ассоциированных ЛП

ϕ : V → W,

обладающее следующим свойством: для любых точек A,B ∈ A

ϕ(
−→
AB) =

−−−−−−−→
ψ(A)ψ(B).

Теорема.

Любое АП A изоморфно ассоциированному ЛП V , рассматриваемому как АП.

◭ Выберем в A произвольную точку O, называемую началом координат, и для произ-

вольной точки A положим

ψ : A → V, ψ(A) =
−→
OA. (1)

Очевидно, это отображение является изоморфизмом аффинных пространств A и V ; при

этом соответствующий изоморфизм ассоциированных ЛП — это тождественное отобра-

жение ϕ : V → V , ϕ(a) = a. ◮

Вектор, определяемый соотношением (1), называется радиус-вектором точки A относи-

тельно начала координат O.

Теорема.

Любое АП A размерности n изоморфно АП Kn.

Теорема.

Все АП над одним и тем же ЧП, имеющие одинаковую размерность, изоморфны.

В этом состоит полнота аксиом аффинной геометрии: они однозначно (с точностью до

изоморфизма) определяют соответствующее АП.
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1.5. Аффинная система координат.

Аффинная система координат (АСК) в АП A(V,K) — это набор, состоящий из точки

O ∈ A, называемой началом координат, и базиса e1, . . . en ∈ V . Обозначение: Oe1 . . . en.

Каждая АСК определяет некоторый изоморфизм

ψ : A → Kn, A 7→







a1

...

an






,

называемый координатным изоморфизмом. Числа a1, . . . , an называются координатами точ-

ки A в АСК Oe1 . . . en. Эти координаты являются не чем иным, как координатами радиус-

вектора
−→
OA в базисе e1, . . . ,en:

−→
OA = a1e1 + · · · + anen.

2. ПЛОСКОСТИ В АФФИННОМ ПРОСТРАНСТВЕ

2.1. Определения.

k-Мерная плоскость (k-плоскость) в n-мерном АП — это множество точек, определяе-

мых уравнением

r = r0 + t1a1 + · · · + tkak,

где a1, . . . ,ak — ЛН векторы, называемые направляющими векторами плоскости, r0 —

точка, называемая начальной (опорной) точкой плоскости.

Направлением k-мерной плоскости называется ЛО ее направляющих векторов:

L(a1, . . . ,ak).

Уравнение k-плоскости совпадает по виду со структурой общего решения НСЛУ, причем

направление этой плоскости — не что иное, как общее решение соответствующей ОСЛУ.

Поэтому каждая k-плоскость может быть задана с помощью НСЛУ. Минимальное число

уравнений в системе равно рангу матрицы системы и равно n− k.

Частные случаи:

(1) 1-плоскость в двумерном АП — это прямая на плоскости; она задается одним

направляющим вектором a и имеет уравнение

r = r0 + ta.

(2) 1-плоскость в трехмерном АП — это прямая в пространстве; задается одним на-

правляющим вектором a и имеет уравнение

r = r0 + ta.

(3) 2-плоскость в трехмерном АП; задается двумя направляющими векторами a, b и

имеет уравнение

r = r0 + ta + sb.

Разность n− k называется коразмерностью k-плоскости.

(n − 1)-Плоскости, т.е. k-плоскости коразмерности 1 называются гиперплоскостями. 1-

Плоскость в двумерном АП (прямая на плоскости) и 2-плоскость в трехмерном АП (плос-

кость в пространстве) — примеры гиперплоскостей.

Гиперплоскость может быть задана одним уравнением вида

A1x
1 + A2x

2 + · · · + Anx
n = B.
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2.2. Параллельность многомерных плоскостей.

Пусть в n-мерном АП даны две плоскости:

r = r1 + t1a1 + · · · + tkap, r = r2 + s1b1 + · · · + spbq

разных, вообще говоря, размерностей. Обозначим направления этих плоскостей

P = L(a1, . . . ,ap), dimP = p,Q = L(b1, . . . , bq), dimQ = q.

Будем считать, что p 6 q.

Плоскости называются параллельными, если

P ⊆ Q.

Параллельные плоскости могут иметь общие точки; в этом случае говорят, что

(1) плоскости совпадают, если их размерности равны;

(2) плоскость меньшей размерности содержится в плоскости большей размерности.

2.3. Скрещивающиеся плоскости.

Говорят, что p-плоскость с направлением P и q-плоскость с направлением Q, p 6 q,

P 6⊂ Q, скрещиваются вдоль направления R, если они не имеют общих точек и

P ∩Q = R.

Так как P 6⊂ Q, то dim(P ∩Q) < p; поскольку для любых подпространств

dim(P ∪Q) = dimP + dimQ− dim(P ∩Q),

имеем

dim(P ∩Q) = p+ q − dim(P ∪Q) > p+ q − n.

Итак, в n-мерном АП p-плоскость и q-плоскость, p 6 q, могут скрещиваться вдоль

подпространства, размерность которого заключена в пределах

max(p+ q − n, 0) 6 dim(P ∩Q) 6 p− 1.

В 2-мерном АП (на плоскости) не бывает скрещивающихся 1-плоскостей (прямых).

В 3-мерном АП (в пространстве) существуют 1-плоскости (прямые), скрещивающиеся

вдоль 0-мерных направлений.

Анализ взаимного расположения двух плоскостей

r = r1 + t1a1 + · · · + tkap, r = r2 + s1b1 + · · · + spbq

в АП сводится к анализу системы уравнений

r = r1 + t1a1 + · · · + tkap = r2 + s1b1 + · · · + spbq

относительно переменных t1, . . . , tp, s1, . . . , sq.

3. ДВУМЕРНОЕ АФФИННОЕ ПРОСТРАНСТВО

Двумерное АП называем плоскостью, 1-плоскость — прямой.
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3.1. Уравнение прямой на плоскости.

Векторное уравнение

r = r0 + ta

в произвольной системе координат примет вид
{

x = x0 + tl,

y = y0 + tm,

где r = (x, y), r0 = (x0, y0), a = (l,m).

O

M0

r0

M

r

a

Исключив параметр t, получим

x− x0

l
=
y − y0

m
.

Это уравнение называется каноническим уравнением прямой на плоскости. В знаменате-

лях допускаются нули; в этом случае соотношение следует «перемножить крест-накрест»,

как пропорцию.

3.2. Расположение двух прямых на плоскости.

Пусть на плоскости заданы две прямые

r = r1 + sa1, r = r2 − ta2

(направляющий вектор второй прямой выбран в виде −a2). Изучим множество их общих

точек; для этого проанализируем уравнение

r1 + sa1 = r2 − ta2 ⇐⇒ sa1 + ta2 = r2 − r1.

В произвольной системе координат это векторное уравнение примет вид НСЛУ

s

(

l1

m1

)

+ t

(

l2

m2

)

=

(

x2 − x1

y2 − y1

)

,

где a1 = (l1,m1)
T , a2 = (l2,m2)

T , a1 = (x1, y1)
T , a2 = (x2, y2)

T .

Расширенная матрица этой НСЛУ имеет вид
(

l1 l2 x2 − x1

m1 m2 y2 − y1

)

.

Обозначим ранги основной и расширенной матриц через

r =

(

l1 l2

m1 m2

)

, R =

(

l1 l2 x2 − x1

m1 m2 y2 − y1

)

.

Возможны следующие случаи:
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(1) r = 1, R = 1. Система совместна, имеет однопараметрическое семейство решений:

прямые совпадают.

(2) r = 1, R = 2. Система несовместна: прямые параллельны.

(3) r = 2, R = 2. Система совместна, имеет единственное решение: прямые пере-

секаются в единственной точке. Решение системы представляет собой значения

параметров s, −t, которые нужно подставить в уравнения прямых, чтобы найти

координаты точки пересечения.

Если прямые, рассматриваемые как гиперплоскости, задать уравнениями

A1x+B1y = C1, A2x+B2y = C2,

то анализ взаимного их расположения сводится к изучению системы с расширенной мат-

рицей
(

A1 B1 C1

A2 B2 C2

)

.

При решении системы сразу получаются координаты точки пересечения прямых.

3.3. Уравнение прямой, проходящей через две заданные точки.

Напишем уравнение прямой, прооходящей через точки

M1(r1) = M1(x1, y1), M2(r2) = M2(x2, y2).

В качестве опорной точки можно выбрать любую из точек M1 или M2, а в качестве

направляющего вектора — вектор

−−−−→
M1M2 = r2 − r1 = (x2 − x1, y2 − y1).

Уравнение в векторном параметрическом виде:

r = r1 + t(r2 − r1),

в каноническом виде
x− x1

x2 − x1

=
y − y1

y2 − y1

.

4. ТРЕХМЕРНОЕ АФФИННОЕ ПРОСТРАНСТВО

Трехмерное АП называем пространством, 1-плоскости — прямыми, 2-плоскости (гипер-

плоскости) — плоскостями.

4.1. Уравнения плоскостей.

Плоскость в пространстве может быть задана следующими способами.

(1) Векторное параметрическое уравнение:

r = r0 + αa + βb. (2)

(2) «Общее уравнение»:

Ax+By + Cz = D; (3)

в этом случае (2) — общее решение НСЛУ (3).
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M0

Ma

b

O

r0

r

Чтобы получить из (2) уравнение (3), имеется два способа.

1. Составить НСЛУ, общее решение которой известно.

2. Рассмотрим вектор
−−−→
MM0, где M — произвольная точка плоскости. Векторы

−−−→
MM0, a,

b ЛЗ, поэтому равен нулю det-3, составленный из их координат:
∣

∣

∣

∣

∣

∣

∣

x− x0 y − y0 z − z0

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

= 0.

После раскрытия det-3 получится уравнение вида (3).

4.2. Взаимное расположение двух плоскостей в пространстве.

Проанализируем систему уравнений
{

A1x+B1y + C1z = D1,

A2x+B2y + C2z = D2.

Обозначим ранги основной и расширенной матриц этой системы через r и R соответствен-

но:

r = rk

(

A1 B1 C1

A2 B2 C2

)

, R = rk

(

A1 B1 C1 D1

A2 B2 C2 D2

)

.

Возможны следующие случаи:

(1) r = 1, R = 1. Система совместна, имеет двупараметрическое семейство решений:

плоскости совпадают.

(2) r = 1, R = 2. Система несовместна: плоскости параллельны.

(3) r = 2, R = 2. Система совместна, имеет однопараметрическое семейство решений:

плоскости пересекаются (пересечением является прямая).

4.3. Уравнение плоскости, проходящей через три точки.

Запишем уравнение плоскости, проходящей через точки

M1(r1) = M1(x1, y1, z1), M2(r2), M3(r3).

Если M(r) = M(x, y, z) — произвольная точка плоскости, то векторы
−−−→
M1M ,

−−−−→
M1M2,−−−−→

M1M3 компланарны, так что
∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

∣

= 0.
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M1

M

M2

M3

O

r0
r

4.4. Уравнение плоскости, проходящей через две точки параллельно заданному век-

тору.

Запишем уравнение плоскости, проходящей через точки M1(r1), M2(r2) параллельно

вектору l = (l,m, n). Если M(r) = M(x, y, z) — произвольная точка плоскости, то векторы−−−→
M1M ,

−−−−→
M1M2, l компланарны, так что

∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

l m n

∣

∣

∣

∣

∣

∣

∣

= 0.

4.5. Уравнения прямых.

Прямая в пространстве может быть задана следующими способами.

(1) Векторное параметрическое уравнение

r = r0 + ta,

где r0 — радиус-вектор опорной точки, a — направляющий вектор прямой.

(2) Если в пространстве зафиксирована некоторая АСК Oe1e2e3, то векторное пара-

метрическое уравнение можно записать в координатном виде














x = x0 + tl,

y = y0 + tm,

z = z0 + tn,

где r0 = (x0, y0, z0)
T и a = (l,m, n)T .

(3) Исключая параметр t из параметрических уравнений, получим каноническое урав-

нение прямой
x− x0

l
=
y − y0

m
=
z − z0

n
.

(4) Прямая может быть задана как пересечение двух непараллельных плоскостей:
{

A1x+B1y + C1z = D1,

A2x+B2y + C2z = D2.

Чтобы получить параметрическое уравнение прямой, нужно найти общее реше-

ние этой НСЛУ; при этом базисное решение НСЛУ представляет опорную точку

прямой, а ФСР соответствующей ОСЛУ, состоящая из одного вектора, — направ-

ляющий вектор.
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4.6. Взаимное расположение двух прямых в пространстве.

Рассмотрим две прямые

r = r1 + sa1, r = r2 − ta2

(направляющий вектор второй прямой выбран в виде −a2).

Общие точки прямых определяются из условия

r1 + sa1 = r2 − ta2 ⇐⇒ sa1 + ta2 = r2 − r1.

Если выбрать в пространстве произвольную АСК, то это векторное уравнение можно

записать в виде НСЛУ

t







l1

m1

n1






+ s







l2

m2

n2






=







x2 − x1

y2 − y1

z2 − z1







Обозначим через r и R ранги основной и расширенной матриц этой системы:

r = rk







l1 l2

m1 m2

n1 n2






, R = rk







l1 l2 x2 − x1

m1 m2 y2 − y1

n1 n2 z2 − z1






.

Возможны следующие случаи:

(1) r = R = 1; система совместна, имеет однопараметрическое семейство решений:

прямые совпадают.

(2) r = 1, R = 2; система несовместна, однако столбцы основной матрицы системы

линейно зависимы, т.е. направляющие векторы прямых коллинеарны: прямые па-

раллельны.

(3) r = R = 2; система совместна и ее решение еднственно: прямые пересекаются.

(4) r = 2, R = 3; система несовместна, столбцы основной матрицы системы линейно

независимы, т.е. направляющие векторы прямых неколлинеарны: прямые скрещи-

ваются.

4.7. Взаимное расположение прямой и плоскости в пространстве.

Пусть плоскость задана уравнением

Ax+By + Cz = D,

а прямая — системой уравнений
{

A1x+B1y + C1z = D1,

A2x+B2y + C2z = D2,

ранг основной матрицы которой равен двум.

Анализ взаимного расположения прямой и плоскости сводится к анализу системы














A1x+B1y + C1z = D1,

A2x+B2y + C2z = D2,

Ax+By + Cz = D.

Обозначим ранги основной и расширенной матриц этой системы через r и R; при этом

r > 2.

Возможны следующие случаи.
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(1) r = R = 2; система совместна и имеет однопараметрическое семейство решений:

прямая лежит в плоскости.

(2) r = 2, R = 3; система несовместна: прямая и плоскость параллельны.

(3) r = R = 3; система совместна и имеет единственное решение: прямая пересекает

плоскость в единственной точке.

5. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Проанализировать взаимное расположение двух прямых на аффинной плоско-

сти, исходя из параметрических уравнений прямых.

Задача 2. Проанализировать взаимное расположение двух прямых на аффинной плоско-

сти, исходя из общих уравнений прямых.

Задача 3. Проанализировать взаимное расположение двух плоскостей в аффинном про-

странстве, исходя из параметрических уравнений плоскостей.

Задача 4. Проанализировать взаимное расположение двух плоскостей в аффинном про-

странстве, исходя из общих уравнений плоскостей.

Задача 5. Проанализировать взаимное расположение прямой и плоскости в аффинном

пространстве. Плоскость задана общим уравнением, прямая — параметрическим уравне-

нием.

Задача 6. Найти координаты точки пересечения плоскости Ax + By + Cz = D и прямой
x− x0

l
=
y − y0

m
=
z − z0

n
.
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1. ЕВКЛИДОВО ПРОСТРАНСТВО

1.1. Определение.

Пусть V (R) — ЛП над полем вещественных чисел.

Скалярное произведение на V — это произвольная функция

V × V → R,

ставящая в соответствие упорядоченной паре векторов x,y ∈ V вещественное число (x,y)

и обладающая следующими свойствами:

(1) симметричность (коммутативность): ∀x,y ∈ V

(x,y) = (y,x);

(2) ∀x,y,z ∈ V

(x + y,z) = (x,z) + (y,z),

(3) ∀x,y,∈ V , ∀α ∈ R

(αx,y) = α(x,y)

(линейность);

(4) положительность: ∀x 6= 0

(x,x) > 0.

Евклидово линейное пространство (ЕЛП) — это линейное пространство над ЧП R, на

котором зафиксировано некоторое скалярное произведение.

Евклидово точечное пространство (ЕТП) — это аффинное пространство над ЧП R, на

ассоциированном линейном пространстве которого зафиксировано некоторое скалярное

произведение.

1.2. Неравенство Коши—Буняковского.

Пусть E — ЕЛП.

Теорема.

Для любых x,y ∈ E имеет место неравенство

(x,y)2
6 (x,x) · (y,y).

◭ Имеем:

0 6 (x + ty,x + ty) = (x,x) + 2t(x,y) + t2(y,y).

Квадратный трехчлен может принимать только неотрицательные значения лишь в случае,

когда его дискриминант неположителен:

D = 4(x,y) − 4(x,x) · (y,y),

откуда вытекает требуемое неравенство. ◮

1
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1.3. Длины и углы.

Пусть E — ЕЛП.

Длина (модуль, норма) вектора x ∈ E — это число

‖x‖ =
√

(x,x).

Используется также обозначение |x|.
Неравенство Коши—Буняковского можно переписать в виде

|(x,y)| 6 ‖x‖ · ‖y‖

и в виде

(x,y) 6 ‖x‖ · ‖y‖.
Теорема.

Имеют место соотношения:

(1) ∀x ∈ E: ‖x‖ > 0, причем ‖x‖ = 0 тогда и только тогда, когда x = 0.

(2) ∀x ∈ E, ∀α ∈ R:

‖αx‖ = |α| · ‖x‖.
(3) ∀x,y ∈ E:

∣

∣‖x‖ − ‖y‖
∣

∣ 6 ‖x + y‖ 6 ‖x‖ + ‖y‖
(неравенства треугольника).

◭ Утверждение (1) очевидно.

(2) Имеем:

‖αx‖ =
√

(αx, αx) =
√

α2(x,x) = |α| · ‖x‖.
(3) Имеем:

‖x + y‖2 = (x + y,x + y) = ‖x‖2 + 2(x,y) + ‖y‖2
6

6 ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2,

откуда ‖x + y‖ 6 ‖x‖ + ‖y‖.
Аналогично,

‖x + y‖2 = ‖x‖2 + 2(x,y) + ‖y‖2
>

> ‖x‖2 − 2‖x‖ · ‖y‖ + ‖y‖2 = (‖x‖ − ‖y‖)2,

откуда ‖x + y‖ >
∣

∣‖x‖ − ‖y‖
∣

∣. ◮

В ЕТП расстояние между двумя точками A, B определяется как

|AB| = |−→AB| =

√

(
−→
AB,

−→
AB).

Если A,B,C — три произвольные точки в ЕТП и a =
−→
AB, b =

−−→
BC, то a + b =

−→
AC, и

мы получаем
∣

∣|AB| − |BC|
∣

∣ 6 |AC| 6 |AB| + |BC|
— обычные неравенства треугольника.

Угол между ненулевыми векторами x,y —это число ϕ (0 6 ϕ 6 π), определяемое

формулой

cos ϕ =
(x,y)

‖x‖‖y‖ .

Из неравенства Коши—Буняковского следует, что угол определен для любых двух нену-

левых векторов.
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Направляющий вектор прямой может быть выбран с точностью до произвольного мно-

жителя.

Угол между двумя прямыми— это острый угол между их направляющими векторами,

выбранными надлежащим образом.

1.4. Примеры ЕЛП. 1. ЛП Rn(R) становится ЕЛП, если для векторов

X =













x1

x2

...

xn













, Y =













y1

y2

...

yn













определить СП по формуле

(x,y) =
n
∑

j=1

xjyj = XT Y.

2. В Rn×m(R) можно ввести СП по формуле

(X,Y ) = tr(XT Y ).

Задача. Докажите.

3. В Pol(n, R) можно ввести СП векторов

x = x(t) = a0 + a1t + · · · + ant
n,

y = y(t) = b0 + b1t + · · · + bnt
n

по формуле

(x,y) =
n
∑

j=0

ajbj.

4. В Pol(n, R) можно определить СП иначе:

(x,y) =

β
∫

α

x(t)y(t)dt.

Задача. Докажите.

1.5. Ортогональные векторы.

Пусть E — ЕЛП.

Векторы x,y ∈ E называются ортогональными, если (x,y) = 0. Обозначение x⊥y.

Пусть P ⋐ E —ЛПП в ЕЛП E. Вектор x называется ортогональным подпространству

P ⋐ E, если он ортогонален любому вектору из P :

x⊥P ⇐⇒ x⊥y ∀y ∈ P.

Теорема.

(1) x⊥x тогда и только тогда, когда x = 0.

(2) Если x ∈ P и x⊥P , то x = 0.

(3) Если y⊥x1, . . . , y⊥xk, то y⊥L(x1, . . . ,xk).

(4) Если x⊥y, то ‖x + y‖2 = ‖x‖2 + ‖y‖2 (теорема Пифагора).

(5) Если ненулевые векторы x1, . . . ,xp попарно ортогональны, т.е. xj⊥xk, j 6= k,

то они линейно независимы.
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◭ (1), (2), (3), (4) — докажите самостоятельно.

(5) Рассмотрим линейную комбинацию векторов x1, . . . ,xp, равную нулевому вектору:

α1x1 + · · · + αsxs + · · · + αpxp = 0.

Умножая скалярно это равенство на вектор xs, получаем

α1 (x1,xs)
︸ ︷︷ ︸

=0

+ · · · + αs (xs,xs)
︸ ︷︷ ︸

=1

+ · · · + αp (xp,xs)
︸ ︷︷ ︸

=0

= 0,

так что αs = 0, что и требовалось. ◮

1.6. Ортонормированный базис.

Система векторов e1, . . . ,ep в ЕЛП E называется ортонормированной (ОНС), если

(ej,ek) = δjk, j, k = 1, . . . , p.

Векторы, образующие ОНС, линейно независимы.

Теорема.

В любом ЕЛП существует ортонормированный базис (ОНБ).

◭ Проведем построение ОНБ по индукции.

Пусть y
1
∈ E — произвольный вектор. Система, состоящая из одного вектора e1 =

y
1

‖y
1
‖ ,

является ортонормированной.

Допустим, что найдена ОНС e1, . . . ,ep−1, p 6 dim E. Возьмем произвольный вектор

xp /∈ L(e1, . . . ,ep−1)

и рассмотрим вектор

yp = xp −
p−1
∑

j=1

(xp,ej)ej.

Этот вектор обладает следующим свойством:

yp⊥L(e1, . . . ,ep−1).

Действительно, для любого k = 1, . . . , p имеем

(yp,ek) = (xp,ek) −
p−1
∑

j=1

(xp,ej) (ej,ek)
︸ ︷︷ ︸

=δjk

= (xp,ek) − (xp,ek) = 0.

Рассмотрим вектор ep =
yp

‖yp‖
. Система векторов e1, . . . ,ep−1,ep является ортонормиро-

ванной.

Продолжая процесс, получим ОНБ e1, . . . ,en. ◮

Теорема.

Пусть e1, . . . ,en — ОНБ ЕЛП E. Координаты xk произвольного вектора x ∈ E отно-

сительно этого ОНБ могут быть вычислены по формулам

xk = (x,ek).

◭ Умножая разложение вектора x по базису

x = xjej
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(здесь подразумевается суммирование по j) скалярно на вектор ek, получаем

(x,ek) = xj(ej,ek) = xjδjk = xk. ◮

Теорема.

Если e1, . . . ,en — ОНБ в ЕЛП E, то СП векторов x,y выражается через их коорди-

наты относительно этого базиса по формуле

(x,y) =
∑

j=1

xjyj.

◭ Пусть

x = xjej, y = ykek

— разложения векторов x, y по ОНБ e1, . . . ,en. (Использовано правило суммирования

Эйнштейна.) Имеем:

(x,y) = (xjej, y
kek) = xjyk(ej,ek) =

= xjykδjk =
∑

j=1

xjyj. ◮

1.7. Изоморфизм ЕЛП. Пусть E и F — два ЕЛП. Отображение ϕ : E → F называется

изоморфизмом ЕЛП, если оно является изоморфизмом ЛП и обладает свойством

(x,y)E = (ϕ(x), ϕ(y))F

для любых x,y ∈ E.

ЕЛП E и F называются изоморфными, если существует хотя бы один изоморфизм

ϕ : E → F .

Теорема.

Любые два ЕЛП одинаковой размерности изоморфны.

◭ Зафиксируем в ЕЛП E ОНБ e1, . . . ,en, в ЕЛП F — ОНБ f
1
, . . . ,fn. Отображение

ϕ : E → F,

которое ставит в соответствие вектору

x = xjej ∈ E

вектор

ϕ(x) = xjf j ∈ F,

является изоморфизмом ЕЛП, поскольку во всех ОНБ СП выражается одной и той же

формулой:

(x,y)E =
∑

j=1

xjyj = (ϕ(x), ϕ(y))F . ◮

2. ДВУМЕРНАЯ ЕВКЛИДОВА ГЕОМЕТРИЯ

Евклидова геометрия — раздел геометрии, изучающий евклидовы пространства.

По сравнению с аффинной геометрией в евклидовой геометрии имеется одно допол-

нительное первоначальное понятие — скалярное произведение — и три дополнительных

аксиомы.

Рассмотрим евклидову геометрию в двумерном евклидовом точечном пространстве E.

Считаем, что в E зафиксирована ортогональная система координат (ОСК) Oe1e2 = Oij;

координаты обозначаем x1, x2 или x, y.
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2.1. Уравнение прямой на плоскости.

Теорема.

Прямая на евклидовой плоскости, проходящая через точку M0(r0) перпендикулярно

вектору n, задается уравнением

(r − r0,n) = 0 или (r,n) = D.

Вектор n называется нормальным вектором прямой.

◭ В произвольной ортогональной системе координат

r =

(

x

y

)

, r0 =

(

x0

y0

)

, n =

(

A

B

)

,

(r − r0,n) = A(x − x0) + B(y − y0).

Приравнивая нулю последнее выражение, получаем уравнение прямой

A(x − x0) + B(y − y0) = 0 ⇐⇒ Ax + By = D. ◮

2.2. Основные формулы.

Теорема.

Даны точка M1(r1) и прямая l, заданная уравнением (r,n) = D.

(1) Ортогональная проекция M2(r2) точки M1(r1) на прямую l выражается форму-

лой

r2 = r1 +
D − (r1,n)

(n,n)
n.

(2) Расстояние от точки M1(r1) до прямой l, выражается формулой

d(M1, l) =
|D − (r1,n)|

‖n‖ .

(3) Точка M3(r3), симметричная точке M1(r1) относительно прямой l, выражается

формулой

r3 = r1 + 2
D − (r1,n)

(n,n)
n.

M1

M2

M3

r1

r2

r3

O

n

l
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◭ Имеем:
−−−−→
M1M2 =

−−−→
OM2 −

−−−→
OM1 = λn.

Умножим обе части равенства скалярно на вектор n:

(
−−−→
OM2,n)
︸ ︷︷ ︸

=D

− (
−−−→
OM1,n)
︸ ︷︷ ︸

=(r1,n)

= λ(n,n),

откуда

λ =
D − (r1,n)

(n,n)
.

Для радиус-вектора r2 проекции M2 точки M1 на прямую имеем:

r2 =
−−−→
OM2 =

−−−→
OM1 +

−−−−→
M1M2 = r1 + λn = r1 +

D − (r1,n)

(n,n)
n.

Расстояние от точки M1 до прямой l:

d(M1, l) = d(M1,M2) = ‖−−−−→M1,M2‖ =

∥

∥

∥

∥

D − (r1, n)

(n,n)
n

∥

∥

∥

∥

=

=
|D − (r1, n)|

(n,n)
‖n‖ =

|D − (r1, n)|
‖n‖ .

Для радиус-вектора r3 точки M3, симметричной точке M1 относительно прямой, имеем:

r3 =
−−−→
OM3 =

−−−→
OM1 +

−−−−→
M1M3 =

−−−→
OM1 + 2

−−−−→
M1M2 =

= r1 + 2λn = r1 + 2
D − (r1,n)

(n,n)
n. ◮

3. ТРЕХМЕРНАЯ ЕВКЛИДОВА ГЕОМЕТРИЯ

Считаем, что в трехмерном евклидовом точечном пространстве E зафиксирована орто-

гональная система координат (ОСК) Oe1e2e3 = Oijk; координаты обозначаем x1, x2, x3

или x, y, z.

Понятия векторного и смешанного произведений вводятся так же, как это было сделано

ранее. Все формулы для вычисления векторного и смешанного произведений в ортонор-

мированном базисе сохраняются.

3.1. Уравнение плоскости в пространстве.

Теорема.

Плоскость в евклидовом пространстве, проходящая через точку M0(r0) перпенди-

кулярно вектору n, задается уравнением

(r − r0,n) = 0 или (r,n) = D.

Вектор n называется нормальным вектором плоскости.
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3.2. Основные формулы.

Теорема.

Даны точка M1(r1) и плоскость π, заданная уравнением (r,n) = D.

(1) Ортогональная проекция M2(r2) точки M1(r1) на плоскость π выражается фор-

мулой

r2 = r1 +
D − (r1,n)

(n,n)
n.

(2) Расстояние от точки M1(r1) до плоскости π выражается формулой

d(M1, π) =
|D − (r1,n)|

‖n‖ .

(3) Точка M3(r3), симметричная точке M1(r1) относительно плоскости π, выра-

жается формулой

r3 = r1 + 2
D − (r1,n)

(n,n)
n.

M1

M2

M3

r1

r2

r3

O

n

l

3.3. Уравнение прямой в пространстве.

Умножая векторное параметрическое уравнение прямой

r = r0 + ta

векторно на вектор a, получаем

[r,a] = [r0,a] + t [a,a]
︸ ︷︷ ︸

=0

.

Обозначим b = [r0,a]; отметим, что b⊥a. Получим уравнение прямой в виде

[r,a] = b, где (a, b) = 0.

Задача 1.

Записать уравнение прямой [r,a] = b в виде r = r0 + ta.

Решение. Направляющий вектор прямой [r,a] = b можно выбрать равным a. Найдем

такую опорную точку r0 прямой, что ее радиус-вектор ортогонален вектору a. Умножим

соотношение [r0,a] = b прямой векторно на a:

[a, [r0,a]] = [a, b].
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Раскрывая двойное векторное произведение, получим

r0(a,a) − a (a, r0)
︸ ︷︷ ︸

=0

= [a, b],

откуда

r0 =
[a, b]

(a,a)
.

Получаем параметрическое уравнение прямой

r =
[a, b]

(a,a)
+ ta.

3.4. Основные формулы.

Теорема.

Даны точка M1(r1) и прямая l, заданная уравнением r = r0 + ta.

(1) Ортогональная проекция M2(r2) точки M1(r1) на прямую l выражается форму-

лой

r2 = r0 +
(r1 − r0,a)

(a,a)
a.

(2) Расстояние от точки M1(r1) до прямой l, выражается формулой

d(M1, l) =

∥

∥[r1 − r0,a]
∥

∥

‖a‖ .

(3) Точка M3(r3), симметричная точке M1(r1) относительно прямой l, выражается

формулой

r3 = 2r0 − r1 + 2
(r1 − r0,a)

(a,a)
a.

M1

M2

M3

r1

r2

r3

O

a

l

◭ Умножим обе части равенства

−−−−→
M1M2 =

−−−→
OM2 −

−−−→
OM1

скалярно на вектор a:

(
−−−−→
M1M2,a)
︸ ︷︷ ︸

=0

− (
−−−→
OM2,n)
︸ ︷︷ ︸

=(r0+ta,a)

− (
−−−→
OM1,n)
︸ ︷︷ ︸

=(r1,a)

=

= (r0 − r1,a) + t(a,a),
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откуда

t0 =
(r1 − r0,a)

(a,a)

— значение параметра, отвечающее точке M2 ∈ l.

Для проекции M2 точки M1 на прямую l имеем:

r2 = r0 + t0a = r0 +
(r1 − r0,a)

(a,a)
a.

Для точки M3, симметричной точке M1 относительно прямой l, имеем

r3 =
−−−→
OM3 =

−−−→
OM1 + 2

−−−−→
M1M2 = r1 + 2(r2 − r1) =

= 2r2 − r1 = 2r0 − r1 + 2
(r1 − r0,a)

(a,a)
a.

Найдем расстояние от точки M1 до прямой l:

d(M1, l) = ‖−−−−→M1M2‖ = ‖r2 − r1‖ =

∥

∥

∥

∥

r0 − r1 +
(r1 − r0,a)

(a,a)
a

∥

∥

∥

∥

=

=

∥

∥

∥

∥

(r0 − r1)(a,a) − (r0 − r1,a)a

(a,a)

∥

∥

∥

∥

=

∥

∥

∥

∥

[a, [r0 − r1,a]]

(a,a)

∥

∥

∥

∥

=

=
‖a‖ ·

∥

∥[r0 − r1,a]
∥

∥ · sin ϕ

(a,a)
=

∥

∥[r0 − r1,a]
∥

∥

‖a‖ ,

где ϕ — угол между векторами a и [r0 − r1,a]; здесь учтено, что векторы a и [r0 − r1,a]

ортогональны, т.е. sin ϕ = 1. ◮

3.5. Скрещивающиеся прямые.

Задача 2.

Составить уравнение прямой, пересекающей две скрещивающиеся прямые r = r1+ta1 и

r = r2 + ta2 и проходящей через точку M0(r0), не лежащую ни на одной из этих прямых.

Ответ:

{

(r − r0, r1 − r0,a1) = 0,

(r − r0, r2 − r0,a2) = 0.

A

B

π
2

π1

M0

l2

l1

l

Задача 3.

Составить уравнение прямой, пересекающей две скрещивающиеся прямые r = r1 + ta1

и r = r2 + ta2 под прямыми углами (общего перпендикуляра к этим прямым).
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Ответ:

{

(r − r1,a1, [a1,a2]) = 0,

(r − r2,a2, [a1,a2]) = 0.

π1

π2

σ
1

σ2

l1

l2

l

Задача 4.

Найти расстояние между двумя скрещивающимися прямыми r = r1+ta1 и r = r2+ta2.

Ответ:
|(r1 − r2,a1,a2)|

‖[a1,a2]‖
.

Задача 5.

Найти расстояние между двумя скрещивающимися прямыми [r,a1] = b1 и [r,a2] = b2.

Ответ:
|(a1, b2) + (a2, b1)|

‖[a1,a2]‖
.

4. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Найти угол между прямыми, заданными уравнениями

r = r1 + ta1, r = r2 + ta2.

Ответ: arccos
|(a1,a2)|
‖a1‖ · ‖a2‖

.

Задача 2. Найти угол между прямыми, заданными уравнениями

(r,n1) = D1, (r,n2) = D2.

Ответ: arccos
|(n1,n2)|
‖n1‖ · ‖n2‖

.

Задача 3. Найти необходимое и достаточное условие, при котором прямые r = r1 + a1,

r = r2 + a2:

(1) пересекаются в единственной точке;

(2) параллельны, но не совпадают;

(3) совпадают.

Ответ: (1) a1 и a2 не коллинеарны; (2) a1 и a2 коллинеарны, a1 и r2 − r1 не коллине-

арны; (3) a1, a2, r2 − r1 коллинеарны.

Задача 4. Найти условие, при котором прямые (r,n) = D и r = r0 + ta пересекаются (в

единственной точке), и радиус-вектор точки пересечения этих прямых.

Ответ: r0 +
D − (r0,n)

(a,n)
a.

Задача 5. Записать уравнение плоскости r = r0 + sa + tb в виде (r,n) = D.

Ответ: (r, [a, b]) = (r0,a, b).
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Задача 6. Найти необходимое и достаточное условие, при котором плоскости (r,n1) = D1

и (r,n2) = D2:

(1) пересекаются по прямой;

(2) параллельны, но не совпадают;

(3) совпадают.

Ответ: (1) [n1,n2] 6= 0; (2) [n1,n2] = 0, и если n1 = λn2, то D1 6= λD2; (3) [n1,n2] = 0,

и если n1 = λn2, то D1 = λD2.

Задача 7. Найти расстояние между двумя параллельными плоскостями (r,n) = D1 и

(r,n) = D2.

Ответ:
|D1 − D2|

‖n‖ .

Задача 8. Найти расстояние между двумя параллельными плоскостями r = r1 + sa + tb

и r = r2 + sa + tb.

Ответ:
|(r1 − r2,a, b)|

∥

∥[a, b]
∥

∥

.

Задача 9. Записать уравнение прямой
{

(r,n1) = D1,

(r,n2) = D2

в виде [r,a] = b.

Ответ: [r, [n1,n2]] = D2n1 − D1n2.

Задача 10. Записать уравнение прямой
{

(r,n1) = D1,

(r,n2) = D2

в виде r = r0 + ta.

Ответ: r =
[a, D2n1 − D1n2]

(a,a)
+ ta.

Задача 11. Найти необходимое и достаточное условие, при котором прямые r = r1 + ta1

и r = r2 + ta2:

(1) пересекаются (т.е. имеют одну общую точку);

(2) скрещиваются;

(3) параллельны, но не совпадают;

(4) совпадают.

Ответ: (1) [a1,a2] 6= 0, (r2 − r1,a1,a2) = 0; (2) [a1,a2] 6= 0, (r2 − r1,a1,a2) 6= 0; (3)

[a1,a2] = 0, [r2 − r1,a1] 6= 0; (4) [a1,a2] = 0, [r2 − r1,a1] = 0.

Задача 12. Найти расстояние от точки M1(r1) до прямой [r,a] = b.

Ответ:

∥

∥[r1,a] − b
∥

∥

‖a‖ .

Задача 13. Найти расстояние между параллельными прямыми r = r1 + ta и r = r2 + ta.
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Ответ:

∥

∥[r1 − r2,a]
∥

∥

‖a‖ .

Задача 14. Найти расстояние между параллельными прямыми [ra] = b1 и [ra] = b2.

Ответ:
‖b1 − b2‖

‖a‖ .

Задача 15. Даны прямая r = r0 + ta и плоскость (r,n) = D. Найти необходимое и

достаточное условие того, что:

(1) прямая и плоскость пересекаются (имеют единственную общую точку);

(2) прямая и плоскость параллельны (не имеют общих точек);

(3) прямая лежит в плоскости.

Ответ. (1) (a,n) 6= 0; (2) (a,n) = 0, (r0,n) 6= D; (3) (a,n) = 0, (r0,n) = D.

Задача 16. Найти радиус-вектор точки пересечения прямой r = r0 + ta с плоскостью

(r,n) = D.

Ответ. r0 +
D − (r0,n)

(a,n)
a.

Задача 17. Найти радиус-вектор точки пересечения прямой [ra] = b с плоскостью

(r,n) = D.

Ответ.
[a, b]

(a,a)
+

D(a,a) − (a, b,n)

(a,a)(a,n)
a.

Задача 18. Составить уравнение прямой, проходящей через точку M1(r1) перпендикуляр-

но плоскости (r,n) = D.

Ответ. r = r1 + tn.

Задача 19. Составить уравнение плоскости, проходящей через точку M1(r1) перпендику-

лярно прямой r = r0 + ta.

Ответ. (r − r1,a) = 0.

Задача 20. Составить уравнение плоскости, проходящей через прямую r = r0 + ta и

точку M1(r1), не лежащую на этой прямой.

Ответ. (r − r0, r1 − r0,a) = 0.

Задача 21. Составить уравнение проекции прямой r = r0 + ta на плоскость (r,n) = D

при условии, что прямая не перпендикулярна плоскости.

Ответ.

{

(r,n) = D,

(r − r0,a,n) = 0.

Задача 22. Составить уравнение прямой, пересекающей прямую r = r0 + ta под прямым

углом и проходящей через точку M1(r1), не лежащую на данной прямой (перпендикуляра,

опущенного из точки M1 на прямую).

Ответ.

{

(r − r1,a) = 0,

(r − r1, r0 − r1,a) = 0.



Лекция 11

1. КОНИЧЕСКИЕ СЕЧЕНИЯ

1.1. Определение.

Рассмотрим сечение прямого кругового конуса плоскостью, перпендикулярной к обра-

зующей этого конуса. При различных значениях угла α при вершине в осевом сечении

конуса получаем кривые трех типов:

(1) параболу, если α = 90◦;

(2) эллипс, если α < 90◦;

(3) гиперболу, если α > 90◦.

A

B

C

G

KL

H

M

A

B

C

G

KL

H

M

A

B

C

G

KL

H

M

Пусть A — вершина конуса, BC — диаметр основания, 2α — угол при вершине в

осевом сечении конуса. Рассмотрим сечение конуса плоскостью, проходящей через точку

G на прямолинейной образующей AC перпендикулярно AC. Эта плоскость пересекается с

плоскостью ABC по прямой GK, которая является осью симметрии конического сечения

(назовем ее главной осью).

Из произвольной точки L сечения опустим перпендикуляр LK на ось симметрии. Введем

обозначения

AG = r, GK = x, KL = y.

Эти три отрезка взаимно перпендикулярны, поэтому

AL2 = r2 + x2 + y2.

Отложим на прямой AC отрезок AM = AL.
1
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В случае параболы GM = GK = x, поэтому

AM = AG + GM = r + x,

r2 + x2 + y2 = (r + x)2 = r2 + 2rx + x2,

т.е.

y2 = 2rx.

Это — каноническое уравнение параболы.

Рассмотрим случай эллипса и гиперболы. Обозначим

H = GK ∩ AB, 2a = GH.

Отрезок GH называется большой осью эллипса (вещественной осью гиперболы).

В △GKM имеем: ∠KGM = 90◦, ∠GKM = α. Поэтому

GM = x tg α.

И для эллипса, и для гиперболы получаем

r2 + x2 + y2 = (r + x tg α)2 = r2 + 2xr tg α + x2 tg2 α,

т.е.

y2 = 2xr tg α + x2(tg2 α − 1).

Введем обозначение p = r tg α. Величина p называется параметром конического сечения.

В △AGH имеем: ∠AGH = 90◦,

• ∠GAH = 2α в случае эллипса,

• ∠GAH = π − 2α в случае гиперболы.

Для эллипса получаем
2a

r
= tg 2α =

2 tg α

1 − tg2 α
,

так что

y2 = 2px − p

a
x2.

Для гиперболы получаем:

2a

r
= tg(π − 2α) =

2 tg α

tg2 α − 1
,

так что

y2 = 2px +
p

a
x2.

Фокальная хорда параболы, эллипса, гиперболы — это отрезок, перпендикулярный глав-

ной оси конического сечения и имеющий длину 2p. Точки пересечения фокальных хорд с

главной осью называются фокусами.

Итак, получены уравнения параболы, эллипса и гиперболы в прямоугольной системе

координат, одна из осей которой является осью симметрии конического сечения, а вторая

проходит через вершину конического сечения.
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en

x

y

O

p

F

y2 = 2px

x

y

O a 2aF1 F2

p
b

y2 = 2px − p

a
x2.

x

y

O

2a

F1F2

p

y2 = 2px +
p

a
x2.

1.2. Парабола. Рассмотрим каноническое уравнение параболы

y2 = 2px.

Имеем:

y2 = 2px =
(

x +
p

2

)2

−
(

x − p

2

)2

,

∣

∣

∣
x +

p

2

∣

∣

∣
=

√

(

x − p

2

)2

+ y2,

т.е. точка (x, y) параболы равноудалена от прямой x = −p/2 и точки (p/2, 0), которая

является фокусом параболы, поскольку при x = p/2 имеем y2 = p2. Это — директориальное

свойство параболы.

x

y

O−p
2

F

Основные термины, связанные с параболой:

(1) p — (фокальный) параметр;

(2) p/2 — фокусное расстояние

(3) точка F (p/2, 0) — фокус;

(4) прямая x = −p/2 — директриса.

1.3. Эллипс. Рассмотрим уравнение эллипса

y2 = 2px − p

a
x2.

Выражение 2px− p
a
x2 достигает максимума при x = a; этот максимум равен pa; обозначим

pa = b2.

Сделаем замену переменных

x = X + a, y = Y.

Уравнение эллипса примет вид

Y 2 = 2p(X + a) − p

a
(X + a)2 = −p

a
X2 + pa.
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Отсюда получаем
X2

a2
+

Y 2

b2
= 1.

Это — каноническое уравнение эллипса.

Основные термины, связанные с эллипсом:

(1) a — большая полуось;

(2) b — малая полуось;

(3) c =
√

a2 − b2 — линейный эксцентриситет;

(4) точки F1(−c, 0), F2(c, 0) — фокусы;

(5) 2c — фокусное расстояние;

(6) ε = c/a < 1 — (числовой) эксцентриситет;

(7) прямые x = ±a/ε — директрисы;

(8) p = b2/a — (фокальный) параметр;

(9) ось OX — большая (фокальная) ось;

(10) ось OY — малая ось;

(11) точки (±a, 0), (0,±b) — вершины эллипса;

(12) точка O(0, 0) — центр эллипса.

M

x

y

O F2

r1

r
2

F−a
ε

a
ε

d2d1

Пусть M(x, y) — произвольная точка эллипса. Отрезки F1M , F2M называются фокаль-

ными радиусами точки M .

Теорема.

Фокальное свойство эллипса: Эллипс является геометрическим местом точек, сум-

ма расстояний от которых до фокусов равно 2a: F1M + F2M = const.

◭ Рассмотрим эллипс
x2

a2
+

y2

b2
= 1.

Длины фокальных радиусов точки M(x, y) равны

r1 =
√

(x + c)2 + y2, r2 =
√

(x − c)2 + y2.

Поэтому

r2

1
= (x + c)2 + y2 = (x + c)2 + b2

(

1 − x2

a2

)

=

=

(

1 − b2

a2

)

x2 + 2xc + c2 + b2 =
c2

a2
x2 + 2cx + a2 =

= ε2x2 + 2ε2ax + a2 = (εx + a)2.

Поскольку |x| 6 a, ε < 1, имеем |εx| < a, так что

r1 = a + εx.

Аналогично находим

r2 = a − εx.
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Следовательно,

r1 + r2 = 2a.

Обратно, пусть M(x, y) — точка плоскости, для которой сумма F1M + F2M постоянна

и равна 2a, т.е.
√

(x + c)2 + y2 +
√

(x − c)2 + y2 = 2a.

Уничтожив радикалы, придем к уравнению

x2

a2
+

y2

a2 − c2
= 1. ◮

Теорема.

Директориальное свойство эллипса: Эллипс является геометрическим местом то-

чек, отношение расстояний от которых до фокуса и до одноименной с фокусом ди-

ректрисы равно ε.

◭ Расстояния от произвольной точки M(x, y) эллипса до левой и правой директрис

равны

d1 =
∣

∣

∣
x +

a

ε

∣

∣

∣
=

∣

∣

∣

∣

εx + a

ε

∣

∣

∣

∣

=
r1

ε
,

d2 =
∣

∣

∣
x − a

ε

∣

∣

∣
=

∣

∣

∣

∣

εx − a

ε

∣

∣

∣

∣

=
r2

ε
.

Обратно, если
√

(x ± c)2 + y2 = ε
∣

∣

∣
x ± a

ε

∣

∣

∣
,

то

(x ± c)2 + y2 = (εx ± a)2

и поэтому

(1 − ε2)x2 + y2 = a2 − c2 ⇐⇒ x2

a2
+

y2

b2
= 1. ◮

1.4. Гипербола. Рассмотрим уравнение гиперболы

y2 = 2px +
p

a
x2.

Сделаем замену переменных

x = X − a, y = Y.

Уравнение гиперболы примет вид

Y 2 = 2p(X − a) +
p

a
(X + a)2 =

p

a
X2 − pa.

Отсюда получаем
X2

a2
− Y 2

b2
= 1,

где введено обозначение pa = b2. Это — каноническое уравнение гиперболы.

Выразим из уравнения гиперболы y:

y = ±b

√

x2

a2
− 1.

Имеем:

y = ±b
x

a

√

1 − a2

x2
= ±b

x

a

(

1 − a2

2x2
+ o

(

1

x2

))

= ± b

a
x + o(1).

Таким образом, прямые ay ± bx = 0 являются асимптотами гиперболы.
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x

y

O F2
F1

2a

b

Основные термины, связанные с гиперболой:

(1) a — вещественная полуось;

(2) b — мнимая полуось;

(3) c =
√

a2 + b2 — линейный эксцентриситет;

(4) точки F1(−c, 0), F2(c, 0) — фокусы;

(5) 2c — фокусное расстояние;

(6) ε = c/a > 1 — (числовой) эксцентриситет;

(7) прямые x = ±a/ε — директрисы;

(8) p = b2/a — (фокальный) параметр;

(9) ось OX — вещественная (фокальная) ось;

(10) ось OY — мнимая ось;

(11) точки (±a, 0) вершины гиперболы;

(12) точка O(0, 0) — центр гиперболы;

(13) прямые ay ± bx = 0 — асимптоты гиперболы.

x

y

O F2
F1

M

Пусть M(x, y) — произвольная точка гиперболы. Отрезки F1M , F2M называются фо-

кальными радиусами точки M .

Теорема.

Фокальное свойство гиперболы: Гипербола является геометрическим местом то-

чек, разность расстояний от которых до фокусов равна по абсолютной величине 2a:

|F1M − F2M | = const.

◭ Рассмотрим гиперболу

x2

a2
− y2

b2
= 1.

Длины фокальных радиусов точки M(x, y) равны

r1 =
√

(x + c)2 + y2, r2 =
√

(x − c)2 + y2.

Поэтому

r2

1
= (x + c)2 + y2 = (x + c)2 + b2

(

x2

a2
− 1

)

=
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=

(

b2

a2
+ 1

)

x2 + 2xc + c2 − b2 =
c2

a2
x2 + 2cx + a2 =

= ε2x2 + 2ε2ax + a2 = (εa + x)2.

Поскольку |εx| > |x| > a, имеем

r1 =







xε + a, x > 0,

−xε − a, x < 0.

Аналогично получаем

r2 =







xε − a, x > 0,

−xε + a, x < 0.

Следовательно,

|r1 − r2| =







2a, x > 0,

−2a, x < 0.

Обратно, пусть M(x, y) — точка плоскости, для которой |F1M − F2M | = 2a, т.е.
∣

∣

∣

√

(x + c)2 + y2 −
√

(x − c)2 + y2

∣

∣

∣
= 2a.

Уничтожив радикалы, придем к уравнению

x2

a2
− y2

c2 − a2
= 1. ◮

Теорема.

Директориальное свойство гиперболы: Гипербола является геометрическим местом

точек, отношение расстояний от которых до фокуса и до одноименной с фокусом

директрисы равно ε.

x

y

O F2F1

−a
ε

◭ Расстояния от произвольной точки M(x, y) гиперболы до левой и правой директрис

равны

d1 =
∣

∣

∣
x +

a

ε

∣

∣

∣
=

∣

∣

∣

∣

εx + a

ε

∣

∣

∣

∣

=
r1

ε
,

d2 =
∣

∣

∣
x − a

ε

∣

∣

∣
=

∣

∣

∣

∣

εx − a

ε

∣

∣

∣

∣

=
r2

ε
.

Обратно, если
√

(x ± c)2 + y2 = ε
∣

∣

∣
x ± a

ε

∣

∣

∣
,

то

(x ± c)2 + y2 = (εx ± a)2
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и поэтому

(1 − ε2)x2 + y2 = a2 − c2 ⇐⇒ x2

a2
− y2

b2
= 1. ◮

1.5. Касательные к параболе, эллипсу, гиперболе.

Касательная к параболе — это прямая, непараллельная оси параболы, имеющая с пара-

болой одну общую точку.

Пусть (x0, y0) — точка касания параболы y2 = 2px и прямой

x = x0 + lt, y = y0 + mt, m 6= 0.

Имеем:

(y0 + mt)2 = 2p(x0 + lt) ⇐⇒

⇐⇒ y2

0
+ 2my0t + m2t2 = 2px0 + 2plt ⇐⇒

⇐⇒ m2t2 + 2t(my0 − pl) = 0.

Это квадратное уравнение должно иметь один (двойной) корень, что возможно лишь

при выполнении условия

my0 − pl = 0 ⇐⇒ l = m
y0

p
.

Каноническое уравнение касательной имеет вид

x − x0

l
=

y − y0

m
⇐⇒

⇐⇒ y0(y − y0) = p(x − x0) ⇐⇒
⇐⇒ y0y − 2px0 = px − px0

и окончательно

yy0 = p(x + x0).

Касательная к эллипсу (гиперболе) — это прямая, имеющая с эллипсом (гиперболой)

одну общую точку.

Пусть (x0, y0) — точка касания эллипса

x2

a2
+

y2

b2
= 1

и прямой

x = x0 + lt, y = y0 + mt.

Имеем:
x2

0

a2
+

y2

0

b2

︸ ︷︷ ︸

=1

+2t

(

x0l

a2
+

y0m

b2

)

+ t2
(

l2

a2
+

m2

b2

)

= 1,

t2
(

l2

a2
+

m2

b2

)

+ 2t

(

x0l

a2
+

y0m

b2

)

= 0.

Это квадратное уравнение должно иметь один (двойной) корень, что возможно при

выполнении условия
x0l

a2
+

y0m

b2
= 0,

так что можно положить

l =
y0

b2
, m = −x0

a2
.
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Каноническое уравнение касательной к эллипсу имеет вид

x − x0

y0/b2
=

y − y0

−x0/a2
⇐⇒ x0

a2
(x − x0) +

y0

b2
(y − y0) = 0,

откуда, учитывая соотношение x2

0
/a2 + y2

0
/b2 = 1, получаем

xx0

a2
+

yy0

b2
= 1.

Аналогично получаем уравнение касательной к гиперболе

x2

a2
− y2

b2
= 1

в точке (x0, y0):
xx0

a2
− yy0

b2
= 1.

1.6. Оптические свойства конических сечений.

Теорема.

Оптическое свойство эллипса: фокальные радиусы произвольной точки M0 эллипса

составляют равные углы с касательной к эллипсу в точке M0.

Физическая интерпретация: если в фокусе эллипса поместить точечный источник света,

а эллипс считать зеркалом, то после отраженный эллипсом луч попадет во второй фокус.

x

y

OF1 F2

M

◭ Найдем синусы углов α1 и α2, которые фокальные радиусы произвольной точки

M0(x0, y0) составляют с касательной к эллипсу в точке M0.

Расстояние F1D1 от фокуса F1(−c, 0) до касательной, имеющей уравнение
xx0

a2
+

yy0

b2
= 1,

равно

F1D1 =

∣

∣

∣

∣

(−c) · x0

a2
+

0 · y0

b2
− 1

∣

∣

∣

∣

√

x2

0

a4
+

y2

0

b4

=
εx0 + a

a

√

x2

0

a4
+

y2

0

b4

=
r1

a

√

x2

0

a4
+

y2

0

b4

,

так что

sin α1 =
F1D1

F1M0

=
1

a

√

x2

0

a4
+

y2

0

b4

.

Аналогично получаем

sin α2 =
F2D2

F2M0

=
1

a

√

x2

0

a4
+

y2

0

b4

.

Таким образом, α1 = α2. ◮

Теорема.
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Оптическое свойство гиперболы: фокальные радиусы произвольной точки M0 гипер-

болы составляют равные углы с касательной к эллипсу в точке M0.

Теорема.

Оптическое свойство параболы: фокальный радиус произвольной точки M0 парабо-

лы составляет с касательной к параболе угол в точке M0.

x

y

O F1
F2

M

x

y

O F

M

1.7. Полярные уравнения конических сечений.

Получим уравнения конических сечений в полярной системе координат, ось которой

совпадает с главной осью кривой, а полюс находится в фокусе.

Поместим полюс в фокус параболы. Имеем:

x − p

2
= r cos ϕ

(связь декартовых и полярных координат) и

r = x +
p

2

(директориальное свойство параболы). Таким образом,

r cos ϕ = r − p ⇐⇒ r =
p

1 − cos ϕ
.

x

y

O F

M

ϕr

x

y

OF1 F2

M

ϕ
r

M

x

y

O F2F1

ϕr

Поместим полюс в левый фокус эллипса. Имеем:

x + c = r cos ϕ

(связь декартовых и полярных координат) и

r = εx + a

(выражение для левого фокального радиуса). Таким образом,

r = ε(r cos ϕ − c) + a ⇐⇒ r(1 − ε cos ϕ) = a − εc = p,

так что

r =
p

1 − ε cos ϕ
.
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В случае гиперболы поместим полюс в правый фокус и ограничимся рассмотрением

правой ветви гиперболы. Имеем:

r = εx − a, x − c = r cos ϕ,

откуда получаем

r =
p

1 − ε cos ϕ
.

Таким образом, парабола, эллипс и гипербола (вернее, одна ее ветвь) задаются в по-

лярных координатах одним и тем же уравнением.

1.8. Конструкция Данделена.

2. ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ

Задача 1. Пусть O — центр эллипса, a, b — его полуоси, A, B — такие точки эллипса, что

прямые OA и OB взаимно перпендикулярны. Доказать, что величина 1/|OA|2 + 1/|OB|2
постоянна для всех возможных пар точек A и B.

Задача 2. Пусть O — центр эллипса, a, b — его полуоси, A, B — такие точки эллипса, что

прямые OA и OB взаимно перпендикулярны. Найти наибольшее и наименьшее значения

длины отрезка AB.

Задача 3. Вычислить эксцентриситет равносторонней гиперболы (т.е. гиперболы, полуоси

которой равны).

Задача 4. Доказать, что для данной гиперболы произведение расстояний от любой точки

гиперболы до ее асимптот есть величина постоянная.

Задача 5. Доказать, что для данной гиперболы площадь параллелограмма, одна из вер-

шин которого лежит на гиперболе, а две стороны лежат на асимптотах, есть величина

постоянная.

Задача 6. Доказать, что вершины гиперболы и четыре точки пересечения ее директрис с

асимптотами лежат на одной окружности. Выразить радиус этой окружности через длину

действительной полуоси гиперболы.
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Задача 7. Две параболы, оси которых взаимно перпендикулярны, имеют четыре точки

пересечения. Доказать, что эти четыре точки лежат на одной окружности.

Задача 8. Доказать, что отрезок касательной к гиперболе, заключенный между ее асим-

птотами, делится точкой касания пополам.

Задача 9. Доказать, что все треугольники, образованные асимптотами гиперболы и про-

извольной касательной к ней, имеют одну и ту же площадь.

Задача 10. Доказать, что касательные в точках пересечения эллипса и гиперболы, име-

ющих общие фокусы, взаимно перпендикулярны.

Задача 11. Доказать, что касательные в точках пересечения двух парабол с общим фоку-

сом и противоположно направленными осями взаимно перпендикулярны.



Лекция 12

1. ПРЕОБРАЗОВАНИЕ БАЗИСОВ И КООРДИНАТ

1.1. Преобразование базисов и координат в линейном пространстве. Пусть V (K)—

линейное пространство над числовым полем K, dim V = n,

e1, . . . , en — старый базис в V ,

e1′ , . . . , en′ —новый базис в V .

Вектор ek′ ∈ V можно разложить по базису e1, . . . , en:

ek′ = c1

k′e1 + · · · + cn
k′en

или, в обозначениях Эйнштейна

ek′ = ck
k′ek,

k = 1, . . . , n,

k′ = 1′, . . . , n′.
(1)

Матрица

C =






c1

1′
. . . c1

n′

...
. . .

...

cn
1′

. . . cn
n′




 = (ck

k′)n
n′

называется матрицей перехода (МП) от старого базиса e1, . . . , en к новому базису

e1′ , . . . , en′ .

Столбцы матрицы перехода представляют собой столбцы координат векторов нового

базиса относительно старого базиса.

Рассмотрим матрицу

C−1 =






c1
′

1
. . . cn′

1

...
. . .

...

c1
′

n . . . cn′

n




 = (ck′

k )n′

n ,

обратную к матрице C. Умножим обе части (1) на ck′

j и просуммируем по k′:

ck′

j ek′ = ck′

j ck
k′ek.

Так как ck′

j ck
k′ = δk

j , получаем

ck′

j ek′ = δk
j ek = ej

или, меняя индекс k′ на j′,

ej = cj′

j ej′ ,
j = 1, . . . , n,

j′ = 1′, . . . , n′.
(2)

Эта формула выражает векторы старого базиса через векторы нового базиса.

Рассмотрим матрицы-строки

E = (e1, . . . , en), E
′ = (e1′ , . . . , en′),

состоящие из векторов старого и нового базисов, соответственно. Тогда формулы преоб-

разования базисов можно записать в матричной форме:

E
′ = EC, E = E

′C−1.

Задача. Докажите эти формулы, используя матричную технику.
1
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Пусть x ∈ V . Найдем связь между координатами xk этого вектора относительно старого

базиса и его координатами xk′

относительно нового базиса. Имеем:

x = xk
ek = xk′

ek′ (3)

(здесь подразумевается суммирование по индексам k, k ′!).

Подставим в (3) соотношения (1):

xk
ek = xk′

ek′ = xk′

ck
k′ek.

В силу единственности разложения по базису имеем

xk = ck
k′xk′

. (4)

Аналогично, подставляя в (3) соотношение (2), получим

xk′

= ck′

k xk. (5)

Рассмотрим столбцы координат вектора x относительно старого и нового базисов:

X =






x1

...

xn




 , X ′ =






x1
′

...

xn′




 .

Тогда формулы (4), (5) можно записать в виде

X = CX ′, X ′ = C−1X. (6)

Задача. Докажите формулы (6), используя матричную технику.

1.2. Преобразование координат в аффинном пространстве. Пусть Oe1 . . . en и

O′
e1′ . . . en′ —две аффинные системы координат в n-мерном аффинном пространстве A

(старая и новая соответственно).

Пусть r, r
′ —радиус-векторы точки M относительно старой и новой систем коорди-

нат соответственно, r0 —радиус-вектор начала O′ новой системы координат относительно

старой системы координат. Очевидно, имеем

r = r0 + r
′.

F

PSfrag replacements

r0

r
′

r

O

O′

e1 e2

en
e1′

e2′

en′

Обозначим через X столбец координат вектора r в старом базисе, через X ′ — столбец

координат вектора r
′ в новом базисе, через X0 — столбец координат вектора r0 в старом

базисе. Тогда

r = EX, r
′ = E

′X ′, r0 = EX0.

Отметим, что рассматривать координаты вектора r в новом базисе (равно как и коорди-

наты r
′ в старом базисе) большого смысла не имеет.
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Поскольку r = r0 + r
′, получаем

EX = EX0 + E
′X ′,

и, используя соотношение E
′ = EC, где C —матрица перехода от базиса e к базису e

′,

запишем

EX = EX0 + ECX ′,

так что

X = X0 + CX ′

в силу единственности разложения по базису.

Нетрудно получить формулы обратного перехода:

CX ′ = X − X0 ⇐⇒ X ′ = C−1X − C−1X0

так что

X ′ = C−1X − X ′

0
,

где X ′

0
—координаты вектора r0 в новом базисе.

Задача. Объясните геометрический смысл знака минус в последнем выражении.

Задача. Получите приведенные формулы, используя координатно-индексные обозначе-

ния.

1.3. Преобразование ортонормированных базисов. Пусть E — евклидово линейное

пространство, e1, . . . , en, e1′ , . . . , en′ —два ортонормированных базиса в нем (старый и

новый соответственно), C —матрица перехода от старого базиса к новому:

ek′ = ck
k′ek, ek = ck′

k e
′

k′ , k = 1, . . . , n, k′ = 1′, . . . , n′.

В матричной форме формулы замены базиса имеют вид

E
′ = CE, E = C−1

E
′.

Матрица перехода от одного ортонормированного базиса к другому называется ортого-

нальной матрицей. Установим свойства ортогональных матриц.

Рассмотрим скалярное произведение (ek′ , el′):

δk′l′ = (ek′ , el′) = (ck
k′ek, c

l
l′el) =

= ck
k′cl

l′ (ek, el)
︸ ︷︷ ︸

=δkl

= ck
k′cl

l′δkl =
n∑

k=1

ck
k′ck

l′ ,

т.е.
n∑

k=1

ck
k′ck

l′ = δk′l′ .

Аналогично получаем соотношение

n′

∑

k′=1′

ck
k′cl

k′ = δkl.

Полученные соотношения называются соотношениями ортогональности: строки (столб-

цы) ортогональной матрицы, рассматриваемые как векторы евклидова пространства R
n

со стандартным скалярным произведением, попарно ортогональны и имеют единичную

длину.
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В матричной форме соотношения ортогональности получаются следующим образом.

Введем обозначение

(ET ,E) =






e1

...

en




 · (e1 . . . en) =









(e1, e1) (e1, e2) . . . (e1, en)

(e2, e1) (e2, e2) . . . (e2, en)
...

...
. . .

...

(en, e1) (en, e2) . . . (en, en)









,

Поскольку

(ET ,E) = (E ′T ,E′) = I,

имеем:

I = E
′T

E
′ = (EC)T (EC) = CT

E
T
E

︸ ︷︷ ︸

=I

C = CT C,

так что окончательно

CT C = I.

Из этого соотношения легко получаем

CCT = I, C−1 = CT .

Пользуясь теоремой об определителе произведения матриц, получаем

det(CT C) = det CT · det C = (det C)2 = 1,

откуда

det C = ±1.

Ортогональные матрицы с определителем +1 называются собственными, с определите-

лем −1—несобственными. Геометрический смысл преобразования, задаваемого собствен-

ной ортогональной матрицей— вращение.

Задача. Выясните геометрический смысл преобразования, задаваемого несобственной

ортогональной матрицей.

Преобразования координат относительно ОНБ получаются весьма простыми в силу

того, что для ортогональной матрицы C−1 = CT : если для произвольной пары базисов

X = CX ′ ⇐⇒ X ′ = C−1X,

то для пары ортонормированных базисов

X ′ = CT X.

Получим общий вид ортогональной матрицы порядка 2:

C =

(

a b

c d

)

.

Подставляя эту матрицу в уравнение CT C = I, находим
(

a c

b d

)(

a b

c d

)

=

(

a2 + c2 ab + cd

ab + cd b2 + d2

)

=

(

1 0

0 1

)

.

Таким образом, получаем систему уравнений

a2 + c2 = 1, b2 + d2 = 1, ab + cd = 0.
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Первые два уравнения допускают решения

a = cos ϕ, c = sin ϕ, b = cos θ, d = sin θ.

Подставляя это в третье уравнение, находим

cos ϕ cos θ + sin ϕ sin θ = 0 ⇐⇒ cos(θ − ϕ) = 0

⇐⇒ θ = ϕ +
π

2
+ πk, k ∈ Z.

Поэтому

b = cos θ = cos
(

ϕ +
π

2
+ πk

)

= −(−1)k sin ϕ = ∓ sin ϕ,

d = sin θ = sin
(

ϕ +
π

2
+ πk

)

= (−1)k cos ϕ = ± cos ϕ.

Итак,

C =

(

cos ϕ ∓ sin ϕ

sin ϕ ± cos ϕ

)

.

При выборе верхнего знака получается собственная ортогональная матрица, при выборе

нижнего— несобственная. Видим, что любая ортогональная матрица порядка 2 вполне

определяется одним параметром ϕ, геометрический смысл которого — угол поворота.
PSfrag replacements

e1

e2

e1′
e2′

ϕ

2. КРИВЫЕ ВТОРОГО ПОРЯДКА (КВАДРИКИ)

2.1. Постановка задачи. Кривая, задаваемая в декартовой системе координат уравнением

вида

F (x, y) = 0,

где F (x, y)—многочлен степени n от переменных x, y, называется кривой порядка n.

Эллипс, гипербола и парабола представляют собой кривые второго порядка (квадрики).

Пусть F (x, y)—произвольный многочлен второй степени:

F (x, y) = a11x
2 + 2a12xy + a22y

2 + 2b1x + 2b2y + c.

Наша задача— выяснить, какие кривые могут быть заданы уравнением F (x, y) = 0.

Введем матрицы

A =

(

a11 a12

a21 a22

)

, где a12 = a21, B =
(

b1 b2

)

,

X =

(

x

y

)

=

(

x1

x2

)

.

Тогда уравнение квадрики можно записать в виде

XT AX + 2BX + c = 0. (7)

Задача состоит в том, чтобы найти систему координат, в которой уравнение квадри-

ки имеет наиболее простой вид, не содержащий слагаемого 2a12xy и (по возможности)

линейных членов 2b1x + 2b2y.
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2.2. Преобразование уравнения при повороте. Выясним, как изменится уравнение (7)

при повороте системы координат. Пусть матрица перехода от исходного базиса к повер-

нутому имеет вид

R =

(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)

;

здесь ϕ—угол поворота.

Координаты точки относительно старой (X) и новой (X ′) систем координат связаны

соотношением

X = RX ′.

Поставляя это соотношение в уравнение (7), получим

(RX ′)T X(RX ′) + 2B(RX ′) + c = 0 ⇐⇒

⇐⇒ X ′T (RT AR)X ′ + 2(BR)X ′ + c = 0.

Вводя обозначения

A′ = RT AR, B′ = BR, c′ = c, (8)

видим, что уравнение сохраняет свой вид:

X ′T A′X ′ + 2B′X ′ + c′ = 0,

а коэффициенты уравнения преобразуются по формулам (8).

2.3. Преобразование уравнения при переносе начала координат. Пусть новая система

координат получена из старой сдвигом начала координат на вектор r0, имеющий столбец

координат X0. Тогда старые и новые координаты связаны соотношением

X = X ′ + X0.

Поставляя это соотношение в уравнение (7), получим

(X ′ + X0)
T A(X ′ + X0) + 2B(X ′ + X0) + c = 0 ⇐⇒

X ′T AX ′ + X ′T AX0 + XT
0
AX ′ + XT

0
AX0 + 2BX ′ + 2BX0 + c = 0.

Поскольку AT = A, имеем

X ′T AX0 = (X ′T AX0)
T = XT

0
AT X ′ = XT

0
AX ′,

так что уравнение принимает вид

X ′T AX ′ + 2BX ′ + 2XT
0
AX ′ + XT

0
AX0 + 2BX0 + c = 0.

Вводя обозначения

A′ = A, B′ = B + XT
0
A, c′ = XT

0
AX0 + 2BX0 + c, (9)

видим, что при переносе начала системы координат уравнение сохраняет свой вид:

X ′T A′X ′ + 2B′X ′ + c′ = 0,

а коэффициенты уравнения преобразуются по формулам (9). Отметим, что коэффициенты

старших членов уравнения при переносе не изменяются.



7

2.4. Уничтожение членов вида 2a12xy с помощью поворота. Попытаемся подобрать

поворот таким образом, чтобы слагаемое вида 2a12xy в преобразованном уравнении ис-

чезло, т.е. чтобы матрица A′ уравнения, отнесенного к новой системе координат, была

диагональной:

A′ =

(

λ1 0

0 λ2

)

.

Согласно (8)

A′ = RT AR ⇐⇒ A′ = R−1AR ⇐⇒ RA′ = AR. (10)

По теореме о произведении определителей

det A′ = det(R−1AR) = det R−1 · det A · det R = det A.

Поскольку tr(AB) = tr(BA), имеем

tr A′ = tr(R−1AR) = tr(RR−1A) = tr A.

Задача. Докажите, что tr(AB) = tr(BA). [Указание: напишите выражение для элемен-

тов матриц C = AB и D = BA и вычислите tr C =
∑

i

cii и tr D =
∑

i

dii.]

Таким образом, определитель и след матрицы A не меняются при повороте системы

координат. Отметим, что при переносе начала координат не изменяется сама матрица

A. Итак, det A и tr A являются инвариантами уравнения (7) относительно поворотов и

сдвигов; обозначим их

tr A = S, det A = δ.

Замечание. Заметим, что при повороте не изменяется также свободный член уравнения

(см. формулы (8)).

Для матрицы

A′ =

(

λ1 0

0 λ2

)

получаем:

det A′ = λ1λ2 = det A = δ, tr A′ = λ1 + λ2 = tr A = S.

Таким образом, λ1 и λ2 являются корнями квадратного уравнения

λ2 − Sλ + δ = 0, (11)

называемого характеристическим уравнением. Многочлен λ2 − Sλ + δ называется харак-

теристическим многочленом квадрики (а также матрицы A).

Характеристическое уравнение всегда имеет вещественные корни, поскольку его дис-

криминант

D = S2 − 4δ = (a11 + a22)
2 − 4(a11a22 − a12a21) =

= (a11 − a22)
2 + 4a2

12
> 0.

Векторы нового (повернутого) базиса имеют относительно старого базиса координаты

R1 =

(

cos ϕ

sin ϕ

)

, R2 =

(

− sin ϕ

cos ϕ

)

;

эти столбцы являются столбцами матрицы поворота R: R = [R1, R2].
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Поскольку должно выполняться соотношение (10), имеем:

AR = RA′ ⇐⇒ A[R1, R2] =

(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)(

λ1 0

0 λ2

)

=

=

(

λ1 cos ϕ −λ2 sin ϕ

λ1 sin ϕ λ2 cos ϕ

)

= [λ1R1, λ2R2],

так что

AR1 = λ1R1, AR2 = λ2R2.

Эти уравнения можно переписать в виде

(A − λ1I)R1 = 0, (A − λ2I)R2 = 0,

где I — единичная матрица. Таким образом, R1 и R2 являются решениями однородных

систем линейных уравнений, которые имеют нетривиальные решения лишь в случае

det(A − λ1I) = 0, det(A − λ2I) = 0.

Проверим, что эти соотношения выполняются.

det(A − λ1I) =

∣
∣
∣
∣
∣

a11 − λ1 a12

a21 a22 − λ1

∣
∣
∣
∣
∣
=

= (a11 − λ1)(a22 − λ1) − a12a21 =

= a11a22 − a12a21
︸ ︷︷ ︸

=δ

−λ1(a11 + a22
︸ ︷︷ ︸

=S

) + λ2

1
=

= δ − Sλ1 + λ2

1
;

это выражение равно нулю, поскольку λ1 является корнем характеристического многочле-

на (см. (11)); для λ2 проверка аналогична.

Нетрудно найти выражение для угла поворота ϕ:

ctg 2ϕ =
a11 − a22

2a12

.

Задача. Докажите самостоятельно.

Итак, для уничтожения слагаемого 2a12xy в уравнении квадрики (7) необходимо от

исходного ОНБ перейти к новому ОНБ, векторы которого являются решениями ОСЛУ

(A − λkI)Rk = 0, k = 1, 2,

где λ1, λ2 —корни характеристического уравнения

det(A − λI) = 0.

(Отметим, что найденные векторы R1, R2 необходимо нормировать!)

Матрица поворота (перехода к новому базису)

R = [R1, R2].

В новой системе координат

A′ =

(

λ1 0

0 λ2

)

, B′ = BR, c′ = c.
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Уравнение имеет прежний вид

X ′T A′X ′ + 2B′X ′ + c′ = 0,

но группа старших членов уравнения теперь не содержит перекрестных членов:

X ′T AX ′ = λ1x
′2 + λ2y

′2.

2.5. Уничтожение линейных членов с помощью переноса. Попытаемся теперь подо-

брать перенос таким образом, чтобы уничтожить линейные слагаемые, т.е. в преобразо-

ванном уравнении B′′ = O (O —нулевая матрица). Поскольку коэффициенты линейных

слагаемых уравнения (7) при переносе преобразуются по формулам (9), получаем:

B′′ = X ′T
0

A′ + B′ = O ⇐⇒ A′X ′

0
= −B′T

(использован тот факт, что A′T = A′).

Используя соотношения (8), найдем

(RT AR)(RT X0) = −(BR)T ⇐⇒ RT AX0 = −RT BT ⇐⇒

⇐⇒ AX0 = −BT .

Последнее уравнение позволяет определить координаты X0 вектора сдвига относительно

исходной системы координат. Однако оно не всегда разрешимо, так что уничтожение

линейных слагаемых в уравнении (7) возможно не во всех случаях.

2.6. Классификация.

Случай I. δ = det A 6= 0. В этом случае

X0 = −A−1BT ,

вектор переноса однозначно определен, так что возможно уничтожение как перекрестных,

так и линейных членов. После поворота и сдвига системы координат уравнение принимает

вид

λ1x
′′2 + λ2y

′′2 + γ = 0.

Ясно, что начало новой системы координат является центром симметрии кривой; по

этой причине квадрики с δ 6= 0 называются центральными.

I.1. Эллиптический тип. Корни λ1, λ2 характеристического уравнения имеют один

знак, т.е. δ = det A > 0.

I.1.a. λ1λ2 > 0, λ1γ < 0. Уравнение приводится к виду

x′′2

a2
+

y′′2

b2
= 1

и определяет эллипс.

I.1.b. λ1λ2 > 0, λ1γ = 0. Уравнение приводится к виду

x′′2

a2
+

y′′2

b2
= 0.

Уравнение имеет единственное вещественное решение x = y = 0, однако в поле комплекс-

ных чисел оно может быть записано в виде
(

x′′

a
+ i

y′′

b

)(
x′′

a
− i

y′′

b

)

= 0.
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Это уравнение называют уравнением пары мнимых пересекающихся прямых

x′′

a
+ i

y′′

b
= 0,

x′′

a
− i

y′′

b
= 0.

I.1.c. λ1λ2 > 0, λ1γ > 0. Уравнение приводится к виду

x′′2

a2
+

y′′2

b2
= −1

и называется уравнением мнимого эллипса. Мнимый эллипс не содержит ни одной веще-

ственной точки.

I.2. Гиперболический тип. Корни λ1, λ2 характеристического уравнения имеют разные

знаки, т.е. δ = det A < 0.

I.2.a. λ1λ2 < 0, γ 6= 0. Уравнение приводится к виду

x′′2

a2
− y′′2

b2
= 1

и определяет гиперболу.

I.2.b. λ1λ2 < 0, γ = 0. Уравнение приводится к виду

x′′2

a2
− y′′2

b2
= 0.

Записывая уравнение в виде
(

x′′

a
+

y′′

b

)(
x′′

a
− y′′

b

)

= 0,

обнаруживаем, что оно определяет пару пересекающихся прямых

x′′

a
+

y′′

b
= 0,

x′′

a
− y′′

b
= 0.

Случай II. δ = det A = 0, так что один из корней характеристического уравнения равен

нулю; будем считать, что λ1 = 0. В этом случае уравнение

AX0 = −BT (12)

либо несовместно, либо имеет бесконечно много решений. Соответствующие квадрики

называются нецентральными, или квадрики параболического типа. Такая квадрика либо

не имеет центра симметрии, либо имеет их бесконечно много (все центры симметрии

заполняют прямую).

Уравнение (7) после поворота системы координат принимает вид

λ2y
′2 + 2b′

1
x′ + 2b′

2
y′ + c = 0.

Слагаемое 2b′
2
y′ может быть уничтожено с помощью процедуры выделения полного

квадрата:

λ2y
′2 + 2b′

2
y′ = λ2

(

y′ +
b′
2

λ2

)2

− b′2
2

λ2

,

так что получим

λ2y
′′2 + 2b′

1
x′ + γ = 0, (13)

где

y′′ = y′ +
b′
2

λ2

, γ = c − b′
′
2

2

λ2

.

Случай II.1. Уравнение (12) несовместно. Это возможно, когда

rk A 6= rk[A,−BT ] ⇐⇒ rk A′ 6= rk[A′,−B′T ]
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⇐⇒ rk

(

0 0

0 λ2

)

6=
(

0 0 −b′
1

0 λ2 −b′
2

)

т.е. при b′
1
6= 0. Уравнение (13) с помощью сдвига приводится к виду

y′′2 = 2px′′,

т.е. определяет параболу.

Случай II.2. Уравнение (12) имеет бесконечно много решений. Это возможно, когда

rk A = rk[A,−BT ] ⇐⇒ rk A′ = rk[A′,−B′T ]

⇐⇒ rk

(

0 0

0 λ2

)

=

(

0 0 −b′
1

0 λ2 −b′
2

)

т.е. при b′
1

= 0. Уравнение (13) приводится к виду

y′′2 = γ′,

т.е. определяет, в зависимости от знака γ ′,

II.2.a. пару параллельных прямых

y′′2 = a2,

II.2.b. пару мнимых параллельных прямых

y′′2 = −a2,

II.2.c. пару совпадающих прямых

y′′2 = 0.

2.7. Примеры.

Пример.

Привести к каноническому виду уравнение квадрики

3x2 + 10xy + 3y2 − 2x − 14y − 13 = 0.

Для данной квадрики

A =

(

3 5

5 3

)

, B =
(

−1 −7
)

, c = −13.

Характеристический многочлен имеет вид

det (A − λI) = det

(

3 − λ 5

5 3 − λ

)

= −16 − 6λ + λ2,

его корни λ1 = −2, λ2 = 8.

Найдем вектор сдвига:

AX0 = −BT ⇐⇒
(

3 5

5 3

)(

x0

y0

)

=

(

1

7

)

,

так что (

x0

y0

)

=

(

2

−1

)

.

Итак, начало новой системы координат находится в точке O′(2,−1).
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Найдем свободный член уравнения после преобразований поворота и сдвига:

c′ = XT
0
AX0 + 2BX0 + c =

=

(

2

−1

)T (

3 5

5 3

)(

2

−1

)

+ 2
(

−1 −7
)
(

2

−1

)

− 13 = −8.

Таким образом, уравнение может быть записано в одной из двух возможных форм:

−2x′2 + 8y′2 − 8 = 0 или 8x′2 − 2y′2 − 8 = 0.

Перенося свободный член второго из этих уравнений в правую часть равенства и деля на

него, получим каноническое уравнение гиперболы

x′2

1
− y′2

4
= 1.

Базисные векторы новой системы координат нужно выбирать так, чтобы первый из них

соответствовал λ2, а второй— λ1.

Для λ2 = 8 имеем

A − λ2I =

(

−5 5

5 −5

)

,

так что для нахождения первого базисного вектора получаем однородную систему
(

−5 5

5 −5

)(

x

y

)

=

(

0

0

)

,

нормированное решение которой
(

x

y

)

=
1√
2

(

1

1

)

.

Аналогично, для λ1 = −2 находим

A − λ1I =

(

5 5

5 5

)

,

второй базисный вектор удовлетворяет системе
(

5 5

5 5

)(

x

y

)

=

(

0

0

)

,

так что
(

x

y

)

=
1√
2

(

−1

1

)

.

Отметим, что выбирать векторы нового базиса следует так, чтобы ориентация плоскости

сохранялась.

Матрица поворота

R =
1√
2

(

1 −1

1 1

)

имеет определитель det R = 1, так что ориентация плоскости сохранена. Поскольку

cos ϕ = sin ϕ = 1/
√

2, угол поворота системы координат ϕ = π/4.
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PSfrag replacements

x

y

O

x′

y′

O′

Пример.

Привести к каноническому виду уравнение квадрики

9x2 − 24xy + 16y2 − 20x + 110y − 50 = 0.

Для данной квадрики

A =

(

9 −12

−12 16

)

, B =
(

−10 55
)

, c = −50.

Корни характеристического многочлена

det (A − λI) = det

(

9 − λ −12

−12 16 − λ

)

= −25λ + λ2

равны λ1 = 0, λ2 = 25, т.е. мы имеем квадрику параболического типа.

Найдем векторы повернутого базиса. При λ1 = 0

A − λ1I =

(

9 −12

−12 16

)

,

и нормированное решение однородной системы с этой матрицей

1

5

(

4

3

)

.

При λ2 = 25

A − λ2I =

(

−16 −12

−12 −9

)

,

и нормированное решение однородной системы с этой матрицей

1

5

(

−3

4

)

.
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Таким образом, матрица поворота равна

R =
1

5

(

4 −3

3 4

)

.

Найдем уравнение квадрики в системе координат Ox′y′, связанной с повернутым бази-

сом; для этого нужно вычислить B ′:

B′ = BR =
(

−10 55
) 1

5

(

4 −3

3 4

)

=
(

25 50
)

.

Уравнение квадрики в системе координат Ox′y′ принимает вид

25y′2 + 50x′ + 100y′ − 50 = 0 ⇐⇒ y′2 + 2x′ + 4y′ − 2 = 0;

легко видеть, что это уравнение описывает параболу. Однако коэффициенты при y ′2 и x′

имеют одинаковый знак, поэтому получить каноническое уравнение параболы не удастся.

Изменим выбор матрицы поворота:

R1 = −R = −1

5

(

4 −3

3 4

)

;

это соответствует дополнительному повороту на 180◦. В этом случае

B′ = BR1 =
(

−10 55
)(

−1

5

)(

4 −3

3 4

)

= (−25,−50) .

Уравнение квадрики в повернутой системе координат принимает вид

25y′2 − 50x′ − 100y′ − 50 = 0, ⇐⇒ y′2 − 2x′ − 4y′ − 2 = 0.

Выделяя полный квадрат, получим

(y′ − 2)
2

= 2 (x′ + 3) .

Полагая
{

x′′ = x′ + 3,

y′′ = y′ − 2,
⇐⇒

{

x′ = x′′ − 3,

y′ = y′′ + 2,

т.е. выполняя перенос начала координат в точку O′′ с координатами (−3, 2) (относительно

повернутой системы координат), получим каноническое уравнение параболы

y′′ = 2x′′.

Вычислим координаты точки O′′ относительно исходной системы координат Oxy (см.

(6)):

O′′ = −1

5

(

4 −3

3 4

)(

−3

2

)

=

(

18/5

1/5

)

.



15

PSfrag replacements

x

y

O

x′′

y′′

x′

y′

O′′

2.8. Инварианты квадрик. Выше было доказано, что

S = tr A, δ = det A

инвариантны относительно поворотов и сдвигов системы координат, а свободный член

уравнения квадрики (7) инвариантен относительно поворотов. Уравнение квадрики обла-

дает и другими инвариантами.

Введем матрицы

D =

(

A BT

B c

)

=






a11 a12

a21 a22

b1

b2

b1 b2 c




 , Z =

(

X

z

)

=






x

y

z




 .

Запишем уравнение

ZT DZ = 0 ⇐⇒ XT AX + 2BXz + cz2 = 0. (14)

Если Z —решение этого уравнения, то αZ, α ∈ R также является решением, т.е. уравне-

ние определяет в пространстве коническую поверхность с вершиной в начале координат.

При z = 1 уравнение (14) превращается в уравнение квадрики (7), т.е. кривая является

сечением конуса плоскостью z = 1.
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PSfrag replacements
x′

y′

z′

O

O′

x

y

z

Преобразования поворота и сдвига

X = RX ′ + X0

можно записать в виде
(

X

1

)

=

(

R X0

O 1

)

︸ ︷︷ ︸

=P

(

X ′

1

)

.

Матрица D в уравнении (14) после поворота и сдвига принимает вид

D′ = P T DP,

где

P =

(

R X0

O 1

)

(15)

Поскольку

det P = det

(

R X0

O 1

)

= det R = 1,

с помощью теоремы об определителе произведения матриц получаем

det D′ = det D,

т.е. det D инвариантен относительно поворотов и сдвигов систем координат. Этот инвари-

ант обозначают

∆ = det






a11 a12 b1

a21 a22 b2

b1 b2 c




 .

Инварианты квадрик позволяют получить каноническое уравнение квадрики без нахо-

ждения преобразования системы координат.

Пусть дано уравнение квадрики (7); вычислим величины

S = tr A, δ = det A, ∆ = det D.
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Центральные квадрики: δ 6= 0. В центральном случае уравнение квадрики приводится

к виду

λ1x
′2 + λ2y

′2 + γ = 0.

Этому уравнению отвечает матрица

D′ =






λ1 0 0

0 λ2 0

0 0 γ




 .

Таким образом,

λ1 + λ2 = S, λ1λ2 = δ, λ1λ2γ = ∆.

Поэтому λ1, λ2 являются корнями квадратного уравнения

λ2 − Sλ + δ = 0,

причем λ1 6= 0, λ2 6= 0.

Вырожденный центральный случай ∆ = 0. Получаем γ = 0, т.е. уравнение квадрики

принимает вид

λ1x
′2 + λ2y

′2 = 0.

Если λ1 и λ2 одного знака, т.е. δ > 0, получаем каноническое уравнение

x′2

|λ2|
+

y′2

|λ1|
= 0.

Если λ1 и λ2 имеют разные знаки, т.е. δ > 0, положив λ1 < 0 < λ2, получаем канониче-

ское уравнение
x′2

λ2

− y′2

|λ1|
= 0.

Невырожденный центральный случай ∆ 6= 0. Получаем

γ =
∆

λ1λ2

=
∆

δ
,

т.е. уравнение квадрики преобразуется к виду

λ1x
′2 + λ2y

′2 +
∆

δ
= 0 ⇐⇒ x′2

−∆/δλ1

+
y′2

−∆/δλ2

= 1.

Эллиптический случай (δ > 0, т.е. λ1 и λ2 одного знака):

(1) если ∆λ1 < 0, получаем каноническое уравнение эллипса;

(2) если ∆λ1 > 0, получаем каноническое уравнение мнимого эллипса.

В гиперболическом случае (δ < 0, т.е. λ1 и λ2 разных знаков) уравнение

x′2

−∆/δλ1

+
y′2

−∆/δλ2

= 1,

приводится к каноническому уравнению гиперболы, если выбрать λ1 того же знака, что

∆; тогда

− ∆

δλ1

> 0, − ∆

δλ2

< 0.

Нецентральные квадрики: δ = 0, т.е. один из корней характеристического уравнения

равен нулю; положим λ1 = 0. Уравнение можно привести либо к виду

λ2y
′2 + 2b′

1
x′ = 0, b′

1
6= 0
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(невырожденная параболическая квадрика— парабола), либо к виду

λ2y
′2 + γ = 0

(вырожденные параболические квадрики— пара вещественных или мнимых параллельных

прямых или пара совпавших прямых).

В случае параболы уравнение имеет матрицу коэффициентов

D′ =






0 0 b′
1

0 λ2 0

b′
1

0 0




 ,

так что

λ2 = S, −b′2
1
λ2 = ∆,

откуда

b′
1

= ±
√

−∆

S
.

Выбрав знак b′
1
противоположным знаку λ2, получаем уравнение параболы в канониче-

ском виде

y′′2 = 2px′′,

где

p =
1

|λ2|

√

−∆

S
=

√

− ∆

S3
.

В случае пары прямых матрица коэффициентов уравнения

D′′ =






0 0 0

0 λ2 0

0 0 c′′






и, следовательно,

S = λ2, δ = ∆ = 0;

имеющиеся инварианты не позволяют получить каноническое уравнение квадрики.

2.9. Семиинвариант K вырожденных параболических квадрик. Рассмотрим характе-

ристический многочлен матрицы D:

fD(λ) = det(D − λI) = det

(

A − λI BT

B c − λ

)

(обратите внимание, что I в одном случае обозначает единичную матрицу порядка 3, а в

другом— порядка 2).

При преобразовании координат матрица D превращается в матрицу

D′ = P T DP, P =

(

R X0

O 1

)

.

В случае поворота без сдвига матрица преобразования

P =

(

R O

O 1

)

ортогональна, т.е. P T = P−1, поэтому характеристический многочлен матрицы D′ совпа-

дает с характеристическим многочленом матрицы D:
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fD′(λ) = det(D′ − λI) = det(P T DP − λI) =

= det(P−1DP − λP−1P ) = det(P−1(D − λI)P ) =

= det P−1 det(D − λI) det P = det(D − λI) = fD(λ).

Итак, коэффициенты характеристического многочлена матрицы D инвариантны относи-

тельно поворотов.

Запишем развернутое выражение для fD(λ):

fD(λ) =

∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 b1

a21 a22 − λ b2

b1 b2 c − λ

∣
∣
∣
∣
∣
∣
∣

=

=

∣
∣
∣
∣
∣
∣
∣

a11 a12 b1

a21 a22 − λ b2

b1 b2 c − λ

∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣

λ a12 b1

0 a22 − λ b2

0 b2 c − λ

∣
∣
∣
∣
∣
∣
∣

=

=

∣
∣
∣
∣
∣
∣
∣

a11 a12 b1

a21 a22 b2

b1 b2 c − λ

∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣

a11 0 b1

a21 λ b2

b1 0 c − λ

∣
∣
∣
∣
∣
∣
∣

− λ

∣
∣
∣
∣
∣

a22 − λ b2

b2 c − λ

∣
∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣
∣
∣

a11 a12 b1

a21 a22 b2

b1 b2 c

∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣

a11 a12 0

a21 a22 0

b1 b2 λ

∣
∣
∣
∣
∣
∣
∣

− λ

∣
∣
∣
∣
∣

a11 b1

b1 c − λ

∣
∣
∣
∣
∣
−

−λ

[∣
∣
∣
∣
∣

a22 b2

b2 c − λ

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

λ b2

0 c − λ

∣
∣
∣
∣
∣

]

=

= ∆ − λ

∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
− λ

[∣
∣
∣
∣
∣

a11 b1

b1 c

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

a11 0

b1 λ

∣
∣
∣
∣
∣

]

−

−λ

[∣
∣
∣
∣
∣

a22 b2

b2 c

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

a22 0

b2 λ

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

λ b2

0 c

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

λ 0

0 λ

∣
∣
∣
∣
∣

]

=

= ∆ − λ

[∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

a11 b1

b1 c

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

a22 b2

b2 c

∣
∣
∣
∣
∣

]

+ λ2 (a11 + a22 + c) − λ3 =

= ∆ −








δ +

∣
∣
∣
∣
∣

a11 b1

b1 c

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

a22 b2

b2 c

∣
∣
∣
∣
∣

︸ ︷︷ ︸

=K








λ + Sλ2 − λ3.

Поскольку S, δ и ∆ инвариантны относительно поворотов (а также и сдвигов!), заключаем,

что

K =

∣
∣
∣
∣
∣

a11 b1

b1 c

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

a22 b2

b2 c

∣
∣
∣
∣
∣

—инвариант относительно поворотов. Имеется еще одна величина, инвариантная отно-

сительно поворотов— свободный член c уравнения; c и K называются семиинвариантами

(полуинвариантами).

Докажем, что K является инвариантом также и относительно сдвигов в случае

δ = ∆ = 0.
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Поскольку K —инвариант относительно поворотов, можем считать, что в уравнении

квадрики мы с помощью поворота уже добились того, что a12 = 0. В этом случае

δ = a11a22 − a12 = a11a22 = 0.

Будем считать, что a11 = 0, a22 6= 0, т.е.

D =






0 0 b1

0 a22 b2

b1 b2 c




 ,

так что ∆ = −b2

1
a22. Поскольку по условию ∆ = 0, получаем b1 = 0. Уравнение квадрики

принимает вид

F (x, y) = a22y
2 + 2b2y + c = 0.

Рассмотрим сдвиг

x = x′ + x0, y = y′ + y0.

В сдвинутой системе координат

F ′(x′, y′) = a22(y
′ + y0)

2 + 2b2(y
′ + y0) + c =

= a22y
′2 + 2(a22y0 + b2)y

′ + (a22y
2

0
+ 2b2y0 + c),

т.е.

a′

22
= a22, b′

2
= a22y0 + b2, c′ = a22y

2

0
+ 2b2y0 + c

и, следовательно,

D =






0 0 0

0 a22 b2

0 b2 c




 , D′ =






0 0 0

0 a′

22
b′
2

0 b′
2

c′




 .

Тогда

K = a22c − b2

2
, K ′ = a′

22
c′ − b′2

2
.

Имеем

K ′ = a′

22
c′ − b′2

2
= a22(a22y

2

0
+ 2b2y0 + c) − (a22y0 + b2)

2 = a22c − b2

2
= K,

что и требовалось доказать.

Закончим рассмотрение параболического случая, когда δ = ∆ = 0. В этом случае урав-

нение квадрики

λ2y
′2 + γ = 0

имеет матрицу коэффициентов

D′ =






0 0 0

0 λ2 0

0 0 γ




 ,

так что

S = λ2, K = λ2γ.

Каноническое уравнение получаем в виде

y′2 = − γ

λ2

,
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т.е.

y′2 = −K

S2
.

Классификация квадрик

1. Эллипс δ > 0, S∆ < 0

2. Мнимый эллипс δ > 0, S∆ > 0

3. Пара мнимых пересек. прямых δ > 0, ∆ = 0

4. Гипербола δ < 0, ∆ 6= 0

5. Пара пересекающихся прямых δ < 0, ∆ = 0

6. Парабола δ = 0, ∆ 6= 0

7. Пара параллельных прямых δ = ∆ = 0, K < 0

8. Пара мнимых параллельных прямых δ = ∆ = 0, K > 0

9. Пара совпадающих прямых δ = ∆ = 0, K = 0

Пример.

Получить каноническое уравнение квадрики

4xy + 3y2 + 16x + 12y − 36 = 0

с помощью инвариантов.

Имеем

A =

(

0 2

2 3

)

, D =






0 2 8

2 3 6

8 6 −36




 ,

так что

S = tr A = 3, δ = det A = −4, ∆ = det D = 144.

Это невырожденная гиперболическая квадрика, т.е. гипербола. В канонической системе

координат

D′ =






λ1 0 0

0 λ2 0

0 0 γ




 ,

поэтому

S = λ1 + λ2 = 3, δ = λ1λ2 = −4, ∆ = λ1λ2γ = 144.

Отсюда получаем

λ1 = −1, λ2 = 4, γ = −36.

Уравнение квадрики имеет вид

4x2 − y2 − 36 = 0,

и окончательно в канонической форме

x2

9
− y2

36
= 1.

Пример.

Получить каноническое уравнение квадрики

7x2 + 6xy − y2 + 28x + 12y + 28 = 0

с помощью инвариантов.
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Имеем

A =

(

7 3

3 −1

)

, D =






7 3 14

3 −1 6

14 6 28




 .

поэтому

S = tr A = 6, δ = det A = −16, ∆ = det D = 0.

Это вырожденный гиперболический случай, квадрика представляет собой пару пересе-

кающихся прямых. В канонической системе координат

D′ =






λ1 0 0

0 λ2 0

0 0 γ




 ,

так что

S = λ1 + λ2 = 6, δ = λ1λ2 = −16, ∆ = λ1λ2γ = 0.

Отсюда получаем

λ1 = −2, λ2 = 8, γ = 0.

Уравнение квадрики имеет вид

8x2 − 2y2 = 0 ⇐⇒ 4x2 − y2 = 0.

Пример.

Получить каноническое уравнение квадрики

19x2 + 6xy + 11y2 + 38x + 6y + 29 = 0

с помощью инвариантов.

Имеем

A =

(

19 3

3 11

)

, D =






19 3 19

3 11 3

19 3 29




 ,

поэтому

S = tr A = 30, δ = det A = 200, ∆ = det D = 2000.

Это невырожденный эллиптический случай. В канонической системе координат

D′ =






λ1 0 0

0 λ2 0

0 0 γ




 ,

так что

λ1 + λ2 = 30, λ1λ2 = 200, λ1λ2γ = 2000.

Отсюда получаем

λ1 = 20, λ2 = 10, γ = 10.

Уравнение квадрики имеет вид

20x2 + 10y2 + 10 = 0 ⇐⇒ 2x2 + y2 = −1.

Пример.
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Получить каноническое уравнение квадрики

9x2 + 24xy + 16y2 − 18x + 226y + 209 = 0

с помощью инвариантов.

Имеем

A =

(

9 12

12 16

)

, D =






9 12 −9

12 16 113

−9 113 209




 ,

поэтому

S = tr A = 25, δ = det A = 0, ∆ = det D = −140 625.

Это невырожденный параболический случай. В канонической системе координат

D′ =






0 0 b1

0 λ2 0

b1 0 0




 ,

так что

λ1 + λ2 = 25, λ1λ2 = 0, −b2

1
λ2 = −140 625.

Отсюда получаем

λ1 = 0, λ2 = 25, b1 =

√

−∆

λ2

= ±75.

Для того чтобы получить каноническое уравнение параболы, нужно взять b1 = −75; тогда

25y2 − 2 · 75x = 0 ⇐⇒ y2 = 6x.

Пример.

Получить каноническое уравнение квадрики

16x2 − 24xy + 9y2 − 160x + 120y + 425 = 0

с помощью инвариантов.

Имеем

A =

(

16 −12

−12 9

)

, D =






16 −12 −80

−12 9 60

−80 60 425




 ,

поэтому

S = tr A = 25, δ = det A = 0, ∆ = det D = 0.

Имеем вырожденный параболический случай, для которого требуется вычислить семи-

инвариант K:

K =

∣
∣
∣
∣
∣

a11 b1

b1 c

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

a22 b2

b2 c

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

16 −80

−80 425

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

9 60

60 425

∣
∣
∣
∣
∣
= 625.

В канонической системе координат

D′ =






0 0 0

0 λ2 0

0 0 γ




 ,

так что

λ2 = S = 25, K = λ2γ = 625, γ = 25.
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Уравнение квадрики имеет вид

25y2 + 25 = 0 ⇐⇒ y2 + 1 = 0.



Лекция 13

Поверхности второго порядка

Пространственным аналогом кривых второго порядка являются поверхности второго по-

рядка, имеющие уравнение вида

F (x, y, z) = 0,

где F (x, y, z)—многочлен второй степени от X, y, z. Опишем возможные типы поверхно-

стей второго порядка.

Эллиптический тип

1 Эллипсоид

В прямоугольной декартовой системе координат эллип-

соид задается уравнением

x2

a2
+

y2

b2
+

z2

c2
= 1,

где a > 0, b > 0, c > 0. Сечением эллипсоида плоскостью

z = h является линия






z = h,

x2

a2
+

y2

b2
= 1 − h2

c2
,

т.е.
x2

(

a

√

1 − h2

c2

)2
+

y2

(

b

√

1 − h2

c2

)2
= 1.

Следовательно, плоскость z = h при |h| > c не пересекает эллипсоид, при |h| = c имеет

единственную общую точку с эллипсоидом (это точка (0, 0, c) при h = c и точка (0, 0,−c)

при h = −c), а при |h| < c пересекает эллипсоид по эллипсу с полуосями a

√

1 − h2

c2
,

b

√

1 − h2

c2
, которые максимальны (и равны a и b соответственно) при h = 0 и монотонно

уменьшаются до нуля, когда |h| возрастает от нуля до c.

Аналогично анализируются сечения эллипсоида плоскостями x = h и y = h; все такие

сечения представляют собой эллипсы.

Координатные плоскости являются плоскостями симметрии эллипсоида, начало коор-

динат— его центром симметрии. Эллипсоид целиком расположен в параллелепипеде с

центром в точке O(0, 0, 0), с гранями, параллельными координатным плоскостям, и со

сторонами, равными 2a, 2b и 2c.

1



2 Мнимый эллипсоид

Уравнение мнимого эллипсоида

x2

a2
+

y2

b2
+

z2

c2
= −1,

где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.

3 Мнимый конус.

Уравнение мнимого конуса
x2

a2
+

y2

b2
+

z2

c2
= 0,

где a > 0, b > 0, c > 0. Эта поверхность имеет единственную вещественную точку

O(0, 0, 0).

Гиперболический тип

4 Двуполостный гиперболоид

Уравнение двуполостного гиперболоида

x2

a2
+

y2

b2
− z2

c2
= −1

или

−x2

a2
− y2

b2
+

z2

c2
= 1,

где a > 0, b > 0 и c > 0.

Плоскость z = h при |h| < c не пересекает гипер-

болоид, при |h| = c имеет единственную общую точку с

гиперболоидом ((0, 0, c) при h = c и (0, 0,−c) при h = −c)

и при |h| > c пересекает гиперболоид по эллипсу

x2

(

a

√

h2

c2
− 1

)2
+

y2

(

b

√

h2

c2
− 1

)2
= 1,

полуоси которого монотонно возрастают от 0 до +∞, когда |h| возрастает от c до +∞.

Каждая плоскость y = h пересекает гиперболоид по гиперболе

z2

(

c

√

1 +
h2

b2

)2
− x2

(

a

√

1 +
h2

b2

)2
= 1,

полуоси которой монотонно возрастают (от c и a соответственно) до +∞, когда |h| воз-
растает от 0 до +∞. Аналогично для сечений плоскостями x = h.

Координатные плоскости являются плоскостями симметрии двуполостного гиперболо-

ида, начало координат— его центром симметрии. Поверхность состоит из двух симмет-

ричных частей, расположенных в полупространствах z > c и z 6 −c.

2



5 Однополостный гиперболоид

Уравнение однополостного гиперболоида

x2

a2
+

y2

b2
− z2

c2
= 1,

где a > 0, b > 0 и c > 0.

Каждая плоскость z = h пересекает гиперболоид по

эллипсу

x2

(

a

√

1 +
h2

c2

)2
+

y2

(

b

√

1 +
h2

c2

)2
= 1,

полуоси которого монотонно возрастают от a и b соответственно до +∞, когда |h| возрас-
тает от 0 до +∞. Эллипс

x2

a2
+

y2

b2
= 1,

получающийся при h = 0, называется горловым эллипсом гиперболоида.

Плоскость y = h при |h| < b пересекает гиперболоид по гиперболе

x2

(

a

√

1 − h2

b2

)2
− z2

(

c

√

1 − h2

b2

)2
= 1,

полуоси которой монотонно убывают от a и c соответственно до 0, когда |h| возрастает от

0 до b. При |h| = b сечением является пара пересекающихся прямых

x2

a2
− z2

c2
= 0.

При |h| > b сечение представляет собой гиперболу

z2

(

c

√

h2

b2
− 1

)2
− x2

(

c

√

h2

b2
− 1

)2
= 1,

полуоси которой возрастают от 0 до +∞, когда |h| возрастает от b до +∞. Аналогично

для сечений плоскостями x = h.

Координатные плоскости являются плоскостями симметрии однополостного гипербо-

лоида, начало координат— его центром симметрии.

3



6 Конус

Уравнение конуса

x2

a2
+

y2

b2
− z2

c2
= 0,

где a > 0, b > 0, c > 0.

Координатные плоскости являются плоскостями сим-

метрии конуса, начало координат— его центром симмет-

рии.

Коническая поверхность— это поверхность, образо-

ванная прямыми (прямолинейными образующими), про-

ходящими через одну точку, называемую вершиной конуса. Направляющая конической по-

верхности— это произвольная расположенная на ней линия, обладающая тем свойством,

что любая прямолинейная образующая пересекает ее в одной и только одной точке.

Сечение конуса плоскостью z = h, h 6= 0, представляет собой эллипс

x2

a2h2/c2
+

y2

b2h2/c2
= 1,

полуоси которого пропорциональны |h|. Прямая, проходящая через центры этих эллипсов,

называется осью конуса. Рассматривая сечения конуса плоскостями, не перпендикуляр-

ными оси, можем получить окружность.

Сечение конуса плоскостью z = 0 состоит из одной точки O(0, 0, 0).

Сечение конуса плоскостью y = h, h 6= 0, является гиперболой

z2

c2h2/b2
− x2

a2h2/b2
= 1,

полуоси которой пропорциональны |h|. Аналогично для сечений плоскостями x = h. Таким

образом, в качестве направляющей конуса может быть выбрана гипербола.

Сечение конуса плоскостью y = 0 представляет собой пару пересекающихся прямых

x2

a2
− z2

c2
= 0.

Парабола также может быть получена как плоское сечение конуса.

Задача. Покажите, что сечение конуса плоскостью az − cx = h, h 6= 0, является

параболой.
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Параболический тип

7 Эллиптический параболоид

Уравнение эллиптического параболоида

x2

a2
+

y2

b2
= 2z,

где a > 0, b > 0.

Плоскость z = h при h < 0 не пересекает параболо-

ид, при h = 0 имеет с ним единственную общую точку

O(0, 0, 0), при h > 0 пересекает параболоид по эллипсу

x2

2ha2
+

y2

2hb2
= 1,

полуоси которого монотонно возрастают вместе с h от 0

до +∞.

Плоскости y = h и x = h пересекают параболоид по параболам с фокальными парамет-

рами a2 и b2, с вершинами в точках (0, h, h2/2b2) и (h, 0, h2/2a2) и ветвями, направленными

вверх.

Координатные плоскости x = 0 и y = 0 являются плоскостями симметрии эллиптиче-

ского параболоида, других плоскостей симметрии и центра симметрии у него нет.

8 Гиперболический параболоид

Уравнение гиперболического параболоида

x2

a2
− y2

b2
= 2z,

где a > 0, b > 0.

Плоскость z = h при h < 0 пересекает параболоид по

гиперболе
y2

−2hb2
− x2

−2ha2
= 1;

действительная ось этой гиперболы параллельна оси Oy, а мнимая— оси Ox. Плоскость

z = h при h > 0 пересекает параболоид по гиперболе

x2

2ha2
− y2

2hb2
= 1;

действительная ось этой гиперболы параллельна оси Ox, а мнимая— оси Oy. Плоскость

z = 0 пересекает параболоид по паре прямых

x2

a2
− y2

b2
= 0.
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Плоскости y = h и x = h пересекают параболоид по параболам с фокальными параметрами

a2 и b2 и с вершинами в точках

(

0, h,− h2

2b2

)

и

(

h, 0,
h2

2b2

)

; ветви первой параболы на-

правлены вверх, второй— вниз. Вершины парабол, высекаемых плоскостями y = h, лежат

на параболе, высекаемой плоскостью x = 0, а вершины парабол, высекаемых плоскостями

x = h, — на параболе, высекаемой плоскостью y = 0.

Плоскости x = 0 и y = 0 являются плоскостями симметрии гиперболического парабо-

лоида; других плоскостей симметрии нет.

9 Эллиптический цилиндр

Уравнение эллиптического цилиндра

x2

a2
+

y2

b2
= 1,

где a > 0, b > 0. Направляющей является эллипс, образую-

щие параллельны оси Oz.

10 Мнимый эллиптический цилиндр

Уравнение мнимого эллиптического цилиндра

x2

a2
+

y2

b2
= −1,

где a > 0, b > 0. Эта поверхность не содержит ни одной вещественной точки.

11 Пара мнимых пересекающихся плоскостей

Уравнение пары мнимых пересекающихся плоскостей

x2

a2
+

y2

b2
= 0,

где a > 0, b > 0. Вещественные точки этой поверхности заполняют прямую (ось Oz).

12 Гиперболический цилиндр

Уравнение гиперболического цилиндра

x2

a2
− y2

b2
= 1,

где a > 0, b > 0. Направляющей является гипербола,

образующие параллельны оси Oz.
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13 Пара пересекающихся плоскостей

Уравнение пары пересекающихся плоскостей

x2

a2
− y2

b2
= 0,

где a > 0, b > 0.

14 Параболический цилиндр

Уравнение гиперболического цилиндра

y2 = 2px,

где p > 0. Направляющей является парабола, образую-

щие параллельны оси Oz.

15 Пара параллельных плоскостей

Уравнение пары параллельных плоскостей

y2 = a2,

где a > 0.

16 Пара мнимых параллельных плоскостей

Уравнение пары мнимых параллельных плоскостей

y2 = −a2,

где a > 0.

17 Пара совпадающих плоскостей

Уравнение пары совпадающих плоскостей

y2 = 0.

Линейчатые поверхности

Поверхность называется l-кратно линейчатой поверхностью, если через каждую ее точку

проходит ровно l различных прямых, называемых прямолинейными образующими.

Примеры.

1. Все цилиндры являются 1-линейчатыми поверхностями.

2. Конус является 1-линейчатой поверхностью, все прямолинейные образующие кото-

рой проходят через одну точку— вершину конуса.
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Однополостный гиперболоид

Теорема.

Однополостный гиперболоид является дважды линейчатой поверхностью.

Пусть (x0, y0, z0)— точка, лежащая на однополостном гиперболоиде

x2

a2
+

y2

b2
− z2

c2
= 1. (1)

Рассмотрим прямую, проходящую через эту точку:

x = x0 + lt, y = y0 + mt, z = z0 + nt. (2)

Для краткости введем обозначения

X =
x

a
, Y =

y

b
, Z =

z

c
,

X0 =
x0

a
, Y0 =

y0

b
, Z0 =

z0

c
,

L =
l

a
, M =

m

b
, N =

n

c
.

Уравнение гиперболоида (1) в новых обозначениях

X2 + Y 2 − Z2 = 1 ⇐⇒ X2 + Y 2 = 1 + Z2, (3)

а уравнение прямой (2) —

X = X0 + Lt, Y = Y0 + Mt, Z = Z0 + Nt. (4)

Подставляя (4) в (3), получим

(X0 + Lt)2 + (Y0 + Mt)2 − (Z0 + Nt)2 = 1 ⇐⇒

⇐⇒ (X2

0
+ Y 2

0
− Z2

0
)

︸ ︷︷ ︸

=1

+2t(X0L + Y0M − Z0N) + t2(L2 + M2 − N2) = 1

⇐⇒ 2t(X0L + Y0M − Z0N) + t2(L2 + M2 − N2) = 0.

Это уравнение выполняется тождественно (т. прямая (4) целиком лежит на гиперболоиде

(3)) тогда и только тогда, когда

X0L + Y0M − Z0N = 0, L2 + M2 − N2 = 0.

Поскольку направляющий вектор прямой может быть выбран с точностью до произволь-

ного ненулевого множителя, положим n = c, тогда N = 1, и получим

X0L + Y0M = Z0, L2 + M2 = 1.

Второе уравнение допускает параметризацию

L = cos ϕ, M = sin ϕ,
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после чего первое уравнение примет вид

X0 cos ϕ + Y0 sin ϕ = Z0 ⇐⇒
√

X2

0
+ Y 2

0











X0
√

X2

0
+ Y 2

0
︸ ︷︷ ︸

=cos θ

cos ϕ +
Y0

√

X2

0
+ Y 2

0
︸ ︷︷ ︸

=sin θ

sin ϕ











= Z0 ⇐⇒

⇐⇒ cos(ϕ − θ) =
Z0

√

X2

0
+ Y 2

0

=
Z0

√

1 + Z2

0

;

последняя дробь строго меньше единицы по модулю, поэтому тригонометрическое урав-

нение имеет ровно 2 решения на [0, 2π):

ϕ − θ = ± arccos
Z0

√

1 + Z2

0

⇐⇒ ϕ = θ ± arccos
Z0

√

1 + Z2

0

.

Пусть

β = arccos
Z0

√

1 + Z2

0

∈ [0, π] ⇒ cos β =
Z0

√

1 + Z2

0

, sin β =
1

√

1 + Z2

0

.

Тогда

cos ϕ = cos(θ ± β) = cos θ cos β ∓ sin θ sin β

=
X

√

X2

0
+ Y 2

0

Z0
√

1 + Z2

0

∓ Y0
√

X2

0
+ Y 2

0

1
√

1 + Z2

0

=
X0Z0 ∓ Y0

1 + Z2

0

,

sin ϕ = sin(θ ± β) = sin θ cos β ± cos θ sin β

=
Y0

√

X2

0
+ Y 2

0

Z0
√

1 + Z2

0

± X0
√

X2

0
+ Y 2

0

1
√

1 + Z2

0

=
Y0Z0 ± X0

1 + Z2

0

.

Таким образом, имеем два решения

Lε = cos ϕ =
X0Z0 − εY0

1 + Z2

0

, Mε = sin ϕ =
Y0Z0 + εX0

1 + Z2

0

, ε = ±1.

Каждое из возможных значений ε определяет направляющий вектор.

Итак, через точку (X0, Y0, Z0) гиперболоида (3) проходят ровно две прямые, целиком

лежащие на гиперболоиде:

X = X0 +
X0Z0 − εY0

1 + Z2

0

t, Y = Y0 +
Y0Z0 + εX0

1 + Z2

0

t, Z = Z0 + t, ε = ±1.

Эти прямые пересекаются с плоскостью z = 0 (Z = 0) в точках (X1, Y1, Z1), (X−1, Y−1, Z−1),

отвечающих значению параметра t0 = −Z0:

Xε = X0 −
X0Z0 − εY0

1 + Z2

0

Z0 =
X0 + εY0Z0

1 + Z2

0

= ε
Y0Z0 + εX0

1 + Z2

0

= εMε,

Yε = Y0 −
Y0Z0 + εX0

1 + Z2

0

Z0 =
Y0 − εX0Z0

1 + Z2

0

= −ε
X0Z0 − εY0

1 + Z2

0

= −εLε,

Zε = 0, ε = ±1.
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Ясно, что эти две точки лежат на горловом эллипсе гиперболоида. Теперь можно записать

уравнения прямолинейных образующих в виде

X = Xε − εYεt, Y = Yε + εXεt, Z = t.

Обратно, пусть (X∗, Y∗)— точка горлового эллипса однополостного гиперболоида (3),

т.е.

X2

∗
+ Y 2

∗
= 1.

Рассмотрим две прямых

X = X∗ − εY∗t, Y = Y∗ + εX∗t, Z = t, ε = ±1.

Поскольку

X2 + Y 2 − Z2 = (X∗ − εY∗t)
2 + (Y∗ + εX∗t)

2 − t2 =

= (X2

∗
+ Y 2

∗
)

︸ ︷︷ ︸

=1

+2t(XεYε − XεYε) + t2 (X2

∗
+ Y 2

∗
− 1)

︸ ︷︷ ︸

=0

= 1,

обе эти прямые целиком лежат на гиперболоиде.

Итак, через любую точку гиперболоида проходит ровно две прямолинейные образую-

щие, одна из которых отвечает значению ε = 1, а другая— значению ε = −1. Все пря-

молинейные образующие разбиваются на два семейства; к одному семейству относятся

образующие, отвечающие ε = 1, к другому— отвечающие ε = −1.

Рассмотрим две образующие, проходящие через точки (X1, Y1) и (X2, Y2) горлового

эллипса:














X = X1 − ε1Y1t,

Y = Y1 + ε1X1t,

Z = t,















X = X2 − ε2Y2t,

Y = Y2 + ε2X2t,

Z = t.

Выясним вопрос о взаимном расположении этих прямых. Рассмотрим определитель

D =

∣

∣

∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1 0

−ε1Y1 ε1X1 1

−ε2Y2 ε2X2 1

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1 0

−ε1Y1 + ε2Y2 ε1X1 − ε2X2 0

−ε2Y2 ε2X2 1

∣

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1

ε2Y2 − ε1Y1 ε1X1 − ε2X2

∣

∣

∣

∣

∣

.

Обозначим ε = ε1ε2; тогда ε2 = ε
ε1

= εε1 и далее
∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1

ε2Y2 − ε1Y1 ε1X1 − ε2X2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1

εε1Y2 − ε1Y1 ε1X1 − εε1X2

∣

∣

∣

∣

∣

=

= ε1

∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1

εY2 − Y1 X1 − εX2

∣

∣

∣

∣

∣

= −ε1

[

(X2 − X1)(εX2 − X1) + (Y2 − Y1)(εY2 − Y1)
]

.

Если ε = 1, т.е. образующие принадлежат к одному семейству, то

D = −ε1

[

(X2 − X1)(X2 − X1) + (Y2 − Y1)(Y2 − Y1)
]

= −ε1

[

(X2 − X1)
2 + (Y2 − Y1)

2

]

6= 0,
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т.е. рассматриваемые две прямые скрещиваются. Если ε = −1, т.е. образующие принадле-

жат к разным семействам, то

D = −ε1

[

(X2 − X1)(−X2 − X1) + (Y2 − Y1)(−Y2 − Y1)
]

= −ε1

[

(X2 − X1)
2 + (Y2 − Y1)

2

]

=

= ε1[X
2

2
− X2

1
+ Y 2

2
− Y 2

1
] = 0,

т.е. рассматриваемые две прямые лежат в одной плоскости.

Рассмотрим три попарно различные одноименные прямолинейные образующие, прохо-

дящие через точки (X1, Y1), (X2, Y2), (X3, Y3) горлового эллипса. Рассмотрим определи-

тель, составленный из координат направляющих векторов указанных прямых:
∣

∣

∣

∣

∣

∣

∣

−Y1 X1 1

−Y2 X2 1

−Y3 X3 1

∣

∣

∣

∣

∣

∣

∣

6= 0,

поскольку точки (X1, Y1), (X2, Y2), (X3, Y3) не лежат на одной прямой. Таким образом,

рассматриваемые три прямолинейные образующие не компланарны.

Доказана следующая теорема.

Теорема.

Прямолинейные образующие однополостного гиперболоида обладают следующими

свойствами:

1. Через каждую точку гиперболоида проходит одна и только одна образующая

каждого семейства.

2. Каждая образующая пересекает горловой эллипс гиперболоида.

3. Любые две образующие, принадлежащие к одному семейству, скрещиваются.

4. Любые две образующие, принадлежащие к разным семействам, лежат в одной

плоскости.

При решении задач более удобен иной метод нахождения прямолинейных образующих.

Запишем уравнение однополостного гиперболоида в виде

x2

a2
− z2

c2
= 1 − y2

b2
⇐⇒

(x

a
− z

c

)(x

a
+

z

c

)

=
(

1 − y

b

)(

1 +
y

b

)

.

Пусть точка (x0, y0, z0) лежит на гиперболоиде. Рассмотрим две системы однородных ли-

нейных уравнений










α
(x0

a
− z0

c

)

= β
(

1 − y0

b

)

,

β
(x0

a
+

z0

c

)

= α
(

1 +
y0

b

)

,











γ
(x0

a
− z0

c

)

= δ
(

1 +
y0

b

)

,

δ
(x0

a
+

z0

c

)

= γ
(

1 − y0

b

)
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относительно неизвестных (α, β) для первой системы и (γ, δ) для второй. Определители

этих систем равны нулю; например, для первой системы
∣

∣

∣

∣

∣

∣

∣

x0

a
− z0

c
−
(

1 − y0

b

)

−
(

1 +
y0

b

) x0

a
+

z0

c

∣

∣

∣

∣

∣

∣

∣

=
(x0

a
− z0

c

)(x0

a
+

z0

c

)

−
(

1 +
y0

b

)(

1 − y0

b

)

= 0.

Таким образом, каждая из систем обладает нетривиальным решением; обозначим эти

решения через (α0, β0) и (γ0, δ0) соответственно. Рассмотрим теперь системы уравнений










α0

(x

a
− z

c

)

= β0

(

1 − y

b

)

,

β0

(x

a
+

z

c

)

= α0

(

1 +
y

b

)

,











γ0

(x

a
− z

c

)

= δ0

(

1 +
y

b

)

,

δ0

(x

a
+

z

c

)

= γ0

(

1 − y

b

)

относительно неизвестных (x, y, z). Точка (x0, y0, z0) является решением каждой из си-

стем, и при этом каждая из систем определяет прямую, проходящую через указанную

точку. Поскольку при перемножении уравнений каждой из систем получается уравнение

гиперболоида, любое решение (x, y, z) каждой из систем представляет точку, лежащую на

гиперболоиде. Таким образом, обе прямых, представляемых данными системами, целиком

лежат на гиперболоиде.

Гиперболический параболоид

Теорема.

Гиперболический параболоид является дважды линейчатой поверхностью.

Пусть точка (x0, y0, z0) лежит на гиперболическом параболоиде

x2

a2
− y2

b2
= 2z. (5)

Рассмотрим прямую, проходящую через эту точку:

x = x0 + lt, y = y0 + mt, z = z0 + nt. (6)

Для краткости введем обозначения

X =
x

a
, Y =

y

b
, Z = z,

X0 =
x0

a
, Y0 =

y0

b
, Z0 = z0,

L =
l

a
, M =

m

b
, N = n.

Уравнения параболоида (7) и прямой (6) в новых обозначениях имеют вид

X2 − Y 2 = 2Z,















X = X0 + Lt,

Y = Y0 + Mt,

Z = Z0 + Nt.
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Подставляя параметрические уравнения прямой в уравнение параболоида,получим

(X0 + Lt)2 − (Y0 + Mt)2 = 2(Z0 + Nt) ⇐⇒

⇐⇒ (X2

0
− Y 2

0
)

︸ ︷︷ ︸

=2Z0

+2t(X0L − Y0M) + t2(L2 − M2) = 2Z0 + 2Nt ⇐⇒

⇐⇒ 2t(X0L − Y0M) + t2(L2 − M2) = 2Nt.

Это уравнение выполняется тождественно, т.е. прямая целиком лежит на параболоиде,

тогда и только тогда, когда

X0L − Y0M = N, L2 − M2 = 0.

Поскольку направляющий вектор прямой определен лишь с точностью до ненулевого мно-

жителя, положим L = 1; тогда M = ε, где ε = ±1, N = X0 − εY0. Итак, через точку

(X0, Y0, Z0) параболоида проходят ровно две прямых














X = X0 + t,

Y = Y0 + εt,

Z = Z0 + (X0 − εY0)t,

ε = ±1.

Выясним взаимное расположение двух одноименных прямолинейных образующих, про-

ходящих через две различные точки (X1, Y1, Z1), (X2, Y2, Z2) параболоида; для этого рас-

смотрим определитель
∣

∣

∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1 Z2 − Z1

1 1 X1 − Y1

1 1 X2 − Y2

∣

∣

∣

∣

∣

∣

∣

=

= X2

2
− 2Y2X2 − 2X2X1 + 2Y1X2 + 2Y2X1 + X2

1
− 2Y1X1 + Y 2

2
− 2Y1Y2 + Y 2

1
=

= (X2 − Y2 − X1 + Y1)
2 6= 0;

таким образом, эти образующие скрещиваются.

Выясним взаимное расположение двух разноименных прямолинейных образующих,

проходящих через две различные точки (X1, Y1, Z1), (X2, Y2, Z2) параболоида; для этого

рассмотрим определитель
∣

∣

∣

∣

∣

∣

∣

X2 − X1 Y2 − Y1 Z2 − Z1

1 1 X1 − Y1

1 −1 X2 + Y2

∣

∣

∣

∣

∣

∣

∣

= X2

2
− Y 2

2
− 2Z2 −

(

X2

1
− Y 2

1
− 2Z1

)

= 0;

таким образом, эти образующие лежат в одной плоскости. Поскольку при этом направля-

ющие векторы (1, 1, X1 − Y1) и (1,−1, X2 + Y2) этих образующих неколлинеарны, рассмат-

риваемые образующие пересекаются.

Наконец, направляющие векторы всех образующих одного семейства имеют вид

(1, ε,X0 − εY0) параллельны плоскости X − εY = 0.
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Доказана следующая теорема.

Теорема.

Прямолинейные образующие гиперболического параболоида обладают следующими

свойствами:

1. Через каждую точку гиперболоида проходит одна и только одна образующая

каждого семейства.

2. Любые две образующие, принадлежащие к одному семейству, скрещиваются.

3. Любые две образующие, принадлежащие к разным семействам, пересекаются.

4. Все образующие одного семейства параллельны одной плоскости.

Имеется другой метод нахождения уравнений прямолинейных образующих гиперболи-

ческого параболоида. Запишем уравнение параболоида (7) в виде
(x

a
− y

b

)(x

a
+

y

b

)

= 2z. (7)

Пусть точка (x0, y0, z0) лежит на параболоиде. Рассмотрим две системы однородных ли-

нейных уравнений относительно неизвестных (α, β) и (γ, δ):










α
(x0

a
− y0

b

)

= β,

β
(x0

a
+

y0

b

)

= 2αz0,











γ
(x0

a
+

y0

b

)

= δ,

δ
(x0

a
− y0

b

)

= 2γz0.

Определители этих систем равны нулю (проверьте!). поэтому каждая из систем нетриви-

ально разрешима; пусть (α0, β0) и (γ0, δ0)—их решения. Рассмотрим теперь системы










α0

(x

a
− y

b

)

= β0,

β0

(x

a
+

y

b

)

= 2αz,











γ0

(x

a
+

y

b

)

= δ0,

δ0

(x

a
− y

b

)

= 2γ0z;

каждая из них определяет прямую, проходящую через точку (x0, y0, z0) параболоида. Пе-

ремножая уравнения каждой из систем, обнаруживаем, что любое решение системы яв-

ляется также и решением уравнения (7), т.е. прямая целиком лежит на параболоиде.
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